
 

Omics-Scale Bioinformatics Technology and Methods: from Data to Information 

 

 

 

A Dissertation 

Presented to 

Faculty of the Department of Biology and Biochemistry 

University of Houston 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

 

 

By 

Haosi Chen 

December 2014 

  



II 

Omics-Scale Bioinformatics Technology and Methods: from Data to Information 

 

------------------------------------- 

Haosi Chen 

 

APPROVED 

-------------------------------------- 

Dr. Xiaolian Gao,  

Chair of the Committee 

 

-------------------------------------- 

Dr. James M. Briggs 

 

-------------------------------------- 

Dr. Cecilia M. Williams 

 

-------------------------------------- 

Dr. Fuli Yu 

 

-------------------------------------- 

Dean, College of Natural 

Sciences and Mathematics 

  



III 

Acknowledgements 

I am using this opportunity to express my sincere appreciation to my advisor, Dr. 

Xiaolian Gao, for her inspiring guidance and for the tremendous learning opportunities 

she provided for my Ph.D. studies at the University of Houston. I also appreciate the rest 

of my committee, Drs. James Briggs, Cecilia Williams and Fuli Yu, for their invaluable 

constructive criticism and friendly advice during my graduate studies. 

I am very grateful to all my collaborators: Ms. Ruijuan Zhu, she made great 

contributions for the miRFocus project; Ms. Chengping Sui, she collected the data for the 

miRNA-miRNA relationship database in the miRFocus project; Ms. Wen Wan, a student 

in University of Science and Technology of China, she performed the experiments of the 

Microchip-synthesized DNA project and generously shared the data with me; Dr. Qi Zhu, 

senior scientist at LC Sciences, he sequenced the nucleotides for the Microchip-synthetic 

DNA project; Dr. Bing Zhu, he performed the experiment of the Histone PepArrary chip 

project; Dr. Ailing Hong, senior chemist at LC Sciences, she made the PepArrary chips 

for the Histone PepArray project. And I also appreciate Dr. Wei Huang, Celise Robertson, 

Henry Vo for their valuable suggestions for revising my thesis.  

I would like to thank my family and all my friends, for their company and support 

which extends beyond my Ph.D. student life.  

Finally, I would like to specifically thank my wife. She is the most precious person 

to me in the world. Her invaluable help is essential for my completion of the thesis and 

graduate with Ph.D. degree. 

  



IV 

Omics-Scale Bioinformatics Technology and Methods: from Data to Information 

 

 

 

An Abstract of a Dissertation 

Presented to 

the Faculty of the Department of Biology and Biochemistry 

University of Houston 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

 

 

By 

Haosi Chen 

December 2014 

  



V 

Abstract 

Omics-scale bioinformatics is an emerging discipline of science that plays an 

essential role in analyzing and interpreting large scale biological data. In this thesis, I 

developed three different omics-scale bioinformatics methods to facilitate the studies of 

human miRNAs, synthetic DNA oligo library and histone post-translational 

modifications (PTMs), respectively.  

MiRNAs, which are involved in various biological processes by regulating multiple 

genes, have been an area of research drawing intensive interest in the recent two decades. 

There exists an enormous amount of miRNA related information, and how to effectively 

mine the valuable information embedded in the large volume of literature has become an 

urgent problem. Because each of the existing online databases includes only partial 

information about human miRNAs, I created a comprehensive web-based resource 

‘miRFocus’ for conveniently retrieving extensive and comprehensive human miRNA 

information and conducting pathway and Gene Ontology (GO) term enrichment analysis.  

Current next-generation sequencing (NGS) technologies mainly focus on genome or 

transcriptome sequencing analysis and none of the existing NGS methods is suitable for 

high resolution nucleobase-specific analysis of libraries of synthetic oligonucleotides, 

which are used as materials for engineering long DNA fragments in synthetic biology 

applications. To meet such requirements, I developed an algorithm and software tool for 

analyzing synthetic oligo libraries. This approach is composed of two-step quality control 

and Bowtie2-based sequence alignments. It is proved that such a method successfully 

assessed the efficiency of etMICC-based error-removal method on synthetic oligos of 
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different lengths and identified that etMICC columns has higher binding affinity with gap 

error structure than substitution error structure.  

Epiproteomics examines diverse PTMs, such as histone methylation. However, 

traditional methods of studying histone PTMs are expensive in cost, labor and time. I 

developed a histone peptide array (hPepArray) for analyzing activities of cellular histone 

methyltransferases (HMTs). Lysine-containing peptides of hPepArray are directly 

generated from 10 histone proteins. In the hPepArray, two known methylation sites 

H3K122 and H4K59 are verified and one possible methylation site H2A-K74 is identified. 

The experimental results demonstrate that hPepArray and the method of analysis offer a 

high-throughput epiproteomic tool to assay activities of HMTs in nuclear lysates. 
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1.1 Omics-Scale Life Sciences 

1.1.1 Omics 

When James Watson and Francis Crick first discovered, in 1953, the double helix 

structure of DNA [1], life sciences entered a new era of modern biology. In the past 

decades, more and more technologies have been invented, and more and more discoveries 

have led to the exponential knowledge growth in the fields of biochemistry, molecular 

biology, genetics and other life science disciplines. With the innovation of technologies 

and reduction of experimental costs, scientists are no longer satisfied with the study of 

individual molecules (such as gene, RNA and protein). They are beginning to be 

interested in the collection of many elements of the subject of their research. The format 

of scientific research is undergoing a transition from simplex to multiplex to system scale. 

Omics refers to the study of collective elements that is used to explore the functions 

and relationships of the various types of molecules. Based on the types of biological 

molecules, omics can be divided into different fields, such as genomics, proteomics, 

glycomics, lipidomics, etc. Moreover, in light of the discrepancy of functions of the 

molecules, it can be further subdivided, for instance, genomics can be divided into cancer 

genomics, immunomics, epigenomics, and so on. Among the omics studies, the most 

well-known one is the Human Genome Project (HGP). HGP was an international 

scientific project, costing roughly $3-billion with the goal to benefit mankind. The project 

was founded in 1990 and announced completed in April 2003, having verified 99% of the 

human genome with 99.99% accuracy [2]. Although HGP was finished, as revealed by 

the project [3], more detailed analyses are still needed for genome functions.  
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1.1.2 Systems Biology 

As the scope of research objects has been largely extended, scientists realize that it 

is not only difficult to examine the relationships between molecules, but also difficult to 

characterize clearly the function of a single molecule if only focused at the single 

molecule level. As a result, they turn to integrate the biological information in 

collaborative ways, which is the core idea of systems biology. 

Systems biology, a biology-based inter-disciplinary study, aims at studying and 

interpreting biological phenomena at the macro-level by exploring the interactions of 

various molecules in the same system, for example, signaling network analysis, or by 

examining discrepancies of one type of biological molecules in the same biological 

system. The concept of systems biology has been widely used in various biosciences, e.g., 

HGP. 

In the human genome, only 1.5% sequences of total 3.3 billion DNA base-pairs are 

coding DNA, which can be transcribed and translated into proteins, while more than 98% 

of the genome is consisted of noncoding DNAs, also called “Junk DNAs”, without any 

particular known functions. Surprisingly, when researchers studied a part of the “Junk 

DNAs” at the systems level, they found that although the “Junk DNAs” themselves do 

not have any special function of conventional interpretation, some of it can regulate the 

expression and cellular activities of certain proteins through their particular structural 

properties or their transcribed RNAs [4]. Thus, “Junk DNAs” can actually be important 

regulatory molecules. 

Among a variety of regulatory genes, microRNAs (miRNA) first discovered in 

1990s is one of the well-known families [5]. MiRNAs are small non-coding RNAs, 
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consisting of 16 ~ 28 nucleotides, and by prediction, they regulate about 60% of human 

genes [6]. Consequently, miRNAs have impact on all the pathways related to their target 

genes. Certainly, such a large impact won’t be noticed if research was only focused on 

one or a few molecules.  
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1.2 Bioinformatics 

1.2.1 Background 

With the dramatic increase in the quantity of experimental data, coupled with 

improvement of the depth and scope of study objects, it is unreasonable to store and 

analyze the data just with pen and paper. The prevalence of computers and internet 

communications provided a good opportunity to solve the problems caused by large data 

sets. It not only facilitates people’s daily lives, but also offers great help to researchers’ 

work. In order to dig out useful information from the mountains of biological data, 

knowledge of mathematics, databases, software tools, statistics and computer science are 

all integrated to develop the analytical methods. With the implementation and 

improvement of these methods, a new research field emerged. In 1970, Paulien Hogeweg 

and Ben Hesper used the term bioinformatics to refer to this new field [7]. Bioinformatics 

is an interdisciplinary field that processes the biological data with methods developed by 

combining mathematics, statistics and computer science. In the last few years, more and 

more investigations have entered bioinformatics because of its important role in biology, 

which highly promoted the development of bioinformatics and life sciences. 

 

1.2.1 Databases 

In the face of giant biological data, how to organize and store them effectively 

became an urgent problem. Databases are one of the most important means for biologists 

to store the acquired biological data, such as DNA or protein sequences and related 

information, with the assistance of computer scientists. It offers a user-convenient way to 

search and query. The most widely accessed literature database is PubMed, which is 
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hosted by National Center for Biotechnology Information (NCBI), affiliated with the 

United States National Library of Medicine (NLM). The PubMed database is also called 

Medical Literature Analysis and Retrieval System Online (MEDLINE) Database. It is a 

database of article references and abstracts related to scientific subjects, including, 

chemistry, physics, mechanics, life sciences, medicine, health care and other topics [8]. 

Besides PubMed，NCBI also maintains other major databases, including GenBank for 

DNA sequences and GEO for the result of gene expression analysis. In addition to the 

databases authorized by NCBI, there are many other distinguished databases, including 

UniProt (A database of protein sequences and their functional information, developed by 

European Bioinformatics Institute (EBI), Swiss Institute of Bioinformatics (SIB) and 

Protein Information Resource (PIR)) [9], and GeneCards (A database of human genes 

and their related information, maintained by the Crown Human Genome Center at the 

Weizmann Institute of Science) [10]. 
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Figure 1-1. The main page of PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/). 
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1.2.3 Data Analysis and Visualization 

With the large amount of biological data collected from many different systems at 

different levels, how can researchers link the related information together, and how can 

they extract logical and meaningful knowledge from a mass amount of information? Data 

mining is the answer. With the development and popularity of new technologies, a 

massive amount of data can be easily collected at one time from high-throughput 

experiments, such as NGS and microarray. With the large amount of data in hand, first, 

researchers have to analyze the data, extracting the meaningful information and removing 

the useless information; second, researchers wish to visualize the data, to convert the 

meaningful data into easy forms for reading and understanding. Nowadays several 

excellent databases with the visualization function are accessible freely. University of 

California Santa Cruz Genome Browser (UCSC) [11] and Cufflinks [12] are both such 

widely used tools. UCSC, hosted by the University of California, Santa Cruz, refers to 

annotating genes by aligning the existing biological information to genome sequences 

and displaying the results in a graphical viewer (Figure 1-2) [13]. Cufflinks aims at 

discovering validated and novel message RNA (mRNA), estimating the abundance of 

transcripts and profiling the transcriptome through analyzing high-throughput mRNA 

sequencing (RNA-Seq) data (Figure 1-3) [14]. 
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Figure 1-2. Screen image of UCSC Genome Browser (http://genome.ucsc.edu/cgi-

bin/hgTracks?db=hg19&position=chr9%3A96934279-97024331). The genome browser 

includes a text input bar and several buttons for quick access to genome location search, 

different annotations as text tables and parts of select buttons for track-specific options. 
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Figure 1-3. Flowchart of Cufflinks: (a) Align high-throughput sequencing data to 

reference genome by the alignment tool such as TopHat. (b) Assemble the mapping result 

to possible transcripts, and estimate these transcripts’ maximum likelihood abundances. 
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1.2.4 Simulation and Prediction 

Bioinformatics can not only analyze and process existing experimental data, but 

also in turn guide and design experiments. Through the years, the advancement of 

biotechnology has lowered the experimental costs, however, the large number of 

experiments are still time-consuming and expensive. To save time, energy and money, 

biological models, constructed by making use of the experimental data and effective 

information mined from it, are used to predict the processes and results of other related 

experiments. These methods are widely used in 3D structure simulation, assisting the 

drug discovery and drug design. Even without understanding of the mining information, 

researchers can obtain the results of future experiments only with the help of the tools 

based on statistics and informatics. In the biology field, this method is mainly used in the 

prediction tools related to sequence, including secondary structure prediction and 

miRNA-target interaction prediction. There are many such methods available. In 

particularly, one of the most well-known methods is machine learning, such as support 

vector machines (SVM) [15] and artificial neural networks (ANN) [16].  
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1.3 DNA Sequencing 

1.3.1 Background 

In 1953, the structure of DNA was first discovered by James Watson and Francis 

Crick [1]. More than ten years later, in the early 1970s, the first DNA sequence was 

acquired by an academic research group [17]. Almost two decades later, in 1990, HGP, 

an international scientific project, was formally launched [2]. Six years ago, in 2008, the 

1000 Genomes Project, an international effort focusing on building the detailed catalogue 

of human genetic variations, was announced to start [18]. It is obvious that as time goes 

on, more giant projects will emerge, which are implemented not by individual groups or 

cooperative groups, but rather depending on the international collaborative efforts from 

multiple fields. From the development of DNA sequencing, we can see that life science 

research has advanced from simple to complex. For example, DNA sequencing, at first, 

could only determine one DNA sequence of 50 base pairs (bp). Nowadays, it can identify 

the DNA sequence up to 3 billion reads of 50-300 bp per run. The price of DNA 

sequencing has decreased dramatically from $10 million to $0.1 per million bases [19]. 

The application of DNA sequencing technology has also been largely extended. For 

example, at the very beginning, DNA sequencing technology could only be used in 

discovering and verifying DNA sequences, by this time, it has been made use of in 

transcriptome profiling, DNA-protein interactions analysis, single-nucleotide 

polymorphism (SNP) calling and others [20]. With the cost reduction and running speed 

acceleration of the sequencing technology, scientists are devoted to applying the DNA 

sequencing technology in medical research for the benefit of all mankind. 
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1.3.2 First-Generation Sequencing 

Two major DNA sequencing methods were developed at the beginning. One is 

chemical degradation method developed by Allan Maxam and Walter Gilbert in 1977, 

also named Maxam-Gilbert sequencing. Maxam-Gilbert sequencing is a method to 

determine the location of each specific base by using gel electrophoresis to define the size 

of degraded DNA fragments, which are obtained by breaking down the template DNA 

sequences with radioactive labeling at the 5’ end by different chemical reactions [21]. 

Another is chain-termination method proposed by Frederick Sanger et al. around the 

same period and therefore named Sanger sequencing. Sanger sequencing is a method to 

identify the location of each specific base by making use of gel electrophoresis separating 

and analyzing the size of the DNA fragments. Unlike Maxam-Gibert sequencing, the 

DNA fragments are generated when the process of DNA replication is randomly 

discontinued by dideoxynucleotide triphosphate (ddNTP) with radioactive labeling [22]. 

Sanger sequencing introduced error because of employing DNA polymerase. However, 

its advantages are obvious. The easier operation and less toxicity of Sanger sequencing 

make the wider range of application of Chain-termination method than of Chemical 

degradation method.  

Due to the broad range of application of Sanger sequencing, scientists have made a 

number of improvements on it. For instance, by replacing radioisotopes with four 

different fluorescent dyes to label ddNTP, scientists not only improved the security of the 

sequencing technology, but also reduced the signal-to-noise ratio [23]. Furthermore, after 

substituting traditional gel electrophoresis with capillary gel electrophoresis, it not merely 

reduced the use of materials, but also improved the speed of reading fluorescence in the 
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process of sequencing with the Sanger sequencing method [24]. Therefore, automated 

laser-fluorescence sequencing, which is based on Sanger sequencing, played a vital role 

in the HGP. 

With the significant improvements, the Sanger sequencing method is largely 

applicable to analyze DNA fragments shorter than 1000 bps. To determine DNA 

sequences longer than 1000 bps, especially like chromosomes, scientists put forward 

shotgun sequencing. In shotgun sequencing, the principal change, compared with 

traditional DNA sequencing, is that it added at the beginning the step to prepare 

numerous DNA fragments, shorter than the defined limits, by breaking up randomly the 

targeted sequences using physical methods, chemical methods, or biological methods and 

constructing libraries. The following step is to sequence the DNA libraries through 

traditional DNA sequencing. The last step is to assemble the sequenced data using 

bioinformatics approaches [25]. 

 

1.3.2 Next-Generation Sequencing 

Sequencing long DNA strands was implemented with shotgun sequencing. 

However, this is still time-consuming and expensive. Because of high demand for 

solutions of previous problems, NGS was developed.  

NGS methods mainly include Roche 454 pyrosequencing, Illumina dye sequencing, 

SOLiD sequencing, and Ion Torrent semiconductor sequencing which was released in 

2010. These methods, coupled with respective advantages and disadvantages, use 

different implementations, whereas they all aim to sequence high-throughput data by 
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massive parallel sequencing. The workflow of Illumina sequencing is taken as an 

example here to introduce the basic process of NGS. 

 

1.3.2.1 Library Preparation 

In order to determine long DNA sequences, first, target DNA needs to be broken up 

into DNA fragments within the defined length range, in line with the idea of shotgun 

sequencing. Second, primers that are used for PCR amplification and adaptors are added 

to the DNA fragments. With this procedure, target DNA sequences can be either genomic 

DNA, cDNA library that is used for RNA-Seq, or even de novo synthesized 

oligonucleotides, which will be introduced in Chapter 3 (Figure 1-4 a1) [26]. 

 

1.3.2.2 PCR Amplification 

PCR amplification aims to amplify the sequencing signal and reduce the 

background noise. It consists of three steps: attaching the single-strand DNA fragments to 

flow cell surface, PCR amplification to get DNA clusters, and denaturing the double-

stranded DNA fragments. Unlike Illumina, in the PCR amplification, some of the other 

NGS technologies make use of beads instead of flow cell surface, and substitute bridge 

PCR with emulsion PCR for DNA fragments amplification (Figure 1-4 a2-4). 

 

1.3.2.3 Sequencing to Data 

As the core part of DNA sequencing, Illumina adopts sequencing-by-synthesis 

approach using reversible terminators to identify the sequences. Reversible terminators 

are the nucleotides with a base-unique fluorescent dye and 3' terminal group. Sequencing 



16 

one base consists of three steps: 1) adding terminators and DNA polymerase into DNA 

clusters, thus linking terminators to DNA clusters, which is catalyzed by DNA 

polymerase; 2) removing uncombined terminators, then determining and storing the first 

base for each cluster by reading base-specific fluorescence emitted from the terminators; 

3) trimming the blocking group and fluorescent label from binding terminators. 

Eventually, the whole-base sequence hybridizing with each DNA cluster would be 

determined by repeating steps from 1 to 3. Sequencing-by-synthesis approach primarily 

came from Sanger sequencing, one of the first-generation sequencing methods. This 

approach has been widely applied to some sequencing platforms, for example, Ion 

Torrent semiconductor sequencing. Ion Torrent semiconductor sequencing does not use 

the traditional fluorescence detecting technology, rather employs semiconductor which is 

used to detect the variation of H+ ion concentration emitted during the synthesis. On the 

other hand, sequencing-by-synthesis is not adopted by such other sequencing methods as 

SOLiD Sequencing, in which DNA ligase-mediated sequencing approach is used.  

 

1.3.2.4 Further Analysis 

The raw data directly from DNA sequencers need to be further analyzed for certain 

experimental purposes. For instance, to achieve the whole genomic DNA or cDNA 

sequences, analyses such as transcriptome profiling, DNA-protein interactions analysis, 

and SNP calling, are necessary with the aid of bioinformatics tools. The knowledge as to 

further analysis of DNA sequencing based on bioinformatics will be introduced in 

Section 1.3.3.   
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Figure 1-4. Illumina sequencing approach. (a) Library preparation and PCR 

amplification; (b) Sequencing to data. 
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1.3.3 Bioinformatics in DNA Sequencing 

1.3.3.1 Raw Sequencing Output 

Strictly speaking, the primary data from DNA sequencers based on fluorescence 

detection as Illumina sequencing is image data. Since the image data is in large quantity, 

thus difficult to process, DNA sequencers usually automatically, with the aid of the 

instant image processing software according to the electrical physical and chemical 

properties of the sequencers, transform the image data into digital data containing the 

sequences and their corresponding quality. Nevertheless, the file formats of different 

sequencers may not be exactly the same. For example, Illumina sequencing makes use of 

the FASTQ format based on Phred Scores, while SOLid employs CSFASTA format on 

the basis of color-space. Moreover, even if they are from the same platform in the same 

company, the file formats might vary with different versions of the sequencers. For 

instance, as to the Illumina sequencing platform, different versions of sequencers utilize 

different types of FASTQ format, such as Solexa/Illumina 1.0 FASTQ, Illumina 1.3+ 

FASTQ and Illumina 1.5+ FASTQ. Therefore, at the beginning of popularizing NGS, 

conversion among diverse file formats is one of the crucial processes. Fortunately, as a 

great amount of bioinformatics tools regarding NGS have been developed, scientists 

notice that it is very important to unify the file formats, and thus Sanger FASTQ has 

become the de facto standard file format [27]. So far, most of the sequencers provide the 

option to output the data in Sanger FASTQ format.  

Sanger FASTQ developed by Wellcome Trust Sanger Institute is based on 

traditional sequence format, combining sequence and its corresponding quality score. In 

FASTQ format file, it generally uses four lines to demonstrate per sequence. The first line 
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starts with character ‘@’, which is followed by the sequence identifier and optional 

sequence description. The second line is the sequence letter. The third line begins with 

character “+”, which is followed by discretionary sequence identifier the same as line 1 

and any sequence description. The last line reveals the quality score of each 

corresponding base of the sequence in line 2. Each quality score represents the accuracy 

rate of each corresponding base, the larger the ASCII of the quality score the higher 

accuracy rate. The relationship of quality score and accuracy rate (or error rate) for each 

FASTQ format is represented in Figure 1-5. 
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Figure 1-5. Phred quality score in different FASTQ formats. (a) Relation between Phred 

Quality Score (�) and Probability of incorrect ball call (�) in Wellcome Trust Sanger and 

Illumina, where �  means Probability of incorrect ball, �������  means Phred Quality 

Score used by Wellcome Trust Sanger, ������� , ���������	�.��, and ���������	�.�� mean 

Phred Quality Score used by Illumina. (b) Relation between Phred Quality Score (�) and 

corresponding ASCII character (������) in different FASTQ formats. 

  

a 

b 
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1.3.3.2 Read Trimming and Quality Control 

The raw sequencing data files directly from the sequencer not only include the 

DNA sequences, but may also encompass adaptors unattached to the target sequences. 

All the sequences are called reads. Before analyzing the DNA sequences, it is necessary 

to remove the specific tag fragments and carry out the process of quality control.  

Since adaptors linked to target DNA fragments will be collected while the size of 

target DNA fragments are smaller than that of defined read cycles, it is still necessary to 

get rid of these adaptors and their extending sequences prior to further analysis. Moreover, 

as the parallel sequencing method, NGS can sequence multiple samples at the same time. 

Thus, it will add disparate tag sequences to diverse samples for target sample sequence 

preparation. Furthermore, if it has to differentiate the direction of the DNA strand, two 

ends of the DNA fragment will be attached with different tag fragments. All of the tags 

will be removed after their assistance of dividing the reads into different groups. 

After removing the specific tag sequences, assessing the quality of each read to 

determine whether it needs further analysis is also essential. As for different experimental 

purposes and objects, the requirements for quality control are not exactly the same. On 

one hand, with the given accuracy and efficiency of the experiment, it seems that the 

more rigid the requirement is, the better the result will be. On the other hand, if the 

requirement is too rigid, it will dramatically reduce the quantity of the data for further 

analysis, thus will lose useful information. Therefore, how to realize the maximum 

removal of the unqualified data as well as to achieve an adequate volume of data are 

important challenges for bioinformatics. There are two major methods for quality control. 

One is to, by directly assessing the base quality and content distribution, remove the 
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whole non-confirmed reads or undesirable sequences attached to both ends of the reads. 

This method has been embedded in various quality control tools, such as FastQC [28], 

SolexaQA [29], NGS QC Toolkit [30], and so on. The other does the error correction for 

possible mismatched bases by sequence alignment. Software such as Reptile [31], ECHO 

[32], and RACER [33] are based on this method. Nowadays, a large number of software 

for data analysis exists, and they also provide a variety of parameters to satisfy the 

requirements of different researchers. With the wide spread of the application of NGS, 

however, new needs for quality control are emerging, which makes the development of 

the newer software more and more necessary.  

 

1.3.3.3 Sequence Analysis 

Reads that pass the quality control can be used for further analysis. In accordance 

with the different experimental purposes, there are diverse analytical methods. However, 

mapping and assembling are the basic steps for any analytical method.  

Except for the result of de novo sequencing, the sequences of other sequencing 

methods all have their reference sequences, of which the most commonly used one is 

chromosome sequence. The aim of mapping is to map the reads to their reference 

sequences through sequence alignment. Sequence alignment is an important branch of 

bioinformatics, which encompasses not only DNA sequence alignment, but also protein-

protein alignment, protein-nucleotide alignment, and so on. At the beginning of the first-

generation sequencing, the first computer algorithm for sequence analysis had been 

published [34]. As for the research of sequence alignment, the most popular tool is 

BLAST [35], which is a pair-wise local alignment. Like BLAST, BLAT developed by 
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UCSC is a similar tool [36]. Since such alignment methods are not developed specifically 

for NGS, they face a big challenge on alignment efficiency and time-consuming if one 

tries to process an enormous number of reads. Focusing on large quantity and short reads 

of the output of NGS, new sequence alignment tools, such as Bowtie [37] and BWA [38], 

were developed. Bowtie can make the alignment at the rate of over 25 million per hour 

when mapping 25-bp reads to reference sequences. Based on Bowtie, Langmead et al. 

developed Bowtie2 with more functions. Compared with Bowtie, Bowtie2 starts to 

support gapped and local alignment modes [39].  

In order to sequence a long sequence, it needs to break up the original sequence into 

short fragments. Thus, after obtaining the sequenced reads, sequence assembly is used to 

reconstruct the original sequence. Sequence assembly, in fact, is based on sequencing 

alignment. It joins the fragments together by overlaps of different reads, using pairwise 

alignment or multiple alignments. For reads with reference sequences, sequences can be 

assembled by mapping the reads to their references. Just like sequence mapping, 

sequence assembly meet similar problems, such as high-throughput data and short 

fragments. Nowadays, a number of sequence assembly tools specific for NGS are 

available, of which PGA [40] is a more widely used tool. 

To meet different experimental purposes, there are many other diverse 

bioinformatics tools that are based on sequence mapping and sequence assembly. For 

example, Cufflink, an RNA-Seq analytical tool for transcriptome profiling [12], and 

MACS, a CHIP-Seq analytical tool which aims to discover the DNA-protein interactions 

[41], and SNPtools, a SNP calling tool which is used to identify sequence differences 
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[42]. It is believed that, with the increasingly wide application of NGS, more efficient 

bioinformatics tools will be developed. 

 

1.3.4 Future DNA Sequencing 

During the time when the NGS technologies were booming and widely used, a 

bunch of new DNA sequencing technologies emerged and constantly developed, such as 

Heliscope True Single Molecule Sequencing (tSMS) of Helicos Biosciences, Single 

Molecule Real Time Sequencing (SMRT), and Nanopore Sequencing of Oxford 

Technology. The accuracy and cost of these new DNA sequencing technologies are not 

better than those of the improved NGS. However, compared with NGS, the new DNA 

sequencing technologies skipped PCR amplification, the step before sequencing, thus 

eliminating the error which could have been introduced in this process. Therefore, the 

new technology was named Third-generation Sequencing or Next-next-generation 

sequencing. 

In fact, the development of DNA sequencing technology involves not only the 

development of biology, but also the development and integration of physics, chemistry 

and engineering. Furthermore, with the assistance of these fields, of the DNA sequencing 

technology, the cost will be lower, the development will get faster, and the operation will 

be easier. Certainly, DNA sequencing in the future will not only facilitate more research 

areas, but also go to the market and become an important medical aid for personalized 

medicine. 
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1.4 Microarray 

1.4.1 Background 

In 1983, Tse Wen Chang first illustrated the concept of microarray in the study of 

using antibody matrix to determine specific cell surface antigens [43]. After that, Dr. 

Roger Ekin and colleagues made a great contribution to developing the theoretical 

background for ligand-binding assays based on protein microarray [44]. Twelve years 

later, in 1995, Patrick Brown’s laboratory at Stanford University published the first 

article in Science describing the use of miniaturized microarrays for gene expression 

analysis [45]. Microarray technology is developed as a high-throughput technology for 

parallel analysis of multiple molecular targets on a miniaturized surface [46]. Simply 

defined, microarray is a collection of microscopic molecular features commonly known 

as probes orderly arranged on a planar solid substrate, which is usually made of glass or 

silicon. During the past years, the technology has advanced rapidly. For example, 

primarily due to miniaturization of the spots, the number of probes immobilized per cm2 

of solid surface has increased from less than 100 in 1995 to millions today [47]. And 

microfluidic technology has been applied to microarray manufacturing, which makes 

reactions in microarrays controllable spatially and temporally (Figure 1-6). 

Based on the kind of the probes immobilized on the support substrate, microarrays 

can be categorized into DNA microarrays, protein microarrays, peptide microarrays, 

antibody microarrays, tissue microarrays, cellular microarrays, chemical compound 

microarrays, and so on. For purposes of this thesis, I focus on the introduction of DNA 

microarray (DNA Array) and peptide microarray (PepArray). 
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A kind of DNA Array, also known as oligonucleotide microarray or gene chip, is 

the most developed and the most widely used type of microarray, for example, gene-

expression microarray, which is based on Watson-Crick complementary base pairing (i.e., 

guanine pairs with cytosine and adenine pairs with thymine or uracil), assays the gene 

expression level by using oligonucleotide probes to pair with mRNAs in the sample [48]. 

In addition, DNA Array technology also plays an essential role in various fields, such as 

biomarker determination, discovery of correlation between gene expression and diseases, 

and drug discovery. 

It is known that peptides retain partial functions of proteins, and are much more 

stable than proteins immobilized on support substrate. Due to the insufficiency of DNA 

Array in proteomic research, as well as the instability of protein structure and activity, it 

is not surprising that PepArray plays a vital role in studying proteomics [49]. PepArray, 

also known as peptide chip, is a kind of device which is used for high-throughput analysis 

of protein samples via peptide probes orderly immobilized on the solid substrate. Over 

the last two decades, PepArray has been increasingly used as a high-throughput tool in 

diverse research fields, such as epitope mapping, drug discovery, biomarker discovery, 

disease diagnosis, and so on. One important application of pepArray is that the pepArray 

directly measures variations in levels of proteins and thus allows a more direct 

association of the array measurements to protein signaling pathway network activities..  

As microarray technology has so many advantages, several large microarray 

corporates, such as Affymetrix, Agilent, emerged within only 20 years. The booming 

companies, coupled with the requirements of various research fields, also promoted the 

popularization of microarray technology. 
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Figure 1-6. Microfluidic reactor array device. (a) Microfluidic technology has been 

applied to the structure of microarray. (b) Physical picture of microfluidic microarray. 

Reprinted from [50], Copyright 2009, with permission from Elsevier.   
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1.4.2 Manufacturing of Microarrays 

Manufacturing of microarray plays an essential role in producing adequate high-

quality microarrays, and it is a technology-demanding process. Microarray fabrication 

requires the expertise of biology, bioinformatics, physics, chemistry and engineering.  

Fabricating microarray can be divided into three principal sections, including solid 

substrate selection, probe preparation and probe immobilization. In general, glass and 

silicon are usually adopted as substances for solid substrate. Glass is selected not only 

because it is economically affordable and readily accessible, but also due to its properties 

such as inertness, excellent flatness, as well as low fluorescence [51]. Glass surface offers 

silicon dioxide bonds which can react with nucleophile groups of nucleic acids or 

proteins to form covalent bond and immobilize these molecules on surface. 

In microarrays, probes orderly deposited on the planar solid substrate are used to 

monitor or detect the target sequences in samples of interest. Therefore, it becomes 

crucial to winnow out the probes which are not only specific for their targets, but also 

react with their targets under similar condition.  

It is well known that instable, unspecific immobilization of probes to supporting 

substrate will result in weak binding accuracy and thus produce inferior microarray 

experimental results. Therefore, the process of probe immobilization plays a central role 

in manufacturing of microarrays [52]. The probes can be deposited onto a supporting 

surface by disparate methods, such as spotted method vs in situ synthesis. As for spotting 

a method, it deposits pre-synthesized probes in predefined positions on a suitable surface 

with the help of robotic instruments. On the one hand, this method has some advantages, 

such as flexibility in array design due to its specific synthesis mechanism, high-quality 
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synthesis, as well as low cost. On the other hand, the prerequisite of pre-synthesized 

probes makes it inflexible for array design [53]. Unlike spotted method, in situ synthesis 

can directly synthesize numerous probes in accurate positions on a suitable supporting 

surface. As for in situ synthesis method, appropriate chemical groups used for further 

synthesis will be capped on an array surface, then a variety of probes will be 

simultaneously synthesized in different locations via electrochemical technology or 

photolithography technology, which lets light go through physical masks or dynamic 

micromirror devices for producing specific probes with photolabile nucleoside monomers 

or photolabile amino acid monomers (Figure 1-7). In situ synthesis based on 

combinatorial chemistry is a major advancement for microarray development, which 

makes it possible to achieve microarrays containing a very large number of probes in 

short time and with low cost. Such microarray manufacturing process has distinct 

advantages, such as standardized automatic processing, array miniaturization, high probe 

quality, flexible synthesis, and so on. Compared with spotted method, in situ synthesis 

results in reduced flexibility owing to the hybridization and detection equipment. 

However, due to its parallel synthesis, in situ synthesis is efficient and economic. 

Therefore, in situ synthesis microarrays have also been used to provide DNA materials 

for de novo synthesis of long DNA sequences or genes for protein engineering of 

synthetic biology applications [54]. 
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Figure 1-7. In situ synthesis with photogenerated acid (PGA) reaction. (A) PGA is 

formed from deprotection in light irradiation. (B) In in situ peptide parallel synthesis, 

PGA deprotection is used as the gating step to synthesize peptide by Boc-protected amino 

acid. The reactions are under the control of predetermined digital light patterns. Reprinted 

by permission from Macmillan Publishers Ltd: Nature Biotechnology [55], copyright 

2002. 
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1.4.3 Bioinformatics of Microarray 

With the improvement of microarray technology, over two million oligonucleotide 

probes can be deposited in only one microarray [56]. Therefore, microarray technologies 

make it possible for scientists to conduct experiments at the omic level, such as genome-

wide expression profiling and proteomic profiling [57,58]. Thus, enormous amount of 

microarray data are continuously generated, which promote the rapid development of 

bioinformatics in this field. 

Bioinformatics plays a vital role in analyzing the information embedded in a large 

amount of microarray data, thus interpreting the biological meanings. Over the past two 

decades, numerous bioinformatics tools supporting different microarray platforms have 

been developed, for example, microarray software suite TM4 [ 59 ]. However, the 

corresponding bioinformatics solutions to certain novel questions proposed by the newest 

microarray technologies are developing or remain to be found. In this thesis, I will take 

µParaflo microfluidic array as an example to illustrate how to analyze the microarray data 

with the assistance of bioinformatics. 

 

1.4.3.1 Probe Design 

As discussed above, microarrays would require probe design based on the target of 

interest. For example, if the goal is to study activities of HMTs in the nucleus of cells 

with peptide microarrays, it is important to make sure the wild type (WT) probes coming 

from histone proteins contain possible methylation sites, such as lysine (K) or arginine 

(R). 
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Diverse probes should be selected or designed for different experimental purposes. 

For example, in order to capture proteins with a specific function domain using PepArray, 

it is necessary to select the peptides, known as test probes, which can specifically bind to 

the target proteins under the defined experimental environment. In addition, to ensure 

high-quality experiments and raise the accuracy rate of data analysis, it is indispensable 

to design negative control probes corresponding to each test probe and quality control 

probes for array quality analysis, as well as enough replicated probes which are applied to 

reduce the effect of marginal data. Otherwise, it is impossible to achieve the goal. 

 

1.4.3.2 Image digitization 

Like direct output of NGS, the original data from optical detector are recorded in 

image files. Since they are hard to store and analyze, it is necessary to convert them to 

digital files prior to further analysis. Unlike those from NGS, digital files of microarrays 

do not include sequences, rather coordinates and the corresponding signals. In general, a 

microarray is composed of a set of reactive sites uniformly distributed on a planar surface, 

and each site is recorded by row and column. Probes of a site may unequally interact with 

their target, which results in that the signal of an individual site cannot exactly reveal the 

extent of reaction. To solve such problem, µParaflo takes over the existing functions of 

Array-Pro Analyzer which is microarray analysis software. For instance, the software 

will exploit parameters, including mean, median, and standard deviation values, 

calculated based on all the pixels of a suitable area, to demonstrate the quantity and 

quality of each site. 
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1.4.3.3 Background Subtraction 

For microarrays, fluorescent signal of each probe includes not only the binding 

signal, but also background signal. For example, both non-specific binding and 

autofluoresence of probe and supporting surface contribute much to background signal. 

In order to winnow out the binding signal for further analysis, the background signal 

should be subtracted. Here, we take µParaflo as an example to introduce a method to 

remove the background signal. Due to obeying normal distribution, the characteristic of 

background can be extrapolated from the whole microarray signals. First, it generates a 

ranked raw signal profile graph, indexed from 1 to total probe as x axis, and sorts signal 

from low to high as y axis. Then the estimated average of background signal can be 

sought out at the first inflection. 

 

1.4.3.4 Normalization 

Normalization aims to make the probes within the same microarray or of different 

microarrays comparable by adjusting effects deriving from the technological variations 

rather than from biological differences [60]. The goal of a large number of microarray 

studies is to seek patterns under different environments by comparing probes in diverse 

samples. However, such factors as different ambient environments when experiments 

were processed print quality and disparate instruments used for synthesizing or scanning 

may result in variations between microarrays. Therefore, before conducting appropriate 

biological comparison, a great number of effects including the factors mentioned above 

must be eliminated.  
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With the development of microarrays for the past two decades, many normalization 

methods, such as total intensity normalization, log centering, and rank-invariant methods 

[61], have been created. Unlike those mentioned above, there is another widely used 

method, known as locally weighted scatterplot smoothing (lowess), which takes account 

of systematic biases appearing in most microarray experiments. Here, we provide a brief 

introduction of the main concept of lowess with an example normalizing two microarrays, 

M and N. First, the ����(��/��) ratio is plotted as a function of �����(�� ∗ ��) product, 

where i denotes the index of each probe on the microarray. From the ratio-product plot, 

systematic deviations are detected, thus lowess corrects them via implementing a local 

weighted linear regression as a function of �����(�� ∗ ��), as well as deducting the best-

fit average ����(��/��) from the obtained ratio for each probe. Upon the correction, 

lowess adopts a weight function, in which the contributions of the probes far from the 

others will be unvalued. After the appropriate correction, two microarrays will reach the 

comparable level.  

In addition, since following normal distribution is the prerequisite of most 

widespread normalization methods, it is necessary to develop other approaches for 

microarray data which does not obey that distribution. One option is to seek out various 

groups of specific probes which can be considered as background of different microarray 

experimental data which is not normally distributed. Conceivably, with novel problems 

related to normalization coming up, the current approaches will be generally improved, 

and original methods will be continually developed by diligent researchers.  
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1.4.3.5 In-depth Data Analysis 

Most of the microarray experiments aim to seek out patterns by directly assaying 

the biological binding levels of tens of thousands of probes on comparable microarrays. 

Thus, the identified patterns play vital roles in a lot of aspects, such as functional 

annotation of novel probes based on known probes within the same pattern, diseases 

diagnostics based on the patterns between one or multiple pairs of comparable samples, 

biomarker discovery, and so on. In the early time of microarray technology, a cut-off 

method, for example, two-fold changes, was adopted to identify significant patterns. 

Following that, such parameters as mean, median, standard deviation, logarithm value, 

and others are included in slightly complex methods. Up to now, many sophisticated 

statistics approaches have been developed, such as ANOVA used to analyze differences 

between two or more samples developed by R.A. Fisher [62], hierarchical clustering 

which seek to create a hierarchy of clusters of probes or different samples, relevance 

networks useful in obtaining similarity of probes by comparing comprehensive pairwise 

features, principal-components analysis which can be used to find much coherent 

variables by omitting the less significant features, support vector machines which analyze 

data and identify patterns with learning algorithms in order to conduct classification and 

regression analysis, and so on. Furthermore, a large number of multifunctional tools for 

microarray analysis have been created, which definitely facilitate the research in many 

fields. For example, Multiexperiment Viewer (Mev) developed by the John Quackenbush 

laboratory is widely used versatile microarray data analysis software [ 63 ] which 

incorporates quite a few statistic methods, such as Hierarchical cluster (HCL) [64], K-

means clustering (KMC) [65], relevance networks (RN) [66], template matching (PTM) 
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[67], significance analysis of microarrays (SAM) [68], one-way analysis of variance 

(ANOVA), T-Test and SVM [69].  

Indeed a great number of microarray analytical tools are accessible today, however, 

a number of problems still exist. Given more or less minor deficiency of most existing 

microarray analytical approaches, as well as emerging challenges, researchers in this field 

tempt to fix them via modifying the available methods, and developing novel analytical 

functions and software, respectively. It is conceivable that the development of microarray 

technology will get more and more perfect, and in turn it will give more help to 

investigators in the field. 
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Chapter 2 

miRFocus: Open source of Web-tool 

 for Human miRNA Annotation, 

Target Gene and Pathway Analysis 
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2.1 Introduction 

MiRNAs are a class of small single-stranded non-coding RNAs of approximately 

22 nucleotides in length, which are excised from hairpin-shaped pre-miRNAs [70]. It is 

becoming clear that they play essential regulatory roles in diverse organisms via 

imperfect binding with target mRNAs, thus resulting in cleavage or translational 

regression (Figure 2-1) [71,72]. In 1993, the first miRNA from C. elegans was described 

in an article published by Lee, et al [5]. However, it was not until 2001 that their 

existence in vertebrates, as well as their important impact on gene regulation, was 

recognized, and the term miRNA was introduced [73,74]. 

With the help of computer sciences, researchers found that almost 60% of human 

genes are targeted by miRNAs, and each miRNA is capable to regulate numerous target 

genes, likewise every target gene is probably controlled by multiple miRNAs [75]. 

Through complicated regulations, miRNAs take an important part in many key biological 

processes, including cell development, tissue differentiation, cell proliferation and 

apoptosis. Therefore, either dysfunction of miRNAs or their inaccurate regulatory 

pathways will probably lead to diverse diseases, such as diabetes [76], obesity [77], 

cardiovascular disease [78], renal function disorders [79], as well as different types of 

cancers. For example, Nassirpour and colleagues illustrated that overexpressed miR-221 

is linked to triple-negative breast cancer, and that tumor growth can be inhibited by 

knocking down miR-221 [80]. 

Due to the importance of the miRNAs in various aspects, studies on miRNAs have 

become a hotspot. It is worth mentioning that the number of publications as to miRNAs 

increases dramatically these years. To date, almost 14 years have passed since the term of 
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miRNA was coined in 2001. Searching with key word either “miRNA” or “microRNA” 

in PubMed, the number of achieved articles has increased up to 34,310 in the past 7 years 

compared with mere 2,403 in the previous 7 years, of which 23,157 is relevant to humans 

(Figure 2-2a). In addition, the quantity of published human pre-miRNAs and mature 

miRNAs in miRBase has reached to 1,881 and 2,588 in 2014 (version 21) from 56 and 44 

in 2003 (version 1), respectively (Figure 2-2b). MiRBase is a database which provides 

published miRNAs and their annotations. It is evident that high-throughput technologies, 

such as microarray and NGS, play a vital role in paving the way for diverse research in 

this field [81]. 

With rapid development of miRNA studies, enormous jumbled information is 

generated in many aspects. Therefore, how to systematically organize the unorganized 

information becomes an urgent problem. To satisfy the requirement, a number of 

databases concerning miRNAs are developed. Based on main functions, databases can be 

briefly divided into several categories, such as annotation, target-miRNA, miRNA-

disease, pathway-miRNA, and so forth. MiRecords is a reservoir of miRNAs and target 

genes, which includes experimentally validated and predicted miRNA-target interactions 

[82]. Besides miRecords, miRTarBase [83] and TarBase [84] both focus on validated 

miRNA-target interactions collection. Moreover, as for target prediction web tools, 

TargetScan and miRanda adopt algorithms based on seed pairing [85]; PicTar predicts 

miRNA-target interactions on the basis of binding probability [86]; RNA22 determines 

possible miRNA-target in line with binding site similarity; and PITA identifies the 

interaction between miRNAs and target genes by considering not only the region 

mapping, but also the free energy used for structure construction [87]. Compared with 
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resources for annotation and miRNA-target, there are only a handful of databases 

offering approaches for miRNA-pathways, such as DIANA-miRPath [ 88 ] and 

miRSystem [89]. In addition, miR2Disease is a manually curated database focusing on 

miRNA regulation in various diseases [90]. 

It is of no doubt that researchers in this field have received great help from 

available databases. For example, they can retrieve miRNA sequences from miRBase 

[91], diseases affected by miRNAs from miR2Disease, and predict observe target genes 

from miRecords or TargetScan. However, it is quite time-consuming to collect as much 

information as possible about one interesting miRNA. One of the reasons is that it takes 

significant time to identify the related databases. Although the databases are accessible, 

there are still several problems. For example, because diverse programs may require 

different versions of miRNA names which include 21 nomenclature versions in total, 

users have to spend time on name conversation. In addition, most databases allow users 

to query only one item each time, which is a big limitation when searching many 

miRNAs. In the face of these challenges, miRFocus was developed.  

MiRFocus is an integrated resource and web tool focusing on human miRNA. 

Compared with existing databases and software, miRFocus incorporates more 

comprehensive information, including miRNA sequences and genomic clusters, co-

expression miRNAs, experimentally validated and predicted target genes, miRNA-

disease regulation, enrichment pathway analysis, as well as miRNA annotation for all 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In particular, in the view 

of current problems mentioned above, miRFocus not only provides an approach to 

convert miRNA IDs from different versions into the latest version automatically, but also 
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organizes a wealth of information in a reasonable way. In addition, miRFocus coupled 

with a user-friendly web site can make and facilitate significant contributions in 

accessing the information already available for the sequence and biology information of 

human miRNAs, so that the implication and rich information embedded in the data sets 

of miRNAs measurements can become evident and valuable biological clues extracted. 

The web server is freely accessible at (http://mirfocus.org).  
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Figure 2-1. The biogenesis of miRNAs. In this figure, it shows the process of human 

miRNA formation, which starts from miRNA gene, through pri-miRNA, pre-miRNA, to 

mature miRNA. Subsequently, mature miRNAs can induce gene expression regression or 

mRNA cleavage by binding to the complementary site in target mRNA. 
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Figure 2-2. Histograms for human miRNA. (a) Published papers relevant to miRNA 

from 2001 to 2014 in PubMed. Data are collected from PubMed database 

(http://www.ncbi.nlm.nih.gov/pubmed/); (b) Available pre-miRNAs and mature miRNAs 

from different versions of miRBase. Data are collected from miRBase database 

(http://mirbase.org/). 
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2.2 Methods 

2.2.1 Overview 

MiRFocus is a web-based resource including comprehensive information relevant 

to human miRNAs, such as sequences, target genes, diseases, as well as pathways. All 

data are saved in MySQL database, and the web interface is implemented with PHP5 and 

JavaScript language. Both of them are integrated in an Apache HTTP Server with all 

major browsers’ support. MiRFocus is composed of three major modules: miRNA 

annotation, pathway analysis and miRpathway. An overview of miRFocus function is 

illustrated in Figure 2-3.  
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Figure 2-3. Major functions of miRFocus. (a) Green box denotes module “miRNA 

annotation”, which includes seven kinds of annotation of queried miRNAs. (b) Blue box 

denotes module “pathway analysis”, which aims at achieving the pathway annotation and 

GO annotation relevant to queried miRNAs. (c) Pink box denotes module “miRpathway”, 

which incorporates interrelations among miRNAs, target genes, and pathways. 
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Figure 2-4. The home page of miRFocus. (a) Input by “Select miRNAs from the 

following list”; (b) Input by “Type miRNAs in the space below”; (c) Input by “Upload a 

file”; (d) Input by “Search for miRNAs by validated target genes”; (e) Input by “Enter 

RNA sequences in the space below”. 

  

(a) 

(e) 

(d) 

(c) 

(b) 
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2.2.2 miRNA Annotation 

MiRNA annotation module is one of the most important sections of miRFocus. In 

this module, it displays in a well-organized way seven different sources of the queried 

miRNAs, including sequences and corresponding pre-miRNAs of miRNAs from 

miRBase, miRNA clusters from Wikipedia, miRNA-miRNA correlation in diseases 

manually curated from papers, annotation from GeneCards and OMIM, validated target 

genes from miRecords, literatures related to input miRNAs from PubMed, as well as 

pathway analysis.  

In the home page, five different approaches are available to input miRNAs, which 

consist of “Select miRNAs from the following list”, “Type miRNAs in the space below”, 

“Upload a file”, “Search for miRNAs by validated target genes”, as well as “Enter RNA 

sequences in the space below” (Figure 2-4). Every method allows inputting of one or 

multiple miRNAs, which can really help users save time, compared with the methods 

permitting one item each time. 

In particular, miRNA IDs used in different versions of miRBase releases will be 

converted into the latest version automatically through a miRNA ID conversion function. 

Mature miRNA IDs after miRNA ID conversion can be directly applied to pathway 

analysis, but which have to pass miRNA Gene ID conversion before achieving the 

information of miRNA annotation. The sources of miRNA annotation reported by 

miRFocus are shown in Table 2-1.  
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Table 2-1. Sources of miRNA annotation. 

Source Information 

miRBase  miRNA/pre-miRNA basic information 

Wikipedia miRNA precursor family 

miRNA-miRNA miRNA-miRNA relationship 

GeneCards Gene aliases, genomic location and external IDs 

OMIM Genetic Disease 

PubMed Bibliography 

miRecords Validated target gene annotation 

 

 

2.2.2.1 Construction of miRNA ID Conversion Function 

MiRNA nomenclatures are gradually changing coupled with the development of 

miRNA studies, that is either because novel miRNAs are constantly discovered, or 

because names of some existing miRNAs may be removed or alternated (Figure 2-2b). It 

is common to see that the same miRNA appears in different databases or different 

literatures with distinct identities, which causes big troubles for researchers in this field. 

In order to solve this problem, miRNA ID conversion function is created, which connects 

miRNA identities from different versions by unique sequence accession number in 

miRBase. This function aims at converting miRNA IDs from all previous versions into 

the latest version (Version 21). Comparison of miRNA ID changes between version 21 

and all previous versions is displayed in Table 2-2. 
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Table 2-2. ID tracking of miRNA ID in version 21. 

State miRNA ID count 

Unchanged 1,886 

Changed 689 

New 13 

Deleted 45 

 

 

2.2.2.2 Construction of miRNA Gene ID Conversion Function 

In module miRNA annotation, massive amount of information collected from 

numerous different sources has resulted in a big challenge: how to link them to queried 

miRNAs. Via miRNA IDs, some information can be readily extracted, but pre-miRNA 

annotation from GeneCards, disease annotation from OMIM and literatures from 

PubMed are hardly found.  

To fix such problems, HUGO Gene Nomenclature Committee (HGNC) ID is 

utilized as the connector to link miRNA IDs with information from GeneCards, OMIM 

and PubMed, respectively. Corresponding HGNC IDs of input miRNAs can be found in 

miRBase, thus HGNC IDs are converted into official gene symbol used in GeneCards, 

OMIM ID in OMIM, and Entrez gene ID appearing in PubMed in accordance with the 

gene relation table downloaded from HGNC. Diverse IDs relevant to miRNA in 

miRFocus is shown in Table 2-3. 
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Table 2-3. Diverse IDs relevant to miRNA in miRFocus. 

ID Type Count 

miRNA ID 2,588 

Pre-miRNA ID 1,886 

HGNC ID 1,861 

Official Gene Symbol 1,860 

Entrez Gene ID 1,860 

OMIM ID 230 

 

 

2.2.2.3 miRNA-Related Data Collection 

The comprehensive information regarding human miRNAs is assembled from seven 

different sources, which will be introduced sequentially. 

MiRBase annotation comes from miRBase (http://miRBase.org) [ 92 ], which 

consists of sequences and identities of mature miRNAs and their corresponding pre-

miRNAs, as well as family clusters and position clusters of the pre-miRNAs. In particular, 

cluster can be used to define possible functions of novel miRNAs in line with known 

functions of miRNAs in the same cluster. In this part, it includes total 1,886 mature 

miRNAs, 2,588 pre-miRNAs, 589 sequence families and 153 position clusters. 

MiRNA precursor families are collected from Wikipedia, which is a free online 

encyclopedia. This section contains total 43 miRNA precursor families and which cover 

127 miRNAs (Version 2012). 
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Annotation of miRNA-miRNA correlation and diseases is curated manually from 

693 publications, which includes 1,612 miRNA-miRNA correlations based on 533 

miRNAs. 

GeneCards is a well-known database which provides a wide range of information 

regarding human genes, including genomic and functional information [93]. Annotation 

from GeneCards encompasses a wide range of information indirectly relevant to miRNAs, 

which includes a variety of aliases, genomic location, and KEGG pathways. In this 

section, it contains total 1,860 miRNA genes which associate with 2,583 mature miRNAs.  

Online Mendelian Inheritance in Man (OMIM) is comprehensive knowledge base 

of human genes and diseases [94]. In this section, it displays diverse useful information 

of each miRNA gene, including descriptions, functions, mapping results on chromosomes, 

as well as reliable references, which is collected from OMIM. This section covers total 

230 miRNA genes which are relevant to 399 miRNAs. 

In PubMed annotation section, references of the queried miRNAs are assembled 

from a variety of databases, including miRBase, Entrez Gene, Gene Reference into 

Function database (GeneRIF), Wikipedia, OMIM and miRNA-miRNA. Detailed 

information of references is supplied, such as title, author, journal, affiliation and abstract, 

and literatures relevant to queried miRNAs are displayed chronologically, from latest to 

earliest date. In addition, each title can be linked to PubMed, which facilitates users to 

find the full-text articles. Number of publications from different sources is shown in 

Table 2-4. 

Experimentally validated target genes in the miRecords annotation section are from 

miRecords (Version 3). Besides target genes, miRecords annotation also provides GO 
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and pathway annotation which company with each target gene. This section includes a 

total 1,448 interactions between 185 miRNAs and 1,045 regulated genes. 

 

Table 2-4. Number of publications from different sources. 

Source Count 

miRBase 110 

Entrez Gene 5,005 

GeneRIF 4,912 

Wikipedia 74 

miRNA-miRNA 693 

OMIM 319 

Total 5,321 
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Figure 2-5. Distribution of miRNA-target interactions supported by different numbers of 

web tools. 
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2.2.3 Pathway Analysis 

Pathway analysis is another essential part of miRFocus, which aims at achieving 

enriched KEGG pathways, BioCarta pathways and GO terms of queried miRNAs based 

on a statistical significance test – Fisher’ exact test. 

Since miRNAs function by base-pair binding with their target genes which are 

indispensable factors of some pathways, it is possible to further interpret miRNAs via 

their relevant pathways. Because a limited number of experimentally validated miRNA-

target gene interactions are available, we incorporate a set of predicted miRNA-target 

gene interactions from popular target prediction databases.  

MiRFocus includes both experimentally validated miRNA-target interactions 

collected from four databases: miR2Disease, miRecords, miRTarBase and TarBase, and 

predicted miRNA-target interactions which are based on five target prediction web tools 

including microT, MiRanda, MirTargets, PicTar and TargetScan. In order to integrate 

miRNA-target interactions of diverse databases, miRNA IDs of various versions are 

converted into corresponding IDs of the latest version via miRNA ID conversion function, 

and different gene IDs are substituted with Entrez Gene ID either through HGNC, 

biomart, or manually. A summary of miRNA-target interactions of different databases is 

shown in Table 2-5.  

Because it is difficult to evaluate these target prediction databases due to limited 

experimentally validated miRNA-target interactions, we generate a pie graph (Figure 2-5) 

to represent miRNA-target interactions among five databases, which can be a guide for 

users to select databases according to their needs. From Figure 2-2 we can see that up to 

74% miRNA-target interactions are predicted in only one database, therefore, it will be 
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possible to construct pathway analysis on the basis of miRNA-target interactions 

predicted by at least three prediction databases and experimentally validated, which 

account for about 9% of the total interactions.  

 

Table 2-5. Summary of miRNA-target interactions of different databases. 

Type Source miRNA Target gene Interaction 

Validated 

miR2Disease 161 379 647 

miRecords v4.0 207 1,056 1,637 

miRTarBase v4.5 569 12,099 37,381 

Tarbase v5.0 88 852 1,025 

Predicted 

microT v3.0 553 17,446 1,441,631 

MiRanda 249 19,284 737,379 

MirTarget2 v4.0 1,911 16.663 691,805 

PicTar 1,142 12,816 361,961 

TargetScan v6.2 1,541 15,023 523,235 

Total 1,975 20,713 2,755,481 
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2.2.4 miRpathway 

MiRpathway module provides the useful correlations between miRNAs, target 

genes and KEGG pathways, which is established on basis of the experimentally validated 

miRNA-target interactions and pathway-gene relations from KEGG. A summary of 

components in miRpathway is shown in Table 2-6. In this module, it displays KEGG 

pathways in two levels of hierarchy. The first level consists of seven categories – 

Metabolism, Genetic Information Processing, Environmental Information Processing, 

Cellular Process, Organismal Systems, Human Diseases, and Drug Development, and 

each category includes numbers of subcategories. MiRNAs and target genes relevant to 

each pathway, subcategory and category are represented, respectively.  

 

Table 2-6. Summary of components in miRpathway. 

Elements Count 

miRNA 507 

Target gene 4,608 

KEGG pathway 281 

 

In addition, this module also supplies useful functions for retrieving miRNAs, 

genes, or pathways on the basis of their correlation. For example, relevant pathways and 

genes will be achieved after inputting a miRNA list in “miRNA Query”. Compared with 

pathway analysis, in miRpathway, we only focus on KEGG pathways due to its greater 

popularity, and miRNA-target interactions are all experimentally validated in order to 

improve the credibility, and a statistic test is not applied in this module because of the 
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small number of verified miRNA-target interactions. Furthermore, multiple functions in 

miRpathway facilitate users to obtain genes and pathways of queried miRNAs, or 

inputting specific miRNAs and pathways to achieve their correlated genes.  
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2.3 Results and Discussions 

MiRFocus as a comprehensive human miRNA web-based resource provides a user-

friendly interface. I will utilize an example to help users to become familiar with 

miRFocus.  

It is published that miRNAs are able to access human blood with the help of 

exosomes in milk [95]. Recently, 602 unique miRNAs extracted from human breast milk 

exosomes using deep sequencing technology were published, and the top ten highest 

expressed miRNAs cover 62.3% of total counts (Table 2-7) [96]. Ten miRNAs will be 

selected as input data to introduce the input and result pages of miRFocus.  

 

Table 2-7. Top ten highest expression miRNAs in breast milk exosomes.  

Index  miRNA ID  

1  hsa-miR-148a-3p 

2  hsa-miR-30b-5p 

3  hsa-let-7f-5p 

4  hsa-miR-146b-5p 

5  hsa-miR-29a-3p 

6  hsa-let-7a-5p 

7  hsa-miR-141-3p 

8  hsa-miR-182-5p 

9  hsa-miR-200a-3p 

10  hsa-miR-378a-3p 
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2.3.1 miRNA Annotation 

In the home page, miRFocus provides five different methods to input miRNAs. I 

pasted ten miRNAs into input field (Figure 2-4 c), and clicked “Search” button, which 

processed to the result page.  

The result page mainly consists of “Search Result” a navigation panel (Figure 2-6 a) 

and “Detail” which is used to display details relevant to input miRNAs. “Search Result” 

contains seven major sources, such as “miRNA Basic Information (miRBase)”, “miRNA 

precursor (Wikipedia)”, “miRNA-miRNA relationships (miRFocus)”, “Other Related 

Databases”, “PubMed Information”, “Target Gene (miRecords)” and “Pathway Analysis”.  

In the navigation panel, each major source title colored with blue has the functions 

to either exhibit or hide corresponding details. For instance, the area of “miRBase 

Information” (Figure 2-6 c) will be concealed by clicking “miRNA Basic Information 

(miRBase)”, and the same area will be unveiled again if you click the same source title 

once again. At the top of “Detail”, queried miRNAs and their corresponding IDs of 

miRBase latest version are revealed (Figure 2-6 b). Details of “miRNAs Basic 

Information (miRBase)” are displayed in Figure 2-7, which supplies users with identities 

and sequences of mature miRNAs and pre-miRNAs, family clusters, position clusters, as 

well as references regarding input miRNAs which are collected from miRBase. Moreover, 

detailed information of both precursor functional families which facilitates to learn 

functions of miRNAs in the same family, and correlations between miRNAs and diseases 

is illustrated in Figure 2-8. In addition, Figure 2-9 demonstrates the a wide-range of 

information from GeneCards and OMIM, including diverse accession numbers of a 

variety databases which also link to source webpages, functions, genomic locations, and 
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so forth. From Figure 2-10, it is readily to observe the output format for both references 

of miRNAs and validated target genes.  

 To display a particularly impressive range of information in one page is a 

characteristic of miRFocus, which helps users save lots of time on gleaning information 

from diverse databases. Meanwhile, users can really achieve comprehensive useful 

information of their interested miRNAs. For example, it can be seen from “PubMed 

Information” shown in Figure 2-10 (a) that up to 464 articles relevant to ten input 

miRNAs are listed, which means these miRNAs have been studied at certain levels; 

“miRNA-miRNA Information” in figure 2-8 (b) demonstrates that hsa-let-7a-5p, hsa-let-

7f-5p, hsa-miR-29a-3p, hsa-miR-141-3p, hsa-miR-146b-5p, hsa-miR-182-5p, and hsa-

miR-200a-3p correlate with human ovarian cancer, as well as hsa-miR-141-3p and hsa-

miR-200a-3p are considered as an vital player in breast cancer. 
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Figure 2-6. The result of miRNA annotation. (a) Annotation navigation panel. (b) ID 

conversion tracking panel. (c) Annotation revealing panel. 

(a) 

(b) 

(c) 
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Figure 2-7. Details of “miRNA basic information (miRBase)”: (a) Identities and 

sequences of queried miRNAs; (b) Family clusters relevant to queried miRNAs. (c) 

Position clusters relevant to queried miRNAs. 

  

(a) 

(b) 

(c) 
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Figure 2-8. Detailed information of both “miRNA precursor (Wikipedia)” and 

“miRNA/miRNA relationships (miRNA-miRNA)”: (a) precursor families concerning 

queried miRNAs; (b) miRNA-miRNA correlations in diverse diseases. 

  

(a) 

(b) 
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Figure 2-9. Details of “Other Related Databases”: (a) a variety of IDs and genomic 

description from GeneCards; (b) Functional descriptions and corresponding references of 

miRNAs from OMIM.  

(b) 

(a) 
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Figure 2-10. Detailed information of both “PubMed Information” and “Target Gene 

(miRecords)”: (a) Publications relevant to input miRNAs; (b) Experimentally validated 

target genes of input miRNAs.  

(b) 

(a) 
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2.3.2 Pathway Analysis 

“Pathway analysis” is important web tool for achieving enriched pathways and GO 

Terms based on the input miRNAs. The input area for “pathway Analysis” (Figure 2-11) 

will show up by clicking “Pathway Analysis” in the navigation panel which is on the left 

of the whole page. In the input page of pathway analysis module, a flowchart on the top 

gives a big picture of data analysis process; step 1 to 5 provides flexible options for users 

to choose the parameters in line with their needs; in the end the results will be sent to the 

email provided by users at step 5. In addition, we suggest set “3” in step 3, “Set 

Prediction Databases Support Number”, which can remove excessive false results 

resulting from a large number of false positive target genes, and obtain enough useful 

enriched pathways and GO terms. 

After receiving an email from mirfocus@mirfocus.org, the result page of pathway 

analysis will be opened up by clicking the link. From Figure 2-12 we can see that the 

result page of pathway analysis is composed of a navigation panel on the left and a details 

exhibition area on the right. The result of pathway analysis is divided into five modules, 

including “Summary”, “KEGG Pathway”, “GO Terms”, “BioCarta”, as well as 

“Download”. The “Download” module is used to save analysis results on local 

computers. Detailed information of “Summary” reveals input miRNAs with target genes 

(Figure 2-12 a), and miRNA-target interaction supported by which databases (Figure 2-

12 b). Since the outputs of “KEGG Pathway”, “GO Terms” and “BioCarta” are displayed 

in the same format, the following will utilize “KEGG Pathway” as an example to 

introduce the results. Clicking “KEGG Pathway” in navigation panel will link to “KEGG 

Pathway Detail” (Figure 2-13 a) which includes KEGG pathway IDs that can link to 
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KEGG, -Log10 of P-value the probability of obtaining insignificant results, pathway 

description and “Show Detail”. Details of pathways containing input miRNAs and 

corresponding target genes will exhibited by clicking “Show Detail”. 

It is evident that ten input miRNAs are highly related to Foxo signaling pathway, 

pathways in cancer, pathway related to chronic myeloid leukemia (CML) and so forth. 

And the miRNAs are involved in these pathways by regulating multiple target genes.  
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Figure 2-11. The input page of pathway analysis module. Click Link “Pathway Analysis” 

to show this page.  
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Figure 2-12. The result page of pathway analysis. (a) Navigation panel. (b) Input 

miRNAs with target genes. (c) Target genes of each miRNA. 

  

(a) 

(b) 

(c) 
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Figure 2-13. The result of enriched KEGG pathways. (a) Details of enriched KEGG 

pathways. (b) Input miRNAs and their target genes of pathway in caner. 

 



71 

2.3.3 miRpathway 

Based on the outputs of pathway analysis, it is easy to achieve the important 

relations between queried miRNAs and cancer related pathways. It is reported that 

miRNAs in breast cancer play a vital role in immune system, but which does not show up 

in the result of pathway analysis [97]. Therefore, we turn to miRpathway to study the 

correlations between top ten highest expression miRNAs in breast milk exosomes and 

pathways related to immune diseases.  

The query page of miRpathway module will show up by clicking “miRpathway” 

(Figure 2-14a) on the navigation bar which is on the top of the whole page. In the 

miRpathway statistic page, it shows that there are 8 pathways related to immune diseases, 

which cover 320 unique genes and 201 unique miRNA in miRpathway database (Figure 

2-15). The detailed information of these miRNAs and genes can be observed by click 

“Immune diseases” (Figure 2-15a). 

To directly focus on relations between top ten highest expression miRNAs in breast 

milk exosomes and immune pathways, we can choose “miRNA and Pathway Query” 

(Figure 2-14c) from KEGG Query panel, and input ten miRNA IDs and eight KEGG 

pathway IDs into input panel (Figure 2-14d).  

The query result (Figure 2-16) shows that almost all the pathways except for 

Primary immunodeficiency pathway are related to one or multiple of the input miRNAs. 

Figure 2-16b denotes correlations between miRNAs, genes and pathways, for example, 

hsa-miR-148a-3p takes part in autoimmune thyroid disease pathway，Allograft rejection 

pathway and Graft-versus-host disease pathway through regulating HLA-G, while hsa-
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let-7f-5p can interact with IL13 to affect asthma pathway. Therefore, it is of no doubt that 

miRNAs in breast milk exosomes have much to do with immune system.  

From the results of miRpathway, it is discovered that miRNAs have effects on 

immune diseases related pathways by regulating only one or two genes, while they can 

bind to multiple genes to affect cancer related pathways. That is why immune diseases 

related pathways do not pass the cutoff of pathway analysis. It is true that we cannot 

ignore the effects of miRNAs on the pathways, even if they are just able to control the 

sole gene of the pathways. Studying correlations between miRNA, target gene and 

pathway beyond complicated interactions is one advantage of miRpathway. 
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Figure 2-14. The home page of miRpathway. (a) Navigation button of miRpathway. (b) 

“KEGG Maps” panel for searching miRpathway statistic information of KEGG pathway 

catalogs. (c) “KEGG Query” panel for different types of query. (d) Input panel for query. 

  

(a) 

(b) 

(c) 

(d) 
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Figure 2-15. The statistics of “Human Diseases” catalog in miRpathway. (a) Statistic 

information of all immune diseases related pathways. (b) Detailed statistical information 

of each pathway related to immune diseases. 

  

 (a) 

 

(b) 
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Figure 2-16. The results of miRpathway by using query method “miRNA and pathway 

query”. (a) The relations between queried miRNAs and KEGG pathways. (b) The 

relations between queried miRNAs and KEGG pathways and target genes. 

 

(a) 

(b) 
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2.4 Conclusions 

In this chapter, we present an overview of three major modules of miRFocus, and 

demonstrate the useful and reasonable results with an example. It is easier to conclude 

that miRFocus is a comprehensive web-based resource for human miRNAs information 

retrieval and further analysis. Based on the results of miRNA annotation and pathway 

analysis, it is discovered that top ten highest expression miRNAs in breast milk exosomes 

have all been well studied, and these miRNAs are able to take part in cancer related 

pathways by regulating numerous target genes. Moreover, on the basis of analysis results 

of miRpathway module, we ensured that important connections between miRNAs of 

breast milk exosomes and immune diseases related pathways are really reliable, and also 

observed the candidate connectors – target genes. 

MiRFocus includes three major modules: miRNA annotation, pathway analysis and 

miRpathway. MiRNA annotation contains the most comprehensive known annotation 

relevant to human miRNAs, including miRBase annotation, Wikipedia annotation, 

miRNA-miRNA annotation, GeneCards annotation, OMIM annotation and miRecords 

annotation. Prior to reaching the result page of miRNA annotation, different input 

miRNA IDs will be automatically converted into new miRNA IDs of the latest version 

(miRBase version 21) by miRNA ID conversion function, thus with the help of miRNA 

Gene ID conversion function new miRNA IDs will be transferred into Gene related ID. 

Pathway analysis module implements a statistic method to determine whether each 

pathway or GO term is significantly affected by input miRNAs or not. Since both 

pathway analysis and GO terms analysis require the interactions between miRNA and 

genes, an integrates miRNA-target set is created by collecting interactions from four 
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experimentally validated target databases and five predicted target web tools. To facilitate 

users to achieve correlations between miRNAs, target genes, and KEGG pathways, 

miRpathway module not only summarizes miRNAs and experimentally validated target 

genes of each human KEGG pathways, but also creates multiple query methods.  
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Chapter 3 

NGS Analysis for Error Removal in 

DNA Microarray-Based Synthetic Oligonucleotide Libraries 
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3.1 Introduction 

As the technology of DNA sequencing develops, our understanding of DNA 

sequences and related biological knowledge is also gradually increasing. Scientists are 

not just satisfied by the existing natural DNA sequences in biological systems, but rather 

would like to re-design specialized DNA sequences based on learned biological 

knowledge to realize certain biological functions. Synthetic Biology is a discipline that 

studies how to design and synthesize new DNA sequences. 

In the development of Synthetic Biology, how to de novo synthesize target DNA 

sequences of any length in a highly-efficient and inexpensive manner has always been a 

principal challenge. There are two major types of de novo synthesis: enzymatic synthesis 

and chemical synthesis, the latter of which has been used more commonly because it is 

relatively easier and cheaper. Chemical synthesis produces long-chain molecules through 

chemical reactions of simple chemicals, such as nucleotides or small precursor molecules. 

Currently, commonly used chemical approaches include phosphoramidite method and 

modified phosphoramidite-based methods [98]. Theoretically, it is possible to synthesize 

nucleotides of any length through chemical approaches, but practically, the usual 

synthesized length is just 150 bases because of the presence of secondary reactions. The 

product would be in very low amount if it exceeds such a length [99]. Therefore, to 

synthesize long-chain DNA, it usually starts from the synthesis of short oligonucleotides 

(oligos), then assembles them into long target DNA sequences through DNA enzymes, 

such as DNA ligase or polymerase, based on the overlapping regions among oligos, 

either in vitro or in vivo [100]. Using this method，Gibson and collaborators synthesized, 
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assembled and cloned a new Mycoplasma genitalium genome, named M. genitalium 

JCVI-1.0, with 582,970 bps [101]. 

Similar as DNA sequencing technology, DNA synthesis technology has also begun 

to evolve toward the direction of high-throughput parallel experiments to promote the 

synthesis production and reduce the cost. Because of the advancement in the 

manufacturing of microarrays, scientists started to perform oligos synthesis on 

Microarray [102]. 

Since it is impossible for chemical reactions to reach 100% efficiency during 

chemical synthesis, errors are likely to be introduced in the oligos, such as substitution, 

insertion, and deletion of bases. For a single oligo, such a problem does not have 

significant influence. However, for the DNA sequence assembled from multiple oligos, 

the impact of error synthesis grows exponentially as the number of oligos increase. 

Compared to the error rate of 10-7 to 10-8 in the DNA replication in biological systems 

[103], the error rates of current chemical synthesis method are between 10-2 and 10-3 

[104]. In the high-throughput microarray-based DNA synthesis, the error rates are usually 

even higher than that of classical chemical methods due to the large number of oligos. 

For the presence of non-target DNA sequences which include synthesis errors, we usually 

select target DNA sequences using cloning and sequencing method, the cost of which 

accounts for a significant part of the overall expense of DNA synthesis. Therefore, to 

increase the efficiency of DNA synthesis and lower the cost, it is a very important step to 

eliminate error-containing oligos in DNA synthesis technology. 

There are different methods to eliminate error-containing oligos, such as High 

Performance Liquid Chromatography (HPLC) [105], polyacrylamide gel electrophoresis 
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(PAGE) [106]. Among these various methods, one eliminates erroneous oligos by taking 

advantage of a mismatch-binding proteins (MutS) that is able to recognize and bind to 

several types of DNA mismatching. During the DNA annealing process, error-containing 

oligos will complement with error-free oligos to form mismatch-containing double-

stranded DNAs. MutS will bind to these mismatch-containing double-stranded DNAs and 

thus capture and eliminate them (Figure 3-1). Compared to other error correction 

methods, such screening method with MutS has wider application range, more reasonable 

price, and higher efficiency. 

Our collaborators established a MutS-based, simple, inexpensive, and high-

throughput error-correction method. They solidified fusion expression of Cellulose 

binding module (CBM) and etMutS, a mixture of Escherichia coli MutS (EcoMutS) and 

Thermus aquaticus MutS protein (TaqMutS), onto a cellulose gel column to construct an 

etMutS immobilized cellulose column (etMICC), which can eliminate synthetic oligos 

including errors that are introduced in the process of assembling and microarray-based 

synthesis [107].  

To evaluate the error-removal efficiency of etMICC, our collaborator randomly 

selected single clone for sequencing, which is much expensive, time consuming and very 

random. In this chapter, a high-throughput sequencing method was adopted to assess the 

oligos pre- and post-etMICC. The result demonstrates that etMICC can reduce error rate 

from 1.69% to 0.28%. Moreover, by analyzing the data using NGS analysis, it is 

discovered that etMICC has higher efficiency in removing gap errors caused by insertion 

and deletion than eliminating mismatch errors resulting from substitution. 
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Figure 3-1. The schematic representation of error-containing oligos removal by using 

etMICC. 
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3.2 Materials and Methods 

3.2.1 Materials 

 To study the property of etMICC-based error-correction method in eliminating 

error-containing oligos from DNA Microarray-based synthesis oligo library, we select the 

oligos before and after-process of etMICC as the sequencing sample. 

 

3.2.1.1 LWFP Oligo Library Design 

Genes for long wave fluorescent protein (LWFP) refer to red and far-red fluorescent 

protein (RFP and FRFP) genes. RFP can be achieved through expressing synthesized 

LWFP DNA sequences. Expression clones with RFP will be easier detected with naked 

eyes by introducing into red fluorescence. For LWFP oligo library design, 21 selected 

LWFP template genes consisting of 666 ~ 714 bases are truncated at homologous regions, 

which are found by alignment, to produce short oligos with length between 21 ~ 90, and 

total 399 unique oligos are obtained. The steps for cutting off gene sequences are shown 

in Figure 3-2.  

 

3.2.1.2 Microarray-based Synthesis 

LWFP oligo library was synthesized by using µParaflo microfluidic microarray 

technology in LC Sciences. 
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Figure 3-2. Flowchart of cutting off LWFP gene sequences to oligos. (a) Optimize gene 

sequences for exclusion of restriction enzymes sites; (b) Add primers for full length gene 

sequence amplication after assembly; (c) Split gene into oligos in homologous regions; 

(d) Add oligo primers for oligo amplications. 
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3.2.1.3 PCR Amplification 

Microarray-eluted oligos are amplified in 30 PCR cycles thus purified with UNIQ-

10 Oligonucleotide Cleanup Kit. 

 

3.2.1.4 Error Removal Using etMICC 

Re-anneal oligo sample to expose errors and thus load the oligo sample into 

etMICC to collect 18 filtrates. 

 

3.2.1.5 PAGE Gel Detection of the Filtrates 

Since the concentration of the oligos was too low to detect, they were re-amplified 

by PCR then the filtrates were detected with PAGE Gel. After the detection, filtrate 9 (F-

9) and filtrate 10 (F-10) showed the brightest expected band in the detection, therefore, 

both F-9, F-10 and untreated sample were selected for further high-throughput 

sequencing. 

 

3.2.1.6 High-throughput Sequencing 

Before sequencing the sample with Illumina Sequencer in LC Sciences, four 

sequential steps were conducted: (1) Applying one more PCR amplification; (2) 

Removing primers from oligos by MlyI digestion; (3) Attaching a single adenine base 

(A) to oligos 3’ end for adaptor ligation with the help of Taq DNA polymerase; (4) 

Adding “GATCGGAAGAGCACACGTCT”, a genome DNA adaptor from Illumina, to 

the adenine base which is added in step three.  
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3.2.2 Getting Raw Sequencing Data 

Three raw data files consisting of numerous 56-base reads in Sanger FASTQ format 

were obtained by using Illumina’s Genome AnalyzerIIX System. 

 

3.2.3 Read Filter 

“Read Filter” refers to removing unqualified data prior to alignment, which includes 

“read trimming” and “quality filter”. 

 

3.2.3.1 Read Trimming 

Because a single adenine and 3’ end “GATCGGAAGAGCACACGTCT” adaptor 

(A-adaptor) were introduced into oligos during sample preparation, it is necessary to get 

rid of them before sequencing alignment. The process of eliminating A-adaptors includes 

two steps: determining the beginning of A-adaptors by traversing all reads in raw data 

files with seed sequence “AGATCGGA” which is the first eight bases of an A-adaptor, 

thus removing A-adaptor and sequences after A-adaptor from each read. Since each short 

referent oligo with 21 bases in length allows 5 errors, the new reads with the length less 

than 16 will be removed.  

 

3.2.3.2 Quality Control  

To study the correction capability of etMICC-based error-correction tool on 

different synthetic errors, it is very important to ensure that mismatches largely come 

from synthesis, rather than from sequencing. Therefore, it seems reasonable to make each 

base of the reads have a quality score higher than 30, which means the probability of 
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incorrect ball call is smaller than 0.001. However, only about 50% reads passed the 

threshold 30 among the raw data. To achieve enough data for further analysis on the 

premise of each read with high quality score, a two-step disqualified sequence removal 

method is adopted: mapping the reads with average quality score no less than 30 to the 

referent sequence thus removing mapped reads which include at least one mismatch site 

with quality score less than 30. 

 

3.2.4 Sequence Alignment 

Unlike genome sequencing, oligo samples do not have to be broken up into 

fragments before sequencing since the sequencing capability of Illumina Sequencer 

covers the length range of referent oligos (21~90). Because oligo samples starts from 5’ 

end, the mapping should begin from the 5’ end of referent oligos. It is known that current 

high-throughput sequencing alignment tools usually map short reads to long referent 

sequences, and none of them can align short reads to short referent sequences. In the face 

of such problem, a Bowtie2-based analytical method for sequence alignment and data 

statistic was proposed in our study. In this method, Bowtie2 is used to search for all 

possible mapping results, which is followed by evaluating the mapping results through 

counting the number of error bases, partial of which are defined based on mapping 

positions.  

Bowtie2 is a sequence alignment tool, which is good at fast mapping high-

throughput short fragments to long DNA sequence, in particular the whole genomic 

sequence, and also supports gapped alignment. To improve the operating efficiency of 

Bowtie2, referent oligos and their reverse complementary sequences (RC-Seqs) are 
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combined into a long DNA sequence by poly “N” sequences. During the process of 

combination, three points should be followed: (1) The length of “N” should be longer 

than 10; (2) Different poly “N” sequences do not have to be the same length; (3) Poly “N” 

sequences should be added before the first and after the last referent sequences, 

respectively. After combination is completed, Bowtie2 will align short oligos to the long 

DNA reference including poly “N” to get all possible mapping results using very 

sensitive parameters. The parameters used are shown in Table 3-1. 

 

Table 3-1. Parameters used in Bowtie2 alignment. 

Parameter Meaning Reason 

-a Report all alignments For next-step filter 

-norc Do not align RC sequences RC-Seqs are already added 

--end-to-end Global alignment Entire read must align 

-D 6 Give up extending after 6 failed The max error allowed is 5 

-R 3 Try 3 sets of seeds More possible mapping 

-N 1 Allow 1 error in seed alignment More possible mapping 

-L 16 Length of seed is 16 The minimum length is 21 

-i S,1,0.50 Very-sensitive More possible mapping 

 

After the process of mapping, it is to select best mapping results from all the 

possible mapping results by counting the number of substitutions, insertions and deletions. 

During the process of counting, several points should be noted: (1) Because primers are 

added to pre- and post-oligos for using etMICC to remove error-containing sequences, 
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the insertions and deletions before and after oligos will result in gaps, thus, such 

insertions and deletions should be counted. (2) Insertions which result from the remaining 

A-adaptor (the first eight base of “A” and adaptor) will be trimmed. (3) If the reads 

contain such a substitution site whose quality sore is lower than 30, such reads will be 

removed. (4) If one read mapped to n sites on referent sequence, it will be compared to 

1/n read mapped to n referent oligos. 

 

3.2.5 Further Data Analysis 

Besides the methods of sequencing alignment, mapping result collection, as well as 

error counting, there are several other approaches for further analyzing previous results, 

which will be introduced in Section 3.3.  
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3.3 Results and Discussions 

3.3.1 NGS Raw Data 

The statistics of the raw sequencing data are show in Table 3-2. 

  

Table 3-2. Statistics of raw sequencing data. 

 Reads Bases Quality Score 

Untreated 30,315,468 2,303,975,568 31.4 

F-9 25,353,391 1,926,857,716 31.1 

F-10 15,638,422    875,751,632 33.8 

 

 

3.3.2 Read Filter 

The statistics of the data after read filter are shown in Table 3-3. The comparison 

between filtered and raw data is shown in Table 3-4. 

Table 3-4 reveals that the read filter not only ensured high quality score for 

sequences, but also guaranteed more than 80% sequences retained. In addition, 

approximatively 50% bases are removed, which means “read trimming” is extremely 

necessary. 
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Table 3-3. Statistics of filtered data. 

 Reads Bases Average Score 

Untreated 26,970,025 1,241,075,151 37.4 

F-9 23,329,865   900,660,792 37.5 

F-10 13,993,448    500,386,622 37.8 

 

 

Table 3-4. Comparison between filtered data and raw data (Filtered/Raw). 

Sample Percentage of Reads Percentage of Bases Fold of Score 

Untreated 88.9% 53.9% 1.19 

F-9 92.0% 46.7% 1.20 

F-10 89.5%  57.1% 1.12 
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3.3.3 Sequence Alignment 

 Sequence alignment consists of two sequential steps: mapping oligos to referent 

sequence and selecting best results by counting number of errors in each mapped result. 

After the second step, there were 14.9%, 9.0% and 12.9% of reads were removed from 

untreated, F-9 and F-10 samples, respectively (Table 3-5). 

 

Table 3-5. The statistic of unqualified read filtered by sequence alignment. 

Sample Unqualified Reads Percentage in Raw Data Total Unqualified Reads 

Untreated 1,181,664 3.9% 14.9% 

F-9 263,493 1.0%   9.0% 

F-10 368,848 2.4% 12.9% 

 

 

After sequence alignment, the percentages of mappable reads are shown in Table  

3-6, and the distribution of mapping reads in filtered data is revealed in (Figure 3-3). 

Figure 3-3 demonstrates that the percentage of perfect match reads after etMICC 

treatment is remarkably higher than that of untreated reads, and the percentage of perfect 

match reads in F-10 even reaches up to 91.1%. 
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Table 3-6. The statistic of mappable read. 

Sample Mappable Reads Percentage in Filtered Data 

Untreated 18,258,469 70.8% 

F-9 15,654,864 67.9% 

F-10 13,182,640 96.8% 

 

 

Table 3-7 reveals that at the cost of losing partial error-free oligos, etMICC 

effectively removed error-containing oligos.  

 

Table 3-7. The statistic of mapped referent oligos. 

Sample Mapped Referent Oligos Covered Percentage 

Untreated 399 100.0% 

F-9 342   85.7% 

F-10 362   90.7% 
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Figure 3-3. The statistics of perfect match and different error types of untreated sample, 

F-9 and F-10. 
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3.3.4 Unmapped Referent Oligos Analysis 

To further analyze the reasons of the loss of partial referent oligos, mapped oligos 

and unmapped oligos in F-9 and F-10 are compared by using unpaired one-tailed 

Student’s T-Test, respectively. The result of comparison shows that the average length of 

unmapped oligos is significantly longer than that of mapped oligos. The results of T-Test 

are displayed in Table 3-8. 

 

Table 3-8. The results of Student’s T-Test for length of mapped and unmapped oligos. 

Sample Length(Mapped) Length(Unmapped) T-Test P-Value -log10 of P-Value 

F-9 54.4 (342) 71.6 (57) 2.9 × 10-23 22.5 

F-10 55.4 (362) 70.9 (37) 4.4 × 10-12 12.4 

 

Furthermore, F9 has 20 more unique unmapped referent oligos than F10. One 

possible reason leading to the difference is that oligos with different lengths pass etMICC 

at different speeds. Thus, longer oligos likely need more time to get through the etMICC. 

Therefore, it is probably reasonable to improve the quality of error-free oligos by 

optimizing the time for samples passing through etMICC and the quantity of collected 

filtrate.  
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3.3.5 Error Ratio Analysis 

Based on the sequences in mapping result, the average quantity of different errors in 

each sample and the folds of Untreated/F-9 and Untreated/F-10 are calculated, 

respectively, which are shown in Table 3-9. Table 3-9 shows that etMICC reduces the 

total error rate from 1.7% to 0.2% (7.8 fold) by comparing Untreated with F-10. 

 

Table 3-9. Different errors in each sample and fold of Untreated/F-9 and 

Untreated/F-10. 

Sample Total Insertion Deletion Substitution 

Untreated 1.7% 0.2% 0.5% 0.9% 

F-9 0.3% 0.0% 0.1% 0.2% 

F-10 0.2% 0.0% 0.1% 0.1% 

Untreated/F-9 6.0   9.4 5.6 5.6 

Untreated/F-10 7.8 11.0 6.5 8.2 
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Figure 3-4. The histogram of ratio for different error types in each sample. 
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3.3.5 etMICC Function Analysis 

  Comparing the number of error-containing oligos before and after etMICC is one 

of the feasible methods to assess the binding affinity between different error types and 

etMICC. Error counting is based on the reads only mapping to referent oligos which 

include up to 56 (max length of read) bases. In addition, each error-containing read may 

include multiple error types and etMICC may not react with all of the error sites when 

removing such oligos, therefore, to simplify the experimental conditions, I only focus on 

one-error-containing reads.  

  

Table 3-10. The statistics of one-error-containing reads in different samples. 

Sample Total Insertion Deletion Substitution 

Untreated 4,380,193 485,974 874,622 3,019,597 

F-9   838,128 23,332 128,437   838,128 

F-10   609,677 20,558 127,716   534,296 

 

 

Table 3-11. The statistics of fold Untreated/F9 and Untreated/F10 based on one-

error-containing reads in different samples. 

Sample Insertion Deletion Substitution 

Untreated/F9 18.6 6.1 3.2 

Untreated/F10 12.5 3.6 3.0 
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Summary of one-error-containing reads in three samples is shown in Table 3-10 and 

Table 3-12. To further analyze diverse substitutions, insertions and deletions in different 

samples, three different error types are divided into eight substitution errors and four gap 

errors. The gap errors integrate both insertion and deletion, because insertion and deletion 

cannot be differentiated by etMICC. Result of subdivided errors is displayed in Table    

3-12, and the folds of Untreated/F9 and Untreated/F10 on the basis of the information in 

Table 3-11 is shown in Figure 3-5. From Table 3-12, it is clear that etMICC is more 

efficient in filtering insertion than others, and Table 3-14 reveals that subdivision errors 

of substitution A-G, as well as G Gap and A Gap have higher probability to be 

recognized by etMICC. 

 

  



100 

 

Figure 3-5. The statistics of gap errors and mismatch errors of untreated sample, F-9 and 

F-10. (a) Percentage of reads for different gap types. (b) Percentage of reads for different 

mismatch types. 
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Table 3-12. Comparison of error removal between filtrates and untreated sample. 

Type Error Type Untreated/F-9 Untreated/F-10 

A Gap ins A or del T * 12.0 7.7 

C Gap ins C or del G *   4.5 3.7 

T Gap ins T or del A *   8.9 3.9 

G Gap ins G or del C * 15.0 8.0 

All Gap    8.0 4.9 

A-A T->A   3.2 1.2 

A-C G->A or T->C   4.3 3.8 

A-G C->A or T->G   8.1 5.2 

C-C G->C   5.2 2.1 

C-T A->C or G->T   7.1 5.0 

G-G C->G   7.8 2.7 

G-T A->G or C->T   3.1 3,0 

T-T A->T   3.6 1.2 

All Mismatch    3.9 3.5 

Total    4.7 3.8 
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3.4 Conclusions 

 In this chapter, the property of etMICC-based error-containing method in 

correcting microarray-based synthetic oligos is analyzed by comparing read sequences 

before and after etMICC. To obtain enough high-quality reads for analysis, a two-step 

quality control method is adopted, which includes the step of eliminating oligos with 

average quality score lower than 30 and the following step of removing oligos in which at 

least one substitution site with quality score lower than 30. After the process of quality 

control, more than 80% high-quality reads are collected. Moreover, since referent oligos 

are 21-91 in length and none existing alignment method is efficient at mapping high-

throughput sequencing data of NGS to short referent oligos, a Bowtie2-based sequence 

alignment approach is developed, and owing to such method about 50% reads 

successfully mapped to target oligos.  

In addition, by comparing high-quality oligos before and after etMICC, it reveals 

that at the expense of losing partial long sequences, etMICC significantly increases the 

percentage of perfect match oligos from 38.0% to 91.1%, and decreases ratio of error-

containing oligos from 1.7% to 0.3%. Moreover, through studying binding affinity of 

etMICC and one-error-containing oligos, it is demonstrated that etMICC has higher error-

removal efficiency for gap error structure resulting from insertion and deletion than for 

substitution error structure which are caused by substitution. Furthermore, it is evident 

that the NGS analysis method is appropriate to help select best filtrates for following 

assembly based on quality evaluation of different filtrates, and is also able to assess the 

efficiencies and properties of other error-correction methods.  
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Chapter 4 

Development of Proteomic Tools for Investigation of  

Cellular Protein Functions  

and Post-translational Modifications (PTMs) 
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4.1 Introduction 

Histones are a series of alkaline proteins existing in eukaryotic cell nuclei, which 

include four core histones H2A, H2B, H3, H4 and two linker histones H1 and H5 [108]. 

An octamer containing two copies of each H2A, H2B, H3, and H4 wrapped by a segment 

of DNA forms a nucleosome, which is the basic unit of chromatin. The alternative 

structure and function of chromatin usually result from diverse post-translational 

modifications (PTMs) of histones. Among a myriad of PTMs, histone methylation 

catalyzed by specific enzymes has been increasingly recognized as players responsible 

for a major signaling mechanism in eukaryotic cells.  

Histone methylation is a process in which histone methyltransferases (HMTs) 

transfer methyl groups (CH3) from S-Adenosyl methionine (SAM) onto lysine or 

arginine residues of histones [109]. Surprisingly, histone lysine methylation is much 

more common than histone arginine methylation. It is studied that lysine is capable to be 

mono-, bi-, or tri-methylated via substituting hydrogen (H) of NH3 group with methyl 

groups (Figure 4-1) [110], while arginine can only be mono- or bi-methylated [111]. For 

example, H3K37 can be methylated to H3K37me1, H3K37me2 and H3K37me3 while 

H3R17 can be only methylated to H3R17me1 and H3R17me2 [112].  

HMT is a kind of enzyme catalyzing the histone methylation by transferring 

methyl groups to residues of histone proteins. HMTs consist of two major types: lysine-

specific and arginine-specific. Lysine-specific HMTs (KHMTs) can be divided into SET 

(Suppressor of variegation, Enhancer of Zeste, Trithorax) domain proteins and no-SET 

proteins, for example MLL4 for H3K4 contains SET domain and DOT1L for H3K79 

does not [113]. 
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Several lines of evidence ensure that histone methylation plays essential roles in 

epigenetic alternations, which can either activate or repress gene expression. For 

example, H3K4me2/3 activates gene transcription while H3K9me2/3 inactivates gene 

expression [114]. With the first discovery of histone demethylases (HDMs), the fact that 

histone methylation with revisable nature starts to be accepted [115]. The regulation will 

become complicated if both HMT and HDM appear in the common complex. It is known 

that mis-regulation of HMTs is associated with diverse diseases. For example, EZH2 a 

transcriptional repressor has been perceived as a biomarker for prostate cancer [116]. 

Therefore, as a member of the suite of epigenetic modifiers HMTs are a new and 

promising class of therapeutic targets.  

In cancer, there is a growing body of evidence suggesting that changes in the 

activity of HMTs contributing to gene expression activation and uncontrolled cell 

proliferation are hallmarks of these devastating diseases. To identify the activity of 

HMTs in vivo, the traditional method is: (1) extract histone fractions from cell nucleus by 

trichloroacetic acid (TCA) extraction or high-salt extraction; (2) make use of specific 

anti-PTM histone antibodies, for example, anti-H3K36me1, to analyze particular 

methylated sites on histone proteins [117,118]. For the conventional method, it is feasible 

to investigate a particular PTM of a single site with an appropriate antibody, however, a 

variety of anti-PTM histone antibodies are required if the goal is to assay activities of all 

HMTs in the whole nuclear lysate, which results in not only more expensive, but also 

more difficult detection of PTMs in each site due to different impacts of distinct anti-

PTM histone antibodies [119]. Therefore, we designed a histone peptide microarray 
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(hPepArray) platform to analyze activities of nuclear KHMTs in vitro by using anti-pan 

methyl lysine antibodies.  

In this study, we designed and synthesized a serial of histone peptides on a 

microfluidic chip, which contains 160 unique peptide groups covering five histone 

proteins, such as H1, H2A, H2B, H3 and H4. Each unique peptide group includes one 

WT peptide directly extracted from histone protein and several mutant peptides and 

control peptides were used to make sure the methylation was caused by the target lysine 

residue or not. Moreover, we obtained nuclear extract from a breast cancer cell line – 

T47D, and applied the protein lysates to hPepArray. After incubation hPepArray was 

loaded with the nuclear extract and the general methylated lysine antibody, significant 

signals were detected at the sites represented by peptides corresponding to H2AK74, 

H3K122, and H4K59, while null signal was found at corresponding mutant peptides and 

control peptides. 

 

Figure 4-1. Histone lysine methylation states catalyzed by lysine histone 

methyltransferases (KHMT). 
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4.2 Materials and Methods 

4.2.1 Histone PepArray chip probe design 

The studies of sequence specificity of the substrates of HMTs with spotted peptide 

arrays [120,121] demonstrated that histone methylations are sequence dependent. We 

assume sequences with nine residues can be recognized by specific HMTs. To simplify 

the experiment, only lysine-specific probes are designed to focus on activities of lysine-

specific HMTs. Moreover, to assay as many KHMTs as possible, the probes were 

extensively derived from ten histone protein sequences, including core histones H2A, 

H2B, H3 and H4 from NCBI RefSeq database, and liner protein H1 [122]. Each nine-

residue peptide consists of a lysine residue in the center and four residues on each side. 

Counting all lysine residues in ten histone proteins, 160 unique peptides in total were 

generated (Table 4-1).  

Total 160 unique peptides directly extracted from histones are named as WT 

peptides, in which the central lysine residues are called core lysine. Each WT peptide has 

one corresponding negative control, named as A control, in which the core lysine (K) is 

mutated into alanine (A). Because nuclear lysate employed in hPepArray contains not 

only KHMTs, but also other PTM enzymes which may impede methylation by 

interacting with peptides primarily, it is necessary to remove the impact of other PTM 

enzymes. To simplify the experiment, for each WT peptide, we eliminated effects of 

phosphorylation enzymes and histone acetyltransferases (HATs) by mutating serine (S) 

and threonine (T) and tyrosine (Y) (three phosphorylation sites) into alanine and 

substituting lysine and arginine residues on both sides of the core lysine which could be 

either acetylated or methylated with similar size residue glutamine, respectively. These 
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newly designed peptides with mutant residues on both sides of the core lysine are called 

Side Mutation (SM) peptides. However, certain WT peptides, such as H1.1-K16 and 

H3.3-K27 and H3.3C-K27, without residues like S, T, Y, K and R on each side of the 

core lysine have no SM peptides. In addition, negative control peptide for each SM 

peptide, named SM A control, is designed by replacing the core lysine with alanine. 

Entire 634 unique peptides including WT peptides, WT A control peptides, SM peptides 

and SM A control peptides are designed. Further, 634 unique peptides will be synthesized 

on an hPepArray in which each peptide has one or two repeats. 

 

Table 4-1. Statistics of reference peptides. 

Source Number of reference peptides 

H1.1 57 

H1t 40 

H2A 14 

H2B 20 

H3 13 

H3.1 13 

H3.1t 13 

H3.3 13 

H3.3C 11 

H4 11 

Total unique peptides 160 
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Figure 4-2. Strategy of peptide design. Blue frame: the core lysine; Red frame: the origin 

nine-residue peptide located in histone sequence named as Wild Type (WT); A Control: 

the negative control peptide for the corresponding WT peptide by mutating the core 

lysine (K) into alanine (A); Side Mutation (SM): for each WT peptide, the residues serine 

(S), threonine (T), tyrosine (Y) on both sides of the core lysine are replaced with alanine 

(A) and another two residues such as lysine (K), arginine (R) on each side of the core 

lysine are replaced with glutamine (Q); SM A Control: the negative control peptide for 

each SM peptide by substituting the core lysine (K) with alanine (A). 
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4.2.2 Experiments 

4.2.2.1 Microarray-based Synthesis 

hPepArray was generated by using µParaflo microfluidic microarray technology in 

LC Sciences, Houston, TX. 

 

4.2.2.2 Nuclear Lysate Extraction 

Nuclear lysate is extracted from a breast cancer cell line – T47D by using Abcam 

nuclear extraction kit according to vendor protocol. 

 

4.2.2.3 Methylation and Immunoblotting 

Nuclear lysate and SAM were loaded on the hPepArray and incubated at 37º C for 3 

hours. Thus hPepArray was stained with anti-pan methylated lysine antibody from 

Abcam according to vendor protocol. After previous processes, the chip was scanned 

with Axon GenePix 4400A. 

 

4.2.3 Data Analysis 

4.2.3.1 Image Digitization 

Digital density data was transferred from image data by using ArrayPro Analyzer.  

 

4.2.3.2 Background Subtraction and Signal Significance Analysis 

Reducing background and selecting detectable peptides whose signals are 

significantly higher than that of the background are processed according to the protocol 

of LC Sciences, Houston, TX [123]. 
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4.3 Results and Discussions 

4.3.1 Methylation detected on WT peptides 

By comparing with A control peptides, three WT peptides corresponding to 

H2AK74, H3K122, and H4K59 with significantly higher signals have been identified 

(Figure 4-2). It is known that H3K122 can be either acetylated or methylated [124,125] 

and methylation of H4K59 plays an essential role in transcriptional silencing [126], while 

methylation of H2AK74 has not been reported. Although hPepArray is an in vitro 

experimental study that may not exactly demonstrate the activities in vivo, it is likely that 

H2A-K74 is a methylation site because partial histone lysine methylations catalyzed by 

specific HMTs are sequence dependent [111,112].  

 

4.3.2 Methylation detected on SM peptides 

By comparing with corresponding A Control peptides, six SM peptides in total with 

significantly higher signals have been determined. These SM peptides considered as 

potential methylation probes for further optimization of hPepArray are shown in Table  

4-2. 
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Figure 4-3. Intensity of peptides in three peptide groups corresponding to H2A-K74, 

H3K122 and H4K59. The higher of the intensity means the higher level of methylation.  

 

Table 4-2. Six potential methylation probes. 

Peptide ID Sequence Density (SM) Density (SM A Control) 

H1.1-K140_SM QQLQKAAGA   8,091.2     0.0 

H1.1-K178_SM VQPQKVAQA 15,574.8 305.5 

H1.1-K192_SM AVQPKAAQA 13,068.4   87.6 

H1t-K147_SM PQAAKANQQ 15,657.9 515.8 

H2B-K23_SM AQAQKQDAQ 23,293.8   24.0 

H4K5_SM AGQGKGGQG 39,047.3     0.0 
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4.4 Conclusions 

By comparing the signals of lysine peptides extracted from hPepArray, interestingly, 

three lysine positions – H2A-K74, H3K122, and H4K59 – have extremely higher signals 

than others. It is demonstrate that histone peptide microarrays are able to reveal the 

activity profiles of KHMTs at specific histone sites in cellular system.  

It is studied that H3K122 and H4K59 can be methylated, while H2A-K74 is a novel 

methylation site in vitro. Therefore, further experiments are required to verify the 

methylation of H2A-K74 in vivo.  

Moreover, it is published that H3K36 is methylated in breast cancer cell line [127], 

while methylation of H3K36 was not revealed in hPepArray. Thus, it is necessary to 

ensure that hPepArray is able to fully reflect the activity profiles of KHMTs and 

demonstrate the properties of the substrates of KHMTs by improving peptide design.  

Currently, we only completed the study of histone methylation in T47D. Future 

studies will embrace histone methylation in different cell lines to identify the 

differentiations of KHMTs activity profiles between diverse cell lines.  

Although the study of histone methylation described in this chapter is the first step 

of hPepArray development, the results indicate that it is feasible to learn the activity 

profiles of KHMTs in cellular system with hPepArray. In contrast to traditional methods 

for studying histone modifications, hPepArray not only allows high-throughput 

experiments, but also replaces site-specific anti-methylated lysine antibody with general 

anti-methylated lysine antibody, which highly reduced the experimental complexities and 

lowered the experimental costs. In addition, besides analyzing activity profiles of 

KHMTs, hPepArray can also be used to assay activity profiles of arginine-specific 
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histone methyltransferases (RHMTs). Furthermore, aside from methylation, hPepArray is 

able to study the properties of other types of histone PTMs by employing specific 

antibodies and designing different peptides as is required.  

While mass spectrometry-based proteomic approaches are only applied to 

proteomics quantitative profiling [ 128 ], hPepArray focuses on proteomics activity 

profiling which reflects real impacts on histone PTMs of certain proteins in nuclear lysate. 

In consequence, hPepArray can be adopted to select inhibitors of specific PTMs as 

targets for therapeutic development.  
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Chapter 5 

Overall Conclusions and Future Directions 
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In the development of biological science and bio-technology, scientists start the 

research on large-scale biology ‘omics’ and systems biology with the help of 

advancement in high-throughput technologies, such as NGS and microarrays, which 

result in tremendous amount of data. Thus, bioinformatics for bio-data analysis is 

becoming an indispensable player in designing experiments and interpreting biological 

meanings embedded in the enormous amount of data. In this thesis, I developed such 

applications of bioinformatics in three different fields. 

 

5.1 Conclusion and Future Development of miRFocus 

In Chapter 2, I developed a comprehensive web-based resource ‘miRFocus’ for 

effectively retrieving and analyzing human miRNAs by combining knowledge of 

computer sciences with information in biology. By submitting a list of miRNAs obtained 

from miRNA expression experiments to the webpage of miRFocus, a wide range of 

information associated with query miRNAs, such as sequences, genomic clusters, co-

expression miRNAs, diseases, publications, experimentally validated and predicted target 

genes, as well as enriched pathways and GO terms will be quickly provided in the result 

page. Moreover, miRFocus allows multiple miRNAs input through one or more different 

input methods, thus miRNA nomenclatures of diverse versions will be converted into the 

names of the latest version (miRBase version 21) automatically. Furthermore, miRFocus 

also implemented the function to query either target genes or KEGG pathways for 

searching miRNAs.  

Although miRFocus offers detailed information relevant to interrelations between 

miRNAs and target genes and KEGG pathways, it does not demonstrate how certain 
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miRNA affects the function of a KEGG pathway. For example, based on the information 

in miRFocus, it reveals that IL13, a gene of Asthma pathway, is the target gene of 

miRNA hsa-let-7f-5p, but it is not clear that whether hsa-let-7f-5p affects Asthma 

pathway by down-regulating or up-regulating IL13. Therefore, to incorporate such useful 

knowledge into miRFocus, in future, we have to collect much more data regarding this 

aspect from existing databases and published literatures. It seems that to curate such 

information manually is not reasonable; however, the emergence of text-mining 

technology which is used for deriving high-quality information from text makes it 

possible [129]. Moreover, since current text-mining technologies focus on the searching 

by key words, it is necessary to develop advanced algorithms for getting more detailed 

regulation information between miRNA and genes.  

As for predicted target genes and enriched pathways, it is not easy to assess their 

reliability due to the lack of enough experimentally validated target genes. In this thesis, I 

choose the target genes predicted by at least three largely-used prediction web tools as the 

more reliable candidate targets, which are based on the analysis of databases embedded in 

miRFocus. To observe the more reliable enrichment pathways, some scientists imported 

some factors such as an observed to expected (O/E) miRNA expression ratio and tissue-

specific expression signatures into the process of pathway analysis [89,130]. Even though 

they are meaningful attempts, there are still multiple questions without appropriate 

answers. For example, as for tissue-specific expression signatures, it assumes the low 

expression genes in specific tissues will be ignored in the process of pathway analysis, 

even though they are the targets of queried miRNAs. The question is that removal of the 

low expression genes may results in the loss of valuable information, since miRNAs are 
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able to activate or inactivate certain pathways by down-regulating such target genes [131]. 

Although effective solutions to such problems have not come out, it is believed more 

precise methods for miRNA regulation pathway analysis will be developed as more 

experimentally validated target genes are identified. Therefore, in the absence of 

adequate experimentally validated target genes of known miRNAs for pathway analysis, 

it is necessary to develop advanced methods which are able to achieve enriched pathways 

by utilizing broader interactions of miRNAs and genes. For example, in the database of 

miRpathway, only 507 human miRNAs, approximately one-fifth of total human miRNAs, 

are included. To cover more extensive interrelations of miRNAs and genes, besides the 

experimentally validated interactions of miRNAs and target genes, I would like to 

incorporate predicted target genes of high reliability. To include much more interrelations 

of genes and pathways, I would like to take into account more genes which are associated 

with the genes included in current pathways by protein-protein interactions (PPI) from 

existing PPI databases such as UniProtKB [132] and HomoMINT [133]. The final goal of 

miRFocus is collecting comprehensive information of human miRNAs and genes and 

pathways, and to establish a bioinformatics tool similar as GPS, which can be used to 

search and illustrate/navigate the functions and interaction networks of each biological 

molecule in biological systems. 
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5.2 Conclusion and Future Development of Synthetic Oligo NGS Analysis 

In Chapter 3, I developed an efficient NGS analysis for analyzing synthetic oligo 

library, which consists of millions of short DNA sequences with less than 100 nucleotides 

in length. Through two steps of quality control and subsequent Bowtie2-based alignment, 

this method successfully evaluated the error removal efficiency of etMICC-based error-

removal method on microarray-based synthetic oligos of various lengths, and analyzed 

binding affinities between etMICC columns and different types error-containing oligo 

sequences. Moreover, since current NGS technologies are mainly applied to large scale 

genomic or transcriptomic sequencing and none of existing NGS methods is suitable for 

synthetic oligo library analysis, the approach I established is to fill the gap, and it is much 

useful for scientists who are interested in such field to assay synthetic oligos.  

The newly designed method for synthetic oligo NGS analysis in my thesis can be 

improved in several aspects. Firstly, it is necessary to speed up the running rate of the 

analysis method, which is because in most cases it usually takes about six hours to 

process a library of 30 million reads (6GB data size) by a computer with 2.4 GHz and 

8GB ram. Secondly, to improve the newly designed NGS analysis method, it has to 

reduce the size of temporary files generated during the process of alignment, since up to 

25GB temporary files were created when aligning 6GB raw data to referent sequences by 

using sensitive parameters of Bowtie2. Developing a novel sequencing alignment method 

for synthetic oligo library analysis is one feasible solution to improve running efficiency 

and save operating spaces. In the novel alignment method, first, I would like to index the 

short length referent oligo sequences based on existing index methods, such as Burrow-

Wheeler Transform (BWT), instead of combining them into a long referent sequence, 
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which will reduce the operating steps and running time; second, I would like to integrate 

the two-step alignment employed in current method into one-step alignment to reduce the 

size of temporary files and operating time.  

In the development of NGS technologies, it is believed that sequencing 

technologies will become faster, much less expensive and more accurate for obtaining 

DNA sequence information, which in turn will lead to extensive usage of NGS 

technologies and thus enormous volume of sequencing results is going to be generated. 

Therefore how to properly transmit and analyze such large data set emerged as a tough 

problem. It is known that the ongoing 1000 Genomes project aims to build the most 

detailed catalogue of human genetic variation, which has cumulatively yielded 

approximately 233 TB of sequencing data (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/ 

data) [134]. Since this project incorporates the efforts of different research laboratories 

around the world, it requires considerable network resources for data transmission and 

analysis. To implement large amount of resource sharing, cloud computing emerged 

[135]. Cloud computing refers to computing which integrates large number of remote 

servers for data storage and allows users to access and analyze data stored in various 

resources through a remote registry service. Due to cloud computing-based data sharing, 

storage space is largely saved, cost is efficiently reduced, and high operation capability is 

achieved. However, most of existing NGS analysis methods have not been optimized in 

terms of cloud computing. Therefore, the future work is to improve the capability of 

portability and parallel computing of NGS analysis method by making use of existing 

cloud computing infrastructure, such as CloudBioLinux [136].  
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5.3 Conclusion and Future Development of hPepArray 

In Chapter 4, to study activities of HMTs, I designed an hPepArray including 160 

unique peptide groups that are generated based on lysine residues on ten histone protein 

sequences of four core histones H2A, H2B, H3, H4 and one linker histone H1. From the 

hPepArray, HMT activities in nuclear lysate of T47D (breast cancer cell line) are 

successfully detected. The experimental results show that two known histone methylated 

peptides corresponding to H3K122 and H4K59, respectively, and one potential 

methylation site H2A-K74 are identified, which demonstrated that hPepArray has the 

ability to reveal activity profiles of HMTs in a cellular system. 

Since hPepArray is processed in vitro, it is important to verify methylations of 

H3K122, H4K59 and H2A-K74 in fact also occur in vivo. This can be done through 

traditional histone methylation profiling [114] or mass spectrometry analysis. In addition, 

H3K4, H3K27 and H4K20 are absent in hPepArray experiment, although it has been 

published all of them are relevant to breast cancer [137]. Therefore, it seems that a part of 

histone lysine methylations are not identified by hPepArray, which requires verification 

by in vivo tests. If methylations of such lysine sites are testified in vivo, we will make 

efforts to find out the reasons. As for the possible failed detections, there are two 

probable reasons. One probable reason is that some of the designed peptides cannot 

reflect the property of specific methylations, due to which we can alter the length of 

peptides or change the position of core lysine residue to improve peptide design. The 

other possible reason of the absence of several published histone methylation sites in 

hPepArray is that some lysine residues participate in multiple PTMs, and some PTMs 

will influence the detection of methylation. For example, the loss of methylation of H3K4 
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in hPepArray is probably because acetylation occupied the lysine residue. Therefore, it is 

feasible to substantiate the hypothesis by using specific antibodies.  

The results of completed hPepArray experiment primarily proved that hPepArray 

can reveal activities of HMTs in nuclear lysate. Therefore, it is believed that by designing 

different peptides corresponding for specific PTMs, hPepArray can be used to assay 

activities of diverse enzymes which catalyze different PTMs, such as acetylation, 

phosphorylation and SUMOylation. Furthermore, besides breast cancer cell lines, in 

future, we will apply this technology to different cell lines such as prostate cancer cell 

lines, lung cancer cell lines and gastric adenocarcinoma cell lines which have been 

demonstrated relevant to histone methylations [137]. It is the final goal to find several 

biomarkers for each cell line by comparing peptides among different cell lines. 

 

In addition, there are three main directions for development of omics-scale 

bioinformatics technology. Firstly, it is to integrate existing knowledge in various levels，

including genomes, transcriptomes and proteomes, through data mining to form a whole 

knowledge system which aims to facilitate the process of studying diverse biological 

phenomena. For example, miRFocus a comprehensive web resource (Chapter 2) aims to 

combine as much human miRNA relevant information as possible and thus benefit the 

studies in this field. Secondly, developing analytical approaches based on cloud 

computing is another major direction. In the development and popularization of high-

throughput technologies, such as microarray and NGS, a large amount of data has been 

generated. Gene Expression Omnibus (GEO) repository was established to store and 

share the high-throughput data [138]. In order to store and analyze the enormous amount 
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of data effectively, developing methods in terms of cloud computing is one of the feasible 

solutions. Thirdly, practical application like medical diagnosis is one of important final 

goals of omics-scale bioinformatics technology. Through omics-scale bioinformatics 

technology and methods, it is convenient to design and utilize different methods in terms 

of diverse of requirements to examine biological information of patients. For example, 

high-throughput technology can be used to process overall evaluation of patients through 

assaying their genome, transcriptome and proteome, and as for a specific disease, omics-

scale bioinformatics methods are utilized to diagnose underlying conditions by testing 

particular SNPs and relevant proteomic activities. It is believed bioinformatics 

technologies of omics studies will make great contributions to individual health care in 

future. 
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