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ABSTRACT 
 

With Vp, Vs, and density well logs, we can do isotropic AVO forward modeling, using 

isotropic Zoeppritz equations or its approximations, and a wavelet extracted from the 

seismic data, to get synthetic seismic data.  Compared with real seismic data, these 

synthetic data are scaled differently, and ignore many propagation effects. 

Conventionally, the seismic data are normalized to the isotropic synthetic data for 

comparison; this procedure suppresses the anisotropy information in the real data. 

In this study, I tested a new method, using log data of Vp, Vs, and density, together with 

seismic pre-stack Common Depth Point (CDP) gathers near the well site, to deduce 

anisotropy parameters from them. This dataset is from Colony Sand, Alberta, Canada. I 

calculated the normalization function, as in the conventional procedure, but then filtered 

it in frequency domain using a cut-off frequency to be determined empirically.  The low-

frequency part of the normalization function was used to eliminate the propagation 

factors in the real data, but not the reflection coefficients. After scaling, the difference 

between the real data, thus normalized, and the isotropic synthetic data are attributed to 

the anisotropic part of the reflection coefficients. The resulting distributions of )(z  and 

)(z are compared to the gamma-ray log. There is a positive correlation between the 

anisotropy parameter and the gamma-ray log, which is an indication of the validity of the 

method. 
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1. Background 
 

Anisotropy is the variation of a physical property depending on the direction in which it 

is measured (Sheriff, 1972). This is a very common phenomenon in the science fields 

such as chemistry, medical science, physics, and engineering. In the geophysics field, the 

anisotropy mostly refers to seismic anisotropy. Seismic anisotropy is the dependence of 

seismic velocity upon angle (Thomsen, 2002). It can come from the anisotropic rock 

itself or the stress-induced anisotropy due to the difference of vertical stress and 

horizontal stress caused by layers. The application of seismic anisotropy has improved 

the exploration of hydrocarbons a lot, by modifying the velocity model from simple 

isotropic to more realistically anisotropic. Seismic anisotropy has played roles in 

applications such as the long offset seismic data with greater angles of incidence (the 

angle-dependence of velocity is more evident), AVO (Amplitude versus offset) 

quantitative analysis, and anisotropic migration. (Thomsen, 2002) 

The study of seismic wave propagation leads to the study of rock elasticity tensors. For 

the simplest realistic case, the elasticity is of type of hexagonal symmetry, which is also 

called polar symmetry. In this case, the elasticity tensor has five independent elements 

C11, C13, C33, C44, and C66. This polar anisotropy case applies to horizontal massive shales 

and horizontal thin-bed sequences (Thomsen, 2002). Because its symmetry axis is 

vertical, polar anisotropy is also referred to as vertical transverse isotropy (VTI). 
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To express the velocities of plane waves in polar anisotropy using elasticity tensor 

generates complicated equations. Thomsen used the combinations of elastic modules to 

make the expressions much simpler. If the material is of weak anisotropy, which is the 

most common case, then:  
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The three anisotropic parameters δ,ε,γ can also be understood respectively as near-

vertical anisotropy, near-horizontal anisotropy, and SH anisotropy. 

These three anisotropy parameters are useful because: 
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 They are dimensionless. 

 The anisotropy parameters reduce to zero when degenerating to isotropic case. 

 When the parameters are much less than 1, we can take such formations as 

weakly anisotropic. 

(Thomsen, 2002) 

Nowadays the anisotropy has been developed to include azimuth anisotropy, which is 

about HTI (horizontal transverse isotropy) media and TTI (tilted transverse isotropy) 

media since it first came out during the 1970s. The theory development of anisotropy has 

been making a lot of progress, while the real practice of getting anisotropy parameters is 

relatively underdeveloped.  

My thesis will try a new method to extract anisotropy parameters. Based on only the 

simplest polar anisotropy case, I will extract the anisotropy parameters δ and ε from P-

wave propagation. 

1.1  Recent methods to get anisotropy parameters and their drawbacks 
 

In oil and gas reservoirs, shale is the lithology with the most significant anisotropy. The 

most direct way to obtain anisotropy parameters of shale is to measure the shale sample 

in a lab, such as using traveltime inversion and physical modeling. But in lab conditions, 

the rocks are under different frequencies compared with seismic waves, and they are not 

likely to exhibit its original anisotropy when buried underground. 
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Nowadays some other ways to measure anisotropy using P-wave well logs and seismic 

data gathers have been developed as well. The seismic arrival-time methods (such as 

those which measure hyperbolic and non-hyperbolic move-out (Tsvankin and Thomsen, 

1994)) produce estimates of anisotropy which have low spatial resolution, and therefore 

cannot be used in AVO studies, which have much higher spatial resolution (depending on 

the seismic wavelet). 

One method uses the hyperbolic move-out is based on the equation: 

])21([

2
2

,
22

0,
2

2

,
2

2
2

0

2

xVtV

x

V

x
tt

SSNMOSSNMOSSNMO
x






                                             (1.7) 

(Alkhalifah and Tsvankin, 1995) 

The SSNMOv , is the short spread normal move-out velocity using conventional velocity 

analysis, by short-spread, we mean mute the CDP gather at offset=depth.   is dependent 

on the anisotropy parameters δ and ε (Thomsen, 1986): 






21


                                                                                                                      (1.8) 

The parameter  can be obtained from formula 

2/1)21)(0()0(  
PNMO Vv                                                                                          (1.9) 

We can see that normally the traveltimes must be measured over thick intervals, so that 

the small parameters  and δ may be estimated with confidence. 
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Another way to measure anisotropy is anisotropy logging, or cross-dipole logging. This 

kind of log uses one monopole and two wideband, low-frequency, dipole transmitters 

perpendicular to each other, it measures compressional (quasi-P), fast and slow shear-

slowness and fast-shear azimuth. The pitfall for this method is that it is very dependent on 

the borehole environment, and it also has dispersion characteristics due to dipole flexural 

waves (Patterson and Tang, 2005). 

Here my study will focus on a method to extract anisotropy parameters using both well 

logs and seismic data. I concentrate on amplitudes; hence the results will have the 

resolution of the seismic wavelet. 

2. New method 

 

2.1  Overview 
 

The goal of this study is to use log data of Vp, Vs, and density, together with seismic pre-

stack Common Depth Point (CDP) gathers near the well site, to deduce anisotropy 

parameters from them, with the resolution of the seismic wavelet. This study will utilize 

the Hampson-Russell AVO package to do the AVO modeling, and will calculate 

normalization factors to compare log-derived synthetic data and real seismic data. Since 

the synthetic is based on isotropic theory, the normalization factors are modified to 

permit an estimate of anisotropy. The primary goal is to extract the   and ε parameters, in 

the logged section of the well. 
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The method involves the comparison of surface seismic data with synthetic data 

calculated from logs. Before this comparison is feasible, certain conventional data 

preparation steps are required. These are described next and the details of the new 

method follow that.  

2.2 Data preparation 
 

The Colony Sand Dataset is suitable for this experiment because it has both seismic data 

and most well logs needed in that seismic acquisition area. The Colony Sand Dataset is 

acquired from Alberta, Canada and it is the default dataset for Hampson-Russell software 

AVO package version 6.5 CE7/R4. In this experiment, I use this AVO package 

extensively. 

2.2.1 Well logs loading 

 

The first step is to load the well logs from the Colony Dataset. In the dataset, we have one 

well in LAS format, called Colony_well. In this well, there are logs for P-wave slowness 

(1/velocity), density, gamma Ray, SP and resistivity. For this project, I still need an S-

wave log. Although the argument would be stronger with real data, since the real data is 

not available, I estimate VS as follows. Assuming the log as a wet (brine-filled log), we 

can use Castagna’s “mudrock” equation (Castagna, 1985) to create a VS log based on the 

VP log.  Castagna’s equation is:  

36.116.1  VsVp (km/s)                        (2.1) 

So 
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 1724.18621.0  VpVs (km/s)           (2.2) 

To this point, we have assumed that the logs are from a wet well, but according to the 

information about the Colony data, there is gas sand present, so we still need to conduct a 

fluid substitution to get the correct S-wave velocity. This procedure can be simply done 

by performing Fluid Replacement Modeling in the Hampson-Russell AVO package. In 

brief, the VP and density logs are converted to brine-filled equivalents, using separate 

knowledge of which layers are gas-filled, and using standard isotropic Gassmann theory 

(Gassmann, 1951). Then VS is estimated using (2.2), and all logs are converted back to 

original fluids. 

After all this process, the final logs for density, 1/VS, and 1/VP are shown in Figure.1: 
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Figure 1. Vp,Vs and density logs from Colony well 

The stars indicate the logs used to compute the synthetic seismograms. The density log is 

renamed as Density_FRM, which means density log after performing Fluid Replacement 
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Modeling, S-wave_cast_FRM means Vs log created by Castagna’s mudrock line equation 

(2.1) and modified by Fluid Replacement Modeling. P-wave_corr_FRM means the P-

wave log has been stretched and squeezed to correlate to the seismic event time. This is 

actually done after the synthetic is computed, we show the result here before the 

discussion about the correlation later. 

2.2.2 Seismic data loading 

 

The required geometry of a well and a corresponding CDP gather is shown in Figure 2. 

The synthetic seismic traces near the well site are generated from isotropic reflection 

coefficients (using Vp , Vs , and density logs). However, the reflections recorded in the 

real seismic data will contain anisotropy information, if this area has anisotropic media. 

For example, in the CDP gather from Figure 2, if the medium is isotropic, the velocity of 

the three reflection rays (S1-R1;S2-R2;S3-R3) will travel with same velocities, But if the 

medium is anisotropic, even though they are reflected from the same interface, their 

velocity is different. That is because their reflection angle is different ( 321   ). 

 

Figure 2.Near well site P-wave reflections from anisotropic medium 
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The seismic data in the Colony dataset is called gathers.sgy. It is a pre-stack 2D line. For 

the survey, there are 129 shots and the source/receiver offset interval is 40m. The CDP 

gathers are numbered from 260 to 390; each gather has about 10 traces. For each trace, 

the sample rate is 2ms and there are 250 samples in each trace. The seismic data begins 

from 300ms. 

 The geometry display is simple: 

 

Figure 3. Geometry of Colony sand seismic data 
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After loading in the seismic data, it displays as: 

 

Figure 4.CDP gathers for Colony sand seismic data 

 

As we will need to use the CDP gather near the well site, we should find the location of 

the CDP gather which the well site is closest to. We can find this information easily in 

Hampson-Russell when we load the well logs into the Geoview package. It is located at 

the position of CDP 330.  

We project the P-wave velocity log onto that CDP gather and the display is like this: 
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Figure 5.CDP gathers for Colony sand seismic data with P-wave log posted 

 

In order to improve the signal/noise ratio, we use seismic CDP super-gathers in place of 

the original seismic CDP gathers. Super-gathers are averages of the original gathers; in 

this case we average over 5 CDP positions near the well. 

 The wavelet extracted from the seismic super-gather is shown here, along with its 

spectrum (amplitude and phase). 
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Figure 6.Seismic wavelet, in time and frequency domains 

Because seismic data are usually viewed with zero-phase wavelets, Figure 7 shows the 

wavelet from Figure 6, shifted to zero phase. The zero-phase wavelet is extracted from 

the original seismic wavelet  (Figure 6) using  wavelet dephase deconvolution, which can 

shape the known input wavelet to a zero-phase wavelet with the same amplitude 

spectrum as the input.   
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Figure 7.Seismic wavelet in time domain, converted to zero phase 

 

Figure 8.The frequency spectrum of the zero-phase wavelet 
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Also, Figure 8 shows the amplitude spectrum of this wavelet. 

As we can see, it differs from the spectrum in Figure 6.  Evidently the HR module which 

extracted this wavelet did some further wavelet-shaping; however, this is not a focus of 

this thesis. We show below (Figure 9) how the seismic super-gather at CDP 330 looks, 

deconvolved to this wavelet. 

 

Figure 9.Super-gather at CDP 330 deconvolved to zero-phase wavelet 
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2.2.3 Synthetic generating 

 

As the Vp, Vs, and density logs are ready, and the seismic wavelet is determined, we can 

use them to generate an isotropic synthetic containing no propagation effects. In the 

simplest version of the “convolutional model” of seismic wave propagation, the seismic 

trace )(ts is given by 

)(*)()( twtrts                                                                                            (2.3) 

It means one trace of the seismic reflection record is the convolution (*) of the reflection 

coefficients )(tr (of the layers the wave traverses) with the seismic wavelet )(tw .The 

reflectivity series )(tr has amplitudes r, occurring at times t, both of which are affected by 

anisotropy. For a synthetic trace created from well logs, this equation is true. But when it 

comes to real seismic traces, it neglects propagation effects and noise. We will take these 

factors into consideration in the anisotropy parameter calculation. Usually we can get the 

wavelet by extracting it from seismic data. And for the best interpretation of the seismic 

data, we usually convert wavelet into zero-phase.  

The accurate isotropic algorithm for computing a synthetic would be the Zoeppritz 

equation (Zoeppritz, 1919). But as we will use the Shuey’s approximation for Aki-

Richards equation (Aki and Richards, 1980, Shuey, 1985), which is an approximation for 

Zoeppritz equation to extract anisotropy information, here we will use Shuey’s 
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approximation for Aki-Richards equation( referred to as Aki-Richards equation in the 

following text) to create the isotropic synthetic also.  

In the isotropic case, based on Aki-Richards’ approximation, the P-wave reflection 

coefficient can be written as:    

 2222 sintan
2

1
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2
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                (2.4) 

where VpZ   is the P-wave impedance, 
2VsG  is the shear modulus,   is density, 

and the bar denotes the average of properties (above and below the interface).  Vp is the 

P-wave velocity and Vs is the S-wave velocity.   is the wavefront normal angle of the 

incident P-wave. The synthetic gather generated (by HR) is a flattened gather, which uses 

a model blocking of traveltime average to convert from depth to vertical traveltime t0 

within the logged interval, and its output sample rate is 2ms. It selects a series of incident 

angles , then constructs a spike series (t=2ms) using equation (2.4), and convolves 

with a wavelet, as in equation (2.3), with r(t)  R
iso

(t0,), constructed as just described. 

We found some problematic issues with the way this procedure is implemented by HR 

(c.f. Appendix A), and so implemented a similar procedure in Matlab.  

The synthetic gather is flat in time, for easy comparison with the NMO-corrected seismic 

gather. The synthetic gather shown below is one with the wavelet extracted from seismic 

data (Figure 6): 
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Figure 10.Synthetic created from colony well logs 

 

The synthetic gather shown below is one with the wavelet (Figure 7) which was extracted 

from seismic data, and converted to zero phase: 
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Figure 11.Synthetic converted to zero phase for colony well logs 

 



20 
 

 

2.2.4 Synthetic and seismic correlation 

 

The synthetic and the real seismic differ in various ways. Some common reasons include 

that the check shot correction is not applied and the time-depth curve for the synthetic is 

not correct. And also if we use a default zero-phase wavelet to generate the synthetic, we 

should expect the difference because the seismic wavelet is not supposed to be zero-

phase, and thus we need to extract it from the seismic.  

After check shot analysis, log correlation, regenerating the synthetic with the seismic 

wavelet extracted from the real seismic data, and converting to angle domain, the 

synthetic and the seismic super-gather at location CDP330 display as in Figure 12. 
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Figure 12.Synthetic (right) and seismic super-gather(left) comparison at location CDP330 
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And after converting the seismic and synthetic data to angle gathers, the synthetic and the 

seismic super-gather at location CDP330 display as in Figure 13. 

 

Figure 13. Synthetic and seismic super-gather at location CDP330 in angle domain, with the 
original seismic wavelet 

 

Figure 14a shows the comparison between the zero-phase seismic data, and the zero-

phase synthetic in the angle domain:  
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Figure 14a.Synthetic and seismic super-gather at location CDP330 in angle gather display, zero-

phase 

 

The synthetic and seismic traces thus constructed differ because the latter contain effects 

of propagation and anisotropy, whereas the former do not.  We address these issues next. 
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2.3 Methodology development 
 

With well logs of Vp, Vs, and density, we can do isotropic AVO forward modeling, using 

Zoeppritz equations or its approximations, to get synthetic seismic data. But we always 

find that the synthetic data and real seismic data differ from each other. It is partly 

because we do this modeling based on an isotropic assumption, whereas the seismic data 

contain anisotropic effects. And, it is partly because the real data contain effects of 

propagation, whereas the synthetic data do not. If we explore the differences between the 

synthetic one and the real one, we are able to extract the anisotropic information from 

these differences.  We illustrate the theoretical development, using real examples from 

the Colony dataset. 

 

2.3.1 Anisotropy parameters in reflection coefficient equation 

 

Here we discuss the anisotropic reflection coefficient for P-waves, since these are most 

commonly used in exploration geophysics. Ruger (1997), based on Thomsen (1993), 

gave the linearized equation for plane-wave P-wave reflection at a planar interface 

separating two polar anisotropic media as: 

2 2 2 20 0 0 0 0
2 1 2 1

0 0 0 0 0

21 1 1
( ) ( ) ( ) sin ( ) tan sin

2 2 2

aniso Z Vp Vs G Vp
R

Z Vp Vp G Vp
       

         
             

       

                                                                                                                                       (2.5) 

This differs from Equation (2.4) in two ways: 
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 Z 0, G0, Vp0, Vs0, are respectively the vertical P-impedance, shear modulus, P-

velocity, and S-velocity; otherwise these terms are identical to the corresponding 

terms in (2.4). 

               are the anisotropy parameters (Thomsen, 1986) for the two 

layers (layer 1 (above) and layer 2 (below the plane)). It is clear that the 

anisotropic effect on amplitudes is a simple difference in the reflectivity.  It is also 

clear that, even though the anisotropic parameters are small compared to one, they 

are not necessarily small compared to the other terms in the equation, and should 

not be neglected. 

The vertical P-wave velocity, S-wave velocity, and densities of the layers can be read 

from the well logs; hence we may refer to the isotropic parts of Eqn. (2.5) as the “sonic-

band reflectivity”. As for  , we use the incident phase angle (See Thomsen (1986) for 

discussion of the difference between wavefront-angle and ray-angle in anisotropic media). 

We can calculate by getting offset position from the SEG-Y file, and the depth of 

reflectors from the logs or VSP data, or from the moveout velocity. Alternatively, we 

could get velocity from Vp  well logs, but they typically do not extend through the entire 

overburden, and they don’t contain the anisotropy in the velocities as the moveout 

velocities do, although the latter will be of poor vertical resolution. We can use ray 

tracing to get the P-wave reflection angle; the ray tracing work can be done by Hampson-

Russell software, given a velocity function in the overburden. Hence, in the P-wave 

reflection coefficient calculation, the only unknown quantities are the anisotropic 

parameters. 
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Thus, the difference between anisotropic and isotropic reflection coefficients is, from (2.3) 

and (2.5):  

   2 2 2

2 1 2 1

1 1
( ) ( ) ( ) sin tan sin

2 2

aniso iso anisoR R R                                (2.6) 

And we can see that the anisotropy information is all contained in the difference of the 

synthetic and seismic, if the seismic data has been processed to only contain the primary 

reflections, without propagation effect and other noise. 

 

2.3.2 Connection between synthetic and real seismic amplitude 

 

Besides the offset-dependence of reflection coefficient of the layers, there are many other 

factors which affect the amplitude of the reflected wave recorded in the SEG-Y file, as 

functions of offset. Some factors are from the subsurface, such as attenuation/dispersion, 

geometrical spreading, random noise, transmission coefficients in the overburden, 

focusing/defocussing, non-planar reflectors, surface ghost, receiver ghost, multiple 

interference, etc. 

Some other factors are from the recorded wavelet, such as the source radiation pattern, 

the geophone response, and the array response. So the real seismic data used for 

calculation must be processed to eliminate the factors mentioned above. But processing 

itself can affect the amplitude, too. For example, the processing may include various 

filtering and scaling operations that affect the amplitude as a function of offset.  
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All of these effects operate on the real wave, and they all affect the received amplitudes, 

variably with offset.  When we normalize the real data to the synthetic data, we are 

implicitly correcting the real data for all of these, even without knowing any of the details, 

leaving the normalized amplitudes representing only the reflectivity. 

With this understanding, we can refine Eqn. (2.6). We use 0S , ),( tP 


 , ),( tP 


 and )(tI

respectively to express, respectively the wavelet strength, downward wave propagation 

operator, upward wave propagation operator, and instrumental effects, all of these 

operating sequentially on the initial wavelet w0(t). Since many of these effects operate 

differently on different frequency components, in the time domain it appears as a series 

of convolutions: 

0 0( , ) ( )* ( , )* ( , )* ( , )* ( ) ( )s t I t P t r t P t w t S    
 

      (2.7a) 

Since convolution commutes, we can re-write this as 

0 0( , ) [ ( )* ( , ) * ( , ) * ] ( )* ( , )

( , ) * ( )* ( , )

s t I t P t P t S w t r t

P t w t r t

   

 

 



     (2.7b) 

where all of these propagation and instrumental effects are included in the propagation 

operator ),( tP  . Note that, as defined here, P operates on the wavelet w(t), which can be 

determined from the seismic data using conventional techniques, rather than the initial 

wavelet w0(t), which is not easily determined. 

To find the propagation operator ),( tP  , the conventional procedure is to: 
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 Use logs to compute the isotropic reflectivity ),( zRiso

pp , using equation (2.6). 

 Convert depth to time, for example using the functionality present in H-R 

software, producing ),( tRiso

pp . 

 Convolve this with the seismic wavelet )(tw  (determined from seismic data) to 

produce a synthetic seismic trace 

( , ) ( , )* ( )iso

PPS t R t w t            (2.8) 

 Define a normalization factor N(,t) (can be done with various methods), 

converting seismic amplitudes (typically lying between +/- 1000) to isotropic 

reflectivity (typically lying between +/- 0.1), band-limited by convolution with 

the seismic wavelet, 

 Multiply the seismic trace (2.7b) by ),( tN  , forcing the seismic trace amplitudes 

to match the isotropic reflectivity. 

 Set the normalized seismic data (2.9) equal to the isotropic synthetic data (2.8): 

( , ) ( , ) ( , ) ( , )* ( )* ( , ) ( )* ( , )iso

PPN t s t N t P t w t r t w t R t              (2.9) 

This procedure clearly assumes that 

( , ) ( , ) 1N t P t             (2.10) 

The procedure also assumes that the reflections are isotropic: 

( , t) R ( , )iso

ppr t                                  (2.11) 

The novelty introduced in the present proposal is two-fold: 
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a) We normalize the seismic to the synthetic in an angle-dependent way, as 

described further below; 

b) We separate the normalization into a low-frequency part and a high-frequency 

part, and use only the former for normalization.  As described further below, the 

residuals, after this partial normalization, are attributed to anisotropy.  

Taking these in order: 

The isotropic reflectivity equation (2.3) can be written as Aki-Richards’ 

approximation, for an event at t0, as  

 
2 2 2

0 0 0 0( , ) ( ) ( )sin ( )sin tanisoR t A t B t C t                    (2.12) 

where the coefficients A, B, C are given implicitly in equation (2.3). The Aki–Richards’ 

equation is valid for reflection angles up to about 40°, and for isotropic layers only. As 

the angle range in the gathers is from 0° to 30°, we are safe to use it here. 

As t0 varies through the logged interval, this makes a spike series, with the time-

resolution of the logs. After convolving with the wavelet (equation (2.8)), we have a 

synthetic trace with the resolution of the wavelet:  

2 2 2

0 0 0 0 0( , ) ( ) ( )sin ( )sin tan * ( )S t A t B t C t w t                                  (2.13) 

In a similar way, we can parameterize the offset-dependence of the flattened seismic 

gather, in the angle-domain as: 

2 2 2

0 0 0 0 0( , ) ( ) ( )sin ( )sin tan * ( )seis seis seiss t A t B t C t w t                           (2.14) 
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If the seismic gather has zero phase, we can pick the major peaks (and troughs) of the 

traces s(t0,θ), identify these with the major reflecting horizons, and find  best-fit values of 

Aseis, Bseis, and Cseis for each of  these major events.  

We are not able to detect every impedance layer from the synthetic and seismic, we can 

only pick some obvious events from comparison of the seismic and synthetic. The picked 

events may not be representative of all the reflection interfaces, so we only try to solve 

the anisotropy for the picked horizons.   

Here we pick the major events on synthetic and seismic zero phase. All the 6 horizons are 

displayed in Figure.14b. The horizons are all picked using Hampson-Russel AVO 

package ‘Horizon selection’ function. 



31 
 

 

Figure 1514b.Horizons picked on both seismic and synthetic in angle domain, zero phase 
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Figures 15a-f show the picked amplitudes, as functions of angle θ, for each of the six 

major seismic events. They also show, as continuous lines, the fitted curves (Eqn.2.14) 

for each event, constructed with the best-fit parameters using least-square method. 

 

Figure 1615a.Seismic horizon at 418ms and its Aki-Richards approximation 
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Figure 1715b.Seismic horizon at 436ms and its Aki-Richards approximation 

 

Figure 1815c. Seismic horizon at 490ms and its Aki-Richards approximation 
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Figure 1915d. Seismic horizon at 582ms and its Aki-Richards approximation 

 

Figure 2015e. Seismic horizon at 636ms and its Aki-Richards approximation 
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Figure 2115f. Seismic horizon at 688ms and its Aki-Richards approximation 

 

All of these figures (15a-f) show major deviations from the fitted curves, especially at 

large angles.  This confirms the common understanding that the curvature terms of the 

Aki-Richards equation (2.12) are poorly determined, so that their interpretation is 

problematic. The deviations may be due to interference from multiples, not accounted for 

in prior processing. In any case, addressing this variation is outside the scope of the 

present work.  We carry forward the analysis of the curvature in any case, anticipating 

that the derived values for   may be spurious. 

Figure 16 shows the derived parameters Aseis, Bseis, Cseis.  
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Figure 2216. Amplitude intercept A ,gradient B and curvature C for the major seismic horizons, 

zero phase 

Of course these offset parameters are not directly comparable to reflectivity parameters 

(2.12) because they contain the propagation effects as well as the reflection effects; we 

address this issue with the normalization argument in section b).  
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contribution from nearby events; we need to estimate A, B, and C in a band-limited way, 

on the synthetic, just as we did with the seismic.  If the wavelet w(t0) has zero phase, we 

pick the same major peaks (or troughs) of these functions A(t0)*w(t) etc. (as we did on the 

seismic),and find best-fit parameters Asyn, Bsyn, Csyn for the major reflectors.  

Figures 17a-f show the picked amplitudes, as functions of angle θ, for each of the six 

major synthetic event. They also show, as continuous lines, the fitted curves (2.12) for 

each event, constructed with the best-fit parameters.  

 

Figure 2317a. Synthetic horizon at 418ms and its Aki-Richards approximation 
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Figure 2417b. Synthetic horizon at 436ms and its Aki-Richards approximation 

 

Figure 2517c. Synthetic horizon at 490ms and its Aki-Richards approximation 
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Figure 2617d. Synthetic horizon at 582ms and its Aki-Richards approximation 

 

Figure 2717e. Synthetic horizon at 636ms and its Aki-Richards approximation 
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Figure 2817f. Synthetic horizon at 688ms and its Aki-Richards approximation 
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Figure 2918. Amplitude intercept A, gradient B and curvature C for the major synthetic horizons, 
zero phase 

 

Then convolution of these values with the wavelet produces an isotropic synthetic gather: 
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2.3.3  Using normalization factor in anisotropy parameter estimation 
 

2.3.3.1 Getting normalization factor for intercept A, gradient B and curvature C  

 

Now that we have characterized, the AVO behavior, separately for synthetic and seismic, 

we have to normalize them, in order to compare them.  We can see that the seismic 

amplitude is of much bigger magnitude than that of synthetic. The amplitude for seismic 

is around +/-10000 while the synthetic amplitude is around +/-0.1. 

We do this in several stages. First, we convert the seismic amplitudes in (2.14) to 

approximate reflectivity amplitudes by normalizing (2.14) with a constant normalization 

factor N0, based upon the average of the A(t0), function, so that they may be displayed 

together with the synthetic values. Specifically, we calculate 

0

0

0

( ) ;

( ) ;

syn syn

seis seis

syn

seis

A A t

A A t

A
N

A







                      (2.16) 

where the angle brackets indicate the arithmetric average, over the selected major events.  

We calculate with the absolute values, as shown, since we want for N0 to be a positive 

number, adjusting all events (both + and -) only for this scale factor.  For the Colony 

dataset, as prepared above, we obtain N0= 1.1007e-005. 
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Then we adjust each of the seismic AVO parameters by this scale factor: 

*

0 0 0

*

0 0 0

*

0 0 0

( ) ( );

( ) ( );

( ) ( )

seis seis

seis seis

seis seis

A t N A t

B t N B t

C t N C t






              (2.17) 

Now the seismic and synthetic AVO parameters have comparable scales, so that we can 

plot them together, preparing for further adjustment. Figure 19 shows both 
0( )synA t  and 

*

0( )seisA t  on the same plot for the major events of the Colony dataset; you can see that 

they still have significant differences.  Figures 20 and 21 show the same information for 

the gradient parameters B and the curvature parameters C.  

 

Figure 3019. Comparison of Asyn and Aseis 
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Figure 3120. Comparison of Bsyn and Bseis 

 

Figure 3221. Comparison of Csyn and Cseis 
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The differences evident between seismic and synthetic parameters include both 

propagation effects, and anisotropy effects.  If there were no anisotropy effects, we 

could completely account for the propagation effects by constructing normalization 

factors 

*

0 0 0

*

0 0 0

*

0 0 0

( ) ( ) / ( )

( ) ( ) / ( )

( ) ( ) / ( )

A syn seis

B syn seis

C syn seis

N t A t A t

N t B t B t

N t C t C t







                   (2.18) 

Figures 22, 23, and 24 show these normalization functions, for the Colony dataset.  

 

Figure 3322. Normalization factor for intercept A: NA 
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Figure 3423. Normalization factor for gradient B: NB 

 

Figure 3524. Normalization factor for gradient C: NC 
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It is clear that applying these angle-specific normalization factors to the seismic gathers 

(2.12) would convert them into the isotropic synthetic gather (2.13), and that this 

constitutes a refinement of the “conventional” procedure described above. However, we 

want to avoid this assumption of isotropy. 

 

2.3.3.2 Low-cut the normalization factor NB and NC  

 

 However, we recognize that these normalization functions NA(t0), NB(t0), and NC(t0),  are 

measured over the entire logged interval, and can  be analyzed as Fourier series, with 

spectra NA(f), NB(f), and NC(f). Because reflection amplitude (calculated from either 

anisotropic or isotropic expressions) varies rapidly as a function of depth or time, this 

contributes to the high-frequency portion of these spectra. However, the propagation 

effects mentioned above (except for the reflection coefficient) accumulate progressively 

as the wave propagates; hence they are represented by the low-frequency portion of these 

spectra. 

                                      

Figure 3625.  High and low component of normalization factor N(,t) 
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Therefore we low-cut filter the normalization functions, and call these filtered functions

0 0 0( , ), ( , ), ( , )Alow Blow ClowN t N t N t   .  

In practice, for the Colony dataset, the logged interval is too short, and the major 

reflectors too sparse to make a well-behaved filter operation. So, we have implemented 

the following procedure, equivalent for this dataset: we find the least-squares best-fit 

linear function, which accounts for the low-order time-variation in each of the 

normalization functions above. Specifically, we compute NAlow(t0) as the straight line 

which best approximates (in the least-squares sense) the function 0( )AN t  as defined 

above. This straight line NAlow(t0) is also shown in Figure 26.  Similarly, we compute 

NBlow(t0)  and NClow(t0); these straight lines are shown in figures 27 and 28.  

 

Figure 3726. NA and its linear least-square fit 
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Figure 3827. NB, the absolute value of NB and its linear least-square fit 

 

Figure 3928. NC, the absolute value of NC and its linear least-square fit 
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This procedure approximately removes the (low-frequency) propagation effects, without 

damaging the (high-frequency) reflectivity effects, which contain the anisotropy. 

Then we construct low-cut seismic parameters 

 

*
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*
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*

0 0 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

seislow Alow seis
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seislow Clow seis

A t N t A t

B t N t B t

C t N t C t

 

 

 

                                                                         (2.19) 

These are observable quantities, calculable from the data, as described above. 

As is evident from Figure 26, the normalization factor NA does contain some (minor) 

high-frequency variation. Since this is a normal-incidence parameter, this high-frequency 

variation cannot be explained by neglected anisotropy.  In fact, within the present 

assumptions, there is no satisfactory explanation of this high-frequency variation in 

NA.  A revision of these standard assumptions is beyond the scope of this M.S. thesis, as it 

would constitute a deep revision in conventional thinking about the reflection process. So, 

for now, we ignore this variation, keeping in mind that it might affect subsequent 

conclusions.  

1) Get residual gradient ∆B and residual curvature ∆C 

Now we already have NBlow  and NClow. We can get the ∆B and ∆C for the final calculation 

about anisotropy parameters  and  . 

0 0 0
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( ) ( ) ( )

( ) ( ) ( )

seislow syn

seislow syn

B t B t B t

C t C t C t

  
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                                                                                                        (2.20) 
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The plot of the seislowB and 
synB  is: 

 

Figure 4029.  seislowB and 
synB comparison 

The plot of the seislowC and 
synC  is: 

 

Figure 4130. seislowC and 
synC comparison 
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The difference of seislowB and 
synB is ∆B, its plot is: 

 

Figure 4231. Plot of residual gradient ∆B(t) 

The difference of seislowC and 
synC  is ∆C, its plot is: 

 

Figure 4332.  Plot of residual curvature ∆C(t) 
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2.3.3.3  Solving residual anisotropy parameters from residual gradient and curvature 

 

According to Eqn. (2.6,2.14,2.15), we get 

2 2 2

2 2 2

2 2 2

2 1 2 1

( )sin ( )sin tan

0 sin sin tan

1 1
( )sin * ( ) ( )sin tan * ( )

2 2

seislow syn seislow syn seislow synA A B B C C

B C

w t w t

  

  

      

    

    

   

                                              (2.21) 

That is, the gradient residual ∆B is half the convolution of the residual delta anisotropy 

 and wavelet w(t) while the curvature residual ∆C is half the convolution of the 

residual epsilon anisotropy  and wavelet w(t). However, by picking only the peaks and 

troughs on the seismic data, we lose the shape of the wavelet, thus the convolution is not 

maintained any more.  

For the optimal situation, the reflection interfaces are so sparsely distributed in depth and 

the wavelet is so close to a spike that the peaks and troughs of a seismic trace can be 

expressed as the multiplication of the reflection coefficient and the wavelet peak. Then, 

Eqn. (2.21) can be modified as: 

1
( ) ( ) 0(t)

2

1
( ) ( ) 0(t)

2

B t t w

C t t w





 
     
 
    
  

                                                                            (2.22) 

where w0 is the peak value of the wavelet, for zero-phase wavelet.  
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Here we conduct a posteriori test on whether the data we have meets the optimal situation.  

Suppose it is the optimal situation, then a seismic trace can be expressed as the 

multiplication of the reflection coefficient and the wavelet peak. As the peak value of the 

zero-phase wavelet is 1, then the reflection coefficient at that depth is equal to the seismic 

picking value there. Thus the wavelet convolved with the seismic picking value should 

have the same value with the seismic picking at its depth. The result is shown in Figure 

33, the seismogram colored black is the convolution result of the zero-phase wavelet and 

the seismic picking value(reconstructed by normalized 
*

seisA  
*

seisB *

seisC using Aki-Richards’ 

equation), the red curve displays the seismic picking value itself. The equation for the 

seismogram is Eqn.(2.14). 

And a similar figure for the synthetic is also shown here (Figure 34), the seismogram 

colored black is the convolution result of the zero-phase wavelet and the synthetic 

picking value (reconstructed by normalized synA synB synC  using Aki-Richards’ equation), 

the red curve displays the synthetic picking value itself. 
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We can find by the comparisons of the convolution and the picking itself that they are not 

identical, thus it is not an optimal situation.  

We can try some method to make the optimal assumption more valid such as using a kind 

of wavelet deconvolution that can attempt to shape the known wavelet to a spike. But the 

biggest drawback of this method is that it will introduce more high frequencies in the data, 

which will influence the spectrum of the NB and NC, and further more the anisotropy 

parameters  and  . 

If we accept it as the optimal situation and the relationship between the residual gradient 

∆B and residual delta anisotropy  meets Eqn. (2.22). As the peak value of the zero-

phase wavelet is 1, then the residual gradient ∆B is half the value of residual delta 

anisotropy  . Similarly, the residual curvature ∆C is half the value of residual epsilon 

anisotropy  .     

To explore how much error will be in the  and   parameters using this optimal 

assumption, we plot the )(tB with the convolution of )(tB  and the wavelet in Figure 

35, and also the ( )C t with the convolution of ( )C t  and the wavelet in Figure 36. 
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Figure 4635. Comparison of one trace seismogram of the convolution of the wavelet and )(tB  

The difference of these two curves is: 

))()((*)()(*)()(*)()()(*)( ttwtBttBtwtBtBtwtBe              (2.23) 

here )(t is a spike in the time domain with the same amplitude of the wavelet. 

The relative error of )(t is 
)(*)(

))()((*)(

ttB

ttwtB




. 

From the data in Figure 35, the average value of error in )(t is -0.408%. 
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For the curvature residual )(tC , the comparison of )(tC and the convolution of )(tC  

and the wavelet is shown in Figure 36. 

 

Figure 4736. Comparison of one trace seismogram of the convolution of the wavelet and )(tC  
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average error in )(t is 0.246%. 
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2.3.3.4 Getting anisotropy parameters for each layer 

 

The anisotropy jump  and  can be used to calculate the anisotropy parameters and 

 for each layer, as long as we know the  and   for one arbitrary layer.  

Suppose the  parameter for layers from layer1 to layer n is { 1 , 2 , 3 … n }, then  
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                                                                                                   (2.24) 

Similarly, assume the  parameter for layers from layer1 to layer n is { 1 , 2 , 3 … n }, 

then  
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                                                                                                  (2.25) 

We now have )(t  and )(t , if we find a layer of low-shale component sand, we can 

assume that sand layer is isotropic and its  =0 and its  =0. 
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We can locate such a sand layer based on the gamma ray curve. 

The gamma ray curve for colony well is: 

 

Figure 4837. Gamma ray log for Colony well 



62 
 

From this log plot, we see that the lowest gamma ray reading is at 650ms, indicating sand 

layer with lowest shale component. Thus we assign  and   parameter at this time to be 

zero. As )(t  and )(t is sampled at 2ms interval from 418ms to 688ms, we assign 6

=0 and 6 =0. Then we substitute 6 =0 and 6 =0 into Eqn. (2.37) and Eqn. (2.38), we can 

know all the values of parameter  and   in the sequence. This is an intuitive description 

of the process known as seismic inversion, converting interface parameter-jumps to layer 

parameters. 

Solving equations (2.24) and (2.25) we get the anisotropy parameters  and   in chart 1 

and chart 2 

 

 

 

 

 

 

 

 

 

Chart 1. Anisotropy parameters  for layers from time 391ms to 739ms 

 

 

Time(ms) Parameter   

   413 

   427 

   463 

   536 

   609 

   662 

   693 

     0.2345 

   -0.0286 

   -0.0043 

    0.2220 

    0.1800 

         0 

    0.2258 
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Chart 2. Anisotropy parameters  for layers from time 391ms to 739ms 

We can see that the  parameter is in a reasonable range; its variation is discussed further 

below. 

By contrast, the parameter doesn’t make a lot of sense. A realistic  should be > 0 

(Thomsen, 1986) and within the range of 0~1. These   parameters we have here are not 

consistent with these rules and they don’t satisfy the weak anisotropy assumption either. 

We can explain it as because the C parameters we got from seismic are not reliable (c.f. 

Figures 15a-f).  Hence, we do not discuss  further, in this report. 

The time-depth relationship is shown on Figure 38: 

Time (ms) Parameter   

   413 

   427 

   463 

   536 

   609 

   662 

   693 

    0.7682 

    0.7782 

    0.7117 

    0.5806 

    0.5392 

         0 

   -1.0535 
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Figure 4938. Time-Depth relationship 

Transforming from the time domain to the depth domain, we get plots of anisotropy 

parameter vs. depth( Figure 39):  
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Figure 5039. Anisotropy parameter   variation with depth for colony well 

2.4 Test  
 

2.4.1  Anisotropy parameter  with gamma ray log correlation 

 

The anisotropy parameter is a combination of intrinsic anisotropy of rocks and the layer-

induced anisotropy. The result may be either bigger or smaller than the intrinsic 

anisotropy. But we can still use the intrinsic anisotropy value estimated from rock physics 

information from logs to see whether the calculated anisotropy parameter makes sense.  
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As the gamma ray log is from 550ms to 690ms, we can compare the anisotropy parameter 

  from 550ms to 690ms with the gamma ray log. Converted to depth, 550ms to 690ms is 

corresponding to 1780ft to 2340ft (equivalent to 542.5m to 713m). 

 

Figure5140. Anisotropy parameter   variation with gamma ray log display 

We can see that the anisotropy parameter  is coherent with the gamma ray readings. 

When the gamma ray value is high, which indicates high shale component percentage is 

above zero, with relatively high absolute values. This further adds to the reliability of 

these estimated anisotropy parameters. 
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2.4.2 Estimating the reliability of the inferred anisotropy 

 

 Furthermore, to test the reliability of the calculated anisotropy parameter, we can use the 

calculated anisotropy parameters to generate an anisotropic synthetic data and compare it 

with the processed real seismic data, if the anisotropic synthetic ties with the real seismic 

data better than the isotropic synthetic, it is reasonable to believe the inferred anisotropy 

is reliable. 

To compute the anisotropic seismic data using the anisotropy parameters  and   

(although the   is not reliable) we get,  

the new reflection coefficient is: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

syn

syn

syn

Anew t A t

Bnew t B t t

Cnew t C t t





 
 

   
    

                                                                                       (2.26) 

where the A(t), B(t), and C(t) is from the log computed isotropic reflection coefficients. 

Using the zero-phase wavelet shown in Figure 12, the new synthetic seismogram 

computed for the anisotropic reflection coefficient is: 
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The co-display of the new synthetic and the original seismic and is shown in Figure 42: 

 

Figure 5342. Comparison of the original seismic and synthetic seismogram computed from 
anisotropic reflection coefficient 
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In comparison with Figure 13, which is the co-display of the original synthetic and 

seismic, we can see that the new anisotropic seismogram is closer to the seismic data. Of 

course, this new anisotropic synthetic does not have any propagation effects in it, so we 

do not expect an exact match. 

2.5 Conclusions and discussion 
 

The anisotropy parameter 



  we get is within the range of -0.0286~0.2345, and the 

anisotropy parameter 



  is within the range of -1.0535~0.7782. The parameter 



  is in the 

reasonable range of anisotropy parameters, but the value of 



  parameter doesn’t make 

sense, even though, this new method is still reliable because the problematic 



  value is 

due to the fact that we can’t get the true curvature from the Aki-Richards’ approximation 

of the amplitude versus angle. By comparison with the gamma ray log, which is an 

indication of the shale component in the layers,  the 



  anisotropy parameters is well 

correlated to the gamma ray log: when the gamma ray reading is smaller, the 



  has 

smaller absolute value, that is, the anisotropy is weaker.  

In the procedure of getting the anisotropy jumps 



  and 



  between layers, the validity 

of the assumption that the convolution of anisotropy jump and wavelet can be simplified 

as the multiplication of the anisotropy jump and the peak of the wavelet depends on two 

factors: the sparseness of the certain anisotropic layers and the similarity of the seismic 

wavelet to a spike. If the seismic resembles a spike and the certain anisotropic layers are 

spaced sparsely enough, then the assumption is valid and the method we use to deduce 

the anisotropy jumps 



  and 



 is reliable. Furthermore, wavelet deconvolution 
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attempting to suppress the wavelet to a spike should be applied with concerns, because 

this kind of wavelet shaping can introduce more high frequencies in the data to interfere 

with the signal spectrum. 

Besides the two major influence mentioned above, which are simplification of the 

convolution to a multiplication and the unreliable curvature in Aki-Richards’ equation, 

other factors can contribute to the errors in the anisotropy parameters we get as well. 

They are:  

1) The shear wave velocity is made using mudrock line equation, not a real log 

measurement. 

2) The wavelet we extracted from the seismic data in comparison of the synthetic 

may not be the true wavelet in the real seismic data. 

3) We converted the offset domain to angle gather using an isotropic ray theory, 

which is not consistent with the anisotropy assumption. 

4) The noise in seismic data, either low frequency or high frequency, will affect the 

normalization factor low-cut. 

5) We assume the minimum value of the gamma ray we have is corresponding to an 

isotropic layer location with 



 =0 and 



=0, this may not be the real situation. 

In a brief summary, the procedures to get the anisotropy parameters 



  and 



  using this 

method are listed as below: 

1) Get the intercept A, gradient B and curvature C of each major horizon using Aki-

Richards’ equation for both the synthetic and seismic data 
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2) Divide the average of synthetic A by the average of seismic A to get the quotient 

as seismic normalization factor NA. 

3) Apply the NA to make the seismic B and C the scale of synthetic B and C. 

4) Divide the synthetic B and C by the scaled seismic B and C to get the quotient as 

normalization factor NB and NC. 

5) Low cut the NB and NC to eliminate the propagation influence in the seismic B 

and C 

6) After scaling and low-cut, the difference of the seismic B and C and synthetic B 

and C will be the anisotropy parameters 



  and 



  convoluted with the seismic 

wavelet 

7) Solve for the parameters 



  and 



 . 
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APPENDIX A 

 

Comparison of synthetic produced from Hampson-Russell software with what is 

computed from logs 

This Appendix concerns only the synthetic traces, as constructed using the HR software. 

We will see that their calculation raises some interesting issues.   

The co-display of the Asyn, Bsyn, and Csyn picked from HR generated synthetic is (the 

same as in the main text) : 

 

Figure A-1. Amplitude intercept A, gradient B and curvature C for the major synthetic 
horizons, zero phase 

400 450 500 550 600 650 700
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time(ms)

A
m

p
lit

u
d
e

intercept A ,gradient B and curvature C for the major synthetic horizons

 

 

Asyn

Bsyn

Csyn



76 
 

We may notice that the range of A parameter is from about 0.02 to 0.35, the range of B 

parameter is from about -0.02 to -0.2, and the range of C parameter is from about 0 to 0.6. 

The range of the C parameter doesn’t seem to be right, because based on equation  

2

2 2 20 0 0 0 0

0 00 0 0

2 2 2

21 1 1
( ) sin tan sin

2 2 2

sin tan sin

iso Z Vp Vs G Vp
R

Z GVp Vp Vp

A B C

   

  

          
          
        
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          (A.1) 

We get: 
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 
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    
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                                                                                                   (A.2) 

0
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2

Vp
C

Vp

 
  

 
 

In which 0 0Z Vp , 2

0 0G Vs , where the notation is the same as in the main text.   

Compare the formula for the parameter A and C, we find that they should be around the 

same value if the densities of two adjacent layers are not drastically different. However, 

in Figure A-1, clearly the difference between A and C is serious for deeper horizon. 

Evidently, their calculation is not as we have interpreted it to be. 

Thus we choose another method to get the synthetic A, B, C parameters---we calculate 

them directly from logs. Based on Eqn. (A.1), using well logs Vp, Vs and density. These 

well logs begins from 135 ms to 690 ms. We get parameter Aref, Bref, Cref  as : 

We get parameter Aref, Bref, Cref  as : 
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Figure A-2. Aref calculated from well logs 

 

Figure A-3. Bref calculated from well logs 
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Figure A-4. Cref calculated from well logs 

After exporting the zero phase wavelet converted from the seismic extracted wavelet, 

which has been shown in Figure 7, to a readable file, we can convolve the wavelet with 

parameter Aref, Bref, Cref.  Then we get Asyn, Bsyn, Csyn  as : 
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Figure A-5. Asyn calculated from correlation of seismic wavelet and Aref 

  

Figure A-6. Bsyn calculated from correlation of seismic wavelet and Bref 
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Figure A-7. Csyn calculated from correlation of seismic wavelet and Cref 

 

By comparison, the Asyn and Csyn are almost the same, which makes them more reliable. 

And if we plot the Synthetic ABC from the synthetic picks together with the ABC 

calculated from correlation of seismic wavelet and logs-derived reflection coefficients for 

comparisons, the results are shown in figures A-8~A-10: 
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Figure A-8. Asyn comparison from log computation and HR software 

 

Figure A-9. Bsyn comparison from log computation and HR software 
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Figure A-10. Csyn comparison from log computation and HR software 

 

We find that the Asyn parameter from both the HR software generated and log 

computation is almost identical, but the Bsyn and Csyn parameter is different for these two 

methods. As we are more confident with the ones computed from the logs, in this thesis, 

we adopt the log computed ones instead of the HR software-generated ones. 
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APPENDIX B 

 

Matlab codes for making synthetic using zero-phase wavelet and well logs to extract 

synthetic A,B,C  
 

 

function [A,B,C,synlogABC]=syn0wav 

% Well Name               : Colony_WELL 

% Kelly Bushing Elevation : 0 m 

% Surface Elevation       : 0 m 

% X : 0 m  Y : 0 m 

% First Sample at         : 135.000 ms 

% Last Sample at          : 690.000 ms 

% Sample Rate             : 1.00000 ms 

% Number of Samples       : 556 

%  

% Column 1 : Domain ms 

% Column 2 : Density_FRM (Density) - Units : g/cc 

% Column 3 : P-wave_corr_FRM (P-wave) - Units : us/m 

% Column 4 : S-wave_cast_FRM (S-wave) - Units : us/m 

  

logs=load('logs');% read the logs 

time=logs(:,1); 

density=logs(:,2); 

Vp=1000000./logs(:,3);%  The unit for Vp and Vs is converted to m/s 

Vs=1000000./logs(:,4); 

  

A=zeros(556);% sampled 1ms from 135ms t0 690ms, there are 556 points in total 

for i=2:555 

    A(i)=(density(i+1).*Vp(i+1)-density(i-1).*Vp(i-1))./(density(i+1).*Vp(i+1)+density(i-

1).*Vp(i-1));% reflection coefficient intercept A 

end 

B=zeros(556); 

for i=2:555 

    shearmodulus2=density(i+1).*Vs(i+1).^2; 

    shearmodulus1=density(i-1).*Vs(i-1).^2; 

    B(i)=(Vp(i+1)-Vp(i-1))./(Vp(i+1)+Vp(i-1))-((shearmodulus2-

shearmodulus1)/(shearmodulus2+shearmodulus1)).*(2.*(Vs(i+1)+Vs(i-

1))./(Vp(i+1)+Vp(i-1))).^2;% reflection coefficient gradient B 

end 

C=zeros(556); 

for i=2:555 

    C(i)=(Vp(i+1)-Vp(i-1))./(Vp(i+1)+Vp(i-1));% reflection coefficient curvature C 

end 
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wav=load('wave_zero_seis');% load in the zero-phase seismic extracted wavelet  

[i,j]=size(wav);% i records the length of the wavelet when sampled 2ms 

Maxwav=max(wav);% normalize the wavelet to make its peak is 1 

wav=wav./Maxwav; 

  

synalog=conv(A(1:2:555),wav(1:i));% because the wavelet is sampled 2ms, so we need 

resample the A,B,C by 2ms.the conv is the convolution function in matlab 

synblog=conv(B(1:2:555),wav(1:i)); 

synclog=conv(C(1:2:555),wav(1:i)); 

  

[T,ABCsyn]=loadsyn;% load in the ABC calculate from Synthetic pickings and their 

time locations in T 

  

for i=1:6 % we already know there are 6 horizons in the synthetic picks 

    synlogABC(i,:)=[synalog((T(i)-36)./2+1),synblog((T(i)-36)./2+1),synclog((T(i)-

36)./2+1)]% 36ms is the beginning time location of the convolved synthetic, from the 

header of the 'wave_zero_seis', the wavelet begins at -99ms,135-99=36 

end 
 

 

Restrictions 

Copyright, Allied Geophysical Laboratories University of Houston, Houston TX, 

USA Royalty free use for AGL sponsors and co-investigators for use in research, 

exploration, with partners, host governments, and for provision of 

processing/interpretation service to sponsor clients Redistribution, sale, or 

inclusion of this software in software products outside the sponsor worksite 

requires a separate commercialization agreement with the University of Houston. 

 

Author 

Rongrong Lin, University of Houston. Version April, 2013. 
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APPENCIX C 

 

Matlab codes for extracting anisotropy parameters delta and epsilon from synthetic  

and seismic A,B,C  
 

 

function [Bseis,Cseis]=anisoparameter 

  

[A,B,C,ABCsyn]=syn0wav;% load in synthetic A,B,C from logs computed synthetic in 

function syn0wav, as well as the reflection coefficient intercept, gradient and curvature 

A,B,C 

[T,ABCsei0]=loadseis;% load in seismic  A,B,C and their time locations in T 

NA=mean(ABCsyn(:,1))/mean(ABCsei0(:,1));% NA is the ratio of the average synthetic 

amplitude and the average seismic amplitude for each horizon 

 

for i=1:6 % we chose 6 horizons in total 

ABCseis(i,:)=ABCsei0(i,:).*NA;% the new seismic is normalized by the scale factor 

end 

  

NB=ABCsyn(:,2)./ABCseis(:,2);% the normalization factor NB 

NC=ABCsyn(:,3)./ABCseis(:,3);% the normalization factor NC 

  

NBabs=abs(ABCsyn(:,2)./ABCseis(:,2)); % the absolute value of normalization factor 

NB 

NCabs=abs(ABCsyn(:,3)./ABCseis(:,3)); % the absolute value of normalization factor 

NC 

 

%Get the least-square linear solution for aT+b=NBabs, convert the equation to 

Gb*mb=NBabs,solve for mb, then Gb*mb will be the least square linear approximation 

of NBabs, which is the low cut of NB-NBlow 

Gb=[T,ones(6,1)]; 

mb=Gb\NBabs; 

NBlow=Gb*mb; 

 

% Solve for NClow using the same method applied to NBlow 

Gc=[T,ones(6,1)]; 

mc=Gc\NCabs; 

NClow=Gc*mc; 

 

 

Ti=(T-418)./2+1;%Ti is an index of time location,418 is the beginning time. 

Bseis=ABCseis(:,2).*NBlow(Ti)';% Bseis is the low-cut seismic B 

dB=real(Bseis-ABCsyn(:,2));% dB is the difference between low-cut seismic B and 

synthetic B 
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Cseis=ABCseis(:,3).*NClow(Ti)';% Cseis is the low-cut seismic C 

dC=real(Cseis-ABCsyn(:,3));% dC is the difference between low-cut seismic C and 

synthetic C 

ddelta=2*dB;% ddelta is the delta delta parameter 

depsilon=2*dC;% depsilon is the delta epsilon parameter 

  

D=zeros(7,1);%D stores the value of Delta parameter 

D(6)=0;% gamma ray displays smallest value at 650 ms, as the time range for the 

horizons is 413mms to 693ms, it is at the location of the 6th horizon 

for i=1:5 

    D(6-i)=D(7-i)-ddelta(6-i); 

end 

for i=6 

    D(i+1)=D(i)+ddelta(i); 

end 

E=zeros(7,1);%E stores the value of Epsilon  

E(6)=0; 

for i=1:5 

    E(6-i)=E(7-i)-depsilon(6-i); 

end 

for i=6 

    E(i+1)=E(i)+depsilon(i); 

end 

  

T2=zeros(7,1); % T2 records the time location for anisotropy parameters D and E 

T2(1)=T(1)-5; 

T2(7)=T(6)+5; 

for i=2:6 

    T2(i)=0.5*(T(i-1)+T(i));% use the average of time locations of two adjacent anisotropy 

jumps as the time for the anisotropy itself 

end 

 
 

Restrictions 

Copyright, Allied Geophysical Laboratories University of Houston, Houston TX, 

USA Royalty free use for AGL sponsors and co-investigators for use in research, 

exploration, with partners, host governments, and for provision of 

processing/interpretation service to sponsor clients Redistribution, sale, or 

inclusion of this software in software products outside the sponsor worksite 

requires a separate commercialization agreement with the University of Houston. 

 

Author 

Rongrong Lin, University of Houston. Version April, 2013. 
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APPENDIX D 

 

Correlation of the parameter with gamma ray log from other literature 

From the discussion in the main text, we see that the  parameters we get correlate well 

with the gamma ray log we have in Colony well. (See Figure D-1, which is the same as 

Figure 40 in the main text.) 

 

Figure D-1. Anisotropy parameter   variation with gamma ray log display 
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However, the gamma ray log is only from 1750ft to 2250ft, we don’t have any gamma 

ray log information for above 1750ft, so we look for the gamma ray log for Colony sand 

in other literature. 

In the CREWES annual report ’Exploitation of an oil field using AVO and post-stack 

rock property analysis methods’ by Andrew J. Royle (2001), we find a well 10-14 (See 

Figure D-2) drilled in the Colony sand area with a similar Colony sand layer as in our 

well log in the Colony sand dataset provided in the Hampson-Russell software as a 

default dataset.  

 

Figure D-2. Anisotropy parameter   variation with gamma ray log display 
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Although this well is at a different location in the Colony field, we may use the data to 

extend our analysis to shallower depth, by analogy, since the stratigraphy in the area is 

quite flat. Figure D-3 shows a highlighted box (381m to 533m) of this gamma ray log, 

compared with our calculated  function in the corresponding depth interval (1250ft-

1750ft, equivalent to 381m to 533.4m). The minimum in the gamma ray reading near 

440m correlates with the minimum in  function at 1400ft(equivalent to 426.72m), 

giving more confidence to our method. 

However, we note that the correlation is flawed, since we have not considered the 

possibility of lateral variation. Other logs from the area show different trends and the 

present analysis should be repeated in full, for each of the logs, for a satisfactory 

conclusion.  
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Figure D-3. Anisotropy parameter   (from 1250ft to 1750ft, equivalent to from 381m to 
533.4m ) correlation with well 10-14 gamma ray log (from 381m to 533.4m) 
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