
Shearlet-based Analysis of Image Inpainting and Convolutional Framelets

by
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ABSTRACT

The main part of my dissertation deals with image inpainting - a classical problem in image analysis

that I analyze from the point of view of microlocal analysis and the theory of sparse approximation.

My most important result provides a new set of theoretical performance guarantees for the exact

recovery of missing data in images where the information is dominated by curvilinear singularities.

In fact, my study shows that a shearlet-based approach for the recovery of missing curvilinear

edges in images is provably superior to methods based on conventional wavelets in a precises sense

and gives a quantitative assessment on the size of the region that can reliably recovered. As a

consequence, this result offers the theoretical underpinning for algorithms based on directional

multiscale methods such as shearlets in applications to image inpainting. The arguments in my

proofs rely on a new application of the microlocal properties of shearlets and techniques from

oscillatory integrals that are inspired in part by a seminal paper by Donoho and Kutyniok, who first

introduced methods from microlocal analysis in combination with ideas from sparse representations

for problems of image analysis. The second part of my dissertation is a new study of convolutional

framelets - a method recently introduced to provide a mathematical framework for the patch-based

analysis of images - using tools from tensor analysis. This method gives an alternative approach to

analyze framelets and a deeper insight into the mathematical properties of convolutional framelets.

The first part of the dissertation follows rather closely some material published by the author in

his first journal paper.
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1 Introduction

Today’s world uses images extensively in many fields like science, engineering, medicine, architec-

ture, art to name a few. Those fields rely on electronics to acquire, process, transmit and store

those images. And due to many factors such as the inherent noise from electronic components,

radio interference and defects in manufacture or malfunctions, images may get corrupted and some

information is lost. So, there is the need to recover the missing part of the damaged image.

Human vision is remarkably able to fill these missing parts. Especially in art, conservators use

a series of techniques called inpainting to restore and repair paintings. This word is now commonly

used to describe a range of signal processing techniques for recovering missing blocks of data in

digital images, video and audio. Typical examples of inpainting include the removal of overlaid

text in images, repair of scratched photos and recovery of missing blocks in a streamed video such

as those illustrated in Figure 1.

Many different ideas and methods have been proposed to deal with image inpainting and their

performance may vary depending on the type of images considered as well as the geometry of the

region to be recovered.

A very common approach to inpainting is to apply variational methods such in the work found

in [1,3,4] which motivate the design of filling-in algorithms by geometric considerations. This leads

to the use of partial differential equations (PDE) models which propagate information from the

boundaries of the missing regions in an image while guaranteeing smoothness of some sort. The

variational approach to inpainting has been shown to perform well on piecewise smooth images

(e.g., those idealized images called cartoon image) and carry only geometric information. Yet,

images also contains texture and variational methods do not perform well in such settings. On

the other hand, local statistical analysis and prediction have been shown to perform well at filling

texture content [16,23]. Additional works that use PDEs or variational principles to recover missing

data from the close neighborhood of a region impose additional criteria of regularity to fill in

holes [7, 10,27,54].
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Figure 1: Examples of image inpainting. Left: corrupted images. Right: images restored using the
inpainting algorithm in [26]

Since real images contain typically edges, smooth regions and texture, there is a major interest

in developing techniques that can handle all these features. Besides that, approaches based on

segmentation which label pixels as cartoon or texture should be avoided since some areas in the

image contain contributions from both texture and cartoon. So, methods that decompose an image

additively into layers may offer some advantages by combining layer-specific methods for filling in

image holes, as done for instance in [5, 44, 60] where an image is separated into a cartoon and

a texture component. Then the inpainting is done separately in each layer and the completed

layers are superimposed to form the output image. This layer decomposition can also be based on

variation methods leading to extend the notion of total-variation in [53].

Adapting the same multi-layer idea, Stark et al. introduced in [57,58] a novel method of image

decomposition that optimizes sparsity at each layer of the representation. The core idea is to use

two adapted dictionaries, one to represent textures and the other to represent cartoons that also
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also are mutually incoherent. That is, each dictionary is sparse for its target type of content but not

for the other one. Building on this idea, Elad et al. introduced in [26] an inpainting method based

on this sparse decomposition, called morphological component analysis, (MCA) that is capable to

fill in holes in overlapping texture and cartoon image layers.

The idea of applying sparsity in combination with convex optimization has been also explored

in other work, e.g., [6, 18]. These methods try to recover an image from highly incomplete linear

measurements by `1-minimization under the assumption that the image admits a sparse represen-

tation in a dictionary such as wavelets. Following this idea, several methods for inpainting have

adopted representations such as wavelets, curvelets or shearlets to frame the inpainting problem as

an optimization problem [6,18,26,30,56]. However, while these papers contain theoretical analyses

of the convergence of their algorithms to the minimizers of specific optimization problems, they

lack a theoretical analysis of how well those optimizers actually inpaint. Other results, especially in

the engineering literature, examine the problem in the discrete setting and do not allow to take into

account the geometry of the problem. By contrast, variational methods are built on continuous

methods and may be analyzed using a continuous model like in [55]. By comparing inpainting

methods performed through variational approaches with those built on `1-minimization [7,52] one

can obtain useful insights. For instance, works such as [42, 43] provide an intuitive explanation

of why directional representation systems such as curvelets ans shearlets can outperform wavelets

when inpainting images governed by curvilinear singularities.

Perhaps the first paper attempting to formulate the inpainting problem according to a rigor-

ous mathematical setting is the work by King et al. [46, 47] where inpainting is examined in the

continuous domain as a function interpolation problem in a Hilbert space. Namely, the inpainting

problem consists in recovering an unknown image x in a Hilbert space H under the assumption

that only a masked object xK = PKx is known; here PK denotes the orthogonal projection into

a known subspace HK ⊂ H. To solve this problem, King et al. [47] propose an approach relying

on microlocal analysis and sparse approximations based on methods originally introduced in [20].

Under the assumption that the unknown image x is sparse with respect to a certain representation
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system Φ, they search among all possible solutions x∗ such that PKx
∗ = xK for the one that mini-

mizes the `1-norm of the representation coefficients of x∗ with respect to Φ. Since images found in

many applications are dominated by edges, it is reasonable to consider an image model consisting

of distributions supported on curvilinear singularities. King et al. [47] proved that, if the missing

information is a line segment, an `1-norm minimization approach in combination with an appropri-

ate function representation Φ is able to recover the missing information, asymptotically, provided

the gap size is not too large. Remarkably, the theoretical performance of the recovery depends on

the sparsifying and microlocal properties of the representation system Φ, namely, asymptotically

perfect recovery is achieved if the gap size in the line singularity is asymptotically smaller than the

size of the structure elements in Φ. In particular, it is proved that inpainting using the shearlet

system – a multiscale anisotropic system that provides nearly optimally sparse representation of

cartoon-like images [31,48] – outperforms wavelets and similar conventional multiscale systems. A

generalization using a more general shearlet system is given in [29].

The result by King et al. offers a rigorous theoretical assessment of the expected performance

of a representation-based inpainting method. However, their approach makes a strong simplifying

assumptions on the image model, namely, that the singularity to be inpainted is linear. This is a

clearly major limitation since edges found in images are not necessarily linear.

One major contribution of this dissertation it to remove the image model restriction of King et

al. [47] and consider more realistic images containing general curvilinear singularities while adopting

the same continuous-domain formulation of the inpainting problem. Handling this more general

type of singularities requires to develop several new technical tools and a significantly new proof.

While our arguments involve the same concept of clustered sparsity employed in [47] and orig-

inally introduced in [20], the fundamental technical elements of the proofs are novel, and rely

critically on microlocal properties of shearlets and techniques from the analysis of oscillatory in-

tegrals associated with the continuous shearlet transform developed. Our main result generalizes

and extends the result of King et al. to images containing curvilinear singularities where a section

of the singularity curve is missing. Similar to [47], we consider two strategies for inpainting: one
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based on `1 minimization and one based on thresholding. Using `1 minimization in combination

with a shearlet representation, our result recovers the same rate found by King et al. [47] in the

case of linear singularities.

We conclude this introduction by recalling that, besides the above inpainting techniques de-

scribed, deep neural networks have also been applied to image inpainting with promising re-

sults [11,17,61,63] following their success in other data restoration problems. In fact, more and more

such methods are emerging by the day claiming state of the art results. Despite their remarkable

performance though, such methods have some critical drawbacks. First, they rely on an extensive

training procedure and their performance tend to degrade when the test images are moving away

from the image type and format used during training. The other drawback is that deep neural

networks are still difficult to interpret and currently provide no performance guarantees.

This rest of the dissertation is organized as follows. The reminder of this section gives notation

and definitions. Section 2 introduces the mathematical model and gives the main results of this

work. Section 3 gives technical tools to prove the results in Section 2. Section 4 proves the inpainting

results using wavelets and Section 5 using shearlets. These first five sections follow closely some

material in [39]. Section 6 gives the introduction to convolutional framelets which deals with the

second part of this work. Section 7 introduces the tensor approach studied with these convolutional

framelets. And finally, Section 8 tries to extend the notion of Hankel matrix to a tensor and presents

related and future work to do.

1.1 Notation and basic definitions

In the following, we adopt the convention that x ∈ R2 is a column vector, i.e., x =

x1

x2

, and

that ξ ∈ R̂2 (in the frequency domain) is a row vector, i.e., ξ = (ξ1, ξ2). A vector x multiplying a

matrix A ∈ GL2(R) on the right is understood to be a column vector, while a vector ξ multiplying

A on the left is a row vector. Thus, Ax ∈ R2 and ξA ∈ R̂2.

Given two sequences a = {aj}∞j=1, b = {bj}∞j=1, we write a ' b if there are constants C1 6=
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0, C2 6= 0 such that C1 bj ≤ aj ≤ C2 bj for all large j. We write a = O(b) is the limit limj→∞
aj
bj

exists and a = o(b) is the limit limj→∞
aj
bj

= 0.

From [28], we have

Definition 1.1. The Fourier transform of f ∈ L1(R2) is defined as

f̂(ξ) =

∫
R2

f(x) e−2πiξx dx,

where ξ ∈ R̂2, and the inverse Fourier transform is

f̌(x) =

∫
R̂2

f(ξ) e2πiξx dξ.

From [41], we have

Definition 1.2. A set E = {eλ : λ ∈ Λ} in a Hilbert space H is a frame if there a constants

0 < A ≤ B < ∞ such that A ‖f‖2 ≤
∑

λ∈Λ |〈f, eλ〉|2 ≤ B ‖f‖2 for all f ∈ H. A frame is tight if

A = B and is a Parseval frame if A = B = 1.

Given a frame E ⊂ H, the frame synthesis operator F is the operator

F : `2(I)→ H, F ({cλ}λ∈Λ) =
∑
λ∈Λ

cλeλ.

The dual operator of F , denoted by F ∗, is the frame analysis operator

F ∗ : H → `2(I), F ∗f = {〈f, eλ〉 : λ ∈ Λ}.

We recall that if E is a Parseval frame then, for any f ∈ H,

FF ∗f =
∑
λ∈Λ

〈f, eλ〉 eλ = f.

For any measurable set Q in R2 and any f in L2(R2), we define PQ f , the orthogonal projection
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of f onto the set Q, that is,

PQf(x) = 1Q(x)f(x) =


f(x) if x ∈ Q

0 if x /∈ Q
.

Finally, we use the convention that same symbol c or C can be used denote a different generic

constants in different expressions.

1.2 Multiscale representations: wavelets and shearlets

In this section, we introduce appropriate multiscale representations for the images we want to

inpaint. Namely we consider (i) a Parseval frames of smooth bandlimited wavelets and (ii) a

Parseval frames of smooth band-limited shearlets.

Images found in most applications are typically dominated by edges and other anisotropic

structures. While wavelets have been very successful in signal processing applications, they have a

geometric bias and are not very efficient to represent edges [51]. Curvelets [8] and shearlets [48,49]

were introduced precisely with the aim to overcome the limitations of conventional multiscale sys-

tems in the representation of edges. As we will show below, shearlets are a collection of functions

defined not only over a range of locations and scale, like wavelets, but also over a range of orien-

tations. Thanks to their increased directional sensitivity, shearlets are much more efficient than

wavelets in representing images with edges [31, 33]. It was in fact shown that shearlets provide

optimally sparse approximations, in a precise sense, in the class of cartoon-like images, a function

class that was introduced to model idealize images with edges [22].

1.2.1 Wavelets

Meyer wavelets are some of the earliest known examples of orthonormal wavelets and they have

high regularity [15]. We begin our construction with a smooth function ϕ ∈ C∞ such that its

Fourier transform satisfies 0 ≤ φ̂ ≤ 1 , ϕ̂ = 1 on [− 1
16 ,

1
16 ] and ϕ̂ = 0 outside [−1

8 ,
1
8 ]. Then for
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ξ = (ξ1, ξ2) ∈ R̂2 we define

Φ̂(ξ) = Φ̂(ξ1, ξ2) = φ̂(ξ1)φ̂(ξ2) (1)

and

W (ξ) = W (ξ1, ξ2) =

√
Φ̂(2−2ξ1, 2−2ξ2)2 − Φ̂(ξ1, ξ2)2. (2)

So, we have that supp (W ) ⊂ [−1
2 ,

1
2 ]2 \ [− 1

16 ,
1
16 ]2 and the condition

∑
j∈Z |W (2−2jξ)|2 = 1, for

a.e. ξ ∈ R2. We also define Wj := W (2−2j ·) with j ∈ Z and support inside the Cartesian coronae

Qj := [−22j−1, 22j−1]2 \ [−22j−4, 22j−4]2 ⊂ R2, (3)

that are illustrated in Figure 2. And for j ∈ Z and k ∈ Z2, we define in the Fourier domain

φ̂j,k(ξ) = 2−2jW (2−2jξ) e2πi2−2jξk. (4)

From [12,13,15,45], we have that Φ = {φλ : λ ∈ Λ} ⊂ L2(R2) is a Parseval frame of Meyer wavelets

where Λ =
⋃
j∈Z Λj , Λj = {λ = (j, k), k ∈ Z2} and φλ = φj,k.

Figure 2: Frequency tiling of wavelets. Meyer wavelets are supported in the Cartesian coronae Qj
in (3). The figure shows some additional partitions inside each corona which can be used to define
an orthonormal wavelet system rather than a Parseval frame.
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1.2.2 Shearlets

We now construct our Parseval frame of shearlets like in [34, 38] which is a modification of cone-

adapted shearlets in [48]. We do this essentially by adding a directional refinement to the elements

in (4). First, let us consider the following cone-shaped regions in the Fourier domain R̂2

C1 =

{
(ξ1, ξ2) ∈ R̂2 : |ξ2

ξ1
| ≤ 1

}
, C2 =

{
(ξ1, ξ2) ∈ R̂2 : |ξ2

ξ1
| > 1

}
,

and let V ∈ C∞0 (R) be chosen so that suppV ⊂ [−1, 1] and

|V (u− 1)|2 + |V (u)|2 + |V (u+ 1)|2 = 1 for |u| ≤ 1.

Let G(1)(ξ1, ξ2) = V ( ξ2ξ1 ) and G(2)(ξ1, ξ2) = V ( ξ1ξ2 ), and let W ∈ C∞0 (R2) be the same window

function as in (2). Then, our shearlet system for L2(R2) is given by

Ψ = {ψ−1,k : k ∈ Z2} ∪ {ψ(ν)
j,`,k : j ≥ 0, |`| < 2j , k ∈ Z2, ν = 1, 2} ∪ {ψj,`,k : j ≥ 0, ` = ±2j , k ∈ Z2}

(5)

consisting of:

• coarse-scale shearlets {ψ−1,k : k ∈ Z2} given by ψ−1,k = Φ̂(· − k) where Φ̂ is given by (1).

• interior shearlets {ψ(ν)
j,`,k : j ≥ 0, |`| < 2j , k ∈ Z2, ν = 1, 2} given by

ψ̂
(ν)
j,`,k(ξ) = |detA(ν)|−j/2W (2−2jξ)G(ν)(ξA

−j
(ν)B

−`
(ν)) e

2πiξA−j
(ν)
B−`

(ν)
k
, ξ ∈ Cν (6)

• and boundary shearlets {ψj,`,k : j ≥ 0, ` = ±2j , k ∈ Z2} given by

ψ̂j,`,k(ξ) =


2−

3
2
j− 1

2W (2−2jξ)V
(

2j ξ2ξ1 − `
)
e

2πiξ2−1A−j
(1)
B−`

(1)
k
, ξ ∈ C1

2−
3
2
j− 1

2W (2−2jξ)V
(

2j ξ1ξ2 − `
)
e

2πiξ2−1A−j
(1)
B−`

(1)
k
, ξ ∈ C2

9



where

A(1) =

4 0

0 2

 , B(1) =

1 1

0 1

 , A(2) =

2 0

0 4

 , B(2) =

1 0

1 1

 .

From [34], we see that (5) is a Parseval frame of shearlets for L2(R2) whose elements are C∞

and band-limited.

From now on, we will write (5) as Ψ = {ψη : η ∈ M}, and the index set M is expressed as

M = MC ∪MF , where MC = {k ∈ Z2} are the index set associated with coarse-scale shearlets

and MF = {η = (j, `, k, ν) : j ≥ 0, |`| ≤ 2j , k ∈ Z2, ν = 1, 2} is the set associated with fine-scale

shearlets. See [34] for additional details about this construction.

Figure 3: Frequency tiling of shearlet system

We recall here that shearlets offer nearly optimally sparse approximations properties, in a precise

sense, for the class of cartoon-like images – an idealized model of images with edges [31,33].

In Figure 3, we can see that the shearlet decomposition provides a finer partition of the Fourier

domain that is associated with directional sub-bands as opposed to wavelets in Figure 2.

Another remarkable property is that the continuous shearlet transform associated with the

shearlet representation provides a precise characterization of curvilinear singularities due to its

microlocal properties [32, 36, 37, 50]. These properties of shearlets underpin several results derived

in this work.
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2 Main results

Here we state the main results of this dissertation after discussing the mathematical model of

cartoon-like images and the inpainting algorithms.

2.1 Mathematical model of inpainting

A simplified model of natural images are cartoon-like images, which emphasizes anisotropic features,

most notably edges. Since these images basically consists of smooth regions separated by edges, it

is suggestive to use a model consisting of piecewise regular functions, such as the one illustrated in

Figure 4.

Figure 4: Example of a cartoon-like image (function values represented using a gray scale map)
extracted from [48]

We follow a continuous image model like in [47] and we first introduce the mathematical model

of the image we want to inpaint. In [48], a cartoon-like image is defined as a function f : R2 → C

of the form f = f0 + XBf1 where B ⊂ [0, 1]2 and ∂B is a closed C2 curve with bounded curvature

and fi ∈ C2(R2) are functions with support supp (fi) ∈ [0, 1]2 and ‖fi‖C2 ≤ 1 for i = 1, 2.

The simplest edge model is the step function or Heaviside distribution H(x) = 1(x) in R

where the singularity is at 0. Since Ĥ(ξ) = δ(ξ) + 1
πip.v.

(
1
ξ

)
where δ is the Dirac distribution and

p.v. is the principal value distribution, then for any test function φ

〈H,φ〉 = 〈Ĥ, φ̂〉 =

∫
R̂
δ(ξ)φ̂(ξ)dξ +

1

πi

∫
R̂

φ̂(ξ)

ξ
dξ.
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Thus, if we parametrize ∂B with a C2 curve τ : [a, b]→ R2 , then the function XB acting on a

function φ in R2 would be ∫
R2

δτ (x)φ(x)dx =

∫
∂B
φ(τ)dτ

So, we can model a cartoon like-image as a distribution like in [20]. We now formalize this

concept. From [28] we have

Definition 2.1. The Schwartz space is S(Rn) = {f ∈ C∞(Rn) : ‖f‖(N,α) < ∞, N ∈ N, α}

where α = (α1, . . . , αr) is a multi-index, ‖f‖(N,α) = supx∈Rn(1 + |x|)N |∂αf(x)| and ∂αf(x) =

∂α1 · · · ∂αrf(x).

So, the Schwartz space consists of those C∞ functions, which together with all their derivatives,

vanish at infinity faster for any power of |x|.

Definition 2.2. A distribution on U ⊂ Rn is a continuous linear functional on C∞c (U). The

space of all distributions on U is denoted by D′(U) with the topology of point-wise convergence on

C∞c (U). A tempered distribution is a distribution defined on S. We denote by S ′ the space of

tempered distributions.

Let S be a closed smooth curve contained in [−1, 1]2 ⊂ R2 that has nonvanishing curvature

everywhere. We define a tempered distribution T ∈ S ′(R2) acting on the class of Schwartz functions

φ ∈ S(R2) and supported on S by

〈T , φ〉 =

∫
S
φ(s) g(s) dσ(s)

where g is a real-valued smooth function defined on the curve S. T is the model of a cartoon-like

image we use in this work.

We want to recover a missing portion of this curve model T . We model this missing portion

using the concept of a mask. For h > 0, we denote as Mh the horizontal strip domain

Mh = {(x1, x2) ∈ R2 : |x2| ≤ h}.
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This horizontal stripe is the mask, and correspondingly, we consider the masked function

f = PR2\Mh
T .

This is the model of the image we wish to inpaint. Notice we could also assume that the region to

be inpainted is contained in a vertical strip domain of width h and our proofs below would be very

similar.

2.2 Recovery algorithms

Our argument follows an approach similar to [47], namely we use `1-minimization and thresholding

algorithms for inpainting as they provide an efficient theoretical and computational framework to

take advantage of the sparsity properties of the wavelet and shearlet decomposition.

Our approach carries out an asymptotic scale-dependent analysis. So, we start by decomposing

the image into subbands in the Fourier domain and we achieve this by projecting T into the Fourier

regions associated with the Cartesian coronae Qj , j ∈ Z, given by (3). Since T is supported in

the curve S, we have that T̂ (ξ) = 〈T , e−2πξ·x〉 is a C∞ function, see [28]. So for j ∈ Z, we let

Tj ∈ L2(R2) ⊂ S ′(R2) be characterized by

T̂j(ξ) = T̂ (ξ)W (2−2jξ).

Notice that T̂j is smooth and compactly supported since W (2−2j ·) is band-pass filter that appears

in (4). Correspondingly, we have a sequence of masked images

fj = PR2\Mhj
Tj ∈ L2(R2), (7)

where now hj depends on the scale parameter j.
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2.2.1 Inpainting via `1-minimization

The `1 minimization process to recover an approximate solution has the form

R`j = argmin Tj‖F
∗Tj‖1 subject to fj = PR2\Mhj

Tj ,

where F is the frame operator associated with a Parseval frame of wavelets or shearlets.

Notice that the norm is placed on the analysis coefficients rather than the synthesis coefficients

as in [21, 25]. This is because we are using a frame operator F which is not necessarily associated

with a basis. If we discretize the problem, thne we have F ∈ RN×L where L >> N , F has

full rank and FF ∗ = IN . To solve for the synthesis coefficients x = Fc, we need to minimize

f(c) = ‖x − Fc‖22 + λ‖c‖1 where λ > 0. So, the Hessian matrix of f contains a term of the form

F ∗F ∈ RL×L which is not of full rank. In addition, F ∗F is positive semidefinite. Whereas, to solve

for the analysis coefficients c = F ∗x, we have to minimize g(x) = ‖c − F ∗x‖22 + λ‖F ∗x‖1 and its

Hessian matrix contains a term of the form FF ∗ = IN which is positive definite. That is, g has a

unique global minimum. Therefore, the solution is unique [2]. Several inpainting algorithms are

based on the idea of `1-minimization and have been shown heuristically to be successful [6, 18,26].

Remark 2.3. When we apply `1 minimization with shearlets, for a technical reason, we slightly

modify the setting in [47] by choosing the missing part to be PMhj
f(x) = h∆0

j 1|x2|≤hjf(x), for some

fixed small ∆0 > 0. For `1 minimization with wavelets and thresholding with both wavelets and

shearlets, we follow [47] to choose the missing part to be PMhj
f(x) = 1|x2|≤hjf(x).

2.2.2 Inpainting via thresholding

For the thresholding strategy, given a Parseval frame of wavelets or shearlets E = {eλ}λ∈Λ and a

sequence of thresholds σj , j ∈ Z, we let Ij = {λ ∈ Λ : |〈f, eλ〉| ≥ σj}. Then the reconstructed

image with respect to E is

Rτj = F (1IjF
∗Tj).

14



2.3 Asymptotic analysis

The width of the area to be inpainted is a useful indication of the power of the inpainting method.

For instance, Chan and Kan [9] proposed a variational inpainting methods and demonstrated that

the local thickness of the region to be inpainted affects the success of the inpainting method more

than the overall size of the area to be inpainted.

In our approach, since we apply a multiscale analysis framework, we examine the impact of the

width of the area to be inpainted by making the gap size h dependent on the scale j, as shown in

equation (7). As we indicated above, we consider a strategy based on `1 minimization and another

one based on thresholding to recover Tj , j ∈ Z. In both cases, we establish a procedure to construct

an approximate solution Rj ∈ L2(R2) and show that

‖Rj − Tj‖2
‖Tj‖2

→ 0, as j →∞

provided hj = o(2−αj) for an appropriate α > 0. That is, we show the relative L2-error of the

reconstructed signal Rj to the band-passed image Tj approaches to 0 as j increases. We remark

that, since Rj − Tj ∈ L2(R2), for any φ with compact support, it follows that |〈Rj − Tj , φ〉| ≤

‖Rj − Tj‖2‖φ‖2. Thus, 1
‖T ‖2 (Rj − Tj)→ 0 in D′.

We will prove that if the reconstruction approach is based on shearlets then the parameter α

controlling the gap size can be taken significantly smaller than in an analogous scheme based on

wavelets. That is, shearlets can asymptotically recover missing data with a significantly larger

spatial support. As we remarked above, it was proved [47] that the wavelet estimate cannot be

improved in the thresholding case, implying that the shearlet result is provably superior to the

wavelet case. It is conjectured that the same holds in the `1 case but there is no proof at this time

that the wavelet estimate cannot be improved.

Remark 2.4. In this work, we applied parabolic scaling for the shearlet system (that is the pa-

rameters in the dilation matrix A are scaled parabolically). A different scaling approach is used
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in [29] where a universal shearlet system is defined, using scaling matrices Aαj ,(h) =

4 0

0 2αj

,

Aαj ,(v) =

2αj 0

0 4

 where (αj) ⊂ (−∞, 2) is called a scaling sequence. We remark that the anal-

ysis carried out in [29] only consider the case of inpainting a linear singularity, as in [47], and

concludes that, for the `1-minimization,
‖Rj−Tj‖1
‖Tj‖1 decays as o(2−Nj) provided that hj is of order

o(2−αjj).

2.4 Main results of inpainting analysis

Following our previous analysis, our main results are the following theorems which we wish to

prove.

Theorem 2.5. Let Φ be a Parseval frame of wavelets on L2(R2) as defined in Section 1.2 and let R`j

be the reconstructed image of Tj obtained via `1 minimization where we assume that hj = o(2−2j).

Then

‖R`j − Tj‖2
‖Tj‖2

→ 0, as j →∞.

Theorem 2.6. Let Φ be a Parseval frame of wavelets on L2(R2) as defined in Section 1.2 and let

Rτj be the reconstructed image of Tj obtained via thresholding where we assume that 0 ≤ σj ≤ 2−4j

and hj = o(2−j). Then

‖Rτj − Tj‖2
‖Tj‖2

→ 0, as →∞.

Theorem 2.7. Let Ψ be a Parseval frame of shearlets on L2(R2) as defined in Section 1.2 and let

R`j be the reconstructed image of Tj obtained via `1 minimization where we assume that hj = o(2−j).

Then

‖R`j − Tj‖2
‖Tj‖2

→ 0, as j →∞.

Theorem 2.8. Let Ψ be a Parseval frame of shearlets on L2(R2) as defined in Section 1.2 and let

Rτj be the reconstructed image of Tj obtained via thresholding where we assume that 0 ≤ σj ≤ 2−4j
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and hj = o(2−
3
4
j). Then

‖Rτj − Tj‖2
‖Tj‖2

→ 0, as j →∞.

We remark that our estimates for the `1 minimization case (Theorems 2.5 and 2.7) extend

the results from King et al. [47] to the more challenging setting where the missing information is

curvilinear. As we show below our proof uses a very different approach from the one in the original

paper and it relies in part on properties of the shearlet representation explored in [38] and [37].

In the thresholding case (Theorems 2.6 and 2.8), our estimates improve those found by King et

al. [47] indicating a better inpainting performance (i.e., the size of the missing gap can be larger)

than `1 minimization for both wavelets and shearlets. Furthermore, proofs of Theorems 2.6 and 2.8

do not require the assumption of nonvanishing curvature. Hence our result includes the situation

where the missing region is a line segment and, thus, improves the result in [47].

Our estimates show that the size of the gap that can be filled by shearlets with asymptotically

high precision is larger than the corresponding one for wavelets. King et al. [47] prove that, in the

thresholding case, the wavelet rate cannot be improved for linear gaps. This shows that shearlets

perform better than wavelets. There is currently no proof of a similar negative wavelet result in

the `1 case.
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3 Preparation: Useful technical results

Here we introduce some constructions that will be needed for the proofs of our main results.

We consider a smooth curve S ⊂ [−1, 1]2. Using a smooth partition of unity, we can decompose

S as S =
⋃M

1 Sm where each Sm has non vanishing curvature (the case where Sm is a straight line

was already considered in [47]). Each Sm can be parametrized either as vertical curve (f(u), u) or

horizontal curve (u, f(u)) where u ∈ (am, bm) and f ∈ C∞(am, bm), m = 1, . . . ,M . In either case

we assume there is a constant k > 0 such that |f ′′(u)| ≥ k > 0 for all u ∈ [am, bm]. We also assume

a vertical curve is defined if the slope of the tangent line to the curve is greater or equal than 2

so |f ′(u)| ≤ 1/2. And similarly, a horizontal curve is defined if the slope to its tangent line is less

than 2 so that |f ′(u)| ≤ 2. With this assumptions, the function y = 1
2x

2, x ∈ (−1, 1) is a horizontal

curve. Whereas y2 = 8x, y ∈ (−1, 1), is a vertical curve and it may be written as (1
8u

2, u) for

u ∈ (−1, 1).

For each curve Sm, 1 ≤ m ≤M , there is a smooth density function gm ∈ C∞0 (Sm). So, for any

φ ∈ S(R2),

〈T , φ〉 =

∫
S
φ(s) g(s) dσ(s) =

M∑
m=1

∫
Sm

φ(s) gm(s) dσ(s) =

M∑
m=1

〈Tm, φ〉,

where, for each m, Tm is a distribution defined either by

〈Tm, φ〉 =

∫ bm

am

φ(f(u), u) gm(u) du if Sm is a vertical curve

or by

〈Tm, φ〉 =

∫ bm

am

φ(u, f(u)) gm(u) du if Sm is a horizontal curve.

To be consistent with the above notation, we define Tm,j in the Fourier domain as T̂m,j(ξ) =

W (2−2jξ)T̂m(ξ). Hence T̂j(ξ) =
∑M

m=1 T̂m,j(ξ). It is also helpful to use polar coordinates and we

make a change of variable. That is, for any ξ = (ξ1, ξ2), we write ξ = ρΘ(θ) where ρ = |ξ| =√
ξ2

1 + ξ2
2 and Θ(θ) = (cos(θ), sin(θ)) where Θ(0) = (1, 0) because by convention, the angle at

18



origin is zero. Thus, for a vertical curve Sm we may write in polar coordinates as

T̂m,j(ρ, θ) = W (2−2jρΘ(θ))

∫ bm

am

e−2πiρΘ(θ)·(f(u),u)gm(u) du. (8)

Similarly for a horizontal curve we have

T̂m,j(ρ, θ) = W (2−2jρΘ(θ))

∫ bm

am

e−2πiρΘ(θ)·(u,f(u))gm(u) du.

Now we establish some useful technical results which will be needed to prove our main results.

Lemma 3.1. Assume that the local curve Sm is vertical and let β
(2)
j,`,k = 〈ψ(2)

j,`,k, Tm,j〉, where Tm,j is

given above and ψ
(2)
j,`,k is given by (6). Then, for any N ∈ N, there exists a constant CN , independent

of j, `, k such that |β(2)
j,`,k| ≤ CN 2

5
2
j 2−2Nj .

Proof.

β
(2)
j,`,k = 〈ψ̂(2)

j,`,k, T̂m,j〉 =

∫
R̂2

ψ̂
(2)
j,`,k(ξ)T̂m,j(ξ)dξ.

Let ξ = (ξ1, ξ2) = (ρ cos(θ), ρ sin(θ)) = ρΘ(θ). From (6) we get:

ψ̂
(2)
j,`,k(ξ) = 2−3j/2W (2−2jρΘ(θ))V (2j cot(θ)− `)e2πiρΘ(θ)A−j

(2)
B−`

(2)
k
.

Notice supp (W ) ⊂ ([−1
2 ,

1
2 ] − [− 1

16 ,
1
16 ])2. Thus, 1

1622j ≤ ρ ≤ 1√
2
22j . Also, supp (V ) ⊂ [−1, 1],

so |2j cot(θ) − `| ≤ 1, thus | cot(θ)| ≤ 2−j(1 + |`|) ≤ 1 + 2−j . Hence |θ − π/2| ≤ π/4 + εj or

|θ−3π/2| ≤ π/4+εj where εj → 0 as j →∞. Also, let φ(u) = Θ(θ)·(f(u), u) = cos(θ)f(u)+sin(θ)u.

For θ ∈ [π/4− εj , 3π/4 + εj ]∪ [5π/4− εj , 7π/4 + εj ] we have | sin(θ)| ≥ 1
2 ≥

1
2 | cos(θ)|. So, there

is c > 0 such that c ≤ | sin(θ)| − 1
2 | cos(θ)| ≤ | cos(θ)f ′(u) + sin(θ)| = |φ′(u)| since |f ′(u)| ≤ 1

2 .

β
(2)
j,`,k =

∫
R̂2

ψ̂
(2)
j,`,k(ξ)T̂m,j(ξ)dξ

=

∫ 1√
2

22j

1
16

22j

[ ∫ 3π/4+εj

π/4−εj
+

∫ 7π/4+εj

5π/4−εj

]
2−3j/2W (2−2jρΘ(θ))V (2j cot(θ)− `)
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× e
(2πiρΘ(θ)A−j

(2)
B−`

(2)
k)
(
W (2−2jρΘ(θ))

∫ b

a
e(2πiρΘ(θ)·(f(u),u))gm(u)du

)
ρdθdρ

= 25j/2

∫ 1√
2

22j

1
16

22j

[ ∫ 3π/4+εj

π/4−εj
+

∫ 7π/4+εj

5π/4−εj

]∣∣W (ρΘ(θ))
∣∣2V (2j cot(θ)− `)

× e
(2πi22jρΘ(θ)A−j

(2)
B−`

(2)
k)
(∫ b

a
e

[
2πi22jρφ(u)

]
gm(u)du

)
|ρ|dθdρ.

Integrating by parts with respect to the variable u we get:

∫ b

a
e

[
2πi22jρφ(u)

]
gm(u)du

=

∫ b

a

gm(u)

2πi22jρφ′(u)
e

[
2πi22jρφ(u)

]
(2πi22jρφ′(u))du

=
gm(u)

2πi22jρφ′(u)
e

[
2πi22jρφ(u)

]∣∣∣∣∣
b

a

−
∫ b

a

d

du

( gm(u)

2πi22jρφ′(u)

)
e

[
2πi22jρφ(u)

]
du

=
1

−2πi22jρ

∫ b

a
gm,1(u)e

[
2πi22jρφ(u)

]
du

since gm is compactly supported on (a, b). Also, notice 0 < c ≤ |φ′(u)|. Repeating the above

process N times we get

∫ b

a
e

[
2πi22jρφ(u)

]
gm(u)du =

2−2Nj

(−2πiρ)N

∫ b

a
gm,N (u)e

[
2πi22jρφ(u)

]
du.

Hence

|β(2)
j,`,k| =

∣∣∣∣25j/2

∫ 1√
2

22j

1
16

22j

[ ∫ 3π/4+εj

π/4−εj
+

∫ 7π/4+εj

5π/4−εj

](
W (ρΘ(θ))

)2
V (2j cot(θ)− `)

× e
(2πi22jρΘ(θ)A−j

(2)
B−`

(2)
k)
(∫ b

a
e

[
2πi22jρφ(u)

]
gm(u)du

)
ρdθdρ

∣∣∣∣
≤ 25j/2

∫ 1√
2

22j

1
16

22j

[ ∫ 3π/4+εj

π/4−εj
+

∫ 7π/4+εj

5π/4−εj

]∣∣W (ρΘ(θ))
∣∣2∣∣V (2j cot(θ)− `)

∣∣
×

∣∣∣∣ ∫ b

a
e

[
2πi22jρφ(u)

]
gm(u)du

∣∣∣∣ρdθdρ
≤ 25j/2

∫ 1√
2

22j

1
16

22j

[ ∫ 3π/4+εj

π/4−εj
+

∫ 7π/4+εj

5π/4−εj

]∣∣W (ρΘ(θ))
∣∣2∣∣V (2j cot(θ)− `)

∣∣
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× 2−2Nj

(2πρ)N

∫ b

a

∣∣gm,N (u)
∣∣du ρdθdρ ≤ 25j/2CN2−2Nj .

The following lemma is a special case of the classical method of stationary phase (cf. Proposi-

tion 3 in [59, Chapter VIII]).

Lemma 3.2. Let ϕ and ψ be smooth functions. Suppose ϕ′(u0) = 0 and ϕ′′(u0) 6= 0. If ψ is

supported in a sufficiently small neighborhood of u0, then

J(λ) =

∫
R
ei λϕ(u) ψ(u) du = λ−1/2 ei λϕ(u0)

(
a(u0) +O(λ−

1
2 )
)
,

as λ→∞, where a(u0) =
(

2πi
ϕ′′(u0)

) 1
2
ψ(u0).

We remark that, in the following, we will apply Lemma 3.2 for estimates where a(u0) appears

in absolute value. Thus, in the statement above it is irrelevant the choice of a particular square

root.

We will also need the following classical lemma, known as Van der Corput Lemma, from the

theory of oscillatory integrals (cf. Proposition 2 and its corollary in [59, Chapter VIII]) that has

been a key tool in harmonic analysis for finding decay rates of solutions to differential equations

(e.g., Bessel functions).

Lemma 3.3. Let k ≥ 2, λ > 0, and φ(x) be a real-valued function defined on [a, b] such that

|φ(k)(x)| ≥ 1 for all x ∈ [a, b]. Also, let ψ be smooth and compactly supported in [a, b]. Then

∣∣∣∣∣
∫ b

a
eiλφ(x)ψ(x)dx

∣∣∣∣∣ ≤ Ckλ− 1
k

(
|ψ(b)|+

∫ b

a
|ψ′(x)|dx

)
,

where Ck only depends only on k.

Finally, we will need the following observation whose proof relies on Lemmata 3.2 and 3.3.

Lemma 3.4. With the notation introduced above, for any j ∈ Z, we have

‖Tj‖2 ' 2j .
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Proof. If ‖Tm,j‖2 ' 2j for each m = 1, . . . , N . Then using the decomposition Tj =
∑M

m=1 Tm,j ,

we have ‖Tj‖2 ≤
∑M

m=1 ‖Tm,j‖2. Now for M = 2, we have ‖Tj‖2 ≥
∣∣‖T1,j‖2 − ‖T2,j‖2

∣∣. Therefore,

we have ‖Tj‖2 ≥ ‖T1,j‖2 − ‖T2,j‖2 and ‖Tj‖2 ≥ ‖T2,j‖2 − ‖T1,j‖2. Since ‖Tm,j‖2 ' 2j , then

C1 2j ≤ ‖Tm,j‖2 ≤ C2 2j for C1, C2 6= 0. Thus,

(C2 − C1)2j ≤ ‖Tj‖2 ≤ (C2 + C2)2j .

Therefore, ‖Tj‖2 ' ‖T1,j‖2 + ‖T2,j‖2. And inductively, ‖Tj‖2 '
∑M

m=1 ‖Tm,j‖2. So, it is sufficient

to show that ‖Tm,j‖2 ' 2j for any m. We will consider below the case where Sm is a vertical curve.

The case where Sm is a horizontal curve can be treated similarly.

By a suitable translation and rotation in the definition of Sm, we may assume that there is an

ε > 0 such that curve Sm is vertical with am = −ε, bm = ε, and that f(0) = 0, f ′(0) = 0 and

gm(0) = c 6= 0 for some constant c. Letting φ(u) = −2π cos θ (f(u) + tan θ u), for u ∈ (−ε, ε), and

using equation 8 we can write

T̂m,j(ρ, θ) = W (2−2j(ρ cos θ, ρ sin θ))

∫ ε

−ε
eiρφ(u)gm(u) du

where φ′(u) = −2π(cos(θ)f ′(u)+sin(θ)) = −2π cos(θ)(f ′(u)+tan(θ)) and φ′′(u) = −2π cos(θ)f ′′(u).

We choose ε0 > 0 small enough so that ε0 <
1
2ε and gm(u) 6= 0 on [−ε0, ε0]. Let

θ0 = min{| tan−1(−f ′(−ε0))|, | tan−1(−f ′(ε0))|}.

Remember that tan−1 is increasing. And also, since f ′′ 6= 0 on its domain, f ′ is either increasing or

decreasing. Therefore, tan−1(−f ′) is either increasing or decreasing, hence bijective from [−ε0, ε0]

to

[tan−1(−f ′(−ε0)), tan−1(−f ′(ε0))] ⊇ [−θ0, θ0].

Therefore, for any θ ∈ [−θ0, θ0] or θ ∈ [π− θ0, π+ θ0] there is a unique uθ ∈ [−ε0, ε0] such that θ =
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tan−1(−f ′(uθ)). Also since limθ→(π/2+kπ) tan(θ) = ±∞, then for θ ∈ [−θ0, θ0] or θ ∈ [π−θ0, π+θ0],

we see that cos(θ) 6= 0. Thus for |θ| ≤ θ0, or |θ − π| ≤ θ0,we can apply Lemma 3.2 to get,

T̂m,j(ρ, θ) = W (2−2j(ρ cos θ, ρ sin θ)) ρ−
1
2

(
a(uθ) e

−2πiρφ(uθ) +O(ρ−
1
2 )
)

where

a(uθ) =
( 2πi

φ′′(uθ)

) 1
2
gm(uθ) = (i cos θ f ′′(uθ))

− 1
2 gm(uθ) 6= 0.

Since 0 < c1 ≤ |a(uθ)| ≤ c2 for all uθ ∈ [−ε0, ε0], from the conditions on the support of W (2−2jξ)

and omitting the higher order decay term in T̂m,j(ρ, θ) , we have that

I1 =

∫
R

[∫
|θ|≤θ0

+

∫
|θ−π|≤θ0

]
|T̂m,j(ρ, θ)|2 dθ ρ dρ

'
∫ 22j

1
16

22j

[∫
|θ|≤θ0

+

∫
|θ−π|≤θ0

]
|W (2−2j(ρ cos θ, ρ sin θ))|2 |a(uθ)|2dθ ρ−1 ρ dρ

'
∫ 22j

22j−4

dρ ' 22j .

For θ0 ≤ |θ| ≤ π
4 and θ0 ≤ |θ−π| ≤ π

4 and for |u| ≤ ε, we have |φ′′(u)| = 2π| cos θ||f ′′(u)| ≥ c > 0.

In this case, we apply Lemma 3.3 with k = 2 to get

|T̂m,j(ρ, θ)| ≤ C|W (2−2j(ρ cos θ, ρ sin θ))| ρ−
1
2 .

We have

I2 =

∫
R

[∫
θ0≤|θ|≤π4

+

∫
θ0≤|θ−π|≤π4

]
|T̂m,j(ρ, θ)|2 dθ ρ dρ

≤ C

∫ 22j

1
16

22j

[∫
θ0≤|θ|≤π4

+

∫
θ0≤|θ−π|≤π4

]
|W (2−2j(ρ cos θ, ρ sin θ))|2dθ ρ−1 ρ dρ

≤ C 22j .
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For π
4 ≤ |θ| ≤

π
2 and π

4 ≤ |θ−π| ≤
π
2 and for |u| ≤ ε, we have |φ′(u)| = 2π(| cos θf ′(u)+sin θ|) ≥

c > 0, where we used the assumption that |f ′(u)| ≤ 1
2 for |u| ≤ ε. Thus integration by parts gives

∣∣∣∣∣
∫ ε

−ε
eiρφ(u)gm(u) du

∣∣∣∣∣ ≤ C ρ−1.

Then we have

I3 =

∫
R

[∫
π
4
≤|θ|≤π

2

+

∫
π
4
≤|θ−π|≤π

2

]
|T̂m,j(ρ, θ)|2 dθ ρ dρ

≤ C

∫ 22j

1
16

22j

[∫
π
4
≤|θ|≤π

2

+

∫
π
4
≤|θ−π|≤π

2

]
|W (2−2j(ρ cos θ, ρ sin θ))|2dθ ρ−2 ρ dρ

≤ C.

Since ‖Tm,j‖22 = I1 + I2 + I3, we finally have ‖Tm,j‖22 ' 22j and hence ‖Tm,j‖2 ' 2j .

This finishes the proof of the lemma.

We now present some preparation for the `1-minimization algorithm. We recall that L2(R2) = H

where H = HK ⊕ HM , HM = L2(Mhj ) and HK = L2(R2 \ Mhj ). We want to recover R`j =

argmin Tj‖F
∗Tj‖1 subject to fj = PR2\Mhj

Tj . So, we require the following notion from [47]

Definition 3.5. Let F be a Parseval frame, and let Λ be an index set of coefficients. We then

define the concentration on PMhj
by

κ = κ(Λ,HM ) = sup
f∈HM

‖1ΛF
∗f‖1

‖F ∗f‖1
.

This notion measures the total `1 norm which can be concentrated to the index set Λ restricted

to functions in HM . Another important notion is that of clustered sparsity.

Definition 3.6. Fix δ > 0. Given a Hilbert space H with a Parseval frame F , x ∈ H is δ−clustered

sparse in F (with respect to Λ) if

‖1ΛcF
∗x‖1 ≤ δ.
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And from [46] we have

Lemma 3.7. Fix δ > 0 and suppose xo is δ − clustered sparse in F . Let x∗ be a solution of the

`1-minimization problem. Then,

‖x∗ − xo‖2 ≤
2δ

1− 2κ

Now on, we will abuse notation slightly. For a Parseval frame F , we will write PMF = {PMφi}i

andPKF = {PKφi}i for the projected frame elements. The following is a modified version of the

notion of mutual coherence introduced by [19,24].

Definition 3.8. Let F1 = {φ1,i}i∈I and F2 = {φ2,j}j∈J lie in a Hilbert space H and let Λ ⊂ I.

Then the cluster coherence µc(Λ, F1 : F2) of F1 and F2 with respect to Λ is defined as

µc(Λ, F1;F2) = max
j∈J

∑
i∈Λ

|〈φ1,i, φ2,j〉|.

And similarly from [46,47],

Lemma 3.9.

κ(Λ,HM ) ≤ µc(Λ, PMF ;PMF ) = µc(Λ, PMF ;F ).

Therefore, combining Lemmata 3.7 and 3.9 we have

Lemma 3.10. Fix δ > 0 and suppose that xo is δ − clustered sparse in F . Let x∗ solve the

`1-minimization problem, then

‖x∗ − xo‖2 ≤
2δ

1− 2µc(Λ, PMF ;F )
.

Remark 3.11. Notice that error decreases as linearly with the δ − clustered sparsity. Also we

emphasize that both δ−clustered sparsity and clustered coherence depend on the chosen ”geometric

set of indices” Λ. This helps us to determine whether the frame F is a good dictionary for inpainting.

However, Λ is just an analysis tool and it is not needed explicitly in the `1-minimization algorithm.

The larger the set Λ is, the smaller ‖1ΛcF
∗xo‖1 is. That is, xo is δ − clustered sparse and the

25



larger the cluster coherence. So, if F sparsifies xo well, then a small set Λ can be chosen to keep

‖1ΛcF
∗xo‖1 small.

Remark 3.12. Λ is the set of indices of the cluster of significant frame coefficients. Either for

wavelet or shearlet.

For the thresholding part, let H be a Hilbert space and fix x0 ∈ H. Let E = {eλ : λ ∈ Λ} be

a Parseval frame on H and PK , PM be projection operators on H such that x0 = PKx
0 + PMx

0.

Here PKx
0 models the known part of the signal x0 and PMx

0 the missing part of x0.

The one-step-thresholding algorithm from [47, Section 2.3] (version without noise) is the follow-

ing.

Algorithm 1.

• Input: The incomplete signal x = PKx0; the Parseval frame E = {eλ : λ ∈ Λ}; the

thresholding parameter σ.

• Algorithm:

1. Compute 〈x, ei〉 for all i;

2. build the set I = {λ ∈ Λ : |〈x, eλ〉| ≥ σ};

3. compute x∗ = F 1I F
∗x.

• Output: The set I of significant coefficients; the approximation x∗ to x0.

The next lemma, from [47, Proposition 3], gives an estimate o the approximation error of

algorithm 1. We show the proof for completeness.

Lemma 3.13. Let I and x∗ be computed via Algorithm 1 with the assumption that all elements of

the Parseval frame E = {eλ : λ ∈ Λ} have equal norm ‖ei‖ = e for all λ ∈ Λ. Then

‖x∗ − x0‖2 ≤ e (‖1IcF ∗x0‖1 + ‖1IF ∗PMx0‖1).
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Proof. Since x∗ = F1IF
∗PKx

0 and

x0 = PKx
0 + PMx

0

= FF ∗PKx
0 + FF ∗PMx

0

= F1IF
∗PKx

0 + F1IcF
∗PKx

0 + F1IF
∗PMx

0 + F1IcF
∗PMx

0,

so,

‖x∗ − x0‖2 = ‖F1IF ∗PKx0 −
(
F1IF

∗PKx
0 + F1IcF

∗PKx
0 + F1IF

∗PMx
0

+ F1IcF
∗PMx

0
)
‖2

= ‖F1IcF ∗PKx0 + F1IcF
∗PMx

0 + F1IF
∗PMx

0‖2

= ‖F1IcF ∗x0 + F1IF
∗PMx

0]‖2

≤ ‖F1IcF ∗x0‖2 + ‖F1IF ∗PMx0‖2.

Remember F : `2 → H with F ({αλ}λ∈Λ) =
∑

λ∈Λ αλeλ. Also we have ||eλ||2 = e for all j. So,

∥∥∥∥∥∥
N∑
n=1

αλneλn

∥∥∥∥∥∥
2

≤
N∑
n=1

|αλn | ‖eλn‖2 = e

N∑
n=1

|αλn |.

Taking N →∞, we have

‖F ({αλ}λ∈Λ)‖2 =

∥∥∥∥∥∥
∑
λ∈Λ

αλeλ

∥∥∥∥∥∥
2

≤ e
∑
λ∈Λ

|αλ| = e‖{αλ}λ∈Λ‖1.

Therefore, ‖x∗ − xo‖2 ≤ ‖F1IF ∗PMxo||2 + ||F1ICF ∗xo‖2

≤ e‖1IF ∗PMxo‖1 + e‖1ICF ∗xo‖1.

Given a Hilbert space H and a Parseval frame E = {eλ : λ ∈ Λ}, a vector x ∈ H is δ clustered
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sparse in E with respect to I ⊂ Λ if there is a δ > 0 such that ‖1IcF ∗x0‖1 =
∑

λ∈Ic |〈x0, eλ〉| ≤ δ,

where F ∗ is the frame analysis operator. For the approximation error in Lemma 3.13 to be small,

the signal x0 must be δ clustered sparse in E with respect to I.
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4 Inpainting using wavelets

In this section, we examine image inpainting using the wavelet system Φ = {φλ : λ ∈ Λ} defined in

section 1.2.

In all arguments below, it is enough to analyze a section of the curve Sm, with a fixed m ∈ [1,M ]

because T =
∑M

m=1 Tm. Hence, to simplify the notation, in the following we denote Sm by S and

Tm,j by Tj . In addition, we will only consider the case where the curve section is locally vertical;

the horizontal case can be treated in a very similar way.

4.1 Proof of Theorem 2.5 (`1 minimization)

We denote the indices of the wavelet coefficients as Λ =
⋃
j∈Z Λj where Λj = {(j, k) : k ∈ Z2}

for each level j ∈ Z. We also denote as Sw,j ⊂ Λj the indices of the cluster of significant wavelet

coefficients and we define as

Sw,j := {k = (k1, k2) , |k1| ≤ 2 · 22j , |k2| ≤ 2 · 22j}. (9)

As in [20], for each of the sets Sw,j ⊂ Λj , we define the wavelet approximation error at the level j

as

δwj :=
∑

λ∈Scw,j

|〈Tj , φλ〉| (10)

and the cluster coherences as

µc(Sw,j , PMhj
Φ; Φ) := max

λ′

∑
λ∈Sw,j

|〈PMhj
φλ, φλ′〉|. (11)

Using Lemma 3.10, we have that for any j ∈ Z

‖R`j − Tj‖2 ≤
2 δwj

1− 2µc(Sw,j , PMhj
Φ; Φ)

, (12)

where R`j , Tj are defined as in Theorem 2.6, δwj is given by (10) and µc by (11).
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Therefore, Theorem 2.5 follows directly from the two propositions below and (12).

Proposition 4.1. For any j ∈ Z

δwj = o(2j) = o(‖Tj‖2).

Proposition 4.2. Assume that hj = o(2−2j). Then

µc(Sw,j , PMhj
Φ; Φ)→ 0 as j →∞.

The respective proofs follow in the following subsections.

4.1.1 Proof of Proposition 4.1

Let βj,k = 〈φ̂j.k, T̂j〉. Thus, we can write (10) as δwj =
∑

k∈Scw,j
|βj,k|. So, we have

βj,k = 2−2j

∫ b

a

[ ∫
R̂2

|W (2−2jξ)|2e(2πiξ2−2j(k+22j(f(u),u)))dξ

]
g(u)du

= 22j

∫ b

a

[ ∫
R̂2

|W (ξ)|2e(2πiξ(k+22j(f(u),u)))dξ

]
g(u)du.

We define the operator

L =
(
I − 1

(2π)2

∂2

∂z2
1

)(
I − 1

(2π)2

∂2

∂z2
2

)
. (13)

Hence, using (55) in the Appendix

|βj,k| = 22j

∣∣∣∣∣
∫ b

a

∫
R̂2

LN
(
|W (ξ)|2

)
L−Ne2πiξ(k+22j(f(u),u))dξ g(u) du

∣∣∣∣∣
= 22j

∣∣∣∣ ∫ b

a

(
1 + (k1 + 22jf(u))2

)−N(
1 + (k2 + 22ju)2

)−N
×

∫
R̂2

LN
(
|W (ξ)|2

)
e2πi ξ(k+22j(f(u),u))dξg(u)du

∣∣∣∣
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≤ 22jCN

∫ b

a

(
1 + (k1 − 22jf(u))2

)−N (
1 + (k2 − 22ju)2

)−N
|g(u)|du

We know |u|, |f(u)| ≤ 1. If k ∈ Scw,j , then from 9, either |k1| > 2 · 22j or |k2| > 2 · 22j . So,

1 + (k1 + 22jf(u))2 ≥ (k1 + 22jf(u))2 ≥ (|k1| − 22j |f(u)|)2 ≥ 24j .

Similarly, we see 1 + (k2 − 22j |u|)2 ≥ 24j . Let A = {(k1, k2 : |k1| > 2 · 22j} and let B = {(k1, k2 :

|k2| > 2 · 22j}. Notice that Scw,j = A ∪B. For N = 2 we have

∑
k∈Scw,j

|βj,k|

≤
∑
k∈A
|βj,k|+

∑
k∈B
|βj,k|

≤ C
∑
k∈A

22j

∫ b

a

(
1 + (k1 + 22jf(u))2

)−2(
1 + (k2 + 22ju)2

)−2
|g(u)| du

+C
∑
k∈B

22j

∫ b

a

(
1 + (k1 + 22jf(u))2

)−2(
1 + (k2 + 22ju)2

)−2
|g(u)| du

≤ C 22j

∫ b

a

∑
|k1|≥2·22j

2−4j
(

1 + (k1 + 22jf(u))2
)−1 ∑

k2∈Z

(
1 + (k2 + 22ju)2

)−2
|g(u)| du

+C 22j

∫ b

a

∑
|k2|≥2·22j

2−4j
(

1 + (k2 + 22ju)2
)−1 ∑

k1∈Z

(
1 + (k1 + 22jf(u))2

)−2
|g(u)| du

≤ C 22j 2−2j = o(2j).

4.1.2 Proof of Proposition 4.2

Using Fourier Transform, Plancherel’s formula and A.2, we see

〈PMhj
φj,k, φj,k′〉 = 〈1̂Mhj

∗ φ̂j,k, φ̂j,k′〉

= 2hj

∫
R̂2

∫
R

sinc(2πhjη2) φ̂j,k
(
ξ − (0, η2)

)
dη2 φ̂j,k′(ξ) dξ

= 2hj2
−4j

∫
R̂2

∫
R
W (2−2j(ξ1, ξ2 − η2)) sinc(2πhjη2)

× e−2πi2−2jη2k2dη2W (2−2jξ) e2πiξ2−2j(k−k′) dξ.
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Making the change of variables τ = 2−2jξ and γ2 = 2−2jη2, we have

〈PMhj
φj,k, φj,k′〉 = 2hj 22j

∫
R̂2

g(τ) e2πiτ(k−k′) dτ.

where the function

g(τ) =

∫
R
W (τ − (0, γ2))W (τ) sinc(2πhj2

2jγ2) e−2πiγ2k2 dγ2

is compactly supported because W is. Additionally, by dominated convergence theorem, [28], g is

smooth; and therefore,

L(g(τ)) =

∫
R
L
(
W (τ − (0, γ2))W (τ)

)
sinc(2πhj2

2jγ2) e−2πiγ2k2 dγ2.

So, we see

|L(g(τ))| ≤
∫
R

∣∣∣L(W (τ − (0, γ2))W (τ)
)∣∣∣ |sinc(2πhj2

2jγ2)| |e−2πiγ2k2 | dγ2

≤
∫
R

∣∣∣L(W (τ − (0, γ2))W (τ)
)∣∣∣ dγ2 ≤ C.

is bounded because W is smooth and compactly supported and |sinc| ≤ 1. Notice also that C

is independent from k, k′ and hj . Hence we can apply Lemma A.1 with (55) and the differential

operator L given by (13) to get

|〈PMhj
φj,k, φj,k′〉|

= 2hj2
2j

∣∣∣∣∫
R̂2

L
(
g(τ)

)
L−1

(
e2πiτ(k−k′)

)
dτ

∣∣∣∣
= 2hj2

2j(1 + (k1 − k′1)2)−1(1 + (k2 − k′2)2)−1

∣∣∣∣∫
R̂2

L
(
g(τ)

)
e2πiτ(k−k′)dτ

∣∣∣∣
≤ C2hj2

2j(1 + (k1 − k′1)2)−1(1 + (k2 − k′2)2)−1.
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From there, we see that

∑
k∈Sw,j

|〈PMhj
φj,k, φj,k′〉| ≤ C 22j hj

∑
k∈Z2

(1 + (k1 − k′1)2)−1(1 + (k2 − k′2)2)−1

≤ C 22j hj .

Since hj = o(2−2j), then µc(Sw,j , PMhj
Φ; Φ)→ 0, as j →∞.

Therefore, we have proved Theorem 2.5.

4.2 Proof of Theorem 2.6 (Thresholding)

We now apply Algorithm 1 to the signal T using the Parseval frame of wavelets Φ = {φj,k : j ∈

Z, k ∈ Z2} defined in Section 1.2. Note that
∥∥φj,k∥∥2

=‖φ‖2 for all j ∈ Z, k ∈ Z2.

For any j ∈ Z, k ∈ Z2, let γj,k = 〈φj,k, PMhj
Tj〉, βj,k = 〈φj,k, Tj〉 and αj,k = βj,k − γj,k. For

j ≥ 0, 0 ≤ σj ≤ 2−4j , we set Ij = {k ∈ Z2 : |αj,k| ≥ σj}. By applying Lemma 3.13, we obtain the

following estimate.

Proposition 4.3. Fix j ∈ Z and let the set of significant coefficients Ij be given as above. Let the

approximation Rj of the function Tj be computed according to Algorithm 1. Then

‖Rτj − Tj‖2 ≤‖φ‖2 (‖1IcjF
∗Tj‖1 + ‖1IjF ∗PMhj

Tj‖1).

Observe also that

‖1IcjF
∗Tj‖1 =

∑
k∈Icj

|〈φj,k, Tj〉| =
∑
k∈Icj

|βj,k|,

‖1IjF ∗PMhj
Tj‖1 =

∑
k∈Ij

|〈φj,k, PMhj
Tj〉| =

∑
k∈Ij

|γj,k|

and Rτj = F [1IjF
∗PR2\Mhj

Tj ]. Theorem 2.6 is proved using the fact that ‖1IjF ∗PMhj
Tj‖1 ≤

‖F ∗PMhj
Tj‖1, Proposition 4.3 above and the following result.
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Proposition 4.4. Fix j ∈ Z. For any 0 ≤ σj ≤ 2−4j and hj = o(2−j), we have

(i) ‖F ∗PMhj
Tj‖1 =

∑
k∈Z2

|γj,k| ≤ C 22j hj = o(‖Tj‖2); (14)

(ii)
∑
k∈Icj

|βj,k| = o(2j) = o(‖Tj‖2), as j →∞. (15)

4.2.1 Proof of Proposition 4.4

We again use Plancherel Theorem and the change of variable 2−jξ = η. So, we have

γj,k = 〈φ̂j,k, P̂Mhj
Tj〉

= 2−2j

∫
R̂2

W (2−2jξ) e2πi2−2jξkP̂Mhj
Tj(ξ) dξ

= 22j

∫
R̂2

W (η) e2πiηkP̂Mhj
Tj(22jη) dη. (16)

We also see that

Tj(x) =

∫
R̂2

T̂j(ξ) e2πiξx dξ

=

∫
R̂2

W (2−2jξ)

(∫ b

a
e−2πiξ·(f(u),u) g(u) du

)
e2πiξx dξ

=

∫ b

a

(
24j

∫
R̂2

W (η) e2πi22jη·
(
x−(f(u),u)

)
dη

)
g(u)du

= 24j

∫ b

a
W̌
(

22j
(
x− (f(u), u)

))
g(u) du

where W̌ is the inverse Fourier Transform of W . Therefore,

P̂Mhj
Tj(22jη) =

∫
R2

1Mhj
(x)Tj(x)e2πi22jη·xdx

=

∫
R2

1Mhj
(x) 24j

∫ b

a
W̌
(

22j
(
x− (f(u), u)

))
g(u) du e−2πi22jη·xdx

=

∫
R2

(∫ b

a
1Mhj

(
x+ (f(u), u)

)
e−2πi22jη (x+(f(u),u))g(u)du

)
24jW̌ (22jx)dx.
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Therefore, in (16) we have

γj,k = 22j

∫
R̂2

W (η) e2πiηkP̂Mhj
Tj(22jη) dη

= 22j

∫
R̂2

∫
R2

(∫ b

a
1Mhj

(
x+ (f(u), u)

)
e2πi22jη (x+(f(u),u))g(u)du

)
× 24jW̌ (22jx) dx W (η)e2πiηkdη

= 22j

∫
R2

[ ∫ b

a

(∫
R̂2

W (η)e2πiη·
(
k+22j(x+(f(u),u))

)
dη

)
× 1Mhj

(
x+ (f(u), u)

)
g(u)du

]
24jW̌ (22jx)dx.

From proposition A.1, we have

∫
R̂2

W (η)e2πiη·
(
k+22j(x+(f(u),u))

)
dη =

∫
R2

L
[
W (η)

]
L−1

[
e2πiη·

(
k+22j(x+(f(u),u))

)]
dη

=
(

1 +
(
k1 + 22j(x1 + f(u))

)2)−1

×
(

1 +
(
k2 + 22j(x2 + u)

)2)−1

×
∫
R2

L
[
W (η)

]
e2πiη·

(
k+22j(x+(f(u),u))

)
dη

So, we get

∑
k∈Z2

|γj,k| ≤ 22j

∫
R2

[ ∫ b

a

∑
k∈Z2

(
1 +

(
k1 + 22j(x1 + f(u))

)2)−1(
1 +

(
k2 + 22j(x2 + u)

)2)−1

×
(∫

R2

∣∣∣L [W (η)
] ∣∣∣dη)1Mhj

(
x+ (f(u), u)

)∣∣g(u)
∣∣du]24j

∣∣∣W̌(22jx
)∣∣∣dx

≤ 22j

∫
R2

[
C

∫ b

a
1Mhj

(
x+ (f(u), u)

)∣∣g(u)
∣∣du]24j

∣∣∣W̌(22jx
)∣∣∣dx

= 22j

∫
|x|≤2−(2−∆0)j

[
C

∫ b

a
1Mhj

(
x+ (f(u), u)

)∣∣g(u)
∣∣du]24j

∣∣∣W̌(22jx
)∣∣∣dx

+ 22j

∫
|x|>2−(2−∆0)j

[
C

∫ b

a
1Mhj

(
x+ (f(u), u)

)∣∣g(u)
∣∣du]24j

∣∣∣W̌(22jx
)∣∣∣dx

= I1 + I2. (17)

Notice that 1Mhj
(x + (f(u), u)) = 1 whenever −hj − x2 ≤ u2 ≤ hj − x2. So, for any ∆0 > 0 and

35



|x| ≤ 2−(2−∆0)j we have:

∫ b

a
1Mhj

(
x+ (f(u), u)

)∣∣g(u)
∣∣du ≤ C1hj

where C1 is independent of j. Thus

I1 = 22jC

∫
|x|≤2−(2−∆0)j

[∫ b

a
1Mhj

(
x+ (f(u), u)

)
|g(u)|du

]
24j

∣∣∣∣W̌ (
22jx

)∣∣∣∣ dx
≤ 22jC

∫
|x|≤2−(2−∆0)j

C1hj2
4j

∣∣∣∣W̌ (
22jx

)∣∣∣∣ dx
Remember W is compactly supported and ̂̌W = W . So, using Lemma A.3, for each N ∈ N there

is CN such that
∣∣∣W̌ (z)

∣∣∣ ≤ CN (1 + |z|2)−N . Therefore,

I1 ≤ 22jC

∫
|x|≤2−(2−∆0)j

C1hj2
4j
∣∣∣W̌(22jx

)∣∣∣dx
≤ 22jC

∫
|x|≤2−(2−∆0)j

C1hj2
4jCN (1 + |22jx|2)−Ndx

≤ 22jChjCN

∫
|x|≤2∆0j

(1 + |x|2)−Ndx

≤ 22jChj (18)

for a suitable value of N where C is an independent constant. For |x| > 2−(2−∆0)j , notice∫ b
a 1Mhj

(
x + (f(u), u)

)∣∣g(u)
∣∣du ≤ C where C is an independent constant. Therefore, applying

again Lemma A.3, we have

I2 = 22j

∫
|x|>2−(2−∆0)j

[
C

∫ b

a
1Mhj

(
x+ (f(u), u)

)
|g(u)|du

]
24j

∣∣∣∣W̌ (
22jx

)∣∣∣∣ dx
≤ 22j

∫
|x|>2∆0j

CCN (1 + |x|2)−Ndx

= 22jCCN
π

N − 1
(1 + 22∆oj)−N+1. (19)

So, for a suitable value of N , we get I2 ≤ 22jChj where j is large enough. Therefore, combining (18)
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and (19) into (17), we have

∑
k∈Z2

|γj,k| ≤ I1 + I2 ≤ C22jhj

where C is an independent constant. This proves (14). Now, for (15), we again use Plancherel’s

formula, the change of variable η = 2−2jξ and Lemma A.1 in the Appendix. So, we have for any

N ∈ N

βj,k = 〈T̂j , φ̂j,k〉

=

∫
R̂2

(∫ b

a
e−2πiξ·(f(u),u)g(u)duW (2−2jξ)

)(
2−2jW (2−2jξ)e−2πi2−2jξ·k

)
dξ

= 22j

∫ b

a

[∫
R̂2

∣∣W (η)
∣∣2e−2πiη·

(
k+2j(f(u),u)

)
dη

]
g(u)du

= 22j

∫ b

a

[ ∫
R2

LN
(∣∣W (η)

∣∣2)
×

(
1 + (k1 + 22jf(u))2

)−N (
1 + (k2 + 22ju)2

)−N
e−2πiη·

(
k+2j(f(u),u)

)
dη

]
g(u)du.

Since W is smooth and compactly supported, for any N ∈ N, there is a constant CN such that

|βj,k| ≤ 22jCN

∫ b

a

(
1 + (k1 + 22jf(u))2

)−N (
1 + (k2 + 22ju)2

)−N
|g(u)|du. (20)

Let Kj = {k : |k1| ≤ 22j+1, |k2| ≤ 22j+1}. If k ∈ Kc
j , then either |k1| > 22j+1 or |k2| > 22j+1. As

before, if |k1| > 22j+1, for all |f(u)|, |u| ≤ 1, it follows that

1 + (k1 + 22jf(u))2 ≥ (k1 + 22jf(u))2 ≥ 24j .

Similarly, if |k2| > 22j+1, we have 1 + (k1 + 22jf(u))2 ≥ 24j . We proceed similarly to Proposition

4.1. From (20), we have

∑
k∈Kc

j

|βj,k| ≤ CN 22j

∫ b

a

∑
k∈Kc

j

(
1 + (k1 + 22jf(u))2

)−N (
1 + (k2 + 22ju)2

)−N
|g(u)|du
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≤ CN 22j

∫ b

a

∑
|k1|>22j+1,k2∈Z

(
1 + (k1 + 22jf(u))2

)−N (
1 + (k2 + 22ju)2

)−N
+

∑
k1∈Z,|k2|>22j+1

(
1 + (k1 + 22jf(u))2

)−N (
1 + (k2 + 22ju)2

)−N
|g(u)|du

≤ CN 22j

∫ b

a
2(1−N)4j

∑
k∈Z2

(
1 + (k1 + 22jf(u))2

)−1 (
1 + (k2 + 22ju)2

)−N
+ 2(1−N)4j

∑
k∈Z2

(
1 + (k1 + 22jf(u))2

)−N (
1 + (k2 + 22ju)2

)−N
|g(u)|du

≤ CN2−2(2N−3)j . (21)

Recall that Ij = {k ∈ Z2 : |αj,k| ≥ σj} and βj,k = αj,k + γj,k. So, using (21) and (14), we have

∑
k∈Icj

|βj,k| ≤
∑

k∈Icj
⋂
Kj

|βj,k|+
∑

k∈Icj
⋂
Kc
j

|βj,k|

≤
∑

k∈Icj
⋂
Kj

|αj,k|+
∑

k∈Icj
⋂
Kj

|γj,k|+
∑

k∈Icj
⋂
Kc
j

|βj,k|

≤
∑

k∈Icj
⋂
Kj

|αj,k|+
∑
k∈Z2

|γj,k|+
∑
k∈Kc

j

|βj,k|

≤
∑

k∈Icj
⋂
Kj

|αj,k|+ C 22j hj + CN2−2(2N−3)j . (22)

Observe that Kj = {k ∈ Z2 : |k1|, |k2| ≤ 22j+1}, so #|Kj | = (22j+1 · 2 + 1)2. Thus,

∑
k∈ICj ∩Kj

|αj,k| ≤
∑

k∈ICj ∩Kj

σj ≤
∑
k∈Kj

σj = σj
∑
k∈Kj

1 = σj#|Kj | = σj(2
2j+1 · 2 + 1)2 ≤ 26

since σj ≤ 2−4j . Using (22) and the inequality above, we have

‖1IcjF ∗ Tj‖1 =
∑
k∈ICj

|βj,k| ≤
∑

k∈ICj ∩Kj

|αj,k|+ C12−2(2N−3)j + C222jhj

≤ 26 + CN2−2(2N−3)j + C222jhj = o(2j)

where hj = o(2−j) and N = 2.
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5 Inpainting using shearlets

Now we analyze the inpainting problem using shearlet system Ψ = {Ψη : η ∈ M} introduced in

section 1.2. To do this analysis, we need to study the coefficients 〈ψ(ν)
j,`,k, Tm,j〉, ν = 1 or ν = 2, in

four different cases:

(1) ψ
(1)
j,`,k is horizontal and the curve for Sm is vertical,

(2) ψ
(2)
j,`,k is vertical and the curve for Sm is vertical,

(3) ψ
(1)
j,`,k is horizontal and the curve for Sm is horizontal,

(4) ψ
(2)
j,`,k is vertical and the curve for Sm is horizontal.

Since cases (1) and (2) are analogous to cases (3) and (4), we need only to consider cases (1) and (2).

We also remark that boundary shearlets have localization and regularity properties very similar to

the shearlet functions ψ
(ν)
j,`,k, ν = 1, 2, hence the same argument holds for such elements. We can

fix m for the locally vertical curve Sm since no horizontal curve need to be examined. Also, as in

the previous Section 4, we will also denote Sm by S and Tm,j by Tj to simplify the notation in this

section.

5.1 Proof of Theorem 2.7 (`1 minimization)

Let Ψ = {ψη : η ∈M} be the shearlet system where

M = {η = (j, `, k, ν) : j ≥ 0, |`| ≤ 2j , k ∈ Z2, ν = 1, 2}.

We can write M = M (1) ∪M (2), where M (i) = {η = (j, `, k, ν) ∈ M : ν = i}, for i = 1, 2, and, for

each i, M (i) =
⋃
j≥0M

(i)
j , where M

(i)
j = {(j′, `, k) ∈M (i) : j′ = j}.

As in Section 4, for each j ∈ Z, we denote as Ss,j the set of indices of the cluster of significant

shearlet coefficients (at scale j). The explicit definition of this set will be given below, in the proof

of Proposition 5.1. Corresponding to this set, we define the shearlet approximation error at the
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level j as δsj =
∑

η∈Scs,j
|〈Tj , ψη〉| and the cluster coherence as

µc(Ss,j , PMhj
Ψ; Ψ) = max

η′

∑
η∈Ss,j

|〈PMhj
ψη′ , ψη〉|.

It will be convenient to write Ss,j = Ss,j,1
⋃
Ss,j,2 ⊂ M , where we set Ss,j,2 = ∅ and Ss,j,1 ⊂ M

(1)
j

will be determined below. Since Ss,j,2 = ∅, we have

max
η′

∑
η∈Ss,j

|〈PMhj
ψη′ , ψη〉| ≤ max

η′

∑
η∈Ss,j,1

|〈PMhj
ψ

(1)
η′ , ψ

(1)
η 〉|

+ max
η′

∑
η∈Ss,j,1

|〈PMhj
ψ

(2)
η′ , ψ

(1)
η 〉|.

Just like in the wavelet case, from Lemma 3.10 we have

‖R`j − Tj‖2 ≤
2δsj

1− 2µc(Ss,j , PMhj
Ψ; Ψ)

. (23)

Let β
(ν)
j,`,k = 〈ψ̂(ν)

j,`,k, T̂j〉. To prove Theorem 2.7, we need (23) and to prove the propositions

stated below where Ss,j,1 is also constructed. We present the proofs of the next propositions in the

following subsections.

Proposition 5.1. For any j ∈ Z,

δsj =
∑

(`,k)∈M(1)
j \Ss,j,1

|β(1)
j,`,k|+

∑
(`,k)∈M(2)

j

|β(2)
j,`,k| = o(2j) = o(‖Tj‖2). (24)

Proposition 5.2. Assume that hj = o(2−j). Then

max
η′

∑
η∈Ss,j,1

|〈PMhj
ψ

(1)
η′ , ψ

(1)
η 〉| → 0 as j →∞; (25)

max
η′

∑
η∈Ss,j,1

|〈PMhj
ψ

(2)
η′ , ψ

(1)
η 〉| → 0 as j →∞. (26)
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5.1.1 Proof of Propositions 5.1

We recall that T̂ (ξ) =
∫ b
a e

2πiξ·(f(u),u)g(u)du where [a, b] ⊂ [−1, 1] and |f(u)| ≤ 1. Using Plancherel

Theorem, we have

β
(1)
j,`,k = 〈ψ̂(1)

j,`,k, T̂j〉

=

∫
R2

ψ̂
(1)
j,`,kT̂ (ξ)dξ

= 2−3j/2

∫ b

a

(∫
R2

|W (2−2jξ)|2V
(

2j
ξ2

ξ1
− `
)
e2πiξ·(A−j1 B−`1 k+(f(u),u))dξ

)
g(u)du. (27)

We make a change of variable η = ξA−j1 B−`1 ; therefore,

ξ · (A−j1 B−`1 k + (f(u), u)) = η · (k +B`
1A

j
1(f(u), u))

= η · (k1 + 22jf(u) + 2j`u, k2 + 2ju).

Let x = (k1 + 22jf(u) + 2j`u, k2 + 2ju). So we have:

β
(1)
j,`,k = 23j/2

∫ b

a

(∫
R2

∣∣W (η1, 2
−j(`η1 + η2))

∣∣2V (η2/η1)e2πη·(k1+22jf(u)+2j`u,k2+2ju)dη

)
g(u)du.

Remember that suppW ⊂ [−1/2, 1/2]2\[−1/16, 1/16]2 and suppV ⊂ [−1, 1]. So, 1/16 ≤ |η1| ≤ 1/2

and |η2| ≤ 1/2. Therefore, the function G(η) =
∣∣W (η1, 2

−j(`η1 + η2))
∣∣2V (η2/η1) is still compactly

supported and C∞o . Additionally, observe 2−j |`| ≤ 1, so using Lemma A.1 we have for each N ∈ N

|β(1)
j,`,k| = 23j/2

∣∣∣∣∣
∫ b

a

(∫
R2

LN (G(η))L−N
(
e2πη·(k1+22jf(u)+2j`u,k2+2ju)

)
dη

)
g(u)du

∣∣∣∣∣
≤ 23j/2

∫ b

a
(1 + (k1 + 22jf(u) + 2j`u)2)−N (1 + (k2 + 2ju)2)−N

∫
R2

∣∣∣LN (G(η))
∣∣∣ dη|g(u)|du

≤ 23j/2CN

∫ b

a
(1 + (k1 + 22jf(u) + 2j`u)2)−N (1 + (k2 + 2ju)2)−N |g(u)|du. (28)
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Similarly, for each N ∈ N there is a constant CN such that

|β(2)
j,`,k| ≤ 23j/2CN

∫ b

a
(1 + (k1 + 2ju)2)−N (1 + (k2 + 22jf(u) + 2j`u)2)−N |g(u)|du.

For each j ≥ 0 in Z, we define the set

K
(1)
j = {(j, `, k) ∈M (1)

j : |k1| ≤ 3 · 22j , |k2| ≤ 2 · 2j}.

We observe that, if |k2| ≥ 2 · 2j , then |k2 + 2ju| ≥ 2j for all u ∈ [a, b]. Also if |k1| ≥ 3 · 22j , and

remembering |`| ≤ 2j , then |k1 + 22jf(u) + 2j`u| ≥ 22j for all u ∈ [a, b]. Then, using inequality (28)

we see

∑
(`,k)∈M(1)

j \K
(1)
j

|β(1)
j,`,k| ≤ 23j/2CN

∫ b

a

∑
|`|≤2j

∑
|k1|≥3·22j or |k2|≥2·2j

(1 + (k1 + 22jf(u) + 2j`u)2)−N (1 + (k2 + 2ju)2)−N |g(u)|du

≤ 23j/2CN

∫ b

a

∑
|`|≤2j

(
∑

|k1|≥3·22j , k2∈Z

(1 + (k1 + 22jf(u) + 2j`u)2)−N (1 + (k2 + 2ju)2)−N

+
∑

k1∈Z, |k2|≥2·2j
(1 + (k1 + 22jf(u) + 2j`u)2)−N (1 + (k2 + 2ju)2)−N

)
× |g(u)|du

≤ CN 2
5
2
j 2−(N−1)2j = CN 2

9
2
j 2−2Nj . (29)

Similarly K
(2)
j = {(j, `, k) ∈ M

(2)
j : |k1| ≤ 2 · 2j , |k2| ≤ 3 · 22j} and, using a very similar

argument on β
(2)
j,`,k, we have that, for any N ∈ N, there is a constant CN such that

∑
(`,k)∈M(2)

j \K
(2)
j

|β(2)
j,`,k| ≤ CN 2

7
2
j 2−2Nj . (30)

Also, we observe that the set K
(2)
j contains O(24j) elements. Then, using Lemma 3.1 we see that
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for each N ∈ N there is a constant CN such that

∑
(`,k)∈K(2)

j

|β(2)
j,`,k| ≤

∑
(`,k)∈K(2)

j

CN 2
5
2
j 2−2Nj

≤ CN 24j2
5
2
j2−2Nj

= CN 2
13
2
j2−2Nj . (31)

Using (30) and (31), we have

∑
(k,`)∈M(2)

j

|β(2)
j,`,k| =

( ∑
(`,k)∈K(2)

j

+
∑

(`,k)∈M(2)
j \K

(2)
j

)
|β(2)
j,`,k|

≤ CN

(
2

7
2
j 2−2Nj + 2

13
2
j2−2Nj

)
≤ CN 2

13
2
j 2−2Nj .

Choosing N large enough in the above expression, we have

∑
(`,k)∈M(2)

j

|β(2)
j,`,k| = o(2j), as j →∞. (32)

We now need to prove
∑

(`,k)∈Scs,j,1
|β(1)
j,`,k| = o(2j) and define Ss,j,1. Now in the integral (27), we

make another change of variable ρΘ(θ) = ρ(cos(θ), sin(θ)) = 2−2jξ and obtain

β
(1)
j,`,k = 2−3j/2

∫ b

a

(∫
R2

|W (2−2jξ)|2V
(

2j
ξ2

ξ1
− `
)
e2πiξ·(A−j1 B−`1 k+(f(u),u))dξ

)
g(u)du

= 2
5
2
j

∫ b

a

∫ ∞
0

∫ 3π
2

−π
2

|W (ρΘ(θ))|2 V (2j tan θ − `)

× e
2πi22jρΘ(θ)·

(
A−j

(1)
B−`

(1)
k+(f(u),u)

)
ρ dρ dθg(u) du

= 2
5
2
j

∫ ∞
0

∫ 3π
2

−π
2

|W (ρΘ(θ))|2 V (2j tan θ − `)e2πi22jρΘ(θ)·A−j
(1)
B−`

(1)
k

×

(∫ b

a
e2πi22jρΘ(θ)·(f(u),u)g(u) du

)
dθ ρ dρ.
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As in the proof of Lemma 3.4, by a suitable translation and rotation of the curve segment S,

we can assume that f(0) = f ′(0) = 0. Also we may assume that f ′′(x) > 0 so that f ′(x) is strictly

increasing (the same argument for the case of f ′(x) being strictly decreasing). We define

φ(u, θ) = 2πΘ(θ) · (f(u), u) = 2π(cos(θ)f(u) + sin(θ)u) = 2π cos(θ)(f(u) + tan θu)

and observe that φ′(u) = 2π cos(θ)(f ′(u) + tan(θ)). Again, by a change of parameter, we may

assume a = −ε and b = ε . Since g ∈ C∞0 (−ε, ε), one can find 0 < ε0 < ε such that supp (g) ⊂

[−ε0, ε0]. Let δ0 = 1
2(ε − ε0) and θ1 = tan−1(−f ′(−(ε0 + δ0))), θ0 = | tan−1(−f ′(ε0 + δ0))| so that

tan(θ1) = −f ′(−(ε0 + δ0)) and tan(−θ0) = −f ′(ε0 + δ0). Since tan θ is increasing on [−π
4 ,

π
4 ] with

tan 0 = 0 and f ′(u) is increasing on [−ε, ε] with f ′(0) = 0, we see that the interval [−θ0, θ1] matches

the interval [−(ε0 + δ0), ε0 + δ0]. That is, the map

tan−1 ◦(−f ′) : [−(ε0 + δ0), ε0 + δ0]→ [−θ0, θ1]

is onto and strictly decreasing; therefore bijective. So, for θ ∈ [−π
4 ,

π
4 ] \ (−θ0, θ1) or θ − π ∈

[−π
4 ,

π
4 ] \ (−θ0, θ1) and |u| ≤ ε0, we have f ′(u) + tan θ 6= 0.

It follows that there exists a constant c > 0 such that |φ′u(u, θ)| ≥ c for all θ ∈ [−π
4 ,

π
4 ]\(−θ0, θ1)

or θ − π ∈ [−π
4 ,

π
4 ] \ (−θ0, θ1) and |u| ≤ ε0. So, we have

∫ ε

−ε
ei2

2jφ(u,θ)g(u) du =

(
g(u)

ei2
2jφ(u,θ)

i22jφ′u(u, θ)

)∣∣∣∣∣
ε

−ε

−
∫ ε

−ε
g′(u)

ei2
2jφ(u,θ)

i22jφ′u(u, θ)
du

= −2−2j

∫ ε

−ε
g′(u)

ei2
2jφ(u,θ)

iφ′u(u, θ)
du.

Thus integrating by parts N times gives that for all θ ∈ [−π
4 ,

π
4 ] \ (−θ0, θ1) or θ− π ∈ [−π

4 ,
π
4 ] \

(−θ0, θ1), we have ∣∣∣∣∣
∫ ε

−ε
e2πi22jρΘ(θ)·(f(u),u)g(u) du

∣∣∣∣∣ ≤ CN2−2Nj .

Also as in the proof of lemma 3.4, for π
4 ≤ |θ| ≤

π
2 or π

4 ≤ |θ − π| ≤
π
2 and integrating by parts N
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times, we have ∣∣∣∣∣
∫ ε

−ε
e2πi22jρΘ(θ)·(f(u),u)g(u) du

∣∣∣∣∣ ≤ CN2−2Nj .

So, we see that

|β(1)
j,`,k| ≤ 2

5
2
j

∣∣∣∣ ∫ ∞
0

[∫ θ1

−θ0
+

∫ π+θ1

π−θ0
+

]
|W (ρΘ(θ))|2 V (2j tan θ − `)e2πi22jρΘ(θ)·A−j

(1)
B−`

(1)
k

×

(∫ b

a
e2πi22jρΘ(θ)·(f(u),u)g(u) du

)
dθ ρ dρ

∣∣∣∣+ CN2−2Nj .

So, to find a bound for |β(1)
j,`,k|, we may write β

(1)
j,`,k as

β
(1)
j,`,k = 2

5
2
j

∫ ∞
0

[∫ θ1

−θ0
+

∫ π+θ1

π−θ0
+

]
|W (ρΘ(θ))|2 V (2j tan θ − `)e2πi22jρΘ(θ)·A−j

(1)
B−`

(1)
k

×

(∫ b

a
e2πi22jρΘ(θ)·(f(u),u)g(u) du

)
dθ ρ dρ.

We also remark that the case for θ ∈ [π− θ0, π+ θ1] is identical for the case θ ∈ [−θ0, θ1]; therefore,

we may again rewrite β
(1)
j,`,k as

β
(1)
j,`,k = 2

5
2
j

∫ ∞
0

∫ θ1

−θ0
|W (ρΘ(θ))|2 V (2j tan θ − `)e2πi22jρΘ(θ)·A−j

(1)
B−`

(1)
k

×

(∫ b

a
e2πi22jρΘ(θ)·(f(u),u)g(u) du

)
dθ ρ dρ.

From the choice of θ0 and θ1, we have tan−1 ◦(−f ′) is bijective. So, for each θ ∈ [−θ0, θ1], there is

a unique uθ ∈ [−(ε0 + δ0), (ε0 + δ0)] such that φ′u(uθ, θ) = 2π cos(θ)(f ′(uθ) + tan(θ)) = 0. Now as

in the proof of Lemma 3.4, we apply Lemma 3.2 to get

∫ ε

−ε
e2πi22jρΘ(θ)·(f(u),u)g(u) du = 2−jρ−

1
2

(
a(uθ) e

2πi22jρφ(uθ) +O(ρ−
1
2 )
)

for θ ∈ [−θ0, θ1] where a(uθ) =
(

2πi
φ′′
u2 (uθ,θ)

) 1
2
g(uθ).
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Now, omitting high order terms in the above expression, we may write β
(1)
j,`,k as

β
(1)
j,`,k = 2

3
2
j

∫ ∞
0

∫
|θ|≤θ0

|W (ρΘ(θ))|2 V (2j tan θ − `)e2πi22jρΘ(θ)·A−j
(1)
B−`

(1)
k

×
(
a(uθ) e

2πi22jρφ(uθ)
)
dθ ρ

1
2 dρ.

Remember supp (V ) ∈ [−1, 1], so for given ` and θ ∈ [−θ0, θ1], we must have |2j tan(θ)− `| ≤ 1.

This is possible when tan(θ) ∼ 2−j`. This means that |2−j`| needs to be small because θ ∈ [−θ0, θ1].

Also, remember |`| ≤ 2j , so we make another change of variable t = 2j − ` and have |t| ≤ 1. So, we

see

tan(θ(t)) = 2−j(t+ `)

and

uθ(t) = (f ′)−1(−2−j(t+ `)).

Observe that uθ(t) it is well defined because for large valued of 2−j(t + `) = tan(θ) we have

θ /∈ [−θ0, θ1] which correspond to the values where β
(1)
j,`,k is neglected. So, using the last change of

variable we have,

β
(1)
j,`,k = 2

3
2
j

∫ ∞
0

∫ 1

−1
|W (ρΘ(θ(t))|2 V (t) a(uθ(t))

e2πiρG(t) cos θ(t)

1 + 2−2j(t+ `)2
ρ

1
2dt dρ, (33)

where G : [−1, 1] 7→ R is given by

G(t) = k1 + tk2 + 22jf
(

(f ′)−1(−2−j(t+ `)
)

+ 2j(t+ `) (f ′)−1(−2−j(t+ `)).

We observe that G is continuous because f and (f ′)−1 are, also and compactly supported because

|2−j(t+ `)| ≤ 2−j(|t|+ |`|) ≤ 2−j + 1 ≤ 2. Therefore, we there is tk,` ∈ [−1, 1] such that

|G(tk,`)| = inf
|t|≤1
|G(t)|. (34)
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For j > 0 fixed, we define the set

Ss,j,1 = {(j, `, k) ∈M (1)
j : |k1| ≤ 3 · 22j , |k2| ≤ 2 · 2j , |G(tk,`)| ≤ 2∆0j} (35)

where ∆0 > 0. Also remember for j > 0 fixed, we defined the sets K
(1)
j = {(j, `, k) ∈M (1)

j : |k1| ≤

3 · 22j , |k2| ≤ 2 · 2j}. Similarly we define

Q
(1)
j = {(j, `, k) ∈M (1)

j : |G(tk,`)| ≤ 2∆0j}

and observe that Ss,j,1 = K
(1)
j ∩Q

(1)
j . Thus

M
(1)
j \ Ss,j,1 =(M

(1)
j \K

(1)
j ) ∪ (M

(1)
j \Q

(1)
j ) = (M

(1)
j \K

(1)
j ) ∪

(
(M

(1)
j \Q

(1)
j ) ∩K(1)

j

)
.

Therefore, we may write the first sum in (24) as

∑
(`,k)∈M(1)

j \Ss,j,1

|β(1)
j,`,k| =

∑
(`,k)∈M(1)

j \K
(1)
j

|β(1)
j,`,k|+

∑
(`,k)∈(M

(1)
j \Q

(1)
j )∩Kj

|β(1)
j,`,k|. (36)

From inequality (29) we have that, for every N ∈ N, there is a constant CN > 0 such that∑
(`,k)∈(M

(1)
j \K

(1)
j )
|β(1)
j,`,k| ≤ CN 2

9
2
j 2−2Nj . Therefore, choosing N large enough in the last expression,

we have ∑
(`,k)∈(M

(1)
j \K

(1)
j )

|β(1)
j,`,k| = o(2j). (37)

For the second sum in (36), we observe that, for (`, k) ∈ (M
(1)
j \Q

(1)
j )∩K(1)

j , we have |G(t)| ≥ 2∆0j

for all t ∈ [−1, 1]. So, using (33) we see

β
(1)
j,`,k = 2

3
2
j

∫ ∞
0

∫ 1

−1
|W (ρΘ(θ(t))|2 V (t) a(uθ(t))

e2πiρG(t) cos θ(t)

1 + 2−2j(t+ `)2
ρ

1
2dt dρ

= 2
3
2
j

∫ 1

−1
V (t) a(uθ(t))

1

1 + 2−2j(t+ `)2

∫ ∞
0
|W (ρΘ(θ(t))|2 ρ

1
2 e2πiρG(t) cos θ(t)dρ dt.
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Since supp (W ) ∈ [−1/2, 1/2]2 \ [−1/16, 1/16]2, we integrate by parts and have

∫ ∞
0
|W (ρΘ(θ(t))|2 ρ

1
2 e2πiρG(t) cos θ(t)dρ =

(
|W (ρΘ(θ(t))|2ρ

1
2
e2πiρG(t) cos θ(t)

2πiG(t) cos θ(t)

)∣∣∣∣∞
0

− 1

2πiG(t) cos θ(t)

×
∫ ∞

0

∂

∂ρ

(
|W (ρΘ(θ(t))|2 ρ

1
2

)
e2πiρG(t) cos θ(t)dρ

By repeated integration by parts with respect to the variable ρ in the integral of β
(1)
j,`,k, we have

that, for any N ∈ N, there is a constant CN such that

|β(1)
j,`,k| ≤ CN 2

3
2
j

∫ 1

−1
|V (t)| 1

|G(t) cos θ(t)|N
dt

1 + 2−2j(t+ `)2

Hence, for (`, k) ∈ (M
(1)
j \Q

(1)
j ) ∩K(1)

j and any N ∈ N, there is a constant CN such that

|β(1)
j,`,k| ≤ CN 2

3
2
j 2−N∆oj .

Therefore, observing that the cardinality of K
(1)
j is of order 24j , we have that

∑
(`,k)∈(M

(1)
j \Qj)∩Kj

|β(1)
j,`,k| ≤ CN 24j 2

3
2
j 2−N∆oj .

If we choose N large enough, we have that N∆0 >
11
2 so that the sum in the last expression is

o(2j). Combining this last estimate with (37) in (36), and then using the estimate (32), we have

that

δsj =
∑

(`,k)∈M(1)
j \Ss,j,1

|β(1)
j,`,k|+

∑
(`,k)∈M(2)

j

|β(2)
j,`,k| = o(2j).

5.1.2 Proof of Proposition 5.2

In order to prove Proposition 5.2, we need the following result which will be proved later.
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Lemma 5.3. For j > 0 fixed and k ∈ Z2, ` ∈ Z, let tk,` be defined by equation (34) in the proof of

Proposition 5.1. Set

Gk,` =k1 + tk,`k2 + 22jf [(f ′)−1(−2−j(tk,` + `)] + 2j(tk,` + `) (f ′)−1(−2−j(tk,` + `))

and Qk = {|`| ≤ 2j : Gk,` ≤ 2∆0j}. Then for each fixed k, the cardinality of the set Qk satisfies the

inequality #(Qk) ≤ C 2
1
2

∆0j , where the constant C is independent of j, k.

Proof of Proposition 5.2

We begin proving (25) using the definition of Ss,j,1 given in (35). As mentioned in Remark 2.3, for

a technical reason, we use PMhj
= h∆0

j 1|x2|≤hj . This does not affect the PMhj
significantly because

for small values of hj we have h∆0
j → 1 as ∆0 → 0.

Like in the proof of Proposition 4.2, we use Plancherel Theorem and Lemma A.2. So, we have

h∆0
j 1̂Mhj

∗ ψ̂(1)
j,`,k = 2h1+∆0

j

∫
R̂

sinc(2πhjτ2)ψ̂
(1)
j,`,k

(
(ξ1, ξ2)− (0, τ2)

)
dτ2

〈PMhj
ψ

(1)
j,`,k, ψ

(1)
j,`′,k′〉

= 〈h∆0
j 1̂Mhj

∗ ψ̂(1)
j,`,k, ψ̂

(1)
j,`′,k′〉

= 2h1+∆0
j

∫
R̂2

∫
R̂

sinc(2πhjτ2) ψ̂
(1)
j,`,k

(
(ξ1, ξ2)− (0, τ2)

)
dτ2 ψ̂

(1)
j,`′,k′(ξ) dξ

= 2h1+∆0
j 2−3j

∫
R̂2

∫
R̂
W (2−2j(ξ1, ξ2 − τ2))V (2j

ξ2 − τ2

ξ1
− `) sinc(2πhjτ2)

× e
−2πi(0,τ2)·A−j

(1)
B−`

(1)
k
dτ2W (2−2jξ)V (2j

ξ2

ξ1
− `′) e2πiξA−j

(1)
B−`

(1)
(k−B`

(1)
B−`

′
(1)

k′)
dξ.

We now make a change of variable η = ξA−j(1)B
−`
(1) so that ξ = ηB`

1A
j
1 = (22jη1, 2

j(`η1 + η2)) and

dξ1 = 22jdη1 and dξ2 = 2jdη2. Thus,

〈PMhj
ψ

(1)
j,`,k, ψ

(1)
j,`′,k′〉
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= 2h1+∆0
j

∫
R̂2

∫
R̂
W (η1, 2

−j(`η1 + η2)− 2−2jτ2)V (
η2

η1
− 2−jτ2

η1
)e−2πi2−jτ2k2

× sinc(2πτ22−j) dτ2W (η1, 2
−j(`′η1 + η2))V (

η2

η1
) e

2πiη(k−B`
(1)
B−`

′
(1)

k′)
dη1dη2.

We now let γ = 2−jτ2 and have

〈PMhj
ψ

(1)
j,`,k, ψ

(1)
j,`′,k′〉

= 2h1+∆0
j 2j

∫
R̂2

∫
R̂
W
(
η1, 2

−j(`η1 + η2)− 2−jγ
)
V

(
η2

η1
− γ

η1
+ `− `′

)
× W (η1, 2

−j(`η1 + η2))V

(
η2

η1

)
× e−2πiγk2sinc(2πγ) dγ e

2πiη(k−B`
(1)
B−`

′
(1)

k′)
dη. (38)

Let

gj,`,`′(η, γ) = W
(
η1, 2

−j(`η1 + η2)− 2−jγ
)
V

(
η2

η1
− γ

η1
+ `− `′

)
W (η1, 2

−j(`η1 + η2))V

(
η2

η1

)
.

We compute the following

∂

∂η1
W = ∂1W + ∂2W2−j`

∂2

∂η2
1

W = ∂1∂1W + ∂2∂1W2−j`+ ∂1∂2W2−j`+ ∂2∂2W2−j`2−j`

∂

∂η2
W = ∂2W2−j

∂2

∂η2
2

W = ∂2∂2W2−j2−j

∂

∂η1
V = V ′

−(η2 − γ)

η2
1

∂2

∂η2
1

V = V ′′
(η2 − γ)2

η4
1

+ V ′
2(η2 − γ)

η3
1

∂

∂η2
V = V ′

1

η1

∂2

∂η2
2

V = V ′′
1

η2
1

(39)
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And very similar for W and V . From the computations in (39) and since V and W are com-

pactly supported and smooth, it follows that there is a constant C independent of j, `, `′ such that

|L(gj,`,`′(η, γ))| ≤ C where L is the operator defined in (13). Also, observe that (k−B`
(1)B

−`′
(1) k

′) =

(k1 − k′1 − (` − `′)k′2, k2 − k′2). Therefore, using the above observations, Lemma A.1 and (38) we

have

|〈PMhj
ψ

(1)
j,`,k, ψ

(1)
j,`′,k′〉|

= 2h1+∆0
j 2j

∣∣∣∣∣
∫
R̂2

L

(∫
R̂
gj,`,`′(η, γ)e−2πiγk2sinc(2πγ) dγ

)
L−1

(
e

2πiη(k−B`
(1)
B−`

′
(1)

k′)
)
dη

∣∣∣∣∣
= 2h1+∆0

j 2j
∣∣∣∣ ∫

R̂2

L

(∫
R̂
gj,`,`′(η, γ)e−2πiγk2sinc(2πγ) dγ

)
× (1 + (k1 − k′1 − (`− `′)k′2)2)−2(1 + (k2 − k′2)2)−2e

2πiη(k−B`
(1)
B−`

′
(1)

k′)
dη

∣∣∣∣
≤ 2h1+∆0

j 2j
∣∣∣∣ ∫

R̂2

L

(∫
R̂
gj,`,`′(η, γ)e−2πiγk2sinc(2πγ) dγ

)
× (1 + (k1 − k′1 − (`− `′)k′2)2)−1(1 + (k2 − k′2)2)−1 e

2πiη(k−B`
(1)
B−`

′
(1)

k′)
dη

∣∣∣∣
≤ 2h1+∆0

j 2jC(1 + (k1 − k′1 − (`− `′)k′2)2)−1(1 + (k2 − k′2)2)−1

and using the definition of Ss,j,1 given by (35) with Lemma 5.3 we have

∑
(k,`)∈Ss,j,1

|〈PMhj
ψ

(1)
j,`,k, ψ

(1)
j,`′,k′〉|

≤ C h1+∆0
j 2j

∑
|k1|≤322j

∑
|k2|≤22j

∑
`∈Qk

(
1 + |(k1 − k′1 − (`− `′)k′2|2

)−1 (
1 + |k2 − k′2|2

)−1

≤ C h1+∆0
j 2j 2

1
2

∆0j
∑
k1∈Z

∑
k2∈Z

(
1 + |k1|2

)−1 (
1 + |k2|2

)−1

≤ C h1+∆0
j 2j 2

1
2

∆0j .

Hence, since hj = o(2−j), it follows that

max
`′,k′

∑
`,k∈Ss,j,1

|〈PMhj
ψ

(1)
j,`,k, ψ

(1)
j,`′,k′〉| → 0 as j →∞.
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This proves (25).

To prove (26), similarly to the computation above, we apply Plancherel Theorem and the Fourier

transform of 1Mhj
to write

〈PMhj
ψ

(2)
j,`,k, ψ

(1)
j,`′,k′〉

= 〈ψ(2)
j,`,k, PMhj

ψ
(1)
j,`′,k′〉

= 〈ψ̂(2)
j,`,k, h

∆0
j 1̂Mhj

∗ ψ̂(1)
j,`′,k′〉

= 2h1+∆0
j

∫
R̂2

∫
R̂

sinc(2πhjτ2) ψ̂
(1)
j,`′,k′

(
(ξ1, ξ2)− (0, τ2)

)
dτ2 ψ̂

(2)
j,`,k(ξ) dξ

= 2h1+∆0
j 2−3j

∫
R̂2

∫
R̂
W (2−2j(ξ1, ξ2 − τ2))V

(
2j
ξ2 − τ2

ξ1
− `
)
e

2πi(0,τ2)A−j
(1)
B−`

(1)
k

× sinc(2πhjτ2)dτ2W (2−2jξ)V

(
2jξ1

ξ2
− `′

)
e
−2πiξA−j

(1)
B−`

(1)
(k−B`

(1)
Aj

(1)
A−j

(2)
B−`

′
(2)

k′)
dξ.

We now apply a change of variable η = ξA−j(1)B
−`
(1) = (2−2jξ1,−`2−2jξ1 + 2−jξ2), so that ξ =

ηB`
(1)A

j
(1) = (22jη1, 2

j(`η1 + η2)), and let α = (α1, α2) = B`
(1)A

j
(1)A

−j
(2)B

−`′
(2) k

′. Thus

〈PMhj
ψ

(2)
j,`,k, ψ

(1)
j,`′,k′〉

= 2h1+∆0
j

∫
R̂2

∫
R̂
W (η1, 2

−j(`η1 + η2))− 2−2jτ2)V

(
η2 − 2−jτ2

η1

)
sinc(2πhjτ2)

× e2πi2−jτ2k2dτ2W (η1, 2
−j(`η1 + η2))V

(
22jη1

`η1 + η2
− `′

)
e−2πiη(k−α) dη.

Similar to the calculation above, letting γ = 2−jτ2 and then applying Lemma A.1, where L is the

differential operator (13), we have that

〈PMhj
ψ

(2)
j,`,k, ψ

(1)
j,`′,k′〉 = 2h1+∆0

j 2j
∫
R̂2

∫
R̂
g̃j,`,`′(η, γ) sinc(2πhj2

−jγ) e2πiγk2dγ e−2πiη(k−α)dη (40)

where

g̃j,`,`′(η, γ)=W (η1, 2
−j(`η1 + η2 − γ))V (η2−γ

η1
)W (η1, 2

−j(`η1 + η2))V ( 22jη1

`η1+η2
− `′).
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We also compute

∂

∂η1
V = V

′ · 22jη2

(`η1 + η2)2

∂2

∂η2
1

V = V
′′ · 24jη2

2

(`η1 + η2)4
+ V

′ · −2 · 23jη2

(`η1 + η2)3
· `2−j

∂

∂η2
V = V

′ · −22jη1

(`η1 + η2)2

∂2

∂η2
2

V = V
′′ · 24jη2

1

(`η1 + η2)4
+ V

′ · −2 · 23jη1

(`η1 + η2)3
2−j .

Since suppW ⊂ [−1/2, 1/2]2\ [−1/16, 1/16]2, we see that 1/16 ≤ 2−j |`η1 +η2| ≤ 1/2, so |`η1 +η2| ∼

2j . Therefore, with the above computations and similar computations performed in (39) for W , W

and V and the fact they are smooth, it follows that there is a constant C independent of j, `, `′

such that |L(gj,`,`′(η, γ))| ≤ C where L is the operator given in (13).

Thus applying Lemma A.1 in (40) we have

|〈PMhj
ψ

(2)
j,`,k, ψ

(1)
j,`′,k′〉| = 2h1+∆0

j 2j
∣∣∣∣∫

R̂2

L

(∫
R̂
g̃j,`,`′(η, γ) sinc(2πhj2

−jγ)

× e2πiγk2dγ

)
L−1

(
e−2πiη(k−α)

)
dη

∣∣∣∣
≤ C h1+∆o

j 2j (1 + (k1 − α1)2)−1(1 + (k2 − α2)2)−1

where the indices α1, α2 depend on `. Using the definition of Ss,j,1, given by (35), and next applying

Lemma 5.3 to estimate the cardinality of Qk, we have

∑
(k,`)∈Ss,j,1

|〈PMhj
ψ

(2)
j,`′,k′ , ψ

(1)
j,`,k〉|

≤ C h1+∆0
j 2j

∑
|k1|≤322j

∑
|k2|≤22j

∑
`∈Qk

(1 + (k1 − α1)2)−1(1 + (k2 − α2)2)−1

≤ C h1+∆0
j 2j 2

1
2

∆0j
∑
k1∈Z

∑
k2∈Z

(
1 + |k1|2

)−1 (
1 + |k2|2

)−1

≤ C h1+∆0
j 2j 2

1
2

∆0j .
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Since hj = o(2−j), it follows that

max
`′,k′

∑
`,k∈Ss,j,1

|〈PMhj
ψ

(2)
j,`′,k′ , ψ

(1)
j,`,k〉| → 0 as j →∞.

We finally prove Lemma 5.3.

Proof of Lemma 5.3. Letting y = (f ′)−1(−2j(tk,` + `)), we can write

G(tk,`) = (k1 + tk,`k2) + 22j
(
f(y)− f ′(y)y

)
.

Recalling that f(0) = f ′(0) = 0, we have that the second order Taylor expansion of f about 0

on [−ε, ε] is f(y) = f ′′(c)y
2

2 where c ∈ (−ε, ε) and f ′(y) = f ′′(c) y. Since f ′′(y) > k > 0 on [−ε, ε] ,

then

f(y)− f ′(y)y = −1

2
f ′′(c) y2 ≤ 0.

Neglecting the higher order terms, we have

|G(tk,`)|= |(k1 + tk,`k2) + 22j
(
f(y)− f ′(y)y

)
| ' |(k1 + tk,`k2)− 22j 1

2f
′′(c)y2|. (41)

We consider three cases below and recall that |G(tk,`)| ≤ 2∆oj by definition of Qk.

Case 1: k1 + tk,yk2 < 0. It follows that | − 22j 1
2f
′′(c)y2| ≤ 2∆oj . This implies that

|tk,` + `| = 2j |f ′(y)| ' 2jf ′′(c)|y| ≤
√

2
√
f ′′(c) · 2∆0j/2

and

|`| .
√

2
√
f ′′(c) · 2

1
2

∆0j + |tk,`| ≤
√

2
√
f ′′(c) · 2

1
2

∆0j + 1.

So, ` is contained on an interval of length less or equal than 2 · (
√

2
√
f ′′(c) · 2∆oj/2 + 1). And also

remember that ` ∈ Z so that the there are at most 2 · (
√

2
√
f ′′(c) · 2∆oj/2 + 1) of such elements `.

Hence #|Qk1,k2 | ≤ 2 · (
√

2
√
f ′′(c) · 2∆oj/2 + 1). So, there is a constant C independent of j, k1, k2
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such that #(Qk) ≤ C 2
1
2

∆0j .

Case 2: 0 ≤ k1 + tk,yk2 ≤ 2∆0j+1. Then (41) implies that

2∆oj & |(k1 + tk,`k2)− 22j 1

2
f ′′(c)y2| ≥ |22j 1

2
f ′′(c)y2| − |k1 + tk,`k2|.

Therefore, in this case, we have that

|22j 1

2
f ′′(c)y2| . |k1 + tk,`k2|+ 2∆oj ≤ 2∆oj+1 + 2∆oj = 3 · 2∆oj .

Similar to case 1, it follows that

|tk,` + `| = 2j |f ′(y)| ' 2jf ′′(c)|y| ≤
√

6
√
f ′′(c) · 2∆oj/2

and

|`| .
√

6
√
f ′′(c) · 2∆oj/2 + |tk,`| ≤

√
6
√
f ′′(c) · 2∆oj/2 + 1.

As in case 1, ` is contained on interval of length less or equal to 2 · (
√

6
√
f ′′(c) · 2∆oj/2 + 1). And

also remember that ` ∈ Z so that the there are at most 2 · (
√

6
√
f ′′(c) · 2∆oj/2 + 1) of such elements

`. So, there is a constant C independent of j, k1, k2 such that #(Qk) ≤ C 2
1
2

∆0j .

Case 3: k1 + tk,yk2 ≥ 2∆0j+1. Again (41) implies that

k1 + tk,`k2 − 2∆0j . 22j 1

2
f ′′(c) y2 . k1 + tk,`k2 + 2∆0j

and, thus,

2−j
√

2√
f ′′(c)

√
k1 + tk,`k2 − 2∆oj . |y| . 2−j

√
2√

f ′′(c)

√
k1 + tk,`k2 + 2∆oj .
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This shows that |y| is contained in the interval

Iy =

[
2−j

√
2√

f ′′(c)

√
k1 + tk,`k2 − 2∆oj , 2−j

√
2√

f ′′(c)

√
k1 + tk,`k2 + 2∆oj

]
,

whose length satisfies the inequality

|Iy| =
√

2 2−j√
f ′′(c)

(√
k1 + tk,`k2 + 2∆oj −

√
k1 + tk,`k2 − 2∆oj

)
≤
√

2 2−j+1√
f ′′(c)

2
1
2

∆o .

Let m = |`+ tk,`| so that m = 2j |f ′(y)| ' 2jf ′′(c)|y|. Since the map x 7→ f ′′(c)x is continuous,

then the expression above maps the interval Iy to some other interval Im. For any m1,m2 ∈ Im,

we have that

|m2 −m1| ' 2jf ′′(c) ||y2| − |y1|| ≤ 2
√

2
√
f ′′(c) 2

1
2

∆o ,

that is, the length of Im satisfies |Im| ≤ 2
√

2
√
f ′′(c) 2

1
2

∆o . From |` + tk,`| = m ∈ Im, we have

|`| ∈ Im ± tk,`. Since |tk,`| ≤ 1, as in Cases 1 and 2, there at most 2
√

2
√
f ′′(c) 2

1
2

∆o + 2 of those `

elements in Im. So, there is a constant C independent of j, k1, k2 such that #(Qk) ≤ C 2
1
2

∆0j .

5.2 Proof of Theorem 2.8 (Thresholding)

For ν = 1, 2, let γ
(ν)
j,`,k = 〈ψ(ν)

j,`,k, PMhj
Tj〉 and β

(ν)
j,`,k = 〈ψ(ν)

j,`,k, Tj〉

Since Tj is related to a local vertical curve, as for the `1 minimization case, we need only

consider the case ν = 1. In the following, we simply denote γ
(1)
j,`,k as γj,`,k, β

(1)
j,`,k as βj,`,k and set

αj,`,k = βj,`,k − γj,`,k.

For any j ≥ 0 and any 0 ≤ σj ≤ 2−4j , we let Ij = {(`, k) : |αj,`,k| ≥ σj} and δsj =
∑

k∈Icj
|βj,`,k|,.

We recall that Rτj = F [1IjF
∗Tj ] and observe that ‖1IjΨ∗PMhj

Tj‖1 =
∑

(`,k)∈Ij |γj,k|. Lemma

3.13 then implies the following estimate.

Proposition 5.4. For any j ∈ Z, let Rτj , Ij and δsj be defined as above. Then there is a constant
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C independent of j and T such that

‖Rτj − Tj‖2 ≤ C(δsj + ‖1IjF ∗PMhj
Tj‖1).

A simple observation shows that, for any j ∈ Z,

‖1IjF ∗PMhj
Tj‖1 ≤ ‖F ∗PMhj

Tj‖1 =
∑

(`,k)∈Mj

|γj,`,k|.

So, Theorem 2.8 follows from Proposition 5.4 and the following result.

Proposition 5.5. Let j ≥ 0. For any 0 ≤ σj ≤ 2−4j and hj = o(2−
3
4
j), we have

∑
(`,k)∈Mj

|γj,`,k| = o(2j) = o(‖Tj‖2) (42)

∑
(`,k)∈Icj

|βj,`,k| = o(2j) = o(‖Tj‖2), as j →∞ (43)

5.2.1 Proof of Proposition 5.5

Making a change of variable η = ξA−j(1)B
−`
(1) and using the expression for PMhj

computed in Propo-

sition 4.4, we have

γj,`,k = 〈ψ̂(ν)
j,`,k, P̂Mhj

Tj〉

= 2−
3
2
j

∫
R̂2

W (2−2jξ)V

(
2j
ξ2

ξ1
− `
)
e

2πiξA−j
(1)
B−`

(1)
k
P̂Mhj

Tj(ξ) dξ

= 2
3
2
j

∫
R̂2

W (η1, 2
−j(`η1 + η2))V

(
η2

η1

)
e2πiηk P̂Mhj

Tj(η B`
(1)A

j
(1)) dη

= 2
3
2
j

∫
R̂2

W (η1, 2
−j(`η1 + η2))V

(
η2

η1

)
e2πiηk

×
∫
R2

(∫ b

a
1Mhj

(
x+ (f(u), u)

)
e

2πiη B`
(1)
Aj

(1)
(x+(f(u),u))

g(u)du

)
24jW̌ (22jx)dx dη

= 2
11
2
j

∫
R2

∫ b

a

(∫
R̂2

W (η1, 2
−j(`η1 + η2))V

(
η2

η1

)
e

2πiη
(
k+B`

(1)
Aj

(1) (x+(f(u),u))
)
dη

)
× 1Mhj

(
x+ (f(u), u)

)
g(u) du W̌ (22jx)dx.
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In a similar way as in Proposition 4.4 we write γj,`,k = γ
(1)
j,`,k + γ

(2)
j,`,k where

γ
(1)
j,`,k = 2

11
2
j

∫
B∆0

∫ b

a

(∫
R̂2

W (η1, 2
−j(`η1 + η2))V

(
η2

η1

)
e

2πiη
(
k+B`

(1)
Aj

(1) (x+(f(u),u))
)
dη

)
× 1Mhj

(
x+ (f(u), u)

)
g(u) du W̌ (22jx)dx, (44)

γ
(2)
j,`,k = 2

11
2
j

∫
R\B∆0

∫ b

a

(∫
R̂2

W (η1, 2
−j(`η1 + η2))V

(
η2

η1

)
e

2πiη
(
k+B`

(1)
Aj

(1) (x+(f(u),u))
)
dη

)
× 1Mhj

(
x+ (f(u), u)

)
g(u) du W̌ (22jx)dx. (45)

and B∆0 = {x ∈ R2 : |x| ≤ 2−(2−∆0)j}, with any ∆0 > 0.

For γ
(2)
j,`,k, we proceed as in the wavelet case. Notice that

k +B`
1A

j
1(x+ (f(u), u)) =

(
k1 + 22j(x1 + f(u)) + 2j`(x2 + u), k2 + 2j(x2 + u)

)
.

Now we apply Lemmas A.1 and A.3 in (45) and remember that
∫ b
a 1Mhj

(x + (f(u), u))|g(u)|du ≤∫ b
a |g(u)|du ≤ C. So, we have

∑
(`,k)∈Mj

|γ(2)
j,`,k| ≤

∑
|`|≤2j

∑
k∈Z2

2
11
2
j

∫
R\B∆0

∫ b

a
C

×
(

1 +
(
k1 + 22j(x1 + f(u)) + 2j`(x2 + u)

)2
)−1(

1 +
(
k2 + 2j(x2 + u)

)2
)−1

× |g(u)|du|W̌ (22jx)|dx

≤ C2
11
2
j
∑
|`|≤2j

∫
|x|>2−(2−∆0)j

|W̌ (22jx)|dx

≤ C2
11
2
j
∑
|`|≤2j

∫
|x|>2∆0j

CCN (1 + |x|2)−Ndx

≤ C2
5
2
jCN

π

N − 1
(1 + 22∆oj)−N+1
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where C is an independent constant. So, for a suitable value of N , we have
∑

(`,k)∈Mj
|γ(2)
j,`,k| ≤ o(2

j).

Now we work on (44). Like in the proof of Lemma 3.4, we may assume that f(0) = f ′(0) = 0,

and that a = −ε, b = ε. So f(u) ' f ′′(c)u2/2, where c ∈ [−ε, ε]. Since f ∈ C∞[a, b], there is M > 0

such that |f ′′(u)| ≤ 1
2M for all u ∈ [−ε, ε] and |x| ≤ 2−(2−∆0)j , we have |f ′(u)| ≤M hj = o(2−

3
4
j) ≤

1
3 2−

3
4
j for all large j and all u ∈ [−hj − x2, hj − x2] ⊂ [−ε, ε].

We consider first the case |`| ≤ 2j/4. Applying Lemma A.1 to (44) we have

γ
(1)
j,`,k = 2

11
2
j

∫
B∆0

∫ b

a

∫
R̂2

L
(
W (η1, 2

−j(`η1 + η2))V (η2

η1
)
)

× L−1

(
e

2πiη
(
k+B`1A

j
1(x+(f(u),u))

))
dη 1hj (x+ (f(u), u)) g(u) du W̌ (22jx) dx

= 2
11
2
j

∫
B∆0

∫ b

a

∫
R̂2

L
(
W (η1, 2

−j(`η1 + η2))V (η2

η1
)
)

×
(

1 +
(
k1 + 22j(x1 + f(u)) + 2j`(x2 + u)

)2
)−1(

1 +
(
k2 + 2j(x2 + u)

)2
)−1

dη

× 1hj (x+ (f(u), u)) g(u) du W̌ (22jx) dx

We recall from the proof of Proposition 4.4 that there is C independent of j and x such that∫ b
a 1hj (x+ (f(u), u)) |g(u)| du ≤ C hj . So, we have

∑
k∈Z2

|γ(1)
j,`,k|

≤ C 2
11
2
j

∫
R2

∫ b

a

∑
k∈Z2

(
1 + (k1 + 22j(x1 + f(u)) + 2j`(x2 + u))2

)−1

×
(

1 + (k2 + 2j(x2 + u))2
)−1

1hj (x+ (f(u), u)) du |W̌ (22jx)| dx

≤ C 2
11
2
jhj

∫
R2

|W̌ (22jx)| dx

≤ C 2
3
2
jhj .
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Therefore, using the assumption that hj = o(2−
3
4
j), we conclude that

∑
|`|≤2j/4

∑
k∈Z2

|γ(1)
j,`,k| ≤ C 2

1
4
j2

3
2
jhj = C 2

7
4
jhj = o(2j),

We now consider the case 2j/4 < |`| ≤ 2j . For fixed η and |x| ≤ 2−(2−∆0)j , let

φ(η, x, u) = η B`
1A

j
1 (x+ (f(u), u)) =

= 22jη1(x1 + f(u)) + 2j`η1(x2 + u) + 2jη2(x2 + u).

Then φ′u(η, x, u) = η1(22jf ′(u) + 2j`) + 2jη2 = 2jη1

(
2jf ′(u) + `+ η2

η1

)
, where φ′u = ∂

∂uφ. From

the assumptions of the support of V and W and from (44), it follows that 1
16 ≤ |η1| ≤ 1

2 and

|η2

η1
| ≤ 1 ≤ 1

62j/4 (for j ≥ 11). Hence, for all 2
1
4
j ≤ |`| ≤ 2j and all u ∈ [−hj − x2, hj − x2], there is

uniform positive constant independent of j, ` such that

|φ′u(η, x, u)| ≥ |η1|2j
(
|`| − 2j |f ′(u)| − |η2

η1
|
)

≥ |η1|2j
(
|`| − 1

3
2j/4 − 1

6
2j/4

)
≥ C 2j |`|.

Hence

1

|φ′u(η, x, u)|
≤ C2−j |`|−1. (46)

So, for fixed |x| ≤ 2−(2−∆0)j and η, we define

U(η, x) =

∫ ε

−ε
e2πiφ(η,x,u)

1hj (x+ (f(u), u)) g(u) du
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and observe that 1hj (x+ (f(u), u)) = 1 if and only if |x2 +u2| ≤ hj or −hj −x2 ≤ u ≤ hj −x2. So,

U(η, x) =

∫ hj−x2

−hj−x2

e2πiφ(η,x,u) g(u) du

=
1

2πi
e2πiφ(η,x,hj−x2) 1

φ′u(η, x, u)
g(u)

∣∣∣∣hj−x2

−hj−x2

− 1

2πi

∫ hj−x2

−hj−x2

(e2πiφ(η,x,u))′u
1

φ′u(η, x, u)
g(u) du

= U1(η, x) + U2(η, x) + U3(η, x),

where

U1(η, x) =
1

2πi
e2πiφ(η,x,hj−x2) 1

φ′u(η, x, hj − x2)
g(hj − x2)

U2(η, x) = − 1

2πi
e2πiφ(η,x,−hj−x2) 1

φ′u(η, x,−hj − x2)
g(−hj − x2)

U3(η, x) = − 1

2πi

∫ hj−x2

−hj−x2

e2πiφ(η,x,u)

(
1

φ′u(η, x, u)
g(u)

) ∣∣∣∣′
u

du.

Correspondingly, we may write (44) as γ
(1)
j,`,k = γ

(1,1)
j,`,k + γ

(1,2)
j,`,k + γ

(1,3)
j,`,k , where, for m = 1, 2, 3,

γ
(1,m)
j,`,k = 2

11
2
j

∫
R̂2

W (η1, 2
−j(`η1 + η2))V (η2

η1
) e−2πiηk

∫
B∆0

Um(η, x) W̌ (22jx) dx dη.

We first examine γ
(1,1)
j,`,k . Using Lemma A.1, where L is given by (13), we have that

γ
(1,1)
j,`,k =

2
11
2
j

2πi

∫
R̂2

W (η1, 2
−j(`η1 + η2))V

(
η2

η1

)
e−2πiηk

×
∫
B∆0

e2πiφ(η,x,hj−x2) 1

φ′u(η, x, hj − x2)
g(hj − x2) W̌ (22j(x)) dx dη

=
2

11
2
j

2πi

∫
B∆0

∫
R̂2

L

(
W (η1, 2

−j(`η1 + η2))V
(
η2

η1

) 1

φ′u(η, x, hj − x2)

)

×L−1

(
e
−2πiη·

(
k−(22j(x1+f(hj−x2))+`2jhj ,2

jhj)
))

dη g(hj − x2) W̌ (22jx) dx

=
2

11
2
j

2πi

∫
B∆0

∫
R̂2

L

(
W (η1, 2

−j(`η1 + η2))V
(
η2

η1

) 1

φ′u(η, x, hj − x2)

)
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×
(

1 +
(
k1 + 22j(x1 + f(hj − x2)) + 2j`hj

)2
)−1(

1 +
(
k2 + 2jhj

)2
)−1

× e
−2πiη·

(
k−(22j(x1+f(hj−x2))+`2jhj ,2

jhj)
)
dη g(hj − x2)W̌ (22jx) dx

Using inequality (46) and the fact that 2
1
4
j ≤ |`| ≤ 2j , 1

16 ≤ |η1| ≤ 1
2 , and |f ′(hj − x2)| < 1

32−
3
4
j , a

direct computation shows that there is a uniform constant C, independent of j, `, such that

∣∣∣∣∣∣
(

1

φ′u(η, x, hj − x2)

)′
η1

∣∣∣∣∣∣ =

∣∣∣∣∣∣− 1(
φ′u(η, x, hj − x2)

)2 2j(2jf ′(hj − x2) + `)

∣∣∣∣∣∣
≤ C

2j |2jf ′(hj − x2) + `|
(|`η1|2j)2

≤ C 2−j |`|−1

∣∣∣∣∣∣
(

1

φ′u(η, x, hj − x2)

)′
η2

∣∣∣∣∣∣ =

∣∣∣∣∣∣− 1(
φ′u(η, x, hj − x2)

)2 2j

∣∣∣∣∣∣
≤ C

2j

(|`||η1|2j)2

≤ C 2−j |`|−2

≤ C 2−j |`|−1

The same estimates hold for mixed derivatives. Thus, using these estimates, we have that

∑
2

1
4 j≤|`|≤2j

∑
k∈Z2

|γ(1,1)
j,`,k | =

∑
2

1
4 j≤|`|≤2j

∑
k∈Z2

2
11
2
j

2π

×
∣∣∣∣ ∫

B∆0

∫
R̂2

L

(
W (η1, 2

−j(`η1 + η2))V
(
η2

η1

) 1

φ′u(η, x, hj − x2)

)

×
(

1 +
(
k1 + 22j(x1 + f(hj − x2)) + 2j`hj

)2
)−1

×
(

1 +
(
k2 + 2jhj

)2
)−1

× e
−2πiη·

(
k−(22j(x1+f(hj−x2))+`2jhj ,2

jhj)
)
dη g(hj − x2)W̌ (22jx) dx

∣∣∣∣
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≤ 2
11
2
j C

∫
B∆0

∑
2

1
4 j≤|`|≤2j

|`|−1 2−j

×
∑
k∈Z2

(
1 +

(
k1 + 22j(x1 + f(hj − x2)) + 2j`hj

)2
)−1

×
(

1 +
(
k2 + 2jhj

)2
)−1

× |g(hj − x2)|
∣∣∣W̌ (22jx)

∣∣∣ dx
≤C 2

1
2
j

∑
2

1
4 j≤|`|≤2j

|`|−1

∫
|x|≤2∆0j

|W̌ (x)| dx

Observe that,

∑
2j/4≤|`|≤2j

|`|−1 = 2
∑

2j/4≤`≤2j

`−1 ≤ 2

∫ 2j

2j/4
`−1d` = 2 ln(2j)− 2 ln(2j/4) = 2 ln(23j/4) = ln(2)3j/2.

∑
2

1
4 j≤|`|≤2j

∑
k∈Z2

|γ(1,1)
j,`,k | ≤ C 2

1
2
j

∑
2

1
4 j≤|`|≤2j

|`|−1

∫
|x|≤2∆0j

|W̌ (x)| dx ≤ C j 2
1
2
j = o(2j).

And very similar argument shows that
∑

2
1
4 j≤|`|≤2j

∑
k∈Z2 |γ(1,2)

j,`,k | = o(2j).

Finally, for the analysis of γ
(1,3)
j,`,k , we apply again Lemma A.1 as above. So, we have that

γ
(1,3)
j,`,k =

2
11
2
j

2πi

∫
B∆0

∫ hj−x2

−hj−x2

∫
R̂2

L

(
W (η1, 2

−j(`η1 + η2))V (η2

η1
)

(
g(u)

φ′u(η, x, u)

)′
u

)

×L−1

(
e
−2πiη·

(
k−(22j(x1+f(u))+`2j(x2+u),2j(x2+u))

))
dη du W̌ (22jx) dx. (47)

We observe that [
g(u)

φ′u(η, x, u)

]′
u

= −
φ′′u2(η, x, u) g(u)

(φ′u(η, x, u))2
+

g′(u)

φ′u(η, x, u)
. (48)

As we did before, from the assumptions of the support of V and W in the integral (47), we have

that 1
16 ≤ |η1| ≤ 1

2 and |η2

η1
| ≤ 1 ≤ 1

62j/4. Also, recall that 22j |f ′′(u)| ≤ M
2 22j for some constant

M > 0. Hence, for all 2
1
4
j ≤ |`| ≤ 2j and all u ∈ [−hj − x2, hj − x2], there is uniform positive
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constant C independent of j, ` such that

∣∣∣∣∣φ′′u2(η, x, u) g(u)

(φ′u(η, x, u))2

∣∣∣∣∣ =
|η1|22j |f ′′(u)| |g(u)|(

η1 2j(2jf ′(u) + 2j + η2

η1
)
)2 ≤ C |`|

−2.

Also, from (46) we have that ∣∣∣∣ g′(u)

φ′u(η, x, u)

∣∣∣∣ ≤ C 2−j |`|−1.

Thus, applying these observations in (48), we conclude that, for all 2
1
4
j ≤ |`| ≤ 2j and all u ∈

[−hj − x2, hj − x2], there is a uniform positive constant C independent of j, ` such that

∣∣∣∣∣
[

g(u)

φ′u(η, x, u)

]′
u

∣∣∣∣∣ ≤ C (|`|−2 + 2−j |`|−1) ≤ C |`|−1

and, so, that

∫
R̂

∣∣∣∣∣∣L
(
W (η1, 2

−j(`η1 + η2))V (η2

η1
)

(
g(u)

φ′u(η, x, u)

)′
u

)∣∣∣∣∣∣ dη ≤ C |`|−1.

Using this estimate in (47), we have that

∑
k∈Z2

|γ(1,3)
j,`,k | ≤

2
11
2
j

2π

∫
B∆0

∫ hj−x2

−hj−x2

∫
R̂2

∣∣∣∣∣∣L
(
W (η1, 2

−j(`η1 + η2))V (η2

η1
)

(
g(u)

φ′u(η, x, u)

)′
u

)∣∣∣∣∣∣
×

∑
k∈Z2

(
1 +

(
k1 − x1 − f(u))− `2j(x2 + u)

)2
)−1

×
(

1 +
(
k2 − 2j(x2 + u)

)2
)−1

dη du W̌ (22jx) dx

≤ 2
11
2
jC|`|−1

∫
B∆0

∫ hj−x2

−hj−x2

du W̌ (22jx) dx

≤ 2
3
2
jC|`|−1hj

∫
B∆0

W̌ (x) dx

≤ 2
3
2
jC|`|−1hj
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Thus, ∑
2

1
4 j≤|`|≤2j

∑
k∈Z2

|γ(1,3)
j,`,k | ≤ C 2

3
2
j hj

∑
2

1
4 j≤|`|≤2j

|`|−1 ≤ C j hj 2
3
2
j = o(2j).

To estimate the terms βj,`,k, we start from the inequality (28) derived above.

|βj,`,k| ≤ 23j/2CN

∫ b

a
(1 + (k1 + 22jf(u) + 2j`u)2)−N (1 + (k2 + 2ju)2)−N |g(u)|du.

In the above inequality, we have |f(u)| ≤ 1 for all u ∈ [a, b] ⊂ [−ε, ε], with ε small. For each

j, `, we set

Kj,` = {k ∈ Z2 : |k1| ≤ 22j+2, |k2| ≤ 2j+1}

and

Gj,` = {k ∈ Z2 : (`, k) ∈ Icj}.

It follows from the definition that, if k ∈ Kc
`,j , then either |k1| > 22j+2 or |k2| ≤ 2j+1. So we have

that either |k1 − 22jf(u) − `2j | ≥ 22j or |k2 − 2ju| ≥ 2j for all |`| ≤ 2j (with |f(u)| ≤ 1, |u| ≤ ε).

Therefore, performing similar computations as in Proof of Propositions 5.1, it follows from (28)

that, for any N ∈ N, there is a constant CN such that

∑
k∈Kc

j,`

|βj,`,k| ≤ CN 2
3
2
j 2−(2N−1)j .

Setting N = 2 in the last expression, we have that

∑
k∈Kc

j,`

|βj,`,k| ≤ C 2
3
2
j 2−3j = C 2−

3
2
j . (49)

We can write

∑
(`,k)∈Icj

|βj,`,k|
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≤
∑

(`,k)∈Icj

|αj,`,k|+
∑

(`,k)∈Icj

|γj,`,k|

≤
∑
|`|≤2j

∑
k∈Gj,`

|αj,`,k|+
∑
|`|≤2j

∑
k∈Z2

|γj,`,k|

≤
∑
|`|≤2j

∑
k∈Gj,`

⋂
Kj,`

|αj,`,k|+
∑
|`|≤2j

∑
k∈Gj,`

⋂
Kc
j,`

|αj,`,k|+
∑
|`|≤2j

∑
k∈Z2

|γj,`,k|

≤
∑
|`|≤2j

∑
k∈Gj,`

⋂
Kj,`

|αj,`,k|+
∑
|`|≤2j

∑
k∈Gj,`

⋂
Kc
j,`

|βj,`,k|+ 2
∑
|`|≤2j

∑
k∈Z2

|γj,`,k|.

Since k ∈ Gj,` means (`, k) ∈ Icj and since #(Kj,`) = O(23j), it follows that

∑
k∈Gj,`

⋂
Kj,`

|αj,`,k| ≤ C23j 2−4j

and, hence, ∑
|`|≤2j

∑
k∈Gj,`

⋂
Kj,`

|αj,`,k| ≤ C2j 23j 2−4j = C = o(2j). (50)

Since Gj,`
⋂
Kc
j,` ⊂ Kc

j,`, the estimate (49) gives that

∑
|`|≤2j

∑
k∈Gj,`

⋂
Kc
j,`

|βj,`,k| ≤
∑
|`|≤2j

C 2−
3
2
j ≤ C2−

1
2
j = o(2j). (51)

Finally, since
∑

(`,k)∈Mj
|γj,`,k| = o(2j) by (42), combining this estimate with (50) and (51), we have

proved (43).
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6 Introduction to framelets

In this section we study a signal representation using a special type of function systems called

framelets that are formed by convolving bases (or possibly frames). The idea of framelets, originally

introduced in [64], is to capture both global and local properties of a signal.

Let f = [f0, f1, . . . , fN−1]T ∈ RN and {φi} ⊂ RN and {vj} ⊂ R` be orthonormal bases.

From [64] we have the following expansion

f =
1

`

N∑
i=1

∑̀
j=1

〈f, φi ∗ vj〉φi ∗ vj ,

where the convolution is assumed to be circular convolution.

For some d < N , let Fm = [fm, fm+1, . . . , fm+d−1] ∈ Rd and F = [F0, F1, . . . , FN ]T ∈ RN×d. F

is known as the Hankel Matrix. Also, from [64] we have

F =

N∑
i=1

∑̀
j=1

Ci,jφiv
T
j

where Ci,j = tr(F (φiv
T
j )T ) = 〈f, φi ∗ vj〉. One typical example of the former decomposition of F

is the classical Singular Value Decomposition (SVD) F = UΣV T =
∑rank(F )

i=1 σiφiv
T
i where U =

[φ1 · · ·φrank(F )] and V = [v1 . . . vrank(F )] are orthogonal matrices and Σ = diag(σ1, · · · , σrank(F )) is

a diagonal matrix containing the singular values of F . As shown in [64], the matrix C concentrates

most of its energy (non-zero coefficients) on its upper left corner, so that the representation of F

and therefore of f with {φi ∗ vj} is sparse.

6.1 2D framelet

For a 2D signal we have from [64] the following result whose proof is presented to contrast the

results we present after.

Proposition 6.1. Let f ∈ RN×N , let {v`1,`2 : 1 ≤ `1, `2 ≤ `} ⊂ R`×` be an orthonormal basis

supported inside the square sub-lattice {(`1, `2) : 1 ≤ `1, `2 ≤ `} and let {φj1,j2} ⊂ RN×N be an
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orthonormal global basis. We also assume f is periodic inside a lattice (torus). Then, we can write

f as

f =
1

`2

N∑
j1,j2=1

∑̀
`1,`2=1

〈f, φj1,j2 ∗ v`1,`2〉φj1,j2 ∗ v`1,`2 .

For completeness we introduce the proof given in [64] here.

Proof. Since {φj1,j2} ⊂ RN×N is an orthonormal basis, we have:

f =
N∑

j1,j2=1

〈f, φj1,j2〉φj1,j2 =
N∑

j1,j2=1

tr(fφTj1,j2)φj1,j2 .

tr(fφTj1,j2) = tr

( N∑
m=1

f [n,m]φj1,j2 [r,m]

)

=
N∑

n,m=1

f [n,m]φj1,j2 [n,m]

=

N∑
s1,s2=1

f [s1, s2]φj1,j2 [s1, s2].

Therefore,

f =

N∑
j1,j2=1

tr(fφTj1,j2)φj1,j2 =

N∑
j1,j2=1

( N∑
s1,s2=1

f [s1, s2]φj1,j2 [s1, s2]

)
φj1,j2 .

f [i1, i2] =

N∑
j1,j2=1

( N∑
s1,s2=1

f [s1, s2]φj1,j2 [s1, s2]

)
φj1,j2(i1, i2)

By translation we have:

f [i1 + `1, i2 + `2] =
N∑

j1,j2=1

( N∑
s1,s2=1

f [s1 + `1, s2 + `2]φj1,j2 [s1, s2]

)
φj1,j2 [i1, i2].

68



Even though {v`1,`2} ⊂ R`×`, we can pad the elements to 0 and use these functions on RN×N .

Then we can write

tr(fvTn1,n2
) =

( N∑
n=1

f [m,n]vn1,n2 [r, n]

)
=

N∑
k1,k2=1

f [k1, k2]vn1,n2 [k1, k2]

and we can write

PR`×`f =
∑̀

n1,n2=1

tr(fvTn1,n2
)vn1,n2

=
∑̀

n1,n2=1

( N∑
k1,k2=1

f [k1, k2]vn1,n2 [k1, k2]

)
vn1,n2

Hence, for translations in RN×N , we can write elements of f as

f [s1 + `1, s2 + `2] =
∑̀

n1,n2=1

( N∑
k1,k2=1

f [s1 + k1, s2 + k2]vn1,n2 [k1, k2]

)
vn1,n2 [`1, `2].

Therefore, combining these observations, we have:

f [i1 + `1, i2 + `2] =
N∑

j1,j2=1

( N∑
s1,s2=1

f [s1 + `1, s2 + `2]φj1,j2 [s1, s2]

)
φj1,j2 [i1, i2]

=
N∑

j1,j2=1

( N∑
s1,s2=1

∑̀
n1,n2=1

( N∑
k1,k2=1

f [s1 + k1, s2 + k2]vn1,n2 [k1, k2]

)

×vn1,n2 [`1, `2]φj1,j2 [s1, s2]

)
φj1,j2 [i1, i2]

=

N∑
j1,j2=1

∑̀
n1,n2=1

(
N∑

s1,s2=1

N∑
k1,k2=1

f [s1 + k1, s2 + k2]vn1,n2 [k1, k2]φj1,j2 [s1, s2]

)
×vn1,n2 [`1, `2]φj1,j2 [i1, i2].

We define,

C(j1,j2),(n1,n2) :=

N∑
s1,s2=1

N∑
k1,k2=1

f [s1 + k1, s2 + k2]vn1,n2 [k1, k2]φj1,j2 [s1, s2].
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Observing that

vn1,n2 ∗ φj1,j2 [m1,m2] =
N∑

k1,k2=1

vn1,n2 [k1, k2]φj1,j2 [m1 − k1,m2 − k2],

with a change of indices we have that

〈f, vn1,n2 ∗ φj1,j2〉 =
N∑

m1,m2=1

f [m1,m2]vn1,n2 ∗ φj1,j2 [m1,m2]

=
N∑

m1,m2=1

f [m1,m2]
N∑

k1,k2=1

vn1,n2 [k1, k2]φj1,j2 [m1 − k1,m2 − k2]

=

N∑
s1,s2=1

N∑
k1,k2=1

f [s1 + k1, s2 + k2]vn1,n2 [k1, k2]φj1,j2 [s1, s2]

= C(j1,j2),(n1,n2).

Thus

f [i1 + `1, i2 + `2]

=
N∑

j1,j2=1

∑̀
n1,n2=1

(
N∑

s1,s2=1

N∑
k1,k2=1

f [s1 + k1, s2 + k2]vn1,n2 [k1, k2]φj1,j2 [s1, s2]

)
×vn1,n2 [`1, `2]φj1,j2 [i1, i2]

=
N∑

j1,j2=1

∑̀
n1,n2=1

(
C(j1,j2),(n1,n2)

)
vn1,n2 [`1, `2]φj1,j2 [i1, i2]

=

N∑
j1,j2=1

∑̀
n1,n2=1

〈f, vn1,n2 ∗ φj1,j2〉vn1,n2 [`1, `2]φj1,j2 [i1, i2]

So, for any (I1, I2) in the N ×N lattice, we have

f [I1, I2] =
1

`2

∑
i1+`1=I1

∑
i2+`2=I2

f [i1 + `1, i2 + `2]

=
1

`2

N∑
j1,j2=1

∑̀
n1,n2=1

〈f, vn1,n2 ∗ φj1,j2〉
∑

i1+`1=I1

∑
i2+`2=I2

vn1,n2 [`1, `2]φj1,j2 [i1, i2]
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=
1

`2

N∑
j1,j2=1

∑̀
n1,n2=1

〈f, vn1,n2 ∗ φj1,j2〉vn1,n2 ∗ φj1,j2 [I1, I2].

6.2 Numerical examples

We examine here two numerical examples in 2D. We use two different samples of size 200×200 from

Lena which is widely use in signal processing, Figure 5. We also remark that numerical examples

of energy compactification performed in [64] vectorize images.

Figure 5: From left to right, Lena image, first sample, second sample

First to adapt the images to the 1D model, we vectorize both samples horizontally and vertically.

Then we generate a Hankel Matrix taking patches from each vectorized sample image. We also

take 2D patches and vectorize them horizontally and vertically. This is the Hankel Tensor (see

Section 8). Then we again form another two Hankel matrices from those 2D patches.

Next, we compute the SVD decomposition and extract the 10 highest singular values. We then

truncate those Hankel matrices to those singular values and obtain F̃ =
∑10

i=1 σiφiv
T
i . From here

we now get back the reconstructed sample images, Figures 6 and 7.

Table 1: Error of reconstructed images
L2-error first sample second sample

horizontal 0.16422855726305777 0.11132959026263807
vertical 0.1429457243180916 0.06879351765953533

2D patch horizontal 0.09820448166825274 0.050111964879811316
2D patch vertical 0.09820448166825295 0.050111964879811316

We observe that the L2 − error of the remonstrated images compared to their original ones

71



Figure 6: Reconstruction of first sample

Figure 7: Reconstruction of second sample

72



Figure 8: Singular values of the first sample

Figure 9: Singular values of the second sample

vary according on how the patches are taken and how those patches are vectorized, Table 1. We

remark that we get less error in these experiments when we vectorized 2D patches rather thank

taking patches from a vectorized image. We also observe in Figures 8 and 9 that energy is more

compact when taking 2D patches. This leads us to consider a tensor approach when we represent

2D signal with framelet expansion. This is what motivates the following work.
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7 Tensor approach

Our goal is to extend the above analysis to dimension two using tensor tools. We start by defining

a global and a local basis. For N ∈ N, we let {φi} ⊂ RN×N be be a Parseval frame (our global

orthonormal basis) and, for ` ≤ N , we let {vj} ⊂ R`×` be another Parseval frame (our local

orthonormal basis) supported inside the square sub-lattice {(`1, `2) : 1 ≤ `1, `2 ≤ `}.

Given f ∈ RN×N , we want to write f as

f =
1

`2

∑
i

∑
j

〈f, φi ∗ vj〉φi ∗ vj (52)

where the inner product is given by 〈A,B〉 = tr(ABT ).

We recall that, in the proof of Proposition 1 from appendix B in [64], there is a matrix V =

[v1, · · · , vp] ∈ R`×p such that V V T = I` which is the frame condition. This is equivalent to the

equation

δ(n−m) = I`[n,m] =

p∑
i=1

(viv
T
i )[n,m] =

p∑
i=1

vi[n]vi[m] =

p∑
i=1

vi ⊗ vi[n,m],

where δ(·) is the Kronecker delta and ⊗ is the tensor product introduced in [40]. Notice that,

for any two vectors a, b ∈ RN , we have a ⊗ b ∈ RN×N where (a ⊗ b)[i, j] = aibj . So, we define

a⊗ b ∈ R`×` ⊗ R`×` where a, b ∈ R`×` as

(a⊗ b)[n,m, p, q] = a[n,m]b[p, q].

Remark 7.1. We may also regard the tensor a⊗ b as a linear map a⊗ b : R`×` → R`×` given by

(a⊗ b)(v) = 〈v, a〉b where 〈v, a〉 = tr(vaT ).

Following the approach in [64], we have
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Proposition 7.2. Let {vj : 1 ≤ j ≤ p} ⊂ R`×` be a Parseval frame, i.e., it satisfies

I =

p∑
j=1

vj ⊗ vj

where I is a 4D tensor with entries I[a, b, c, d] = δ(a, b, c, d). Then, for any f ∈ RN×N , we have:

f =
1

`2

p∑
j=1

f ∗ vj ∗ vj(−·) (53)

here we take the convention for v(−·) in (53) as

v(−·)[n,m] = v[−n,−m] = v[N − n,N −m]

assuming periodicity N with respect to both matrix indices

Proof. Direct computations show that

vj ∗ vj(−·)[n1, n2] =

`−1∑
m1,m2=0

vj [n1 +m1, n2 +m2]vj [m1,m2].

p∑
j=1

vj ∗ vj(−·)[n1, n2] =
`−1∑

m1,m2=0

p∑
j=1

vj [n1 +m1, n2 +m2]vj [m1,m2]

=
`−1∑

m1,m2=0

p∑
j=1

vj ⊗ vj [n1 +m1, n2 +m2,m1,m2]

=
`−1∑

m1,m2=0

I[n1 +m1, n2 +m2,m1,m2]

=

`−1∑
m1,m2=0

δ(n1 − n2)

= `2δ(n1 − n2).
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Therefore,

p∑
j=1

f ∗ vj ∗ vj(−·) = f ∗

 p∑
j=1

vj ∗ vj(−·)

 = `2f ∗ δ = `2f.

Using (53), and a Parseval frame {φi : 1 ≤ i ≤ q} ⊂ RN×N , we get

f =
1

`2

p∑
j=1

f ∗ vj ∗ vj(−·)

=
1

`2

p∑
j=1

( q∑
i=1

〈f ∗ vj(−·), φi〉φi
)
∗ vj

=
1

`2

p∑
j=1

q∑
i=1

〈f ∗ vj(−·), φi〉φi ∗ vj .

So, in order to have (52), we need

Proposition 7.3. 〈f ∗ vj(−·), φi〉 = 〈f, φi ∗ vj〉.

Proof. Direct computations show

〈f, φi ∗ vj〉 = tr
(
f(φi ∗ vj)T

)
=

N−1∑
n1,n2=0

f [n1, n2](φi ∗ vj)[n1, n2]

=

N−1∑
n1,n2=0

f [n1, n2]
`−1∑

m1,m2=0

φi[n1 −m1, n2 −m2]vj [m1,m2].

On the other side,

f ∗ vj(−·)[n1, n2] =

N−1∑
m1,m2=0

f [n1 −m1, n2 −m2]vj [N −m1, N −m2]

=

N−1∑
t1,t2=0

f [n1 + t1 −N,n2 + t2 −N ]vj [t1, t2]

=
`−1∑

t1,t2=0

f [n1 + t1, n2 + t2]vj [t1, t2]
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We have used periodicity of the 2D signals in the sense that f(·, n) = f(·, n+N) = f(·, n−N).

So, we get

〈f ∗ vj(−·), φi〉 =

N−1∑
n1,n2=0

(f ∗ vj(−·))[n1, n2]φi[n1, n2]

=
N−1∑

n1,n2=0

( `−1∑
m1,m2=0

f [n1 +m1, n2 +m2]vj [m1,m2]
)
φi[n1, n2]

=
`−1∑

m1,m2=0

( N−1∑
n1,n2=0

f [n1 +m1, n2 +m2]φi[n1, n2]
)
vj [m1,m2]

=

`−1∑
m1,m2=0

( N−1∑
t1,t2=0

f [t1, t2]φi[t1 −m1, t2 −m2]
)
vj [m1,m2]

= 〈f, φi ∗ vj〉.

8 Hankel tensor

We again review material from [64] for the analysis of 1D signals. Let f = [f0, f1, . . . , fN−1]T ∈ RN

and let Fm = [fm, fm+1, . . . , fm+d−1] ∈ Rd, with d < N , so we have the Hankel matrix F =

[F0, F1, . . . , FN ]T ∈ RN×d.

Also, from [64], we have

F =

N∑
i=1

∑̀
j=1

Ci,jφiv
T
j (54)

where {φi} ⊂ RN and {vj} ⊂ R` orthonormal bases and Ci,j = tr(F (φiv
T
j )T ) = 〈f, φi∗vj〉. Observe

that f(n) = 1
`

∑`−1
a=0 F [n− a, a]. Following [64],

f(n) =
1

`

`−1∑
a=0

F [n− a, a]

=
1

`

`−1∑
a=0

( N∑
i=1

∑̀
j=1

Ci,jφiv
T
j

)
[n− a, a]
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=
1

`

N∑
i=1

∑̀
j=1

Ci,j

`−1∑
a=0

(φiv
T
j )[n− a, a]

=
1

`

N∑
i=1

∑̀
j=1

Ci,j

`−1∑
a=0

(φi[n− a]vj [a])

=
1

`

N∑
i=1

∑̀
j=1

Ci,j(φi ∗ vj)[n].

Notice here that we have a tensor product:

φiv
T
j = φi ⊗ vj ∈ RN ⊗ R`

Thus, we see:

(φi ∗ vj)[n] =
`−1∑
a=0

(φiv
T
j )[n− a, a] =

`−1∑
a=0

(φi ⊗ vj)[n− a, a].

Our approach. We now examine how to extend the above machinery to allow patches in 2D.

We consider a 2D signal f ∈ RN×N , and let F [n,m] = f [n : n+ `− 1,m : m+ `− 1] ∈ R`×` be a

patch where 0 ≤ n,m ≤ N − 1 and F ∈ R(N×N) ⊗ R(`×`) be defined as a 4D tensor

F [n,m, i, j] := F [n,m][i, j] = f [n+ i,m+ j]

where 0 ≤ i, j ≤ `− 1. This would be our ”Hankel Tensor”. So, we have:

f [n,m] =
1

`2

`−1∑
i,j=0

F [n− i,m− j, i, j].

From [40] we have the following elementary tensor definition (A⊗B) ∈ RN×N ⊗ R`×`

(A⊗B)[n,m, i, j] := A[n,m]B[i, j]
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where A ∈ RN×N and B ∈ R`×`. Thus, consider the orthonormal bases {v`1,`2 : 1 ≤ `1, `2 ≤ `} ⊂

R`×`, {φj1,j2} ⊂ RN×N which are a particular case of Parseval frames from Section 7. And also

from [40], {φj1,j2 ⊗ v`1,`2} is a basis for RN×N ⊗R`×` which is orthonormal under the induced inner

product defined on RN×N ⊗ R`×` as

〈A,B〉 :=

N−1∑
n1,n2=0

`−1∑
m1,m2=0

A[n1, n2,m1,m2]B[n1, n2,m1,m2]

where A,B ∈ RN×N ⊗ R`×`.

So, we are looking for a similar decomposition of F as in (54), so we have

Proposition 8.1. Let f ∈ RN×N and F its correspondent Hankel tensor, i.e., F [n,m, i, j] =

f [n + i,m + j]. Also, let {v`1,`2 : 1 ≤ `1, `2 ≤ `} ⊂ R`×`, {φj1,j2} ⊂ RN×N be orthonormal bases.

Then we can write

F =
N∑

j1,j2=1

∑̀
`1,`2

Cj1,j2,`1,`2 φj1,j2 ⊗ v`1,`2

where Cj1,j2,`1,`2 = 〈f, φj1,j2 ∗ v`1,`2〉.

Proof. It follows from [40] the fact that {φj1,j2 ⊗ v`1,`2} is an orthonormal basis where

Cj1,j2,`1,`2 = 〈F, φj1,j2 ⊗ v`1,`2〉. Notice that

〈F, φj1,j2 ⊗ v`1,`2〉 =
N−1∑

n1,n2=0

`−1∑
m1,m2=0

F [n1, n2,m1,m2]φj1,j2 ⊗ v`1,`2 [n1, n2,m1,m2]

=
N−1∑

n1,n2=0

`−1∑
m1,m2=0

f [n1 +m1, n2 +m2]φj1,j2 [n1, n2]v`1,`2 [m1,m2]

= 〈f, φj1,j2 ∗ v`1,`2〉

where the last line is very similar to the computations performed in section 7.
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Remark 8.2. Making again another analogy from the Hankel matrix, we see:

f [n,m] =
1

`2

`−1∑
i,j=0

F [n− i,m− j, i, j]

=
1

`2

`−1∑
i,j=0

( N∑
j1,j2=1

∑̀
`1,`2

Cj1,j2,`1,`2φj1,j2 ⊗ v`1,`2
)

[n− i,m− j, i, j]

=
1

`2

N∑
j1,j2=1

∑̀
`1,`2

Cj1,j2,`1,`2

`−1∑
i,j=0

(φj1,j2 ⊗ v`1,`2)[n− i,m− j, i, j]

=
1

`2

N∑
j1,j2=1

∑̀
`1,`2

Cj1,j2,`1,`2

`−1∑
i,j=0

φj1,j2 [n− i,m− j]v`1,`2 [i, j]

=
1

`2

N∑
j1,j2=1

∑̀
`1,`2

Cj1,j2,`1,`2φj1,j2 ∗ v`1,`2 [n,m]

So, we have again obtained an alternative derivation of (52).

From here, we need to find an algorithm to perform some form of SV D decomposition in

the tensor space RN×N ⊗ R`×`. As vector spaces, RN×N ⊗ R`×` is isomorphic to RN×N×`×` but

they are not isomorphic as tensors. As an example, consider the vector spaces U, V,W and the

tensor spaces U ⊗ V ⊗W and U ⊗ (V ⊗W ). They are isomorphic as vector spaces, but the tensor

u⊗(v1⊗w1 +v2⊗w2) has rank 2 in the first tensor space and rank 1 in the second space. A simpler

example, consider the spaces R3×4 which is isomorphic as vector space to R12 via vectorization map

vec. For A ∈ R3×4 with rank two, we see that vec(A) ∈ R12 has rank one since vec(A) may be

considered as a 1× 12 or 12× 1 matrix. This could be one of the reasons why the Hankel matrices

of taking horizontal and vertical vectorization of a 2D signal have different concentration energy

when taking SVD decomposition.

As far as we know, [64] does not consider tensor product in their work.
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8.1 Related and future work

In [62], framelets are used to model a new type of neural networks called deep convolutional framelets

where several layers of framelet expansion are used to encode and decode signals. They again

vectorize 2D signals. In [62], numerical experiments are performed which show deep convolutional

framelets improve over existing deep architectures. This success is attributed to the novel signal

representation of using non-local basis combined with local basis.

In [14], we find an analysis of convolutional arithmetic circuits through tensors. The authors

prove that besides a negligible set, all functions that can be implemented by a deep network

of polynomial size, require exponential size in order to be realized (or even approximated) by a

shallow network. So, the viewpoint of tensor decomposition implies that almost all tensors realized

by Hierarchical Tucker (HT) decomposition, see [40], cannot be efficiently realized by the classic

CP (rank-1) decomposition. Tensors can effectively model these arithmetical circuits because their

pooling operation is just arithmetic multiplication which is bilinear. And again from [40], all tensors

are related to bilinear (multilinear) forms. This is the universal property of tensors.

Our future work will try to model deep convolutional framelets from [62] with tensors in a similar

way as [14] does and try to extract similar properties. This may give new theoretical understanding

of why numerical experiments shown in [62] improve existing deep architectures.
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9 Appendix

Lemma A.1. Let f ∈ C∞c (R2) and L be the differential operator L =
(
I− 1

(2π)2
∂2

∂z2
1

)(
I− 1

(2π)2
∂2

∂z2
2

)
.

For any N ∈ N, we have that

L−N
(
e2πiz·x) = (1 + x2

1)−N (1 + x2
2)−N e2πiz·x. (55)

and ∫
R2

f(z) e2πiz·xdz =

∫
R2

LN
(
f(z)

)
L−N

(
e2πiz·x) dz.

Proof. Writing x = (x1, x2), we have

L
(
e2πi〈z,x〉) =

(
I − 1

(2π)2

∂2

∂z2
1

)(
I − 1

(2π)2

∂2

∂z2
2

)
e2πi〈z,x〉

=
(
I − 1

(2π)2

∂2

∂z2
1

)[
e2πi〈z,x〉 − 1

(2π)2
e2πi〈z,x〉(2πix1)2

]

= (1 + x2
1)
(
I − 1

(2π)2

∂2

∂z2
1

)
e2πi〈z,x〉

= (1 + x2
1)(1 + x2

2)e2πi〈z,x〉.

This implies L−1
(
e2πiz·x) = (1 + x2

1)−1(1 + x2
2)−1 e2πiz·x and, by induction, we obtain (55). Using

these observations, by direct computation we have

∫
R2

L
(
f(z)

)
L−1

(
e2πiz·x) dz

= (1 + x2
1)−1(1 + x2

2)−1

∫
R2

L
(
f(z)

)
e2πiz·x dz

= (1 + x2
1)−1(1 + x2

2)−1

∫
R2

(
f(z)− 1

(2π)2

∂2

∂z2
1

f(z)− 1

(2π)2

∂2

∂z2
2

f(z)

+
1

(2π)4

∂2

∂z2
1

∂2

∂z2
2

f(z)

)
e2πiz·x dz
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Integrating by parts and using the assumption that f is compactly supported, from the last ex-

pression we get:

∫
R2

L
(
f(z)

)
L−1

(
e2πiz·x) dz

= (1 + x2
1)−1(1 + x2

2)−1(1 + x2
1 + x2

2 + x2
1x

2
2)

∫
R2

f(z) e2πiz·x dz

=

∫
R2

f(z) e2πiz·x dz.

The general case N ∈ N follows by induction.

Lemma A.2. Let Mh = {(x1, x2) ∈ R2 : |x2| ≤ h}, where h > 0 and φ ∈ C∞c (R2). Then

(
1̂Mh

∗ φ̂
)
(ξ) =

(
1̂Mh

∗ φ̂
)
(ξ1, ξ2) = 2h

∫
R̂

sinc(2πhη2) φ̂
(
(ξ1, ξ2)− (0, η2)

)
dη2.

Proof. Recall that the distributional Fourier transform of 1Mh
is

1̂Mh
(ξ1, ξ2) = 2h sinc(2πhξ2)δ1(ξ1, ξ2),

where
∫ ∫

R̂2 δ1(x1, x2)φ(x1, x2)dx1dx2 =
∫
R̂ φ(0, x2) dx2. Thus

(
1̂Mh

∗ φ̂
)
(ξ) =

∫∫
R̂2

1̂Mh
(η) φ̂(ξ − η) dη

=

∫∫
R̂2

2h sinc(2πhη2) δ1(η1, η2) φ̂((ξ1, ξ2)− (η1, η2)) dη1 dη2

= 2h

∫
R̂

sinc(2πhη2) φ̂((ξ1, ξ2)− (0, η2)) dη2.

From [35] we have the following

Lemma A.3. Let F ∈ L2(Rn) such that F̌ ∈ C∞c , i.e., Fourier Transform of F is smooth and

compactly supported. Then for each N ∈ N, there is a constant CN > 0 such that for any x

|F (x)| ≤ (1 + |x|2)−N .
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