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Abstract

This dissertation focuses on two prominent graph problems: finding Hamiltonian cycles and

detecting communities in graphs. Both of them are NP-hard problems on general graphs

but can admit e�cient solutions in random graphs. In this dissertation, we present e�cient

distributed algorithms for the above two problems in random graphs.

First, we present fast and e�cient randomized distributed algorithms to find Hamiltonian

cycles in random graphs. In particular, we design and analyze a randomized distributed

algorithm for the classical G(n, p) random graph model, with number of nodes n and p = c lnn
n�

(for any constant 0 < �  1 and for a suitably large constant c > 0), that finds a Hamiltonian

cycle with high probability in Õ(n�) rounds.1 Our algorithm works in the (synchronous)

CONGEST model (i.e., only O(log n)-sized messages are communicated per edge per round)

and its computational cost per node is sublinear (in n) per round and is fully-distributed

(each node uses only o(n) memory and all nodes’ computations are essentially balanced).

Our algorithm improves over the previous best known result in terms of both the running

time as well as the edge sparsity of the graphs where it can succeed; in particular, the denser

the random graph, the smaller is the running time.

Second, we present a distributed algorithm for community detection in the stochastic

block model (also called planted partition model), a widely-studied and canonical random

graph model for community detection and clustering. Designing e↵ective algorithms for

community detection is an important and challenging problem in large-scale graphs, studied

extensively in the literature. Various solutions have been proposed, but many of them are

centralized with expensive procedures (requiring full knowledge of the input graph) and

have a large running time. Our algorithm called CDRW(Community Detection by Random

Walks) is based on random walks, is localized and lightweight, and is easy to implement.

A novel feature of the algorithm is that it uses the concept of local mixing time to identify

the community around a given node. We also present experimental results for our CDRW

algorithm that validate our theoretical analysis.
1The notation Õ hides a polylog(n) factor.
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Chapter 1

Introduction

Graphs [17] appear when there is a set of entities and there are connections or interactions

between them. A graph is represented by G(V,E) where V and E are the set of nodes and

edges, respectively. Nodes represent entities and edges show the interaction between them.

For example, in the Web graph, nodes represent webpages and edges are hyperlinks between

them. In social networks such as Facebook, nodes represent people and edges represent

friendship between them. In collaboration networks such as DBLP, nodes represent authors

and two authors are connected if they coauthor a paper (see Stanford Large Network Dataset

Collection [66]). In some other datasets, data points can be connected based on their location,

interest, or occupations. The edges between nodes can be directed or undirected. A graph

is called directed if all its edges are directed, otherwise it is undirected. In this dissertation,

we consider undirected graphs and propose distributed algorithms to solve two fundamental

graph problems called finding Hamiltonian cycles (see Chapter 3) and detecting communities

(see Chapter 4).

The traditional study of graph algorithms was focused on proposing algorithms to find

solutions to a specific problem on a given graph which usually work on somewhat small

graphs (|V | is relatively small). Indeed, much of those algorithms are centralized and work
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on small general graphs. Nowadays we face large and complex graphs such as the World

Wide Web, social networks like Facebook, and many others. These large scale graphs cannot

be processed fast and e�ciently by using centralized algorithms. Hence, devising distributed

algorithms that run on large general graphs has been a focus in recent years [58, 83, 84].

When the size of a graph is large, we are also interested in the statistical properties

of graphs. Random Graphs serve as models to capture certain properties of real-world

graphs. While not all random graph models capture all properties of real-world graphs

accurately, they serve as useful models that provides insight on the properties of graphs.

Therefore, random graphs have applications in all areas in which real-world networks are

encountered. One important application in computer science is they can be used to design

and rigorously analyze algorithms. Questions such as computing shortest paths, minimum

spanning tree (MST), or Hamiltonian cycle (HC) emerge. HC is the first problem we study

in this dissertation [22]. It is clear that any algorithm designed for general graphs works also

on random graphs while the opposite is not always true. Surprisingly, much of the works on

distributed algorithms are on general graphs, but only a few on random graphs.

Erdős and Rényi introduced random graphs in [37]. They considered the dynamical

process in which we start with the empty graph on n vertices, and at each step of
�
n
2

�
steps

add a random edge from edges not already in the graph. Two most popular random graph

models (both known as Erdős-Rényi random graphs) are G(n,m) and G(n, p). In the former,

the total number of randomly chosen edges is fixed to bem, while in the latter the probability

of choosing an edge is fixed to be p. Random graphs such as G(n, p) and its variants and

generalizations (e.g., the Chung-Lu model [25]) have been used extensively to model and

analyze real-world networks. Here, we focus on the G(n, p) random graph model [37], a

popular and well-studied model of random graphs with a long history in the study of graph

algorithms (see e.g., [16, 47] and the references therein).

One remarkable property of the G(n, p) model is that if p is above a certain threshold,
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then with high probability (whp)1, a Hamiltonian cycle (HC) exists. The Hamiltonian cycle

is a cycle in a graph that passes through each node exactly once. More precisely, it is known

that, with high probability, for n su�ciently large, there exists a HC in G(n, p) if p � c lnn
n ,

for any constant c > 1 [80]; in fact, not one, but it can be shown that an exponential number

of Hamiltonian cycles exist [51, 30] for p above this threshold 2 It is worth noting that the

above threshold for p is (essentially) the same as the threshold for connectivity of a G(n, p)

random graph.

Finding Hamiltonian cycles (or paths) in graphs (networks) is one of the fundamental

graph problems. The solution has many applications such as building a token ring in wireless

networks. Therefore, much research has been done to give an e�cient algorithm to find an

HC in a graph (if one exists). Since it is known that Hamiltonian cycles exists in G(n, p)

random graphs, there has been work in devising e�cient algorithms for finding Hamiltonian

cycles in these graphs. This is a non-trivial task, even though as mentioned earlier that there

are exponential number of HCs present (see Chapter 3).

The second problem we study in this dissertation is community detection [38]. It is a

prominent problem in machine learning, data mining, and network science. In the context

of networks, community structure refers to the occurrence of groups of nodes that are more

densely connected internally than with the rest of the network. Nodes of a community often

show similar properties, functionalities, or behaviors. For example, communities in social

networks show some similar interests, and citation networks form communities by research

topic.

Finding an underlying community structure in a network is important for a number of

reasons:
1Throughout, by “with high probability (whp)”, we mean a probability at least 1�1/nc, for some constant

c > 0, where n is the number of nodes.
2Actually, the “real” threshold for Hamiltonian cycles is p � lnn+ln lnn+!(1)

n , if one wants to show the
existence of HC asymptotically almost surely [16]. We use a slight larger threshold, since we want algorithms
that succeed to find a HC whp.
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• It helps us to visualize large scale graphs. We can show communities as meta-nodes

and then can zoom in and out on its map.

• Identifying community sub-structures within a network can provide insight into how

network function and topology a↵ect each other. Such insight can be useful to improve

some algorithms on graphs such as spectral clustering or rumor spreading.

• Statistical properties of communities often di↵er from the average of the network. We

can highlight important features inside a network by considering those communities’

statistics.

• It can play a role in predicting behavior of dynamic networks of future changes in a

graph. It can also be used in recommendation systems. For example, it is plausible to

recommend people from the same community to become friends if they are not.

The size and density of communities in a network vary. They also can overlap if a node

belongs to multiple communities. For example this happens in social networks where a person

is belonging to multiple communities. A person may belong to a community based on her/his

school group and another one based on her/his business group and so on, or a researcher

is publishing in multiple research topics such as both in computer security and distributed

algorithms. In this dissertation, we study detecting non-overlapping communities. In the

latter example, a researcher will be detected to belong to her/his hottest research topic.

Another factor that makes the task harder is not knowing the number of communities in

the network beforehand. Thus, to find the optimal communities, each possible combination

in the search space should be considered which makes the problem NP-hard in general (see

Chapter 4).
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1.1 The Distributed Computing Model

In distributed computing we have a network of processors (machines) modeled as a graph.

The nodes of the graph model the processors and the edges the communication links between

them. We consider each machine as a processing unit (call it Pi) which has a unique ID and

its own memory. The input data is partitioned on the machines. All the processors run the

same algorithm though they may go di↵erent directions (branches) based on some attributes

such as their id. They run the algorithm on their local data and then exchange data with

each other. This exchange of data lets the algorithm to generate the final global solution. We

consider this local computation free because it is negligible compared to the communication

cost.

There are two ways how processes may proceed compared to each other. They can run in

synchronous or asynchronous mode. In the former, the network has access to a global clock.

All the processes start at the same time and proceed in rounds. A round for a process Pi is

as follows:

• Pi receives messages from its neighbors.

• Pi runs a round of execution of the algorithm locally. The algorithm utilizes its local

and received data during its local computation.

• Pi sends messages to other machines.

In this dissertation we work with synchronous models. In the asynchronous model there

are no rounds and each process proceeds at its own speed. It is a more realistic model but is

di�cult to design and analyze distributed algorithms. Indeed it is easier to design, debug, and

analyze algorithms in a synchronous model. We note that choosing a synchronous model is

not necessarily an impractical or unrealistic approach because there exist mechanisms, called
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synchronizers, that enable one to run any synchronous algorithm on a asynchronous model

with some overhead on the complexity [86].

Bandwidth capacity: We can classify distributed computing models into two categories,

called LOCAL and CONGEST models. They are categorized based on the size of a message

allowed to be exchanged over an edge of the network per round. In the former model, there is

no restriction on the size of a message being exchanged. This is unrealistic because we have

bandwidth limitations in reality. The cost (delay, energy, and time) of message exchange

is not free which means we like to reduce the size of a message as much as we can. In

the CONGEST model a message is limited to be of size O(log n) where n is the number of

processes in the network. We note that log n bits are necessary to encode the ID of processes

in the network of size n. In this dissertation we work with the latter, the CONGEST model.

1.2 Complexity Measures

The e�ciency of distributed algorithms is traditionally measured by their time and message

complexities. Both complexity measures crucially influence the performance of a distributed

algorithm and it is of interest to keep both of them as small as possible. But, usually most

of the distributed algorithms need to make a trade-o↵ for the two metrics.

In the synchronous model, time is measured by the number of clock ticks called rounds.

In other words, a round is the time in which all processing nodes in the network finish all

three steps of receiving messages, local execution, and sending messages. In an asynchronous

model, when running a distributed algorithm, di↵erent nodes might take a di↵erent number

of rounds to finish. In that case, the maximum time (round) needed over all nodes is taken

as the time complexity.

Message complexity is the total amount of messages exchanged by all the processes in the
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network during the execution of the algorithm. Since the exchange of messages is expensive,

it can be the dominant cost for most of the distributed algorithms and can a↵ect the running

time of the algorithm hugely. So it is of interest to keep it as small as possible. In the Congest

model, the size of each message is small (O(log n) bits, where n is the size of network). This is

very important for some applications such as communication networks and Internet of Things

(IOT) where the small size messages mean less energy consumption for communication.

1.3 Random Graphs

The theory of random graphs was founded by Erdős-Rényi [37] after Erdős discovered that

probabilistic methods help studying problems in graph theory. The methods have been

used in calculating an proximate value of some properties with an appropriate probability

distribution. In this dissertation, we work on two type of random graphs called G(n, p) and

G(n, p, q), where n is the number of nodes in the graph. Both p and q are fixed probability

values between 0 and 1. It was proven that when those probabilities are above a specific

threshold, then the random graph is connected whp [37, 13, 16]. We work on connected

random graphs throughout this dissertation.

1.3.1 Erdős-Rényi Random Graphs

The process of generating a G(n, p) random graph starts with an empty graph, having n

isolated vertices. Those n vertices can have at most
�
n
2

�
edges. Each possible edge is selected

and added to the graph with probability p. Indeed, each edges is selected independently

and uniformly at random [37]. Therefore each node, in expectation, has (n � 1)p edges.

G(n, p) (sometime we call them Gnp) graphs have interesting and useful properties and are

a well studied graph model [16, 47] with lots of applications. We utilize some of those
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properties in order to design e�cient algorithms that run on random graphs. For instance,

some important properties such as the connectivity threshold or the diameter based on

values of p are well studied. It was shown that p = logn
n is the connectivity threshold for

random graphs [37, 13, 16]. Chung and Lu [24] showed the diameters of G(n, p) graphs are

almost surely logn
lognp when np!1. It was also shown that G(n, p) random graphs have good

expansion properties [54]. An expander graph is a sparse graph that has strong connectivity

properties. It means every subset of the vertices that is not too large has a large boundary.

Informally, a graph is a good expander if it has low degree and high expansion parameters.

1.3.2 Stochastic Block Models

Another type of random graph we worked on is the Stochastic Block Model (SBM) [52, 1].

It is a random graph model with cluster structures. In this dissertation, we study a special

type of it called the Planted Partition Model (PPM) [21, 33, 20, 29, 19] which is usually used

as a benchmark. It has a separable community structure where the structures or blocks are

the same size. We call it G(n, p, q) or Gnpq. Given the number of partitions, r, nodes are

divided into r parts. Each node exclusively belongs to a single part. We build random graphs

G(n/r, p) on each partition. Then we add edges between each pair of nodes with probability

q if they do not belong to the same partition. In order to have a partition or community

structure, q should be reasonably smaller than p (q ⌧ p). PPM graphs are extensively used

as a canonical model to study clustering and community detection.

1.4 Contributions of this Dissertation

Here we highlight our results for the two problems we studied.

1. We present fast and e�cient distributed algorithms for the fundamental Hamiltonian
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cycle problem in random graphs, G(n, p). Our algorithms finds a HC with high proba-

bility and runs in time significantly faster than the prior work of [67] as well as works

for all ranges of p; in particular, the denser the graph, the faster will be our algorithms.

Our distributed algorithms that run on random graphs are themselves randomized (i.e.,

they make random choices during the course of the algorithm) and hence the high prob-

ability bounds are both with respect to the random input and the random choices of

the algorithm.

Our first distributed algorithm (DHC1) runs on G(n, p) random graphs when p = c lognp
n

and c � 86. It finds a Hamiltonian cycle, if one exists, in time Õ(
p
n) rounds whp. Our

second algorithm (DHC2) works for p = c lnn
n� , for any fixed constant � 2 (0, 1), and

for a suitably large constant c, and runs in truly sublinear time, Õ(n�) rounds. (Our

algorithm will also work for � = 1, with running time Õ(n).) Both algorithms work

in the CONGEST model and are fully distributed, i.e., no node (or a few nodes) does

all the computation (since the memory size of each node is restricted to be o(n). Our

second algorithm (DHC2) is fully-distributed and runs in truly sublinear time, Õ(1p).

We also present a conceptually simpler upcast algorithm in Section 3.4 with the same

running time, but it is not fully-distributed, and does not achieve load-balancing.

2. We present a novel distributed algorithm, called CDRW (Community Detection via

Random Walks) for detecting communities in the PPM model[29].3 Our algorithm is

based on the recently proposed local mixing paradigm [75] (see Section 4.3 for a formal

definition) to detect community structure in sparse (bounded-degree) graphs. Infor-

mally, a local mixing set is one where a random walk started at some node in the set

mixes well with respect to this set. The intuition in using this concept for community

detection is that since a community is well-connected, it has good expansion within

the community and hence a random walk started at a node in the community mixes

3Throughout this paper, we use the terms Stochastic Block Model (SBM) and Planted Partition Model
(PPM) interchangeably.
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well within the community. The notion of “mixes well” is captured by the fact that the

random walk reaches close to the stationary distribution when restricted to the nodes

in the community subset [75]. Since the main tool for this algorithm uses random walks

which are local and lightweight, it is easy to implement this algorithm in a distributed

manner. We will analyze the performance of the algorithm in two distributed comput-

ing models, namely the standard CONGEST model of distributed computing [86] and

the k-machine model [58], which is a model for large-scale distributed computations.

We show that CDRW can be implemented e�ciently in both models (cf. Theorem

25 and Section 4.4.2). The k-machine model implementation is especially suitable for

large-scale graphs and thus can be used in community detection in large SBM graphs.

In particular, we show that the round complexity in the k-machine model (cf. Section

4.4.2) scales quadractically (i.e., k�2) in the number of machines when the graph is

sparse and it scales linearly (i.e., k�1) in general.

As is usual in community detection, a main focus is analyzing the e↵ectiveness of

the algorithm in finding communities. We present a rigorous theoretical analysis that

shows that the CDRW algorithm can accurately identify the communities in the PPM,

which is a popular and widely-studied random graph model for community detection

analysis [2]. A PPM model (cf. Section 4.2) is a parameterized random graph model

which has a built-in community structure. Each community has high expansion within

the community and forms a low conductance subset (and hence relatively fewer edges

go outside the community); the expansion, conductance, and edge density can be

controlled by varying the parameters. CDRW does well when the number of intra-

community edges is much larger than the number of inter-community edges (these are

controlled by the parameters of the model). Our theoretical analysis (cf. Theorem 25

for the precise statement) quantitatively characterizes when CDRW does well vis-a-vis

the parameters of the model. Our results improve over previous distributed algorithms
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that have been proposed for the PPM model ([27]) both in the number of communities

that can be provably detected as well as range of parameters where accurate detection is

possible; they also improve on previous results that provably work only on dense PPM

graphs [62] (details in Section 2). CDRW correctly identifies the communities provided

q = o(p/(r log(n/r))), where r is the number of communities. It takes O(r⇥polylog n)

rounds for CDRW to terminate and hence it is quite fast when r is relatively small.
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Chapter 2

Background

Random graphs have been studied thoroughly, see [16, 43, 44, 4, 76, 93] and references in

them. A typical random graph is called an Erdős-Rény random graph [36]. In the Erdős-

Rényi random graph model with n nodes, also known as the Gnp (or G(n, p)) model, each

of
�
n
2

�
possible edges is present in the graph independently with probability p (see [14] for

definitions and notations in random graphs). The main focus in those works is on the

structure of random graphs. For instance, Chung and Lu [24] considered the diameter of

random graphs for various ranges of p close to the phase transition point for connectivity.

For a disconnected random graph, they considered the largest diameter of its connected

component as the diameter of the graph. Interestingly they showed that when a random

graph is sparse and close to its connectivity threshold (p = logn
n ), its diameter is almost

surely O(log n) when np!1.

Here we only highlight works on the distributed algorithms on random graphs. Although

there is a profound knowledge about the structure of random graphs, there are few works

on the design and analysis algorithms on random graphs [67, 63, 22, 99, 98]. Levy et al. [67]

proposed a distributed algorithm to find Hamiltonian cycle in random graphs in O(n
3
4+✏)
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rounds when p = !(
p
logn
n1/4 ). Krzywdzinski and Rybarczyk [63] proposed a distributed algo-

rithm for coloring a random graph with 18np colors in O(ln ln 1
p) rounds. Chatterjee et al.

[22] proposed an algorithm to find Hamiltonian cycle in a random graph in O(n�) rounds

when p � c logn
n� where c > 1 and 0  �  1. Turau [99] proposed a distributed algorithm

to find a Hamiltonian cycle in random graphs in O(log n) rounds for p = ⌦̃( 1p
n). Notice

that ⌦̃ notation hides poly-logarithmic factors in n. Turau in [98] also proposed an e�cient

distributed algorithm to build a routing structure for publish/subscribe systems in wireless

networks.

In the following two subsections we highlight some of the most relevant related works to

each subsection accordingly.

2.1 Hamiltonian Cycles

A random graph has a Hamiltonian cycle with high probability when it is dense enough (p,

the existence probability of each edge, is big enough) [96, 17]. Pósa in [90] proved that a

large Erdős-Rényi random graph (n!1) has a Hamiltonian cycle with probability close to

1 when p = c logn
n and c > 3. Korshunov [61] improved Pósa’s bound for p by showing that

if a random graph has 1
2n log n + 1

2 log log n + f(n)n edges and f(n) ! 1, then the graph

has a Hamiltonian cycle. Komlós and Szemerédi [60] then completely solved the problem

by showing that a random graph with 1
2n log n + 1

2 log log n + cn edges has a Hamiltonian

cycle with probability exp exp (�2c) when n!1. Indeed they proved that if the number of

edges is big enough, it ensures that there are no vertices of degree less than 2 in the graph.

Let us highlight some prominent sequential algorithms for finding a Hamiltonian cycle in

random graphs. Bollobás et al. [18] suggested a sequential deterministic algorithm to find a

HC in time O(n3+o(1)) with high probability. Angluin and Valiant [7] proposed an algorithm

to find a HC in O(n log2 n) time when the random graph has at least cn log n edges where
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c is a large constant (c � 36). Then Frieze and Haber [42] proposed an algorithm that

succeeds whp in O(n1+o(1)) time when the graph is sparse (m = cn for su�ciently large c).

The restriction is that the minimum degree of nodes should be at least three. Recently Alon

and Krivelevich [5] improved the work in [42] to run in O((1+ o(1))n/p) time when p � 72p
n .

Thomason’s [97] algorithm finds a Hamiltonian path between any two nodes in cnp�1 time

when p � 12
n3 ; it shows such a path does not exist if there is not a Hamiltonian path in the

graph. It is seen that when the random graph gets denser(p gets a bigger value), we get more

e�cient solutions to solve the problem. In other words, the real challenge emerges when the

graph is sparse and as close to its connectivity threshold (p = c logn
n , c > 1) as possible.

There are few distributed algorithms to find HC in random graphs. Frieze [45] suggested

a parallel algorithm which constructs a HC in expected time O((log log n)2) using n log2 n

processes. Later MacKenzie and Stout [69] improved it by proposing a parallel algorithm

which runs in expected time ⇥(log⇤ n) time using n
log⇤ n processes. Levy et al. [67] introduced

a distributed algorithm which runs in O(n3/4+✏) rounds when p = !(
p
log n/n1/4). Our

algorithm [22] runs in O(n�) rounds when p � c logn
n� where c � 86 and 0 < �  1. Turau [99]

proposed a faster algorithm which runs in (log n) rounds when p = ⌦̃(1/
p
n) where ⌦̃ hides

poly-logarithmic factors in n.

2.2 Community Detection

There has been extensive work on community detection in graphs, see, e.g., the surveys

[1, 3, 39, 40]. Here we focus mainly on related works in distributed community detection

and in the SBM, especially the Gnpq model.

Dyer and Frieze [33] show that if p > q then the minimum edge-bisection is the one that

separates the two classes and present an algorithm that gives the bisection in O(n3) expected

time. Jerrum and Sorkin improved this bound for some range of p and q by using simulated
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annealing. Further improvements and more e�cient algorithms were obtained in [29, 77].

We note that all the above algorithms are centralized and based on expensive procedures

such as simulated annealing and spectral graph computations: all of them require the full

knowledge of the graph.

The work of Clementi et al. [27] is notable because they present a distributed protocol

based on the popular Label Propagation approach and prove that, when the ratio p/q is

larger than nb (for an arbitrarily small constant b > 0), the protocol finds the right planted

partition in O(log n) time. Note however that they consider only two communities in their

PPM model. We also note that this ratio can be significantly weaker compared to the ratio

(for identifying all the r communities) derived in our Theorem 25 which is p/q = O(r log(n/r)

where r is the number of communities (which can be much smaller compared to n, the total

number of vertices). Also our algorithm works for any number of communities.

Random walks have been successfully used for graph processing in many ways. Commu-

nity detection algorithms use the statistics of random walks to infer structure of graphs as

clusters or communities. The Netwalk algorithm [101] defined a proximity measure between

neighboring vertices of a graph. Initialized each node as a community, it merges two commu-

nities with the lowest proximity index into a community in iterations. But it is an expensive

method running in O(n3) time complexity. Similarly, Walktrap by Pons and Latapy [89]

defined a distance measure between nodes using random walks. Then they merged similar

nodes into a community in iterations. The logic behind their method is that random walks

get trapped inside densely connected parts of a graph which can capture communities. Their

algorithm is centralized and has an expensive run-time of O(mn2) in worst case.

Some works uses linear dynamics of graphs to perform basic network processing tasks

such as reaching self-stabilizing consensus in faulty distributed systems [12, 79] or Spectral

Partitioning [32, 65, 88]. They work on connected non-bipartite graphs. Becchetti et al.

[10] define averaging dynamics, in which each node updates its value to the average of its
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neighbors, in iterations. They partition a graph into two clusters using the sign of last

updates. Another interesting research by Becchetti et al. [11] used random walks to average

values of two nodes when randomly any two nodes meet and showed that it ends in detecting

communities. The convergence time of the averaging dynamics on a graph is the mixing

time of a random walk [95]. These methods work well on graphs with good expansion [54]

and are slower on sparse cut graphs. The Label Propagation Algorithm (LPA) [91] is another

updating method which converges to detecting communities by applying majority rule. Each

node initially belongs to its own community. At each iteration, each node joins a community

having a majority among its neighbors, applying a tie-breaking policy. Recently Kothapalli et

al. provided a theoretical analysis for its behavior [62] on dense PPM graphs (p = ⌦(1/n1/4)

and q = O(p2)). In comparison, our algorithm works even for the more challenging case of

sparse graphs (p = ⌦(log n/n), i.e., the near the connectivity threshold). A major drawback

of the LPA algorithm is the lack of a convergence guarantee. For example, it can run forever

on a bipartite graph where each part gets a di↵erent label (each community is specified by

a label).

Some other random walk methods use seed node expansion to detect community struc-

tures. Starting from a small set of “seed” nodes (e.g., a single node or a connected cluster

of nodes), they grow a community around the seed set by using a goodness function. They

may use a greedy method [72] or an optimization function [8] to improve. Optimization

techniques are the natural way to search for clusters and communities of graphs. In this

method, a quality function (that captures the “goodness” of clusters) is defined and then its

extreme for an optimal output is searched. For example, Newman and Girvan uses modu-

larity as their optimization function [78]. Their aim is to maximize the modularity function

that results in detecting stronger community structures. The method in [26] grows the size

of community by adding nodes which improve the modularity most; it stops when reaching

a favored community size. Recently Hollocou et al. [53] applied clustering methods to find
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seed nodes and then find communities from those nodes. Some other methods [6, 59, 100]

use a small seed set instead of one node for their detection. Unlike those methods, our

CDRW algorithm uses the local mixing property of a graph [31, 74, 75] to detect community

structure around a seed node.

Although we uses the notion of local mixing time introduced in [75], there are substantial

di↵erences. In [75], the authors consider only the local mixing time which is essentially the

existence of a mixing set of certain size, but not the set of nodes where the random walk

mixes. The computation of the local mixing set is more challenging. A key idea of our work

is to use this notion to identify communities. For this, the algorithm and the approach of

[75] have to be modified substantially.
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Chapter 3

Hamiltonian Cycles

Finding Hamiltonian cycles (or paths) in graphs (networks) is one of the fundamental graph

problems. A Hamiltonian cycle (HC) is a cycle in the graph that passes through each

node exactly once. The decision problem is NP-complete [48] (in fact, it is one of Karp’s

six basic NP-complete problems) and hence unlikely to have a polynomial time algorithm

in the sequential setting. In this dissertation, we focus on the distributed computation of

Hamiltonian cycles (or paths) in a (undirected) graph. In particular, our goal is to find a fast,

e�cient, and fully distributed algorithm for the Hamiltonian cycle problem. By “fast”, we

mean running in a small number of rounds (ideally, sublinear in n, where n is the number of

nodes in the network). By “e�cient”, we mean that only small-sized messages (say, at most

O(log n)-sized messages) are exchanged per edge per round, and the per-round computation

per node should also be small, i.e., sublinear in n. The latter means that the local (i.e.,

“within node”) computation is also e�cient. By “fully-distributed”, we (informally) mean

that no one node (or a small set of nodes) does all the non-trivial (local) computation and

all the local computations are (more or less) balanced (formally we enforce this by assuming

that each node’s memory is limited to o(n)).

Since the HC problem is NP-complete, there is not much hope of achieving a fast and
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e�cient distributed algorithm (even if we allow polynomial time local computation per round

and even without caring whether it is fully-distributed or not) in arbitrary graphs, even if

we allow polynomial number of rounds (since the total local computation time over all nodes

is at most polynomial). However, the problem is reasonable and, yet challenging, when

we consider random graphs, where e�cient sequential algorithms (nearly linear time) for

computing Hamiltonian cycles are known.

Despite the importance of the Hamiltonian cycle problem, there has been only some

previous work in the distributed setting. The work of Das Sarma et al. [94] (see also [35])

showed an important lower bound for the HC problem for general graphs in the CONGEST

model of distributed computing [87] (described in detail in Section 4.2), a standard model

where there is a bandwidth restriction on the edges (typically, only O(log n)-sized messages

are allowed per edge per round, where n is the graph/network size). They showed that any

deterministic algorithm (this was extended to hold even for randomized algorithms in [35])

needs at least ⌦̃(D+
p
n) rounds, whereD is the graph diameter1. Note that this lower bound

holds even if every node’s local computation is free (i.e., there is no restriction on the within

node computation cost in a round — this is the usual assumption in the CONGEST model

[87]). It is important to note that this lower bound is for general graphs; more precisely, it

holds for a family of graphs constructed in a special way.

Somewhat surprisingly, no non-trivial upper bounds are known for the distributed HC

problem in the CONGEST model. A trivial upper bound in the CONGEST model is O(m)

where m is the number of edges of the graph (cf. Section 4.2). It is not known if one can

get a (O(D) + o(n))-round algorithm or even a (O(D) + o(m))-round algorithm for HC in

general graphs, where D is the graph diameter (note that D is a lower bound [94]). In this

dissertation, we show that we can obtain significantly faster (truly sublinear in n) algorithms,

i.e., running in time O(n�) rounds (where 0 < � < 1) in random graphs.

1The notation ⌦̃ hides a 1/polylogn factor.
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We focus on the G(n, p) random graph model [37], a popular and well-studied model of

random graphs with a long history in the study of graph algorithms (see e.g., [16, 47] and

the references therein). Random graphs such as G(n, p) and its variants and generalizations

(e.g., the Chung-Lu model [25]) have been used extensively to model and analyze real-world

networks. In the G(n, p) random graph model, there are n nodes and the probability that

an edge exists between any two nodes is p (independent of other edges). A remarkable

property of the G(n, p) model is that if p is above a certain threshold, then with high

probability (whp)2, a Hamiltonian cycle (HC) exists. More precisely, it is known that, with

high probability, for n su�ciently large, there exists a HC in G(n, p) if p � c lnn
n , for any

constant c > 1 [80]; in fact, not one, but it can be shown that exponential number of

Hamiltonian cycles exist [51, 30] for p above this threshold 3. It is worth noting that the

above threshold for p is (essentially) the same as the threshold for connectivity of a G(n, p)

random graph.

Since it is known that Hamiltonian cycles exists inG(n, p) random graphs, there have been

works on devising e�cient algorithms for finding Hamiltonian cycles in these graphs. This

is a non-trivial task, even though as mentioned earlier that there is an exponential number

of HCs present. Angluin and Valiant [7], in a seminal paper (see also [73]), gave a sequential

algorithm to find a HC in a G(n, p) graph that runs in O(n(log n)2) time, when p � c lnn
n ,

for some su�ciently large constant (say c � 36). This is essentially the best possible as far

as the sequential running time is concerned as it is almost linear. The algorithm of Angluin

and Valiant is randomized. Bollobás, Fenner, and Frieze [18] give a deterministic sequential

algorithm for finding Hamilton cycles in random graphs (in the related G(n,M) random

graph model, which is a uniform distribution over all graphs on n vertices and M edges),

2Throughout, by “with high probability (whp)”, we mean a probability at least 1�1/nc, for some constant
c > 0, where n is the number of nodes.

3Actually, the “real” threshold for Hamiltonian cycles is p � lnn+ln lnn+!(1)
n , if one wants to show the

existence of HC asymptotically almost surely [16]. We use a slight larger threshold, since we want algorithms
that succeed to find a HC whp.
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but the running time is essentially O(n4) and succeeds with high probability (in graphs where

the number of edges is above the threshold of existence of Hamiltonian cycle). In the context

of parallel algorithms, MacKenzie and Stout in [69] proposed a parallel algorithm which uses

O( n
log ⇤n) processes and runs in O(log⇤ n) time. In the distributed setting, the only prior work

we are aware of is the work of Levy et al. [67] which gives a distributed algorithm to find a

HC in O(n
3
4+✏) time when p = !(

p
logn

n
1
4

).

In this dissertation, we propose a fast, e�cient, and fully decentralized (as defined earlier)

distributed algorithm that finds a HC with high probability and runs in time significantly

faster than the prior work of [67] as well as works for all ranges of p; in particular, the denser

the graph, the faster will be our algorithms. Our distributed algorithms that run on random

graphs are themselves randomized (i.e., they make random choices during the course of the

algorithm) and hence the high probability bounds are both with respect to the random input

and the random choices of the algorithm.

We give a brief overview of our results. In Section 3.3, we give two fast (truly sublinear

in n), e�cient and fully decentralized algorithms. The first algorithm is a bit simpler; it

works for p � c lnnp
n and runs in Õ(

p
n) rounds. The second algorithm works for p = c lnn

n� , for

any fixed constant � 2 (0, 1), and for a suitably large constant c, and runs in Õ(n�) rounds.

(Our algorithm will also work for � = 1, with running time Õ(n).) Both algorithms work in

the CONGEST model and are fully distributed, i.e., no node (or a few nodes) does all the

computation (since the memory size of each node is restricted to be o(n) — cf. Section 4.2).

In contrast, in Section 3.4, we present a (conceptually) simple upcast algorithm that uses a

fairly generic “centralized” approach. In this algorithm, each node samples ⇥(log n) random

edges among all its incident edges and upcasts it to a central node (which is the root of a

Breadth First Tree) which locally computes a HC and then broadcasts the HC edges back

to the respective nodes by downcast. Note that, in this approach, all the non-trivial (local)

computation is done at a central node and hence the algorithm is not fully distributed (some
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node needs at least ⌦(n) memory), although the algorithm works in the CONGEST model.

We show that this algorithm also runs in time Õ(n�) rounds for p = c lnn
n� .

3.1 Distributed Computing Model

We model the communication network as an undirected, unweighted, connected graph G =

(V,E), where |V | = n and |E| = m. Every node has limited initial knowledge. Specifically,

we assume that each node is associated with a distinct identity number (e.g., its IP address).

At the beginning of the computation, each node v accepts as input its own identity number

and the identity numbers of its neighbors in G. We also assume that the number of nodes

and edges, i.e. n and m (respectively), are given as inputs. (In any case, nodes can compute

them easily through broadcast in O(D), where D is the network diameter.) The nodes are

only allowed to communicate through the edges of the graph G. We assume that the commu-

nication occurs in synchronous rounds. (In particular, all the nodes wake up simultaneously

at the beginning of round 1, and from this point on the nodes always know the number of

the current round.) We will use only small-sized messages. In particular, in each round, each

node v is allowed to send a message of size O(log n) bits through each edge e = (v, u) that

is adjacent to v.4 The message will arrive at u at the end of the current round. This is a

widely used standard model known as the CONGEST model to study distributed algorithms

(e.g., see [87, 82]) and captures the bandwidth constraints inherent in real-world computer

networks.

We focus on minimizing the running time, i.e., the number of rounds of distributed

communication. Note that the computation that is performed by the nodes locally is “free”,

i.e., it does not a↵ect the number of rounds; however, as mentioned earlier, we will only

4Our algorithms can be easily generalized if B bits are allowed (for any pre-specified parameter B) to be
sent through each edge in a round. Typically, as assumed here, B = O(log n), which is the number of bits
needed to send a node id in an n-node network.
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perform sublinear (in n) cost computation locally at any node.

We note that in the CONGEST model, it is rather trivial to solve a problem in O(m)

rounds, where m is the number of edges in the network, since the entire topology (all the

edges) can be collected at one node and the problem solved locally. The goal is to design

faster algorithms. Our algorithms work in the CONGEST model of distributed computing.

We note that our bounds are non-trivial in the CONGEST model.5

In Section 3.3, we consider fully-distributed algorithms, where there is a restriction on the

amount of memory each node can have: each node is allowed only o(n) memory. This restric-

tion, in e↵ect, rules out “centralized” approaches such as collecting global information at one

particular node and then locally solving the problem. In our fully-distributed algorithms,

each node’s (local) computation is more or less balanced. Fully-distributed algorithms are

quite useful, since they can be be e�ciently converted to work in other distributed models

for Big Data computing such as the k-machine model [58] as well as MapReduce [56].

In Section 3.4, we consider algorithms where we don’t have any restriction on the memory

size at any node nor do we restrict the local computation cost to be sublinear (note that

this restriction turns out to be not so important for the bounds that we obtain, as one

can run sublinear cost local computation over a sublinear number of rounds). However, the

algorithms still follow the CONGEST model (i.e., there is a bandwidth restriction).

We make a note on the output of our distributed algorithms: at the end, each node will

know which of its incident edges belong to the HC (exactly two of them).

5In contrast, in the LOCAL model — where there is no bandwidth constraint — all problems can be
trivially solved in O(D) rounds by collecting all the topological information at one node.
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3.2 Other Related Work

There are several algorithms for finding a HC in random graphs (both G(n, p) and its closely

related variant G(n,M) random graphs), e.g., we refer to the survey due to Frieze [46].

There also have been works on parallel algorithms for finding Hamiltonian cycles in G(n, p)

random graphs. Frieze [45] proposed two algorithms for EREW-PRAM machines: the first

uses O(n log n) processors and runs in O(log2 n) time, while the second one uses O(n log2 n)

processors and runs ins O((log log n)2) time. MacKenzie and Stout [69] gave an algorithm

for Arbitrary CRCW-PRAM machines that operates in O(log⇤ n) average time and requires

O(n/ log⇤ n) processors. All these parallel algorithms assume p is a constant.

With regard to distributed algorithms, as mentioned earlier, the only prior work we are

aware of is the work of Levy et al. [67] which gives a fully distributed algorithm to find a HC

in O(n
3
4+✏) time when p = !(

p
logn

n
1
4

). Their algorithm (based on the algorithm of MacKenzie

and Stout [69]) works in three phases: finding an initial cycle, finding
p
n disjoint paths,

and finally patching paths into the cycle to build the HC. Our fully distributed algorithms

(Section 3.3) follow a di↵erent and a simpler approach and are significantly faster, while

working for all ranges of p above the HC threshold.

3.3 Fully-Distributed Algorithms

In this section, we give two fast, e�cient, fully-distributed algorithms for the Hamiltonian

cycle problem. The first algorithm, in Section 3.3.1, is a distributed algorithm for the case of

p = c lnnp
n (throughout, c will be a large enough constant, say bigger than 54) and runs in time

Õ(
p
n) rounds w.h.p. (In fact, the algorithm will work for any p � c lnnp

n , but for simplicity we

will fix p = c lnnp
n .). This algorithm works in the CONGEST model and is fully distributed,

i.e., each node’s local computation memory is o(n) and the computation cost per node per
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round is also o(n). This algorithm is somewhat simpler, contains some of the main ideas,

and is also useful in understanding the second algorithm. The second algorithm, in Section

3.3.2, is more general, works for p = c lnn
n� , for any 0 < �  1 and runs in Õ(n�) rounds. Both

algorithms have two phases; while the first phase is similar for both algorithms, the second

phase for the second algorithm is more involved.

Before we go into the details of our algorithms, we will give the main intuition. Our

algorithm is inspired by the well-studied rotation algorithm (rotation is a simple operation

described in Section 3.3.1) that was used by Angluin and Valiant to develop a fast sequential

algorithm for the G(n, p) random graph for p � c lnn
n (for some suitably large constant c,

say c > 36). However, this algorithm seems inherently sequential, since it tries to extend

the cycle one edge at a time; hence the running time under this approach is at least ⌦(n).

To get a sublinear time, we follow a two-phase strategy which works in somewhat denser

graphs, i.e., p = c lnn
n� , for any 0 < � < 1. In Phase 1, we partition the graph into disjoint

random subgraphs each of size (approximately) ⇥(n�) (there will be ⇥(n1��) subgraphs).

The intuition behind this partition is that each subgraph will have a HC of its own (of

length equal to the size of the subgraph) whp, since it satisfies the threshold for Hamiltonian

cycle (note that p = c lnn
n� ). We use a distributed implementation of the rotation algorithm

to find the Hamiltonian (sub)cycles independently in each of subgraphs — this takes time

essentially linear in the size of the subgraphs, i.e., Õ(n�). In Phase 2, we stitch the cycles

without taking too much additional time, i.e., in Õ(n�) time. When p = c lnnp
n , the case is

special, since the number of subgraphs and the size of each subgraph are balanced, so the

stitching can be done by essentially implementing a modification of Phase 1 as follows. Take

two adjacent nodes from each subgraph cycle and find a Hamiltonian cycle between the

chosen nodes (this has to be done carefully, so that it can be combined with the subgraph

cycles to form a HC over all the nodes). Since p = c lnnp
n , and the number of chosen nodes

is ⇥(
p
n), whp a HC exists between the chosen nodes and we can find it using a strategy
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similar to Phase 1. For general p, we note that we cannot just simply stitch as described

above, since p is much smaller than the needed threshold. Hence, we do the stitching in

stages, as described in Section 3.3.2.

3.3.1 The Algorithm for p = c lnnp
n

Our first algorithm, called the Distributed Hamiltonian Cycle Algorithm 1 (DHC1), works

for a random graph G(n, p = c lnnp
n ), where c is a suitably large constant.

3.3.1.1 High-Level Description of DHC1

Given a random graph G(n, c lnnp
n ), our algorithm works in two phases. In Phase 1, the graph

is partitioned into
p
n subgraphs Gi, each of ⇥(

p
n) nodes. Then each subgraph constructs

its own Hamiltonian cycle Ci, independently in parallel. In Phase 2, the algorithm finds a

Hamiltonian cycle connecting C1, · · · , Cp
n. This is done as follows: for each Ci, pick only

one edge ei = (vi, ui), call this a hypernode (edges inside oval shapes in Figure 3.1). Consider

the graph G0 of
p
n hypernodes ei, a hypernode uses ui as the incoming port, and vi as the

outgoing port. In other words, we only look at the edges (vj, ui) and (vi, uj) for any pair

ei 6= ej. The algorithm constructs a Hamiltonian cycle in G0 which is easy to see completes

the Hamiltonian cycle in G (see Figure 3.1).

In Phase 1 (as well as in Phase 2, for constructing a HC in G0), the cycles are constructed

locally: each node becomes aware of its predecessor and successor after the construction. For

convenience, each node also maintains an index of its position in the cycle. The resulting

Hamiltonian cycle is hierarchical. Each node maintains its index subcyc in the subgraph

cycle. In Phase 2, if a node is part of a hypernode, it maintains an extra index hypcyc in

the cycle constructed in Phase 2. When traversing the cycle, if a node has a hypcyc link,

follow it, otherwise follow the subcyc link.
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(a) Phase1 (b) Phase2

Figure 3.1: Algorithm DHC1 builds HC in two phases. Phase 1 constructs
p
n sub HCs in

parallel. Phase 2 combines all sub HCs by building a HC over the graph of hyper nodes.

We next describe the distributed algorithm for constructing a HC in the
p
n-sized sub-

graph. This distributed algorithm which we call Distributed Rotation Algorithm (DRA) is

based on the well-known randomized algorithm for finding a Hamiltonian cycle that uses so

called rotation steps [73] (see Figure 3.2).

v1 v2 vj vj+1 vh�1 vh v1 v2 vj vh vh�1 vj+1

Figure 3.2: Path Rotation: Extending from the head node (vh), we encounter a node (vj)
on the path. The right side shows the rotated path.

3.3.1.2 The DRA Algorithm

Consider a graph G with n nodes. We construct a Hamiltonian path v1, v2, · · · , vn; if there

is an edge connecting vn and v1, then we have a Hamiltonian cycle. We will grow the path

sequentially by a simple randomized algorithm. For a path v1, · · · , vh, let vh be the head.
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Algorithm 1 Distributed Rotation Algorithm (DRA) Algorithm

1: function DRA(G(V,E), cycindex) . code for each node v 2 V , use cycindex for path
index

2: Init
3: v.unused all edges to neighbors
4: v.cycindex 0
5: only one v becomes head, v.cycindex 1

6: while v.unused 6= ? do
7: if v is head then
8: (v, u) random edge from v.unused
9: v.unused v.unused� {(v, u)}
10: send to u: progress(pos = v.cycindex)

11: OnReceive message progress(pos)
12: if pos = |V | and v.cycindex = 1 then return Success
13: v.unused v.unused� {(sender, v)}
14: if v.cycindex = 0 then . first time visiting v
15: become head: v.cycindex pos+ 1
16: else . v is already on the path
17: broadcast: rotation(h = pos, j = v.cycindex)

18: OnReceive message rotation(h, j)
19: if j < v.cycindex  h then
20: v.cycindex h+ j + 1� v.cycindex
21: if v.cycindex = h then
22: v becomes head

return

Initially, we choose a random v1 which is also the initial head. The head picks a random

edge (vh, u), say, which has not previously been used.

If u 62 {v1, · · · , vh}, add node u to the path and set it as the new head. If u is some vj,

then we rotate the path: v1, · · · , vj, vj+1, · · · , vh becomes v1, · · · , vj, vh, vh�1, · · · , vj+1 and

vj+1 is the new head. The rotation can be implemented by just a renumbering: for vi, where

j + 1  i  h, reassign i  h + j + 1 � i. In a distributed setting, we can implement an

e�cient procedure: vj broadcasts the values h and j then every node can renumber itself

accordingly. Notice that the required time for broadcast is the diameter D of the graph, and

we will give bounds for D in the analysis.

The Distributed Rotation Algorithm (DRA) is given in Algorithm 1, where we initialize
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Algorithm 2 Distributed Hamiltonian Cycle Algorithm 1 (DHC1)

1: function DHC1(G(V,E))
2: Init
3: n |V |
4: foreach v 2 V :
5: v.subcyc 0, v.hypcyc 0

6: Phase 1
7: v.color  random[1, · · · ,

p
n]

8: Let Gi(Vi, Ei) be the subgraph with nodes in color i
9: foreach Gi:
10: Ci  DRA(Gi, cycindex = subcyc)

11: Phase 2
12: foreach Ci:
13: pick a random ui 2 Ci

14: vi  predecessor(ui)
15: hypernodei  [ui, vi]
16: G0: graph of all hypernodei, edges: all pairs (vj, uk), j 6= k
17: C 0  DRA(G0, cycindex = hypcyc)

18: return

the algorithm by assigning any one node to be the head. The DHC1 algorithm pseudocode

is given in Algorithm 2. Notice that we initialize 2 position indexes for each node, and

construct the (overall) Hamiltonian cycle by multiple calls to Algorithm 1.

3.3.1.3 Analysis

We first state the main theorem, which gives the probability of success and the expected

runtime of the DHC1 algorithm.

Theorem 1. For a G(n, p) with p = c lnnp
n with c � 86, the DHC1 algorithm successfully

builds a Hamiltonian cycle with probability (1�O( 1n)), in O(
p
n ln2 n

ln lnn) rounds.

The next theorem describes the performance of the Distributed Rotation Algorithm

(DRA), a key subroutine of the DHC1 algorithm. This result will be used in both Phase

1 and Phase 2 of DHC1 to bound its runtime. To simplify the analysis, we will state the

run time in this theorem in terms of the number of steps, where each step is one rotation or
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growing the path by one node. For the moment, we ignore the cost of broadcast, which we

will later account for in the main theorem.

Theorem 2. Given a G(n, p) graph where p � 86 lnn
n , the DRA algorithm constructs a

Hamiltonian Cycle in 7n lnn steps with probability of success 1�O( 1
n3 ).

Proof. We follow the approach as described in [73] which we refer to for more details. The

main idea is to relate the algorithm to a coupon collector process, where the goal is to

collect n di↵erent coupons and in each step the probability of collecting a particular coupon

is 1/n (independent of other coupons) and it is known that all coupons can be collected

in O(n lnn) steps whp. Here, the n coupons represent the n nodes and collecting all the

coupons is analogous to building a HC. Since the rotation algorithm does not give uniform

1/n probability, to apply the coupon collector model, we relax the analysis as follows.

We consider a relaxed algorithm such that every node has equal probability of 1
n to be

chosen in every step of growing the path (this relaxation is described in [73]). Note that,

in fact, the algorithm is more e�cient in choosing a new node. We will not restate all the

details here, except for the key technique. Remember that the edge probability is p, and

this implies a dependency between two nodes. Under the relaxed algorithm, let each node

has a list of edges, called “unused” edges, which is selected independently at random, with

probability q. The technical part is how to convert p to q, such that the “unused” edges are

a subset of the true edges. All the subtleties can be found in [73], for convenience, we cite

q here: q = 1 �
p
1� p � p/2. We are now ready for the proof, where we want to improve

the analysis of [73]. In particular, by allowing a larger runtime, but still in O(n lnn), we can

reduce the failure probability to O(1/n3). This technique can be extended to achieve failure

probability in O(1/n↵), with a given constant ↵.

The relaxed algorithm has two scenarios of failure:

• E1: The algorithm runs for 7n lnn steps while no unused edges in any vertex become
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empty, and fails to construct a Hamiltonian cycle.

• E2: At least one vertex runs out of unused edges during 7n lnn steps.

For event E1, equal probability of 1/n yields that the probability of not seeing a node after

4n lnn steps is ✓
1� 1

n

◆4n lnn

 1

n4
.

Using a union bound, the probability of failure to meet all n nodes after 4n lnn steps is

O
�

1
n3

�
.

Now, in order to close the cycle, the head needs to visit the tail, which happens with

probability 1
n . After 3n lnn steps, the probability of failure to complete the cycle is at most:

✓
1� 1

n

◆3n lnn

 1

n3
.

In total, Pr(E1)  2
n3 = O

�
1
n3

�
.

For event E2, we break it into two sub events:

• E2.1: At least 21 lnn edges are removed from at least one node during 7n lnn steps.

• E2.2: At least one node has fewer than 21 lnn edges in its initial unused list.

Consider E2.1 and look at a node v. Let X be the number of edges removed at v during

7n lnn steps. We have E[X] = 1
n ⇤ 7n lnn = 7 lnn. Using Cherno↵’s bound,

Pr(X � 21 lnn)) = Pr(X � (1 + 2)7 lnn)


✓
e2

33

◆7 lnn


✓

1

e4/7

◆7 lnn

= O

✓
1

n4

◆
.

Using a union bound, Pr(E2.1) = O
�

1
n3

�
.
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Consider E2.2. Let Y be the initial number of edges in the unused edges list of a node.

We have E[Y ] = q(n� 1) � (43 lnn
n )(n� 1) � 42 lnn. Using Cherno↵’s bound:

Pr(Y  21 lnn) = Pr(Y  (1� 1

2
)42 lnn)

 exp

 
�
�
1
2

�2
42 lnn

2

!
= O

✓
1

n4

◆
.

Using a union bound for n nodes, Pr(E2.2) = O
�

1
n3

�
.

Union over the failure events, the failure probability is less than: Pr(E1) + Pr(E2.1) +

Pr(E2.2) = O( 4
n3 ).

Having analyzed the DRA algorithm, we return to the discussion of our DHC1 algorithm.

Analysis of Phase 1: Each subgraph Gi uses the DRA algorithm to independently

construct (in parallel) its Hamiltonian cycle Ci. Because each subgraph performs the algo-

rithm independently, this phase is fully parallelized, and the expected runtime will be the

expected runtime of the largest subgraph. For the failure probability, we can simply use a

union bound. We state the following result for Phase 1.

Lemma 3. For a G(n, p) with p � c lnnp
n where c � 86, Phase 1 of the algorithm succeeds

with probability 1�O(1/n), in O(
p
n lnn) steps.

To prove Lemma 3, we will show that each partition has a size of ⇥(
p
n) and is su�ciently

dense for the success of the DRA algorithm. In particular, we introduce the following:

Definition 1. Let A be the event that all partitions have size a
p
n, where a 2 [12 ,

3
2 ].

Lemma 4. DHC1 algorithm in Phase 1 (line 5) partitions nodes such that event A happens

with probability at least 1�O( 1n).

Proof. Consider any single color. Let X be a random variable representing the number of

nodes with that color. Let Xi, i = 1, · · · , n be indicator random variables of values 0, 1:
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Xi = 1 if node i chooses that color, Xi = 0 otherwise. By linearity of expectation, we have

E[X] = E[
P

Xi] =
P

E[Xi] = n 1p
n =
p
n.

In order to show that X is concentrated around its expectation, 1
2E[X]  X  3

2E[X],

we apply Cherno↵’s bound:

Pr(|X �
p
n| � 1

2

p
n)  2e

�( 12 )2
p
n

3 = 2e
�
p
n

12 .

With
p
n partitions, by union bound, we have:

Pr(¬A) 
p
n⇥ 2e

�
p
n

12 = O

✓
1

n

◆
.

Lemma 5. When event A happens, Phase 1 succeeds with probability 1�O( 1n).

Proof. By Lemma 4, each partition has size of a
p
n, where 1

2  a  3
2 . Consider a partition

with n0 vertices as a random graph with probability p0. It is easy to show that p0 � 86 lnn0/n0,

as follows. The probability for the presence of an edge in this partition is the same as in the

original graph. We have:

p0 = p � 86
lnnp
n

= 86
ln n02

a2

n0

a

= 86a
2 lnn0 � ln a2

n0 .

When 1/2  a < 1, then p0 � 86a2 lnn0

n0 � 86 lnn0

n0 .

When 1  a  3/2, then p0 � 86a2 lnn0

2an0 = 86 lnn0

n0 , using the fact that x � y > x
2z , for x

su�ciently large and small constants y, z such that z > 1.

Applying Theorem 2, the probability of failing for this partition is O( 1
(
p
n)3 ). Using a

union bound, the probability of failure in Phase 1 is at most:
p
n⇥O( 1

(
p
n)3 ) = O( 1n).

Proof of Lemma 3. By Lemma 5 and Lemma 4, the probability of failure for Phase 1 of is

O( 1n).
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For the runtime of this phase, we apply Theorem 2. Consider a partition of size a
p
n, the

runtime is 7a
p
n ln(a

p
n). Each partition executes Algorithm 1 in parallel, the runtime is

dominated by the largest partition. Since a  3
2 , the runtime of Phase 1 is O(

p
n lnn).

Analysis of Phase 2: In this phase, we apply the DRA algorithm on the G0 graph of

hypernodes. We only need to show that G0 is dense enough to apply Theorem 2. We have

the following lemma.

Lemma 6. For a G(n, p) with p � c lnnp
n where c � 86, Phase 2 of the DHC1 algorithm

succeeds with probability O
⇣
1� 1

n
3
2

⌘
, in O(

p
n lnn) steps.

Proof. The graph G0 constructed according to the algorithm is a random graph with n0 =
p
n

and the edge probability p0. Consider a pair (ei = [vi, ui], ej = [vj, uj]) of hypernodes; by

construction, the probability to have an edge between them is p0 = 1� (1� p)2 � p, where

p is the probability for an edge between two nodes in the original G graph.

p0 � p � 86
lnnp
n

> 86
lnn0

n0 .

Applying Theorem 2 this phase succeeds with probability O
⇣
1� 1

n
3
2

⌘
in O(

p
n lnn) steps.

Proof of Theorem 1. The proof of the main theorem then follows trivially, by Lemma 3 and

Lemma 6. The probability of success is:

O

✓
1� 1

n

◆
O

✓
1� 1

n3/2

◆
= O

✓
1� 1

n

◆
.

The number of steps in each phase is: O(
p
n lnn). In the worst case, consider we have

broadcast in every step, then, the number of rounds is the number of steps multiplied by

O(D) where D is the diameter of the graph executing the DRA algorithm. In both Phase 1

and Phase 2, the graphs are random graphs under the model G(n0, p0) where p0 � 86 lnn0/n0,

and n0 = ⇥(
p
n). By [24], the diameter of these graphs is ⇥( lnn0

ln lnn0 ) = ⇥( lnn
ln lnn).
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Therefore, the number of rounds is bounded by:

O

✓p
n
(lnn)2

ln lnn

◆
.

3.3.2 The Algorithm for p = c lnn
n�

We proved that for a G(n, p) with p = c lnnp
n , the DHC1 algorithm 2 finds a Hamiltonian

cycle in Õ(
p
n) times. It is natural to ask the question: what is the performance on sparser

graphs? Consider a G(n, p) random graph where p = O( c lnn
n� ), for any � 2 (0, 1). If we

divide the graph into n1�� partitions, each of size n�, then Phase 1 of the DHC1 algorithm

will work. However, Phase 2 will not, since the graph of hypernodes is too sparse, under the

threshold required for the presence of an Hamiltonian cycle in Phase 2.

We present a general Algorithm 3 called DHC2 that finds a Hamiltonian cycle in random

graphs G(n, p) where p = O( c lnn
n� ), where c is a suitably large constant. This algorithm

also has two phases. Phase 1 is essentially a generalization of Phase 1 of DHC1, with n1��

partitions. In Phase 2 of DHC2, we recursively merge pairs of two disjoint cycles (in parallel)

until the final cycle is formed. Figure 3.3 depicts these merging steps. It follows that the

algorithm constructs the final Hamiltonian cycle if it always successes in merging. We will

show that this probability is very high. But let’s first describe the merging procedure.

To merge the cycles, we define a rule for pairing them, then describe the merging by

finding a “bridge” between a pair of two cycles, as explained below. Let’s have the cycles

indexed by colors: HC1, HC2, ..., HCn1�� . The pairing rule is to match two consecutive

cycles, from left to right: (HC1, HC2), · · · , (HC2k+1, HC2k+2), · · · , at most one cycle will

be left out. Each pair merges independently in parallel, then every node (thus every cycle,

including the one left out), updates its respective color: color  dcolor/2e. Therefore, the

next merge step can progress with the same pairing rule, and every cycle is aware of its pair in

35



Algorithm 3 Distributed Hamiltonian Cycle Algorithm 2 (DHC2). Code for v 2 G(V,E).

1: Phase 1
2: Run phase 1 of algorithm 2, using n1�� colors

3: Phase 2
4: for i = 1 · · · dlog n1��e do
5: if v.color is odd then . v is an active node
6: send message verify(succ(v)) to all its neighbors with color v.color + 1
7: OnReceive [{verified(u, u0)}
8: Select the smallest (u, u0), construct candidate bridge: candidate  

((v, u0), (u, succ(v)))
9: Broadcast candidate within v’s partition
10: if candidate = min([candidates) then
11: Send message buildBridge to u
12: Broadcast Renumbring inside HC

13: OnReceive message verify(u) . only passive nodes receive this type message
14: ask succ(v) and pred(v) if they have u as their (v.color � 1) neighbor
15: if succ(v) (or pred(v)) confirmed, set u0 to succ(v) (or pred(v)) , reply to

sender: verified(v, u0)

16: OnReceive message buildBridge
17: Broadcast Renumbring HC

18: v.color  dv.color/2e

all steps. It is clear that we need dlog(n1��)e = O(log(n)) merge steps. To merge two cycles,

we need to pick one “bridge” between them. Let ei = (vi, ui) 2 HCi and ej = (vj, uj) 2 HCj

where (HCi, HCj) is a pair. If there are two edges (vi, vj) and (ui, uj) or two edges (vi, uj)

and (ui, vj) in G(n, p), then we say (ei, ej) is a bridge of (HCi, HCj). The idea is, that each

node can check if it is part of a bridge, in parallel. Then within HCi and HCj, each node

broadcasts the discovered bridge. This is done so as to choose one unique bridge per pair

(since there may be more than one bridge per pair). Each cycle chooses the smallest bridge

(say, based on the IDs of the bridge nodes). Once a bridge is chosen, for example, merging is

done by each node independently updating its cycindex, and updating color (as mentioned

above) for the next merging step. For e�ciency, in a pair, only the cycle with smaller color

will initiate the process, as shown in Algorithm 3.

Also, to avoid cluttering Algorithm 3, we did not specify the renumbering process. This
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Merge step 1

Merge step 2

Merge step k

Figure 3.3: Phase 2 of the DHC2 algorithm: Merging pairs of cycles in a tree-like fashion.
There are O(log n) merge steps; in each step, all HC pairs merge in parallel. The figure also
shows how two cycles are merged into a larger cycle by choosing two bridge edges.

is trivial, given the bridge and the size of the two cycles. Initially, each cycle performs a

broadcast, so that its member nodes get to know the cycle size. Then, this information is

attached to the bridge building message. From here onward, every node can keep track of

the size of the cycle that it is part of until the merging process is finished.

Lemma 7. Phase 1 of the DHC2 algorithm succeeds in O(n� lnn) steps, with probability at

least 1�O( 1n).

Proof. Similar to Lemma 4, it is easy to see that all partitions have size concentrated around

the expected size, which is ⇥(n�). Consider a single color; let X be the random variable of

the size of the corresponding partition. Let Xi be indicator random variables: Xi = 1 if node

i chooses that color, 0 other wise. By linearity of expectation we have E[X] = n
n1�� = n�.

Cherno↵’s bound gives

Pr(|X � n�)| � 1

2
n�)  2e�n�/12.

By a union bound, all n1�� partitions have sizes in ⇥(n�), with probability

O
⇣
n1��2e�n�/12

⌘
= O

✓
1

n

◆
.
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Consider a partition with size: n0 = ⇥(n�), as a random graph with edge probability p0. We

have

p0 = p = O

✓
lnn

n�

◆
= O

✓
1

�

lnn0

n0

◆
= O

✓
lnn0

n0

◆
.

By Theorem 2, note that we can reduce the probability of failure to O
�

1
n2��

�
by increasing

the number of steps by some factor of (2 � �). Thus, the number of required steps is

O((2� �)n0 lnn0) = O(n� lnn).

Using union bound for n1�� partitions, the probability of failure is bounded above by

n1�� ⇥O

✓
1

n2��

◆
= O

✓
1

n

◆
.

To prove that Phase 2 of the DHC2 algorithm succeeds, we will first show the probability

of success for merge step 1.

Lemma 8. The merging of np
lnn = n1�� Hamiltonian cycles in the first merging step of Phase

2 will be successful, with very high probability.

Proof. Consider two partitions with two cycles C,C 0, each with expected size n�. Fix an

edge e in C; the probability that e has a bridge to a fixed edge in C 0 is at least p2. Consider

the set S 0 of all non-adjacent edges in C 0, such that |S 0| is maximal. The probability that e

does not have any bridge to C 0 is at most the probability that e does not have any bridge

to S 0

(1� p2)n
�/2 = O

 ✓
1� (lnn)2

(n�)2

◆n�/2
!

= O

✓⇣
e�(lnn)2

⌘1/(2pn�)
◆

= O
⇣
n
� lnn

2n�/2

⌘
.
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Consider the set S of all non-adjacent edges in C, such that |S| is maximal, the probability

that all edges in S has no bridge to C 0 is

O

✓⇣
n
� lnn

2n�/2

⌘n�/2
◆

= O
⇣
n�n�/2 lnn

⌘
.

The above is the bound for the probability that C and C 0 fail to merge. We have n1��/2

pairs to merge, thus, union bound gives the failure probability

n1��

2
⇥O

⇣
n�n�/2 lnn

⌘
= O

⇣
n�n�/2 lnn+1��

⌘
.

Lemma 9. Phase 2 of the HHC algorithm is successful with very high probability which is

1� o(1/n).

Proof. Observe that after merging, the sizes of the Hamiltonian cycles increase, thus, in

successive merge steps, the probability of failure becomes smaller than that in the first step.

Using Lemma 8, with O(log n) merge steps, union bound of the failure of Phase 2 is

O
⇣
lnn · n�n�/2 lnn+1��

⌘
= o

✓
1

n

◆
.

Theorem 10. The DHC2 algorithm succeeds with probability 1�O( 1n) in Õ(n�) steps.

Proof. By Lemma 7 and Lemma 9, the probability that the DHC2 algorithm succeeds is

✓
1�O

✓
1

n

◆◆✓
1� o

✓
1

n

◆◆
= 1�O

✓
1

n

◆
.

To find the time complexity, we proceed similarly to the analysis of DHC1 algorithm: first

calculate the number of steps, then consider the number of rounds required for broadcast.

In Phase 1, the size of a subgraph is n0 = ⇥(n�), and the edge probability is p0 =

O(lnn0/n0), and by [24], the diameter is O( lnn0

ln lnn0 ) = O( lnn
ln lnn).
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In Phase 2, each merging takes constant number of rounds, and the broadcast time

depends on the diameter of a subgraph. Observe that after each merging, we have a larger

subgraph, while the edge probability is fixed, thus relative to the size, this larger subgraph

is denser. Therefore we can bound the diameter of the merged subgraphs by the diameter

of subgraphs in the first level, which is O( lnn
ln lnn).

The number of rounds for our DHC2 algorithm is then

O

✓
n� lnn

lnn

ln lnn

◆
+O

✓
lnn

lnn

ln lnn

◆

= O

✓
n�(lnn)2

ln lnn

◆
.

3.4 The Upcast Algorithm: A Centralized Approach

In this section we consider what perhaps is the simplest and most obvious strategy of all —

we collect “su�ciently large” number of edges at some pre-designated root and then leave it

to the root to compute a Hamiltonian cycle, see Algorithm 4.

Algorithm 4 The Upcast Algorithm

1: Elect a leader, call it v. This step takes O(D) rounds.
2: Construct a BFS tree rooted at v, and call it B. This step takes O(D) rounds.
3: All nodes except v sample some c0 log n of their adjacent edges (for a su�ciently large

constant c0) — independently and randomly — and send the sampled edges to v via the
BFS tree constructed in the previous step.

4: The root v computes a Hamiltonian cycle locally and downcasts it to the rest of the nodes
in G. This step takes essentially the same number of rounds as the previous (upcast)
step.

The main technical challenge in the analysis is showing that the upcast can be done in

time Õ(1/p). This is done by showing that in a BFS tree in a random graph, the sizes of

the subtrees rooted at every node are balanced (i.e., essentially the same size) whp. This
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ensures that the congestion at each node during upcast is balanced and is Õ(1/p).

3.4.1 Analysis for the Special Case when p = ⇥( log np
n
).

Let D be the diameter of G = (V,E). Then Corollary 7 in [13] implies that

Fact 1. D = 2 when p = ⇥( lognp
n ).

Thus Steps 1 and 2 take O(1) time in total. We claim that Step 3 in the algorithm takes

O(
p
n log2 n) rounds with high probability.

For i � 0, let Li be the nodes at level i in the BFS tree B. That is, L0 = {v}, L1 =

{w 2 V | (v, w) 2 E}, and L2 = {w 2 V | dist(v, w) = 2}. We note that L0 [ L1 [ L2 = V

by dint of Fact 1.

Lemma 11. c(1 � �1)(1 � �2)
p
n log n  |L1|  c(1 + �1)

p
n log n with high probability for

any fixed constants �1, �2 2 (0, 1).

Proof. As p = c lognp
n , E[|L1|] = (n � 1)p = c(n�1) lognp

n = c
p
n log n � o(1) =) (1 �

�2)c
p
n log n  E[|L1|]  c

p
n log n, for any fixed constant �2 in (0, 1). A simple application

of Cherno↵’s bound gives us

Pr(|L1| � c(1 + �1)
p
n log n)

 exp(��21 · c(1� �2)
p
n log n

3
)

= n� �21 ·c(1��2)
p
n

3 .
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Similarly,

Pr(|L1|  c(1� �1)(1� �2)
p
n log n)

 exp(��21 · c(1� �2)
p
n log n

2
)

= n� �21 ·c(1��2)
p
n

2 .

Lemma 12. n � (1 + c(1 + �1)
p
n log n)  |L2|  n � (1 + c(1 � �1)(1 � �2)

p
n log n) with

high probability for any fixed constants �1, �2 2 (0, 1).

Proof. Follows directly from Fact 1 and Lemma 11.

For w 2 L1, let �B(w) be the set of children of w in the BFS tree B. Then

Lemma 13. (1��3)(n� (1+c(1+�1)
p
n log n))p  |�B(w)|  (1+�3)(n� (1+c(1��1)(1�

�2)
p
n log n))p with high probability for any fixed constants �1, �2, �3 2 (0, 1).

Proof. Similar to that of Lemma 11.

Lemma 14. c(1 � �3)(1 � �4)(1 � �5)
p
n log n  |�B(w)|  c(1 + �3)(1 + �4)

p
n log n with

high probability for any fixed constants �3, �4, �5 2 (0, 1).

Proof. Simplifying Lemma 13.

Since the “high probability” in Lemma 14 is actually exponentially high 6 (please refer

to the proof of Lemma 11), we can take a union bound over all w 2 L1, and get the following

lemmas.

Lemma 15. The following statement holds with high probability: For all w 2 L1, c(1 �

�3)(1 � �4)(1 � �5)
p
n log n  |�B(w)|  c(1 + �3)(1 + �4)

p
n log n for any fixed constants

�3, �4, �5 2 (0, 1).
6that is � 1� 1

npoly(n) .
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Lemma 16. The upcast process takes at most b
B ·(c

0 log n+cc0(1+�3)(1+�4)
p
n log2 n) rounds,

where B is the bandwidth of the network, each edge is encoded in b bits, and 0 < �3, �4 < 1

are fixed constants.

Proof. Follows directly from Lemma 15.

Usually we would have b = ⇥(log n) and B = ⇥(log n), and that gives us the main result

of this section:

Theorem 17. The Upcast algorithm solves the distributed Hamiltonian Cycle problem in

G(n, p) random graphs in O(
p
n log2 n) rounds, when p = ⇥( lognp

n ). Both the success proba-

bility and the running time hold with high probability.

3.4.2 Analysis for the General Case when p = ⇥( log n
n1�� ) for some

constant � 2 (0, 1)

Let D be the diameter of the graph G = (V,E). Let K be the smallest integer such that

K� � 1, i.e., K
def
= d1�e. Then Klee and Larman showed that [58]

Fact 2. Pr(D(G) = K)! 1 as n!1, when p = c logn
n1�� for some positive constant c.

Thus Steps 1 and 2 in the upcast algorithm take O(1) time in total. We claim that Step

3 takes O( lognp ) = O(n1��) rounds.

In a graph G, we denote by �k(x) the set of vertices in G at distance k from a vertex x

�k(x)
def
= {y 2 G | dist(x, y) = k}.
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We define Nk(x) to be the set of vertices within distance k of x

Nk(x)
def
=

k[

i=0

�i(x).

We can adapt Lemma 3 in [24] to show that

Lemma 18. For any constant ✏ > 0, with probability at least 1� 1
n3 , we have

1. |�i(x)|  (1 + ✏)(np)i, 81  i  D.

2. |Ni(x)|  (1 + 2✏)(np)i, 81  i  D.

Lemma 18 basically says that the BFS tree B is essentially balanced. Hence an upcast

algorithm would take O( b
B · (1 + ✏)D · n logn

dv
) rounds, where � is any fixed positive constant,

n = |B|, and dv is the degree of the root v. As D = K = d1✏ e is a constant, this implies a

time complexity of O(n logn
dv

). But dv is concentrated around np with high probability. Thus

an upcast algorithm would take O(n logn
np ) = O( lognp ) rounds with high probability. That is

the main theorem of this section:

Theorem 19. The Upcast algorithm solves the distributed Hamiltonian Cycle problem in

G(n, p) random graphs in O( lognp ) = O(n1��) rounds, when p = ⇥( lognn1�� ) for some constant

� 2 (0, 1). Both the success probability and the running time hold with high probability.

3.4.3 Distributed Verification of a Hamiltonian Cycle

We use a distributed MST algorithm in [49] in order to verify a Hamiltonian cycle. First,

we set weight zero for each edge on Hamiltonian cycle and none zero value for other edges.

If the MST algorithm builds a minimum spanning tree successfully having the sum of the

edges zero, we check whether the two end nodes are connected by an edge of weight zero or

not (an edge belonging to the Hamiltonian cycle).
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Table 3.1: Comparison of di↵erent distributed algorithms to find HC in G(n, p) random
graphs.

Method p Time

1 Angluin, et al.[7] c logn
n , c � 36 O(n(log n)2)

2 Levy, et al. [67] O
⇣p

logn

n
1
4

⌘
O
�
n3/4+✏

�

3 DHC1 c lnnp
n , c � 86 O(

p
n ln2 n

ln lnn)

4 DHC2 O( lnn
n� ) O

⇣
n�(lnn)2

ln lnn

⌘

5 Turau [99] (logn)
3
2p

n O(log n)

3.5 Summary

We presented e�cient distributed algorithms for the fundamental Hamiltonian cycle problem

in random graphs. Table 3.1 compares and highlights our achievement compared to relevant

methods that runs onG(n, p) random graphs. Our algorithms are labeledDHC1 andDHC2.

Turau in [99] proposed an improved algorithm recently.
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Chapter 4

Community Detection

Finding communities in networks (graphs) is an important problem and has been extensively

studied in the last two decades, e.g., see the surveys [1, 27, 39, 40] and other references in

Section 2. At a high level, the goal is to identify subsets of vertices of the given graph so that

each subset represents a “community.” While there are di↵erences in how communities are

defined exactly (e.g., subsets defining a community may overlap or not), a uniform property

that underlies most definitions is that there are more edges connecting nodes within a subset

than edges connecting to outside the subset. Thus, this captures the fact that a community

is somehow more “well-connected” with respect to itself compared to the rest of the graph.

One way to express this property formally is by using the notion of conductance (defined in

Section 4.3) which (informally) measures the ratio of the total degree going out of the subset

to the total degree among all nodes in the subset. A community subset will have generally

low conductance (also sometime referred to as a “sparse” cut). Another way to measure this

is by using the notion of modularity [78] which (informally) measures how well connected a

subset is compared to the random graph that can be embedded within the set. A vertex

subset that has a high modularity value can be considered a community according to this

measure.
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Designing e↵ective algorithms for community detection in graphs is an important and

challenging problem. With the rise of massive graphs such as the Web graph, social net-

works, biological networks, finding communities (or clusters) in large-scale graphs e�ciently

is becoming even more important [27, 34, 40, 50, 78]. In particular, understanding the com-

munity structure is a key issue in many applications in various complex networks including

biological and social networks (see e.g., [27] and the references therein).

Various solutions have been proposed (cf. Section 2), but many of them are centralized

with expensive procedures (requiring full knowledge of the input graph) and have a large

running time [27]. In particular, the problem of detecting (identifying) communities in the

stochastic block model (SBM) [1, 27] has been extensively studied in the literature (cf. Section

2). The stochastic block model (defined formally in Section 4.2), also known as the planted

partition model (PPM) is a widely-used random graph model in community detection and

clustering studies (see e.g., [1, 23, 57]). Informally, in the PPM model, we are given a graph

G on n nodes which are partitioned into a set of r communities (each is a random graph on

n/r vertices) and these communities are interconnected by random edges. The total number

of edges within a community (intra-community edges) is typically much larger than the

number of edges between communities (inter-community edges). The main goal is to devise

algorithms to identify the r communities that are “planted” in the graph. Several algorithms

have been devised for this model, but as mentioned earlier, they are mostly centralized (with

some exceptions — cf. Section 2) with large running time. There are few distributed

algorithms (see e.g., [27, 62]) but either they are shown to work only when the number of

communities is small (typically 2) [27]) or when the communities are very dense [62]). In

particular, to the best of our knowledge, (prior to this work) there is no rigorous analysis of

community detection algorithms in distributed large-scale graph processing models such as

MapReduce and the Massively Parallel Computing (MPC) model [56], and the k-machine

model [58].
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4.1 Our Contributions

In this dissertation, we present a novel distributed algorithm, called CDRW (Community

Detection via Random Walks) for detecting communities in the PPM model [29].1 Our al-

gorithm is based on the recently proposed local mixing paradigm [75] (see Section 4.3 for a

formal definition) to detect community structure in sparse (bounded-degree) graphs. Infor-

mally, a local mixing set is one where a random walk started at some node in the set mixes

well with respect to this set. The intuition in using this concept for community detection is

that since a community is well-connected, it has good expansion within the community and

hence a random walk started at a node in the community mixes well within the community.

The notion of “mixes well” is captured by the fact that the random walk reaches close to

the stationary distribution when restricted to the nodes in the community subset [75]. Since

the main tool for this algorithm uses random walks which are local and lightweight, it is

easy to implement this algorithm in a distributed manner. We will analyze the performance

of the algorithm in two distributed computing models, namely the standard CONGEST

model of distributed computing [87] and the k-machine model [58], which is a model for

large-scale distributed computations. We show that CDRW can be implemented e�ciently

in both models (cf. Theorem 25 and Section 4.4.2). The k-machine model implementation

is especially suitable for large-scale graphs and thus can be used in community detection

in large SBM graphs. In particular, we show that the round complexity in the k-machine

model (cf. Section 4.4.2) scales quadractically (i.e., k�2) in the number of machines when

the graph is sparse and it scales linearly (i.e., k�1) in general.

As is usual in community detection, a main focus is analyzing the e↵ectiveness of the

algorithm in finding communities. We present a rigorous theoretical analysis that shows

that the CDRW algorithm can accurately identify the communities in the PPM, which is a

1Throughout this dissertation, we use the terms stochastic block model (SBM) and planted partition
model (PPM) interchangeably.
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popular and widely-studied random graph model for community detection analysis [1]. A

PPM model (cf. Section 4.2) is a parameterized random graph model which has a built-

in community structure. Each community has high expansion within the community and

forms a low conductance subset (and hence relatively fewer edges go outside the community);

the expansion, conductance, and edge density can be controlled by varying the parameters.

CDRW does well when the number of intra-community edges is much larger than the num-

ber of inter-community edges (these are controlled by the parameters of the model). Our

theoretical analysis (cf. Theorem 25 for the precise statement) quantitatively characterizes

when CDRW does well vis-a-vis the parameters of the model. Our results improve over pre-

vious distributed algorithms that have been proposed for the PPM model ([27]) both in the

number of communities that can be provably detected as well as range of parameters where

accurate detection is possible; they also improve on previous results that provably work only

on dense PPM graphs [62] (details in Section 2).

We also present extensive simulations of our algorithm in the PPM model under various

parameters. Experimental results on the model validate our theoretical analysis; in fact our

experiments show that CDRW works relatively well in identifying communities even under

less stringent parameters.

4.2 Model, Definitions, and Preliminaries

4.2.1 Graph Model

We describe the stochastic block model (SBM) [52], a well-studied random graph model that

is used in community detection analysis. Before that we recall the Erdős-Rényi random

graph model [37], a basic random graph model, that the SBM model builds on. In the

Erdős-Rényi random graph model, also known as the Gnp model, each of
�
n
2

�
possible edges
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is present in the graph independently with probability p. The Gnp random graph has close

to uniform degree (the expected degree of a node is (n � 1)p) and a well-known fact about

G(n, p) is that if p = ⇥(log n/n) the graph is connected with high probability2 and its degree

is concentrated at its expectation. In the SBM model, the vertices are partitioned into r

disjoint community sets (r is a parameter). Let c(u) denote the community that node u

belongs to. If two nodes u and v belong to the same community (i.e., c(u) = c(v)), they

connect independently with probability pc(u) (independent of other nodes). If they belong to

di↵erent communities, they connect independently with probability pc(u),c(v). A SBM model

has a separable community structure [1] if it has a higher value of intra- than inter-community

connectivity probability. A commonly used version of SBM model called Planted Partition

Model (PPM) and denoted by Gnpq [28, 52] is usually used as a benchmark. A symmetric

Gnpq with r blocks is composed of r exclusive set of nodes in C =< C1, C2, . . . , Cr >, where

[i=r
i=1Ci = V, |Ci| = |Cj| and Ci \ Cj = ; when i 6= j. In Gnpq, each possible edge e(u, v) is

independently present with probability p if both ends of u and v belong to the same block Ci,

otherwise with probability q. Figure 4.1 shows a PPM of 5 blocks (r = 5), each containing

200 nodes. For the PPM model, each of the r communities induce a n/r-vertex subgraph

which is a G(n/r, p) random graph. The goal of community detection in the PPM (or SBM)

model is to identify the r community sets. This problem has been widely studied [1].

4.2.2 Notion of a Community

While there is not a universally accepted definition for communities [40], in this dissertation,

we use a reasonable definition that is either the same or closely related to what is used in

the literature (cf. see Section 2). Informally, we define a community as a subset of nodes

(Ci ⇢ V ) where nodes inside the subset are “more connected” compared to nodes outside

of the community. In other words, for each v 2 Ci it is
P

u2Ci
Ie(v,u) >

P
u2V/Ci

Ie(v,u)

2Throughout this dissertation, by “with high probability” we mean, “with probability at least 1� 1/n.”
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(a) A PPM graph shown without its ground-truth
communities.

(b) Redrawing of the same PPM graph showing
the communities.

Figure 4.1: Both of the above graphs are the same PPM graph. The graph size is n = 1000,
the number of communities is r = 5, the existence probability of intra(inter) community
edges is p = 1

20(q = 1
1000) as in [1, Figure 1]. We highlight ground truth communities in

di↵erent colors in Figure 4.1b.

where I is an indicator function and returns 1 if an edge e(v, u) exists, otherwise 0. In this

dissertation, we look for non-overlapping communities of an undirected graph G(V,E). Let

C = {C1, C2, ..., Cr}; we call it non-overlapping if [Ci = V and Ci \ Cj = ; for all i 6= j.

For the SBM, the communities are the r subsets of the vertices that induce a random graph.

In particular, for the PPM model, each of the r communities induce a n/r-vertex subgraph

which is a G(n/r, p) random graph. The goal of community detection in the PPM (or SBM)

model is to identify the r community sets. This problem has been widely studied [1].

4.2.3 Distributed Computing Models

We consider two distributed computing models and analyze the complexity of the algorithm’s

implementation under both the models.

CONGEST model. This is a standard and widely-studied model of distributed comput-

ing [81], which captures the bandwidth constraints inherent in real-world networks. The
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distributed network is modeled as an undirected and unweighted graph G = (V,E), where

|V | = n and |E| = m, where nodes represent processors (or computing entities) and the

edges represent communication links. In this dissertation, G will be a graph belonging to

the PPM model. Each node is associated with a distinct label or ID (e.g., its IP address).

Nodes communicate through the edges in synchronous rounds; in every round, each node

is allowed to send a message of size at most O(log n) bits to each of its neighbors. The

message will arrive to the receiver nodes at the end of the current round. Initially every

node has limited knowledge; it only knows its own ID and its neighbors IDs. In addition,

it may know additional parameters of the graph such as n,m,D (where D is the diameter).

The two standard complexities of an algorithm are the time and message complexity in the

CONGEST model. While time complexity measures the number of rounds taken by the

algorithm, the message complexity measures the total number of messages exchanged during

the course of the algorithm.

k-machine model. The k-machine model (a.k.a. Big Data model) is a model for large-scale

distributed computing introduced in [58] and studied in various papers [9, 55, 58, 83, 85].

In this model, the input graph (or more generally, any other type of data) is distributed

across a group of k � 2 machines that are pairwise interconnected via a communication

network. The k machines jointly perform computations on an arbitrary n-vertex, m-edge

input graph (where typically n,m � k) distributed among the machines (randomly or in

a balanced fashion). The communication is point-to-point via message passing. Machines

do not share any memory and have no other means of communication. The computation

advances in synchronous rounds, and each link is assumed to have a bandwidth of B bits per

round, i.e., B bits can be transmitted over each link in each round; unless otherwise stated,

we assume B = O(log n) (where n is the input size) [83, 85]. The goal is to minimize the

round complexity, i.e., the number of communication rounds required by the computation.3

3The communication cost is assumed to be the dominant cost – which is typically the case in Big Data
computations — hence the goal of minimizing the number of communication rounds [92].
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Initially, the entire graph G is not known by any single machine, but rather partitioned

among the k machines in a “balanced” fashion, i.e., the nodes and/or edges of G are par-

titioned approximately evenly among the machines. We assume a vertex-partition model,

whereby vertices, along with information of their incident edges, are partitioned across ma-

chines. Specifically, the type of partition that we will assume throughout is the random

vertex partition (RVP), that is, each vertex of the input graph is assigned randomly to one

machine. (This is the typical way used by many real systems, such as Pregel [70], to initially

distribute the input graph among the machines.) If a vertex v is assigned to machine Mi we

say that Mi is the home machine of v. A convenient way to implement the RVP model is

through hashing: each vertex (ID) is hashed to one of the k machines. Hence, if a machine

knows a vertex ID, it also knows where it is hashed to. It can be shown that the RVP model

results in (essentially) a balanced partition of the graph: each machine gets Õ(n/k) vertices

and Õ(m/k + �) edges, where � is the maximum degree.

Note that we can also assume an alternate partitioning model, the random edge partition

(REP) model, where each edge of G is assigned independently and randomly to one of the

k machines. The results in the random vertex partition model can be related to the random

edge partition model [83].

At the end of the computation, for the community detection problem, the community

that each vertex belongs to will be output by some machine.

4.3 Random Walk Preliminaries and Local Mixing Set

Our algorithm is based on the mixing property of a random walk in a graph. We use the

notion of local mixing set of a random walk, introduced in [75], to identify communities in

a graph. Let us define random walk preliminaries, local mixing time, and local mixing set

as defined in [75]. Given an undirected graph and a source node s, a simple random walk is

53



defined as follows: in each step, the walk goes from the current node to a random neighbor;

i.e., from the current node u, the probability of moving to node v is Pr(u, v) = 1/d(u) if

(u, v) 2 E, otherwise Pr(u, v) = 0, where d(u) is the degree of u. Let pt(s) be the probability

distribution at time t starting from the source node s. Then p0(s) is the initial distribution

with probability 1 at the node s and zero at all other nodes. The pt(s) can be seen as

the matrix-vector multiplication between (A)t and p0(s), where A is the transpose of the

transition matrix of G. Let pt(s, v) be the probability that the random walk be in node v

after t steps. When it’s clear from the context we omit the source node from the notations

and denote it by pt(v) only. The stationary distribution (a.k.a. steady-state distribution)

is the probability distribution which doesn’t change anymore (i.e., it has converged). The

stationary distribution of an undirected connected graph is a well-defined quantity which

is
�d(v1)

2m , d(v2)2m , . . . , d(vn)2m

�
, where d(vi) is the degree of node vi. We denote the stationary

distribution vector by ⇡⇡⇡, i.e., ⇡(v) = d(v)/2m for each node v. The stationary distribution

of a graph is fixed irrespective of the starting node of a random walk; however, the number

of steps (i.e., time) to reach to the stationary distribution could be di↵erent for di↵erent

starting nodes. The time to reach to the stationary distribution is called the mixing time

of a random walk with respect to the source node s. The mixing time corresponding to the

source node s is denoted by ⌧mix
s . The mixing time of the graph, denoted by ⌧mix, is the

maximum mixing time among all (starting) nodes in the graph.

Definition 3. (⌧mix
s (✏)–mixing time for source s and ⌧mix(✏)–mixing time of the graph)

Define ⌧mix
s (✏) = min{t : ||pt�⇡⇡⇡||1 < ✏}, where || · ||1 is the L1 norm. Then ⌧mix

s (✏) is called

the ✏-near mixing time for any ✏ in (0, 1). The mixing time of the graph is denoted by ⌧mix(✏)

and is defined by ⌧mix(✏) = max{⌧mix
v (✏) : v 2 V }. It is clear that ⌧mix

s (✏)  ⌧mix(✏).

We sometimes omit ✏ from the notation when it is understood from the context. For any

set S ✓ V , we define µ(S) as the volume of S, i.e., µ(S) =
P

v2S d(v). Therefore, µ(V ) = 2m

is the volume of the vertex set. The conductance of the set S is denoted by �(S) and defined
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by �(S) = |E(S,V \S)|
min{µ(S), µ(V \S)} , where E(S, V \ S) is the set of edges between S and V \ S. The

conductance of the graph G is �G = minS✓V �(S).

Let us define a vector ⇡⇡⇡S over the set of vertices S as follows: ⇡S(v) = d(v)/µ(S) if v 2 S,

and ⇡S(v) = 0 otherwise.

Notice that ⇡⇡⇡V is the stationary distribution ⇡⇡⇡ of a random walk over the graph G, and

⇡⇡⇡S is the restriction of the distribution ⇡⇡⇡ on the subgraph induced by the set S. Recall that

we defined pt as the probability distribution over V of a random walk of length t, starting

from some source vertex s. Let us denote the restriction of the distribution pt over a subset

S by pt�S and define it as: pt�S(v) = pt(v) if v 2 S and pt�S(v) = 0 otherwise.

It is clear that pt�S is not a probability distribution over the set S as the sum could be

less than 1.

Informally, having a local mixing set, with respect to a source node s, means that there

exists some (large-enough) subset of nodes S containing s such that the random walk prob-

ability distribution becomes close to the stationary distribution restricted to S (as defined

above) quickly. The time that a random walk mixes locally on a set S is called as local

mixing time which is formally defined below.

Definition 4. (Local Mixing Set and Local Mixing Time)

Consider a vertex s 2 V . Let � � 1 be a positive constant and ✏ 2 (0, 1) be a fixed parameter.

We first define the notion of local mixing in a set S. Let S ✓ V be a fixed subset containing

s of size at least n/�. Let pt�S be the restricted probability distribution over S after t steps

of a random walk starting from s and ⇡⇡⇡S be as defined above. Define the mixing time with

respect to set S as ⌧Ss (�, ✏) = min{t : ||pt�S � ⇡⇡⇡S||1 < ✏}. We say that the random walk

locally mixes in S if ⌧Ss (�, ✏) exists and well-defined. (Note that a walk may not locally mix

in a given set S, i.e., there exists no time t such that ||pt�S � ⇡⇡⇡S||1 < ✏; in this case we can

take ⌧Ss (�, ✏) to be 1.)
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The local mixing time with respect to s is defined as ⌧s(�, ✏) = minS ⌧Ss (�, ✏), where the

minimum is taken over all subsets S (containing s) of size at least n/�, where the random

walk starting from s locally mixes. A set S where the minimum is attained (there may be

more than one) is called a local mixing set. The local mixing time of the graph, ⌧(�, ✏) (for

given � and ✏), is maxv2V ⌧v(�, ✏).

From the above definition, it is clear that ⌧s(�, ✏) always exists (and is well-defined) for

every fixed � � 1, since in the worst-case, it equals the mixing time of the graph; this

happens when |S| = n � n/� (for every � � 1). We note that, crucially, in the above

definition of local mixing time, the minimum is taken over subsets S of size at least n/�,

and thus, in many graphs, local mixing time can be substantially smaller than the mixing

time when � > 1 (i.e., the local mixing can happen much earlier in some set S of size � n/�

than the mixing time).

4.4 Algorithm for Community Detection

We design a random walk based community detection algorithm (cf. Algorithm 5). Given

a graph and a node, the algorithm finds a community containing the node in a distributed

fashion. We show the e�ciency and e↵ectiveness of the algorithm both theoretically and

experimentally on random graphs and stochastic block model.

Outline of the Algorithm. We use the concept of local mixing set, introduced by Molla

and Pandurangan [75], to identify community in a graph. A local mixing set of a random

walk is a subset of the vertex set where the random walk probability mixes fast, see the

formal definition in Section 4.2. Intuitively, a random walk probability mixes fast over a

subset where nodes are well-connected among themselves. The idea is to use the concept of

local mixing set to identify a community — a subset where nodes are well-connected inside
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Algorithm 5 Community-Detection-by-Random-Walks (CDRW)

Input: An undirected graph G = (V,E).
Output: Set of Detected Communities CD.

1: CD  {}; pool  V
2: while pool 6= ; do . There exist nodes not assigned to any communities yet
3: s pick a random node from pool
4: s computes a BFS tree of depth O(log n) via flooding
5: Set R = log n, p0(s) = 1, and p0(u) = 0 for all other nodes u.
6: for ` = 1, 2, 3, . . . , O(log n) do . Length of the random walk
7: Each node u whose p`�1(u) 6= 0, does the following in parallel:
8: (i) Send p`�1(u)/d(u) to all the neighbors v 2 N(u).
9: (ii) Compute the sum of the received values from its neighbors and set it to

p`(u).
10: for |S| = R, (1 + 1/8e)R, (1 + 1/8e)2R, . . . , n do
11: Each node u computes the di↵erence xu = |p`(u)� d(u)

2m
n |S| | locally

12: s computes the sum of |S| smallest xu values using binary search method
discussed in the detail description of the algorithm.

13: s checks if the sum is less than 1/2e, i.e., if
P

{|S| smallest xu} xu < 1
2e .

14: If “true”, then s checks for the next size of the mixing set
15: Else, s sets S` to be the largest set S which satisfies the mixing condition.

s broadcasts an indicator message to all the nodes via BFS tree. The nodes whose xu

value gives the |S| smallest values belong to the largest mixing set S`.

16: s checks the community condition: if |S`|
|S`�1|

< (1 + �) Then Break the for-loop.
. � = �G

17: Cs  S`�1; CD  CD [ {Cs}; pool  pool \ Cs;

18: Return CD

the set and less-connected outside. That is, if a random walk starts from a node inside a

community, its probability distribution is likely to mix fast inside the community nodes and

with fewer probability will go outside of the set. Thus the high level idea of our approach is

to perform a random walk from a given source node and find the largest subset (of nodes)

where the random walk probability mixes quickly. We extend the distributed algorithm from

[75] to find a largest mixing set in the following way. In each step of the random walk, we

keep track the size of the largest mixing set. When the size of the largest mixing set is

not increasing significantly with the increase of the length of the random walk, we stop and

output the largest mixing set as the community containing the source node.

Algorithm in Detail. Given an undirected graph G(V,E), our algorithm randomly selects
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a node s and outputs a community set Cs ✓ V containing s. It maintains a set, called a

pool which contains all the remaining nodes of V excluding the nodes in Cs. Then another

random node gets selected from the set pool and we compute the community containing that

node in G, and so on. This way all the di↵erent communities are computed one by one. The

pool set is initialized as V in the beginning. The algorithm stops when the pool set becomes

empty.

Now we describe how the algorithm computes the community set Cs in G from a given

node s. The algorithm performs a random walk from the source node s and computes the

probability distribution p` at each step ` of the random walk. The probability distribution p`

starting from the source node s is computed locally by each node as follows: Initially, at round

0, the probability distribution is as follows: at node s, p0(s, s) = 1 and at all other nodes u,

p0(s, u) = 0. At the start of a round `, each node u sends p`�1(s, u)/d(u) to its d(u)-neighbors

and at the end of the round `, each node u computes p`(s, u) =
P

v2N(u) p`�1(s, v)/d(v).

This local flooding approach essentially simulates the probability distribution of each step

of the random walk starting from a source node. Moreover, this deterministic flooding

approach can be used to compute the probability distribution p` of length ` from the previous

distribution p`�1 in one round only, simply by resuming the flooding from the last step. The

full algorithm can be found as Algorithm 1 in [75]. Then at each step `, our algorithm

computes a largest mixing set S`. The largest mixing set S` is computed as follows: Each

node u knows its p(u) = p`(s, u) value. The algorithm gradually increases the size of a

candidate local mixing set S starting from size 1.4 First each node u locally calculates its xu

value as xu = |p`(u)� d(u)
µ0(S) |, where µ0(S) = 2m

n |S| is the average volume of the set S. Note

that any node u can compute µ0(S) when it knows the “size” |S| and hence can compute xu

locally. However, it’s di�cult to compute µ(S) unless it knows the set S (i.e., the nodes in

S) and the degree distribution of the nodes in S. Computing nodes in S and their degree

4In the pseudocode we assume the size of each community is at least log n.
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distribution is expensive in terms of time. That’s why we consider µ0(S) instead µ(S) in the

localized algorithm.

Then the source node s collects the |S| smallest of xu values and checks if their sum is

less than 1/2e (mixing condition). For this each node may sends its xu to the source node

s via upcasting through a BFS tree rooted at s. (A BFS tree is computed from s at the

beginning of the algorithm). However, the upcast may take ⌦(n) time in the worst case due

to the congestion in the BFS tree. A better approach is used in [75], which is to do a binary

search on {xu | u 2 V }, as follows: All the nodes send xmin and xmax (the minimum and

maximum respectively among all xu) to the root s through a convergecast process (e.g., see

[87]). This will take time proportional to the depth of the BFS tree. Then s can count the

number of nodes whose xu value is less than xmid = (xmin+xmax)/2 via a couple of broadcast

and convergecast. In fact, s broadcasts the value xmid to all the nodes via the BFS tree and

then the nodes whose xu value is less than xmid (say, the qualified nodes), reply back with 1

value through the convergecast. Depending on whether the number of qualified nodes is less

than or greater than |S|, the root updates the xmid value (by again collecting xmin or xmax

in the reduced set) and iterates the process until the count is exactly |S|. Note that there

might be multiple nodes with the same xu value. We can make them distinct by adding

a ‘very’ small random number to each of the xu such that the addition doesn’t a↵ect the

mixing condition. The detailed approach and analysis can be found in [75].

Once the node s gets |S| smallest xus, it checks if their sum is less than 1/2e. If true,

then these nodes u whose sum value is less than 1/2e form a candidate mixing set whose size

is |S|. Then we increase the set size and check if there is a larger mixing set. If the mixing

condition is not satisfied, then there is no mixing set of size |S|. The algorithm iterates

the checking process a few more times by increasing the size of S and checking if there is

a mixing set of larger size. If not, then the algorithm stops for this length ` and stores the

largest mixing set at s. This way, the algorithm finds the largest mixing set S` at the `th step
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of the random walk. Note that we can increase the candidate mixing set size by 1 each time.

This will increase the time complexity of the algorithm by a factor of the “size of the largest

mixing set”. Instead we increase the size of the mixing set by a factor of (1 + 1/8e) in each

iteration. This will only add a factor of O(log n) to the time complexity. The reason why

we increase by a factor of (1 + 1/8e) instead of doubling is discussed in [75] (see, Lemma 3

in [75]). The correctness of the all the above tests is also analyzed in [75].

Then the algorithm checks if the size of the largest mixing set S` at step ` increases

more significantly than the mixing set S`�1 in the previous step (` � 1). This is checked

locally by the source node as the source node has the information of the largest mixing

set of the current and previous steps. If the size doesn’t increase by a factor (1 + �), i.e.,

if S` < (1 + �)S`�1, then the algorithm stops and outputs S`�1 as the community set Cs.

Otherwise, the algorithm increases the length by 1 and checks for S`+1. The parameter

� is chosen to be the conductance of the graph �G which essentially measures the vertex

expansion of the graph.

4.4.1 Analysis

We analyze the algorithm and show that it correctly identifies communities in the planted

partition model (PPM) – Gnpq graphs. The Gnpq graph is formed by connecting several

communities ofGnp graphs (see the definition in Section 4.2). Let us first analyze Algorithm 5

on the random graph Gnp. We then extend the analysis to the stochastic block model Gnpq.

On Gnp Graphs. Suppose the algorithm is executed on the standard random (almost

regular) graph Gnp = (V1, E1), defined in Section 4.2. Since Gnp is an expander graph,

the random walk starting from any node mixes over the vertex set V1 very fast, in fact, in

O(log n) steps. Given any node s, we show that our algorithm computes the community Cs

as the complete vertex set V1. More precisely, we show that the size of the largest mixing set
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increases on a higher rate (than the considered threshold) after each step of the random walk,

when the length of the walk is o(log n). Since O(log n) is the mixing time of Gnp, the random

walk probability reaches the stationary distribution after c log n steps, for a su�ciently large

constant c.

Let pt(u) be the probability that the walk is at u after t steps (starting from a source

node s). It is known that in a regular graph pt(u) is bounded by

1

n
� �t

2  pt(u) 
1

n
+ �t

2 (4.1)

where �2 is the second largest eigenvalue (absolute value) of the transition matrix of Gnp
5.

Hence, the above bound on the probability distribution pt holds in Gnp graphs. It is further

known that in a random d-regular graph, the second largest eigenvalue is bounded by [41]

1p
d
 �2 

1p
d
+ o(1). (4.2)

Let B` be the set of nodes that are within the distance ` from the s. The distance is measured

by the hop distance between nodes. Let’s call B` a ball of radius ` centered at s. We now

show that after ` steps of the random walk, the largest mixing set is B`/2 in a Gnp graph.

Lemma 20. Let a random walk start from a source node s in a Gnp graph. Then for any

length ` which is less than the mixing time of the random walk, the largest mixing set is the

ball Bb`/2c with high probability.

Proof. Assume ` = o(log n), since ` is less than the mixing time O(log n). It is known that

the size of the ball B` in a random graph Gnp is bounded by O((np)`) with high probability

(cf. Lemma 2 in [24]). To prove the lemma we show that the random walk probability mixes

inside the ball Bb`/2c and doesn’t mix on the ball of radius larger than b`/2c. Recall that the
5The bound follows from the standard bound |pt(s, u)� ⇡(v)|  �

t
2

p
⇡(v)/⇡(s) in general graphs [68]. In

a regular graph, ⇡(v) = 1/n for all v. Note that Gnp is not exactly a regular graph, but very close to regular
(especially if p = (c log n)/n for a large enough constant c). It can be shown that ⇡(v) = 1/n ± o(1/n) in
Gnp. For simplicity we assume that Gnp is a regular graph as this little ±✏ changes in the degree or in the
probability distribution doesn’t a↵ect the lemmas.
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condition of locally mixing on a subset Bb`/2c is
P

u2Bb`/2c
|p`(u)� 1

|Bb`/2c|
|  1

2e , (since Gnp is

regular graph). Using the above bound of pt(u), �2 (Equ 4.1, 4.2) and |Bb`/2c|  db`/2c (since

d = np = ⇥(log n) in expectation in Gnp) we have

X

u2Bb`/2c

���p`(u)�
1

|Bb`/2c|

��� 
X

u2Bb`/2c

���
1

n
+ �`

2 �
1

|Bb`/2c|

���

 db`/2c
���
1

n
+

1

d
`
2

+ o(1)� 1

db`/2c

��� <
db`/2c

n
+ o(1)

<
1

2e
[since

db`/2c

n
= o(1) as ` = o(log n)]

This shows that the random walk of length ` mixes over the nodes in Bb`/2c. Now we show

that it doesn’t mix on Bt for t > `/2. Again from Equations 4.1 and 4.2,

X

u2Bt

���p`(u)�
1

|Bt|

��� �
X

u2Bt

���
1

n
� �`

2 �
1

|Bt|

���

=
X

u2Bt

����`
2 +

1

|Bt|
� 1

n

��� �
X

u2Bt

����`
2

��� [since |Bt|  n]

� |Bt|
d

`
2

� d > 1/2e [since t > `/2 and d = log n]

Thus the largest mixing set is Bb`/2c.

Now we show that our algorithm outputs the full vertex set as the community in Gnp

graphs.

Lemma 21. Given a random regular expander graph Gnp = (V1, E1), Algorithm 5 outputs

the vertex set V1 as a single community with high probability.

Proof. It follows from the previous lemma that when ` is less than the mixing time of Gnp,

then the largest local mixing set is Bb`/2c. Therefore, in each step of the random walk, the

size of the mixing set is increased by a factor
|Bb`/2c|

|Bb`/2�1c|
= O(d) = ⇥(log n) > (1 + �). Hence,

by the condition of Algorithm 5, it doesn’t stop and continue to look for a community set for

the larger lengths of the random walk. This means that until the length of the random walk
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reaches the mixing time of the graph Gnp, the algorithm continues its execution. When the

length reaches the mixing time, then the random walk will mix the full vertex set V1. Then

the algorithm stops and outputs V1 as a single community set (as the size of the mixing set

won’t increase anymore for larger lengths).

On Gnpq Graphs. Let us now analyze the algorithm on the planted partition model, i.e., on

a random Gnpq graph. A random Gnpq graph is formed by r equal size blocks C1, C2, . . . , Cr

where each component Ci is a Gn
r p

random graph (see the definition in Section 4.2). We show

that the algorithm correctly identifies each block as a community. Suppose the randomly

selected node s belongs to some block C. The induced subgraph on C is a Gn
r p

graph, i.e.,

the nodes inside C are connected to each other with probability p. Further each node in

C is connected to every node outside of C with probability q. Thus the random walk may

go out of the set C at some point. We show that the probability of going out of C is very

small when the length of the walk is smaller than the mixing time of Gn
r p

graph, which is

O(log(n/r)).

Lemma 22. Given a Gnpq graph and a node s in some block C, the probability that a

random walk starting from s stays inside C is at least 1 � o(1) until ` = O(log(n/r)) when

q = o( p
r log(n/r)).

Proof. We show that in each step, the probability that the random walk goes outside of C is

o(1/ log n). For any u 2 C, the number of neighbors of u in C is p|C| = pn/r and the number

of neighbors in C̄ = V \C is q|C̄| = q(n�n/r) in expectation. Thus the probability that the

random walk goes outside of the block C is q(n�n/r)
p(n/r)+q(n�n/r) =

q(r�1)
p+q(r�1) . This is o(1/ log(n/r))

when q = o( p
r log(n/r)). Thus in ` = O(log(n/r)) steps, the probability that walk goes outside

of the block C is o(1). That is the random walk stays inside C with probability at least

1� o(1).

Now we show that the random walk probability will mix over C in O(log(n/r)) steps.
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Lemma 23. Given a Gnpq graph and a node s 2 C, a random walk starting from s will mix

over the nodes in C after ⌧ = O(log(n/r)) steps with high probability.

Proof. We show that after O(log(n/r)) steps of the walk, the amount of probability goes

out of C is very little and that the remaining probability will mix inside C. The expected

number of outgoing edges from any subset S of the block C is |E(S, V \ C)| = q|C̄||S| =

q(n�n/r)(|S|). In each step the probability of leaving C is |E(S,V \C)|
d|S| , as d = p(n/r)+ q(n�

n/r) is the degree of a node, each edge carries 1/d|S| fraction of the probability. We have

|E(S,V \C)|
d|S| = q(n�n/r)|S|

(p(n/r)+q(n�n/r))|S| = o(1/ log(n/r)) for q = o( p
r log(n/r)). Thus in ` = O(log(n/r))

steps, the probability of leaving C is o(1). Hence 1� o(1) fraction of the probability remains

inside C and it will mix over the nodes in C after O(log(n/r)) steps as shown in Lemmas 20

and 21.

Thus it follows from the above lemma that the largest mixing set is C after ⌧ =

O(log(n/r)) steps of the random walk. Further, it is shown in Lemma 4 of [75] that the

random walk keeps mixing in C until 2⌧ steps. In other words, C remains the largest local

mixing set for at least another ⌧ steps. Thus the size of the largest local mixing set will

not increase from C in the further few steps of the walk after the mixing time ⌧ . Hence

the algorithm outputs C as a community with high probability. Since we sample the source

node s from the di↵erent blocks, each time our algorithm outputs a new community until

all the blocks are identified as separate communities.

The � value measures the rate of change of the size of the largest mixing set in each

step. When the largest mixing set reaches a community C, the vertex expansion becomes

|E(C,V \C)|
d|C| which is the conductance of the Gnpq graph. If the largest mixing set doesn’t reach

the community, the size increases at a rate higher than �. Hence we take � to be �G in our

algorithm to stop and output the community. We assume that �G is given as input, or it

can be computed using a distributed algorithm, e.g., [64].
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Complexity of the Algorithm in the CONGEST model. Let us first analyze the

distributed time complexity of the Algorithm 5 which computes a community corresponding

to a given source node. We will focus on the CONGEST model first. The algorithm first

computes a BFS tree of depth O(log n) from the source node. This takes O(log n) rounds.

Note that the diameter of a Gnp graph is O(log n); hence the BFS tree covers all the nodes

in the community containing the source node. The algorithm then iterates for the length of

the walk, ` = 1, 2, 4, . . . , O(log n). In each iteration:

• The algorithm probability distribution p`. As we discussed before, it takes O(1) rounds

to compute p` from p`�1.

• s collects the sum of |S| smallest xus through the BFS tree using binary search method.

It takes O((depth BFS tree) · log n) = O(log2 n) rounds. This is done for all the

potential candidate sets of size (1 + 1/8e)i|S|, where i = 0, 1, 2, . . .. It may take

O(log n) rounds in the worst case. Hence the total time taken is O(log3 n) rounds.

• Checking if the sum of di↵erences is less than 1/2e and also checking the community

condition is done locally at s.

Thus the total time required is O(log n) + O(log n) · (O(1) + O(log3 n)), which is bounded

by O(log4 n).

Message Complexity of the Algorithm. Let us calculate the number of messages used

by the algorithm during the execution in a Gnpq graph. The degree of a node is p(n/r) +

q(n� n/r) in expectation. Hence the number of edges in the Gnpq graph is n2p/r + nq(n�

n/r). In the worst case, the the algorithm runs over all the edges in the graph. Thus

the message complexity of the algorithm for computing a single community is bounded by

(time complexity) ⇥ (the number of edges involved during the execution), which would be

O(n
2

r (p+ q(r � 1)) log4 n) in expectation. That is the message complexity of Algorithm 5 is

Õ(n
2

r (p+ q(r � 1))).
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Therefore we have the following main result.

Theorem 24. Consider a stochastic block model Gnpq with r blocks, where p = ⌦( lognn ) and

q = o( p
r log(n/r)). Given a node s in the Gnpq graph, there is a distributed algorithm (cf.

Algorithm 5) that computes the block containing s as a community with high probability in

O(log4 n) rounds and incurs Õ(n
2

r (p+ q(r � 1))) messages in expectation.

The CDRW algorithm can be used to detect all the r communities in the PPM graphs one

by one. In that case the running time would be r times the time of detecting one community,

which is O(r log4 n). The message complexity in this case would be O(n2(p+q(r�1)) log4 n)

in expectation. Thus we have the following theorem.

Theorem 25. Given a stochastic block model Gnpq with r blocks, where p = ⌦( lognn ) and

q = o( p
r log(n/r)), there is a distributed algorithm (cf. Algorithm 5) that correctly computes each

block as a community with high probability and outputs all the r communities in O(r log4 n)

rounds and incurs expected Õ(n2(p+ q(r � 1))) messages.

4.4.2 Complexity in the k-machine Model.

As mentioned earlier, in the k-machine model, the input (SBM) graph is partitioned across

the k machines according to the random vertex partition (RVP) model (cf. Section 4.2).

The algorithm can be implemented in the k-machine model by simulating the corresponding

CONGEST model algorithm. Note that since each vertex and its incident edges are assigned

to a machine (i.e., its “home” machine — cf. Section 4.2), the machine simply simulates

the code executed by the vertex in the CONGEST model. If a vertex u sends a message

to its neighbor u in the CONGEST model, then the home machine of u sends the same

message to the home machine of v (addressing it to v). If u and v have the same (home)

machine, then no communication is incurred, otherwise there will be communication along

the link that connects these two home machines. This type of simulation is detailed in
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[58]. Hence one can use the Conversion Theorem (part a) of [58] to compute the round

complexity of the CDRW implementation in the k-machine model which depends on the

message complexity and time complexity of CDRW in the CONGEST model. If M and

T are the message and time complexities (respectively) in the CONGEST model, then in

the k-machine model, by the Conversion Theorem, the above simulation will give a round

complexity of Õ(M/k2 + (�T )/k), where � is the maximum degree of the graph.6 For the

SBM model, � = O(np/r + (n � n/r)q). Hence plugging in the message complexity and

time complexity from the CONGEST model analysis, we have that the round complexity in

the k-machine model is Õ((n
2

k2 + n
kr )(p+ q(r � 1))).

4.5 Experimental Results

In this section we experimentally analyze the performance of our algorithm in the PPM

model under various parameters. In particular, we show how accurately our algorithm can

identify the communities in the PPM model. As an important special case, we also analyze

the case when r = 1, i.e., there is only one community — in other words, the whole graph

is a G(n, p) random graph. In this case, we expect the algorithm to output the whole graph

as one community.

Since in the PPM model, we know the ground-truth communities, we use the F-score

metric [71] to measure the accuracy of the detected communities. Let CD be the set of

detected communities by CDRW algorithm and CG = [Ci be the ground-truth communities

(each Ci is a ground-truth community). Let Cs be the detected community by CDRW using

seed node s and Cg be the ground-truth community that seed node s belongs to. Then

the precision is the percentage of truly detected members in detected community defined

as precision(Cs) = |Cs\Cg |
|Cs| and recall is the percentage of truly detected members from the

6
Õ notation hides a polylog n multiplicative and additive factor.

67



Figure 4.2: Community detection accuracy of CDRW algorithm on Gnp random graphs. It
shows that even when the graph is sparse, when p is small and as close to the connectivity
threshold as possible, its accuracy is still high. The vertical line shows that when the size is
big enough (n � 210), the accuracy becomes almost 1.0.

ground truth community defined as recall(Cs) = |Cs\Cg |
|Cg | . Both precision and recall return a

high value when a method detects communities well. For example, if all the detected mem-

bers belong to the ground-truth community of the seed node, then its precision is equal to 1.0;

and if all the ground-truth community members of the seed node are included in the detected

community, then its recall value is equal to 1.0. We utilize the F-score as our accuracy mea-

surement metric which reflects both precision and recall of a result. The F-score of a detected

community Cs is defined as: F -score(Cs) = 2⇥precision(Cs)⇥recall(Cs)
precision(Cs)+recall(Cs) . Then the total F-score is

equal to the average F-score of all detected communities: F -score = 1
|CD|

P
Cj2CD F -score(Cj).

Again a higher F-score value means a better detection of communities.
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The first challenge for any community detection (CD) algorithm is detecting a random

graph as a single community. This challenge becomes harder when the graph becomes sparse

and it gets closer to the connectivity threshold of a random graph (i.e., p = c logn
n , s.t. c > 1)

[15]. In the first experiment we show that our CDRW algorithm detects almost the whole

graph as a single community resulting in a high F-score accuracy value, see Figure 4.2.

Figure 4.2 shows that when we increase the size of graph n, the accuracy of our algorithm

increases as well. For example, for n = 210 the accuracy metric becomes almost 1.0, meaning

that almost all the nodes of the graph are detected as a single community. It also shows that

when p increases (the graph gets denser), the accuracy also increases. So in the remaining

experiments on PPM graphs, we choose two lowest values of p = c logn
n and p = c log2 n

n for

generating its random parts in order to give more challenging input graphs to the CDRW

algorithm.

After showing that CDRW works well on Gnp random graphs, now we consider PPM Gnpq

graphs. At first we fix the number of communities to two (r = 2) so that we can consider

the e↵ect of various values of p and q. This will show us the threshold for the ratio of p
q

where CDRW works well. As we shown in Figure 4.2, when the size of each random graph

is big enough (n � 210), CDRW detects a single Gnp community well. Therefore we set the

size of Gnpq to n = 211 which makes each ground-truth community big enough (nr = 210).

When considering PPM graphs with p and q, as the connectivity probability for intra- and

inter-community edges, CD algorithms face hardship in detecting communities when p is

small and q is relatively high. But the p
q ratio can not be arbitrarily small because it causes

the two communities to blend into each other and the graph looses its community structure.

Figure 4.3 shows the accuracy of CDRW for di↵erent values of p and q. We highlight that

it performs well even for sparse parted Gnpq graphs: for p = 2 logn
n , CDRW detects the two

communities with a high F-score value (more than 0.90) for q = 0.1
n and 0.6

n . In other words,

our CDRW algorithm works well even on sparse parted PPM graphs when the p
q ratio is as
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Figure 4.3: Performance of CDRW algorithm on PPM graphs when there are two parts
(r = 2). We fixed the size of the graph to n = 211, each planted partition is of size 210.

It shows that CDRW works well for small values of p = 2 logn
n and p = 2 log2 n

n when q (the
probability parameter for the existence of inter-community edges) is small enough.

small as ⌦(log n). Notice that when p = 2 logn
n , the two ground truth communities of the

PPM graph are as sparse as possible, i.e., close to its connectivity threshold. In the latter

example, for instance, when q = 0.6
n , a partition has in expectation ein =

�n
r
2

�
p = 10230 intra

and eout = n
r (n �

n
r )q = 614 inter community edges. It means the ratio of inter to intra

community edges ( eoutein
) is high, equal to 6%.

We now consider the e↵ect of increasing the number of ground-truth communities (r) in

order to see its e↵ect on the accuracy of our CDRW algorithm, see Figure 4.4. We do it in two

ways. First, we fix the size of each community to 210 and vary the number of communities.
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(a) n = r ⇥ 210. (b) n = 8⇥ 210.

Figure 4.4: Varying the number of ground-truth communities to see its e↵ect on the accuracy
of our CDRW algorithm. It shows that when we increase the number of communities,
the accuracy decreases slightly. This is expected because the number of inter-community
edges increases. Comparing Sub-figures 4.4a and 4.4b, we see that if we fix the number
of communities, then the accuracy gets higher when the size of the communities becomes
larger.

The size of graph is n = r ⇥ 210. Figure 4.4a shows that our CDRW algorithm works well

when we reasonably increase the number of communities. Second, we fix the size of graph

to a number so that the size of each community is 210 when the number of communities is

the biggest (r = 8), see Figure 4.4b. Then, when the number of communities becomes lower,

the size of communities gets bigger. By comparing Sub-figures 4.4a and 4.4b, we see that

when the number of communities are the same, the accuracy is higher when the size of each

community is bigger.
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Chapter 5

Conclusion

We presented distributed algorithms to solve two basic graph problems. First, we presented

fast and e�cient distributed algorithms for the fundamental Hamiltonian cycle problem in

random graphs. Our algorithm (DHC2) is fully distributed and runs in truly sublinear time

— Õ(1p) — for all ranges of p; in fact, the denser the graph, the smaller the running time.

We also presented a conceptually simpler upcast algorithm with the same running time, but

it is not fully-distributed, and does not achieve load-balancing.

Second, we proposed a distributed algorithm, CDRW, for community detection that

works well for the PPM model (Gnpq random graph), a standard random graph model used

extensively in clustering and community detection studies. Our CDRW algorithm is rela-

tively simple and localized; it uses random walks and the mixing time property of graphs

to detect communities. We provided a rigorous theoretical analysis of our CDRW algorithm

on the Gnpq random graph and characterized its performance vis-a-vis the parameters of the

model. In particular, our main result is that it correctly identifies the communities provided

q = o(p/(r log(n/r))), where r is the number of communities. Our CDRW algorithm takes

O(r ⇥ polylog n) rounds and hence is quite fast when r is relatively small.
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Our fully-distributed algorithms can be used to obtain e�cient algorithms in other dis-

tributed message-passing models such as the k-machine model [58], which is a distributed

model for large-scale data computation. We also believe that our presented ideas can be

extended to obtain similarly fast and e�cient fully distributed algorithms for other random

graph models such as the G(n,M) model and random regular graphs [16].

Several open questions arise from our work. For the Hamiltonian cycle problem, is

it possible to show non-trivial lower bounds for the HC problem in random graphs? In

particular, we conjecture that our upper bounds are essentially tight (up to polylogarithmic

factors). Can we find a sublinear time, i.e., an algorithm running in o(n) rounds for p = c lnn
n ,

i.e., at the threshold; or show that this is not possible? Nothing non-trivial is known regarding

upper bounds for general graphs. For the community detection problem, it will be interesting

to study the performance of our CDRW algorithm on other graph models. It can be a starting

point to design and analyze community detection algorithms that perform well in the more

challenging case of real-world graphs.
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[36] Paul Erdős and Alfréd Rényi. On random graphs, i. Publicationes Mathematicae
(Debrecen), 6:290–297, 1959.
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