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Abstract 

Accurate production performance evaluation and forecasting in shales 

during the early stages of development can play an important role in minimizing 

uncertainties associated with unconventional reservoirs. The liquid-rich shale 

reservoirs, due to their complex rock and fluid behaviors, require different analysis 

than the conventional reservoirs. 

In this work, we considered both reservoir simulation and analytical models 

to forecast the production from liquid rich shales. We modified the tri-linear flow 

model derived for single phase flow to use it for multiphase flow with some 

simplifying assumptions. We were able to validate the results obtained from the 

analytical model with errors of less than 10% when used to forecast liquid rich 

shale volatile oil reservoirs.  

Additionally, reservoir simulation was used to identify the effect of several 

parameters on the estimated ultimate recovery (EUR) of gas condensate 

reservoirs. Fracture half-length, permeability, and fracture spacing was identified 

to be the most important parameters for maximizing the cumulative gas production. 

It was also seen that the interaction of different parameters with each or their 

combined effect was important in optimizing the final EUR for oil and gas. We also 

identified the effect of fluid composition on well-spacing in the Eagle Ford Shale. 

For critical fluids, liquid dropout and condensate banking had a huge impact on the 

final production.  
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  It was seen that gas condensate wells in shales exhibit a long transition 

period between the end of linear flow and the start of boundary dominated flow. 

Pressure normalization was found to be an effective method to identify flow 

regimes in a gas condensate reservoir. Results also showed that transient linear 

flow model with no modification for boundary-dominated flow overestimates the 

production in almost all cases.  

 Finally, compositional reservoir model has been used to create several 

iterations of synthetic production histories from liquid rich shales (LRS) wells based 

on Monte Carlo simulation with predefined probability distributions. Cumulative 

gas, gas rate, and condensate-to-gas ratio (CGR) for the simulated cases were 

decomposed into principal component (PC) scores and coefficients. The dataset 

was cross-validated to check its ability to predict the missing production data based 

on PC scores and coefficients of the limited production data. Principal component 

analysis was further applied to the field data from several wells from Eagle Ford 

shale. Two to three PCs were required to recreate the initial data with reasonable 

accuracy depending on the quality of the input data. During the validation step, we 

observed that some of the wells exhibited significant error which could be attributed 

to significantly different production profiles of those wells compared to the other 

wells. For simulated data, four PCs were enough to yield the prediction with 

average errors of 0.16%, 0% and 0.77% respectively for gas rate, cumulative gas 

and CGR respectively. For field data, three PC yielded the best prediction with 

average error of 1.63% and 2.98% for gas rate and oil rate respectively. This shows 

that multivariate statistics and data driven methods can be used as an important 
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approach to complement existing tools like reservoir simulation and decline curve 

analysis to perform production data analysis. We recognize that even more rapid 

approximate methods will be required for routine analysis. Understanding the 

limitations of different approximate methods and application of methods to 

overcome these limitations in given circumstances should lead to optimal use of 

these methods. 
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1. Introduction 

  The US Energy Information Administration (EIA) predicts that the world 

energy consumption will increase by 56% between 2010 and 2040 from 524 quad 

BTU to 820 quad BTU. Almost 80% of that demand will be fulfilled by fossil fuels 

through 2040 (EIA, 2013). Thus far, this increase in the demand for energy has 

been sustained by unconventional oil and gas resources in North America. 

The production of hydrocarbons from unconventional sources is not as straight-

forward as production from high to medium permeability conventional reservoirs. 

Hydrocarbons from conventional reservoirs can be produced at economic flow 

rates and volumes without large stimulation treatments or special recovery 

processes. On the other hand, unconventional reservoirs require horizontal drilling, 

stimulation treatments and other expensive recovery processes, which make them 

more challenging to exploit than conventional reservoirs. Conventional reservoir 

performance, depending on the fluid system, is observed for permeability of 

greater than about 0.5 md, whereas of unconventional shale reservoirs, with 

permeability in the range of 1000 nd or less, behave quite differently (Whitson, 

2014).  The examples of unconventional resources are shale gas and liquids, tight 

gas and oil, coal bed Methane (CBM), heavy oil, and gas hydrates. 

 Technological advances like horizontal drilling, multistage hydraulic 

fracturing and the use of advanced proppants have allowed us to exploit these 

resources with ultralow permeability at a reasonable profit. However, there are still 

several factors that need to be considered in unconventional reservoirs to reduce 

the cost of production and remain competitive in the world energy market. For 



2 
 

example, gas condensate reservoirs show complex subsurface pressure, volume, 

and temperature (PVT) behavior, which results in difficult and often inaccurate 

production forecasting and reserve estimation. Gas condensate, initially a single-

phase gas, undergoes retrograde condensation in the reservoir below the dew 

point pressure. This behavior results in more complicated multiphase flow than in 

black oil and dry gas reservoirs. Furthermore, the retrograde condensate forms a 

condensate bank near the well and reduces the overall well productivity for both 

oil and gas. Similarly, volatile oil which initially is in a single phase oil, show 

multiphase flow below the bubble-point pressure.  

Historically, the commercial value of the liquefiable hydrocarbons extracted 

from North American natural gas has been greater than the commercial value of 

the thermal content that would be obtained if the entire production consisted of dry 

gas. When converted to barrels using BTU equivalence, liquid hydrocarbons (WTI, 

Brent Crude) are up to 6 times more valuable than natural gas. Even with the 

current deflated prices, BTU’s from liquid hydrocarbons are several times more 

valuable than BTU’s from gas. Historical data, falling rig counts and reduction in 

capital expenditures by major oil companies all point toward a future where the 

demand for oil is higher than present. Liquid rich shale (LRS) reservoirs present a 

very attractive source to support that demand. 

Figure 1 shows various shale oil and gas plays in the US as of 2011. The 

Eagle Ford in South Texas and the Bakken in North Dakota have changed the 

energy landscape of the world in last few years. The Eagle Ford Shale is one of 

the world’s fastest growing shale plays with more than 7 billion barrels of proved 
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light sweet crude oil according to United States Geological Survey (USGS, 2013). 

The formation has three distinct regions producing different hydrocarbon fluids 

ranging from dry gas in the southern region to black oil in the northern region of 

the play. The intermediate regions produce volatile oil, retrograde gas condensate 

and wet gas. Bakken, located in Williston Basin is the largest continuous oil 

accumulation ever accessed in the US (USGS, 2013). A survey in 2013 by USGS 

reported that the Bakken hold 7.4 billion barrels of oil, 6.7 TSCF of natural gas and 

0.53 barrels of natural gas liquids which are recoverable with the current 

technology. The formation’s remarkable production has helped North Dakota 

become the second-largest oil producing state, behind Texas (USGS, 2013). In 

the last several years extensive literatures have been published describing the 

geological properties of these shale plays.  

 

             Figure 1. Major shale plays in the US (EIA, 2013) 

There are five main types of hydrocarbon reservoirs, namely dry gas, wet 

gas, gas condensate, volatile oil and black oil. There are many differences among 



4 
 

them, in terms of properties and composition. The focus of this study IS liquid rich 

shale, namely gas condensate and volatile oil reservoirs which are mainly 

differentiated by the initial phase. A gas condensate consists predominantly of 

methane and other short chain hydrocarbons, but it also consists of long-chain 

hydrocarbons also called the heavy ends (C7+) in significant amount. The heavy 

ends ranges from 5% to 12.5 mol% and gas to oil ratio (GOR) varies from 3300 to 

50000 Scf/Stb in typical gas condensates. The stock tank oil gravity (°API) for a 

gas condensate ranges from 45 to 60. Volatile oils have heavy ends ranging from 

10 to 30 mol%, GOR from 900 to 3500 Scf/Stb and °API of around 42 to 55 

(McCain Jr., 1990). 

Pressure-temperature (PT) phase envelope for different kinds of reservoir 

fluids is shown in Figure 2.  Production of gas condensate and volatile oil fluids 

follow a complex trajectory. Initially, an under-saturated fluid is in single phase oil 

or gas, as the reservoir is depleted, secondary phase appears in the reservoir. For 

gas condensate fluids, retrograde condensation occurs causing liquid to drop out 

from the gas phase. For volatile oil reservoirs, considerable vaporization occurs 

below the bubble point pressure. In both cases, the secondary phase leads to a 

multiphase flow in the reservoir and the wellbore. This causes composition of the 

reservoir fluid to become progressively different from the initial fluid composition. 
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Figure 2. PVT diagram for different types of hydrocarbon fluids and their production 
trajectory (Corelabs, 2016) 

 Lee and Sidle (2011) concluded that reservoir simulation can be used as 

a reliable method for reserve estimation when verified with other methods like 

hindcasting and analogues. Compositional reservoir simulation is an effective 

method to simulate multiphase flow in liquid rich shale gas condensate and volatile 

oil reservoirs, as each individual component is tracked in this method. A 

compositional simulation, unlike the traditional black oil model, realistically 

captures changes in composition and liquid dropout below the saturation pressure. 

Type-curve and decline-curve analyses are other useful methods in estimating 

reserves.  
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 A decline curve fitting method presented by Arps (1945) is the most widely 

used method for both conventional and unconventional wells. This is an empirical 

method based on curve fitting and it is not based on fundamentals of fluid flow in 

porous media. For this method to be applicable, a reservoir should be in BDF with 

constant drainage area and constant flowing bottomhole pressure (BHP). 

Unconventional reservoirs exhibit long transient linear flow periods which could 

last for years because of their low matrix permeability (10-9 md<k<10-3 md). In 

extreme cases, the wells could still be in the transient linear flow regime when they 

reach their economic limits. For this period, the Arps decline model exponent, b, is 

significantly greater than 1 (2 for linear and 4 for bilinear flow) and keeps on 

changing throughout the life of the well. Usually, however, transient linear flow is 

followed by boundary dominated flow due to intra-fracture pressure interference, 

followed by a transition flow regime and finally by BDF influenced by the well’s 

drainage boundaries. 

 Due to the long transient-flow and limited production history, Arps model 

is not widely applicable to unconventional reservoirs with nano-darcy permeability. 

Several new decline curve models have been developed to estimate reserves in 

unconventional reservoirs with long transient flow. Ilk et al. (2008) introduced 

power-law decline curve to model the change in decline exponent with time. This 

model has four parameters (as opposed to three in hyperbolic decline model), 

which results in non-unique solution. Valko and Lee (2010) introduced the 

stretched exponential production decline (SEPD) model that changes from 

transient flow to boundary dominated flow smoothly. This model, although 
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applicable to transient flow, often delivers conservative estimate of the reserves in 

absence of limited field data. Duong (2011) developed a method based on linear 

flow in unconventional reservoirs. However this method usually overestimates the 

reserves if used without any modification as the reservoirs eventually enter 

boundary dominated flow. Other methods like modified stretched exponential 

production decline by Yu(2013) and  extended exponential decline model by Zhang 

et al., (2015) provide alternative methods for reserves forecasting and decline 

curve analysis for unconventional reservoirs. There is no general consensus 

among industry professionals on which methods is the most suitable one for 

forecasting unconventional oil and gas reservoirs. 

 Analytical and numerical methods are the primary means of reservoir 

study and production forecasting in the industry. These methods are widely 

understood and have worked well for many cases. Tools like decline curve analysis 

(DCA), straight-line methods, rigorous reservoir simulation, and history matching 

provide valuable insights to mitigate these risks and uncertainties. Additionally, in 

the past few years there has been a huge interest in data driven methods where 

production data from the existing wells are used to forecast the performance and 

production from the new wells. Each of these tools and others has its own utility 

depending on available information and resources, and each often provide 

complementary answers to the problem faced. Data driven methods like Principal 

Component Analysis (PCA) provides a good supplement to these tools and can be 

used in addition to the traditional methods to obtain a quick, yet reliable, result.  
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1.1 Problem Statements 

 This work addresses the following problem states for the liquid rich gas 

condensate reservoirs: 

1. Application of simple analytical model to forecast production from Liquid rich 

shale reservoirs: Liquid rich shale reservoirs with multiphase flow are described by 

complex non-linear partial differential equations. The objective is to use simplified 

trilinear flow formulation to analyze simple block reservoir and compare it with 

compositional reservoir simulation.  

2. Statistical study of reservoir parameters: The objective is to perform statistical 

analysis of liquid rich shale reservoirs to understand how the completion and 

reservoir parameters interact with each other, and to identify the optimal number 

of fractures and wells in a field.  

3. Application of decline curve models to forecast liquid rich shale reservoirs: The 

objective is to evaluate the use of decline curve analysis for liquid rich shale 

reservoirs and identify their effectiveness in production forecasting.  

4. Application of data driven analysis for production forecasting: The objective is 

to develop a simple yet intuitive tool that employs the existing production data from 

wells, completion parameters to make decisions on planning new wells in liquid 

rich shale plays. 

1.2 Contributions and Dissertation Outline 

 The first part of the dissertation (Chapter 2) explores the application of 

analytical methods for liquid rich shale reservoirs with multiphase flow. Diffusivity 
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model for multiphase flow is analyzed, and simplified analytical model is derived 

which matches well with compositional reservoir simulation in spite of few 

limitations. The advantage of using such model is illustrated by comparing the 

runtime with complex reservoir simulation. 

 The second part of the dissertation (Chapter 3 and Chapter 4) is focused 

on the application of statistical methods, Design of Experiments (DOE) and 

Response Surface Modeling (RSM), to identify the parameters that affect the 

production of oil and gas condensate reservoirs. This provides an insight on how 

each parameter affects the production performance of liquid rich shale reservoirs. 

Furthermore, the problem of optimal well-spacing is analyzed by using a workflow 

which can be used for similar problems in different plays. 

 In Chapter 5, several decline curve analysis methods are evaluated to 

generate a workflow for optimal use of decline curve analysis for production 

forecasting. The transitional period between the linear flow and the boundary 

dominated flow is identified to have a significant effect on production forecasting 

of liquid rich shale reservoirs. 

 Chapter 6 is focused on production data analysis by using data driven 

methods. We use principal component analysis (PCA) and multivariate regression 

to perform production forecasting from liquid rich shale reservoirs. Production data 

from new wells are forecasted by using regression when reservoir parameters are 

available by creating a proxy model. When reservoir parameters are not available, 

least sum of squares is used to estimate the well specific principal component 

scores. 
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Chapter 7 includes the conclusions and recommendations for future work. 

2. Analytical models for liquid rich shale reservoirs 

 Diffusivity equation for a slightly compressible liquid in a homogenous 

reservoir is  

 ∇2𝑝 =
µ𝜑𝑐𝑡

𝑘

𝜕𝑝

𝜕𝑡
, (2.1) 

where p is pressure (psia), μ (cp) is viscosity, φ is porosity,  ct (psi-1)is total 

compressibility, k(md) is permeability, and t(days) is time. 

This can be extended to multiphase flow (in terms of surface volume) as follows  

 ∇. [(
𝑘𝑟𝑔

𝜇𝑔𝐵𝑔
+

𝑅𝑠𝑘𝑟𝑜

𝜇𝑜𝐵𝑂
) ∇𝑝] =

𝜑

𝑘

𝜕

𝜕𝑡
(

𝑆𝑔

𝐵𝑔
+

𝑅𝑠𝑆𝑜

𝐵𝑂
)  𝑎𝑛𝑑 (2.2) 

 ∇. [(
𝑘𝑟𝑂

𝜇𝑂𝐵𝑂
+

𝑅𝑉𝑘𝑟𝑔

𝜇𝑔𝐵𝑔
) ∇𝑝] =

𝜑

𝑘

𝜕

𝜕𝑡
(

𝑆𝑜

𝐵𝑜
+

𝑅𝑣𝑆𝑔

𝐵𝑔
) , (2.3) 

where krg and kro are gas relative permeability and oil relative permeability, Rs and 

Rv are solution gas oil ratio (Scf/Stb) and oil gas ratio (Stb/Scf), Bg and Bo are gas 

formation volume factor (RB/Scf) and  oil formation volume factor (RB/Stb), Sg and 

So are gas saturation and oil saturation. 

 The equations above represent the non-linear partial differential 

equations, as the terms within the braces are function of both pressure and 

saturation. 

 The single phase diffusivity equation has been solved analytically (Brown 

et al., 2009), assuming a trilinear flow formulation. It is assumed that the flow in 

the reservoir can be divided into three regions, inner reservoir, outer reservoir, and 

hydraulic fracture as shown in Figure 3. This was further expanded (Stalgorova et 
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al., 2013) to five region model where inner and outer reservoir was further 

subdivided into 2 regions with respective rock and fluid properties. In both of these 

cases, the model generated was tested for single phase flow. In this work, we 

expand this model with simplified assumptions to forecast multiphase flow in liquid 

rich shale reservoirs with multiphase flow. 

2.1 Application of trilinear flow model to a multiphase flow 

 A homogeneous bounded reservoir with uniformly spaced hydraulic 

fractures is considered as shown in the Figure 3. The notations used in chapters 

are based on Brown et al. The trilinear flow model considers three regions the inner 

reservoir, the outer reservoir and the hydraulic fractures. Only one fracture is 

modeled as all the fractures are assumed to be identical and uniformly spaced. 

The drainage area for each fracture is 2xe by 2ye, where xe is the well spacing (or 

reservoir width), ye is the half distance between the fractures and xf the fracture 

half length. 

The dimensionless time is defined as 

 𝑡𝐷 = 0.000264
𝑘𝑡

𝜙𝜇𝑜𝑖𝑐𝑡𝑖𝑥2
𝑓
 .  

(2.4) 

For single phase flow, Brown et al. (2009) defined dimensionless pressure (pd) for 

oil as 

 𝑝𝐷 =
𝑘1ℎ

141.2𝑞𝐹𝐵𝑜𝜇
(𝑝𝑖 − 𝑝).  (2.5) 

 

For gas reservoirs, fluid properties are dependent on reservoir pressure and 

temperature, so pseudo-pressure formulation is 
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 𝑝𝐷 =
𝑘1ℎ

141.2𝑞𝐹𝑇
(𝑚(𝑝𝑖) − 𝑚(𝑝)), (2.6) 

where T is reservoir temperature (°R) AND m(p) (psi2/cp) is pseudo-pressure 

defined as  

 m(p)  =  gas pseudopressure = 2 ∫
𝑝𝑑𝑝

µ(p)𝑍(𝑝)

𝑝

0
 . (2.7) 

Analogous to a single phase formulation, three phase dimensionless pressure is 

defined as  

 𝑝𝐷 = 𝜆𝑡
𝑘ℎ(𝑝𝑖−𝑝)

141.2(𝑞𝑜𝐵0+𝑞𝑔𝐵𝑔+𝑅𝑤𝐵𝑤)
  . 

(2.8) 

where λt (md/cp) is the total mobility defined as the sum of oil, water, and gas 

mobility given as 

 𝜆𝑡 = (
𝑘𝑟𝑜

𝜇𝑜
+

𝑘𝑟𝑔

𝜇𝑔
+

𝑘𝑟𝑤

𝜇𝑤
) . (2.9) 

 At this point, initial water saturation is assumed to be irreducible to simplify 

the calculations. This reduces this three phase flow problem to two phase flow 

problem. This assumption is made to simplify the spreadsheet/calculation code 

and can be relaxed depending on the reservoir conditions in future work.  

The dimensionless lengths are defined as 

 𝑥𝐷 =
𝑥

𝑥𝑓
 𝑎𝑛𝑑 

(2.10) 

 𝑦𝐷 =
𝑦

𝑥𝑓
 . 

(2.11) 
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 Figure 3. Schematic for trilinear flow, where a reservoir is divided into three flow 
regions 

 Derivation for the dimensionless wellbore pressure in Laplace domain, 

given (Brown, 2009) as 

 𝑝𝑤𝑑 =
𝜋

𝐹𝐶𝐷𝑠√𝛼𝐹tanh (√𝛼𝐹
+

𝑠𝑐

𝑠
 , 

(2.12) 

 

where Fcd is the dimensionless fracture conductivity defined as  

 𝐹𝐶𝐷 =
𝑘𝑓𝑤𝑓

𝑘 𝑥𝑓
 , (2.13) 

where kf (md) and wf (ft) represent the fracture permeability, and fracture width. 

The term sc accounts for radial convergence of flow toward the wellbore within the 

hydraulic fracture (Brown et al., 2009) and is termed as  

 𝑆𝑐 =
𝑘ℎ

𝑘𝑓 𝑤𝑓
[ln (

ℎ

2𝑟𝑤
−

𝜋

2
)] , (2.14) 
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where h(ft) is the thickness of the reservoir, rw(ft) is the wellbore radius. The 

parameter αF is  

 𝛼𝐹 = 2
𝛽𝐹

𝐶𝐹𝐷
+

𝑠

𝜂𝐹𝐷
 , (2.15) 

where ηFD is the dimensionless diffusivity is 

 ηFD =
𝜂𝐹

𝜂𝐼
 , 

(2.16) 

 ηF = 2.637×10−4 𝑘𝐹

(𝜙𝑐𝑡)𝐹𝜇
 and (2.17) 

 ηI = 2.637×10−4 𝑘𝐼

(𝜙𝑐𝑡)𝐼𝜇
, (2.18) 

where β is defined as 

 𝛽𝐹 =  √𝛼0tanh (√𝛼0(𝑦𝑒𝐷 −
𝑤𝐷

2
), (2.19) 

where yeD and wD are the dimensionless inter-fracture spacing and fracture width 

respectively. Constant α0 is defined as 

 𝛼0 =
𝛽0

𝐶𝑅𝐷𝑦𝑒𝐷
+ 𝑠, (2.20) 

where β0 and CRD are defined  

 𝛽0 =  √𝑠 + tanh (√𝑠(𝑥𝑒𝐷 − 1)) and (2.21) 

 𝐶𝑅𝐷 =
𝑋𝑓

𝑦𝑒
. (2.22) 

 These expressions assume a homogeneous reservoir with no natural 

fractures. The dual porosity case is given by Brown et al. (2009), requires further 

dual porosity parameters. 

 The dimensionless wellbore pressure in Laplace domain is numerically 

inverted by using Gaver-Stehfast algorithm. Oil production rate is calculated by 

using the previously defined dimensionless variable for pressure as  
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 𝑞𝑜 = 𝑛𝑓 (
𝑘𝑟𝑜

𝜇𝑜
+

𝑘𝑟𝑔

𝜇𝑔
)

𝑘ℎ(𝑝𝑖−𝑝𝑤𝑓)

141.2(𝐵𝑂+𝑅𝑔𝐵𝑔)
. (2.23) 

 The constants nf and pwf represents the number of fractures and wellbore 

pressure respectively. The gas rate is estimated by using  

 𝑞𝑔 = 𝑅𝑔𝑞𝑜, (2.24) 

where Rg is producing gas-oil ratio defined as 

 𝑅𝑔 = 𝑅𝑠𝑜 +
𝜆𝑔𝐵𝑜

𝜆𝑜𝐵𝑔
. (2.25) 

where Rso is the solution gas-oil ratio(Mscf/Stb). 

 The equations above can be used to calculate the oil, water and gas rate 

from a liquid rich shale reservoir in presence of reservoir and fluid properties. 

These properties are functions of reservoir pressure and temperature. For 

simplicity, in this work it is assumed that the reservoir permeability and porosity 

are constant (pressure independent). Moreover, it is also assumed that the initial 

reservoir water saturation is irreducible. PVT properties including formation volume 

factors, fluid viscosities, which are pressure dependent, are calculated in 

laboratory. For this work, a PVT software, CMG-Winprop is used to calculate these 

“modified-black oil” properties by using a fluid compositions of Liquid Rich Shale 

samples. Two phase relative-permeability curves are calculated by using Corey’s 

exponents. Pressure saturation relationship is required to calculate relative 

permeability curves and PVT properties as the reservoir is depleted with time. For 

this reason, a simple tank model is used to model depletion from the reservoir. 

Initially only oil is assumed to be present in the reservoir and the reservoir pressure 

is assumed to be above the saturation pressure. Rock and liquid expansion drive 

is assumed above the bubble point pressure and depletion drive mechanism is 
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assumed below the bubble point pressure. Above the bubble point, single phase 

flow is seen, below the bubble point both oil and gas flow to the wellbore. 

The compressibility coefficient c which explains the change in volume due to 

changing pressure is given as 

 𝑐 = −
1

𝑉

𝑑𝑉

𝑑𝑝
, (2.26) 

where c is compressibility, V is rock volume dependent on pressure. 

Rock pore volume can be calculated by modifying Equation 2.26 as 

 𝑉 = 𝑉𝑖exp (−𝑐𝑟(𝑝𝑖 − 𝑝𝑎)). (2.27) 

The incremental oil produced from the reservoir with dp drop in pressure is given 

as 

 𝑑𝑁𝑝 =
𝑉𝑐𝑡𝑑𝑝

𝐵𝑂
, (2.28) 

where ct is the total compressibility given by the sum of rock and water 

compressibility.  

  For liquid rich shale, the oil saturation keeps on changing as the 

reservoir is depleted. Hence, ideally distance of investigation should be used to 

identify the region of influence and calculate the saturation in the discretized 

reservoir. We assume that the oil saturation remains constant till the average 

reservoir pressure falls below the saturation pressure. This is only valid till reservoir 

reaches the saturation pressure, after which we see the evolution of the second 

phase (gas phase). Below the bubble point the oil saturation pressure relationship 

is assumed to follow the solution-gas drive model (Muscat, 1981, Shojaei et al., 

2013) as 
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𝑑𝑆𝑜

𝑑𝑝
=

𝑆𝑜𝐵𝑔

𝐵𝑜

𝑑𝑅𝑠𝑜
𝑑𝑝

+𝑆𝑜
𝑘𝑟𝑔𝜇𝑜

𝑘𝑟𝑜𝜇𝑔

1

𝐵𝑜

𝑑𝐵𝑜
𝑑𝑝

−𝑆𝑔
1

𝐵𝑔

𝑑𝐵𝑔

𝑑𝑝

1+
𝑘𝑟𝑔𝜇𝑜

𝑘𝑟𝑜𝜇𝑔

. (2.29) 

The incremental oil production below the bubble point pressure is calculated by 

 𝑑𝑁𝑝 =

𝑑𝑆𝑜
𝑑𝑝

𝑑𝑝𝑉

𝐵𝑜
 . (2.30) 

 

The incremental gas production is calculated by 

 𝑑𝐺𝑝 = 𝑅𝑔𝑑𝑁𝑝. (2.31) 

 If we assume the rate obtained from the analytical model (Equation 2.23) 

is identical to the one obtained from material balance equations (Equation 2.29 

and 2.30) , oil rate is defined as  

 𝑞𝑂 =
𝑑𝑁𝑝

𝑑𝑡
. (2.32) 

Based on Equations 2.1 through 2.32, production of liquid rich volatile oil reservoirs 

for both oil and gas was calculated which is explained below. 

2.2 Verification of Proposed Approach  

 The proposed analytical model was compared to the compositional 

numerical simulation by using the commercial reservoir simulator CMG-GEM. 

Composition and other properties of the samples are listed in Table 1 below 

(Whitson et al., 2012). 
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 Figure 4. PT diagram for two sample reservoir fluids 

 Compositions of sample 1 and 2 are shown in Table 1. Each fluid consists 

of significant amount of light hydrocarbons including methane which leads to a high 

degree of shrinkage. The initial solution GOR is calculated from a separator test at 

the pressure of 400 psia and temperature of 100 °F. The PT diagram for samples 
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Table 1.Reservoir fluid properties and composition 

 Sample 1 Sample 2 Composition Sample 1 Sample 2 

Temperature (°F) 250 250 CO2 1.95 1.51 

Saturation psia 3800 2560 N2 0.13 0.1 

OGR, STB/MMScf 1000 2000 C1 48.85 37.89 

GOR, Scf/STB 1000 500 C2 6.25 4.85 

° API 40 37.7 C3 3.5 2.71 

C7+ Mol Wt 195 216 I-C4 0.81 0.62 

C7+ Mol% 34.88 49.49 N-C4 1.37 1.07 

SG C7+ 0.81 0.82 I-C5 0.63 0.49 

   N-C5 0.68 0.52 

   C6 0.96 0.74 

   C7+ 34.88 49.49 
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1 and 2 are shown in Figure 4. For the reservoir temperature of 250 °F, each 

sample is initially assumed to be single phase liquid. Figure 

 5 shows that when the reservoir pressure drops below the saturation pressure, 

secondary gas phase is seen in the reservoir. 

 

 Figure 5. Phase saturation with pressure (Saturation pressure marked)  

 To use the analytical equations derived above, pressure dependent black 

oil PVT properties are required for each fluid. Gas formation volume factor (Bg), oil 

formation volume factor (Bo), gas viscosity (μg), oil viscosity (μo) and solution gas-

oil ratio (Rs) was calculated by using the flash calculation (Whitson and Torp 1983). 

Properties above original saturation pressure were extrapolated based on linear 

relationship between Rs and Bo. The black oil properties for Sample 1 is given in 

Figures 6 through 8. 
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 Figure 6. Bo and Rs for Sample 1 

 

 Figure 7. Bg(Gas FVF) and Rv(CGR) for Sample 1 
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 Figure 8. Oil and gas viscosity (cp) 

 The reservoir, well and fracture properties for analytical and numerical 

model are presented in Table 2:  

 

 

Table 2 Reservoir properties for numerical and analytical simulation 

Reservoir Properties Value Units 

Matrix Permeability 500 nd 

Porosity 7 % 

Initial Pressure 5800 psia 

Minimum BHP 1000 psia 

Temperature 250 °F 

Initial Water Saturation 0.22  

Initial Oil Saturation 0.78  

Well Radius 0.365 ft 

Well Spacing (xe) 1320 ft 

Thickness(h) 45 ft 

Fracture Spacing (ye) 264 ft 

Fracture Half Length (xf) 150 ft 

Fracture Conductivity 200 md.ft 
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For both numerical and analytical model, relative permeability curves are required 

to account for multiphase flow below the saturation pressure. Since water 

saturation is assumed to be constant (irreducible water), matrix permeability is 

used when the reservoir is above the saturation pressure. Below the saturation 

pressure, gas-oil relative permeability curves are used to account for multiphase 

flow of oil and gas. The water-oil relative permeability curve shown in Figure 9 

should be used for cases with initial saturation greater than critical water 

saturation.  The two phase relative permeability curves were calculated by using 

Corey’s exponents from Shojaei et al. (2013) as shown in Figure 9 and Figure 10. 

This work only accounts for two-phase flow, however three phase relative involving 

additional water phase can be calculated by three-phase relative permeability 

curve generated from Stone’s model(Stone 1970 ; Stone 1973). 

 

 Figure 9. Water-Oil relative permeability curve  
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 Figure 10. Gas-Oil relative permeability curve  

 The analytical model and the numerical model were prepared in Matlab 

and CMG-GEM respectively. For numerical model, Peng-Robinson equation of 

state (Peng and Robinson, 1976) was used to generate the equation of state 

(EOS) parameters. The EOS parameters were tuned to match the reported 

saturation pressure, GOR and API. The reservoir simulation grid-blocks were 

logarithmically refined around the fractures to capture the rapid change in 

saturation and pressure around the region. Results of both analytical and 

numerical simulation are shown in Figure 11 through Figure 14. 
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 Figure 11. Comparison of cumulative oil calculated from analytical and numerical 
methods for Sample 1 

 

 Figure 12. Comparison of cumulative gas calculated from analytical and numerical 
methods for Sample 1 
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 Figure 13. Comparison of cumulative oil calculated from analytical and numerical 
methods for Sample 2 

 

 Figure 14. Comparison of cumulative gas calculated from analytical and numerical 
methods for Sample 2 
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a good agreement with the numerical solutions. For cumulative oil, the difference 
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7.4% for sample 1 and sample 2 respectively. The average oil and gas saturation 
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also show a good match for each samples. The average reservoir pressure at the 

end of the production for each sample was comparable at around 3500 psia.  

 

 Figure 15. Oil saturation with time for analytical and numerical calculation 

 

 Figure 16. Gas Saturation for analytical and numerical calculation  
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7.4% for sample 1 and sample 2 respectively. The average oil and gas saturation 

also show a good match for each sample. Results show that this simplified 

modification of tri-linear flow formulation yields a comparable result to numerical 

simulation. Numerical simulations are significantly more complex, time consuming, 

and resource intensive. For this work, the analytical models yielded results in the 

matter of seconds. Numerical models, however required up to 15 minutes for 

completion.  The choice of model for a certain analysis should be made based on 

tradeoff between accuracy and simplicity. 

2.3 Conclusions 

 The presented simplified analytical method provides a quick yet efficient 

method for estimating the production from liquid rich shale reservoirs initially in 

liquid phase. The results highlight that the trilinear flow solution can be adapted to 

forecast production from liquid rich shale reservoirs. 

In this work, we have modified the trilinear flow solution for single phase flow and 

used it to forecast production from liquid rich shale reservoirs. This method was 

verified to be quick and reasonably accurate compared to compositional reservoir 

simulation. This method needs to be modified by using pseudo-pressure and 

pseudo-time for reservoirs initially in gas phase to account for pressure 

dependence of gas viscosity.  
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3. Statistical study of reservoir and completion parameters in 

liquid rich shale 

Production from unconventional liquid rich shale reservoirs is quite different 

compared to conventional reservoirs due to their complex PVT properties and 

heterogeneous rock properties. This brings uncertainties when analyzing the 

production performance of a liquid rich shale reservoir. The goal of this chapter is 

to identify various factors that affect the production of oil and gas from Liquid Rich 

Shale (LRS) gas condensate reservoirs, using the extensive public data base of 

reservoir properties, fluid properties, completions, etc., to identify the parameters 

that affect production performance from liquid rich shale reservoirs. 

3.1 Base Case 

Compositional reservoir simulation is an effective method to simulate multiphase 

flow in retrograde condensate reservoirs, especially in early stages of field 

developments. A compositional simulation, unlike the traditional black oil model, 

realistically captures changes in composition and liquid dropout below the 

saturation pressure.  In this work, CMG-GEM, a compositional simulator provided 

to us by Computer Modelling Group, was used to model a single porosity and 

permeability reservoir with multiple hydraulic fractures and fluid flow in geology 

similar to the Eagle Ford Shale in South Texas. Hydraulic fractures are modeled 

by using logarithmically-spaced local grid refinement (LS-LGR), which captures 

the flow of fluid and change in pressure in the near-fracture region. 
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For the base case, a 640 acres reservoir with 4 horizontal wells and 20 stages of 

bi-wing hydraulic fractures was considered. Hence, the well spacing and the 

fracture spacing for the base case is 160 acres/well and 8 acres/fracture 

respectively. A symmetric element with dimensions of 1320 ft., 264 ft. and 200 ft. 

for length, breadth and thickness respectively was simulated to reduce the 

computational time.  As shown in Figure 17, all fractures are assumed to be 

identical in dimensions and properties. TVD for each well was assumed to be 

12,000 ft. Dimensionless fracture conductivity of greater than 300 was used for 

each case to ensure negligible pressure drop in hydraulic fractures. The fracture 

width was set as 2 ft for the simulation, but keeping the same fracture conductivity 

in the computations. Dimensionless fracture conductivity is defined as  

  𝐹𝐶𝐷 =
𝑤𝐹×𝑘𝐹

𝑥𝐹×𝑘𝑀𝑎𝑡𝑟𝑖𝑥
. (3.1) 

 Initial reservoir pressure was calculated by using a pressure gradient of 0.80psi/ft. 

Similarly, reservoir temperature was calculated by assuming a temperature 

gradient of 0.016 °F/ft added to the assumed surface temperature of 60°F. So, at 

a depth of 12,500 ft, initial reservoir pressure is 9500 psia and is significantly higher 

than the bubble point pressure. Reservoir permeability and fracture half-length 

were obtained by conducting a history match on production data from a well in the 

Eagle Ford. The rate history along with the tubing head pressure (THP) for the well 

in the Eagle Ford condensate region was available for 678 days. THP was 

converted to bottomhole pressure using Gray’s correlation for multiphase flow 

(Gray, 1978). The average producing CGR for the entire production period was 

156 STB/MMScf with several fluctuations during the production period. A plausible 
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Eagle Ford composition with CGR of 150 STB/MMscf was selected and was tuned 

to match the predicted liquid API (47.5°), saturation pressure(4729 psia) and CGR 

(150 STB/MMScf) to the field observed data by using Peng-Robinson Equation of 

State (EOS). Matrix porosity and permeability is homogeneous in each layer. Table 

3 lists some of the parameters for the reservoir. 

Table 3. Reservoir properties for base case simulation 

Properties Value Unit 

Initial Reservoir Pressure 9500 psi 
Reservoir Permeability 562.5  nd 
Reservoir Temperature 250 °F 

Reservoir Porosity 7 % 
Initial Water Saturation 20 % 
Total Compressibility 1x10-6 psi-1 

Horizontal Well Length(Simulated) 5,280 (210)  ft 
Well Spacing(Number of Wells) 1,320 (4) ft 

Fracture Half Length 265 ft 
Number of Fractures 20 - 

Minimum Bottomhole Pressure 1000 psia 

 

 

 Figure 17. Schematic for base case reservoir simulation and symmetrical element 

  The rate and pressure history matches are shown in Figures 18 through 

20: 
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 Figure 18. Gas history match for Eagle Ford Shale 

 

 Figure 19. Oil history match for Eagle Ford Shale 
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 Figure 20. Pressure history match for Eagle Ford Shale 

Peng Robinson EOS parameters for the base fluid sample are given in Table 4: 

Table 4. Peng-Robinson EOS parameters for the base case fluid sample 

 
 The EOS parameters were generated for each of 5 fluid samples with 

different CGR. These parameters were then used to generate the pressure 
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Comp. Mole Frac. Pc (atm) Tc (K) 
Molecular 

Wt. 
Acentric 
Factor 

CO2 0.027 72.80 304.20 44.01 0.23 

N2 0.002 33.50 126.20 28.01 0.04 

CH4 0.679 45.40 190.60 16.04 0.01 

C2H6 0.087 48.20 305.40 30.07 0.10 

C3H8 0.049 41.90 369.80 44.10 0.15 

IC4 0.011 36.00 408.10 58.12 0.18 

NC4 0.019 37.50 425.20 58.12 0.19 

IC5 0.009 33.40 460.40 72.15 0.23 

NC5 0.009 33.30 469.60 72.15 0.25 

FC6 0.013 32.46 507.50 86.00 0.28 

C07-C09 0.046 28.62 567.08 108.40 0.31 

C10-C12 0.024 22.67 642.89 150.48 0.43 

C13-C14 0.009 19.48 693.67 186.83 0.52 

C15-C17 0.008 17.36 733.17 220.61 0.60 

C18+ 0.008 13.91 814.23 307.29 0.79 
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temperature (PT) phase diagrams and the liquid dropout curves from two-phase 

flash calculations for each case as shown in Figures 21 and 22.  

 

 Figure 21. Pressure-Temperature (PT) diagram for sample fluids 

 

 Figure 22. Liquid dropout curve for  

 Separate sets of relative permeability curves were used for the matrix and 

hydraulic fractures. Endpoints and Corey exponents for the following curves 

(Figure 23) were obtained from the literature (Nagarajan, 2013). 
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 Figure 23. Relative permeability curves 

3.2 Base Case Results 

 After history matching and parameter identification, the model was run in 

the prediction mode with the minimum bottomhole pressure constraint of 1000 psia 

for 30 years. The evolution of pressure with time for the sample with CGR of 150 

STB/MMScf is shown in Figure 24: 

 

 Figure 24. Evolution of pressure with depletion 
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As shown in Figure 24, pressure drops rapidly close to the fractures. The reservoir 

pressure outside of the SRV remains unaffected for up to 5 years. After 10 years 

of production, there is a slight drop in pressure: pressure at the outer boundary 

decreases to 8000 psia, compared to 1000 psia inside the SRV. After 20 years of 

production, the SRV seems to be completely depleted with a pressure of 1000 psia 

throughout. Similar trends were seen for all other fluid samples.  

 Figures 25 and 26 show the cumulative oil and gas production for each of 

the reservoir fluids. It can be seen that the oil production increases with increase 

in initial CGR, with 150 STB/MMScf yielding the maximum oil production. For the 

given relative permeability curves, the critical saturation of liquid for any flow in 

presence of gas is close to 75%. For the fluids with CGR 30 through 100, this 

critical saturation is not reached for majority of the grid blocks resulting in a 

condensate bank formation and trapped oil. The cumulative gas production curves 

show that maximum gas is produced from the leanest reservoir fluid. It is 

interesting to see that the fluid with intermediate CGR (100 STB/MMScf) has both 

oil and gas production greatly hindered due to liquid dropout and reduced 

permeability for gas.  



36 
 

 

 Figure 25. Cumulative gas production for each fluid samples 

 

 Figure 26. Cumulative oil production for each fluid samples 

 The oil saturation of a fracture grid and a SRV grid for three samples are 

shown in Figure 27. It can be seen that the oil saturation declines slowly in the 

fractures after a steep increase at the beginning of production. For a grid in a non-

fractured region, the oil saturation is seen only after a significant period of 
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production. The rich condensate sample shows high oil saturation for both fracture 

and matrix. Oil saturation outside of SRV remains negligible for the entire 

production period. 

 

 Figure 27.Oil saturation in fractures and matrix during production 

3.3 Statistical Study 

The production behavior and recovery of oil and gas from a low permeability 

gas condensate reservoir is a function of the rock, fluid and hydraulic fracture 

properties. Several parameters can affect the production, and most of these 

parameters have coupled effects in which one parameter could influence the 

impact of other parameters. The parameters studied in this work are explained 

briefly below. 
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Fracture Spacing 

 Fracture spacing, which determines the number of fractures, is a key 

parameter in a low permeability reservoir. The number of hydraulic fractures 

establishes the connected fracture surface area of the reservoir and is directly 

related to the production rate. Closer fracture spacing means more fracture stages 

and increased completion cost per well; however, it also results in greater 

cumulative oil and gas production. 

Fracture Half-length 

In shale reservoirs, fracture length and height determine the drainage 

volume of the reservoir. Most of the production, especially during the early life of 

the reservoir, comes from stimulated reservoir volume (SRV). This is contrary to 

conventional reservoirs where production is controlled mostly by well spacing. 

Since the ultimate oil and gas recovery in unconventional reservoirs is directly 

related to the SRV, fracture half-length is an important completion parameter. 

Matrix Permeability 

Matrix permeability determines the ability of hydrocarbons to flow into the 

fractures and thus to the wellbore. Permeability in unconventional reservoir range 

have high degree of uncertainty due to heterogeneities. As a result, understanding 

of reservoir permeability in these low permeability reservoirs is very important. 

Fracture Conductivity 

Fracture conductivity determines the ability of produced fluid to flow from 

fracture to wellbore. The problems of fracture embedment and multiphase flow can 

reduce the fracture conductivity and dimensionless conductivity to a value an order 
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of magnitude lower than the values determined in the lab. Fracture conductivity in 

this study was varied by changing the fracture permeability when all other 

parameters are kept constant. 

Minimum BHP and Maximum gas rate 

For gas condensate wells, the way the well is produced plays a vital role in 

liquid dropout behavior. A high maximum gas rate and low minimum BHP pressure 

yields a high cumulative EUR for gas; however, liquid dropout is increased. Higher 

drawdown drops the pressure in the reservoir below the dew point more quickly 

and the resulting liquid dropout can adversely affect the production. The Eagle 

Ford shale is over-pressured and most of the liquid-rich areas have initial 

pressures above the saturation pressure. 

Well Placement  

Well placement is another important parameter influencing the productivity 

of liquid rich shale wells. This requires a more detailed explanation, and is 

presented in a separate chapter. 

Parameter Bounds 

There is a large variability in each of the parameters depending on the 

regions within each play. The range of parameters was selected by choosing 

representative values from the literature (Orangi, 2011; Gong, 2013; Elamin, 2013; 

Nagarajan, 2013; Kumar, 2013). 52 one-parameter-at-a-time experiments 

(OPAAT) were conducted for each parameter. To confirm with the history match 

and to maintain simplicity, the reservoir fluid with an initial CGR of 150 STB/MMScf 
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 Figure 28. One parameter at a time sensitivity plot for cumulative gas 

was used for each case. The range of values used for the experiments are listed 

in Table 5. 

Table 5 Parameter bounds selected for sensitivity study 

Factor Units Minimum Maximum 

Fracture Spacing ft 80 (66 fracs) 500 (11 fracs)  
Fracture Half-Length ft 100 450 
Matrix Permeability md 1e-3 1e-2 

Fracture Conductivity md 1,000 15,000 
Minimum BHP psia 750 2,000 

Gas Rate ft3/d 1,000,000 9,000,000 
Matrix Porosity fraction 0.06 0.1 

3.4 Results  

The cumulative oil and cumulative gas after 30 years of production for the 

mean case (average of minimum and maximum parameters) was 238 MSTB and 

8,600 MMScf respectively. The effect on the cumulative oil and gas when one 

parameter at a time is changed is shown in Figure 28. 
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 The tornado plot above shows that the fracture half-length is the most 

important parameter that affects the ultimate gas production, followed by matrix 

permeability. This result further indicates that the production of oil and gas from a 

liquid rich shale depends on the size of SRV (stimulated reservoir volume) and 

matrix permeability. Closer fracture spacing results in higher cumulative gas 

production due to the higher number of fractures. However, Figure 28 shows that 

the cumulative gas production does not increase proportionately from the mean 

value for the minimum fracture spacing case. This indicates that there is fracture 

interference which results in less than optimal return on investment. It can also be 

seen that maximum gas rate and fracture permeability have a relatively low impact 

on final cumulative gas production. This is because for the mean values of 

parameters, the reservoir is drained to the maximum extent possible in 30 years. 

Thus, these factors only affect the initial rate of production but not the final 

cumulative production from the reservoir. 

 Similarly, Figure 29 shows that fracture half-length is again the most 

important parameter for cumulative oil production followed by fracture spacing. 

However, unlike cumulative gas production, maximum gas rate has a significant 

impact on the final cumulative oil production from a reservoir. Figure 29 also shows 

that a lower rate of production results in higher cumulative oil production. This is 

because lower production rates result in sustained single-phase flow and lower 

overall liquid dropout. This can also be seen from the result of minimum bottom-

hole pressure, where higher minimum bottom-hole pressure results in higher 

cumulative oil production contrary to cumulative gas production case. Finally, 
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 Figure 29. One parameter at a time sensitivity plot for cumulative oil 

increased fracture conductivity results in rapid pressure loss and more liquid 

dropout resulting in lower cumulative oil production. Porosity, which determines 

the overall hydrocarbon in place, shows a linear impact on both cumulative oil and 

gas production.  

 

 

 

 

 

 

 

 

 

 

3.5 Study of Combined Effects 

 The simulations involving OPAAT showed that there is a correlation of 

cumulative production from a reservoir with the reservoir and completion 

properties. Design of experiment (DOE) and response surface modeling (RSM) 

was used in addition to reservoir simulation to find this correlation. Response 

surface methodology (RSM) explores the relationships between input variables 

(parameters) and responses (objective functions). A set of designed experiments 

is used to build a proxy model (approximation) of the reservoir objective function. 

The most common proxy models take either a linear or quadratic form (CMOST, 
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2013). More details on theory of DOE and RSM can be found in Box et al. (2005) 

and Myers and Montgomery (2002).  

 For analysis, a set of random experiments (49 in total) were generated by 

varying the parameters within the bounds specified above. A proxy model was 

created by using polynomial regression and significance probability alpha of 0.05. 

A statistically significant result is obtained when global p-value is less than the 

significance level. The p-value is the probability of obtaining at least as extreme 

results given that the null hypothesis is true whereas the significance or alpha level 

is the probability of rejecting the null hypothesis given that it is true (Schlotzhauer 

and Sandra, 2007). Figures 31 and 32 show that the proxy model created from 

RSM is very accurate in predicting the final cumulative oil and gas production as 

shown by all the data points lying close to the 45° line. The R-square value for 

cumulative gas and cumulative oil was 0.97 and 0.98 respectively suggesting a 

good match. ANOVA test showed that Probability > F is less than 0.00001 for both 

cases suggesting the presence of significant effects. 

All of the insignificant parameters, whose coefficients are most likely zero, 

were removed by using the t-statistic from regression analysis. 

Following this step, tornado plots were prepared for both cumulative gas and 

cumulative oil by removing the insignificant terms. Figures 33 and 34 show that 

fracture half-length is the most significant parameter for both cumulative gas 

production and cumulative oil production. For cumulative gas production, no 

interactions seem to have significant effect on the final result. However, for 

cumulative oil, fracture half-length, fracture spacing and maximum gas rate interact 
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with each other and have a combined effect on the final result. These interaction 

effects are more important than some of the independent parameters like matrix 

permeability in their impact on cumulative oil production. 

 

 Figure 31. Verification for cumulative gas from proxy model 

 

 Figure 32. Verification for cumulative oil from proxy model 
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 Figure 33. Sensitivity analysis to study the interaction of parameters with each other 

 

 

 Figure 34. Sensitivity analysis to study the interaction of parameters  

The equations generated from response surface modelling (RSM) and their 

coefficients are: 
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𝑪𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒗𝒆_𝑮𝒂𝒔 = 3.6𝐸09 + 1.8𝐸07 ∗ 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒_𝐻𝑎𝑙𝑓𝐿𝑒𝑛𝑔𝑡ℎ − 7.8𝐸06 ∗ 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒_𝑆𝑝𝑎𝑐𝑖𝑛𝑔 −

1.7𝐸06 ∗ 𝑀𝑖𝑛𝐵𝐻𝑃 + 1.1𝐸13 ∗ 𝑃𝐸𝑅𝑀𝐼 − 3117 ∗ 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒_𝐻𝑎𝑙𝑓𝐿𝑒𝑛𝑔𝑡ℎ ∗ 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒_𝐻𝑎𝑙𝑓𝐿𝑒𝑛𝑔𝑡ℎ −

5.4𝐸15 ∗ 𝑃𝐸𝑅𝑀𝐼2                                        (3.2) 

𝑪𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒗𝒆_𝑶𝒊𝒍 = 40479 + 1592 ∗ 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒_𝐻𝑎𝑙𝑓𝐿𝑒𝑛𝑔𝑡ℎ − 602 ∗ 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒_𝑆𝑝𝑎𝑐𝑖𝑛𝑔 − 0.024 ∗

𝑀𝑎𝑥_𝐺𝑎𝑠𝑅𝑎𝑡𝑒 + 30 ∗ 𝑀𝑖𝑛𝐵𝐻𝑃 + 1.6𝐸08 ∗ 𝑃𝐸𝑅𝑀𝐼 − 2.27 ∗ 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒_𝐻𝑎𝑙𝑓𝐿𝑒𝑛𝑔𝑡ℎ ∗

𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒_𝑆𝑝𝑎𝑐𝑖𝑛𝑔 − 5.7𝐸 − 05 ∗ 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒_𝐻𝑎𝑙𝑓𝐿𝑒𝑛𝑔𝑡ℎ ∗ 𝑀𝑎𝑥_𝐺𝑎𝑠𝑅𝑎𝑡𝑒 + 0.90 ∗

𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒_𝑆𝑝𝑎𝑐𝑖𝑛𝑔2 + 4.7𝐸 − 05 ∗ 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒_𝑆𝑝𝑎𝑐𝑖𝑛𝑔 ∗ 𝑀𝑎𝑥_𝐺𝑎𝑠𝑅𝑎𝑡𝑒 + 1.8𝐸 − 09 ∗ 𝑀𝑎𝑥_𝐺𝑎𝑠𝑅𝑎𝑡𝑒2                                                                                                                                        

                                              (3.3) 

 3.6 Observations and Conclusions 

From this study, we drew the following conclusions about production from gas-

condensate liquid-rich shale reservoirs: 

 Ultimate oil recovery is highly dependent on the initial condensate gas oil 

ratio. 

 Ultimate gas recovery is most affected by fracture half-length, matrix 

permeability, fracture spacing and minimum bottomhole pressure. 

 Ultimate oil recovery is affected by fracture half length, fracture spacing, 

permeability and interaction of fracture half length, minimum bottomhole 

pressure and fracture spacing. 

 Interaction of different parameters affect the final cumulative oil and gas 

production from a LRS reservoir. 

 Reduced gas production rates which allow a sustained period of single-

phase flow lead to a significant increase in ultimate oil recovery but do not 

affect ultimate gas recovery. 

 DOE and RSM using a proxy model can be used to determine the ultimate 
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recovery from LRS gas condensate reservoirs with reasonable accuracy, 

and are thus useful in determining the effects of parameter interactions. 
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4. Effect of well spacing on productivity of liquid rich shale (LRS) 

reservoirs with multiphase flow: A simulation study 

Unconventional oil and gas reservoirs have poor permeability and require multiple 

wells in the same section in addition to hydraulic fracturing to obtain an economic 

rate. Multi-fractured horizontal wells generate a large contact by opening the paths 

for flow of hydrocarbon into the wellbore. However, due to the large uncertainties 

in reservoir and fracture properties, well spacing needs to be optimized and clearly 

studied to minimize the drilling and the completion cost. Most of the hydrocarbons 

in unconventional reservoirs is obtained from stimulated reservoir volume (SRV) 

with little pressure drop outside of SRV (XSRV) (Ozkan, 2009). Thus, it is essential 

to optimize the number of wells in a reservoir to prevent overcapitalization and 

unsatisfactory returns on investment. Recently several authors (Yu, 2014; 

Lalehrokh, 2014; Sahai, 2012) have studied economic viability and well 

optimization for unconventional wells. Their results showed that overall well 

placement and fracture design strongly affects well economics. However, most of 

these studies are performed by using either decline curve/rate transient analysis 

or black oil reservoir simulations. Retrograde gas condensate and volatile oils 

exhibit multiphase flow and change in composition during production. 

Compositional reservoir simulation is a tool that accurately captures this 

phenomenon and can be easily used due to computational power available today.  

Moreover, most of these well spacing studies perform a sensitivity analysis of 

different formations for different permeability and fracture half length.  This work 

will try to expand that by performing a sensitivity analysis on initial reservoir fluid, 
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which can have an important impact on the number of wells considered in a play. 

An informed investment in multi-well development of unconventional liquid rich 

resources can be attained to maximize reserves and profits instead of just 

accelerating the production. The goal of this chapter is to utilize the compositional 

reservoir simulation to understand a practical problem of optimal well spacing.     

4.1 Workflow 

Liquid rich shale (LRS) reservoirs are intrinsically heterogeneous and there are 

many uncertainties in reservoir and fluid properties. The statistical study of several 

reservoir parameters on production performance of LRS was performed in Chapter 

3. It showed that various history matching parameters like permeability, porosity, 

well constraints have a big impact on final oil and gas production from a reservoir. 

For this study we select reservoir parameters based on field data and literature 

survey of the Eagle Ford shale play. 

Following workflow was used for this study: 

 A base case was modelled after the reservoir and fluid properties similar to 

the LRS reservoirs from literature review and field data.  

 A compositional reservoir simulation was performed for the period of 30 

years to obtain cumulative oil and gas for base case. 

 Additional simulation was performed for each fluid case ranging from a very 

lean wet gas to black oil for different well spacing. 

 A simple cash flow model was used to calculate the NPV of each fluid case 

for different well and compared. 
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4.2 Numerical Simulation 

Compositional reservoir simulation is an effective method to simulate multiphase 

flow in volatile oil and retrograde condensate reservoirs, especially in early stage 

of field developments. In-situ fluid data can be obtained from separator tests 

accurately when the reservoir is still over the saturation pressure.  In this work, 

CMG-GEM, a compositional simulator by Computer Modelling Group was used to 

model the reservoir with multiple hydraulic fractures and fluid flow in geology 

similar to liquid rich shale reservoirs. Hydraulic fractures are modeled by using 

logarithmically-spaced local grid refinement (LS-LGR), which captures the flow of 

fluid and change in pressure in the near-fracture region. 

For the base case, a 640 acres reservoir with 4 horizontal wells and 25 stages of 

bi-wing hydraulic fractures was considered. Hence, the well spacing and the 

fracture spacing for the base case is 1320 ft. and 210 ft. respectively. A symmetric 

element with dimensions of 1320 ft., 210 ft. and 100 ft. for length breadth and 

thickness respectively was simulated to reduce the computational time. TVD for 

each well was assumed to be 10,000 ft. Dimensionless fracture conductivity of 

greater than 300 was used for each case to ensure no pressure loss in fractures. 

The reservoir properties used for the base case are presented in Table 6.  

Table 6. Reservoir properties for base case simulation 

Properties Value Unit 

Initial Reservoir Pressure 7,750 psi 
Reservoir Permeability 500  nd 
Reservoir Temperature 250 °F 

Reservoir Porosity 7 % 
Initial Water Saturation 20 % 
Total Compressibility 1x10-6 psi-1 
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Table 6. Continued… 

Horizontal Well 
Length(Simulated) 

5,280 (210)  ft. 

Well Spacing(Number of Wells) 1,320 (4) ft. 
Fracture Spacing(Number of 

Fracs) 
210 (25) ft. 

 
 Table 7. Fluid Compositions for the selected liquid rich shale (LRS) 

 

 Several representative reservoir fluids ranging from volatile oil to gas 

condensate fluid were obtained from a literature survey (Whitson, 2012). The 

Peng-Robinson equation of state (EOS) was used to generate PVT parameters, 

which was tuned to match the available properties like saturation pressure, gas oil 

ratio (GOR) and API. This tuning was performed by using CMG’s phase modeling 

software Winprop. For the base case, the leanest sample with OGR of 30 

STB/MMScf was selected. The detailed fluid properties and PVT parameters for 

the base are shown in Tables 7 and 8. 

 
 

 

 

 Comp. Gas Condensates Volatile Oils 
 

CO2 2.89 2.86 2.87 2.78 2.71 2.58 2.47 2.32 1.95 1.51 

N2 0.19 0.19 0.19 0.18 0.18 0.17 0.16 0.15 0.13 0.1 

C1 72.4 71.6 71.8 69.7 67.9 64.7 61.8 58.1 48.9 37.9 

C2 9.26 9.16 9.19 8.92 8.69 8.27 7.91 7.43 6.25 4.85 

C3 5.18 5.13 5.14 4.99 4.86 4.63 4.42 4.16 3.5 2.71 

I-C4 1.19 1.18 1.18 1.15 1.12 1.07 1.02 0.96 0.81 0.62 

N-C4 2.04 2.01 2.02 1.96 1.91 1.82 1.74 1.63 1.37 1.07 

I-C5 0.93 0.92 0.93 0.9 0.88 0.83 0.8 0.75 0.63 0.49 

N-C5 1.00 0.99 0.99 0.96 0.94 0.89 0.86 0.8 0.68 0.52 

C6 1.42 1.41 1.41 1.37 1.33 1.27 1.21 1.14 0.96 0.74 

C7+ 3.48 4.51 4.23 7.08 9.48 13.8 17.6 22.6 34.9 49.5 
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Table 8. Fluid Properties for each sample 

 

 The samples ranged from lean gas condensate with OGR (oil gas ratio) 

of 30 STB/MMScf to volatile oils with OGR of 2,000 STB/MMScf. The pressure 

temperature phase diagram (PT-diagram) showed that some of these fluids with 

OGR of 100 STB/MMScf to 350 STB/MMScf lie extremely close to the critical 

temperature and may act like a near-critical fluid. The OGR for each case was 

matched to the separator test at 400 psia and 100°F. Each reservoir is under-

saturated for an initial reservoir pressure of 7750 psi. The C7
+ fraction is split into 

3 to 5 pseudo-components before generating the Peng-Robinson EOS 

parameters.  

 Separate sets of relative permeability curves were used for the matrix and 

hydraulic fractures. Separate relative permeability curves were used depending on 

the initial phase of fluid in the reservoir. Endpoints and Corey exponents for the 

following curves were obtained from a literature survey (Nagarajan, 2013). The 

relative permeability curves are shown in Chapter 3 (Figure 23). 

Properties Gas Condensates Volatile Oils  

Saturation 
Pressure(psi) 

3119 3759 4022 4490 4729 4754 4572 4217 3265 2260 

OGR, 
STB/MMScf 

30 50 75 100 150 250 350 500 1000 2000 

GOR, 
scf/STB 

33333 20000 13333 10000 6667 4000 2857 2000 1000 500 

° API 51.4 49.8 48.4 47.5 46.2 44.5 43.4 42.3 40 37.7 

C7+ Mol Wt 123 132 138 145 153 164 171 178 195 216 

SG C7+ 0.76 0.77 0.78 0.78 0.79 0.79 0.80 0.80 0.81 0.82 
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4.3 Economic Analysis  

 Well drilling and completions are among the costliest factors in a project 

and require proper optimization for higher returns on investment. Net present value 

(NPV) is the objective function used for optimization of well spacing in this work 

and is calculated by  

                         𝑁𝑃𝑉 =  ∑ (
𝑅

(1+𝑖)𝑡) − 𝐶𝐴𝑃𝐸𝑋0, (4.1) 

where R is the  net cash inflow discounted to the current price by using a discount 

rate i, t is the number of years, CAPEX0 is the capital expenditure like drilling and 

completions, land acquisition, seismic acquisition, roads, bridges at time zero (not 

discounted). For simplicity, it is assumed that all the wells are drilled at the same 

time. The net cash inflow, R, is calculated by subtracting the operating 

expenditures(OPEX) like labor, taxes, repairs and maintenance etc., taxes 

(severance, ad valorem) from oil and gas revenues. Federal income tax is one of 

the big cash outflow that needs to be accounted for the most accurate picture of 

NPV. However, for simplicity all the calculations in this paper have been performed 

before federal income tax (BFIT).Pioneer Natural Resources reported that the cost 

of drilling and completing a well in the Eagle Ford Shale was about $8 million in 

2013. In this work, $7 million is assumed, a decrease in cost due to maturity of the 

techniques. The gas price of $3.5/MSCF, the oil price of $60 per barrel, tax 

expenditure (severance, ad valorem etc.) of 10%, OPEX of 10% of the revenue 

was used to calculate the net cash inflow, R, which is discounted by a discount 

factor of 10%.   
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4.4 Results for Base Case 

 The base case reservoir was simulated for each fluid sample for 30 years 

using the well constraints of 1000 Mscf/day followed by a minimum bottomhole 

pressure of 1000 psia. The change in pressure with time is shown Figure 35 below 

for the fluid with OGR of 30 STB/MMScf. 

 

 Figure 35.Evolution of pressure with time due to depletion 

 Figure 35 shows that pressure transient moves very rapidly in the SRV. 

Within the first 5 years, grid-blocks around the fractures deplete to the minimum 

bottomhole pressure. Figure 35 also shows that the outer reservoir boundary 

remains at the initial pressure even after 5 years of production. Finally, after 30 

years of production, the outer boundary of the XSRV drops to around 5000 psia, 

which shows that a tighter well spacing would be beneficial in this case. 

 Figure 36-37 shows the base case cumulative oil and gas production for 

each sample. It can be seen from the first graph that cumulative gas for lean 

samples would benefit from added wells but not so much for rich samples. 
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However, from the second graph it can be seen that cumulative oil for rich gas has 

a big potential to increase with added wells. The impact of different initial fluid type 

on the production performance of oil and gas is shown in Figure 36-37.  

 

 Figure 36. Cumulative gas production for each fluid sample  

 

Figure 37. Cumulative oil production for each fluid sample  
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 Based on the cumulative oil and gas produced for different fluid types in 

the base case, NPV is calculated using Equation 1 for 5 years, 10 years and 30 

years. Figure 38 shows the NPV for different fluid types and it can be seen that the 

maximum NPV is obtained for samples with high OGRs. The NPV increases 

significantly beyond the OGR of 500 STB/MMScf. A peculiar trend is seen for the 

samples with OGR beyond 75 STB/MMScf where NPV remains negative even 

after 30 years of production. Moreover, the least NPV is seen for the case with 

OGR of 250 STB/MMScf. Although richer than all the samples up to 150 

STB/MMScf, heavy liquid dropout and condensate banking seems to hinder the 

production in the samples close to critical point. 

 

 Figure 38. NPV for different fluids for base case 

4.5 Sensitivity Study 

 Based on the information above from the base case, a sensitivity study 

was performed to identify the optimal well spacing for each sample. The purpose 
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is to identify the optimal number of horizontal wells per section based on the fluid 

type. In this work, we simulated 4 to 10 wells in 640 acres. This translates to well 

spacing of 1320 ft. to 528 ft. respectively. In total, 70 simulation runs were carried 

out including the base case, for each of the 10 fluid and 7 well spacing. 

 The NPV for each of the 70 cases was calculated and analyzed based on 

the assumptions given above. For the very lean samples, with OGR of 30 

STB/MMScf to 75 STB/MMScf, the 5 year NPV remains negative for all well 

spacing. Positive return on investment is only seen after 10 years of production. It 

was also seen that after 10 years, 5 wells or a well spacing of 1,056 ft. provide the 

maximum NPV. Compared to the NPV at 20 years, NPV at 30 years grows by 17% 

of NPV at 20 years. Figure 39 shows the NPV by year for the sample with OGR of 

30 STB/MMScf.  

 

 Figure 39. NPV for lean gas condensate sample 

 For samples in and around the critical region from 100 STB/MMScf to 250 

STB/MMScf, both cumulative oil and gas production were dramatically small. This 
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led to NPV being negative for the entire production period. This could be due to 

liquid dropout and condensate banking, which reduces both oil and gas production 

from a reservoir mainly due to relative permeability effects. For this fluid type, 

natural depletion might not be appropriate and efforts should be taken to re-

vaporize the liquid dropout. This could increase the mobility of the fluid and lead to 

higher production and consequently higher NPV. Figure 40 shows the NPV by 

years for the sample with OGR of 100 STB/MMScf. 

 

 Figure 40. NPV for wells with fluid around critical point 

 For samples with rich oil content, from OGR of 350 STB/MMScf to 2000 

STB/MMScf, positive NPV is seen as early as 5 years (OGR 1000 and 2000 

STB/MMScf) even for 4 wells per section. All the samples with and beyond the 

OGR of 350 SCF/MMStb show positive NPV after 10 years of production. As seen 

from the base case, the maximum NPV is seen for the case with high OGR. Unlike 

the lean samples, for the rich samples the optimal well spacing was 7 wells per 
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section as it generated the maximum NPV. Figure 41 shows the NPV for the richest 

sample with OGR of 2000 STB/MMScf. 

 

 Figure 41. NPV for rich fluid sample 

4.6 Conclusions 

 Several studies have been performed in the past to understand the effect 

of permeability and fracture half-length on optimal well spacing. These studies 

show that, for a given hydraulic fracture geometry, more wells are required to 

develop a shale reservoir with low matrix permeability than high matrix 

permeability.  However, the impact of initial fluid types are usually ignored while 

performing the analysis. This study shows the impact of initial fluid composition on 

well spacing in liquid rich oil and gas shale reservoirs. The following conclusions 

can be drawn from this work: 

 Wells can be placed closer to each other in liquid rich areas. The optimal 

number of wells for samples with OGR of greater than 350 STB/MMScf was 

found to be 7. 
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 For lean samples, the optimal number of wells was found to be 5. This 

shows that in the areas with little liquid saturation, it is advisable to drill fewer 

wells.  

 For critical fluids, liquid dropout and condensate banking has a huge impact 

on the final production. Secondary methods should be employed to make 

this fluid region profitable at the current commodity prices. 

 Most of the production in liquid rich shale is obtained in the first 20 years. 

Final 10 years for production has a negligible impact on the overall NPV of 

a project.  
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5. Optimal decline curve analysis (DCA) models for liquid rich 

shale (LRS) reservoirs 

 A decline curve fitting method presented by Arps (1945) is the most widely 

used method for both conventional and unconventional wells. This is an empirical 

method based on curve fitting and it is not based on fundamentals of fluid flow in 

porous media. For this method to be applicable, a reservoir should be in boundary 

dominated flow (BDF) with constant drainage area and constant flowing 

bottomhole pressure. Unconventional reservoirs exhibit long transient linear flow 

periods which could last for years because of their low matrix permeability (10E-9 

md<k<10E-3 md). In extreme cases, the wells could still be in the transient linear 

flow regime when they reach their economic limits. Usually, however, transient 

linear flow is followed by boundary dominated flow due to intra-fracture pressure 

interference, followed by a transition flow regime and finally by BDF influenced by 

the well’s drainage boundaries. This paper evaluates a multi-segment or hybrid 

approach in which the transient (usually linear) flow regime is modeled by either 

the Duong or Stretched Exponential Production Decline (SEPD) models followed 

by Arps’ hyperbolic model for BDF. Condensate production is forecasted by using 

a method developed by Yu (2014).  

5.1 Background 

 Decline curve analysis has been used successfully for many traditional 

black oil and dry gas reservoirs in the past to forecast future production. However, 

these techniques might be problematic for gas condensate reservoirs due to multi-
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phase flow in the reservoir below the dew point pressure. A brief review of the 

production data analysis used in this report is given below. 

5.2 Arps Decline Model 

 The production decline method presented by Arps (1945) is the most 

widely used procedure in the industry to forecast the EUR for both oil and gas 

reservoirs. This method is applicable only after the onset of BDF. The most 

common Arps’ model, the hyperbolic decline model is 

 𝑞 =
𝑞𝑖

(1+𝑏D𝑡)
(

1
𝑏

)
. 

(5.1) 

where q is the production rate at time t, qi is the initial production rate, b is the 

hyperbolic decline parameter (0<b<1) and D is the decline rate defined as follows: 

 D = −
𝑑𝑞

𝑑𝑡
×

1

𝑞
, (5.2) 

For exponential decline (b=0): 

 𝑞 = 𝑞𝑖exp [−𝐷𝑖𝑡]. (5.3) 

For harmonic decline (b=1):  

 𝑞 = 𝑞𝑖
1

(1+𝐷𝐼𝑡)
. (5.4) 

 

 Unconventional reservoirs, which often have permeability in the range of 

hundreds of nano-darcy, exhibit long-duration transient flow. Thus during the early 

transient flow regime, the Arps hyperbolic decline model is likely to be unsuitable. 

An Arps’ decline constant, b, greater than one causes forecasted cumulative 

production to increase without limit as time increases; thus, the forecast is 
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unbounded (Lee and Sidle, 2010). However, decline constants greater than 1 can 

be good matches with different transient flow regimes (e.g., b = 2 for transient 

linear flow, or 4 for transient bilinear flow) (Spivey, 2001). When using a b value 

greater than 1 for transient data, a common approach is to switch to a minimum 

terminal decline rate (Dmin) based on intuition or analogy to more accurately model 

BDF, and thus force an exponential decline with a constant value of Dmin for the 

remaining life of the well (Lee and Sidle, 2010). 

5.3 Duong’s Production Decline 

Duong (2011) proposed a new production decline technique for long-

duration transient linear (or near linear) or bilinear flow. A log-log plot of the ratio 

of rate and cumulative production with time shows a straight line for the wells in 

the transient flow regime. Duong’s equations are  

 𝑞 = 𝑞1𝑡−𝑚, (5.5) 

 
𝑄

𝑞
=  (

1

𝑎
) 𝑡𝑚, (5.6) 

 𝑡𝑚 = 𝑡−𝑚𝑒𝑥𝑝 (
𝑎

1−𝑚
(𝑡1−𝑚 − 1)) and (5.7) 

 𝑞 = 𝑞𝑖𝑡𝑚 + 𝑞𝑖𝑛𝑓, (5.8) 

where q is the production rate at time t, q1 is the rate at t =1, a and m are empirical 

constants, tm is “modified” time, Q is cumulative production and qinf is the intercept 

of a plot of q vs. tm. 

 The parameters in Duong’s equations can be determined in two steps: the 

first step is plotting ratio of production rate, q, and cumulative production, Q, vs.t 

on a log-log coordinates. The parameters a and m can be obtained from intercept 
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and slope respectively. The second step is to plot modified time vs rate, to solve 

for q1. The intercept of this plot (qinf) should be forced to zero; otherwise, it is 

inconsistent with Equation 5.5.  

5.4 Stretched Exponential Production Decline  

The SEPD is a production decline model proposed for transient flow by 

Valko and Lee (2010). The equation for the SEPD model is  

 𝑞 = 𝑞𝑖𝑒𝑥𝑝 (
−𝑡

τ
)

𝑛
, (5.9) 

where τ is a characteristic time constant, n is an empirical parameter and qi the 

initial production rate. EUR obtained from the SEPD model is bounded unlike Arps’ 

hyperbolic model for b>1.  

 To calculate the parameters τ and n, Yu and Miocevic (2013) proposed a 

method in which 𝐿𝑛 (
𝑞𝑖

𝑞
) vs t is plotted on a log-log scale. Yu proposed that qi be 

approximated as the peak rate observed in a well. A straight line is usually obtained 

after several months of history, and the parameter n is determined from the slope. 

The characteristic time constant τ is calculated  

 τ = exp (
−𝐿𝑛(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)

𝑛
). (5.9) 

After the end of the transient flow period, Arps hyperbolic decline model can be 

used to forecast production. The Arps’ hyperbolic parameters, initial decline rate, 

Di, and b are calculated from the parameters in the SEPD model from 

 𝐷 = 𝑛𝜏−𝑛𝑡 and (5.10) 

 𝑏 =
𝜏𝑛(1−𝑛)

𝑛
𝑡−𝑛. (5.11) 
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Figure 42. Parameter estimation to calculate cumulative oil by using Yu method 

Yu (2014) also proposed a method to forecast the condensate production using a 

simple empirical method which involves plotting cumulative CGR (Condensate 

Gas Ratio) vs cumulative gas on a semi-log graph to obtain a straight line given by  

 (𝐶𝐺𝑅)𝑐𝑢𝑚 = 𝐴1 + 𝐵1𝐿𝑛(𝐺𝑃) . (5.12) 

 This equation is used to calculate the (CGR) cum from Gp, which is 

calculated using the SEPD method. Finally, condensate volume is calculated by 

using the (CGR)cum from the SEPD (cumulative) equation. 

 

 

5.5 Diagnostic Plots  

 The first step in production forecasting is to prepare diagnostic plots to 

identify flow regimes. Flow regime identification is important because each decline 

model is valid only for the flow regime for which it was derived. Application of 

decline models without identifying flow regimes usually leads to erroneous 

production forecasts. The most common diagnostic plot used to identify the flow 
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regimes is a log-log rate-time plot. This diagnostic plot ignores possible varying 

bottom-hole pressure (BHP) and will lead to misleading results whenever BHP is 

changing with time. In particular, for a rate restricted well (constant rate 

production), this model does not show any decline in rate with time and cannot be 

used to identify the flow regime. Thus, we recommend that, where possible, 

analysts use pressure normalized diagnostic plots for flow regime identification 

purposes. The normalized rate is generated by dividing the flow rate by flowing 

pressure drawdown (or pseudo-pressure drawdown for gas wells) as  

 𝑞𝑜𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
=

𝑞𝑜

𝑝𝑖−𝑝𝑤𝑓
, 

(5.13) 

 𝑞𝑔𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
=

𝑞𝑔

𝑚(𝑝)𝑖−𝑚(𝑝)𝑤𝑓
 , 

(5.14) 

 m(p)  =  gas pseudopressure = 2 ∫
𝑝𝑑𝑝

µ𝑍

𝑝

0
. (5.15) 

 The most common flow regimes observed in unconventional shale 

reservoirs are transient linear flow and boundary dominated flow. On a log-log plot 

of normalized rate vs. time, transient linear flow can be identified by a straight line 

with a slope of -1/2. To identify boundary dominated flow with confidence, a 

modified log-log diagnostic plot of pressure-normalized rate vs material balance 

time is preferred (when possible). Blasingame’s material balance time, defined as 

the ratio of cumulative production to rate, provides a convenient way to convert 

variable-rate production into equivalent constant rate production (Mattar, 2003). 

On a material balance time plot, boundary dominated flow is identified with a 

straight line of slope -1. Figure 43 shows the log-log diagnostic plots with pressure 
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normalized gas rate and time or material balance time for a typical shale gas 

reservoir.  

 

 Figure 43. Diagnostic plot to identify flow regimes for a typical shale reservoir 

5.6 Generation of Synthetic Field Data 

 In compositional simulation, material balances for 2n+1 phases (liquid and 

vapor for each of n components and water) are performed by a simulator. 

Moreover, in compositional simulation phase behavior depends on an Equation of 

State (EOS) with three or more parameters. In our compositional simulation, we 

used a drainage area of about 3.03 acres (200 ft x 660 ft) with a single fracture as 

a symmetry element of a well with 25 fractures to reduce the computational time. 

The schematic of the reservoir is shown in Figure 44.  
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Figure 44. Schematic for reservoir to generate synthetic production data  

 

 

 

 

 

 

Table 9. Near critical fluid with varying compositions used for simulation 

 

 

The well was simulated for 10,957 days (30 years).  For this reservoir, the 

fracture half was assumed to be 300 ft and fracture conductivity of 2000 md.ft. The 

reservoir thickness is assumed to be around 100 ft with porosity and permeability 

of 7% and 200 nd respectively.  The reservoir is assumed to have initial gas and 

 
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

CO2 2.66 4.48 0.01 0.14 0.18 

N2 0.17 0.7 0.11 1.62 0.13 

CH4 60.0 66.2 68.9 66.8 61.7 

C2H6 7.72 7.21 8.63 11.35 14.1 

C3H8 6.5 4 5.34 6.01 8.37 

IC4 1.93 0.84 1.15 1.37 0.98 

NC4 3 1.76 2.33 1.94 3.45 

IC5 1.64 0.74 0.93 0.84 0.91 

NC5 1.35 0.87 0.85 0.97 1.52 

FC6 2.38 0.96 1.73 1.02 1.79 

C7+ 12.69 12.2 9.99 7.98 6.85 

C7+ Mol Wt 179.2 170 169 158 143 

C7+ Sp Gr 0.8 0.827 0.813 0.827 0.795 

Reservoir Temp 312 286 238 256 186 

Liquid API 45 44.82 45.43 48.32 48.22 

Sat Pressure 5210 5410 4453.81 5805 4710.41 
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water saturation of 60% and 40% respectively. Relative permeability curves used 

in Chapter 3 (Figure 23) is used to account for multiphase flow effects. 

 In addition to the condensate samples in Chapter 4, five more near-critical 

samples (fluids close to the critical point) or rich condensate samples were 

selected for simulation (Ahmed, 2005). The composition and heavier compound 

(C7
+) for the near critical fluid samples are given in Table 9. The initial Condensate 

to Gas Ratio (CGR) was determined by simulating separator experiments with first 

stage separator conditions of 400 psia and 100°F. 

 Table 10. Tuned EOS parameter for sample with C7
+ concentration of 7.1% 

Components 
Pc (atm) Tc (K) Vc (l/mol) 

Ascentric 
Factor 

Molecular 
Wt. 

CO2 72.8 304.2 0.1 0.2 44.0 

N2 33.5 126.2 0.1 0.0 28.0 

CH4 45.4 190.6 0.1 0.0 16.0 

C2H6 48.2 305.4 0.1 0.1 30.1 

C3H8 41.9 369.8 0.2 0.2 44.1 

IC4 36.0 408.1 0.3 0.2 58.1 

NC4 37.5 425.2 0.3 0.2 58.1 

IC5 33.4 460.4 0.3 0.2 72.2 

NC5 33.3 469.6 0.3 0.3 72.2 

FC6 32.4 507.0 0.3 0.3 86.0 

C07-C09 26.2 568.0 0.4 0.3 108.1 

C10-C11 23.4 635.1 0.6 0.4 144.6 

C12-C13 20.7 676.6 0.7 0.5 172.7 

C14-C15 18.7 712.3 0.8 0.6 200.7 

C16+ 18.4 674.6 1.0 0.7 271.2 

 

 A three-parameter Peng Robinson (Peng and Robinson, 1976) EOS was 

used to model PVT phase behavior.  The lumped C7+ fraction was split into 3 to 5 

pseudo-components before attempting to match saturation pressure, separator 

API gravity and CGR. Finally, the EOS was tuned by using linear regression to 
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match reported experimental values.  The PT diagram for each sample was 

created and for the reservoir temperature listed below, the first five samples are 

very close to the critical point. 

The tuned EOS parameters for sample with C7
+ concentration of 7.1% (shown in 

Chapter 4, Table 7) is shown in Table 10. 

5.7 Flow Regime Identification 

 Hydraulically fractured shale reservoirs with infinite fracture conductivity 

show linear flow during early production life. Fractures with lower values of 

dimensionless fracture conductivity (finite conductivity fractures) exhibit bilinear 

flow. When the pressure transients reach the no-flow boundaries of the reservoir 

(fracture interference, well interference, or outer boundaries), boundary dominated 

flow appears. These transitions are straightforward and easy to identify in 

conventional reservoirs. However, these flow regimes are not so straightforward 

to identify in unconventional reservoirs with multiphase flow. Often, the transition 

from linear flow to boundary dominated flow is not abrupt but can take more than 

a log cycle of time depending on reservoir characteristics. 

 Production during the transient linear flow period can be forecasted by 

Duong’s transient model (Duong, 2011), and the stretched exponential production 

decline (SEPD) model. For boundary dominated flow, the Arps hyperbolic decline 

model is appropriate for forecasting. For dry gas wells, a production decline 

exponent value “b” of 0.4- 0.5, has been observed to be appropriate (Fetkovich et 

al., 1996). For the transition period between transient flow and boundary 

dominated flow, there is no consensus method for forecasting. In this work, 
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transient models (Duong, SEPD) are used for modeling during the transition flow 

period. This generalization, although not rigorously correct, can be used as both 

Duong’s transient model and the SEPD model work well for near linear flow 

regimes.  

 Flow regime identification for simulated production data is performed by 

diagnostic plots, where pressure normalized flow rate is plotted against material 

balance time (MBT) on log-log coordinates. Linear flow is represented by a line of 

slope -1/2 and the boundary dominated flow is represented by a straight line with 

negative unit slope. For this work, we use two diagnostic plots namely, pressure 

normalized rate versus time and pressure normalized rate versus material balance 

time to identify the flow regimes. Each of these diagnostic plots, in conjunction with 

one another, can be used to identify the start and end of linear and boundary 

dominated flow regime. Figure 45 and 46 show the diagnostic plots for Sample 1 

produced at a constant bottomhole pressure of 1000 psia. 

 

 Figure 45.Normalized rate vs MBT diagnostic plot 
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 Figure 46.Normalized rate vs time diagnostic plots 

 Kinks in the diagnostic plots appear at the time when rate changed from 

constant rate (choked flow) to production at constant bottom-hole pressure. For 

cases with constant bottomhole production the diagnostic plots are smooth for the 

entire production period as seen in the Figure 47 and Figure 48.  

 

 Figure 47. Normalized rate vs MBT diagnostic plot (constant BHP) 
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 Figure 48. Normalized rate vs Time diagnostic plot (constant BHP) 

 Comparison of Figure 45 with Figure 47 shows that diagnostic plots for 

cases with constant rate (varying bottomhole pressure constrained by a minimum 

value) fluctuates significantly compared to the constant bottomhole case. 

Moreover, pressure normalization helps in identifying the flow regime even during 

the period of constant flow rate. Diagnostic plots for each of the samples studied 

follow the same trend, linear flow followed by the boundary dominated flow, as all 

the reservoir characteristics are same except for the initial fluid composition.  

For this study, the maximum initial rate allowed for each well was 100 Mscf/D until 

the bottomhole pressure reaches 1000 psia. By visual inspection of the log-log 

diagnostic plots, time for the end of linear flow (telf) and start of boundary dominated 

flow (tsbdf) is identified and is shown in Table 11. It can be seen that for all the 

samples studied, the intermediate period between the transient flow and the 

boundary dominated flow is extremely long. For this reason, the pre-boundary-

dominated flow periods are forecasted by using the SEPD and Duong flow models. 
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After tsbdf, the Arps hyperbolic model is used with a b value of 0.5. It can also be 

seen that the linear flow period generally lasts longer for samples with low C7+ 

content. 

 Table 11. Start and end of the boundary dominated flow for each sample 

Sample 1 2 3 4 5 6 7 8 9 

telf(MBT 
days) 

5000 5000 5000 5000 3000 2000 2000 1000 2000 

tsbdf(MBT 
days) 

20000 20000 20000 15000 10000 30000 20000 20000 20000 

telf(days) 2069 2222 2372 2099 1339 1034 1049 615 1049 

Tsbdf 
(days) 

4473 4838 5447 3711 3195 5417 4383 4473 4473 

5.8 Yu Plot 

 Yu and Miocevic (2013) modified the existing SEPD method so that the 

parameters η and τ can be calculated easily and more accurately. The method 

involves plotting 𝐿𝑛 [
𝑞𝑖

𝑞𝑡
] versus time on a log-log scale, referred to as the Yu Plot. 

All field data prior to appearance of a straight line on the plot is discarded and the 

straight line is manually matched to calculate the parameters. For this work, Yu’s 

method indicated that the model became applicable after about a year. Yu and 

Miocevic also proposed that this modified method works for the entire life of the 

reservoir regardless of the flow regime.  Yu plots for the 2nd to 3rd year production 

data is given in Figure 49. 
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 Figure 49. Yu plot to calculate SEPD parameters for sample 1 

 Similarly, data from year 3 to 4 (1095 days to 1460 days) was used to 

generate different sets of slope and intercept for the period. The slope of the Yu 

plot gives n and τ, which is calculated using equation 5.9. From the Yu-Plots, n 

and τ were calculated; they are summarized in Table 12 and Table 13. 

 Table 12.SEPD parameters based on year 2 to 3 using Yu Plot 

Sample Intercept Slope n Tau, days 

1 0.020 0.624 0.624 516 

2 0.016 0.652 0.652 553 

3 0.049 0.506 0.506 382 

4 0.026 0.017 0.622 350 

5 0.002 0.948 0.948 741 

6 0.007 0.733 0.733 857 

7 0.003 0.829 0.829 947 

8 0.004 0.812 0.812 957 

9 0.002 0.873 0.873 1006 
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 Table 13. SEPD parameters based on year 3to 4 using Yu Plot 

Sample Intercept Slope n Tau, days 

1 0.048 0.485 0.485 512 

2 0.074 0.421 0.421 488 

3 0.235 0.272 0.272 206 

4 0.019 0.607 0.622 613 

5 0.025 0.556 0.556 761 

6 0.014 0.632 0.632 837 

7 0.007 0.722 0.722 946 

8 0.007 0.722 0.722 949 

9 0.006 0.746 0.746 972 

 

5.9 Duong’s Production Decline 

 Duong’s equation can be solved in two simple steps; the first step is plotting 

ratio of cumulative production to production rate versus time on a log-log scale. 

The parameters a and m can be obtained from intercept and slope respectively. 

The next step is to plot rate versus modified time, tm, to obtain q1. The intercept of 

the line, qinf, is forced to zero. Figure 50 and Figure 53 shows the plots used to 

calculate the Duong model parameters.  
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 The same procedure was applied as before and Duong’s parameters were 

calculated for each fluid sample as shown in Table 14.  

 Table 14. Duong’s a, m and q1 parameters for each samples  

Sample a m q1 (SCF/day) 

1 0.39 1.23 3.33E+07 

2 0.83 1.12 1.27E+06 

3 0.66 1.15 2.72E+06 

4 0.74 1.1 1.43E+06 

5 0.41 1.22 4.33E+07 

6 0.24 1.3 1.48E+08 

7 0.15 1.37 3.53E+08 

8 0.15 1.37 3.58E+08 

9 0.14 1.38 3.58E+08 

 

5.10 Arps Hyperbolic Model 

 The time for start of boundary dominated flow (tsbdf) is determined by visual 

inspection of the diagnostic plots. However, from the diagnostic plot it can be seen 

that the transition period between the end of linear flow and the start of boundary-
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 Figure 51. Initial rate determination by using parameters a & m 
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dominated flow lasts for a long time and, for most of the samples, boundary 

dominated flow starts at about 20,000 days MBT. In this chapter, the later time was 

used as the start of boundary dominated flow and the beginning of the transition 

region was 1461 days. Production during the transition region was forecasted by 

using one of the methods used for the transient flow period and Arps’ equation with 

b value of 2. During BDF, the initial decline rate Di was calculated with equation 

5.2 and b of 0.5 was used for all cases. For each case, Di about 5% was used per 

year regardless of the initial CGR. 

5.11 Production decline 

 Gas production was forecasted based on decline model parameters 

determined from analysis of historical data available to 1460 days (4 years). The 

forecasted production rates and cumulative production volumes for the reservoir 

fluid with CGR 120 is given in Figure 52. 
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 Figure 52. Forecasted cumulative gas and gas rates 

 

 Figure 52 shows that YM-SEPD with up to 4 years of data produces a 

good forecast that matches the historical data almost perfectly. The EUR 

calculated from each case was analyzed and the error in EUR was calculated by 

considering the EUR from simulation to be correct. 
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 Table 15. Error calculation for each sample by using different methods 

Sample  YM-SEPD 
(2-3) 

YM-SEPD 
(3-4) 

Arps(b=
2) +Arps 

Duong
+ 

Arps 

SEPD+ 
ARPS(2-3) 

SEPD+ 
ARPS(3-

4) 

1 -10.3 10.5 32.3 7.7 -9.4 5.6 
2 -16.4 16.9 22.4 13.2 -15.1 9.9 
3 -13.6 32.3 21.4 5.3 -12.8 9.8 
4 -15.0 -4.6 22.1 13.4 -13.1 -4.5 
5 -25.5 5.8 23.3 4.8 -21.8 1.8 
6 -9.3 -0.4 17.2 14.4 -9.0 -1.6 
7 -13.1 -5.8 21.5 8.6 -11.7 -5.4 
8 -12.6 -6.5 21.2 7.0 -11.4 -6.3 
9 -14.6 -7.6 19.3 8.1 -13.4 -7.3 

 

 In Table 15, it can be seen that YM-SEPD with 4 years of history followed 

by Arps provides the most accurate result for final cumulative gas production for 

most cases investigated in this study. Using YM-SEPD alone doesn’t produce 

good results for samples close to the critical point. However, this method gives a 

reasonable result for lean samples. Duong, followed by Arps, gives reasonable 

results for rich samples but not for lean samples. Arps with b value of 2 followed 

by Arps hyperbolic with b value of 0.5 overestimates the production in each case. 

5.12 Determination of Cumulative Oil Production 

 Cumulative oil production from a gas condensate reservoir depends on 

several factors including the initial production rate, minimum bottomhole pressure, 

fracture conductivity and their interactions. This was discussed by Khanal et al.  

(2015). for this paper, a method proposed by Yu (2014) was used in which 

cumulative CGR is regressed against cumulative gas production. The slope and 

intercept from the regression is used to estimate the final cumulative CGR at the 
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end of the production period. Finally, the cumulative oil production is calculated by 

multiplying the estimated cumulative CGR by the final cumulative gas volume.  

 This method was applied to all the samples first by regressing on the 

historical data from year 2 to 3 and then year 3 to 4. Figure 53 is a semi-log plot of 

cumulative CGR and cumulative gas production for a sample with CGR of 64 

STB/MMScf.  

 

 Figure 53. Yu plot for determination of condensate production 

 Each column in Table 16 (a, b, c and d )labeled Simulated Year 1-2, 2-3 

and 3-4 represents calculation of cumulative oil production (Np) and error using the 

historical data from the same time period. In most cases the ultimate production 

was underestimated by this method with the best results obtained by using 4 years 

of historical data.  
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5.13 Application to field history Data 

 To verify the importance of pressure normalization and identification of 

flow regimes prior to decline curve analysis, production history from a gas 

condensate well in the Eagle Ford shale (EFS) was analyzed. The well is located 

in the gas condensate window of the EFS and produced at an initial CGR of 156 

STB/MMScf.  

 Rate and pressure history is available for a period of 688 days (~2 years). 

The diagnostic plots for the reservoir are shown in Figures 54 and 55. 

 Table 16. Cumulative oil estimation a. Simulated b. Year 1-2 c. Year 2-3 d. Year 3-4 

 Sample 

Simulated 

Gp (Mscf) 

Simulated 

Np (bbl) 

Calculated 

Np (bbl) 

Error, 

% 

Calculated 

Np(bbl) 

Error, 

% 

Calculated 

Np (bbl) 

Error, 

% 

 1 96 601 125 -79 402 -33 499 -17 

2 108 2479 1491 -40 1994 -20 2186 -12 

3 104 1250 148 -88 1369 10 1369 10 

4 111 1727 1069 -38 1467 -15 1596 -8 

6 125 789 180 -77 551 -30 669 -15 

7 133 910 308 -66 686 -25 798 -12 

8 134 650 191 -71 477 -27 564 -13 

9 137 575 260 -55 459 -20 517 -10 

 

a. b. c. d. 
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 Figure 54.Pressure normalized vs MBT diagnostic plot for a LRS reservoir 

 

 Figure 55. Gas rate vs time diagnostic plot for LRS reservoir 

 Figure 54 and 55 above shows that flow regimes can be identified by using 

pressure normalized gas rate for less than 2 years of production history more 

efficiently and with greater confidence than with the more basic log-log rate vs time 

plot. A log-log pressure normalized rate versus time plot shows that the well 
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displayed linear flow almost for the entire production period. BDF may be identified 

by a few isolated data points toward the end of history (but this could also be liquid 

loading). In contrast, on diagnostic plot of gas rate vs. time, linear flow is completely 

masked. Moreover, the log-log diagnostic plot of gas rate and time suggests that 

boundary influenced flow starts after 150 days. The reservoir could well be in 

boundary dominated flow after 700 days. However, it is unlikely that a reservoir 

with nano-darcy permeability will show BDF after 150 days of production and no 

linear flow. If a forecast is made based on this analysis the EUR from this well 

could be seriously underestimated. In this case, the pressure normalized 

diagnostic plot correctly identifies flow regimes which are not seen in rate-time 

diagnostic plots. 

 A similar analysis was performed on a dry gas reservoir initially at 5,700 

psia in the Woodford shale. As seen in Figures 56 and 57, both diagnostic plots 

show linear flow throughout the production history. However, the normalized 

diagnostic plot shows that the linear flow starts before shut-in period at 80 days. 

From these figures, it can be inferred that if the reservoir is not over-pressured and 

is in single phase flow, and a simple rate vs time diagnostic plot might be sufficient 

to identify the flow regimes. After the flow regimes are identified, the forecasting 

should be performed by using linear model and Arps’ minimum decline model 

based on field analogs. From the simulation study, boundary dominated flow starts 

at about 5% of the initial rate regardless of the initial CGR. 
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 Figure 56. Pressure normalized vs MBT diagnostic plot for a dry gas reservoir 

 

 Figure 57. Gas rate vs time diagnostic plot for a dry gas reservoir 
 

5.14 Conclusions 

The following conclusions can be drawn from this work: 

 Gas condensate wells in shales exhibit a long transition period between the 

end of linear flow and the start of boundary dominated flow. 
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 Pressure normalization is an effective method to identify flow regimes in a 

gas condensate reservoir. Using pressure normalized diagnostic plots may 

help in identification of flow regimes which could otherwise be difficult to 

identify. 

 YM-SEPD provides a good forecast for lean gas condensate samples.  

 YM-SEPD combined with Arps with b value of 0.5 provides a result closer 

to the simulated value than other methods considered provide for all 

reservoir fluids 

 The transient linear flow model with no modification for boundary-dominated 

flow overestimates the production in almost all cases. 

 Estimation of ultimate condensate production using Yu’s method provides 

a reasonable result when four years of historical production data are 

available and used. 
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6. Data driven study of liquid Rich Shale Reservoirs 

6.1 Background and Introduction 

 Principal component analysis (PCA) is regarded as one of the most 

valuable tools from applied linear algebra (Shlens, 2003). PCA is used in different 

areas of studies, from neuroscience to signal processing, because it is simple, non-

parametric method of extracting relevant information from large and confusing data 

sets. PCA is a powerful tool which allows researchers to reduce a complex data 

set to a lower dimension and to reveal the hidden underlying dynamics with 

relatively minimal additional effort. In this chapter, we use this technique to forecast 

the performance of oil and gas reservoirs using simulated and field data. 2. 

Principal Component Analysis 

6.2 Literature Review and Problem Statement 

 Production data analysis is an evolving field where several new 

techniques are applied together to develop, analyze, forecast, and evaluate the 

production from oil and gas reservoirs. These techniques have been applied to 

various types of reservoirs with varying degrees of success in the past. Several 

authors (Denney 1999; Srinivasan and Ertekin 2008; Mohaghegh 2009; Fulford et 

al., 2016) have recently discussed the use of artificial intelligence techniques like 

neural networks and fuzzy logic to forecast production for oil and gas reservoirs.  
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 One such method which can be used for production data analysis is PCA, 

which has been used extensively in geosciences to reduce redundant data and 

retain useful data obtained from seismic data acquisition (Saleh and Bruin 2000, 

Tingdahl and Hemstra, 2003; Guo et al., 2006, Chopra and Marfurt, 2014). It has 

also been used for other reservoir engineering applications such as history 

matching (Honorio et al., 2015; Chen et al., 2016), reservoir property estimation 

(Scheeval and Payrazyan 2001; Dadashpour et al., 2011), gas flow in nano-pores 

and the analysis of production history for unconventional gas reservoirs 

(Bhattacharya and Nikolaou 2011, 2013). Researchers have also used PCA to 

perform fluid composition characterization of crude oils from different depths and 

wells to resolve compositional changes related to the source of the oil generating 

sediments and its exposure to biological and/or physical weathering processes 

(Ventura et al., 2011).More recently, PCA has been used to reduce uncertainty in 

history matching and to identify reservoir measurements that best represent the 

overall reservoir behavior (Bertolini and Schiozer, 2016).  

 To our knowledge, this method has not been applied to forecast 

production and condensate-to-gas ratio (CGR) in liquid-rich shale (LRS) gas 

condensate reservoirs. Due to the complex nature of gas condensate reservoirs, 

several complex reservoir simulations need to be performed, which generally 

requires several days and weeks to complete even with the most powerful 

computing resources available today. Statistical and data-driven approaches such 

as PCA reduce the number of such simulations required by providing a relatively 

quick recognition of important patterns, thus allowing a better framework for 
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planning and simulation of new wells. This also reduces the several steps required 

for proper application decline curve methods and simplifies the workflow.  

6.3 Theory and Background  

 Principal component analysis is regarded as one of the most valuable 

tools from applied linear algebra (Shlens, 2003). Principal component analysis 

reduces the dimensionality of multivariate datasets by reducing the variables in a 

data-set into smaller number of derived variables, principal components (PC), 

which are linear combinations of original variables (Jolliffe, 2014). Principal 

Components are arranged in descending order, and  the axis corresponding to the 

first principal component (or eigenvector) is the one along which the variance of 

the data is maximized, followed by the second principal component and so on 

(Jolliffe, 2014). A matrix X of rank m (and variables) can be represented by a matrix 

X’ of lower rank p as 

 [𝑿]𝒏×𝒎 ≈ [𝑿′]𝒏×𝒑, (6.1) 

 = (𝑷𝑪𝟏)𝒗𝟏
𝑻 +  … … … + (𝑷𝑪𝒎)𝒗𝒎

𝑻 and (6.2) 

 ≈ (𝑃𝐶1)𝑣1
𝑇 + … … … + (𝑃𝐶𝑝)𝑣𝑝

𝑇 + 𝐸𝑝. (6.3) 

In the equations above, the PCi are the principal components scores, vi are the 

loadings or principal component coefficients which describe the systematic part of 

the data, and Ep is the residual matrix which describes the model and 

measurement errors (Shlens, 2003). The number of principal components required 

to accurately represent the original data depends on two factors: noise and 

redundancy and usually done empirically (Jolliffe, 2014). 
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 Principal Component Analysis is performed by creating the covariance 

matrix, calculating the respective eigenvectors and eigenvalues of the matrix and 

finally ranking them based on their respective eigenvalues (Jolliffe, 2014). The 

eigenvectors with the greatest eigenvalues are the Principal Components of the 

data matrix. Principal components can also be calculated by using singular value 

decomposition (SVD) where a matrix M is decomposed into matrices U , S and V 

as 

 𝑴 = 𝑼𝑺𝑽𝑻, (6.4) 

where U and V are orthonormal vectors (vectors with unit norm and zero inner 

product) and S is a diagonal matrix with eigenvalues in the main diagonal (Jolliffe, 

2014). The product of matrix U and S yields the PCi represented in Equation 1 and 

V represents the principal component coefficients vi. 

 The field of petroleum engineering is inundated with data from various 

sources, such as geological, production, and experimental data. In the United 

States, most of these data are proprietary except for a few publicly reported data 

sets such as rate-time data or occasional well testing data.  This collection of data 

can be viewed as a large matrix, which, when analyzed using multi-variate 

statistical methods like PCA, can be reduced to a smaller matrix that retains the 

important pattern from the original matrix. These smaller matrices, with fewer rows 

and columns, can be used more efficiently to predict the performance of the 

original wells and the wells with similar characteristics. 
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 If we assume qi (t) to be the gas rate and ci (t) to be the corresponding 

producing condensate-to-gas ratio (CGR) for well i, the production data can be 

represented in matrix as 

 X =[
𝒒𝟏(𝒕𝟏) ⋯ 𝒒𝟏(𝒕𝒏)

⋮ ⋱ ⋮
𝒒𝒊(𝒕𝟏) ⋯ 𝒒𝒊(𝒕𝒏)

] = [
𝑸𝟏

𝑻

⋮
𝑸𝒊

𝑻
] and (6.5) 

 

Y =[
𝒄𝟏(𝒕𝟏) ⋯ 𝒄𝟏(𝒕𝒏)

⋮ ⋱ ⋮
𝒄𝒊(𝒕𝟏) ⋯ 𝒄𝒊(𝒕𝒏)

]= [
𝑪𝟏

𝑻

⋮
𝑪𝒊

𝑻
]. 

(6.6) 

 The rows of matrices X and Y represent gas rate and CGR for ‘n’ time 

steps for ‘i’ wells respectively.  Q1
T and C1

T represent the transpose of the 

respective data in column form. 

The gas rate and CGR for well Xi can be represented as  

  𝑿’𝒊  =  (𝑷𝑪𝒊𝟏
)𝒗𝟏

𝑻  +  (𝑷𝑪𝒊𝟐
)𝒗𝟐

𝑻 +  … … and (6.7) 

   𝒀’𝒊  =  (𝑷𝑪𝒊𝟏
)𝒗𝟏

𝑻  +  (𝑷𝑪𝒊𝟐
)𝒗𝟐

𝑻 + … … … … (6.8) 

As seen in Equation 6.10, Ep represents the residual error, which is discarded in 

the approximated rate (X’i) data and can be represented as follows:  

 
𝑬𝒑 = (𝑷𝑪𝒊𝐩+𝟏

) 𝒗𝐩+𝟏
𝑻 + … … + (𝐏𝐂𝒊𝒎

)𝒗𝐦
𝑻 and (6.9) 

 = ∑ 𝑷𝑪𝒊𝒗
𝑻𝒎

𝒑+𝟏 . (6.10) 

 The normalized percent square residual error can be calculated by square 

root mean squared error with respect to the original data point or the square of 

Frobenius norm of the error with respect to original data as 

 
 𝑿𝒆𝒓𝒓𝒐𝒓  =  ∑

‖(𝑿−𝑿′‖𝟐

‖𝑿‖𝟐
𝒎
𝟏 . (6.11) 

 



92 
 

6.4 Prediction and Forecasting for New Wells 

 Principal component analysis can be used to predict the rates (gas/oil 

rate and cumulative, CGR) for new wells by using the PC coefficients of existing 

wells. Equations. 6.1 – 6.10 show that rates for a well can be represented as a 

weighted linear combination of PC coefficients. The individual weights or PC 

scores are functions of several reservoir, fluid and completion properties 

(Bhattacharya and Nikolaou 2013) as 

 

 
                         𝑷𝑪𝒊 = 𝒇(𝒓𝒆𝒔𝒆𝒓𝒗𝒐𝒊𝒓 + 𝒇𝒍𝒖𝒊𝒅 + 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏).      (6.12) 

 In presence of these properties, the PC weights for each new well can be 

calculated, which can then be used to predict the production behavior of the new 

wells. Dependence of the PC weights on these several properties can be 

determined by using a statistical tool like multivariate linear regression. Analysis of 

Variance (ANOVA) from the regression analysis can be used to calculate the 

confidence interval for the prediction.  

 Cross-validation is a technique used to analyze the effectiveness of 

results of regression or some other statistical analysis to generalize an 

independent data set (Geisser, 1993). Cross-validation tests the effectiveness of 

a model generated from a training data set to predict a new set of data (testing 

data set). Cross validation can be performed by dividing the original data sets into 

two groups: training set and validation set. However, this method could lead to high 

variance due to the fact that the model depends heavily on the data points selected 

for the training set (Schneider, 2016). For this reason, leave-one-out-cross-
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validation method is used where one of the m observations is used as the 

validation (or test) set and m-1 observations are used as the training set 

(Schneider, 2016). In this case, one set of well production data is excluded while 

generating the PC scores and coefficients. This excluded rate data is then 

predicted by using the generated PC parameters. This process is repeated for 

each well to conduct a comprehensive cross-validation.  

6.5 Workflow 

 To illustrate the use of PCA as a forecasting tool, we used both simulated 

data and field data. A commercial reservoir simulator was used to model an 

unconventional reservoir with properties similar to a liquid-rich shale reservoir 

(Eagle Ford) and was run for 30 years. We identified the uncertain parameters and 

defined the probability distribution for them from literature review. Based on the 

probability distribution for the uncertain parameters, we performed Markov Chain 

Monte Carlo (MCMC) simulation by using to obtain the production scenario for 

many cases and reservoir conditions. Following this step, we applied PCA to gas 

rate, cumulative gas, and CGR to obtain the respective PC coefficients and scores. 

Cross-validation was performed to check the predictive ability of the model 

generated. CMG-GEM(v2015.10), CMG-CMOST(v2015.10) and 

Matlab(vR2015a) was used to perform reservoir simulation, MCMC simulation and 

PCA calculation respectively. The simulated case is shown in Section 4. The 

truncated Matlab code, enough to replicate the procedure for simulated data is 

given in Appendix A.  
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 Following this analysis, publicly available monthly field production data 

from the Eagle Ford Shale was obtained from DI Desktop by specifying certain 

constraints such as the well direction, starting production date, and primary fluid 

type (oil/gas). We checked the quality of the extracted data to ensure that only 

meaningful data was retained for analysis.  The initial production time for each well 

was normalized so that production started from the same month. Similar to the 

simulated case, cross-validation was performed to analyze the predictive ability of 

the model. The field case is shown in Section 5.  

6.6 Simulated Case 

 Reservoir, geological and completion data for the Eagle Ford Shale was 

obtained from a literature survey (Mullen, 2010; Orangi et al., 2011; Nagarajan, 

2013; Kumar, 2013; Gong et al., 2013). We identified the uncertainty parameters 

and defined distributions for those parameters (Gong et al., 2013; Khanal et al., 

2015; Khoshghadam et al., 2015). These uncertain parameters have a major 

impact in the overall production performance of a reservoir. The uncertain 

parameters studied for the Monte-carlo simulation were fracture half length, 

maximum fracture permeability, fracture spacing, minimum bottom-hole pressure, 

matrix permeability, porosity, and initial reservoir pressure. 

6.7 Parameter Bounds and Distribution 

 A wide range of natural phenomena in biological, and physical sciences 

have been found to be closely approximated by normal and log-normal 

distributions (Ringrose and Bentley, 2015). These probability distributions are also 
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widely used in geostatistical reservoir modelling to account for uncertainties and 

heterogeneities in a reservoir (Pyrcz and Duetsch, 2002). The geological 

properties like permeability and porosity in most reservoirs also appear to exhibit 

log normal distributions (Engler, 2010). Thus, the naturally occurring (uncertainty) 

parameters such as porosity, permeability and initial reservoir pressure are 

assumed to follow the log-normal distribution (Engler, 2010; Gong et al., 2013). 

The (decision) parameters selected by an operator like fracture spacing, half-

length are selected based on uniform probability distribution constrained by values 

normally seen in the Eagle Ford Shale in the liquid rich regions(Kumar, 2013; Gong 

et al., 2013). The parameters and their distribution are shown in Table 17. 

 
Table 17. Parameters, distribution and description 

Parameter Distribution Values 

Fracture Half-Length(fhl) Uniform 200 ft to 350 ft 
Fracture Permeability(Fk) Lognormal Mean = 50 md; SD= 20 md 
Fracture Spacing(fs) Uniform 14 fracs to 24 fracs 
Minimum BHP(BHP) Uniform 500 psia to 1500 psia 
Matrix Permeability(k) Lognormal Mean = 450nd; SD =170nd 
Porosity(φ) Lognormal Mean = 7.4%; SD = 2.1% 
Initial Pressure(p) Lognormal Mean =6200 psia; SD = 

1870psia 

 

6.8 Reservoir Description and Simulation 

 Before constructing the base case reservoir simulation, geological and 

completion data for the Eagle Ford Shale was obtained from a literature survey. 

The average lateral in the Eagle Ford was found to be greater than 5,000 ft. with 

10-17 hydraulic fracture stages per lateral. Depth ranged from 4,000 ft. to 14,000 

ft. and thickness ranged from 100 to 300 ft. This play has three distinct fluid 

regions, dry gas, condensate and oil from South to North. The porosity and 
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permeability range up to 11% and 1,200 nanodarcies respectively. The best part 

of the play has the potential to deliver an initial rate of 1,000 bbl/d of oil and up to 

5 MMscf/d of gas. Based on these data from the literature, we modeled a 640-acre 

section of a reservoir with 5280 ft. long horizontal laterals and 4 laterals per section.  

Each well has 20 bi-wing fractures (fracture spacing of 264 ft.) which were gridded 

with logarithmically-spaced local grid refinement (LS-LGR) to account for rapidly 

changing pressure and composition around the wellbore. The reservoir 

temperature for Peng-Robinson Equation of State (EOS) was assumed to be 

around 186 °F, which was tuned by changing the binary interaction parameters to 

match the reported saturation pressure, and condensate to gas ratio. The initial 

and saturation pressure for the fluid was 9500 psia and 4729 psia respectively. 

Separate sets of relative permeability curves were used for matrix and hydraulic 

fractures using Corey exponents published in literature (Nagarajan, 2013). 

Additional reservoir attributes are described in Khanal et al. (2015). A single 

symmetric hydraulic fracture shown in Figure 58 was simulated for the period of 

30 years.  

 

 

 
 
 
 
 
 
 
 
 

Figure 58. Symmetric element with logarithmically spaced grids for base case   simulation 
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Some of the reservoir properties used for the base case simulation is 
summarized in Table 18: 

 Table 18. Summary of reservoir property used for the base case 

Simulated Drainage 
Area 

3 acres (200 ft. by 660 
ft.) 

Number of Fractures 20 (1 fracture 
simulated) 

Fracture Half Length 264 ft. 
Fracture Conductivity 2,000 md.ft. 
Reservoir Thickness 100 ft. 

Matrix Porosity 0.07 
Matrix Permeability 200 nd. 

Initial Gas Saturation 0.60 
Initial Water Saturation 0.40 

 

6.9 Principal Component Analysis of the Simulated Data 

 Using the pre-defined probability distributions, we performed Monte Carlo 

to generate 335 compositional simulations. We used the SVD algorithm to 

calculate the orthonormal matrices U, V and the singular values S. The product of 

matrices U and S yields the Principal Component Scores and the matrix V 

represents the Principal Component coefficients (or loadings). As mentioned 

earlier, only a few principal components and principal component scores are 

sufficient to adequately represent a large matrix. There is no certain rule on how 

many principal components to retain: however, a useful rule of thumb is to retain 

enough singular values to constitute 95% of the sum of squares of all the singular 

values (Shlens, 2003). Figure 59 shows the cumulative gas, gas rate, and CGR 
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for all the simulated cases. Depending on the input for simulation, wide ranges 

data are observed for each case. Although the CGR profile is erratic compared to 

the rate profiles, all profiles exhibit a distinct pattern applicable to a majority of the 

data. 

 

Figure 59. Simulated production data: Left: Gas Rate Middle: Cumulative Gas Right: 
CGR 

  Principal component analysis was performed on gas rate, cumulative gas, 

and CGR by using SVD to obtain eigenvalues in descending order as shown 

below. Figure 60 shows that CGR has significantly larger number of prominent 

eigenvalues compared to gas rate and cumulative gas. The number of eigenvalues 

that accounts for 90% of weights is 4, 1, and 8 for gas rate, cumulative gas and 

CGR respectively. The sum of squares of the singular values retained should be 

at least 90% of the sum of the squares of all the singular values, also referred to 

as energy (Rajaraman & Ullman 2014). In all cases, this value was over 95% with 

just two eigenvalues. 
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Figure 60. Eigenvalues for gas rate, cumulative gas and CGR 

 

  

 
 

  The PC coefficients for gas rate, cumulative gas and CGR are shown in 

Figure 61, which indicates that the first PC depicts the major pattern for each of 

the rates. The first PC for CGR also shows the slight kink observed for the 

simulated data where CGR falls to a local minimum before rising and then falling 

to an almost constant value after about 35 months. Other principal components 

further add to the characteristic profiles seen for each of the rates in the original 

data.  

 

  Figure 61. Principal component coefficient/loadings for gas rate 
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 Figure 62. Principal component coefficient/loadings for cumulative gas 

 

 

 Figure 63. Principal component coefficient/loadings for CGR 

6.10 Recreation of Original Data with Limited Principal Components 

 Original profiles were recreated for gas rate, cumulative gas and CGR by 

using the limited number of PC coefficients. The error for each case was calculated 

by using Equation 6.11 shown above. The average and the maximum error for 

each case are shown in Table 19 and Table 20 respectively.  The minimum error 

for each case was observed to be less than 1%.  

 Table 19. Average error in recreation for each case 

 1 PC 2 PC 3 PC 4 PC 

Gas 

Rate 1.78 0.68 0.32 0.14 

Cum. 

Gas 0.11 0.01 0.00 0.00 

CGR 5.23 3.88 1.89 0.82 
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 Table 20. Maximum error in recreation for each case 

 1 PC 2 PC 3 PC 4 PC 

Gas 

Rate 8.18 3.84 2.45 1.66 

Cum. 

Gas 0.63 0.08 0.01 0.00 

CGR 25.0 22.8 11.3 8.76 

 
 On closer examination of error for each case, it was seen that maximum 

and minimum error for a particular number of principal components varied among 

the wells. For this reason, the maximum and minimum error was identified by 

averaging the errors for each principal component case. The maximum average 

error was identified as 3.1% for well 301 shown in Figure 64. Similarly, the 

minimum error of 0.05% was identified for well 146 shown in Figure 65. 

 

 

Figure 64. Maximum error seen from recreation of original data with limited principal 
components (gas rate) 
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Figure 65.  Minimum error seen from recreation of original data with limited principal components 
(gas rate) 

Figure 67. Minimum error seen from recreation of original data with limited principal components 
(Cumulative Gas) 

 
  
 
 

 The maximum and minimum error for cumulative gas was 0.16% for well 

315 and close to 0(7E-04) for well 66 as shown in Figures 66 and 67 respectively. 

 

 

Figure 66. Maximum error seen from recreation of original data with limited principal components 
(Cumulative Gas) 
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 The maximum and minimum error for CGR was 15.65% for well 288 and 

0.34 for well 42 as shown in Figures 68 and 69 respectively.  

Figure 68. Maximum error seen from recreation of original data with limited principal components 

(CGR) 

 

 

Figure 69. Minimum error seen from recreation of original data with limited principal components 
(CGR) 

 
 Figures 64 through 69 indicate that using only one PC yields a relatively 

poor result for all cases. The error in recreation is alleviated when the number of 

principal components are increased. Figures 64 through 69 also show that for the 

cases with maximum error, the simulated data are usually erratic and show sudden 

changes in the rates. Similarly, for the cases with minimum error, the simulated 

data are smooth and follow the overall trend of the first principal component.  

 Error for each of the simulated wells is shown in Figure 70. Error was as 

large as 25% for CGR, 8.5% for gas rate, and 0.7% for cumulative gas when only 
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one PC was used, also shown in Tables 19 and 20. Cumulative gas shows a good 

result just with one PC whereas gas rate needs at least two PC’s to reduce the 

error to less than 5%. However, CGR requires at least four PC’s for the error to be 

less than 5%. From this analysis, we conclude that, if data (field or simulated) 

contains fluctuations, noise or other variations, a larger number of PC’s are 

required to re-create the original data. However, using too many PC component 

could lead to high variance due to overfitting. So, it is important for an engineer to 

identify the optimal number of principal components based on the noise and 

complexity of the field data.  

 

 Figure 70. Error in recreation each number of principal components 

6.11 Analysis for Normalized (or Standardized) Data 

 Normalization is performed by dividing each production value by its 

maximum value. This reduces the maximum value of a data point to one for all 

cases. If we consider gas rates ‘X’ and CGR ‘Y’ from section 2.2 again to represent 

gas rates and CGR, normalized rate data can be written as follows: 

 

 
�̅� =

𝒒𝒊𝒋

𝒒𝒎𝒂𝒙 
 and (6.12) 

  �̅� =
𝒄𝒊𝒋

𝒄𝒎𝒂𝒙
, (6.13) 
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where qmax and cmax represent the maximum gas rate and CGR, respectively.  

Normalization is extremely useful during cross-validation. Principal component 

scores for the testing set is calculated by minimizing the least squares of errors 

(LSE) which requires an initial guess for the unknown value (PC scores). When a 

normalized data set is used, the initial guess can be easily selected as it lies 

between 0 and 1. This allows for the least-squares algorithm to be used for all 

cases regardless of their magnitude with the same initial guess. If a dataset is not 

normalized, the initial guess needs to be properly selected as it could lead to local 

minima instead of global minima. The eigenvalues, PC’s, and other values for 

normalized data exhibit trend similar to the trends in actual data. Average Error 

and maximum error in recreation for normalized cases are shown in Table 21 and 

Table 22 respectively. Comparing with the non-normalized cases above in Tables 

19 and 20, normalized samples show lower error when more than 1 PC is used.  

Table 21. Average error in recreation for each case (Normalized Sample) 

 

 

 
 
Table 22. Maximum error in recreation for each case (Normalized Sample) 

 
 
 
 
 
 
 

 
1 

PC 

2 

PC 

3 

PC 

4 

PC 

Gas 
Rate(N) 

1.81 0.63 0.31 0.14 

Cum. (N) 0.11 0.01 0.00 0.00 
CGR (N) 7.06 2.18 1.15 0.66 

 1 PC 
2 PC 3 PC 4 PC 

CGR (N) 34.98 23.06 17.88 9.29 
Cum. (N) 0.66 0.08 0.01 0.00 
Gas 
Rate(N) 

9.40 3.38 2.35 1.50 
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6.12 Prediction of New Well Data 

 Production of oil and gas from gas condensate reservoirs is affected by 

geological, fluid, and completion properties. Each property has a varying effect on 

how much and how fast oil is produced from a reservoir. Several authors 

(Khoshghadam et al., 2015) have studied the effects of these properties on 

underlying production mechanisms in liquid-rich shale reservoirs. For this study, 

we used multiple linear regression with a 95% confidence interval to generate the 

relationship of PC scores and the reservoir properties studied. Higher-order 

interactions are excluded as they add large number of variables (O (n2/2) for 2nd 

order, O (n3) for 3rd order) without adding significant insight to the result. Important 

higher order interactions can be selectively chosen in future studies by using 

techniques like design of experiments (DOE) or artificial neural networks (ANN).   

Several other reservoir and geological properties should be accounted for, as more 

data become available through experimental and field studies. 

 In this study, we regressed on seven variables (centered by mean and 

normalized by standard deviation) so the output of the regression as 

 

 𝑷𝑪𝒊 =  𝜷𝟎 + 𝜷𝟏𝒇𝒉�̂� + 𝜷𝟐𝑭�̂� + 𝜷𝟑𝒇�̂� + 𝜷𝟒𝒃𝒉�̂� + 𝜷𝟓�̂� + 𝜷𝟔�̂� + 𝜷𝟕�̂�, (6.14) 

where βi represents the standardized regression coefficients for the standardized 

variables. 

 Table 23 summarizes the output from multiple linear regression. It shows 

that all the variables are significant to explain PCi. The R2 value of 92% indicates 

a good fit of the variables  
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Table 23. Results from multiple regression for simulated data  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Multiple linear regression was performed for each of the PC scores 

deemed to be important to re-create the original dataset. The results from ANOVA 

was used to determine the upper and lower 95% confidence interval for each 

factor. In the presence of geological and completion properties, we can forecast 

production from new wells by using the relevant PC coefficients from the existing 

data and scores calculated from regression. In absence of these field data, the PC 

scores could be estimated by minimizing the LSE or the available historical data. 

Cross-validation was performed by using the leave-one-out method to check the 

predictive ability of the model. Error for each cross-validated case is shown in 

Figure 71, which indicates that the validation error for CGR is as large as 35% with 

only one PC and is less than 10% after using 3 PC’s. For gas rate, two PC’s was 

sufficient to reduce the error to less than 5%.   
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 Figure 71. Cross-validation error/prediction error for gas rate, cumulative gas and CGR 

 

  

 Table 24 and Table 25 show the average and maximum validation errors 

for each normalized simulated case. Average validation error for each of the cases 

are below 2.21% when 2 PC are used which shows an excellent predictive 

capability. The maximum error for normalized gas rate and cumulative gas using 

2 PC is less than 4%. However, the maximum error for CGR remains as high as 

13% even when 4 PC is used.  The reason why CGR shows higher error compared 

to gas rate could be that producing CGR depends on both oil rate and gas rate, so 

errors are compounded when calculating the CGR. The cause could also be that 

oil rate (consequently CGR) depends on interaction of several parameters 

including maximum production rate, minimum bottom-hole pressure, and 

permeability not accounted for in multiple linear regression model used in this 

study. This could cause some problems when used to forecast noisy or highly 

fluctuating data. This can potentially be alleviated by gathering more samples for 

analysis. 
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Table 24. Average validation (prediction) error 

 

 

Table 25. Maximum validation (prediction) error 

 

 

 

6.13 Field Example 

 Simulated data showed that two PC’s can predict trends of several 

dynamic production metrics of a well with reasonable accuracy. Although in some 

cases the error could be as high as 23%, the average error is less than 5%. 

Reservoir and geological properties were not reported for any of the cases so LSE 

was used to cross-validate and calculate the PC scores for test well data.  

6.14 Data Acquisition 

 We used DI Desktop (DrillingInfo, Version 6.2.1) to obtain production data 

from La Salle County (Eagle Ford shale). Horizontal “gas” wells classified with first 

production data from 1/1/2008 with at least 60 months of production history were 

selected as DI Desktop does not further classify gas wells as condensate wells nor 

oil wells as volatile oil wells (Figure 72).  

 1 PC 2 PC 3 PC 4 PC 

Gas 
Rate(N) 1.82 0.64 0.32 0.16 
Cum.(N) 0.11 0.01 0.00 0.00 
CGR(N) 7.09 2.21 1.19 0.77 

 1 PC 2 PC 3 PC 4 PC 

Gas 
Rate(N) 9.42 3.44 2.39 1.79 
Cum.(N) 0.66 0.08 0.08 0.08 
CGR(N) 35.1 23.5 18.59 13.1 



110 
 

Figure 73. Field gas and oil data 

 

 Figure 72. Wells from LaSalle County selected for analysis (shown in green) 
 

 The maximum CGR of the wells selected was 189 STB/MMscf (Gas to oil 

ratio (GOR) = 5,282 Scf/STB) and the minimum was zero (dry gas wells). The initial 

production date for each well was normalized so that production starts from the 

same time zero. Additionally, data was manually preprocessed to remove sudden 

increases or decreases in rate. Months with production rate of zero were also 

removed from the data. After these preprocessing steps, 46 wells were identified 

with 52 months of monthly production data for gas and oil. Producing GOR (or 

CGR) can be calculated by using the reported gas and oil rate data. The monthly 

gas rate for each well is shown in Figure 73 Oil rates were also analyzed. Of 52 

cases, 24 cases showed little to no oil production. In addition, 6 wells showed 

erratic production behavior and were excluded from the study. 
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6.15 Principal Component Analysis for Field Case 

 Pre-processed gas and oil rate data was subjected to PCA by creating 46 

by 52 and 21 by 52 matrices for gas and oil respectively (rows represent 

transposed rate data). Principal components for each gas and oil data set are 

shown in Figures 74 and 75, which indicate the first PC for both gas rate and oil 

rate accurately represents the sharp decline seen in unconventional reservoirs. 

Second and third PC’s add characteristic features seen in the final data.  

Figure 74. Principal components for gas rate 

 

 

 Figure 75. Principal components for oil rate 

 Eigenvalues for both gas rate and oil rate are shown in Figure 76 Field 

data, unlike simulated data, is noisy, which results in weights of subsequent 
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 Figure 76. Eigenvalues (blue) and cumulative eigenvalues (magenta) for gas rate and oil rate 

eigenvalues having higher values than for simulated cases. Still, first and second 

eigenvalues accounted for over 95% of energy as defined earlier. 

   

 

6.16 Recreation of Original Data with Limited Principal Components 

 Oil and gas rate data for each well was re-created using a limited number 

of principal components. Figure 77 and 78 show the maximum and minimum error 

of 5.1% and 0.29% respectively in recreation for gas rate data. Similarly, Figure 79 

and 80 show the maximum and minimum error of 7.01% and 0.78% respectively 

in recreation of oil rate data. Figure 77 through 80 show that quality of re-creation 

of the original data increases significantly with increases in the number of PC’s. It 

is also evident that unexplained fluctuations cannot be recreated by using a limited 

number PC’s, especially for oil rate. 
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Figure 77 . Maximum error in recreation using limited number of PC (gas rate) 

Figure 78. Minimum error in recreation using limited number of PC (gas rate) 

Figure 79. Maximum error in recreation using limited number of PC (oil rate) 
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 Figure 80. Minimum error in recreation using limited number of PC (oil rate) 

 The average and maximum error in recreation for field data is shown in 

Table 26 and Table 27 respectively. It can be seen that the error for gas rate is 

significantly lower compared to oil rate. This is due to the field oil rate data for 

condensate reservoirs being erratic and noisy as seen in Figure 73.  

 Table 26. Average error in recreation for each case 

 1 PC 2 PC 3 PC 4 PC 

Gas 

Rate 3.36 1.57 1.19 1.01 

Oil Rate 5.52 2.58 2.06 1.82 

 

 Table 27. Maximum error in recreation for each case 

 1 PC 2 PC 3 PC 4 PC 

Gas 

Rate 14.5 4.2 3.8 3.8 

Oil Rate 21.7 7.7 5.5 5.0 

 Error in re-creation of the field data for the entire set of simulated data is 

shown in Figure 81. Oil rates have larger errors than gas rates due mainly to large 

fluctuations in production rates. Excepting a few outliers, gas rate data for each 

well is re-created sufficiently accurately using at least two PC’s. 



115 
 

Figure 81. Error in re-creation of field data using various number of PC’s 

 

 Gas and oil rates were normalized using Equation 6.12 and 6.13. This 

step is especially important for field data as PC scores cannot be calculated by 

multiple linear regression, since values of field parameters are not known. The 

average and maximum error in recreation for normalized data is shown in Table 

28 and 29. The error for normalized data is comparable to un-normalized data as 

seen in Table 26 and Table 27. 

 Table 28. Average error in recreation for each case (normalized data) 

 1 PC 2 PC 3 PC 4 PC 

Gas 

Rate 3.52 1.56 1.13 0.95 

Oil Rate 5.63 2.28 1.79 1.49 

 
 Table 29. Maximum error in recreation for each case (normalized data) 

 1 PC 2 PC 3 PC 4 PC 

Gas 

Rate 13.4 4.2 3.8 3.1 

Oil Rate 23.7 4.6 3.4 3.2 

6.17 Prediction of New Well Data 

 Principal component scores were calculated by using LSE for validation 

and prediction. Cross-validation was performed with the leave-one-out method to 

check the predictive ability of the model. Errors for each cross-validated case are 
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Figure 82. Cross-validation/prediction error for field data 

shown in Figure 82. Validation error for CGR was as high as 25% with only one 

PC and was below 10% only after using 3 PC’s. For gas rate, two PC’s were 

sufficient to reduce the error to less than 5%. A few cases showed larger errors 

even when three or four PC’s were used. This could be due to a drastically different 

production profile for these wells compared to the whole set. 

 

 

 The average and maximum error in recreation is shown in Table 30 and 

Table 31 respectively. The average validation error for cases with just two PC’s 

was less than 4% with the maximum being 14 % for oil rate.  The average and 

maximum validation error for gas rates with two PC’s was 2% and 17% 

respectively. For each gas rate and oil rate, 3 PC yielded the best prediction with 

the least error. It can be seen that 4 PC, actually yields a slightly worse result for 

both gas rate and oil rate. This could be due to overfitting, which happens when a 

model performs well for the test set (recreation) but doesn’t perform well for 

prediction (Shlens, 2003). Thus, careful analysis much be performed to select the 

optimum number of principal components while using this method to predict the 

field data. 
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 Table 30. Average error in validation for each case (normalized data) 

 1 PC 2 PC 3 PC 4 PC 

Gas 

Rate 3.68 2.02 1.63 1.62 

Oil Rate 6.19 3.16 2.98 3.02 

 Table 31. Maximum error in validation for each case (normalized data) 

 1 PC 2 PC 3 PC 4 PC 

Gas 

Rate 15.0 17.2 17.1 17.5 

Oil Rate 24.5 14.2 13.4 14.4 

 

 These results show that field data can be used to identify and forecast 

production for similar wells in the same play. This process could be used iteratively 

to obtain more refined results as more field data becomes available. This process 

can also provide a quick and easy alternative to reservoir simulation and add to 

the results from decline curve analysis (DCA) and rate transient analysis (RTA). 

As mentioned earlier, the PCA method should be used in addition to, not instead 

of other methods to quickly screen and forecast wells with similar characteristics.   

6.18 Conclusions 

 From this study we can conclude that principal component analysis can 

be used successfully to identify and forecast production for wells with similar 

historical production profiles. It can also be used to identify wells with unique 

production profiles compared to the majority of the wells in a play. When extensive 

reservoir parameter and completion data are available, multiple linear regression 

can be used to calculate PC scores to forecast and re-create production data for 

new wells. In this work for simulated data, four PC was enough to yield the 
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prediction with average error of 0.16%, 0% and 0.77% respectively for gas rate, 

cumulative gas and CGR respectively. 

 However, for field data, three PC yielded the best prediction with average 

error of 1.63% and 2.98% for gas rate and oil rate respectively.  We can also 

conclude that noisy and highly fluctuating production data requires a larger number 

of PC’s for forecasting as evidenced by error for CGR. However, up to two PC’s 

can reasonably recreate the expected production profile for a smoothly varying 

data. DCA, RTA and PCA are able to predict the performance of gas condensate 

reservoirs with varying degree of accuracy but they do not reproduce the forecasts 

from robust reservoir simulation.  
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Appendix 

Matlab Code: 

Main File: This file takes the gas rate, cumulative and cgr data for simulated case, 

performs PCA, recreates the data. This step helps identify the number of principal 

components required for forecasting the gas rate, cumulative gas and cgr data. 

Following this step, this file performs multiple linear regression, which calculates 
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the principal components for new wells based on the reservoir properties. Using 

this, the code automatically calculates the final rates for new well with the given 

reservoir properties.  

This code is automated and reusable, as the only thing that needs to be changed 

are the input rate data and reservoir parameters. The other functions are given as 

follows. 

%% Initialization 
clear; close all; clc 

  
%% Load Data 

  

  
gas_rate_data = load('data_gas_rate.txt'); 
gas_cum_data = load('data_gas_cum.txt'); 
cgr_data = load('data_cgr.txt'); 
res_pro = load('multiple regression.txt'); 
res_pro =[ res_pro(1:332, 1:7); res_pro(334:335,1:7)]; 

  
gas_rate_data = [gas_rate_data(1:199,1:333) 

gas_rate_data(1:199,335:336)]; 
gas_cum_data = [gas_cum_data(1:199,1:333) gas_cum_data(1:199,335:336)]; 
cgr_data = [cgr_data(1:199,1:333) cgr_data(1:199,335:336)]; 

  

  
Time = gas_rate_data(:,1);  
G_Rates= gas_rate_data(:,2:size(gas_rate_data,2));  
G_cum= gas_cum_data(:,2:size(gas_cum_data,2));  
Cgr = cgr_data(:,2:size(cgr_data,2)); 

  

  
fprintf(['Plotting the relevant rates ' ... 
         '\n'... 
         ' Gas Rates, Cumulatives and CGR (Press enter to 

continue)\n']); 
%plot gas rate 
Figure1 = figure;hold on; 
subplot (2,3,1) 
plot(Time,G_Rates); 
ylabel('Gas Rates (ft3/d)'); xlabel('Time(days)'); 
head = title(' Gas Rate for Simulated Wells'); 
SetPos(head); 
xlim([0 10900]); 

  

  
%plot cumulative gas 
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subplot (2,3,2) 
plot(Time,G_cum); 
ylabel('Cum Gas(ft3)'); xlabel('Time(days)'); 
head = title('CUM. Gas for Simulated Wells'); 
SetPos(head); 
xlim([0 10900]); 

  
%plot CGR 
subplot (2,3,3) 
plot(Time,Cgr); 
ylabel('CGR(STB/MMScf)'); xlabel('Time(days)'); 
head = title('CGR for Simulated Wells'); 
SetPos(head); 
set(gca,'fontsize', 18); 
xlim([0 10900]); 

  

  
hold off; 
% divide data by 70/15/15 

  
[train_rate,val_rate,test_rate]= splitdata(G_Rates); 
[train_cum,val_cum,test_cum]= splitdata(G_cum); 
[train_cgr,val_cgr,test_cgr]= splitdata(Cgr); 

  
fprintf(['Normalize all the rates and values' ... 
         '(Press enter to continue)\n']); 

  
 % use normalize function to normalize each element in the original 

matrix 
 % by using the max values 

  

  

  
 normalized_gasrate = (normalize(G_Rates)); 
 normalized_cum = (normalize(G_cum)); 
 normalized_cgr  = (normalize(Cgr)); 

  

  

  
 subplot (2,3,4) 
plot(Time,normalized_gasrate); 
ylabel('Normalized Gas Rates '); xlabel('Time(days)'); 
head = title(' Gas Rate for Simulated Wells'); 
xlim([0 10900]); 
SetPos(head); 

  
%plot cumulative gas 
subplot (2,3,5) 
plot(Time,normalized_cum); 
ylabel('Normalized Cum Gas'); xlabel('Time(days)'); 
head = title('CUM. Gas for Simulated Wells'); 
xlim([0 10900]); 
SetPos(head); 
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%plot CGR 
 subplot (2,3,6) 
plot(Time,normalized_cgr); 
ylabel('Normalized CGR'); xlabel('Time(days)'); 
head = title('CGR for Simulated Wells'); 
set(gca,'fontsize', 18); 
xlim([0 10900]); 
SetPos(head); 

  

  

  
[train_rate_norm,val_rate_norm,test_rate_norm]= 

splitdata(normalized_gasrate); 
[train_cum_norm,val_cum_norm,test_cum_norm]= splitdata(normalized_cum); 
[train_cgr_norm,val_cgr_norm,test_cgr_norm]= splitdata(normalized_cgr); 

  

  
 fprintf(['Perform SVD to Calculate the Principal Component Scores  ' 

... 
         ' and Principal Component coefficeints(Press enter to 

continue)\n']); 

  
 [U_nrate, S_nrate, V_nrate] = svd (train_rate_norm'); 
 [U_ncum, S_ncum, V_ncum] = svd (train_cum_norm'); 
 [U_ncgr, S_ncgr, V_ncgr] = svd (train_cgr_norm'); 

  

  
 [U_rate, S_rate, V_rate] = svd (train_rate'); 
 [U_cum, S_cum, V_cum] = svd (train_cum'); 
 [U_cgr, S_cgr, V_cgr] = svd (train_cgr'); 

  
 fprintf(['Eigenvalues weight and Error for normalized data ' ... 
         ' (Press enter to continue)\n']); 

  
cumnMaterr = weighteigen(S_nrate,S_ncum,S_ncgr,'Eigenvalues for Norm. 

Rate','Eigenvalues for Norm. Cum','Eigenvalues for Norm. CGR'); 
cumMat = weighteigen(S_rate,S_cum,S_cgr,'Eigenvalues for 

Rate','Eigenvalues for Cum','Eigenvalues for CGR'); 

  

  
plotPCA(-V_nrate, 'Loadings for Norm. Rate'); 
plotPCA(-V_ncum, 'Loadings for Norm. Cum'); 
plotPCA(-V_ncgr,'Loadings for Norm. CGR'); 

  
 plotPCA(-V_rate, 'Loadings for  Rate'); 
 plotPCA(-V_cum, 'Loadings for Cum'); 
 plotPCA(-V_cgr,'Loadings for CGR'); 

  

  

  
 %Rates 

  
Error_Rate = cell2mat(recreate(train_rate','Rate')); 
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Error_CUM= cell2mat(recreate(train_cum','CUM')); 
Error_CGR = cell2mat(recreate(train_cgr','CGR')); 

  

  
Error_NRate = cell2mat(recreate(train_rate_norm','CGR')); 
Error_NCUM= cell2mat(recreate(train_cum_norm','CUM')); 
Error_NCGR = cell2mat(recreate(train_cgr_norm','Rate')); 

  

  

  
%Multiple Regression Validation Section 
train_ratePC = U_rate *S_rate; 
train_cumPC = U_cum *S_cum; 
train_cgrPC = U_cgr *S_cgr; 

  

  
%for this section spliting is done by 70 15 15 check splitdata for more 
%details 

  
%this does multiple regression for each principal component 
PC1_PRED_Gas = mult_reg_PC (train_ratePC,res_pro,1); 
PC1_PRED_Cum = mult_reg_PC (train_cumPC,res_pro,1); 
PC1_PRED_Cgr = mult_reg_PC (train_cgrPC,res_pro,1); 

  

  
PC2_PRED_Gas = mult_reg_PC (train_ratePC,res_pro,2); 
PC2_PRED_Cum = mult_reg_PC (train_cumPC,res_pro,2); 
PC2_PRED_Cgr = mult_reg_PC (train_cgrPC,res_pro,2); 

  

  
PC3_PRED_Gas = mult_reg_PC (train_ratePC,res_pro,3); 
PC3_PRED_Cum = mult_reg_PC (train_cumPC,res_pro,3); 
PC3_PRED_Cgr = mult_reg_PC (train_cgrPC,res_pro,3); 

  
PC4_PRED_Gas = mult_reg_PC (train_ratePC,res_pro,4); 
PC4_PRED_Cum = mult_reg_PC (train_cumPC,res_pro,4); 
PC4_PRED_Cgr = mult_reg_PC (train_cgrPC,res_pro,4); 

  
val_rate =[val_rate test_rate]; 
val_cum =[val_cum test_cum]; 
val_cgr =[val_cgr test_cgr]; 

  

  
PC_Gas={PC1_PRED_Gas PC2_PRED_Gas PC3_PRED_Gas PC4_PRED_Gas}; 
PC_Cum={PC1_PRED_Cum PC2_PRED_Cum PC3_PRED_Cum PC4_PRED_Cum}; 
PC_Cgr={PC1_PRED_Cgr PC2_PRED_Cgr PC3_PRED_Cgr PC4_PRED_Cgr}; 

  
[mr_gas_pc1, mr_gas_pc2, mr_gas_pc3, mr_gas_pc4]= mult_reg_Rates( 

PC_Gas,V_rate,2 ); 
[mr_cum_pc1 ,mr_cum_pc2, mr_cum_pc3 ,mr_cum_pc4] = mult_reg_Rates( 

PC_Cum,V_cum,2 ); 
[mr_cgr_pc1 ,mr_cgr_pc2, mr_cgr_pc3, mr_cgr_pc4] = mult_reg_Rates( 

PC_Cgr,V_cgr,2 ); 
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ErrorMatRate = validation_Err( val_rate, mr_gas_pc1, mr_gas_pc2, 

mr_gas_pc3, mr_gas_pc4, 1 ); 
ErrorMatCum =  validation_Err( val_cum, mr_cum_pc1, mr_cum_pc2, 

mr_cum_pc3, mr_cum_pc4, 1 ); 
ErrorMatCgr =  validation_Err( val_cgr, mr_cgr_pc1, mr_cgr_pc2, 

mr_cgr_pc3, mr_cgr_pc4, 1 ); 

  

  
err_sctter_fcn( ErrorMatRate,ErrorMatCum,ErrorMatCgr,' (Lower 95% CI)' 

); 

  
ll_Rate = [min(ErrorMatRate) mean(ErrorMatRate) max(ErrorMatRate)]; 
ll_Cum = [min(ErrorMatCum) mean(ErrorMatCum) max(ErrorMatCum)]; 
ll_Cgr = [min(ErrorMatCgr) mean(ErrorMatCgr) max(ErrorMatCgr)]; 

  

  

  
ErrorMatRate = validation_Err( val_rate, mr_gas_pc1, mr_gas_pc2, 

mr_gas_pc3, mr_gas_pc4, 2 ); 
ErrorMatCum =  validation_Err( val_cum, mr_cum_pc1, mr_cum_pc2, 

mr_cum_pc3, mr_cum_pc4, 2 ); 
ErrorMatCgr =  validation_Err( val_cgr, mr_cgr_pc1, mr_cgr_pc2, 

mr_cgr_pc3, mr_cgr_pc4, 2 ); 

  
err_sctter_fcn( ErrorMatRate,ErrorMatCum,ErrorMatCgr,' (Predicted)' ); 

  
pv_Rate = [min(ErrorMatRate) mean(ErrorMatRate) max(ErrorMatRate)]; 
pv_Cum = [min(ErrorMatCum) mean(ErrorMatCum) max(ErrorMatCum)]; 
pv_Cgr = [min(ErrorMatCgr) mean(ErrorMatCgr) max(ErrorMatCgr)]; 

  

  

  

  

  

  
ErrorMatRate = validation_Err( val_rate, mr_gas_pc1, mr_gas_pc2, 

mr_gas_pc3, mr_gas_pc4, 3 ); 
ErrorMatCum =  validation_Err( val_cum, mr_cum_pc1, mr_cum_pc2, 

mr_cum_pc3, mr_cum_pc4, 3 ); 
ErrorMatCgr =  validation_Err( val_cgr, mr_cgr_pc1, mr_cgr_pc2, 

mr_cgr_pc3, mr_cgr_pc4, 3 ); 

  
ul_Rate = [min(ErrorMatRate) mean(ErrorMatRate) max(ErrorMatRate)]; 
ul_Cum = [min(ErrorMatCum) mean(ErrorMatCum) max(ErrorMatCum)]; 
ul_Cgr = [min(ErrorMatCgr) mean(ErrorMatCgr) max(ErrorMatCgr)]; 

  
err_sctter_fcn( ErrorMatRate,ErrorMatCum,ErrorMatCgr,' (Upper 95% CI)' 

); 

  
plotVal( val_rate,mr_gas_pc1, mr_gas_pc2, mr_gas_pc3) 
plotVal( val_cum,mr_cum_pc1, mr_cum_pc2, mr_cum_pc3); 
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plotVal( val_cgr,mr_cgr_pc1, mr_cgr_pc2, mr_cgr_pc3); 

  

  

 

 

Function Split data:  

 

This function is used in the main file to split the input 

data into training, validation and test set 

 
function [ train, val, test  ] = splitdata( G_Rates ) 
%SPLITDATA Summary of this function goes here 
%   Detailed explanation goes here 

  
num_points = size(G_Rates,2); 
split_test  = round(num_points*0.7); 
split_val = round(num_points*0.85); 
train = G_Rates(1:size(G_Rates,1), 1:split_test); 
val = G_Rates(1:size(G_Rates,1), (split_test+1):split_val ); 
test = G_Rates(1:size(G_Rates,1),(split_val+1):num_points ); 

  
end 

  

Function Normalize: This function is used to normalize the 

input data 

 
function [ output_mat ] = normalize( input_mat ) 
%NORMALIZE Summary of this function goes here 
%   Detailed explanation goes here 

  
maxVal = max(max(input_mat)); 
for j = 1:size(input_mat,2) 
    for i = 1:size(input_mat,1) 
        input_mat(i,j) = input_mat(i,j)/maxVal; 
    end 
end 

  
output_mat = input_mat; 

  
end 

  

Function weighteigen:  

This function calculates and plots the weighted eigenvalues 

for the simulated data. 

 
function [cumMat] = weighteigen( S1,S2,S3, ttl1,ttl2,ttl3 ) 
%WEIGHTEIGEN Summary of this function goes here 
%   Detailed explanation goes here 

  
%figure; hold on; 

  
%find the diagonal matrix  
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d1 = diag(S1); 
d2 = diag(S2); 
d3 = diag(S3); 

  

  
pc1 = 100 * d1 / sum(d1); 
pc2 = 100 * d2 / sum(d2); 
pc3 = 100 * d3 / sum(d3); 

  

  
x =1:1:199; 

  
cumMat1 = pc1; 
cumMat2 = pc2; 
cumMat3 = pc3; 

  

  
for i = 2:size(pc1,1) 
    cumMat1(i,1) = pc1(i,1)+cumMat1((i-1),1); 
    cumMat2(i,1) = pc2(i,1)+cumMat2((i-1),1); 
    cumMat3(i,1) = pc3(i,1)+cumMat3((i-1),1); 

     
end 

  
cumMat = cumMat1; 
figure;  
subplot (2,3,1) 
bar(x, pc1, 'barwidth', 1); 
hold on; 
plot(x,cumMat1,'mo','LineWidth',1,'MarkerSize',2); 
title(ttl1); 
legend('Eigenvalues', 'Cumulative Eigenvalues'); 
axis([0,199,0,100]) 

  
hold off; 

  
subplot (2,3,2) 
bar(x, pc2, 'barwidth', 1); 
hold on; 
plot(x,cumMat2,'mo','LineWidth',1,'MarkerSize',2); 
legend('Eigenvalues', 'Cumulative Eigenvalues'); 
title(ttl2); 
axis([0,199,0,100]) 
hold off; 

  

  
subplot (2,3,3) 
bar(x, pc3, 'barwidth', 1); 
hold on; 
plot(x,cumMat3,'mo','LineWidth',1,'MarkerSize',2); 
legend('Eigenvalues', 'Cumulative Eigenvalues'); 
title(ttl3); 
axis([0,199,0,100]) 
hold off; 
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end 

 

 

Function recreate:  

This function recreates the original data and checks the error in recreation. 

function  [errorMat] = recreate( Cgr,heading ) 
%RECREATE the heading goes to create the suptitle for all the graphs 
%combined 
k = randi([1, size(Cgr,1)]); 

  

  
[U,S,V] = svd(Cgr); 

  
loadings =zeros(size(V,1),size(V,2)); 

  
product = U*S; 

  
%1 PRINCIPAL COMPONENT 
for i = 1:size(V,1) 
    loadings(i,1) = V(i,1); 
end 
firstPC = (product* loadings')'; 

  
figure ; hold on; 
subplot(2,4,1); 
plot(1:1:size(Cgr,2),firstPC(:,k),'-','LineWidth',1); 
hold on; 
plot(1:1:size(Cgr,2),(Cgr(k,:))','-','LineWidth',1); 
legend('1 PC','Original','Location','northwest'); 
title('Recreated Data with 1 PC'); 
xlabel('Time Steps'); 
%Calculate Error 
errPC1 = errorCalc(Cgr,firstPC'); 

  

  
%TWO PRINCIPAL COMPONENTS 
for i = 1:size(V,1) 
    loadings(i,2) = V(i,2); 
end 
firstPC = (product* loadings')'; 

  
subplot(2,4,2); 
plot(1:1:size(Cgr,2),firstPC(:,k),'-','LineWidth',1); 
hold on; 
plot(1:1:size(Cgr,2),(Cgr(k,:))','-','LineWidth',1); 
legend('2 PC','Original','Location','northwest'); 
title('Recreated Data with 2 PC'); 
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xlabel('Time Steps'); 
hold off; 
errPC2 = errorCalc(Cgr,firstPC'); 

  
%3 pc 
for i = 1:size(V,1) 
    loadings(i,3) = V(i,3); 
end 
firstPC = (product* loadings')'; 

  

  
subplot(2,4,3); 
plot(1:1:size(Cgr,2),firstPC(:,k),'-','LineWidth',1); 
hold on; 
plot(1:1:size(Cgr,2),(Cgr(k,:))','-','LineWidth',1); 
legend('3 PC','Original','Location','northwest'); 
title('Recreated Data with 3 PC'); 
xlabel('Time Steps'); 
hold off; 
errPC3 = errorCalc(Cgr,firstPC'); 

  
%for 4 principal components 
for i = 1:size(V,1) 
    loadings(i,4) = V(i,4); 
end 
firstPC = (product* loadings')'; 

  

  
subplot(2,4, 4); 
plot(1:1:size(Cgr,2),firstPC(:,k),'-','LineWidth',1); 
hold on; 
plot(1:1:size(Cgr,2),(Cgr(k,:))','-','LineWidth',1); 
legend('4 PC','Original','Location','northwest'); 
title('Recreated Data with 4 PC'); 
xlabel('Time Steps'); 
hold off; 
errPC4 = errorCalc(Cgr,firstPC'); 

  

  
Well_Number = num2str(k); 
Graph_heading = strcat({'Recreated '},{heading},{' data using limited 

PC for Well '}, Well_Number) ; 
suptitle (Graph_heading); 

  
errorMat = {errPC1 errPC2 errPC3 errPC4}; 

  
end 

Function mult_reg_PC:  
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This function is invoked in the validation stage/prediction stage to predict the 

production from new wells. This function calculates the principal component for 

new well using multiple linear regression. In this study, we use cross validation to 

check the effectiveness of the model generated from PCA. 

function [ PC1_PRED_Gas ] = mult_reg_PC( train_ratePC,res_pro,i ) 

  

  
train_respro = res_pro (1:round(size(res_pro,1)*0.7), 1:7); 
val_respro = res_pro ((round(size(res_pro,1)*0.7)+1):size(res_pro,1), 

1:7); 

  
mult_reg_rate =fitlm (train_respro, 

train_ratePC(1:size(train_ratePC,1), i)); 
[PC1_PRED_Gas, PC1_PRED_Gas_CI] = predict(mult_reg_rate, val_respro); 
PC1_PRED_Gas = [PC1_PRED_Gas_CI(1:size(val_respro,1), 1) PC1_PRED_Gas 

PC1_PRED_Gas_CI(1:size(val_respro,1), 2)];  

  
end 

  

 

Function mult_reg_Rates: 

 

This function calculates the rates of new using multiple 

regression. 
function [ A B C D ] = mult_reg_Rates( PC_Gas,V_rate,i ) 
%MULT_REG_RATES Summary of this function goes here 
%   Detailed explanation goes here 

  
PC1 = cell2mat(PC_Gas(1)); 
%ll = lower 95% , pv = predicted value ul= upper limit  
ll = [PC1(1:size(PC1,1),1) zeros(size(PC1,1), (size(V_rate,1)-1))]; 
pv =[PC1(1:size(PC1,1),2) zeros(size(PC1,1), (size(V_rate,1)-1))]; 
ul =[PC1(1:size(PC1,1),3) zeros(size(PC1,1), (size(V_rate,1)-1))]; 

  

  
rate_ll_pc1 = (ll*V_rate')'; 
rate_pv_pc1 = (pv*V_rate')'; 
rate_ul_pc1 = (ul*V_rate')'; 

  
A = { rate_ll_pc1 rate_pv_pc1 rate_ul_pc1}; 

  
PC2 = cell2mat(PC_Gas(2)); 

  
ll = [PC1(1:size(PC1,1),1) PC2(1:size(PC1,1),1) zeros(size(PC1,1), 

(size(V_rate,1)-2))]; 
pv =[PC1(1:size(PC1,1),2) PC2(1:size(PC1,1),2) zeros(size(PC1,1), 

(size(V_rate,1)-2))]; 
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ul =[PC1(1:size(PC1,1),3) PC2(1:size(PC1,1),3) zeros(size(PC1,1), 

(size(V_rate,1)-2))]; 

  
rate_ll_pc2 = (ll*V_rate')'; 
rate_pv_pc2 = (pv*V_rate')'; 
rate_ul_pc2 = (ul*V_rate')'; 

  
B = { rate_ll_pc2 rate_pv_pc2 rate_ul_pc2}; 

  
PC3 = cell2mat(PC_Gas(3)); 

  
ll = [PC1(1:size(PC1,1),1) PC2(1:size(PC1,1),1) PC3(1:size(PC1,1),1) 

zeros(size(PC1,1), (size(V_rate,1)-3))]; 
pv = [PC1(1:size(PC1,1),2) PC2(1:size(PC1,1),2) PC3(1:size(PC1,1),2) 

zeros(size(PC1,1), (size(V_rate,1)-3))]; 
ul =[PC1(1:size(PC1,1),3) PC2(1:size(PC1,1),3) PC3(1:size(PC1,1),3) 

zeros(size(PC1,1), (size(V_rate,1)-3))]; 

  
rate_ll_pc3 = (ll*V_rate')'; 
rate_pv_pc3 = (pv*V_rate')'; 
rate_ul_pc3 = (ul*V_rate')'; 

  
C = { rate_ll_pc3 rate_pv_pc3 rate_ul_pc3}; 

  

  
PC4 = cell2mat(PC_Gas(4)); 
ll = [PC1(1:size(PC1,1),1) PC2(1:size(PC1,1),1) PC3(1:size(PC1,1),1) 

PC4(1:size(PC1,1),1) zeros(size(PC1,1), (size(V_rate,1)-4))]; 
pv = [PC1(1:size(PC1,1),2) PC2(1:size(PC1,1),2) PC3(1:size(PC1,1),2) 

PC4(1:size(PC1,1),2) zeros(size(PC1,1), (size(V_rate,1)-4))]; 
ul =[PC1(1:size(PC1,1),3) PC2(1:size(PC1,1),3) PC3(1:size(PC1,1),3) 

PC4(1:size(PC1,1),3) zeros(size(PC1,1), (size(V_rate,1)-4))]; 

  
rate_ll_pc4 = (ll*V_rate')'; 
rate_pv_pc4 = (pv*V_rate')'; 
rate_ul_pc4 = (ul*V_rate')'; 

  
D = { rate_ll_pc4 rate_pv_pc4 rate_ul_pc4}; 

  

  
end 

  

Function validation_Err: 

This function calculates the validation error for the 

validation set 
 

function ErrorMatRate = validation_Err( val_rate, mr_gas_pc1, 

mr_gas_pc2, mr_gas_pc3, mr_gas_pc4, i ) 

  
error_gas1 = errorCalc(val_rate', (cell2mat(mr_gas_pc1(i)))'); 
error_gas2 = errorCalc(val_rate', (cell2mat(mr_gas_pc2(i)))'); 
error_gas3 = errorCalc(val_rate', (cell2mat(mr_gas_pc3(i)))'); 
error_gas4 = errorCalc(val_rate', (cell2mat(mr_gas_pc4(i)))'); 
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ErrorMatRate = [error_gas1 error_gas2 error_gas3 error_gas4]; 

  

  
end 

 

Function err_sctter_fcn:  
This function calculates scatter plot for the error for 

both validation and recreation.  

 
function  err_sctter_fcn( ErrorMatRate,ErrorMatCum,ErrorMatCgr,head ) 
%ERR_SCTTER_FCN Summary of this function goes here 
%   Detailed explanation goes here 

  
figure; 
for i=1:4  
hold on 
subplot(2,3,1); 
ret = scatter_notation(i); 
scatter(1:size(ErrorMatRate,1),ErrorMatRate(:,i),ret); 
end 
legend ('Error 1 PC', 'Error 2 PC','Error 3 PC','Error 4 PC') 
xlabel('Well Number', 'FontSize', 22) 
ylabel('% Error', 'FontSize', 22);  
str = strcat('Error (Gas Rate) ', head); 
title(str,'FontSize', 25) 
xlim([0 (size(ErrorMatRate,1))]) 
hold off; 

  
for i=1:4  
hold on 
subplot(2,3,2); 
ret = scatter_notation(i); 
scatter(1:size(ErrorMatRate,1),ErrorMatCum(:,i),ret); 
end 
legend ('Error 1 PC', 'Error 2 PC','Error 3 PC','Error 4 PC') 
xlabel('Well Number', 'FontSize', 22) 
ylabel('% Error', 'FontSize', 22);  
title('Error (Cumulative Gas)','FontSize', 25) 
xlim([0 (size(ErrorMatRate,1))]) 
hold off; 

  
for i=1:4  
hold on 
subplot(2,3,3); 
ret = scatter_notation(i); 
scatter(1:size(ErrorMatRate,1),ErrorMatCgr(:,i),ret); 
end 
legend ('Error 1 PC', 'Error 2 PC','Error 3 PC','Error 4 PC') 
xlabel('Well Number', 'FontSize', 22) 
ylabel('% Error', 'FontSize', 22);  
title('Error (CGR)','FontSize', 25) 
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xlim([0 (size(ErrorMatRate,1))]) 
hold off; 

  
end 
 

 

 

Function plotVal:  

This plots the validation and confidence interval for the 

validation set 

 
function   plotVal( val_rate,mr_gas_pc1, mr_gas_pc2, mr_gas_pc3) 
%PLOTVAL Summary of this function goes here 
%   Detailed explanation goes here 

  
k = randi([1, size(val_rate,2)]); 
%k=31; 

  
figure ; hold on; 
subplot(2,3,1); 

  
ll =cell2mat(mr_gas_pc1(1)); 
pval =cell2mat(mr_gas_pc1(2)); 
ul = cell2mat(mr_gas_pc1(3)); 

  
Time =((10958/199)*(1:1:size(val_rate,1)))'; 

  
plot(Time,ll(:,k),'--m','LineWidth',1); 
hold on 
plot(Time,pval(:,k),'-k','LineWidth',1); 
hold on 
plot(Time,ul(:,k),'--m','LineWidth',1); 
hold on 
plot(Time,val_rate(:,k),'--g','LineWidth',1); 
legend('Lower 95%','Predicted','Upper 95%','Simulated'); 
title('1 PC'); 
xlabel('Time (days)'); 
xlim([0 10958]); 

  

  
subplot(2,3,2); 

  
ll =cell2mat(mr_gas_pc2(1)); 
pval =cell2mat(mr_gas_pc2(2)); 
ul = cell2mat(mr_gas_pc2(3)); 

  

  
plot(Time,ll(:,k),'--m','LineWidth',1); 
hold on 
plot(Time,pval(:,k),'-k','LineWidth',1); 
hold on 
plot(Time,ul(:,k),'--m','LineWidth',1); 
hold on 
plot(Time,val_rate(:,k),'--g','LineWidth',1); 
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legend('Lower 95%','Predicted','Upper 95%','Simulated'); 

  
title('2 PC'); 
xlabel('Time (days)'); 
xlim([0 10958]); 

  

  
subplot(2,3,3); 

  
ll =cell2mat(mr_gas_pc3(1)); 
pval =cell2mat(mr_gas_pc3(2)); 
ul = cell2mat(mr_gas_pc3(3)); 

   

  
plot(Time,ll(:,k),'--m','LineWidth',1); 
hold on 
plot(Time,pval(:,k),'-k','LineWidth',1); 
hold on 
plot(Time,ul(:,k),'--m','LineWidth',1); 
hold on 
plot(Time,val_rate(:,k),'--g','LineWidth',1); 
legend('Lower 95%','Predicted','Upper 95%','Simulated'); 

  
title('3 PC'); 
xlabel('Time (days)'); 
xlim([0 10958]); 

  
Well_Number = num2str(k); 
Graph_heading = strcat({'Cross Validation '},{' for Well '}, 

Well_Number) ; 
suptitle (Graph_heading); 

  

  
end 

 

 

Function ValScoCal: 

For field case ValScoCal function is used to calculate the principal components of 

by using least sum of squares fit. 

function [ outputMat ] = ValScoCal( Cgr ) 

  

  
%This function calculates the principal component scores by using 
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%leave-one-out cross validation method. 'for loops' remove each row 

(the 
%cgr_tru), and calcualtes the PC. That PC is in turn used to evaluate 

the 
%truncated row of value by using least squares fit  

  

  

  

  
x_PC4 = zeros(size(Cgr,1),size(Cgr,1)); 

  

  

  
for i = 1 :size(Cgr,1) 
    cgr_tru = [Cgr(1:(i-1),:); Cgr((i+1):size(Cgr,1),:)]; 

     
    [U S V] = svd(Cgr); 
    PC1 = V(:,1);PC2 =V(:,2);PC3 = V(:,3);PC4 = V(:,4); 
    predict = (Cgr(i,:))' ;   
    fun = @(x,PC1)(x(1)*PC1+x(2)*PC2+x(3)*PC3+x(4)*PC4); 
    x0 = [-20, -5 -4 -1]; 
    x_INT = lsqcurvefit(fun,x0,PC1,predict);     
    x_PC4(i,1) =x_INT(1,1); 
    x_PC4(i,2) =x_INT(1,2); 
    x_PC4(i,3) =x_INT(1,3); 
    x_PC4(i,4) =x_INT(1,4); 

     
end 

  
%this yields the cell matrix with pricipal component scores when 1, 2, 

3 
%and 4 PC coefficeints are used. Note that since they are individually 
%calculated X_PC1 has different pc score compared to others and so on 

  
 outputMat  = x_PC4; 

  

  

  
end 

 


