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Abstract

Large scale evacuations are important in the wake of events such as an anticipated

strike of a natural disaster or a looming military attack. Planning to evacuate people

towards safe areas and effective management of the plan using limited set of resources

is, therefore, an integral part of disaster management. Evacuation planning based

on deterministic estimate of demand at the source nodes and capacity of the road

links yield unsatisfactory result. Recent research publications are addressing the

randomness associated with such events using stochastic optimization models. Models

considering the inherent uncertainty associated with transportation network facilitate

a robust and efficient evacuation plan.

In this dissertation, large scale network flow optimization models for both de-

terministic and stochastic evacuation scenarios are presented with an emphasis on

coming up with an effective and reliable evacuation plan. Effective implementation

of an evacuation plan in the wake of a limited set of resources demands that a mini-

mum number of paths are selected for loading the evacuation traffic. This objective

has eluded the eyes of the research community involved in evacuation planning op-

timization. Model, solution technique and computational results for this problem is

presented that describes the complete evacuation plan comprising of paths, traffic

flow and starting schedule.

Traffic scenario is often non-deterministic and assumption of a deterministic ca-

pacity for the road links would result in poor quality evacuation plan in terms of

paths and time required for evacuation. Motivated by the stochastic behavior of the

arc capacity, a chance constrained model for bottleneck minimization is proposed that

finds the evacuation paths and the traffic flow rate on the paths within a given time

bound that would result in minimum traffic congestion. Given the horizon time for
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evacuation, model selects the evacuation paths and finds flows on the selected paths

that result in minimum congestion in the network and finds the reliability of the

evacuation plan. Numerical examples are presented and we discuss the effectiveness

of the stochastic models in evacuation planning. It is shown that the reliability based

evacuation plan is conservative as compared to plans obtained using a deterministic

model. Stochastic models guarantee that congestion can be avoided with a confidence

level at the cost of increased clearance time.

Apart from the random arc capacity, in this dissertation we propose an evacua-

tion planning model where the demand for the number of evacuees is unknown and

is subject to uncertainty. Chance constrained approach is used in such situations to

enforce the constraints for given level of confidence. We analyze the model for the

situation when the probability distribution of the random demand is not known and

only partial moments and support information is specified. A distributional robust

chance constrained model is proposed for evacuation planning that guarantee the ve-

hicle demand constraints for any probability distribution consistent with the known

properties. We find a tight upper bound for the shortfall in evacuating people from

the specified target in the given clearance time. Numerical experiments show that

the robust approximation method of chance constraints provide excellent results as

compared to solution based on approximated distribution and sampling based solu-

tion.
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Chapter 1 Introduction

1.1 Introduction

“Destruction, hence, like creation, is one of Nature’s mandates.’’ This famous

quote by Marquis de Sade signifies the inevitability of destruction as one of the laws

of nature. Besides nature’s blow, there are numerous other major and minor incidents

resulting from human deeds having short-term or long-term implications on the health

and lives of people. History is replete with incidents when men were faced with life

threatening events. Survival has always been the prize for only those smart few who

were able to quickly plan the escape and execute the plan effectively. In this age of

technological advancement, we are still faced with similar life threatening events and

the rule of the game remains same: “Survival of the quickest.” There has been an

added rule in this game owing to large cities and huge population residing in them

- “Efficient planning.” In fact, efficient planning is a precursor for quick and smooth

evacuation process. Survival in the time of disasters depend on either how proactive

or how reactive the response is in terms of scalability and effectiveness.

When community evacuation becomes necessary in light of an approaching danger,

emergency managers face a set of logistical and action timing decisions. Decisions con-

cerning pre-positioning of personnel and material, mobilization of resources, decision

on evacuation routes and schedules, distribution of humanitarian aid, communication

of advisory messages, and updating of supplies, all of these are inter-dependent and

become the task of prime importance. Attempts have been made to address this prob-

lem by applying the concepts of operations research (OR). Mathematical models have

been designed by that attempt to mimic the real evacuation scenario. These models

are then solved for optimizing the evacuation process. This dissertation focuses on
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applications of OR models in evacuation planning.

Emergency evacuation is the immediate and rapid movement of a population in

the wake of an impending danger from an impacted geographical region towards safer

destinations. Since population is primarily concentrated in cities, it becomes imper-

ative for the disaster management personnels to have an efficient plan that could

safely evacuate its residents to a shelter location and avoid the chaos. Traffic plan-

ning during evacuation is not an easy problem owing to a highly complex dynamics

of evacuation resulting from behavior of people and unforeseen circumstances of the

event. Mass exodus calls for effective and efficient route planning and schedule alloca-

tion considering the spatial and temporal constraints in situations of road congestion,

blockage or otherwise inaccessibility due to other dangerous circumstances.

The US federal government, through FEMA, requires all states to have a com-

prehensive emergency operations plan. These plans guide emergency operations for

all types of hazards, from natural to man-made and technological. While the general

evacuation issues faced by coastal states are similar, different strategies and plans have

been developed to deal with variations in population, geography, and transportation

system characteristics. States also differ in the way that they delegate authority,

allocate people and resources, and enforce evacuations. They seek to maximize the

efficiency of their emergency operation plans within these many constraints. Evacua-

tion orders are issued by the local authorities after analyzing the severity and possible

consequences of the disruptive event. The evacuation procedure is then carried out

according to the devised plan. From a logistics viewpoint, the evacuation plan model

answers the following basic questions:

1. How much time would be required for evacuation?

2. What are the ideal routes that should be used for evacuation?

3. How should the traffic flow be managed within limited infrastructure?

2



A critical issue in evacuations, particularly during hurricanes, is timing. The

earlier the evacuation order is issued, the more time residents and tourists will have

to evacuate. Unfortunately, the earlier it is issued, the greater the possibility the

hurricane could change course before landfall, rendering the evacuation unnecessary.

Emergency management centers would not want to “cry wolf” and issue an evacuation

order in situations of false alarm. Therefore, they want to wait until the last minute

before making such an important decision. The time required to evacuate is estimated

from a combination of clearance times and the pre-landfall hazard time (Wolshon et al.

[2005]) as shown in Figure 1.1. Clearance time is the time required to configure all

traffic control elements on the evacuation routes, initiate the evacuation, and clear the

routes of vehicles once deteriorating conditions warrant its end. Pre-landfall hazards

time is the time during which hazardous conditions exist prior to actual hurricane

landfall. Hence, a nearly accurate estimate of the clearance time would arm the

evacuation managers with a plan for the evacuation according to the horizon time

before the danger hits the shores.

Figure 1.1: Components of evacuation time (Wolshon et al. [2005])

3



Clearance times are estimated using evacuation traffic models, which are depen-

dent on data such as the population anticipated to evacuate, the number of lanes

available for evacuation, and impacts from other areas that will affect the evacuation

such as flooding and road closures. In an ideal scenario, the objective of a good

evacuation plan is to minimize the evacuation time such that a maximum number

of evacuees can be moved away from danger. In order not to overcharge the trans-

portation infrastructure, it is essential to find an efficient set of routes to load the

evacuating traffic and allocate a starting schedule and flow on those paths as per the

priority. Transportation planning for evacuation is very challenging due to the huge

amount of people evacuating from a large geographical region and inherent uncer-

tainty in transportation parameters present during such rare events. The amount of

time required for clearance can be significantly lengthened by en route congestion and

the setup time required for complex control features (such as those required for con-

traflow). Managing this enormous task effectively requires a similar scale of resources,

thereby, making the problem even more complex.

Network optimization approach is used in this research to address the highly com-

plex dynamics of transportation planning during evacuation. Mathematical models

trying to mimic the evacuation scenario are used and then solved for optimizing the

evacuation plan. The emphasis of this research is to optimize the use of limited

resources and come up with a reliable plan that account for mishaps that might oc-

cur due to inherent randomness. Our specific focus is on minimizing the number of

evacuation paths and we build upon this to study the impact of uncertainty on the

evacuation plan. Research presented in this thesis would provide direction in devis-

ing an evacuation plan which is efficient in terms of resource utilization and robust

in terms of handling randomness.
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1.2 Motivation

Evacuation planning optimization is focused on minimizing the evacuation time

but the time is a surrogate parameter in evaluating a successful evacuation. In many

practically motivated decision problems a number of uncertain, unforeseen or not

completely known factors may play a non-negligible role thus affecting the decisions

taken without considering these factors. It is therefore advisable to explicitly consider

such uncertainties during the planning phase. Successfully implementing an evacu-

ation plan with the calculated clearance time is dependent on numerous supporting

factors that indirectly or directly affects the time when the network has attained the

desired outcome. Motivation to investigate the reliability and efficiency of the evacu-

ation plan under uncertainty and limitation of the resource comes from the following

discussion.

1.2.1 Least number of evacuation paths

Evacuations specially with little or no-notice time produce a distinct set of chal-

lenges for those personnel involved in responding to the incidents or executing the

evacuations. Such evacuation notices are impromptu and do not provide emergency

managers and transportation personnel with the opportunity to prepare in immediate

advance of the incident. This curtails the preparation or readiness for executing the

evacuation which is critical to a successful evacuation effort. Responders will be un-

able to pre-activate or pre-position resources in preparation for the specific situation

mandating the evacuation. Establishment of a command structure, the activation of

an operations center, or the tasking and distribution of personnel and resources to

manage the evacuation are absolutely necessary during such events of chaos. More-

over, there are limited number of personnel with particular skills and knowledge and

also limitation on the tools to determine and monitor the status of the transportation
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network whose absence or shortage can significantly hinder the evacuation operation.

Situation demands for a plan that use minimum resource and still is equivalently

effective in carrying out the evacuation.

Utilizing least number of evacuation paths that would be able to navigate maxi-

mum number of people using minimum time would be perfect in terms of managing

this huge process within the given constraint of the resources and still achieving the

target. Less number of paths would result in concentrating the resources to a few

selected routes and managing the operations perfectly. Effective implementation of

an evacuation plan in the wake of a limited set of resources, therefore, demands that

a minimum number of paths are selected for loading the evacuation traffic. This

objective has eluded the eyes of the research community involved in evacuation plan-

ning optimization. To fill this important gap, a bi-objective dynamic network flow

model is formulated and an evacuation plan is proposed that uses the least number

of evacuation paths for complete evacuation within the minimum clearance time.

1.2.2 Minimum congestion

The relation between travel time and roadway capacity can be best explained

using the link performance function. According to Bureau of Public Records (BPR),

the link performance function for average travel time is given by

ta(Qa,Ua) = tfa

[
1 + β

(Qa
Ua

)n]
, (1.1)

where subscript a refers to a particular link in A ; tfa; Ua; ta, respectively, are link

a’s free-flow travel time (which is deterministic), capacity, and travel time with flow

volume Qa; β and n are deterministic parameters associated with the BPR travel

time function for which the value of β = 0.15 minimum and n = 4.0 are typically

used. Now consider a scenario where a fixed flow of vehicles is allocated to the link

6



but the link capacity is subject to stochastic degradation (due to weather, accidents,

driver behavior etc.). In such scenario, Ua is replaced by the random variable Ũa.

Then in (1.1), the link travel time ta becomes a random variable with its mean and

variance expressed as

E(t̃a) = E

(
tfa

[
1 + β

(
Qa
Ũa

)n])
= tfa + βtfaE

[(
Qa
Ũa

)n]
, (1.2)

var(t̃a) = E[(t̃a)2]− E2(t̃a). (1.3)

Assuming that the free flow travel time tfa is deterministic and constant, expres-

sions (1.2) and (1.3) allow the calculation of the expected value E(t̃a) and variance

var(t̃a) of link travel time which depends on the probability distribution function of

link capacity Ũa. Using the arc transit time as

ta = E(t̃a) + var(t̃a), (1.4)

the total clearance time would, therefore, increase as compared to the scenario when

the free flow speed is considered with deterministic capacity. This highlights the

importance of accounting for congestion probability in order to make a realistic evac-

uation plan.

Definition 1. Road capacity: The Highway Capacity Manual [2000] (HCM) defines

capacity as “the maximum sustainable hourly flow rate at which persons or vehicles

can reasonably be expected to traverse a point or uniform section of a lane or roadway

during a given time period under prevailing roadway, environmental, traffic, and

control conditions.”

Much of the evacuation planning literature considers the designed capacity of a

roadway link as constant at all times. Maximum flow rate or traffic volume below this

capacity is considered as acceptable and volume above this is unacceptable resulting

7



Figure 1.2: Probability of traffic breakdown taken from Kerner [2011]

in breakdown. However, it is well known from Chen et al. [2002], Lo and Tung [2003]

and Persaud et al. [1998] that actual capacity of an arc representing a section of a

road is not constant and is a function of volume of the vehicles present in that arc

at a given time. In a realistic situation, the element of stochasticity which is locally

a certain disorder in a queue of cars develops like a domino effect into a macroscopic

phase transition from free to congested flow. Mahnke et al. [2005] describe this

phenomenon as traffic breakdown. According to Kerner’s three-phase traffic theory

(Kerner [2011]) (see Figure 1.2), when the flow rate q of the link exceeds a certain

threshold value qth, then network enters a metastable state where a traffic breakdown

occurs with some finite probability and this probability approaches a value of 1 when

the flow exceeds the maximum volume qmax possible for the link. Existing evacuation

planning models with an objective of minimizing the clearance time pushes maximum

flow out of the network which is limited only by the arc capacity and do not consider

congestion probability. Stochastically degrading capacity of the road link would result

in congestion which subsequently would increase the clearance time for the network.

Thus, not accounting for capacity uncertainty and congestion probability may lead

8



to suboptimal or possible infeasible solutions in real evacuation situations. This calls

for a new mathematical approach that incorporates the uncertainty inherent in the

estimates of the roadway capacity to come up with a reliable evacuation plan.

1.2.3 Distributional robustness to demand uncertainty

Efficient planning of a large scale evacuation requires an accurate description of

data. But evacuation is a rare event and enough data are not available to model

the underlying uncertainty. Demand estimates are usually based on the judgment

of individuals, creating inconsistencies in estimation methods. In several contexts,

information about the past behavior can be used to compute statistical information

which in turn is used to construct the expected value problem. In such problems, the

uncertain parameters are assumed to take their expected value and the deterministic

solution to this problem will provide decisions which work reasonably well on aver-

age. However, in the context of evacuation problem, when some unplanned events

occur, it may seriously impair the effectiveness of the evacuation plan. This demands

that we address uncertain input parameter by implementing robust decisions which

minimize the negative impact of some real time recourse actions. Traditionally, worst

case demand is assumed to solve the deterministic evacuation problem leading to

high clearance time. But it is necessary to carefully balance the operational failure

probability due to high demand, on one side, and minimize the clearance time for

evacuation by allocating the available capacity on the other.

Robustness to demand uncertainty can be accounted for using the method of

robust convex optimization. Scenario based models are sometimes used but this is

unnecessary for cases when the worst-case performance have to be optimized. In this

research, stochastic programming method of chance constrained programming has

been applied to formulate and analyze the demand uncertainty. Consider a chance
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constrained program of the form

minimize f(x) (1.5)

s.t. P(F (x, ξ̃) ≤ 0) ≥ 1− ε, (1.6)

where ξ̃ is the random variable with an associated probability function P and F is a

function which describes a particular system. We fix a probability level ε ∈ [0, 1] that

require the constraints of the system to be satisfied with a confidence level greater that

or equal to (1− ε). How to manage chance constraints strongly depends on what we

know about the probability distribution of the uncertain parameters. In the above

model, the basic assumption is that the probability distribution of the underlying

random parameter is exactly known. However, in many cases, it may be very difficult

to accurately identify the distribution required to solve a problem. Especially, this

is more likely true when we are considering an evacuation transportation problem

due to the inherent complexity and uncertainty. Typically, one has only partial

information about P, e.g. about its moments or its support. Replacing the unknown

distribution P in (1.6) by an estimate P̂ corrupted by measurement errors may lead

to over-optimistic solutions which often fail to satisfy the chance constraint under the

true distribution P. If we want to evaluate, bound or approximate the probability

in the chance constraints we have to make some assumptions about the probability

distribution. These assumptions affects the probability measure and consequently

the optimal choice. This research, therefore, presents the evacuation planning model

using the distributionally robust chance constrained setting as shown below.

minimize f(x) (1.7)

s.t. P(F (x, ξ̃) ≤ 0) ≥ 1− ε, ∀P ∈ P . (1.8)

10



1.3 Contribution

This research is an effort to come up with an effective evacuation plan for a large

geographical region. Implementing an evacuation plan requires the mobilization of

huge resources and these resources are often limited. Also, providing a reliable flow

is very important in the context of emergency evacuation. This thesis, therefore,

lays emphasis on finding strategies that can optimize the use of limited resources and

account for the uncertainty in the optimization model.

The key contributions of this thesis are as follows:

1. Optimization model to find an evacuation plan that utilizes least number of

evacuation paths.

2. Model that accounts for the capacity uncertainty.

3. Introduction of model and solution that minimizes the probability of congestion

in a stochastic network setting.

4. Use the verification model to find the reliability of an evacuation plan in terms

of congestion probability.

5. Distributional robust chance constrained optimization for evacuation planning

under demand uncertainty.

1.4 Organization

This thesis is organized as follows. Chapter 2 is a review of the optimization

approach in evacuation planning with emphasis on stochastic models and also the

models that aims at efficient use of limited infrastructure. Chapter 3 develops a

dynamic network flow model for minimizing the number of evacuation paths. The

11



solution method is presented for this model and the results are discussed using an

example of Houston evacuation network under the assumption of deterministic pa-

rameters. Extension of the minimum path model to a stochastic setting that account

for capacity uncertainties of the links is presented in Chapter 4 . A reliability based

model is presented and the solution of the convex constrained model is discussed in

this chapter. In Chapter 5 we present a distributionally robust chance constrained

model to account for demand uncertainty in the evacuation planning model. In

Chapter 6, we conclude the dissertation with a summary of our contributions.
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Chapter 2 Literature review

Evacuation planning has been a major research topic in the operation research

(OR) community. The research on this problem has evolved over the years to en-

capsulate various aspects of a real evacuation scenario and come up with a realistic

evacuation plan. Mathematical models for evacuation planning are handled using

network models. Initial research on this problem done by Chalmet et al. [1982] ad-

dressed building evacuations during emergency situations. Numerous other models

were developed that handled building evacuations and an exhaustive survey on these

models is presented in works by Aronson [1989] and Hamacher and Tjandra [2002].

Many of the models designed for building evacuations are also applicable to regional

evacuation. This section discusses the models that are applicable for both types of

evacuation problems. An excellent and comprehensive reading for network optimiza-

tion approach can be found in Ahuja et al. [1993]. In particular to the network

models for modeling evacuation problems, the dissertation by Tjandra [2003] is a

comprehensive read.

Designing an evacuation plan often involves a series of optimization problems with

various objectives and constraints. Given the large number of research papers in this

area, we classify the problem into broad categories to provide some structure for the

rest of the chapter. Different aspects of the problem in evacuation planning can be

classified as follows:

1. Deciding routes, assigning traffic and finding clearance time

2. Efficient use of limited infrastructure

3. Reliable planning in stochastic conditions

Although, we have offered this simple classification, it is found that many papers
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deal with problems that intersect two or more of the above categories. The models

that we discuss in this chapter are classified under a common umbrella of macroscopic

modeling. Macroscopic models do not consider any individual’s behavior during the

emergency situation but are useful to provide good lower bounds for evacuation time.

Individual behaviors can be modeled using microscopic models and simulations are

used for their analysis.

Since time is a decisive parameter during the evacuation, an estimate of evacu-

ation time or clearance time is the primary information required by the evacuation

planners. Most of the literature in evacuation planning is therefore centered around

minimization of the clearance time. As per the FEMA report prepared jointly by

DOT and DHS [2006], one of the criterion for the evaluation of an evacuation plan is

based on the effective implementation and ease of managing the routes loaded with

the evacuating traffic. Therefore, deciding the best routes and assigning the traffic

on the selected routes based on the evacuation schedule that leaves behind minimum

evacuees is an important aspect of evacuation planning.

Highway network clearance times are greatly influenced by other factors such as

location of shelters, number of intersections on the selected routes, and decision on

the timing for start of contraflow on certain highway stretches. Overlooking these

factors may result in a build-up of traffic on certain road sections. Efficient use of

the limited transportation infrastructure is therefore required. Evacuation is a rare

scenario and many of the parameters that are used to come up with a prescriptive

evacuation plan are random. Parameters such as number of evacuees, travel time, and

link capacity cannot be considered as deterministic. Therefore, stochastic models are

essential to embed the uncertainty associated with the problem and come up with

a reliable evacuation plan. A detailed discussion of the optimization models and

solution techniques for each of the above classification is provided in subsequent sub-

sections.
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2.1 Network models for evacuation planning

Routing evacuating traffic involves selecting a set of paths among the alternative

paths between origin−destination pairs. Typically, the number of evacuees for a

regional evacuation are huge and the limited number of paths can’t handle all the

vehicles simultaneously. Therefore, evacuees have to be grouped according to a pre-

allocated schedule of evacuation. Since the objective is to evacuate in minimum time,

the vehicle routing and scheduling decisions are intertwined. At the macroscopic level,

evacuation routing is a “many to many” routing problem with multiple origins and

multiple destinations. From the perspective of evacuation planner whose target is to

evacuate the maximum number of people within a minimum time, Wardrop’s traffic

principle of System Optimal (SO) flow is best suited to decide the routes, schedule

and traffic flow.

A precise estimate of the evacuation time is of primary importance to the evac-

uation planners. In this section, we will provide a detailed treatment of how the

answer to this question is found and subsequently discuss the methods for deciding

the routes and traffic assignment for the evacuation. The objective of finding the

minimum time is modeled as a minimum cost network flow problem. Under the as-

sumption of deterministic travel time and capacity of the arcs, the evacuation model

minimizes the clearance time. Since time is a decisive parameter in such problems, dy-

namic networks are used instead of static ones and the evacuation planning problems

are modeled under the discrete time dynamic network flow framework.

A discrete time dynamic network flow problem is a discrete time expansion of

a static network flow problem. In this case we distribute the flow over a set of

predetermined time periods t = 1, 2, · · ·T . Consider a directed static network G =

(N ,A ) with N and A as the set of nodes and arcs, respectively. A constant transit

time λij is associated with each arc (i, j) ∈ A . The time expansion of G over a time
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horizon T defines the dynamic network GT = (NT ,AT ) associated with G . The time

expansion essentially is the replication of the static network G at each discrete unit

of time in T . Since there are multiple copies of source and sink nodes, a super source

node s and sink node d is introduced to create a single source/single sink network.

The time-expanded network can be treated as a static network and then any minimum

cost static network flow algorithm can be applied to obtain the solution. The benefit

of a time-expanded network is that it facilitates solving the flow over time problems

by static flow computations. On the other hand, time-expanded networks are huge

in practice and the size of the network increases linearly with the given time horizon

T , and therefore, exponentially in the input size. This makes the problem difficult to

solve and is proved to be a pseudo-polynomial problem in Hoppe and Tardos [1995].

A number of dynamic network flow models were discussed by Tjandra [2003]

in which the objective of the models was to push for maximum flow in minimum

time. Given the total number of evacuees, the capacity of the road links and the

shelter destinations, the objective is typically to minimize the time for sending all the

supply from source to destination for the underlying evacuation network. A mixed

integer dynamic network flow model under the SO principle of traffic flow is used.

Other variants of this problem can be obtained by changing the objective function to

maximizing flow out of the network (maximum dynamic flow problem) during a given

time horizon T , maximizing flow out of the network for any smaller time horizons

T ′ ∈ T (universal maximum flow problem) and minimizing the time horizon to clear

the network (quickest flow problem). Since the problem is pseudo-polynomial because

of the large network size of a time-expanded network, a number of solution techniques

have been proposed. Hoppe and Tardos [1995] came up with a first polynomial time

algorithm for the quickest transshipment problem and provided an integral optimum

flow that can send exactly the right amount of flow out of each source and into each

sink in the minimum overall time.
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Heuristic algorithms have been proposed to come up with routes and schedules for

the evacuation. One such algorithm is Capacity Constrained Route Planning (CCRP)

proposed by Lu et al. [2005]. This algorithm divides evacuees into multiple groups

and assigns a route and time schedule to each group. The CCRP algorithm employs

a shortest path algorithm to find the shortest route from source nodes to destination

nodes and assigns the evacuation schedule based on the available capacity on the

route. The solution of the CCRP algorithm is within ten percent of the optimal

evacuation time in all test cases. Another heuristic approach by Lim et al. [2012]

used Evacuation Scheduling Algorithm (ESA) for the capacity constrained network

flow optimization. ESA utilizes Dijkstra’s algorithm for finding the evacuation paths

and a greedy algorithm for finding the maximum flow of each path and schedule to

execute the flow for each time interval.

In general, the mathematical models and the solution methods discussed in this

section are only useful for finding a lower bound of evacuation time and the corre-

sponding routes and schedules. A closer look of the transportation network (such as

intersections), the dynamics of the evacuation (such as contraflow decisions, priority),

and realistic assumptions (i.e., occurrences of incidents, congestion) would present a

better picture and result in a realistic evacuation plan. Researchers and practitioners,

therefore, consider the above factors carefully and incorporate them in the evacuation

planning model. In the next two sections, we discuss the models for decision making

in evacuation that takes these factors into account.

2.2 Efficient use of the critical roadway segments

As transportation infrastructure is a limited resource both in terms of directional

accessibility and capacity, it is worth pursuing a routing plan that makes optimal use

of this infrastructure. Lane-based routing and contraflow of traffic are two such traffic
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engineering tools that can be very effective for routing the evacuating traffic during

a catastrophic event. Apart from these two, decisions corresponding to the location

of shelters is also very important so that the traffic is not biased towards a particular

shelter location and does not saturate a specific route. Cova and Johnson [2003] first

modeled the lane based evacuation routing problem (ERP) as an integer extension of

the min-cost flow problem. The primary objective of the model is to route vehicles to

their closest evacuation zone exit. A secondary objective is to minimize the number of

intersection merging-conflicts. Furthermore, the model prevents intersection crossing-

conflicts.

Contraflow is emerging as an important and widely used tool to improve evac-

uation traffic capacity. Unlike normal traffic conditions where traffic is in both di-

rections, evacuation events result in a traffic that is directed to a single direction.

Contraflow is defined as the reversal of traffic flow in one or more of the inbound

lanes of a divided highway for use in the outbound direction, with the goal of in-

creasing capacity. The increased capacity that contraflow provides can substantially

reduce clearance times. From the optimization perspective, research on contraflow

concentrates on deciding the network configuration, i.e., coming up with the opti-

mum network structure with lane directions that will result in minimum evacuation

time. Heuristic solution approach was proposed by Kim and Shekhar [2005] to come

up with a network configuration for contraflow. The location of shelters in a region

threatened by a hurricane can greatly influence the highway network clearance time,

i.e. the time needed by evacuees to escape from origin points to safe areas. Sher-

ali et al. [1991] developed and solved a location-allocation model for determining a

set of viable shelter locations from among potential alternatives, and accordingly,

simultaneously prescribing a traffic diversion strategy in order to minimize the total

evacuation time of automobiles from designated origins to the shelters under some
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emergency conditions. But the problem of finding minimum evacuation paths to ad-

dress limited resource while still having the same throughput from the network has

never been addressed in literature.

2.3 Stochastic Models

The routing models do not properly capture the dynamic nature of transport risk

factors at the tactical level (e.g., traffic conditions, population density, and weather

conditions). Moreover, most of these risk factors cannot be known a priori with

certainty. They are both time-dependent and stochastic in nature; i.e., they are

random variables with probability distribution functions that vary with time. There

are numerous sources of uncertainty during evacuation and most are not easy to

quantify or control. Factors such as severity of the disaster, human behavior during

the evacuation, and the impacts of disasters on infrastructure are beyond our control.

There are two major factors that affect evacuation planning that are being studied by

the research community: the uncertain demand levels at the impact nodes and the

degrading capacity of the road links during disasters. These unexpected changes in

evacuation demand levels and capacity may result in significant differences in terms

of the predictions of a model. It is therefore advisable to explicitly consider such

uncertainties during the planning phase. This dissertation addresses both capacity

uncertainty of the arcs and the uncertainty of the demand to come up with a reliable

evacuation plan.

Developing a priori path sets for evacuation requires estimation of demand. The

anticipated demand may deviate significantly from the actual number of people evac-

uating. If the solution consists of a set of paths, and more demand appears than

was anticipated, there will be an insufficient number of paths to assign. Because the

realized demand differs from the predicted demand, new paths must sometimes be
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calculated by sub-optimal means. Estimating a static capacity value for the links is

equally difficult. As pointed out by numerous works on transportation network relia-

bility (Chen et al. [2002], Lo and Tung [2003]), the capacity degrades as the number of

vehicles on the link increases. This network has a higher probability of encountering

a catastrophic event, such as extreme congestion or perhaps gridlock.

Various demand loading models have been proposed based on different regions

and behavior of evacuating people. S-curve, Rayleigh distribution and sequential

logit model are the widely accepted evacuation demand models. Yazici and Ozbay

[2010] pointed out the uncertainty in the estimation process from the demand load-

ing models. In his work he found that the variations in demand curve or the level of

demand significantly impacted the clearance time and proposed a probabilistic model

to account for uncertainties in road capacities and demand origination during evacua-

tion. Traffic congestion occurs due to the uncertain demand and capacity realization

during emergency evacuation of a geographic region and is overlooked in the evacu-

ation planning literature. Not accounting for congestion probability at bottlenecks

may not be a correct approach. For an illustration, consider the following real life

example from a study by Litman [2006]: During Hurricane Rita the state’s highway

system in Houston became gridlocked and average travel time to Dallas were 24-36

hours, travel times to Austin were 12-18 hours and travel times to San Antonio were

10-16 hours, depending on the point of departure in Houston.

It becomes necessary to design approaches that account for demand and capac-

ity uncertainty and develop more robust solutions that are less likely to fail under

these extreme events and potentially reduce the variance of future costs. Robust

optimization (RO) and chance constrained programming (CCP) are used to account

for parameter uncertainty in cases when a mathematical program is formulated. The

models are developed for dynamic traffic assignment (DTA) with the underlying prin-

ciple of cell transmission modeling (CTM) introduced by Daganzo [1994]. The main
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advantage of using a stochastic programming technique is that they introduce relia-

bility to the model.

Research focusing on uncertainty during evacuation has recently been addressed

within chance constrained programming and robust optimization framework. Often,

it is impossible to know the exact probability distribution of the number of evacuees.

Yao et al. [2009] and Chung, Yao, Xie and Thorsen [2011] used robust optimization

framework to address demand uncertainty and came up with a robust model in which

no infeasibilities were allowed. Robust optimal solution can be interpreted as the

solution being feasible for any realization of the uncertain data and achieving best

worst case objective value. Choi et al. [1988] first addressed the building evacuation

problem with arc capacity as a function of flow in incident arcs. Chance constraint

programming for the traffic assignment problem is analyzed by Travis Waller and

Ziliaskopoulos [2006] and the results are obtained assuming an uniform distribution

for the traffic demand. Ukkusuri and Waller [2008] proposed a two stage stochastic

programming with recourse model to account for demand uncertainty. They showed

that not accounting for demand uncertainty explicitly provides sub-optimal solution.

All these models assumed a priori knowledge of underlying distribution. Miller-

Hooks and Sorrel [2008] proposed a noisy genetic algorithm to find the maximum

expected number of evacuees who can successfully evacuate within a given egress time

considering variable time and roadway capacity with known distribution functions.

Stepanov and Smith [2009] has approached the stochastic evacuation as a queuing

model to avoid congestion. None of the work in the evacuation literature, however,

considers capacity in the context of traffic breakdown and model the problem with

objective of minimizing the probability of congestion. Minimizing clearance time

which is central to all the models is very much dependent on the hypothesis of fixed

transit time on the arcs and the calculations can be misleading in case of the traffic

jam buildup. Therefore, our study aims to model the mass evacuation with stochastic
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arc capacity having an objective of minimizing the network congestion.

To account for unknown distribution, Ng and Waller [2010] came up with proba-

bility bounds on travel time reliability and gave probabilistic guarantees on the evac-

uation plan considering uncertainty in the number of evacuees and arc capacities. Ng

and Waller [2011] extend their work on capacity uncertainty by considering symmetric

probability distributions for the random capacity and provided the reliability bound

for a stochastic user equilibrium model. Recently, distributionally robust chance con-

strained approach was applied in dynamic traffic assignment (DTA) by Chung, Yao

and Zhang [2011] where they used the moment information to come up with a de-

terministic estimate of the problem. Ben-Tal et al. [2011] applied affinely adjustable

robust counterpart (AARC) method for finding the robust solution of the problem

and showed improvement over the deterministic and sampling based approach.

Stochastic optimization without the knowledge of underlying distribution is re-

cently being researched by a number of researchers. Calafiore and Ghaoui [2006] pro-

posed a distributionally robust chance constrained method and showed that a chance

constraint is second-order cone representable based on moment, support or symmetric

information of the uncertainty. More generally, they showed that for ε ≤ 0.5 individ-

ual chance constraints can be converted to second-order cone constraints whenever the

random vector ξ̃ is governed by a radial distribution. Nemirovski and Shapiro [2007]

developed Bernstein approximation of the chance constrained problem which is con-

vex and efficiently solvable and provide less conservative approximation of a chance

constraint. Ben-Tal et al. [2010] proposed a soft robust optimization framework for

robust optimization that relaxes the standard notion of robustness by allowing the

decision maker to vary the protection level in a smooth way across the uncertainty set.

Recently, Calafiore and Campi [2005], Erdoğan and Iyengar [2006] and Luedtke and

Ahmed [2008] have proposed to replace the chance constraint (1.6) by a point-wise

constraint that must hold at a finite number of sample points drawn randomly from
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the distribution P. The advantage of this Monte Carlo approach is that no structural

assumptions about P are needed and that the resulting approximate problem is con-

vex. However, the drawback of such sampling based methods is that they may be

computationally prohibitive to solve large problems or to solve problems for which a

small violation probability ε is required.

2.4 Traffic Assignment Models

The ultimate aim of traffic flow is to create and implement a model which would

enable vehicles to reach their destination in the shortest possible time using the

maximum roadway capacity. Traffic routing and scheduling problems usually use

either Wardrop’s user equilibrium (UE) or system optimum (SO) traffic flow principles

proposed by Wardrop [1952] to come up with the clearance time in current evacuation

literatures. SO principle is used by the network operator trying to minimize the

network-wide travel time and is based on the assumption that routes of the vehicles

and traffic flow on the routes are controlled by the system. UE principle reflects

the wish of the drivers to reach their destinations as soon as possible. When the

congestion occurs on highway, it will extend the delay time in traveling through the

highway and create a longer travel time. Under the user optimum assumption, the

users would choose to wait until the travel time using a certain freeway is equal to

the travel time using city streets, and hence equilibrium is reached.

During evacuation, how the situation will progress is uncertain and traffic break-

down occurs in the network with some probability which is not taken into account

by the network travel cost optimization principles proposed by Wardrop. In this

dissertation, we use network breakdown minimization (BM) principle proposed by

Kerner [2011] to model capacity uncertainty. Rather than an explicit minimization

of travel time that is the objective of SO and UE, the BM principle minimizes the
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probability of the occurrence of traffic congestion in a traffic network. Under a great

enough traffic demand, the application of the BM principle should lead to implicit

minimization of travel time in the network. Aim of the model is thus to assign link

flow rates that minimizes the probability of traffic breakdown in a network during a

given observation time.

2.5 Summary

Evacuation planning problem has been approached using static and dynamic mod-

els and substantial literature are published with different modeling versions of this

complex planning problem. Research also targets to efficiently utilize the limited in-

frastructure resource but the objective of using the least number of evacuation paths

has eluded the eyes of the research community involved in evacuation planning opti-

mization. To fill this gap, a bi-objective dynamic network flow model is formulated

to find the least number of evacuation paths for complete evacuation within the mini-

mum clearance time. Further, there are very limited works on the network evaluation

and design under uncertain conditions. The congestion minimization problem stud-

ied in Chapter 4 is the first attempt in literature to model the problem with the

objective of congestion minimization. Chapter 5 would further contribute to this im-

portant area by coming up with modeling approach for demand uncertainty with an

emphasis on distributional robustness of the evacuation plan to uncertain demand.
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Chapter 3 Using Least Paths for Evacua-

tion in Minimum Time

Motivation for this chapter is to provide the emergency managers with a plan

where a complete evacuation can be executed in least possible time and using the

minimum number of evacuation paths. A bi-objective arc-based formulation is done

for this optimization problem. The formulated model is non-linear mixed integer

problem and finding an optimum solution for the model is intractable for even a

moderate sized network. Therefore, a three phase solution method is proposed for

this problem by decomposing the original model into three separate sub-models. The

solutions of these models provide a lower bound on clearance time for complete evacu-

ation, a solution pool of feasible paths between all origin-destination (O-D) pairs and

the minimum number of paths required for evacuation in least possible time along

with the starting schedules on the selected paths assuming a variable flow rate on

the paths at each time interval. The proposed models are mixed integer linear prob-

lems and formulation is done for System Optimum (SO) traffic flow principle where

the emphasis is on complete network evacuation in minimum possible clearance time

without any preset priority.

For a situation when the emergency management has only limited number of re-

sources to allocate and, therefore, they want to limit the number of paths to be used

for evacuation, we provide solutions for the required clearance time and the corre-

sponding evacuation traffic flow and schedule that is channelized through those limited

number of paths. The proposed approach is able to provide emergency personnels a

complete schedule and route guidance for all the major and minor intersections in a

large evacuation network that can be imposed on the evacuees to safely escape from

the affected regions.
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3.1 Problem formulation

A dynamic network flow model has been used to mathematically represent traffic

flow evolution in an evacuation network for the proposed optimization model. A

dynamic network can be visualized as a static network with an additional dimension

representing time, i.e., the static network is repeated for each discrete slice of time.

Traffic assignment on such time-expanded networks relies upon a more aggregate

representation of traffic as a series of flows that attempts to match the demand for

road space with the capacity of the highway system’s links and intersections at various

time.

Consider a directed network D = (N ,A ) consisting a set of nodes N and a set

of arcs A . For each arc a ∈ A also expressed with a pair of tail and head, i.e.,

(i, j), define tij as the arc transit time and Uij as the arc capacity. Nodes in the

network are categorized into source nodes (Ns), intermediate nodes, and destination

nodes (Nd). Let Si be the number of evacuees at source node i ∈ Ns and Cj be

the capacity of destination node j ∈ Nd . We assume that there are T time periods

{0, 1, · · · , T −1} to complete transportation of evacuees from the source nodes to the

destination nodes.

The optimization model is designed for minimization of objective function which

is a sum of scaled value of clearance time and path counts for the number of paths to

be used for evacuation. We name this model as minimum time least path (MTLP)

model. In this model, for any path p ∈P, source node of path is denoted by Op and

the sink node of path by Dp. There are three decision variables in MTLP model:

fpt ∈ Z+: number of vehicles flowing on path p ∈P at any discrete time t ∈ T ,

yi,j,p =


1, if path p uses arc (i, j);

0, otherwise.
∀p ∈P,∀i ∈ N ,∀j ∈ A (i).
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wp =


1, if the path p is selected;

0, otherwise.
∀p ∈P.

The formulation of the proposed model is similar to the arc-based model (as

seen in Lim and Baharnemati [2011]). The objective function (3.1) is a linear com-

bination of two separate objectives, i.e., z = κ · za + zb. In the objective func-

tion, optimal value for the objective z∗a = min{∑p∈P wp|Constraints} corresponds

to least number of selected paths wp required for complete evacuation. Optimal

z∗b = min{∑t

∑
p t · fpt|Constraints} corresponds to minimum total time required for

complete evacuation. Since za and zb are in different scales, a constant κ is multiplied

with za to bring it to a scale similar to zb.

Minimize κ
∑
p∈P

wp +
∑
t

∑
p

t · fpt (3.1)

Subject to:
∑

j|(i,j)∈A (i)
yijp −

∑
j|(j,i)∈A −1(i)

yjip = 1, ∀p ∈P, i ∈ N , i = Op, (3.2)

∑
j|(i,j)∈A (i)

yijp −
∑

j|(j,i)∈A −1(i)
yjip = 0, ∀p ∈P, i ∈ N , i 6= Op, i 6= Dp,

(3.3)∑
j|(i,j)∈A (i)

yijp −
∑

j|(j,i)∈A −1(i)
yjip = −1, ∀p ∈P,∀i ∈ N , i = Dp, (3.4)

∑
p∈P

fpt · yijp ≤ Uij, ∀(ij) ∈ A , t ∈ T, (3.5)

∑
i

∑
t∈T

fit = Si, ∀i ∈ Ns, (3.6)

∑
j

∑
t∈T

fit ≤ Cj, ∀j ∈ Nd, (3.7)

∑
t∈T

fpt ≤Mp · wp, ∀p ∈P, (3.8)

fpt ∈ Z+, wp, yijp ∈ {0, 1} ∀p ∈P, ∀t ∈ T, ∀(ij) ∈ A .

(3.9)
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Path generation is done using network flow balance equations as specified by

constraints (3.2)-(3.4). These set of equations are repeated for each path originating

from a particular source node and ending into corresponding sink node and thus

deciding the arcs to be included into the set of optimal paths. Constraint (3.5) is the

capacity constraint on arc (i, j) at each time t. This constraint limits the total flow

using all paths p ∈P at any particular time t on any arc (i, j) ∈ A to the maximum

capacity of that arc. Using constraint (3.6), we balance the total outgoing flow from

source node i ∈ Ns over the time horizon t ∈ T to the original supply of the source

node. Similarly, constraint (3.7) limits the flow reaching at the sink nodes below or

equal to the maximum holding capacity of the destination node j ∈ Nd. Constraint

(3.8) relates the flow on any path p over all time t ∈ T with the path selection variable

wp. Parameter Mp is the limiting value of the flow on the selected path and is set to

the original number of supply at the origin.

Observe that constraint (3.5) is quadratic making the model non-linear. To make

the model linear, Reformulation-Linearization Technique (RLT) by Sherali and Tunc-

bilek [1992] is applied. Linearization of the model provides an advantage of using the

commercially available linear optimization solvers for the problem. RLT works by

introducing a new variable xijpt = fpt · yijp. Modification of the quadratic constraint

(3.5) is done by replacing the 2nd order non-linearity with the new variable xijpt and

also adding the bounds corresponding to the new variable in the earlier formulation

to come up with the new set of constraints (3.10) - (3.12).

∑
p∈P

xijpt ≤ Uij, ∀(ij) ∈ A , t ∈ T, (3.10)

0 ≤ xijpt ≤ fpt, (3.11)

fpt −M(1− yijp) ≤ xijpt ≤M · yijp. (3.12)

Variable xijpt can take a value of either zero or it can take a value of positive integer
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value fpt. This arc-based linear model can be solved to achieve the multi-objective

result. Linearization of the model required the introduction of new variables as well

as a new set of constraints which makes the model very large and consequently very

difficult to solve. Moreover, there is an inherent difficulty of choosing an appropriate

weight κ applied to the objective za. The model gives an optimal solution for a very

small network but it is unable to scale up for even a medium sized network. In the

next section, we present a solution approach based on model decomposition that can

achieve the desired multiple objectives.

3.2 Three Phase MTLP

The proposed solution approach decompose the model into three separate sub-

models. These sub-models are separately solved to achieve the bi-objectives and is

referred as three phase MTLP hereafter in the chapter. Decomposition is done to

first find the lower bound on clearance time based on an arc-based model. Path

based model is then used to find evacuation paths and the corresponding flow and

schedules. To make the model description more modular, this section is divided into

three different subsections each discussing their corresponding mathematical model

and solution method.

3.2.1 Generation of Lower Bound on Clearance Time

To achieve the SO objective of pushing the maximum flow towards the destination

in minimum possible time, an arc-based formulation for the minimum cost dynamic

network flow problem is proposed. Two integer decision variables ytij and xti ∈ Z+

are introduced for the model which we name as MET model. Integer variable xti

denotes the number of vehicles present at node i at ant time t and integer variable

ytij denotes the number of vehicles leaving node i towards node j at time t. The
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objective of SO dynamic network flow evacuation problem is to minimize the total

travel time experienced collectively by all the users in the system. Therefore, the

choice of destination node is not at the discretion of the individual vehicle but is

decided by the model that results in optimum evacuation for the overall system.

For a dynamic network flow model, the travel time experienced by users in the

network is equivalent to the difference between the arrival time at the destination and

departure times from the source for every unit of flow within the network. Since the

departure times are known and constant, they can be dropped and the arrival times

can be considered as an equivalent travel time that has to be minimized. Arrival

times can be determined when the flow exits the network. In order to minimize the

total travel time in the network, we assign an uniformly increasing cost t to the flow

expression departing the network. This will assign an increasingly higher cost to the

delayed flow terminating into the destination. The objective of reducing the total

travel time in the network can, therefore, be expressed as a product of cost function

and flow function summed over all time for the flow exiting the network:

∑
t∈T

∑
(i,j)∈A (Nd)

t · ytij. (3.13)

The network is modified such that nodes are separated by unit transit time and

thus allowing to capture the precise instance until there is flow. This is achieved by

introducing dummy nodes between two adjacent nodes if the arc transit time between

them is more than unity, i.e., tij > 1. Arc capacity is kept same as the parent arc for

the newly introduced arcs. The above modification is better illustrated by a sample

network GO = (NO,AO) as shown in Figure 3.1a. The boxed units denote the transit

time on arcs and is greater than one for the arc from node 1 to node 2. The sample

network GO is modified by introducing a dummy node with unit arc transit time

between the adjacent nodes as shown in Figure 3.1b. This results in a new graph
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GM = (NM ,AM) with nodes separated by unit transit time. Finally, another dummy

node ‘N +
d ’ named as “Super-sink” is added to the modified graph GM . Super-sink

‘N +
d ’ is connected with all destination nodes and is set to have infinite capacity

(CN +
d

=∞) and arcs joining the sink nodes to the super-sink node allow infinite flow

in zero transit time thus not limiting the super-sink node with any constraints.

(a) Original Graph: GO = (NO, AO) (b) Modified Graph: GM = (NM , AM )

Figure 3.1: Graph modification

As in any network model, the movements of vehicles between nodes is defined

by flow propagation and flow conservation equations (4.2) - (4.4). These relations

decide respectively the flows ytij between two nodes based on upstream/downstream

traffic flow on the arcs and depict the evolution of the node status (i.e., the number of

vehicles in each node xti) over time. Considering a time-expanded network, ytij can be

visualized as the flow on transition arcs and xti as the flow on holdover arcs associated

only with the source nodes. Constraint (4.5) states that the total incoming flow into

the super-sink node should be equal to the total supply at the start of the analysis

period. The implication of this constraint is that it does not allow any withholding

at the impact nodes and thereby pushing for the complete evacuation of the network.

It pushes the flow towards the sink nodes which are connected to the super-sink node

and thus result in flow propagation in the network. The total amount of flow, however,

is determined by the objective function (4.1). Constraint (4.6) specifies that the total
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incoming flow into the set of sink nodes i ∈ Nd should not exceed the capacity of

the sink nodes. A limiting constraint on the maximum flow possible on any arc in

the arc set (i, j) ∈ A at any time t ∈ T is expressed in constraint (4.7). Constraint

(4.8) specifies the model to push for zero vehicles that are left behind at the end

of the analysis period. Constraint (4.9) limits the node capacity xti to its maximum

capacity Ci. It should be noted that the initial assignment period T should be high

such that all traffic assigned in the network exits the network, otherwise they would

be left behind and problem will not meet the constraints.

Minimize:
∑

(i,j)∈A (Nd)

∑
t∈T

t · ytij (3.14)

Subject to: x0
i +

∑
(i,j)∈A (i)

y0
ij = Si ∀i ∈ N , (3.15)

xti − xt−1
i +

∑
(i,j)∈A (i)

ytij −
∑

(j,i)∈A −1(i)
yt−1
ji = 0 ∀t ∈ T \ {0}, ∀i ∈ N ,

(3.16)

xti − xt−1
i −

∑
(j,i)∈A −1(i)

ytji = 0 ∀t ∈ T, i = N +
d ,

(3.17)∑
(j,i)∈A −1(N +

d
)

∑
t∈T

ytji =
∑
i∈Ns

Si, (3.18)

∑
t∈T\{0}

∑
(j,i)∈A −1(i)

yt−1
ji ≤ Ci ∀i ∈ Nd, (3.19)

ytij ≤ Uij ∀t ∈ T, ∀(i, j) ∈ A ,

(3.20)

x
|T |−1
i = 0 ∀i ∈ N , (3.21)

0 ≤ xti ≤ Ci ∀t ∈ T, ∀i ∈ N ,

(3.22)

ytij ∈ Z+, xti ∈ Z+. (3.23)
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Theorem 1. The optimal solution of MET gives a lower bound for the minimum

clearance time of the MTLP model, i.e., z∗MET ≤ z∗b .

Proof: MET model is a relaxation of MTLP model. If we remove from the MTLP

model, the path generation constraints as well as constraint (8) for path selection, it

reduces to the MET model. Therefore, z∗MET ≤ z∗b .

Using the above formulation, we exploit the property of unit travel time between

nodes in the graph and formulate the problem as a SO minimum cost network flow

problem. Separation of the nodes by unit time allows the model evolution for flow that

can be determined at each time unit. Solution of the proposed MET model is used

to calculate the lower bound on clearance time T required for complete evacuation.

3.2.2 Paths Set Generation

The main objective of the paths set generation model (PG) is to find a set of

possible paths from a source node to a sink node. In an evacuation scenario, emer-

gency personnels generally prefer to use the paths that are prescribed for evacuation.

Situations might arise when the prescribed path is not usable or would not be able to

handle the traffic surge during emergency to evacuate within safe time. Creating a

pool of usable paths for evacuation would provide a viable alternative to emergency

managers where they can set a priority for the paths to be used. Generation of this

set of possible paths is achieved using the solution pool feature of CPLEX. The so-

lution pool feature generates and stores multiple solutions in addition to the optimal

solution to our model for path set generation.

The paths set generation model is expressed using same notations as used in

earlier models. PG model is a shortest path problem that is used for finding the

paths between all O-D pairs for a static network graph G = (N ,A ). Binary decision

variable yij in the model takes a value of 1 if the arc is present in the shortest path

between node i and node j and takes a value of 0 if the arc is not present. Using

33



this model, we aim to find the shortest path from source node i ∈ Ns to super sink

node N +
d . Therefore, model objective (3.24) is to minimize the total transit time on

arcs if that arc is present in the path from origin to destination. Constraint (3.25)

ensures that we leave the origin by selecting an arc from the source node. Constraint

(3.26) is for intermediate nodes which ensures that if we enter the node then we must

leave the node as well. Constraint (3.27) ensures that we reach the destination N +
d .

Constraints (3.28) and (3.29) limit the total number of arcs going out and coming

into a node to 1 and thus eliminating the generation of cycles in the solution pool.

Minimize:
∑

(i,j)∈A

tij · yij, (3.24)

Subject to:
∑

j|(i,j)∈A (i)
yij −

∑
j|(j,i)∈A −1(i)

yji = 1, i ∈ Ns; (3.25)

∑
j|(i,j)∈A (i)

yij −
∑

j|(j,i)∈A −1(i)
yji = 0, ∀i ∈ N \ {Ns ∪N +

d }; (3.26)

∑
j|(i,j)∈A (i)

yij −
∑

j|(j,i)∈A −1(i)
yji = −1, ∀i ∈ N +

d ; (3.27)

∑
i|(i,j)∈A (i)

yij ≤ 1 ∀i ∈ N , (3.28)

∑
j|(j,i)∈A −1(i)

yji ≤ 1 ∀i ∈ N , (3.29)

yij ∈ {0, 1}. (3.30)

The solution pool feature determines an appropriate number of paths to be pop-

ulated for the solution. A user defined set of paths are selected from this solution

that is generated using a solution pool relative gap of α. This relative gap allows the

paths to be generated that are within 100α% of the incumbent solution, i.e., paths

are generated with travel times ranging from least time required between the O-D

pair to 100α% of the least travel time. Solution pool can have duplicates which we

omit and make a repository of unique paths that can be considered to be used for
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evacuation.

3.2.3 Path Selection and Flow Generation

The path selection and flow generation (PSFG) model is used to select the best

set of paths from each source node and find the flow and schedule on those paths.

PSFG model is a combinatorial problem of selecting the best paths from the solution

pool obtained using PG model. It should be noted that the bound on the clearance

time found using MET model did not use any prior path information. Maximum flow

objective of MET model pushes for the flow on arcs to the maximum arc capacity at

all times. Consequently, it might not be possible to assign flows on limited path set

within given time T . Algorithm 1 describes the process that we use to come up with

our results.

Algorithm 1 Flow Generation Algorithm
repeat
SolutionStatus← Solve PSFG : fpt, Yp, T
if (SolutionStatus == Infeasible) then
T + +;

end if
until (SolutionStatus == Feasible)

In the flow generation algorithm, clearance time T is initialized with the lower

bound obtained from the MET model and the path pool from the PG model. If the

solution to PSFG is feasible, i.e., paths are found in the pool that can empty the

network within T , then flow and schedule on those paths are obtained from PSFG. If

the solution is infeasible, we increase the clearance time T by one unit and feed this

value to PSFG model. The process is repeated until the feasible solution is obtained.

Using the conservative approach of increasing the clearance time by unity, we ensure

that the total evacuation is completed within minimum time using the paths available

in the solution pool.
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Keeping other notations the same, we introduce a binary expression δpa which is

set to 1 if the path p contains an arc a ∈ A . There are two decision variables for this

model.

fpt ∈ Z+ representing the flow on path p ∈P at any discrete time t ∈ T .

yp =


1, if the path p is selected;

0, otherwise.
∀p ∈P.

Objective function (3.31) of the PSFG model minimizes the total number of paths

selected in the solution. These paths are selected from the solution pool of the PG

model that is provided as an input. Selection of the paths is based on the criteria

which ensures that all the supply at source is exhausted within the given clearance

time T . The objective will thus give priority to paths that have greater capacity and

lower travel time.

Minimize
∑
p∈P

yp (3.31)

Subject to:
∑
p∈P

fpt · δpa ≤ Ua ∀a ∈ A , t ∈ T, (3.32)

∑
p|Op=i

∑
t∈T

fpt = Si ∀i ∈ Ns, (3.33)

∑
p|Dp=j

∑
t∈T

fpt ≤ Cj ∀j ∈ Nd, (3.34)

∑
t

fpt ≤Mp · yp ∀p ∈P, (3.35)

fpt ∈ Z+, yp ∈ {0, 1} ∀p ∈P, ∀t ∈ T. (3.36)

Constraint (3.32) ensure that the sum of flows for all paths p on any arc a ∈ A

during any interval of time t does not exceed the maximum capacity of that arc.

Constraint (3.33) guarantees that the sum of flows on path originating from the

nodes in Ns over all time is equal to the supply at that node. This constraint could
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also have been greater than equal to constraint but we designed this to be a tighter

constraint making the MIP problem easier to solve. Constraint (3.34) ensures that

the summation of flow on paths coming into the destination over all time do not

exceed the capacity Cj of the destination nodes Nd. Constraint (3.35) limits the sum

of all flows on a selected paths p ∈ P over all time t ∈ T to vector Mp = Si|Op , i.e.,

the maximum possible supply initially present at the origin of the path. We relax the

integer constraint on variable fpt without observing any consequences to the result.

Solution of the model will result in variable flow on each paths and also a variable flow

on the same path at different time interval. This is because we have a SO objective

of assigning the maximum flow for 100% evacuation within minimum possible time.

Often times emergency managers are faced with the problem where they have

only a limited option of paths to be selected from the set of available paths. Also,

due to resource constraints, there might be a restriction on the number of paths to

be used for outgoing traffic during evacuation. We introduce a new constraint (3.38)

for limiting the paths selection from each source node to the assigned limited value

µi. Instead of the minimization objective of the total number of paths selected, we

design the model to have a maximum flow objective (3.37).

Maximize
∑
p∈P

∑
t∈T

fpt (3.37)

Subject to:
∑

p|Op=i
Yp ≤ µi ∀i ∈ Ns. (3.38)

Using this model we assign the flow by considering only a limited number of paths

from each source node. This model gives the flexibility to the emergency managers

for choosing a limited number of paths for evacuation. Note that the number of paths

may not be enough to evacuate desired evacuees within the given clearance time T .

To account for the limitation for the number of selected paths to µi, clearance time

for complete evacuation has to be increased.
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3.3 Computational Results

We first describe the numerical results of three phase MTLP on a small network

and then use this solution approach for a large evacuation network of the Greater

Houston area and Galveston County, Texas. All algorithms are implemented in a

C++ environment. We use CPLEX 12.3 to solve the mathematical models in the

algorithms. All experiments are done on a workstation with 3.07 GHz Intel Core i7

processor having 24 GB RAM and running Ubuntu 10.04.3.

Figure 3.2 is the test network being used to illustrate the solution approach.

This is the same network used by Lim et.al. Lim and Baharnemati [2011]. The

test network has three impact nodes (Ns = {1, 2, 3}), five intersections, and two safe

nodes (Nd = {9, 10}). Each arc in the network is assigned a transit time and capacity.

Number of evacuees in safe nodes 1, 2, and 3 are 350, 185, and 200, respectively. The

capacity of both destination nodes 9 and 10 is 750. We first provide a solution for

the evacuation test network using three phase MTLP (Section 3.2). For our model

compatibility, the network is modified as explained in Section 3.2.1. We provide an

initial large value for T to the model as an input which should be sufficient for a

complete evacuation. Note that providing a large value of T does not affect solution

quality or computation time in our model at this stage. The MET model (Section

3.2.1) is then solved for the modified network to find a lower bound on evacuation

time to ensure 100% evacuation. The lower bound on clearance time obtained using

the MET model for the test network is T = 28.

Generating a set of paths from each source node is done using the PG model

(Section 3.2.2). The original test network with the super-sink node is used for the

PG model. A solution pool relative gap of 1 is used which implies including the

shortest path between the O-D pairs and all the paths within the relative solution

gap of 100% from the optimal path. This is equivalent to including all the paths with
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Figure 3.2: Evacuation Test Network

travel time within 10 units in the solution pool if the shortest route has a travel time

of 5 units between the O-D pair. Using the solution pool method, we were able to

obtain a set of 64 unique paths originating from each source node for the test network.

Decision on selecting the best path and assigning the flow and schedules for those

paths is done using the flow generation algorithm (Section 3.2.3). The paths set

and clearance time bound obtained earlier are fed as an input to the algorithm.

PSFG is solved to find the best combinations of paths. In this test network, there is

no combination of paths which is able to completely evacuate within the minimum

clearance time of T = 28. Therefore, PSFG is solved again for time T + 1 = 29. The

selected paths are now able to take out all the initial supply at the source nodes to

the shelter or sink nodes taking minimum evacuation time of T = 29. In Table 3.1, we

report all the selected paths, travel time between the O-D pair using the corresponding

paths and the schedule of the vehicles on the selected paths. This result gives the least

number of paths that is required for complete evacuation in the minimum possible

time. A minimum of 8 paths are required for evacuation within a clearance time of

T = 29 for the test network. Since the model is formulated for a variable flow rate,

we observe a 0 flow on some paths during certain time intervals. A flow rate with

value of 5 is obtained for all the paths whenever there is a flow present in the path.

The bi-objective MTLP model discussed in Section 2 did not result in optimal

solution for the test network in Figure 3.2 when the model was run for 3 hours. We

tested the bi-objective model on an even smaller network with only five nodes out of
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Table 3.1: Computational results for test network

Path Travel Time Evacuation Start Time
1-4-7-9 4 0 – 24
1-4-8-10 5 0 – 16,18 – 23
1-5-7-9 6 0 – 22
2-4-6-7-9 4 0 – 24
2-5–6-8-10 4 0, 2, 3, 4, 7, 9 – 24
3-4-5-6-8-10 6 1,5,6,8 – 10,12 – 22
3-4-8-10 6 14,17,20
3-5-8-10 4 0 – 24

which two were impact nodes, two safe nodes and a single intersection node. With a

weight of κ = 30, we were able to get an equivalent solution for path and schedule of

evacuation for both the models. The bi-objective model took a computation time of

0.483 seconds as opposed to 0.28 seconds by our proposed solution approach.

Sensitivity analysis for the variation in the initial number of evacuees was done for

the test network. To find out the variation in the clearance time and the corresponding

number of total paths used for the modified demand, the initial number of evacuees

is varied for each source node using a step size of 10% variation. Sensitivity of the

model to the demand variation is shown in Figure 3.3a. For this particular network,

we observe a linear relationship of clearance time with the variation in demand at

the source nodes. The number of paths used for the evacuation remains same with a

value of eight for all demand scenarios for this network but this result can be different

for other networks if the capacity of the arc is able to handle the reduced demand

with less number of paths.

Consider a scenario where the number of evacuation paths are limited to a certain

fixed value less than the minimum obtained in the results. We find that the clearance

time increases during such cases. Clearance time of T = 74 is obtained when only 1

path is allowed from each source and T = 39 is obtained when 2 paths are allowed.

For 3 or more paths, the clearance time obtained is equal to the minimum clearance
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time calculated for this particular network. Figure 3.3b shows the result for the

variation in clearance time when the number of paths are limited to a certain value

for each source node. As evident, the clearance time is higher when the number of

paths is very low. Clearance time decreases with the increase in number of paths and

approaches a constant value. This is achieved when the limit on the number of paths

originating from each source node is equal to or greater than the minimum number

of paths required for evacuation within the minimum calculated clearance time.

(a) Clearance time to demand variation (b) Clearance time to path limitation

Figure 3.3: Sensitivity Analysis

For evacuation planning using a large network the evacuation network of Houston

metropolitan with 42 nodes are selected of which there are total of 13 source nodes

4 destination nodes. Arcs going out from the source nodes and coming into the

destination nodes are “uni-directional” and arcs connecting the intermediate nodes

are bidirectional. There are totally 566,000 vehicles distributed among the source

nodes to be evacuated. Network is sampled at τ = 30 minutes interval, i.e., transit

time which separates each pair of node apart are multiples of τ . Houston, TX, is

the fourth largest city in US and is one of the most vulnerable metropolitan cities

situated at the Gulf coast. Houstonians have witnessed many hurricanes and its

population being subjected to evacuation multiple times. It is the largest city that
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have evacuated due to hurricanes. Demonstration of the evacuation planning for the

Greater Houston area would be an appropriate example for large size networks (see

Figure 5.1).

Figure 3.4: City of Houston Transportation Network

Using the three phase MTLP solution approach, we were able to find a solution

for 100% evacuation using a total computation time of approximately 50 minutes.

Lower bound on the egress time required for the evacuation was calculated to be 129

τ . This translates to a minimum of approximately 2 days and 17 hours required for

evacuating a population of approximately 1.3 million based on the assumption that
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each vehicle occupancy is 2.3 persons as reported in a study by Southworth [1991].

A solution pool of a total of 1829 unique paths between all O-D pairs was generated

using a relative gap of 100% from the optimal solution. PSFG algorithm was then

solved to obtain the paths, their starting schedule and corresponding flow values. The

algorithm resulted to a selection of a total of 16 paths from the O-D pairs that are able

to completely evacuate the network within 129 τ . Complete evacuation plan for the

transportation network of Houston metropolitan area can be found in Rungta et al.

[2011]. Table 4.1 shows the paths selected between the O-D pairs along with their

travel times and the total number of vehicles initially present at the source nodes.

Table 3.2: Computational results for Houston evacuation network

Source Node Total Vehicles Selected Path between O-D pair Travel Time
1 1000 1 2 14 15 16 17 18 33 30 31 32 21 22 42 28
2 1000 2 14 15 16 17 18 31 32 20 21 22 42 26
3 1000 3 2 14 15 16 17 18 33 34 28 27 26 24 23 41 27
4 1000 4 15 16 17 18 31 32 25 26 24 23 41 24
5 1000 5 14 15 16 17 18 31 32 25 22 42 25
6 1000 6 15 16 17 18 20 32 25 22 42 24
7 35000 7 16 17 18 20 32 25 22 42 23
8 35000 8 17 18 20 21 22 42 21
9 35000 9 19 20 18 33 30 31 32 25 23 41 23
10 35000 10 18 20 21 22 42 20

11 140000 11 27 37 40 14
11 25 23 41 16

12 140000 12 37 40 13
12 24 41 15

13 140000 13 38 39 13
13 35 28 27 37 40 16

3.4 Conclusion

This chapter developed a model for finding the least number of evacuating routes

to completely clear the network in minimum time. The presented model address

the problem of limited resources required for executing the evacuation that has a
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direct effect on the clearance time and has never been addressed in the literature.

The relationship between the clearance time and the number of evacuation paths is

obtained by numerical experimentation and a sensitivity analysis of the solution was

done for the variation in demand at origin. Numerical results show that the clearance

time can’t go below a particular value even when the number of evacuation paths

are more than the minimum required paths. Finding the least evacuation paths,

therefore, is a sensible alternative rather than loading the evacuation traffic on extra

paths without observing any improvement in clearance time and engaging the limited

resources.

The multi-objective formulation proved to be intractable even for a small sized

network. To find the solution, a three phase solution approach was proposed that was

tailored to find the multiple objectives. Numerical result for the evacuation network

of Greater Houston region confirms that the solution approach is scalable to large

networks. A natural extension of this work is to incorporate uncertainty in the model

and study the impact of uncertainty on clearance time.
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Chapter 4 Reliability Analysis under Ca-

pacity Uncertainty

Providing a reliable flow is important in the context of emergency evacuation. A

priori analyses of envisioned evacuation paths for traffic reliability with high proba-

bility would guarantee that actual evacuation does not result in undesirable surprises.

This chapter, therefore, lays emphasis on finding an evacuation plan considering vari-

able arc capacity with known distribution function which would result in a free flowing

traffic without any congestion. Our overall strategy to address capacity uncertainty

and congestion minimization in the network evacuation problem is to use the ca-

pacity distribution function and thus find the traffic reliability estimate. The key

contributions of this chapter are as follows: a) we model an optimization problem

that minimizes the probability of congestion in a stochastic network setting; b) we

find a relationship between the clearance time, number of evacuation paths and con-

gestion probability; and c) our approach acts as a verification model for the evacuation

plan and reports the reliability in terms of confidence level with which a congestion

might occur in the network if the said plan is used.

The rest of the chapter is structured as follows. Section 4.1 introduces the model-

ing approach for uncertain arc capacity within the framework of chance constrained

programming. We propose a model for finding the evacuation routes and traffic flow

that will result in minimum congestion in the network. The stochastic model under

mathematical optimization framework is described. Section 5.3 reports the solution

approach and computational results. Finally, conclusions and future research direc-

tions are discussed in Section 4.3.
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4.1 Evacuation Planning under Uncertain Arc Ca-

pacity

In this section, we first describe the deterministic minimum cost network flow

problem for finding the minimum clearance time. Subsequently, we introduce the

model with random capacity of arcs and find the minimum clearance time for a

desired reliability level. Further, we propose a path based model for finding the path

reliability and determining a reliable flow on evacuation paths to be used between

each origin-destination (O-D) pair.

4.1.1 Deterministic Minimum Cost Flow Evacuation Prob-

lem

A time expanded network flow model has been used to mathematically represent

traffic flow evolution in an evacuation network for this optimization model. The

network consists of a graph with capacities and transit times associated with the

arcs. Consider a directed static network D = (N ,A ) with N and A as the set

of nodes and arcs, respectively. The time expansion of D over a time horizon T

defines the dynamic network DT = (NT ,AT ) associated with D having holdover arcs

and movement arcs. Holdover arcs are virtual road sections represented on a time

expanded network whose content represents the number of vehicles still remaining

at the source node Nc and the capacity of these arcs are equal to the capacity of

the source nodes. Movement arcs represent the actual road link of a traffic network

at different time interval and its content represents the movements of vehicles from

one node to another. The flow on the movement arcs are limited by their maximum

capacity Uij. It is this capacity of movement arcs that we consider as random in the

stochastic model.

46



We denote as T , the set of discrete time intervals, i.e., T = {0, 1, . . . , T − 1}.

The time expansion essentially is the replication of the static network D at each

discrete unit of time in T . Since there are multiple copies of sink nodes, a super

sink node N +
d is introduced to create a single sink network. In the dynamic network

flow model, the flow variable ytij is the number of vehicles that leave node i at time

t and reach node j at time t+ σij where σij represents the transit time on arc (i, j).

The primary goal of the model is to find the lower bound of the clearance time for

the underlying network with a given initial supply of vehicles. Therefore, we wish

the network to have nodes separated by unit transit time such that it is possible to

capture the precise time till there is flow in the network. We modify the network such

that σij = 1 for all the arcs in the modified network by introducing dummy nodes

between the nodes having travel time greater than 1. Flow variable xti represents the

number of vehicles that move on holdover arcs. Let Ns denote the set of destination

nodes, Cj as the total capacity of the destination node j and Si as the initial demand

at source node i. Arc (i, j) is also alternatively represented as arc a in this paper.

Shown below is the deterministic model for finding the minimum clearance time. This

is a minimum cost flow model and we name the model as MET-D.

As in any network model, the movements of vehicles between nodes is defined

by flow propagation and flow conservation equations (4.2) - (4.4). These relations

decide respectively the flows ytij between two nodes based on upstream/downstream

traffic flow on the arcs and depict the evolution of the node status (i.e., the number

of vehicles in each node xti) over time. Constraint (4.5) states that the total incoming

flow into the super-sink node N +
d should be equal to the total supply at the start of

the analysis period. The implication of this constraint is that it does not allow any

withholding at the impact nodes and thereby pushing for the complete evacuation

of the network. It pushes the flow towards the sink nodes which are connected to

the super-sink node and thus result in flow propagation in the network. The total
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Minimize:
∑

(i,j)∈A (Ns)

∑
t∈T

t · ytij (MET −D) (4.1)

Subject to: x0
i +

∑
(i,j)∈A (i)

y0
ij = Si ∀i ∈ N ,

(4.2)
xti − xt−1

i +
∑

(i,j)∈A (i)
ytij −

∑
(j,i)∈A −1(i)

yt−1
ji = 0 ∀t ∈ T \ {0}, ∀i ∈ N ,

(4.3)
xti − xt−1

i −
∑

(j,i)∈A −1(i)
ytji = 0 ∀t ∈ T , i = N +

d ,

(4.4)∑
(j,i)∈A −1(N +

d
)

∑
t∈T

ytji =
∑
i∈Nc

Si, (4.5)

∑
t∈T \{0}

∑
(j,i)∈A −1(i)

yt−1
ji ≤ Ci ∀i ∈ Ns,

(4.6)
ytij ≤ Uij ∀t ∈ T , ∀(i, j) ∈ A ,

(4.7)
x
|T |−1
i = 0 ∀i ∈ N ,

(4.8)
0 ≤ xti ≤ Ci ∀t ∈ T , ∀i ∈ N ,

(4.9)
ytij ∈ Z+, xti ∈ Z+. (4.10)

amount of flow, however, is determined by the objective function (4.1). Constraint

(4.6) specifies that the total incoming flow into the set of sink nodes i ∈ Ns should

not exceed the capacity of the sink nodes. A limiting constraint on the maximum

flow possible on any arc in the arc set (i, j) ∈ A at any time t ∈ T is expressed in

constraint (4.7). Constraint (4.8) specifies the model to push for zero vehicles that

are left behind at the end of the analysis period. Constraint (4.9) limits the node

capacity xti to its maximum capacity Ci. It should be noted that the initial assignment

period T should be high such that all traffic assigned in the network exits the network,

otherwise they would be left behind and problem will not meet the constraints.

In this model, a deterministic capacity estimate of the arcs is used to limit the
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flow on paths. This model results in a minimum clearance time estimate along with

the flows on the arcs as per the deterministic capacity. Deterministic capacity as

mentioned in HCM (2000) is the maximum sustainable hourly flow rate that can

be achieved repeatedly during peak periods. But the demand volume that causes

breakdown varies in real traffic flow and the flow rate observed during a breakdown

depends on the behavior of drivers thus making the arc capacity a random variable

Ũij. Congestion occurs at an arc (i, j) with a finite probability p when the optimal

flow yij obtained from the deterministic model exceeds the realized capacity.

When the demand on an arc exceeds its capacity, or capacity decreases to a

level less than demand, then congestion occurs resulting in a bottleneck. Therefore,

the clearance time calculated using deterministic capacity may not be enough to

evacuate using the selected evacuation paths and the corresponding flow rate. In

such situations of stochastically degrading capacity, the clearance time calculated

using the deterministic model would result in an infeasible evacuation plan. Given

the consequences of the deterministic capacity, our next task is to model the problem

as a probabilistic constrained program and to incorporate a reliability measure for

the variable arc capacity of the links.

4.1.2 Chance Constrained Model

We consider a probabilistic programming approach to model the evacuation prob-

lem assuming that the probability distribution of the random arc capacity is known.

Inability of the traffic flow on a road section to meet the capacity requirement of that

arc at all times is modeled using chance constrained programming. The probability

level is set to a value which ensures that the flow is assigned in such a way as to

meet criteria most of the time. More specifically, we find the deterministic equivalent

of the variable capacity that should be used in the model such that the probability

with which the flow value might exceed the capacity is bounded within a pre-specified
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tolerance level. This can be thought of as determining of the a priori traffic flow on

the arcs where the future capacity variations are already accounted for.

Referring to the deterministic model, the arc capacity constraint (4.7) is modified

to ensure the feasibility of capacity constraint for each arc within a reliability level

εij. The modified constraint is of the form

Pr
(
ytij ≤ Ũij

)
≥ εi,j, ∀(i, j) ∈ A . (4.11)

Keeping other constraints of the MET-D model same, the model with the modi-

fied arc capacity constraint is termed as MET-S. Constraint (4.11) is the individual

chance constraint equivalent of the deterministic constraint (4.7) with the desired

probability level imposed individually on each constraint. Parameter εij ∈ (0, 1] is

the desired reliability level and the value of ε is set such that the optimal solution to

the approximation of the chance constraint is feasible to the probabilistic constrained

programming (PCP) model. Capacity uncertainty is denoted by random variable Ũij

and we assume that the distribution function of the random capacity is known.

Consider the cumulative distribution function (CDF) for capacity in terms of

probability when the traffic volume yij on the link exceeds its capacity Uij, i.e.,

FUij(yij) = p(Uij ≤ yij). (4.12)

This implies that the overload probability for a single bottleneck is equal to the

CDF of capacity. The probability of no congestion, i.e., p(Uij > yij), can be expressed

as the complementary event:

PUij(yij) = 1− FUij(yij). (4.13)

Consider Figure 4.1 for curve fitting reproduced here from the empirical study by
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Brilon et al. [2005] done using analogy of lifetime data analysis. Considering traffic

breakdown as a failure event to estimate the capacity Ua of an arc, he concluded that

when the flow rate exceeds a certain threshold value Qa then there is a finite probabil-

ity with which traffic volume can exceed the capacity of the link and congestion can

occur. We define this saturation flow rate as the capacity of the arc. After reaching a

certain upper bound of flow rate Qamax for a particular link, this probability reaches

unity and it is certain that congestion would occur in that link. From his work, CDF

for link capacity was found to follow Weibull distribution, i.e.,

FUa(Qa) = 1− e−(Qa
βa

)α , (4.14)

where α and β are respectively, shape parameter and scale parameter. Shape param-

eter α is typically having a value in range of 9 − 15 for a three lane road. Weibull

distribution is used in this research to model the uncertainty of link capacity with

stochastic traffic volume Qa used as a the link capacity constraint. Other discrete

or continuous distributions can also be used that better approximates the random

capacity of a roadway section. For example, Siu and Lo [2008] consider road capacity

following a general uniform distribution in their study.

Probabilistic constrained models are usually solved using a deterministic approx-

imation. The difficulty in solving such models arises mainly from the fact that the

chance-constraint set (4.11) may not be convex (Nemirovski and Shapiro [2007]).

Proving the convexity of the chance-constraint set (4.11) would thus simplify the

optimization of the problem by suitable approximations of the chance-constrained

function.

Corollary 1. The feasible region of chance constraint (4.11) is convex.

Proof: Constraint (4.11) is of the form Pr{Ax ≤ b̃} ≥ p, where, A is a deterministic

coefficient matrix and p ∈ (0, 1] is given. Variable capacity vector b̃ follows Weibull
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Figure 4.1: Estimated capacity distribution function (Figure source Brilon et al. [2005])

distribution and for α > 1, it is a log-concave distribution. In this case, according to

Prékopa [1970], chance constraint feasible set (4.11) is convex.

The individual chance constraint (4.11) of the form Pr{Ax ≤ b̃} ≥ p has a sep-

arable structure with random right hand side (RHS). Such probabilistic constraints

can be solved using a deterministic approximation by replacing the values of ran-

dom RHS with the corresponding pth quantile of the distribution function. This is

effectively translating the assumption on capacity uncertainty into equivalent conser-

vative deterministic saturation flow rate that would ensure the constraint feasibility

with probability εij. More specifically, the probabilistic constraint can be re-written

in its deterministic equivalent as

ytij ≤ P−1
Uij

(εij), (4.15)

where the RHS of the above equation is rounded to the nearest integer value to ensure

that the capacity is an integer. The model can then be solved after substituting the

deterministic equivalent of probabilistic constraint for each arc (Charnes and Cooper

[1959]).
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Proposition 1. The optimal objective value of the approximation of PCP upper

bounds the optimal objective value of PCP.

Proof: Consider the following situation.

P−1
Uij

(εij) ≤ Ũij (4.16)

Finding the nominal flow value based on the deterministic assumption of random

capacity for the above mentioned scenario might result in under-utilization of the

roadway capacity, thereby, resulting in upper bound for the objective value.

According to Proposition (1), solutions obtained using the deterministic equivalent

of the probabilistic constraint are conservative. The objective value corresponding to

the minimum clearance time obtained using the PCP model could be higher than the

optimal objective value if everything was known and deterministic. But, the solution

is certainly more reliable in the wake of uncertain arc parameters.

4.1.3 Minimum Congestion Path

The primary aim of this chapter is to address tactical preparedness concerns in-

volving the flow on the paths and clearance time by minimizing the traffic breakdown

which might occur at bottlenecks and carefully plan for evacuation considering the

stochastically degrading arc capacity. Section 5.2 was devoted to find the clearance

time where the reliability was set at the link level. For finding the reliability at the

route level, we propose a path based model that is designed to find paths with a

minimum probability level of congestion for the complete network. As opposed to

arc based model, the path based model is used because it reduces the problem com-

plexity. Moreover, the path based model finds out the evacuation routes and starting

schedules for the vehicle loading in the network. The proposed path based model in

this paper is based on the principle of bottleneck minimization (BM ) proposed by
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Kerner [2011]. We apply BM principle in a static network setting to incorporate the

discrete uncertainty of link capacity in our model within the mathematical program-

ming framework. Unlike other works in evacuation literature (Aronson [1989], Chiu

et al. [2007], Hoppe and Tardos [1994]) that use Wardrop’s SO or UE principle, we

prefer BM principle so that congestion minimization is given a priority.

For the path based model, the underlying assumption is that a list of paths between

each O-D pair is known a priori. Path enumeration for the evacuation network can be

achieved using a shortest path model for finding a pool of unique paths between each

O-D pair. Given the pool of paths, a model is designed to select evacuation routes,

evaluate their reliability and find an evacuation plan that will result in minimum

congestion in the network. The objective is to minimize the maximum probability

of congestion that might occur in the evacuation paths during evacuation of a given

number of evacuees within the time bound T . Although, the expected results obtained

using this principle would be highly conservative, it can give the emergency personnel

a reasonable probabilistic guarantee for smooth execution of the plan without any

undue surprises.

Before moving to the formulation, we define the probability of free flow of vehicles

in terms of the CDF of capacity function of the arcs constituting the path. Since

a path is a sequence of arcs in series, the distribution function associated with the

path would be the product of individual distribution function of each arc contributing

to the path. Here, we assume that each arc is independent and do not affect other

arcs. Accordingly, the free flow probability which is the compliment of congestion

probability of the path can be stated as

Pfree(Q1,Q2, . . . ,Qn) =
n∏
i=1

[1− FU ,i(Qi)] = e
−
∑n

i=1 (Qi
βi

)α
. (4.17)

The last equality follows from the assumption that the CDF of capacity follows a
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Weibull distribution. If the capacity is assumed to follow some other distribution,

then the equation can be modified accordingly.

The problem is first modeled as a chance constrained problem and we call this

model as MCP-J. Notations specific to the model are integer decision variables fp

that represent the flow on path p ∈P and binary decision variables yp which denotes

the decision for path selection in the final evacuation plan. Real variable γ ∈ (0, 1]

represents the probability of congestion in the network. Parameter σp represents the

travel time of path p ∈P and sets Op and Dp represent respectively the set of source

and sink nodes. Assuming that the evacuation time T is known, the mini-max model

to decide the minimum number of paths and minimize the maximum congestion

among the paths can be stated as

Minimize Z =
∑
p∈P

yp + γ (MCP − J) (4.18)

Subject to: Pr

⋂
a∈p

∑
p′∈P

fp′ · δp′a ≤ Ũa


 ≥ 1− γ, ∀p ∈P; (4.19)

∑
p|Op=i

(T − σp)fp ≥ Si, ∀i ∈ Nc; (4.20)

∑
p|Dp=j

(T − σp)fp ≤ Cj, ∀j ∈ Ns; (4.21)

(T − σp)fp ≤M · yp, ∀p ∈P; (4.22)

fp ∈ Z+,Ua ∈ Z+, yp ∈ {0, 1}, γ ∈ (0, 1] ∀p ∈P,∀a ∈ A ; (4.23)

The deterministic model without considering stochastic arc capacity is given in

Appendix. In model MCP-J, constraint (4.19) is an individual chance constraint

which states that for each arc a ∈ p, the summation of flow on the arc over all

the selected paths p′ ∈ P is less than a random capacity with a probability of

free-flow greater than variable (1 − γ). We use the joint probability distribution

for the capacity of arc in path and is given in equation (4.17). This CDF is again a
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Weibull distribution having log-concave property. According to Corollary 1, a feasible

set of chance constraint (4.19) is, therefore, convex and we can use a deterministic

approximation of the capacity to solve the model. For solving MCP, we reformulate

the model into a deterministic model which is a mixed integer non-linear program

(MINLP). Specifically, constraint (4.19) is replaced by the following constraints in

the MINLP model.

∑
p∈P

fp · δpa ≤ Qa, ∀a ∈ A ; (4.24)

e−
∑

a∈p (Qaβa )α ≥ 1− γ, ∀p ∈P; (4.25)

In the formulation, the uncertainty only affects the capacity vector Ua of arcs in

arc capacity constraint (4.19). We define Qa as an auxiliary variable whose value

is determined according to the probability level 1 − γ which is in turn determined

by the objective function. The only restriction on the uncertainty set Qa is that

Qa ⊆ Zn+ (this corresponds to the requirement of non-negative integer capacities).

For each arc a ∈ A , the arc attribute values are random variables and are specified

at the entrance to an arc. They are assumed to be static for that particular traveler

until exiting the arc. This property is referred to as frozen link property by Orda and

Rom [1990]. Capacity distribution functions for each arc are statistically independent

assuming that arc lengths are sufficiently large. It can be assumed that the roadway

capacity does not exhibit significant fluctuations for small road segments (Yazici and

Ozbay [2010]). Therefore, the realization of the network is spatially independent.

Everything else in the constraint matrices are assumed certain.

Congestion probability level γ and auxiliary variable Qa for each arc are inter-

dependent and are determined such that the objective function is minimized. Note

that the model pushes for the complete evacuation within time bound T which is

mathematically represented in constraint (4.20). Constraint (4.21) ensures that the
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capacity of the sink nodes is not exceeded at all times. Constraint (4.22) is the path

selection constraint from each source node. The optimal value of objective function

(4.18) can be obtained by choosing the paths that minimize the probability of max-

imum congestion among all the selected paths. Here paths are selected from a pool

of possible evacuation paths set P given as an input to the model.

Path selection is a combinatorial problem and the model selects the best set of

paths that can completely empty the network in time T . According to the definition of

the traffic reliability, in case of overload of one section, the whole system is considered

as overloaded. Therefore, for each network state, the objective function minimizes the

maximum probability of congestion among all the paths. The solution will provide

the reliability of the chosen paths to be used for evacuating the given number of

evacuees within time T in terms of the congestion probability γ. A flow pattern for

the paths corresponding to the resulting reliability is also obtained. This flow would

be employed on the assumption that network state is not known to the evacuees at

the time of evacuation.

Probabilistic arc capacity constraint is also formulated as an individual chance

constraint with probability level assigned to each arc separately. The constraint

would look like

Pr

∑
p∈P

fp · δpa ≤ Ũa

 ≥ 1− γa, ∀a ∈ A ; (4.26)

In such models, the CDF of individual arcs is used to find the deterministic estimate.

This model which we term as MCP-I would yield a solution that binds the probability

constraint at each arc. On the other hand, the individual chance constrained model

MCP-J would result in a solution with a network wide reliability and the probability

constraint is bounded for each path.

Theorem 2. MCP-I provides a tighter bound as compared to MCP-J
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Proof: Let n be the number of arcs in the path. Using Bonferroni’s inequality, the

following inequality holds true.

Pr

⋂
a∈p

∑
p′∈P

fp′ · δp′a ≤ Ũa


 ≥ 1− n+

∑
a∈p

Pr


∑
p′∈P

fp′ · δp′a ≤ Ũa


 (4.27)

i.e., probability of free flow along the path is greater than the probability of free flow

when calculated individually along the arcs on the path.

Using Theorem (2), it can be concluded that the solution of MCP-I would be more

conservative as compared to solution obtained using model MCP-J. This simply means

that the congestion probability γ would be smaller for MCP-I model but at the cost

of conservative flow on the arcs and increase in clearance time for the network.

4.2 Computational Results

In this section, we report numerical results from the solution obtained for the

proposed models. Models are solved on a 3.07 GHz workstation with 24 GB of

memory running on Ubuntu 10.04.3 operating system.

Before undertaking an extensive set of computational results, we now put forth

the following questions we wish to answer:

1. What is the probability of congestion for a deterministic evacuation route plan?

2. How different is the stochastic schedule compared to the deterministic counter-

part?

3. How does the stochastic model assist in decision making?

Two numerical examples are provided for the illustration of the proposed models

and to answer the questions posed. Experimental studies are conducted on the evac-

uation network of the Greater Houston Metropolitan area shown in Figure 5.1. The
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first experiment studies the impact of stochastic capacity on the clearance time and

shows the variation of clearance time according to the desired reliability level. For

the second experiment, we develop an evacuation plan that yields most reliable paths

that should be used during evacuation with a random arc capacity.

Figure 4.2: Representation of Houston evacuation network

4.2.1 Random Capacity and Bound on Clearance Time

In this section the effect of stochastic capacity on the clearance time is investi-

gated. Stochastic programs are solved by using the deterministic approximations of
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the random variables in the model and the results are interpreted within a prescribed

probability level on the probabilistic constraint. The evacuation network topology as

shown in Figure 5.1 has multiple sources and destinations. A super-sink destination

is connected to this network from all the destination nodes with arcs having infinite

capacity. There are 42 nodes of which 13 are the source nodes, 4 destination nodes

and the remaining nodes are intermediate nodes. Assuming that there are a total of

56, 600 evacuating vehicles present at the source nodes, analysis is done for finding

the clearance time. Clearance time is first calculated assuming that arc capacities are

deterministic and constant. Next, stochastically degrading capacities are considered

and clearance time is found based on the desired reliability level.

For our calculation, an average value of α = 12 is used for the shape parameter

of Weibull distribution. Scale parameter β of the Weibull distribution varies as a

function of different geometric and control conditions, different driver and vehicle

populations and prevailing travel purposes. For an illustration purpose, we assume

only two kinds of arcs for this network and the β values are set as either 52 or 104

when the maximum arc capacity is assumed to be 50 or 100, respectively. The MIP

model MET-D is solved using CPLEX solver and the lower bound for the clearance

time considering deterministic model was found to be T = 128. Results for different

reliability level for the stochastic model MET-S is shown in Figure 4.3.

It can be seen that a higher reliability level results in increasing of the clearance

time. By planning for a decreased capacity, the evacuation plan becomes more reli-

able in the sense that the probability of deviating from this plan due to degrading

capacity of the road link gets smaller. This essentially shows that to ensure the de-

sired reliability level, the network is loaded in a conservative manner so as to avoid

future infeasibility of the arc capacity constraint when the flow volume might ex-

ceed the capacity and result in congestion. Planning for extreme reliability would

theoretically ensure that the deviation from the resulting evacuation plan would be
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Figure 4.3: Clearance time for various values of reliability level

impossible. A judgmental decision has to be taken regarding the desired reliability

level of the evacuation plan.

4.2.2 Evacuation plan with minimum congestion

We formulated an optimization model for finding an evacuation plan with mini-

mum probability of congestion. This model would give the evacuation paths along

with a fixed flow on the selected paths to be used to evacuate the vehicles from the

region within time T given as an input to the model. First, consider the case when

there is no uncertainty. The objective of deterministic MCP model (see Appendix) is

to find the minimum number of evacuation paths. Given the clearance time T as an

input, the model finds the path and the flow associated with the paths for complete

evacuation. In the deterministic model, all the parameters are assumed constant and

the model can be easily solved using commercially available solvers such as CPLEX. A

comprehensive set of paths are provided to the model as an input parameter. MCP is

a combinatorial optimization problem and an evacuation plan obtained using this de-

terministic model is shown in Table 4.1. This table shows that a total of 16 selected
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paths along with the corresponding flow that would ensure a complete evacuation

within T = 130.

Table 4.1: Evacuation plan using the deterministic model

Source Node Total Vehicles Selected Path between O-D pair Travel Time Flow
1 100 1 2 14 15 16 17 18 31 32 25 23 41 24 1
2 100 2 14 15 16 17 18 33 30 31 32 25 22 42 27 1
3 100 3 2 14 15 16 17 18 31 32 25 23 41 24 1
4 100 4 15 16 17 18 31 32 21 22 23 41 23 1
5 100 5 14 15 16 17 18 20 21 22 42 24 1
6 100 6 15 16 17 18 20 21 22 42 23 1
7 3500 7 16 17 18 20 21 22 42 22 33
8 3500 8 18 33 34 29 28 27 36 37 40 20 32
9 3500 9 19 20 21 22 42 20 32
10 3500 10 31 32 25 22 42 20 32

11 14000 11 27 37 40 14 26
11 25 23 41 16 97

12 14000 12 37 40 14 22
12 24 41 15 100

13 14000 13 38 39 13 100
13 35 36 37 40 15 20

Now consider the scenario that there is an uncertainty associated with the capac-

ity of arcs. In such a case, one might attempt to re-solve the evacuation model with

new estimates of arc capacities in real-time. However, this might not be computa-

tionally feasible for large-scale networks. Even if this is feasible, there might not be

enough time to communicate the new information to the evacuees and the emergency

personnels executing the plan. There is a need to incorporate capacity uncertainty

in the model so that the obtained evacuation plan can be followed without modifica-

tions with a desired confidence level. Probabilistic road capacity formulation MCP-J

is used in such scenarios to find the evacuation plan.

MCP-J has dual objectives that find evacuation paths and their corresponding

flows by minimizing congestion within a given clearance time T . Values of Weibull

parameters α and β are assumed to be same as in the last section. Distribution

function of arc capacity with the typical value of α makes the MCP-J model highly
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non-linear. Moreover, the integral limitations for the decision variables and the com-

binatorial nature of the problem because of the presence of 0-1 variables make this

MINLP problem computationally intractable, especially for large scale instances with

more than hundreds of variables. We follow the following algorithm to solve the

model.

1. Relax the binary variable and solve the resulting Non Linear Programming

(NLP) subproblem of the MINLP. If y(0) = y is integer, stop(“integer optimum

found"). Else goto step 2.

2. Find an integer point y(1) with a Mixed Integer Program (MIP) master problem

that features an augmented penalty function to find the minimum over the

convex hull determined by the half-spaces at the solution (x(0), y(0)).

3. Fix the binary variables y = y(1) and solve the resulting NLP. Let (x(1), y(1)) be

the corresponding solution.

4. Find an integer solution y(2) with a MIP master problem that corresponds to

the minimization over the intersection of the convex hulls described by the

half-spaces of the KKT points at y(0) and y(1).

5. Repeat steps 3 and 4 until NLP subproblems start worsening ( i.e., the cur-

rent NLP subproblem has an optimal objective function that is worse than the

previous NLP subproblem).

Note that a similar algorithm is readily available in various solvers such as DICOPT

by Grossmann et al. [2002].

To insure that the arc capacity never goes to 0 and the congestion probability does

not make the model infeasible, we set up the following bounds for these variables.

γ ∈ [0.02, 0.99],
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Qa ∈ [0.3βa, βa].

Given the path set and the clearance time T , three sets of experiments are per-

formed for the model. We first present the results of each individual experiment and

later a detailed discussion of the results is presented.

Case 1: Objective function is set to minimization of congestion in the network.

In this case, there is no constraint on the number of paths being used for evacuation.

Model MCP-J is solved for different values of T to find the minimum congestion

level that can be achieved. It should be noted that the computation of the capacity

approximation is done for different probability levels within the model and the final

capacity that is used in the solution is obtained from the minimum probability level

found by the objective function. Table 4.2 shows the result of the experiment.

Table 4.2: Minimum congestion probability attainable for clearance time T

Clearance Time Congestion Probability No. of paths
130 0.466 25
131 0.426 29
132 0.395 27
133 0.381 29
134 0.348 28
135 0.317 24
136 0.289 22
137 0.259 28
138 0.252 23
139 0.229 25
140 0.200 24
141 0.189 27
142 0.183 25
143 0.164 22
144 0.144 30
145 0.140 26
150 0.085 28

Case 2: Objective function is set to minimization of number of evacuation paths.

Solution for this case for time T = 130 produced the following results.
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• Number of paths = 16

• Congestion probability = 0.852

Case 3: Objective function is set to minimization of congestion probability with

an added constraint of limiting the total number of paths to be used for evacuation to

a value N . Solving the model for different values of N , we obtained the result shown

in Table 4.3.

Table 4.3: Congestion probability attainable for clearance time T

Number of Paths (N)
Clearance Time 20 21 22 23 24

130 0.468 0.468 0.468 0.468 0.467
135 0.322 0.322 0.321 0.321 0.317
140 0.209 0.208 0.208 0.207 0.200
145 0.144 0.144 0.144 0.143 0.141
150 0.091 0.089 0.089 0.087 0.087

After analyzing the results from all the three experiments, it can be concluded

that for achieving a congestion level below 10%, the clearance time has to be increased

to 150. Even if the number of paths are increased, the congestion level cannot be

reduced below a certain level for evacuation being completed within a given time.

This is because of presence of bottleneck at certain sections of road which are being

shared by multiple paths and cannot be avoided. For these bottleneck locations being

shared by multiple paths, the flow has to be adjusted to accommodate more paths

sharing the same arc and maintain the free flow with the same level of probability.

Results obtained from the experiment in Case 1 provides the best bound achievable

for the congestion probability within time T without any restriction on the number

of evacuation paths. As seen from results in Table 4.2, even though there was no

restriction on number of paths to be used, the congestion level did not go down

after a certain probability level has reached for any particular input time T . This

hypothesis is further proved by the experiment described in Case 3. From Table 4.3,

65



we can see that the model achieved a comparable performance in terms of congestion

probability for a given clearance time with a limited number of evacuation paths.

This congestion level was achieved even though the number of evacuation paths was

limited to N whereas more paths were used to achieve the same level of congestion

in Case 1.

From the experiment of Case 2, it was found that a minimum of 16 paths are

required for evacuation in clearing time T = 130 and this would result in a congestion

probability of γ = 0.85. This congestion probability is quite high to tolerate for any

practical evacuation plan and would result in heavy traffic buildup and eventually

leading to require more time for evacuation. It should be noted that to achieve a

traffic flow with a congestion level below a desired probability within a limited time

T , the evacuation planner should consider evacuating less number of vehicles. An

alternative plan would be to provide local shelters for people who are left behind.

4.3 Conclusion

In this chapter, we extended the concept of stochastic capacity in the evacua-

tion planning problem and formulated the problem using the notion of congestion

minimization in evacuation routes. Traditionally, clearance time estimates and route

planning are determined considering a deterministic scenario. Only a handful of liter-

ature consider capacity as random variable and design the model to find the clearance

time estimates. To capture the variation of capacity, we first formulated a probabilis-

tic constraint for arc capacity violation in the proposed minimum cost network flow

model. We assumed that the random capacity follows Weibull distribution and esti-

mated the clearance time based on a desired reliability level. Bottlenecks are a result

of traffic flow reaching the saturation point of the capacity. We explicitly considered
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the uncertainty of traffic jam inherent in high volume traffic that occurs in evacua-

tion. To alleviate this problem, we used the bottleneck minimization principle and

developed a model that minimizes the probability of traffic congestion for a given

network state.

Numerical experiments showed that assigning traffic flow in anticipation of capac-

ity degradation would result in a conservative plan compared to deterministic models,

but such plans are more reliable. Paths and the corresponding flow that would result

in minimum congestion were found using the MCP-J model. For a given network and

clearance time, a state is reached where increasing the number of evacuation paths

will not have any effect in decreasing the congestion probability below a certain level

as the bottleneck arc is being shared by multiple paths. By providing the reliability

level, stochastic model equips the evacuation planner to make probabilistic inference

about the model results.

Finally, we conclude that minimization of clearance time for evacuation plan is not

the primary goal that the planner should look for. Since the capacity is variable and

there is a metastable region of the arc capacity in which there is a finite probability

of congestion to occur, slight disturbance can cause the traffic breakdown and in-

crease the total clearance time altogether. Therefore, an evacuation plan considering

variable parameters should be used such that the tolerable level of violations of the

probabilistic constraints can be inferred. The results obtained using the stochastic

models are more practical considering the dynamic and uncertain nature of events

during evacuation.

Future research in the direction of incorporating uncertainty in the evacuation

planning model would be to consider the random demand of the number of vehicles.

Owing to the non-existence of any distribution function for estimating the number of

evacuees, distribution free chance-constrained models would be a better alternative

to model the problem and coming up with a robust plan.

67



Chapter 5 Planning for Uncertain Demand

Evacuation is a rare event and the response of the people varies according to their

perception of the future danger and the past experiences with similar events. It is

very difficult to capture the evacuation behavior of people. Participation rate for

evacuation during emergency depends on a number of factors including the nature

of disaster (natural/man-made), dwelling type (permanent/mobile homes), region

of impact, time of impact and perception of risk. In order to mitigate the undue

consequences arising from uncertain demand, we study the problem of generating

evacuation transportation plans which are robust to random outgoing demand. More

specifically, we solve an evacuation traffic assignment problem with uncertain static

demand assigned to each source node. Stochastic programming techniques particu-

larly chance constrained programming is usually employed to come up with a reliable

evacuation plan. Chance constrained programming usually assumes that the under-

lying distribution of the random variable is known.

Efficient planning of a large scale evacuation requires an accurate description of

data. But evacuation is a rare event and enough data are not available to model

the underlying uncertainty. Demand estimates are usually based on the judgment of

individuals, creating inconsistencies in estimation methods. Moreover, the scarcity of

the significant data of such events does not allow to come up with a distribution that

captures the random behavior of evacuees demand. For the distributionally robust

setting, the probabilistic constraint is satisfied for the set of all possible probability

distributions in P that are consistent with the known properties of P, such as its first

and second moments or its support. In this chapter, we particularly focus on the

following assumptions. (i) The demand cumulative distribution function (cdf) is un-

known but only the partial distribution information such as first and second moments,
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etc. is available. (ii) The symmetric properties of the distribution is specified (iii) The

bounds of the random parameter are known. A distributionally robust chance con-

strained method is used to find the deterministic approximation of the probabilistic

constraint for the family of distribution P satisfied for the above assumptions. The

key contribution of this paper towards evacuation planning literature is to consider

issues related to ambiguous distribution of uncertainty and finding an evacuation plan

within chance constrained programming framework that is robust to vehicle demand

variations.

5.1 Problem formulation

A dynamic network flow model has been used to mathematically represent traffic

flow evolution in an evacuation network for our proposed optimization model. A

dynamic network can be visualized as a static network with an additional dimension

representing time, i.e., the static network is repeated for each discrete slice of time.

Traffic assignment on such time-expanded networks relies upon a more aggregate

representation of traffic as a series of flows that attempts to match the demand for

road space with the capacity of the highway system’s links and intersections at various

time.

Let us consider a directed network G = (N ,A ) consisting a set of nodes N and

a set of arcs A . For each arc a ∈ A , we define ta as the arc transit time and Ca

as the arc capacity. Nodes in the network are categorized into source nodes (Ns),

intermediate nodes, and destination nodes (Nd). Let Si be the number of evacuee at

source node i ∈ Ns and Cj be the capacity of destination node j ∈ Nd . We assume

that there are T time periods {0, 1, · · · , T−1} to complete transportation of evacuees

from the source nodes to the destination nodes.
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5.1.1 Path Based Model

The optimization model is designed for minimization of objective function which is

a sum of number of evacuees left behind at the end of horizon time. In this section, we

present a deterministic evacuation route planning model. To formulate the problem,

most of the researchers have developed a network flow optimization model that finds

the flow on roads with respect to limited capacities of the roads. In short-notice

emergency evacuations, evacuation paths are decided a priori by the authorities and

the main issue is traffic control and flow management to have a smooth evacuation.

Therefore, we adopt a path-based model (PBM) from Rungta et al. [2012] to select

a set of paths from a paths pool and determine flow on selected evacuation paths to

be used between each origin-destination (O-D) pair. The paths pool is constructed

based on the available evacuation paths and if the evacuation paths are not in hand,

one of the network optimization approaches can be utilized to generate evacuation

paths.

Assuming limited number of evacuees (supply) at the source nodes and limited

capacity at destination nodes, the goal is to evacuate maximum number of people

from the evacuation zone and reach the destination within a given clearance time

T . A model is designed to select a set of evacuation paths and assign flow rates to

the selected paths such that the objective minimizes the total remaining evacuees at

the end of time horizon which is represented as slack variable. This will in return,

guarantee that the total number of evacuated people is maximized. In this model,

for any path p ∈P, source node of path is denoted by P+
i and the sink node of path

by P−j . There are two decision variables in the model,

fpt ∈ Z+ : Flow rate of path p at time t, ∀p ∈P

βi ∈ Z+ : Slack variable associated with each source node i, ∀i ∈ Ns.

Using the notations in Table 5.1, the deterministic path-based model (DPBM) can
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be presented as follows:

Minimize zdpbm =
∑
i∈Ns

βi (DPBM) (5.1)

Subject to:
∑
p∈P

δpafp(t−θpa) ≤ Ca, ∀a ∈ A ,∀t ∈ T , (5.2)

∑
p∈P+

i

∑
t∈T

fpt + βi ≥ Si, ∀i ∈ Ns, (5.3)

∑
p∈P−j

∑
t∈T

fpt ≤ Cj, ∀j ∈ Nd, (5.4)

fpt ∈ Z+, ∀p ∈P,∀t ∈ T (5.5)

βi ∈ Z+, ∀i ∈ Ns. (5.6)

Table 5.1: Notation

Notation Description
N Set of all nodes
Ns Set of all source nodes
Nd Set of all destination nodes
Ca Capacity of arc a
Si Supply of source node i
Cj Capacity of destination node j
P+

i Set of paths originating from source node i
P−

j Set of paths terminated at destination node j
P Set of all paths

Constraint (5.2) limits the total flow on each arc to the capacity of the arc. In

this constraint, parameter δpa is a binary parameter which gets value 1 if path p

contains arc a and 0 otherwise. Variable fp(t−θpa) ensures that the flow originating at

path p at time t− θpa reaches arc a after the transit time θpa. This constraint allows

the simultaneous sharing of any arc by multiple paths. Constraint (5.3) is related to

supply of each source node and guarantees that the sum of flows on path originating

from the nodes in Ns over all time is equal to the supply at that node. An additional

slack variable βi is added to this term that represents evacuees who are left behind.
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Constraint (5.3) together with the objective function (5.1) minimize the summation

of deviation βi from all source nodes. This objective function, in turn, maximizes the

total outgoing flow from the network. Constraint (5.4) bounds the total incoming

flows at each destination node to its maximum capacity. Constraints (5.5) and (5.6)

reflect the non-negativity and integrality conditions.

For the model DPBM, a deterministic estimate of the demand is used on the

right-hand-side of the constraint (5.3). This estimate is often based on individual

assumptions and the actual demand have a finite probability of diverging from the

assumed demand. The evacuation plan based on the above assumption would result

in finding a minimum objective value that would not be reflective of the true number

of people left behind when the actual demand is different from the estimated value.

Chance constrained optimization technique has traditionally been used to address

the problem and come up with an evacuation plan where the constraint is satisfied

with some specified guarantee level. The constraint with random input parameter is

modeled as a probabilistic constraint where the demand parameter Si in constraint

(5.3) is substituted by random demand S̃i. Such reformulation of the constraint is

named as individual chance constrained model. Referring to the deterministic model,

the demand constraint (5.3) is modified to limit the infeasibility of the constraint for

each arc by a violation level εi ∈ (0, 1]. The stochastic chance constrained model with

demand uncertainty can be formulated as follows:

Minimize zspbm =
∑
i∈Ns

βi (SPBM) (5.7)

Subject to:
∑
p∈P

θpafp(t−δpa) ≤ Ca, ∀a ∈ A ,∀t ∈ T , (5.8)

P

 ∑
p∈P+

i

∑
t∈T

fpt + βi ≥ S̃i

 ≥ 1− εi, ∀i ∈ Ns, (5.9)

∑
p∈P−j

∑
t∈T

fpt ≤ Cj, ∀j ∈ Nd, (5.10)
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fpt ∈ Z+, ∀p ∈P,∀t ∈ T

(5.11)

βi ∈ Z+, ∀i ∈ Ns. (5.12)

Constraint (5.9) is the individual chance constraint equivalent of the determinis-

tic constraint (5.3) with the desired probability level imposed individually on each

constraint. Parameter 1− εi ∈ (0, 1] is the desired reliability level and the value of ε

is set such that the optimal solution to the approximation of the chance constraint is

feasible to the probabilistic constrained programming (PCP) model. Violation of con-

straint (5.9) implies that the realized demand is more than the predicted demand. For

modeling the chance constrained models, the basic assumption is that the probability

distribution function FS̃iof the random parameters is known with certainty. When

such is the case, and the probabilistic constraint is of the form as stated in (5.9), a

deterministic approximation can be made as below that guarantees the feasibility of

the constraint with reliability level of 1− ε.

P

 ∑
p∈P+

i

∑
t∈T

fpt + βi ≥ S̃i

 = FS̃i

 ∑
p∈P+

i

∑
t∈T

fpt + βi

 (5.13)

FS̃i

 ∑
p∈P+

i

∑
t∈T

fpt + βi

 ≥ 1− εi. (5.14)

 ∑
p∈P+

i

∑
t∈T

fpt + βi

 ≥ F−1
S̃i

(1− εi) (5.15)

Replacing constraint (5.9) with constraint (5.15) would guarantee that the solution

would be feasible with the confidence level of 1− ε.
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5.2 Robust approximation of chance constraints

Assuming that the probability distribution of the random parameter is known

with certainty, the standard method to solve chance constrained problems is finding

a deterministic estimate based on (1 − ε) quantile value of the probability distribu-

tion and reformulating the model with an equivalent deterministic constraint that is

tractable. But when the distribution information is ambiguous, the solution obtained

using the deterministic approximation might result in infeasible solution. This will

happen when the realized demand follows some other distribution as opposed to the

distribution that was used for deterministic approximation. We provide a robust

tractable approximation method that can be used when only the mean, variance and

support information is available for the probability distribution of the random data.

Assuming that S̃ has a known component S̄ and a random component ξ̃, such that:

1. S̃ = S̄ + ξ̃,

2. the mean value of ξ̃ is ξ̄ = 0,

3. the covariance matrix of ξ̃ is Σ,

4. the support of ξ̃ is Ξ

Consider the following robust individual chance constraint problem:

Minimize z =
∑
i∈Ns

βi (5.16)

P

 ∑
p∈P+

i

∑
t∈T

fpt + βi ≥ S̃i

 ≥ 1− εi, ∀i ∈ Ns,∀P ∈ P . (5.17)

This is in general a difficult convex optimization problem due to the chance con-

straints.
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Proposition 2. Assume that the assumption is satisfied. Consider the following

second order cone program for the family of distributions having given mean S̄ and

covariance Σ. We denote this family with P = (S̄,Σ).

Minimize z =
∑
i∈Ns

βi (5.18)
σi

√
(1− εi)
εi

+ S̄
− ∑

p∈P+
i

∑
t∈T

fpt − βi ≤ 0 ∀i ∈ Ns (5.19)

then every feasible solution of (5.18) - (5.19) is feasible for (5.16) - (5.17).

Proof: Let (f, β) be a feasible solution of (5.18). We have to check that for all i ∈ Ns

and P ∈ P whether:

P

 ∑
p∈P+

i

∑
t∈T

fpt + βi ≥ S̃i

 ≥ 1− εi. (5.20)

Using the theorem from Calafiore and Ghaoui [2006], a constraint of the form

infd∼(d̂,Γ)P(dT x̃ ≤ 0) ≥ 1− ε (5.21)

can be replaced by following equivalent convex second order cone constraint that is

satisfied for all realization of the random parameter within family d ∼ (d̂,Γ).

κεσ(x) + ϕ̂(x) ≤ 0, κε =
√

(1− ε)
ε

. (5.22)

For constraint (5.17), the random parameter S̃i is independent of the decision variables

and thus after application of the above theorem, constraint (5.17) can be written in

the form (5.19) where σi represents the standard deviation of the random parameter

S̃i.

Proposition 3. Assume that the assumption is satisfied along with an additional
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information that the random vector ξ is symmetric about its mean. Let P = (S̄,Σ)S

denote the family of symmetric distributions having mean S̄ and covariance Σ. Con-

sider the following second order cone program:

Minimize z =
∑
i∈Ns

βi (5.23)
(
σi

√
1

2εi
+ S̄

)
−

∑
p∈P+

i

∑
t∈T

fpt − βi ≤ 0 ∀i ∈ Ns (5.24)

then every feasible solution of (5.23) - (5.24) is feasible for (5.16) - (5.17).

Proof: Using the lemma from Calafiore and Ghaoui [2006] for robust approximation

of chance constraints where the random variable have symmetric distributions, a

constraint of the form

infd∼(d̂,Γ)SP(dT x̃ ≤ 0) ≥ 1− ε (5.25)

can be replaced by following equivalent convex second order cone constraint that is

satisfied for all realization of the random parameter within family d ∼ (d̂,Γ).

κεσ(x) + ϕ̂(x) ≤ 0, κε =
√

1
2ε. (5.26)

For constraint (5.17), the random parameter S̃i is independent of the decision variables

and thus after application of the above theorem, constraint (5.17) can be written in

the form (5.24) where σi represents the standard deviation of the random parameter

S̃i.

Proposition 4. Assume that the assumption is satisfied and the support of random

vector ξi is bounded in intervals ξi ∈ [l−i , l+i ], l+i ≥ 0 ≥ l−i . Let P = (S̄, L)I denote

the family of distributions having mean S̄ and L is a diagonal matrix containing the
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interval widths. Consider the following second order cone program:

Minimize z =
∑
i∈Ns

βi (5.27)
√1

2 ln 1
ε
‖L‖+ S̄

− ∑
p∈P+

i

∑
t∈T

fpt − βi ≤ 0 ∀i ∈ Ns (5.28)

then every feasible solution of (5.27) - (5.28) is feasible for (5.16) - (5.17).

Proof: Using the Hoeffding tail probability inequality, it is proved in Calafiore and

Ghaoui [2006] that for the chance constraints where the random variable are bounded

with probability one to independent bounded intervals, a constraint of the form

infd∼(d̂,L)IP(dT x̃ ≤ 0) ≥ 1− ε (5.29)

can be replaced by following equivalent convex second order cone constraint that is

satisfied for all realization of the random parameter within family d ∼ (d̂, L)I .

√
(1/2) ln(1/ε)‖Lx̃‖+ ϕ̂(x) ≤ 0. (5.30)

For constraint (5.17), the random parameter S̃i is independent of the decision variables

and thus after application of the above theorem, constraint (5.17) can be written in

the form (5.28) where ‖L‖ represents the L2 norm of the diagonal matrix L.

Using the Proposition as approximated value and solving the model would result

in a robust solution that would be feasible for all the distributions consistent with

the given information. Hereafter we name the robust approximated model as RCCP.
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5.3 Computational Results

Solving the chance constrained programming without the distribution information

of underlying random parameter can be tedious using the sampling approach or min-

max approach. These methods can be at times intractable for large sized problems.

Before undertaking an extensive set of computational results, we now put forth the

following questions we wish to answer:

1. What is the feasibility of the evacuation plan obtained based on the assumed

distribution?

2. How conservative is the robust approximation as compared to when the true

distribution is known?

3. How does the stochastic model assist in decision making?

Experimental studies are conducted on a test evacuation network shown in Figure

5.1. In this network, nodes 1 - 3 are source nodes and nodes 9 - 10 are destina-

tion nodes. Usually demand modeling for emergency logistics is done using S-curve.

Predicting the demand by estimating the parameters of S-curve using empirical or

simulated data resulted in varying demand values (Lindell [2008]). Since the total

demand is uncertain, modeling the constraint as chance constraint and assuming the

probability distribution of the perceived demand is known, solution of the model

would result in feasible evacuation plan for unexpected scenarios. Problem arises

when the assumed distribution is different from the actual distribution. We perform

the following numerical tests to show the feasibility of the plan.

For each source node we assume that the mean is known with value µ = 167.

Standard deviation of the random demand for each source node is set to be σ1 = 8.3,

σ2 = 7.5 and σ3 = 9.1. The path based model for minimizing the number of evac-

uees left behind at the end of planning horizon is used. Solution of the chance
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Figure 5.1: Evacuation test network

constrained model is obtained assuming that the demand distribution is following

uniform distribution and beta distribution consistent with the given moment infor-

mation. Specifically, the beta distribution for each source node that we use are

beta1(2.68, 3), beta2(3, 3.45) and beta3(2.4, 2.75) assuming that the demand at each

source node is given by d = 160 + 15d̃. Model is first solved for various violation

levels denoted by ε where the approximation is done based on the information about

the distribution. For example, consider the first row in Table 5.2. Here the demand

for probability level 99 is obtained based on the 99% quantile value corresponding to

the uniform distribution consistent with the given moment informations. Clearance

time for the complete evacuation is found out for the calculated demand scenario

and is reported in the second row. Next, we solve the model based on the robust

approximation of the chance constraint that models the random demand. The ap-

proximation do not consider any specific distribution but is consistent with the given

moment information.

To check the robustness of the evacuation plan obtained using the above methods,

we generate 1000 random demands using normal distribution agreeable with the given

moment information. To compare the results, we use the evacuation plan obtained
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from the above experiments and find out the number of people left when this evac-

uation plan is executed with the demand obtained from normal distribution. Since

the evacuation route, path flow rate and starting schedule is deterministic, we follow

a simple heuristic to make the solution meaningful. If the realized demand is less

than the estimated demand then allocate demand proportionately to each selected

path. If the realized demand is more than the estimated demand then the excess

demand remains at the source node. Results in Table 5.2 show the estimated number

of evacuating vehicles and the corresponding clearance time along with the feasible

probability for the evacuation plan obtained using the model in situation of the de-

mand following normal distribution. The solution is feasible for a particular demand

scenario only if all the demand from each source node is satisfied. If the demand for

any of the source node is not satisfied than the plan is infeasible for that scenario.

Table 5.2: Comparison between CCP and RCCP

Probability level (1− ε)
99 98 95 90 80 70 60

CCP(Unif)
Demand 545 544 541 537 528 520 511
Time 23 23 23 23 23 22 22

Feasibility 87.5% 86.2% 83.8% 78.6% 62.0% 46.2% 27.9%

CCP(Beta)
Demand 520 518 516 513 509 507 504
Time 22 22 22 22 22 22 22

Feasibility 46.2% 43.1% 39.6% 32.5% 24.4% 21.9% 17.2%

RCCP
Demand 750 677 611 577 552 540 534
Time 31 28 26 24 24 23 23

Feasibility 100% 100% 100% 99.8% 93.8% 82.7% 73.4%

From Table 5.2, we observe that when the model is solved using CDF based

approach assuming either uniform distribution or beta distribution for the demand

and the realized distribution is normal, the evacuation plan is having significantly

lower feasibility compared to RCCP based approach. If the probability distribution

used for CDF based approach is different from the underlying distribution, the feasible
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probability can be greatly deviated from the expected value of 1 − ε. For example,

when we compare the solution for the confidence level of 99%, we expect that the

chance constraint will be feasible with 99% probability. Based on the approximation

using above scenarios, we find that CCP based approach is feasible only 87.5% of

time for the case of assumed distribution being uniform and 46.2% for the assumed

distribution being beta. This signifies the critical dependence of the solution on the

exact description of the distribution.

Since the uniform distribution is more loose than normal distribution the result

obtained is feasible for normal distribution but the feasibility is not good for beta

distribution. This can be explained based on the fact that beta distribution with

the given parameters is tighter as compared to normal distribution. It is observed

that that the feasible probability depends on the probability distribution of the as-

sumed uncertainty distribution. Solving the model using the robust approximation

and using the resulting evacuation plan for simulated random demand based on nor-

mal distribution resulted in 100% feasibility. As seen, the approximated demand is

significantly higher and the evacuation plan based on this inflated demand would be

feasible for any realized demand obtained from the normal distribution. Ideal case

would be having the perfect information of the future demand at the beginning of

the planning horizon and would give a lower bound of the clearance time.

Next, we compare the results when some extra information regarding the demand

distribution is available such as symmetry information and support information. In

Table 5.3, we show the feasible probability of the evacuation plan when the realized

demand is drawn from normal distribution and robust approximation of the chance

constraint is done using the known information of the distribution.

From the Table, it can be concluded that tighter approximation can be made

when we have more information about the distribution. Support information results

in the tightest bound when we want the constraint to be feasible with probability of
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Table 5.3: RCCP with various distribution information

Probability level (1− ε)
99 98 95 90 80 70 60

Moment
Demand 750 677 611 577 552 540 534
Time 31 28 26 24 24 23 23

Feasibility 100% 100% 100% 99.8% 93.8% 82.7% 73.4%

Symmetry
Demand 679 627 581 558 542 534 531
Time 28 26 25 24 23 23 23

Feasibility 100% 100% 99.9% 96.9% 84.7% 73.4% 67.3%

Support
Demand 647 635 618 604 588 577 566
Time 27 27 26 26 25 25 24

Feasibility 100% 100% 100% 99.9% 99.6% 99.5% 97.0%

99%. Information about the symmetry of the distribution significantly improves the

approximation and makes it tighter resulting in an efficient evacuation plan. For all

the approximations, we observe a high feasible probability for the simulated demand

scenarios obtained from the normal distribution.

5.3.1 Comparison with scenario based approach

We compare the robust approximation with Monte Carlo sampling based ap-

proach. For comparison, we generate the scenarios of random data vector from uni-

form distribution and beta distribution. Each scenario of the random demand makes

up a constraint of the problem. To ensure the feasibility of constraint with reliabil-

ity of 1 − δ, the sample size N should be according to Calafiore and Campi [2005].

Following equation represents the SA (sampling approximation) model.

Minimize zsa = ( 1
L

)
∑
i∈Ns

∑
l∈L

βil (SA) (5.31)

Subject to:
∑
p∈P

θpafp(t−δpa) ≤ Ca, ∀a ∈ A ,∀t ∈ T , (5.32)

∑
p∈P+

i

∑
t∈T

fpt + βil ≥ Sil, ∀i ∈ Ns,∀l ∈ L (5.33)
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∑
p∈P−j

∑
t∈T

fpt ≤ Cj, ∀j ∈ Nd, (5.34)

fpt ∈ Z+, ∀p ∈P,∀t ∈ T (5.35)

βi ∈ Z+, ∀i ∈ Ns. (5.36)

For practical problems, the required sample size is too large. Therefore, for our

problem we take the sample size L = 50. These samples are generated for each source

node. In the SA model above, Sil represents the number of vehicles at source node i

for scenario l ∈ L. Decision variable βil represents the number of vehicles left behind

at source node i for sampling scenario l ∈ L. The SA model is solved for flow on path

p at time t and the evacuation plan is obtained. Again, to verify the performance of

the evacuation plan obtained using SA model, we simulate 1000 demand from normal

distribution and follow the similar procedure as in earlier experiments. Results for

the mean number of vehicles left behind at each source node along with the maximum

value and the feasible probability is shown in Table 5.4. Table shows the comparison

of the evacuation plan obtained using the robust approximation method and the SA

method when the sampling is done from uniform and beta distribution respectively,

beta distribution having the same parameters as mentioned earlier.

Table 5.4: Comparison of RCCP with SA

Uniform Beta RCCP
1 2 3 1 2 3 1 2 3

Mean 4.36 3.37 3.64 4.89 4.31 5.47 0 0 0
Maximum 11 7 15 21 17 25 0 0 0
Node Feas. 96.0% 95.3% 93.0% 71.9% 81.7% 73.5% 100% 100% 100%
N/W Feas. 84.7% 42.7% 100%

In Table 5.4, the feasible probability of the probabilistic constraint is shown for

each source node separately. For example, the constraint is feasible only 96.0% of

time when the demand follows normal distribution at node 1 instead of uniform

83



distribution. This feasibility is 71.9% at the same node when the evacuation plan was

obtained assuming beta distribution and 100% when the solution is obtained from

the robust approximation of the ambiguous chance constraint. In terms of network

wide feasibility, the plan is feasible for 84.7% and 42.7% of time for uniform and beta

distribution respectively. As compared to both demand scenarios, RCCP provides

robust solution and ensures complete evacuation. RCCP penalizes the clearance

time and provides a conservative solution but it outperforms other methods in terms

of feasibility when the assumed demand distribution is different from the realized

distribution.

While planning for evacuation, if the complete information for the demand distri-

bution is available then the tightest approximation can be made. Proposed evacuation

routes and schedule and the calculated clearance time will then be easily able to evac-

uate the evacuation demand. But it is more sensible to use the RCCP based approach

to come up with an evacuation plan when the complete information of the distribu-

tion is not known. In such scenarios, incorrect assumption would lead to infeasibility

of the plan which is not desired.

5.4 Conclusion

In this chapter, we focus on robust approximation of chance constrained prob-

lems to model the traffic demand uncertainty. Stochastic programming techniques

particularly chance constrained programming is usually employed to come up with

a reliable evacuation plan. Specifically, when the demand variable have an arbitrary

distribution in the evacuation problem, we proposed to utilize a distribution free lin-

ear approximation technique and solve the problem. Under the assumption that we

have information about the moments, support and symmetric properties of the dis-

tribution, we came up with a robust approximation of demand constraint. Numerical
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experiments showed that the proposed approximation is better than CDF based ap-

proach and sampling approach when the true distribution is not known. However,

this approximation method is conservative and the true distribution information, if

available, would result in a much better solution.
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Chapter 6 Conclusions and Future Work

In this chapter, we summarize our findings in this research and we discuss the

future researches that can be pursued. The introduction and literature review sections

presented gave a birds eye view of OR techniques for coming up with an a priori

evacuation plan. An overview of models was provided that targeted various aspects

of evacuation problem and prepared the ground for some important and unanswered

questions pertaining to the total clearance time required in wake of the infrastructure

limitations and the inherent uncertainties associated with regional evacuation. In

Section 6.1, we explain our findings for evacuation route planning problems and the

significant impact that they can have on the emergency evacuation problem. In future

work, we discuss problems and solution methods that can be explored from the current

point of research.

6.1 Current findings

Eying the importance of large scale evacuations and the complexity involved in

planning for such a gigantic task, the work in this thesis is directed towards aiding

the emergency managers while planning to evacuate people towards safe areas and

effective management of the plan using the limited set of resources. My research

concentrates on developing and solving large scale network flow optimization models

for both deterministic and stochastic evacuation scenarios with an emphasis on com-

ing up with an effective and reliable evacuation plan. In this thesis, we addressed

important managerial aspects of evacuation event that is lacking in prevalent models.

The research aimed to propose a stochastic network flow model and come up with a

realistic decision support system.

Effective implementation of an evacuation plan in the wake of a limited set of
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resources demands that a minimum number of paths are selected for loading the

evacuation traffic. This objective is first covered in the thesis and a bi-objective

dynamic network flow model was formulated to find the least number of evacuation

paths for complete evacuation within the minimum clearance time. The formulation

was a mixed integer nonlinear programming model (MINLP) with multiple objectives

and such problems are often intractable. Therefore, a three phase solution method

was proposed for this problem by decomposing the original model into three separate

sub-models. The solutions of these models provided a lower bound on clearance

time for complete evacuation, a solution pool of feasible paths and the minimum

number of paths required for evacuation in least possible time along with the starting

schedules on the selected paths assuming a variable flow rate on the paths at each time

interval. The proposed models were mixed integer linear programing models and the

formulation was done for System Optimum (SO) scenario where the emphasis was on

complete network evacuation in minimum possible clearance time without any preset

priority. We demonstrated that the model can handle large size networks with low

computation time.

Motivated by the stochastic behavior of the arc capacity, we found the evacuation

paths and the traffic flow rate on the paths during evacuation within a given time

bound that resulted in minimum traffic congestion. Formulation of the resulting rout-

ing and scheduling problem was done within a static network optimization framework

using the traffic principle for network breakdown minimization. This model found a

reliable evacuation plan by selecting paths and flow rate on the paths that resulted

in minimum congestion probability for a given network within the given evacuation

time. Experiments were conducted to find the minimum clearance time required to

attain a desired confidence level ensuring free flow of traffic in the network. Results

reported the sensitivity of the congestion probability with respect to the evacuation

time, minimum number of paths to be selected to achieve a desired reliability level,
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and the corresponding traffic flow on the selected paths.

We extended the stochastic model for evacuation planning to include the uncer-

tainty in demand. It is very difficult to capture the evacuation behavior of people

since it is a rare event and the response of the people varies according to their per-

ception of the future danger and the past experiences with similar events. Moreover,

the scarcity of the significant data of such events does not allow to come up with a

distribution that captures the random behavior of evacuees demand. For the demand

variable having an arbitrary distribution in the evacuation problem, we utilize the

distribution free linear approximation techniques. Using the information about the

moments, support and symmetric properties of the distribution, we come up with a

robust approximation of chance constraint used to model the demand requirement

during the evacuation. This approximation is robust to any distribution consistent

with the given information. Numerical experiments showed its advantage over CDF

based approximation method and sampling based method.

6.2 Future work

Operations research techniques applied to evacuation planning significantly con-

tribute to decision making during unfortunate disaster events. There are still many

important OR problems in evacuation planning. Guided by the motivation of this

thesis, encapsulating the variability of demand and arc capacity simultaneously would

entail a plan that addresses the significant uncertainty in an evacuation scenario and

provide a decision support system to the evacuation managers that is effective and

reliable. The current estimates for the stochastic models are conservative in nature

and further research can be done to come up with more tighter estimates. Better

demand estimates would certainly provide a much better evacuation plan.

Adding the zoning information for evacuation and prioritizing the evacuation plan
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on a zonal basis can be another important extension. This will help to streamline

the currently proposed evacuation plan and it would be much more efficient and

manageable. For this extension, weights need to be assigned to the source nodes in

the current variable flow model according to the evacuation priority.

Access to timely and accurate traffic information during evacuations is critical to

the evacuation process. Information about traffic flow rates and speeds, along with

lane closures, weather conditions, incidents, and the availability of alternative routes,

is needed to effectively guide evacuees. We think the focus will shift from a priori

optimization towards a real-time adaptive decision making for several reasons, such

as the availability of the necessary technology and data with the advent of Intelligent

Transportation Systems (ITS) equipment. Stochastic dynamic programming would

be an excellent research direction to take the advantage of the real time data and

come up with an efficient evacuation plan.
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Chapter A Reliability Analysis under Ca-

pacity Uncertainty

A.1 Deterministic MCP Model

A fixed-flow model with the objective of minimum number of paths to be used for

evacuation can be formulated as follows.

Minimize
∑
p∈P

yp (A.1)

Subject to:
∑
p∈P

fp · δpa ≤ Qa, ∀a ∈ A ; (A.2)

∑
p|Op=i

(T − σp)fp ≥ Si, ∀i ∈ Nc; (A.3)

∑
p|Dp=j

(T − σp)fp ≤ Cj, ∀j ∈ Ns; (A.4)

(T − σp)fp ≤M · yp, ∀p ∈P; (A.5)

fp ∈ Z+, yp ∈ {0, 1} ∀p ∈P; (A.6)

We define the decision variables fp ∈ Z+, yp ∈ {0, 1},∀p ∈ P for the model.

Constraint (A.2) ensure that the sum of flows for all paths p on any arc (i, j) ∈ A

during any interval of time t should not exceed the maximum capacity of that arc.

Constraint (A.3) guarantees that the sum of flows on path originating from the nodes

in Nc over all time is greater than or equal to the supply at that node. This constraint

generates the flow in the paths that are selected for the solution. Constraint (A.4)

ensures that the summation of flow on paths coming into the destination over all time

do not exceed the capacity Cj of the destination nodes Ns. Constraint (A.5) limits

the sum of all flows over all time t ∈ T on any path p if the path is selected in the
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solution. If the path is not selected than the flow of the path at all times is set to 0.

If the path is selected, the summation of the flows is limited to M = max(Si|Op), i.e.,

the maximum possible supply initially present at the origin of any path. Constraint

(A.6) forces the variables fp and yp to take integer and binary values respectively.

This model gives the flexibility to the emergency managers for finding the minimum

numbers of paths that are required for evacuation. Using less paths for evacuation is

helpful to emergency managers for efficient management of the evacuation process in

wake of limited resources.
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