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Abstract

The goal of this dissertation is analyzing medium parameters influence on seismic

signatures, especially pore connectivity. Firstly, I use the Zoeppritz equation to

analyze reflection coefficient’s sensitivity to eight medium parameters; results show

they all have significantly different sensitivity.

Friability is an empirical parameter introduced in General Singular Approxi-

mation (GSA) to measure the extent of pore connectivity that has the numerical

range from 0 to 1. In the second part, with other assumed medium parameters,

calculation results show friability has observable seismic signatures. Most of them

have very large, non-monotonic, and nonlinear variations to friability. Specifically,

I observe: 1, as friability increases, most stiffness-tensor components decrease; 2,

most extended Thomsen’s parameters decrease as friability increases. ǫ2, γ2, δ2, and

δ3 in gas-saturated medium and ǫ1, δ2, and δ3 in water-saturated medium are very

sensitive to friability, while others are not; 3, there are sophisticated relationships

between phase velocities and friability out of the symmetry plane, especially for S2

wave; 4, friability equals zero corresponds to the largest critical angle, while friabil-

ity equals 1 corresponds to the smallest. Critical angle mostly increases as azimuth

angle increases; 5, normal incident PP reflection coefficient is enough to detect the

friability variation in gas-saturated medium. On the other hand, azimuthal variation

of PP reflection coefficient also depends strongly on friability in both media.

Lastly, as a comparison to GSA, poroviscoelasticity is introduced by synthesizing

Biot theory and viscoelasticity because Biot theory assumes completely-connected

pore space. The influence of frame inelasticity on poroviscoelastic wave dispersions,

attenuations, and reflection and transmission coefficients are computed and analyzed

in detail. Results show frame inelasticity has considerable influence on reflection and

transmission coefficients in certain frequencies and incidence angles.
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Chapter 1

Introduction to the Dissertation

In recent years, the influence of pore connectivity (Agersborg et al., 2008), pore

structure (Sun, 2004), and permeability (Rubino et al., 2012; Pride et al., 2003) on

seismic signatures received much attention. Pore structure is a transport property

that is important in shale-gas exploration because it is directly related to perme-

ability, one of the key factors for oil production. Hydraulic fracturing is also related

to the subsurface pore structure, especially pore connectivity. After hydraulic frac-

turing, the pore connectivity increases, which is reflected in surface or downhole

seismic and logging data. These data, especially seismic reflection amplitude, are

useful for inverting the pore structure.

Thus, the problem lies in choosing a specific method to invert the pore structure.

Although the final determination of which reflection-amplitude-computation scheme

is best should be based on experimental results, numerical comparisons of various

methods are still helpful for understanding the different schemes, especially when

the different schemes are applied to study the same rock. Among the different

schemes, anisotropy and Biot theory are two very popular ones. Consequently, this

work studies the influence of pore connectivity on seismic signatures in the frame of

anisotropy and Biot theory. In the anisotropy framework, the incorporation of pore

connectivity is through the empirical parameter friability (Bayuk and Chesnokov,
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1998; Bayuk and Rodkin, 1999; Tiwary, 2007; Jiang, 2013) in General Singular

Approximation (GSA) that has the numerical range from 0 to 1. Furthermore,

Biot (1956a,b) theory characterizes connected pore space, it assumes fluid flow in a

connected tube and includes Darcy’s law in the theory.

The comparison between isotropic elasticity and Biot theory from the perspective

of reflection and transmission (hereafter shorten as R/T) coefficients has been shown

in Bouzidi and Schmitt (2012). They also did an experiment which shows the Biot

reflection modeling is more accurate than elastic R/T modeling. In their work, the

upper layer is water. However, in geophysical exploration, the different layers mostly

consist of solid rocks with various kinds of pore and fracture. Consequently, different

methods are needed for computing R/T coefficients in realistic earth models.

1.1 Introduction to the chapters

In Chapter 2 of the dissertation, I study the reflection coefficient variation with ρ,

VP , VS, µ, λ, K, ν, and E with Zoeppritz equations. My results show different

parameterization leads to significantly different medium parameter’s sensitivity to

reflection coefficient. This simple work is necessary for understanding reflection

coefficient before sophisticated modeling.

In Chapter 3, General Singular Approximation is used to model friability’s influ-

ence on stiffness-tensors, extended Thomsen’s parameters, phase velocities, critical

angles, and PP reflection coefficients. I find most of these signatures have very large,

non-monotonic, and nonlinear variations to friability variations.

In Chapter 4, by introducing frame inelasticity into Biot theory that generates

the poroviscoelastic model, I study frame inelasticity’s influence on poroviscoelastic

dispersions, attenuations, and reflections. The computation are based on Gulf of

Mexico sand. In some frequency and incidence angle, graphically illustrated results

2



show frame inelasticity has considerable influence on reflection and transmission

coefficients.
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Chapter 2

Zoeppritz Reflectivity Variations with Eight Medium

Parameters

2.1 Introduction

The main content of my dissertation involves anisotropic and poroviscoelastic char-

acterizations of rocks. Before these comprehensive studies, a study of the simpler

situation gives us a simpler understanding of reflectivity, which is also easier to

implement. The second chapter focus on forward modeling of SH, PP, and PSV

reflection coefficient magnitudes (hereafter refer as RCM) variation to medium pa-

rameters ρ, VP , VS, µ, λ, K, ν, and E in isotropic, homogeneous, and lossless

medium. Although these parameters are probably not very directly related to the

existence of oil or gas or the generation of earthquakes, I choose them because they

are the most fundamental parameters for characterizing a medium and they also

have very clear physical meanings.

The development of the theoretical part of this chapter has a long history. Green

(1848) revised the molecular formulation of elasticity and introduce the concept of

strain energy that allows him to study the reflection and transmission (hereafter refer

as R/T) of light. Knott (1888) is the first to explicitly account for the partition of

wave energy along plane boundary. Zoeppritz (1919) derived the modern form of

4



plane wave R/T coefficients which make the method named after him as ”Zoeppritz

equations”, which is the main topic of this chapter. After Zoeppritz, there were

many studies of his equations in different forms or simplifications (Jakosky, 1950;

Shuey, 1985; Hilterman, 2001; Aki and Richards, 2009). For a comprehensive list

of papers with different forms, see Table 1 of Young and Braile (1976). Aki and

Richards (2009) gave a concise and exact formulation. In this chapter, I follow their

approach. Except for a different sign of SV wave potential definition, their formulas

are equal to Jakosky (1950).

Koefoed (1955) noticed the direct influence of Poisson’s ratio on reflection coef-

ficient, which is one of the reasons that motivated Shuey (1985) to test the PP wave

reflection coefficient to Poisson’s ratio with a whole range of incidence angle (offset)

of gas sands with exact Zoeppritz equations and his approximate formulas. Koefoed

(1962) solved the Zoeppritz equations with different contrasts of velocity, density,

and Poisson’s ratio up to 90◦ of incidence angle and give many tables. Probably due

to the computational power at that time, their sampling rate of media parameters

and incidence angle were very large. Here, I have reduced the sampling rate of

medium parameters and incidence angle greatly. Domenico (1974) tested the sen-

sitivity of water saturation on reflection coefficient based on Zoeppritz equations.

Ostrander (1984) also tested the sensitivity of normal incident PP wave reflection

coefficients to Poisson’s ratio of gas sands.

Although medium parameters’ influence on AVO can be converted into the pre-

viously mentioned eight parameters, I study them directly and simultaneously, and

analyze the variation of RCMs to the eight parameters of a specific rock. On the

other hand, although there are many simplifications or approximations, exact Zoep-

pritz equation are still widely used in modeling and inversion, especially with to-

day’s computing power. Furthermore, recent advancements in seismic exploration

5



has made large-offset AVO or amplitude variation with phase modeling or inver-

sion possible (Downton and Ursenbach, 2006; Skopintseva et al., 2011; Zhu and

McMechan, 2012). On that account, I include over-critical-angle incidence here. I

use the Barnett shale because gas shale is currently a hot seismic exploration object.

Here, I first give a brief description of the method for calculating SH, PP, and

PSV reflection coefficients including boundary conditions, then I give numerical

results of the variation of SH, PP, and PSV RCMs to some or all of the previously

mentioned eight parameters. Finally, I summarize the numerical results with tables

and in conclusions.

2.2 SH wave incidence

I first show SH wave incidence between two isotropic, homogeneous, and lossless

media, which is simpler than P wave incidence. For the SH wave, see Figure 2.1(a)

for schematic illustration of plane incident, reflected, and refracted waves. Due to

SH wave polarization, I have the continuity of displacement and stress boundary

conditions:

uI
y = uII

y

σI
yz = σII

yz

Also due to its polarization, SH wave incidence only generates reflected and trans-

mitted SH waves. From the assumption of periodic plane waves, using Helmholtz

decomposition of displacements, and after manipulations of boundary conditions, I

have the reflected and transmitted SH wave displacements calculation equation as:










1 −1

µ1 cosα
VS1

µ2 cosα′

VS2





















A1

A2











=











−1

µ1 cosα
VS1











(2.1)
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Elastic medium

Elastic medium

Incident SH wave Reflected SH wave

Transmitted SH wave

x

z

(a)

Elastic medium

Elastic medium

Incident P wave

Reflected P wave
Reflected SV wave

Transmitted P wave
Transmitted SV wave

x

z

(b)

Figure 2.1: Schematic diagrams of wave reflection and transmission between two
homogeneous, isotropic, and lossless media for (a) SH wave with one reflected and
one transmitted wave and (b) P wave with two reflected and two transmitted waves.

Algebraic manipulation of equation 2.1 yields the explicit form:

A1 =
VS2µ1 cosα− VS1µ2 cosα

′

VS2µ1 cosα + VS1µ2 cosα′

A2 =
2VS2µ1 cosα

VS2µ1 cosα+ VS1µ2 cosα′

In these equations, A1, A2, α, α
′

, µ1, µ2, VS1, and VS2 mean R/T coefficients, angle

of incident and reflected waves, angle of transmitted wave, shear modulus of the

upper layer, shear modulus of the lower layer, shear velocity of the upper layer, and

shear velocity of the lower layer, respectively.

From the direct application of the equation of Snell’s law, an incident wave may

causes the sine of reflected or transmitted angles bigger than 1. In this situation,

complex number must be introduced to the value of cosine of reflected or trans-

mitted angle, and we have inhomogeneous reflected or transmitted waves. Taking

the transmitted angle α′ as an example (See Figure 2.1(a)), if the velocity of the

incident medium is bigger than the transmitted medium, the transmitted wave is

parallel to the interface at certain incidence angles, at which point the incident angle

is called critical angle. When the incidence angle is bigger than critical angle, from

7



Table 2.1: Average medium parameter values from 13 measured Barnett shale sam-
ples. The unit of ρ is Kg/m3 and the units of VP and VS are m/s.

ρ VP VS

2575 4334 2553

Table 2.2: Upper and lower layers parameters made from Table 2.2. ρ, VP , and VS

are approximations to Table 2.2, the other parameters are calculated from ρ, VP ,
and VS. The analysis of RCMs are from the variation of the lower layers parameters.
The unit of ρ is Kg/m3, the units of VP and VS are m/s, ν is dimensionless, and the
units of µ, λ, K, ν, and E are GPa.

ρ VP VS µ λ K ν E

Upper 2500 4300 2500 15.625 14.975 25.39 0.2447 38.90

Lower 2600 4400 2600 17.576 15.184 26.90 0.2317 43.30

Snell’s law sinα′ > 1, thus cosα′ =
√

1− sin2 α′ should be positive or negative pure

imaginary number. Given the directions of wave propagation and coordinate sys-

tem, because wave can’t have infinite amplitude, I choose positive pure imaginary

number.

Using the 13 measured Barnett shale samples (Lu, 2012), I calculate their aver-

age density and velocity and make Table 2.2. Upper and lower layers parameters

in Table 2.2 approximate Table 2.2. Table 2.2 has a small jump between upper

and bottom layers, which are common for realistic geological situations. From the

above equations and Table 2.2, I calculate the variation of SH wave RCMs through

changing the medium parameters. Figure 2.2 shows the calculation results of SH

wave incidence.

Similarly to Koefoed (1955), I draw general comments and descriptions about

the variation of SH wave RCMs to medium parameters in Table 2.3, which can be

8
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Figure 2.2: SH wave RCMs variation to bottom layer medium parameters with (a)
ρ changes, µ changes by µ = ρV 2

S , and VS is kept as constant, (b) VS changes, µ
changes by µ = ρV 2

S , and ρ is kept as constant, and (c) µ changes, VS changes by

VS =
√

µ
ρ
, and ρ is kept as constant.
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Table 2.3: SH wave RCMs variation to medium parameters. NI means normal
incidence, ↑means increase, ↓means decrease,→ means move to the right,← means
move to the left, ⇒ means change of variation direction, — means no variation, and
© stands for inapplicable.

NI Over NI to zero
RCM

Zero
RCM

Over
zero
RCM

TIR
starting
point

Overall properties

ρ ↑ Very smooth at
small offset com-
pared with VS and
µ variation

→ No
crossover
of
RCMs

— 1, from NI to zero RCMs:
RCMs are small and de-
crease smoothly into zero.
2, for over zero RCMs,
RCMs increase rapidly
from zero to one.
3, RCMs either increase
monotonically to one or
first decrease to zero then
increase to one.
4, all RCMs are very sim-
ilar except two cases of ρ
decrease.

VS ↑ ↓⇒↑ Cross at relatively
large offset com-
pared with ρ and
µ variation, more
sensitive than µ
variation

←⇒
→⇒←

RCMs
cross

←

µ ↑ Relatively small
RCMs compared
with ρ and VS

variation

←⇒
→⇒←

RCMs
cross

←

used as a reference point for analyzing realistic data. In this test, it seems that ρ is

the parameter that is most sensitive to SH wave RCM. We can see Figures 2.2(b)

and 2.2(c) are very similar, which comes from the shear wave velocity-shear modulus

relationship.
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2.3 P wave incidence

For P wave incidence, similar to the SH wave reflection situation, the boundary

conditions are:

uI
x = uII

x and uI
z = uII

z

σI
xz = σII

xz and σI
zz = σII

zz

See Figure 2.1(b) for schematic diagram for the R/T response of incident P wave.

With similar process of solving the SH wave reflection problem, I can get the equa-

tions for calculating PP and PSV reflection coefficients as:
















− sinα − cos β sinα′ cos β′

cosα − sinβ cosα′ − sinβ′

2ρ1V 2

S1
p cosα ρ1VS1(1 − 2V 2

S1
p2) 2ρ2V 2

S2
p cosα′ ρ2VS2(1 − 2V 2

S2
p2)

−ρ1α1(1− 2V 2

S1
p2) 2ρ1V 2

S1
p cos β ρ2VP2(1− 2V 2

S2
p2) −2ρ2V 2

S2
p cos β′

















= M (2.2)

M ×

















A1

A2

A3

A4

















=

















sinα

cosα

2ρ1V 2

S1
p cosα

ρ1α1(1 − 2V 2

S1
p2)

















(2.3)

In these equations, A1, A2, α, α
′

, β, β
′

, and p correspond to PP and PSV reflec-

tion coefficients, angle of reflected P wave, angle of reflected SV wave, angle of

transmitted P wave, angle of transmitted SV wave, and ray parameter, respectively.

Subscript 1 and 2 under ρ and V correspond to upper and lower layers, subscript P

and S correspond to P and S waves. The meanings of other parameters are similar

to equation 2.1. Notice the absolute values of the first column of the left side equals

the absolute values of the right side: the first and fourth rows have opposite sign,

and the second and third rows have the same sign.

We can see from equations 2.2 and 2.3 this medium is characterized by two

independent parameters VP and VS plus density. Any other parameters are converted
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into the two independent parameters for input. See Figures 2.3, 2.4, 2.5, and 2.6 for

calculation results.

The relationship between VP , VS, and ρ and other medium parameters are

(Mavko et al., 2003):

K = ρ(V 2
P −

4

3
V 2
S ), λ = ρ(V 2

P − 2V 2
S ), E = ρV 2

S

3V 2
P − 4V 2

S

V 2
P − V 2

S

, and ν =
V 2
P − 2V 2

S

2(V 2
P − V 2

S )
(2.4)

So the process of varying medium parameters are:

1, for VP , VS, and ρ, vary them directly and put into equations 2.2 and 2.3.

2, for µ, vary µ and keep ρ as constant, then calculate VS from µ and ρ to input

into equations 2.2 and 2.3.

3, for K, λ, E, and ν, vary them and keep ρ as constant, then either calculate VP

and keep VS as constant or calculate VS and keep VP as constant, then use VP , VS,

and ρ as input to equations 2.2 and 2.3.

Step 2 is straightforward and step 3 is through converting equation 2.4: 1, for

constant VP , from equation 2.4, I have: 4ρV 4
S − (E + 3ρV 2

P )V
2
S + EV 2

P = 0, thus I

have two corresponding shear velocities for some particular VP and E:

VS =

√

√

√

√

E + 3ρV 2
P ±

√

(E + 3ρV 2
P )

2 − 16ρEV 2
P

8ρ
(2.5)

the negative sign is chosen due to the the proximity of calculated results to original

E value. Figure 2.7 shows the variation of E with VS when ρ and VP are kept as

constant, from which we can see E has a maximum value, thus only four instead of

five variations of E are shown. Also:

VS =

√

3

4
(V 2

P −
K

ρ
) (2.6a)

VS =

√

ρV 2
P − λ

2ρ
(2.6b)
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Figure 2.3: PP wave RCMs variation to bottom layer medium parameters with (a) ρ

changes, (b) VP changes, (c) VS changes, (d) µ changes, VS changes by VS =
√

µ
ρ
, (e)

λ changes, VS changes by equation 2.6b, and (f) λ changes, VP changes by equation
2.7c.
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Figure 2.4: PP wave RCMs variation to bottom layer medium parameters with (a)
K changes, VS changes by equation 2.6a, (b) K changes, VP changes by equation
2.7b, (c) ν changes, VS changes by equation 2.6c, (d) ν changes, VP changes by
equation 2.7d, (e) E changes, VS changes by equation 2.5, and (f) E changes, VP

changes by equation 2.7a.
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Figure 2.5: PSV wave RCMs variation to bottom layer medium parameters with (a)

ρ changes, (b) VP changes, (c) VS changes, (d) µ changes, VS changes by VS =
√

µ
ρ
,

(e) λ changes, VS changes by equation 2.6b, and (f) λ changes, VP changes by
equation 2.7c.
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Figure 2.6: PSV wave RCMs variation to bottom layer medium parameters with (a)
K changes, VS changes by equation 2.6a, (b) K changes, VP changes by equation
2.7b, (c) ν changes, VS changes by equation 2.6c, (d) ν changes, VP changes by
equation 2.7d, (e) E changes, VS changes by equation 2.5, and (f) E changes, VP

changes by equation 2.7a.
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Figure 2.7: Variations of E with VS when ρ and VP are kept as constant.

VS = VP

√

1− 2ν

2(1 + ν)
(2.6c)

2, for constant VS, I have:

VP =

√

(E − 4ρV 2
S )V

2
S

E − 3ρV 2
S

(2.7a)

VP =

√

K

ρ
+

4

3
V 2
S (2.7b)

VP =

√

λ+ 2ρV 2
S

ρ
(2.7c)

VP = VS

√

2(1 + ν)

1− 2ν
(2.7d)

Here I show the characteristics of variation of PP wave RCM to medium pa-

rameters in Table 2.4 and PSV wave in Table 2.5. It is not easy to determine the

zero of RCMs analytically (Levin, 1986), so here the determination of zero RCMs is

through visual inspection of the numerical results.

It seems for PP RCMs, many occurrences of total internal reflection happens.

However, this is an illusion. When I change the value of VP of the underlying
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Table 2.4: PP wave RCMs variation to medium parameters, see Table 2.3 caption
for meanings of symbols. Descriptions of RCMs cross at small and large offset are
relative in terms of the specified range.

Case NI Over NI to first zero RCM or 30◦ if
no zero RCM

Zero RCM Over first zero
RCM or 30◦ if
no zero RCM

1, ρ ↑ ↓⇒↑ Can be relatively large at small off-
set, cross at small and large offset,
and all decrease with increasing off-
set

← 1, very irreg-
ular variation
compared to
near offset
and highly
frequently cross
each other.
2, at large offset
long range of
PP RCMs are
near one which
means almost
all the energy of
incident waves
are carried away
by PP RCMs.
3, most cases
have gradient
discontinuities.

2, VP ↑ ↓⇒↑ Can be relatively large at small and
large offset and cross at intermedi-
ate offset

©

3, VS ↑ — ↓ and small ←
4, µ ↑ — Similar to case 3 small offset: ←

large offset: →
5, λ ↑, VP— — ↑ and small small offset: →

large offset: ←
6, λ ↑, VS— ↑ ↑, small, and all decrease with in-

creasing offset
→

7, K ↑, VP— — Similar to case 5 Same as case 5

8, K ↑, VS— ↑ Somewhat similar to case 6 except
green solid line cross other lines at
large offset

©

9, ν ↑, VP— — Similar to case 5 Same as case 5

10, ν ↑, VS— ↑ Similar to case 6 →
11, E ↑, VP— — Somewhat similar to case 3 except

black dotted line has zero RCM and
magenta dash-dot line has no zero
RCM and cross others at large off-
set

©

12, E ↑, VS— ↓⇒↑ Somewhat similar to case 2 except
black dotted line and blue dashed
line don’t cross

©
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Table 2.5: PSV wave RCMs variation to medium parameters, see Table 2.3 caption
for meanings of symbols.

Case Over NI to first zero RCM Zero RCM Over zero RCM

1, ρ ↑ Can be relatively large and cross at in-
termediate offset

→ 1, Highly irreg-
ular variation
compared to
near offset
and highly fre-
quently cross
each other;
2, The max-
imum RCM
is almost the
same as the
correspond-
ing maximum
RCM at near
offset for all
cases;
3, All cases
have gradient
discontinuities.

2, VP ↑ ↓, small, and no crossing ←
3, VS ↑ Can be relatively large and cross at

large offset
←⇒
→⇒←

4, µ ↑ Similar to case 3 →⇒←
5, λ ↑, VP— Small and cross at large offset →
6, λ ↑, VS— Similar to case 2 ←
7, K ↑, VP— Can be relatively large and cross at

large offset
→⇒←

8, K ↑, VS— Similar to case 2 ←
9, ν ↑, VP— Similar to case 5 →
10, ν ↑, VS— Similar to case 2 ←
11, E ↑, VP— Similar to case 7 →⇒←
12, E ↑, VS— Somewhat similar to case 2 except ma-

genta dash-dot line with discontinuous
gradient cross other RCMs at large off-
set

←
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medium, any of the VS is smaller than the upper layer VP , total internal reflection

can’t happen; when I change the value of VS of the underlying medium, calculated

results show none of the VS is greater than the upper layer VP , total internal re-

flection can’t happen either. And it is obvious that total internal reflection can’t

happen for PSV RCMs. In consequence, total internal reflection can’t happen for

any of the RCMs.

2.4 Discussion

This chapter is not intended to be exhaustive. I only calculate and analyze PP

and PSV RCMs for they are much more important than SVP and SVSV RCMs,

and transmission coefficients are also ignored. Further, it is impossible to test all

the possible combinations of medium parameters, I only give a brief extent of the

possible combinations and limit the medium parameters variation to the bottom

layer. Lastly, I only consider the magnitude for the sake of simplicity. Further work

can test the variation in other domain such as τ -p.

2.5 Conclusions

I have calculated PP, PSV, and SH wave RCMs and listed their features in Tables

2.3, 2.4, and 2.5.

Additional properties of SH RCMs are:

1, total internal reflection always happen for over the critical angle incidence because

inhomogeneous wave carries no energy;

2, for 90◦ incidence angles, RCMs equal one, which corresponds to total internal

reflection.

Additional properties of PP RCMs are:
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1, all maximum RCMs at normal incidence are smaller than 0.2 except one occur-

rence and only four maximum RCMs are greater than 0.1;

2, a small variation of the medium parameters (the blue dashed and black dotted

lines) only slightly influence the trend of the RCMs;

3, for 90◦ incidence angles, RCMs equal one, which corresponds to total internal

reflection;

4, RCMs may have no, one, or two zero RCM point, most RCMs have no zero RCM

point.

Additional PSV RCMs properties are:

1, all maximum RCMs are smaller than 0.4 and only four RCMs are greater than

0.2;

2, a small variation of the medium parameters (the blue dashed and black dotted

lines) will not dramatically change the trend of the RCMs except cases 2, 5, 9, and

12;

3, for zero and 90◦ incidence angles, RCMs equal zero;

4, besides zero and 90◦ incidence angle, most RCMs have one zero RCM point and

the others have no zero RCM point;

5, almost all RCMs go as zero → local maximum → zero or a local minimum →

local maximum → zero.

The common features of all RCMs are:

1, for normal incidence, PP and SH RCMs are relatively small compared with larger

offset;

2, most of the RCMs keep relative size between each other after normal incidence to

one of the zero RCM points, dramatic change of RCMs’ relative size are observed

after the first or second zero RCMs;

3, RCMs curve always cross for each variation of medium parameters after the first

zero RCMs;
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4, gradient discontinuities happen for a lot of large offset RCMs.

Some parameters are more sensitive to RCM in certain angles than Poisson’s

ratio, which is the main justification for using not only Poisson’s ratio. These

observations maybe helpful for inversion.
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Chapter 3

Seismic Signatures of Pore Connectivity

3.1 Introduction

Anisotropy means direction-dependent physical characteristics, while heterogene-

ity means position-dependent physical characteristics. One important cause of

anisotropy is pores in matrix. The matrix with complex pore structure is hetero-

geneous, but it can be approximately considered as an equivalently-homogeneous

anisotropic medium. This kind of theory is called Effective-Medium Theory (here-

after refer as EMT), which can avoid intensive computations and simplify things

significantly.

There are many different kinds of EMT in the literature (Eshelby, 1957; Kuster

and Toksöz, 1974; Hudson, 1981; Mavko et al., 2003). One of the exquisite EMT is

General Singular Approximation (hereafter refer as GSA). Among the GSA input

parameters are pore aspect ratio, crack density, background stiffness-tensor, and

inclusion stiffness-tensor. On the other hand, GSA also contains the crucial param-

eter friability that is thought as controlling the pore space connectivity, which is

also the main research object in this chapter. Using GSA to calculate the effective

stiffness-tensor was first introduced by Shermergor (1977). The empirical parameter

friability was first introduced into GSA in Bayuk and Chesnokov (1998). Tiwary
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(2007) and Jiang and Chesnokov (2012) use an isotropic background to model fri-

ability variation with the stiffness-tensor and Thomsens parameters. Modeling with

a friability value of 0.78 and a background VTI medium was done in Bayuk et al.

(2008). Inversion to obtain the value of friability can be found in Bayuk et al. (2007),

Bayuk et al. (2008), and Jiang (2013).

However, none of the previous literature simultaneously study the influence of

friability variation on stiffness-tensor components, extended Thomsens parameters,

phase velocities, critical angles, and PP wave reflection coefficient with a VTI back-

ground, especially critical angles and PP reflection coefficients. Here, the critical

angles and PP reflection coefficients are calculated between a fractured orthorhom-

bic medium and unfractured VTI medium. The fractured orthorhombic medium

can be both gas and water-saturated.

After the calculation through GSA, I get the stiffness-tensor that may include

up to 21 different parameters. With density, they approximately include all the

information about the subsurface structure. The stiffness-tensor and density can

be regarded as input parameters to calculate relevant seismic signatures such as ex-

tended Thomsen’s parameters, phase velocity, critical angle, and general anisotropic

reflection coefficient. Calculating different signatures are important in that different

signatures usually have different sensitivity to medium parameters. Understanding

this sensitivity is helpful for inversion of GSA input parameters.

I briefly review the theory of GSA firstly. Then I explain the procedure of calcu-

lating above mentioned seismic signatures. Lastly, I focus on presenting numerical

results, discussions, conclusions, and possible future work about the influence of

friability on seismic signatures.
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3.2 General singular approximation

In principle, it is hard to say which EMT is the best. The ultimate check of the

accuracy of different EMTs should be based on experimental results. In this regard,

Rathore et al. (1994) have done an experiment, and the result was modeled by

Bayuk and Chesnokov (1998), which shows the more accurate nature of GSA.

In the derivation of GSA, firstly, a comparison body has to be established from

inhomogeneous body. Secondly, the differential operator in Newton’s law, stiffness-

tensor, strain, and displacement are divided into the average and fluctuation parts.

Thirdly, using Green’s function and dropping the high-order term, the expression of

the effective stiffness-tensor is:

C∗ =< C(I −QC
′

)−1 >< (I −QC
′

)−1 >−1 (3.1)

C is the stiffness-tensor of the inhomogeneous body, I is the identity matrix, Q

is related to second derivative of Green’s function, and C
′

is the fluctuation of

stiffness-tensor. Second derivative of Green’s function plays an important role in

the computation of GSA. It can be divided into two parts, the singular and formal

parts, and dropping the formal part will significantly simplify the calculation. The

word ”approximation” means dropping the formal part (Fokin, 1973; Bayuk and

Chesnokov, 1998).

The input parameters for GSA are: pore aspect ratio, crack density (interchange-

able with porosity), stiffness-tensor of the matrix, stiffness-tensor of the inclusion,

and (optionally) an empirical parameter ”friability”. The output is the stiffness-

tensor of homogeneous anisotropic body. Figure 3.1 shows this relationship. Fri-

ability is possibly related to the connectivity of pores. In the static case of GSA,

the pore size is not considered. Friability is the empirical parameter intended to

explain experimental data (Bayuk and Chesnokov, 1998). It takes account of many
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Figure 3.1: An equivalent homogeneous anisotropic rock can represent a heteroge-
neous porous rock.

factors that can’t be rigorously considered. Its range of values is from 0 to 1, with

0 corresponds to pure crystals and 1 corresponds to completely connected pores

(Evgeny Chesnokov, personal communication).

In general, the pore aspect ratio is chosen as 0.035 for shale and 0.12 for sandstone

(Keys and Xu, 2002). For laboratory data from core, friability can be inverted from

velocity measurement assuming the velocity is VTI (Bayuk et al., 2007, 2008; Jiang,

2013). For field data, friability may be regarded as the connected porosity or not

considered at all.

3.3 Anisotropy, phase velocity, and polarization

Here I give a brief review of the main governing equations in anisotropy that are

used in constructing stiffness-tensor, extended Thomsen’s parameters, phase veloc-

ity, critical angle, and R/T coefficients in anisotropic medium (Tsvankin, 2005).

The meanings of symbols are in Table 3.1. Starting from the second Newton’s law

without source:

ρ
∂2ui

∂t2
= cijkl

∂2uk

∂xj∂xl

(3.2)
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Mathematical symbol Meaning

x, y, and z coordinates

t time

i
√
−1

ρ density

σ stress

ε strain

c and C stiffness-tensor u displacement

k wavenumber

|| determinant of a matrix

θ azimuthal angle

ϕ incidence angle

p wavefront normal

d polarization vector

V velocity

Table 3.1: The mathematical symbols and meanings for extended Thomsen’s pa-
rameters, phase velocities, critical angles, and general anisotropic reflection and
transmission coefficients calculation. The units are International System of Units.
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due to the symmetry of cijkl, I have:

cijkl(i, j, k, l = 1, 2, 3)⇒ Cmn(m,n = 1, 2, 3, 4, 5, 6)

Cmn also has symmetry:

Cmn =















































C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66















































substitute the displacements in plane wave forms into equation 3.2, I have the cubic

equation:

∣

∣Γik − ρV 2δik
∣

∣ = 0⇒
(

ρV 2
)3

+ I1
(

ρV 2
)2

+ I2
(

ρV 2
)

+ I3 = 0 (3.3)

in which:


































I1 = −Γii

I2 =
1
2
(ΓiiΓjj − ΓijΓij)

I3 = − |Γij| = −εijkΓi1Γj2Γk3

equation 3.3 is essentially the equation:

ax3 + bx2 + cx+ d = 0(a 6= 0) (3.4)

equation 3.4 can be solved by Cardano’s method for the phase velocities that are use-

ful for computing critical angle and reflection coefficient (Beyer, 1991), the solutions
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are:


































x1 =
3

√

− q
2
+
√

( q
2
)2 + (p

3
)3 + 3

√

− q
2
−
√

( q
2
)2 + (p

3
)3 − b

3a

x2 = ω
3

√

− q
2
+
√

( q
2
)2 + (p

3
)3 + ω2 3

√

− q
2
−
√

( q
2
)2 + (p

3
)3 − b

3a

x3 = ω2 3

√

− q
2
+
√

( q
2
)2 + (p

3
)3 + ω

3

√

− q
2
−
√

( q
2
)2 + (p

3
)3 − b

3a

in which: ω = −1
2
+

√
3
2
i, p = c− b2

3a
, and q = 2b3

27a2
− bc

3a
+ d. The polarization vector

d equals (d1, d2, d3), which is useful for calculating R/T coefficient. Polarization

vector can be computed from algebraic manipulations of the left side of equation

3.3:

d1
Γ13(Γ22 − ρV 2)− Γ12Γ23

=
d2

(Γ11 − ρV 2)Γ23 − Γ12Γ13
=

d3
Γ12Γ12 − (Γ11 − ρV 2)(Γ22 − ρV 2)

(3.5)

which has to satisfy the normalization condition:

d21 + d22 + d23 = 1

3.3.1 Orthorhombic anisotropy

In the main part of this section, I reviewed the basic equation for anisotropy that is

up to triclinic, which has 21 independent elastic parameters. Nevertheless, triclinic

anisotropy is of only limited interested in current exploration geophysics context.

The three most popular anisotropic symmetries are VTI, HTI, and orthorhombic

anisotropy that contains five, five, and nine independent parameters, respectively.

Crystal symmetry is one cause of anisotropy. In current anisotropic seismic ex-

ploration context, beside crystal symmetry, the other main causes of VTI anisotropy

are horizontal layering, overburden stress, horizontal fracture; the main cause of HTI

anisotropy is vertical fracture. When the cause of VTI and HTI anisotropy coexist

in a medium, the result is orthorhombic anisotropy. Orthorhombic anisotropy can
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also be caused by non-circular cracks, crack plane misalignment, and multiple crack

systems in an isotropic background (Tsvankin, 1997a).

Since a GSA-based description of fracture parameters in terms of orthorhombic

anisotropy is very limited, this chapter focuses on orthorhombic anisotropy caused by

a background VTI medium with vertical fractures. A background VTI medium has

five independent parameters, the GSA modeling has another at least four indepen-

dent parameters (friability, aspect ratio, crack density, and inclusion stiffness-tensor

component), so the calculated medium has at least nine independent parameters.

This is different from the linear slip theory in which two of the nine parameters are

related.

Vertical fractures can be found in some shale such as Barnett shale that is tilted

more than 75◦ (Tiwary, 2007). Recently, the seismic imaging community has found

orthorhombic anisotropy is helpful for flattening their gathers and structural imaging

(Li et al., 2012, 2013). However, besides theoretical analysis, numerical modeling,

and physical modeling, practical extraction and application of the orthorhombic

anisotropy is still not very popular. A condensed matrix notation of orthorhombic

anisotropy is:














































C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

sym C55 0

C66















































A schematic diagram of orthorhombic medium inserted by vertical fracture in a VTI

background can be found in the upper layer of Figure 3.2.
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Figure 3.2: PP wave incident between orthorhombic and VTI media. Upper layer
has orthorhombic anisotropy caused by background horizontal layering and aligned
ellipsoid; lower layer has background VTI anisotropy only that is caused by horizon-
tal layering. The upper and lower layers have the same background VTI anisotropy.
ϕ is the incidence angle that is measured from the Z axis and θ is the azimuth angle
that is measured from the Y axis.
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3.4 General anisotropic reflection and transmis-

sion coefficients

Due to the presence of strong anisotropy in the orthorhombic model, the weak

anisotropic reflection approximate formulas (Rüger, 1998; Vavrycuk and Psencik,

1998) are not applicable. In following, I show the procedure of calculating the exact

R/T coefficients.

General anisotropic R/T problem is an extension of Zoeppritz equation. The

incidence and generation of waves from R/T in anisotropic media are schematically

shown in Figure 3.3. Several literature describe the exact general anisotropic R/T

coefficients (Keith and Crampin, 1977; Schoenberg and Protazio, 1992; Chen, 2000;

Chattopadhyay, 2006). Although Schoenberg’s approach is more compact, I slightly

modify and use the approach of Chattopadhyay (2006) here due to its simplicity.

Also, the Schoenberg method can only deal with monoclinic or higher symmetry,

while my approach can deal with arbitrary anisotropic medium. The difference

between my approach and Chattopadhyay (2006) approach is that Chattopadhyay

(2006) formulates the matching of stress and strain in a specific symmetry plane,

my approach doesn’t need to specify a symmetry plane. It follows that my approach

can be checked if the calculated results are rotated into certain symmetry plane that

has higher symmetry.

The displacements in anisotropic medium can be written as:



















un
x

un
y

un
z



















= An



















dn
1

dn
2

dn
3



















eikn(x1pn1+x2pn
2
+x3pn3−cnt)

In this equation, the meanings of symbols are summarized in Table 3.1. It is assumed
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the incident wave amplitude is 1. Reflected P, reflected S1, reflected S2, transmitted

P, transmitted S1, and transmitted S2 waves are represented by n of 1, 2, 3, 4, 5,

and 6, respectively. A schematic diagram of the reflection formulation is shown in

Figure 3.3.

Wavefront normals are related to incidence and azimuthal angle as:

incident wave : p1in = − sinϕin sin θ, p2in = − sinϕin cos θ, and p3in = cosϕin

reflected wave : p1rf = − sinϕrf sin θ, p2rf = − sinϕrf cos θ, and p3rf = − cosϕrf

transmitted wave : p1tr = − sinϕtr sin θ, p2tr = − sinϕtr cos θ, and p3tr = cosϕtr

Snell’s law means horizontal phase slowness is constant across layers. A numerical

method is needed for application of Snell’s law when anisotropy lower than VTI is

present, for which I choose the bisection method.

Three displacements and three stress boundary conditions are needed for calcu-

lating the six reflected and transmitted wave amplitudes:

uI
x = u0

x + u1
x + u2

x + u3
x = u4

x + u5
x + u6

x = uII
x

uI
y = u0

y + u1
y + u2

y + u3
y = u4

y + u5
y + u6

y = uII
y

uI
z = u0

z + u1
z + u2

z + u3
z = u4

z + u5
z + u6

z = uII
z

σI
xz = σ0

xz + σ1
xz + σ2

xz + σ3
xz = σ4

xz + σ5
xz + σ6

xz = σII
xz

σI
yz = σ0

yz + σ1
yz + σ2

yz + σ3
yz = σ4

yz + σ5
yz + σ6

yz = σII
yz

σI
zz = σ0

zz + σ1
zz + σ2

zz + σ3
zz = σ4

zz + σ5
zz + σ6

zz = σII
zz
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The Hooke’s law that relates stress and strain can be expanded as:

σxz = c13klεkl = iknAne
ikn(x1pn1+x2pn

2
+x3pn3−cnt)Pn

σyz = c23klεkl = iknAne
ikn(x1pn1+x2pn

2
+x3pn3−cnt)Qn

σzz = c33klεkl = iknAne
ikn(x1pn1+x2pn

2
+x3pn3−cnt)Rn

(3.6)

in which:

Pn = C51p
n
1d

n
1 + C52p

n
2d

n
2 + C53p

n
3d

n
3 + C54(p

n
3d

n
2 + pn2d

n
3 )+

C55(p
n
3d

n
1 + pn1d

n
3 ) + C56(p

n
2d

n
1 + pn1d

n
2 )

Qn = C41p
n
1d

n
1 + C42p

n
2d

n
2 + C43p

n
3d

n
3 + C44(p

n
3d

n
2 + pn2d

n
3 )+

C45(p
n
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n
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n
3 ) + C46(p

n
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n
1 + pn1d

n
2 )

Rn = C31p
n
1d

n
1 + C32p

n
2d

n
2 + C33p

n
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n
3 + C34(p

n
3d

n
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n
3 )+

C35(p
n
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n
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n
3 ) + C36(p

n
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n
1 + pn1d

n
2 )

The velocities in equation 3.6 are phase velocities.

After some manipulations, I get:

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(3.7)

In equation 3.7, A1, A2, A3, A4, A5, and A6 correspond to the displacement ampli-

tudes of reflected or transmitted P or S waves. Solving these equations, I can get
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Orthorhombic medium

VTI medium

Incident P wave
Reflected P wave

Reflected S1 wave

Reflected S2 wave

Transmitted P wave

Transmitted S1 wave

Transmitted S2 wave

Z

Figure 3.3: P wave reflection between an orthorhombic medium and a VTI medium
has three reflected and transmitted waves. This corresponds to the incident plane
at Figure 3.2.
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the R/T coefficients for general anisotropic media.

3.5 Numerical results

3.5.1 General singular approximation

Example 1

In this example, I choose the parameters of Rathore et al. (1994) and Mavko et al.

(2003) as input for calculating effective stiffness-tensor. The cracks are ellipsoids,

the ratio of crack thickness to crack diameter is 0.02/5.5 = 0.003636 which means

the crack is flat with equally long X and Y axes. The crack density is 0.01; friability

is chosen such that Cc = 0.5Cm+0.5Cf . Cc is the stiffness-tensor of the comparison

body, Cm is the stiffness-tensor of the matrix, and Cf is the stiffness-tensor of the

inclusion fluid. The matrix is isotropic sandstone (Rathore et al., 1994):
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The inclusion is isotropic water with salinity 50000 ppm and bulk modulus 3.013

GPa (Mavko et al., 2003). The output stiffness-tensor is vertically transversely
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isotropic:
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Example 2

This example generates an HTI medium with the symmetry axis along the X di-

rection. Other parameters are the same as previous section except the shape of

the crack with regard to the coordinate system. This time the crack is short along

the X axis but equally long along the Y and Z axis. The output stiffness-tensor is

horizontally transversely isotropic:

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In example 1, because the ellipsoid has equally long axis at X and Y directions,

but short axis at Z direction, the modelled medium is VTI, which agrees with
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Table 3.2: Stiffness-tensor and density of the VTI background shale. The stiffness-
tensor unit is GPa and density unit is g/cm3

C11 C13 C33 C44 C66 Density

34.3 10.7 22.7 5.4 10.6 2.3

our intuition. Similar input values that generate HTI medium from an isotropic

background medium also agrees with our intuition. These validate the code.

3.5.2 Friability variation with stiffness-tensor components

Stiffness-tensor directly relates stress and strain through Hooke’s law. Extended

Thomsen’s parameters, phase velocity, critical angle, and reflection coefficient are

all based on stiffness-tensor. In consequence, I calculate stiffness-tensor components

variation with friability first. The stiffness-tensor and density of the background

VTI medium is from Jones and Wang (1981), which is listed in Table 3.2. The crack

density of the fracture is 0.1, which is a popular number in many seismic exploration

literature; the aspect ratio is 0.035, which is from Keys and Xu (2002) for shale.

The friability changes from 0 to 0.99 with 0.05 increment. This example is used as

input for following calculations.

Since porosity and density don’t change, the square root of stiffness-tensor com-

ponent is exactly proportional to the corresponding velocity if the velocity is de-

termined by a single stiffness-tensor component. This happens at the symmetry

axis.

Figure 3.4 and 3.5 show the results of stiffness-tensor components variation with

friability of the gas and water-saturated orthorhombic media. As friability increases,

most stiffness-tensor components decrease in both media, the three stiffness-tensor

components that increase are C12, C13, and C23 in water-saturated medium. C44 in
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gas-saturated medium almost entirely equals water-saturated medium until friability

increases up to 0.6. The two very large decreases are: C11 in gas-saturated medium,

which corresponds to decrease of horizontal gas-saturated P wave velocity along the

X axis; C55 and C66 in both media. C55 corresponds to SV wave phase velocity along

the X and Z axis and C66 corresponds to SH wave phase velocity along the X and Y

axes. C44, C55, and C66 are mostly responsible for shear wave velocity, thus they are

almost the same for gas and water-saturated media. In Gassmann’s theory, they are

exactly same, which means saturated shear modulus is independent of fluid modulus.

In my analysis, they are a little bit different with different fluid saturation, this is

believed to be GSA modeling considers the different kind of interaction between the

two phases.

3.5.3 Friability variation with extended Thomsen’s param-

eters

Thomsen’s parameters are the mainstream and more useful representation of the

stiffness-tensor. For VTI medium, it recasts the stiffness-tensor into another five

parameters: vertical P wave velocity, vertical S wave velocity, γ, ǫ, and δ. γ basi-

cally measures the percentage of horizontal SH wave phase velocity deviation from

the vertical direction, ǫ basically means the percentage of horizontal P wave phase

velocity deviation from the vertical direction, and δ means the phase velocity curva-

ture at normal incidence. δ is also close to the percentage difference between P wave

moveout and vertical velocity (Thomsen, 1986; Tsvankin, 1997b, 2005). Thomsen’s

parameters also have many other meanings.

Orthorhombic medium has three symmetry planes. In each of the symmetry

plane, the medium shows transversely isotropic characteristics if two special param-

eters are equal. Thus Tsvankin (1997a) extends the concept of Thomsen (1986) into
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Figure 3.4: Stiffness-tensor components variation with friability in the gas-saturated
orthorhombic medium. Background stiffness-tensor and density are listed in Table
3.2. The crack density is 0.1, aspect ratio is 0.035, and the friability changes from
0 to 0.99 with 0.05 increment.
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Figure 3.5: Stiffness-tensor components variation with friability in the water-
saturated orthorhombic medium. Background stiffness-tensor and density are listed
in Table 3.2. The crack density is 0.1, aspect ratio is 0.035, and the friability changes
from 0 to 0.99 with 0.05 increment.
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orthorhombic medium, which needs vertical P and S wave velocities and following

seven parameters to fully characterize orthorhombic medium:

ε1 = C22−C33

2C33

ε2 = C11−C33

2C33

γ1 = C66−C55

2C55

γ2 = C66−C44

2C44

δ1 = (C23+C44)
2−(C33−C44)

2

2c33(C33−C44)

δ2 = (C13+C55)
2−(C33−C55)

2

2C33(C33−C55)

δ3 = (C12+C66)
2−(C11−C66)

2

2C11(C11−C66)

The superscripts correspond to different symmetry plane: 1 represents the plane

YZ, 2 represents the plane XZ, and 3 represents the plane XY. Computed results

of extended Thomsen’s parameters are displayed in Figure 3.6 and 3.7. The value

weak anisotropy in Thomsen (1986) means it is less than 0.2. As can be seen from

these figures, in both media the anisotropy parameters are larger than 0.2 for lots

of occurrences. Consequently, weak anisotropic approximations are not applicable

in my case.

These two figures tell us not all extended Thomsen’s parameters are sensitive to

friability. ǫ2, γ2, δ2, and δ3 in gas-saturated medium and ǫ1, δ2, and δ3 in water-

saturated medium are particular sensitive to friability. Most extended decreases; ǫ1

increases until friability equals 0.95 and then decreases; δ1 decreases until friability

equals 0.95, at which point it then decreases; ǫ1 increases until friability equals

0.95 and then decreases; δ1 decreases until friability equals 0.95, at which point it

increases. In water-saturated medium, the exception is δ1 first decreases slightly

and then increases dramatically in the intermediate range of friability.
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Figure 3.6: Extended Thomsen’s parameters variation with friability in gas-
saturated orthorhombic medium. Background stiffness-tensor and density are listed
in Table 3.2. The crack density is 0.1, aspect ratio is 0.035, and the friability changes
from 0 to 0.99 with 0.05 increment.
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Figure 3.7: Extended Thomsen’s parameters variation with friability in water-
saturated orthorhombic medium. Background stiffness-tensor and density are listed
in Table 3.2. The crack density is 0.1, aspect ratio is 0.035, and the friability changes
from 0 to 0.99 with 0.05 increment.
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3.5.4 Friability variation with phase velocities

While the analysis of stiffness-tensor and extended Thomsen’s parameters are help-

ful for understanding friability’s influence on orthorhombic medium characteristics,

they mostly focus on the properties at the symmetry axis or their fractional differ-

ence. Out of the symmetry plane characteristics are also important for the following

critical angle and azimuthal AVO analysis. The asymptotic formulas to describe

phase velocity out of the symmetry plane are complicated, and not easily or well

appreciated (Sayers, 1994; Tsvankin, 1997a). At the same time, the characteristics

of orthorhombic medium is conspicuously revealed by plotting the exact phase ve-

locities of the three waves out of the symmetry plane. Here, I plot the 3D surfaces

of phase velocities variations with the friability equals 0, 0.2, 0.4, 0.6, 0.8, and 0.99.

Figure 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13 show the phase velocities variation with

friability of P, S1, and S2 waves in gas-saturated medium and P, S1, and S2 waves in

water-saturated medium, respectively. Only one quadrant’s velocity is plotted since

it can represent all the other seven quadrants in triclinic medium.

If an orthorhombic medium is only slightly deviated from VTI, plotted phase

velocity surface is still close to azimuthally invariant. In this case, we can name

the Z axis as the quasi vertical symmetry axis. Similarly, we can name the X and

Y axes as the quasi horizontal symmetry axis of the orthorhombic medium if the

medium is not far from HTI.

Several observations can be made about these results. Overall, these plots reveal

that only using stiffness-tensor and extended Thomsen’s parameters to describe the

medium will miss majority of the information content. When friability is small

(f=0, 0.2, or 0.4), P and S1 waves have quasi vertical symmetry axis for both gas

and water-saturated media. Large friability (f=0.99) distorts this observation that

makes the quasi vertical symmetry axis disappears and both gas and water-saturated
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media have quasi horizontal symmetry axis. This means the media are close to

HTI symmetry with an X and/or Y symmetry axis instead of VTI symmetry. For

the S2 wave in both media, phase velocity surfaces show large variations and little

transverse isotropy.

Since stiffness-tensor components generally decrease as friability increases, and

the density is constant, maximum phase velocities all correspond to friability equals

zero and minimum phase velocities all correspond to friability equals 0.99 for both

media. The modeled results show sophisticated relationship between phase velocity

and friability out of the symmetry plane, especially for S2 wave. P wave phase

velocity maxima in each subplot is close to Y axis for both media; while for S1 and

S2 waves phase velocity surfaces, velocity maxima may far from any symmetry axis.

Velocity minima is more random than maxima.

3.5.5 Friability variation with critical angles

Critical angle is the angle of the incident wave that makes the transmitted wave has

90◦ transmission angle, which corresponds to horizontal velocity in the lower layer.

Since the lower layer is VTI here, Snell’s law can be written as:

sinϕ

V1(ϕ, θ)
=

1

V horizontal
2

=

√

ρ2
C11 2

(3.8)

As Figure 3.2 shows, ϕ is the angle between vertical axis and incident P wave, θ is the

azimuth angle count from X axis, ρ2 is the density of lower medium, and C11 2 is the

11 component of lower medium stiffness-tensor. V horizontal
2 is azimuthally invariant,

yet V1(ϕ, θ) is azimuthally dependent, I need to first determine the azimuth angle,

then numerically solve for the critical angle ϕ from equation 3.8.

The first recognition of critical angle effect on seismic data was at 50s of 20th

century (Winterstein and Hanten, 1985). In Winterstein and Hanten (1985), the

authors show obvious P and SH waves supercritical reflections. Recently, critical
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Figure 3.8: P wave phase velocities variation with friability in gas-saturated frac-
tured orthorhombic medium. Background stiffness-tensor and density are listed in
Table 3.2. The crack density is 0.1, aspect ratio is 0.035, and the friability changes
from 0 to 0.99 with 0.2 increment.
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Figure 3.9: S1 wave phase velocities variation with friability in gas-saturated frac-
tured orthorhombic medium. Background stiffness-tensor and density are listed in
Table 3.2. The crack density is 0.1, aspect ratio is 0.035, and the friability changes
from 0 to 0.99 with 0.2 increment.
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Figure 3.10: S2 wave phase velocities variation with friability in gas-saturated frac-
tured orthorhombic medium. Background stiffness-tensor and density are listed in
Table 3.2. The crack density is 0.1, aspect ratio is 0.035, and the friability changes
from 0 to 0.99 with 0.2 increment.
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Figure 3.11: P wave phase velocities variation with friability in water-saturated
fractured orthorhombic medium. Background stiffness-tensor and density are listed
in Table 3.2. The crack density is 0.1, aspect ratio is 0.035, and the friability changes
from 0 to 0.99 with 0.2 increment.
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Figure 3.12: S1 wave phase velocities variation with friability in water-saturated
fractured orthorhombic medium. Background stiffness-tensor and density are listed
in Table 3.2. The crack density is 0.1, aspect ratio is 0.035, and the friability changes
from 0 to 0.99 with 0.2 increment.
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Figure 3.13: S2 wave phase velocities variation with friability in water-saturated
fractured orthorhombic medium.

52



0 10 20 30 40 50 60 70 80 90
35

40

45

50

55

60

65

70

Azimuth angle (degrees)

C
rit

ic
al

 a
ng

le
 (

de
gr

ee
s)

(a)(a)(a)(a)(a)

 

 
f=0
f=0.2
f=0.4
f=0.6
f=0.8
f=0.99

0 10 20 30 40 50 60 70 80 90
30

40

50

60

70

80

Azimuth angle (degrees)

C
rit

ic
al

 a
ng

le
 (

de
gr

ee
s)

(b)(b)(b)(b)(b)

Figure 3.14: PP wave critical angle from the fractured fluid-saturated orthorhombic
medium and background VTI medium: (a) gas-saturated upper layer; (b) water-
saturated upper layer.

angle reflectometry gains more attention in extracting anisotropic parameters due to

the available of high resolution seismic data. Landrø and Tsvankin (2007) show the

P wave critical angle’s sensitivity to Thomsen’s parameters in VTI and orthorhombic

media. Sil and Sen (2009) analyze the critical angle in the τ -p domain for anisotropic

parameters estimation.

Figure 3.14 shows the friability variation with critical angles of PP reflection be-

tween gas and water-saturated orthorhombic and VTI media. Since P wave velocity

generally decreases as friability increases, friability equals zero corresponds to the

largest critical angle. Since zero azimuth angle corresponds to the lowest velocity
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and 90◦ azimuth angle corresponds to the highest velocity at the upper layer, the

critical angles mostly increase with azimuth. Water-saturated medium has higher

velocity than gas-saturated medium, thus it also has larger critical angle. Almost all

critical angles increase monotonically with friability, exceptions are when friability

equals 0.4, 0.6, and 0.8 in the water-saturated medium.

3.5.6 Friability variation with general anisotropic reflection

coefficients

In this section, based on the previous method, I analyze the PP reflection coefficient

between an orthorhombic fractured medium and an underlying VTI medium.

Validation of the computer code

Approximate perturbation reflection coefficient formula (Vavrycuk and Psencik,

1998) produces close results. When P wave incident on medium with upper and

lower layers of VTI symmetry, it doesn’t generate reflected SH wave. Also, the

reflected P wave amplitude is azimuthally invariant. Tests in VTI/VTI medium

generate almost zero SH wave reflection coefficient and no azimuthal reflection co-

efficient variation, the extra error is due to the modification of VTI symmetry to

avoid shear wave singularities. If the medium is rotated azimuthally with certain

angle according to Bond transformation, the calculated results should also rotate

azimuthally with the same angle (Mavko et al., 2003). My computation results fol-

low this rule. My numerical results also agree with the numerical results produced

from the code written by Grechka (2002).
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PP reflection coefficient between a gas-saturated orthorhombic medium

and VTI medium

Figure 3.15 shows friability variation with exact PP reflection coefficient between

a fractured gas-saturated orthorhombic medium and VTI medium with azimuth

angle equals 0◦, 30◦, 60◦, and 90◦. A contour plot is shown in Figure 3.16. The

maximum incidence angle equals 35◦. Generally speaking, stiffness-tensor decreases

as friability increases in the upper layer, so reflection coefficient increases. This

four plots agree with this intuition. The separation of reflection coefficient at large

incidence angle is not more obvious than at smaller incidence. Consequently, normal

incidence reflection coefficient is enough to detect the friability variation in gas-

saturated reflection problem. From Figure 3.16, we can see azimuthal variation of

reflection coefficients are obvious at very small and large friability; at intermediate

friability, the reflection coefficient is somewhat closer to azimuthally invariant for

small incidence angle.

PP reflection coefficient between a water-saturated orthorhombic medium

and VTI medium

Figure 3.15 shows friability variation with PP reflection coefficient between a frac-

tured water-saturated orthorhombic medium and VTI medium. Azimuth and inci-

dence angle are the same as the gas-saturated situation. Contour plots are shown in

Figure 3.18. Crossover of reflection coefficient is observed for small azimuth angle

(0◦ or 30◦). This means at these two azimuthal angles, initially large friability cor-

responds to large reflection coefficient, but after around 10◦ incidence angle, small

friability corresponds to large reflection coefficient. However, for large azimuth angle

(60◦ or 90◦), large friability almost always correspond to large reflection coefficient

except around 20◦ incidence angle and 60◦ azimuth angle. Azimuthal variation of
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Figure 3.15: PP reflection coefficient between a fractured gas-saturated orthorhom-
bic medium and VTI medium. The orthorhombic medium is the same as the medium
analyzed in the previous section, the underlying VTI medium is the same as the
background VTI medium to build the orthorhombic medium.
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Figure 3.16: Contour plot of PP reflection coefficient between a fractured gas-
saturated orthorhombic medium and VTI medium with different friability. The
input parameters are the same as Figure 3.15.
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Figure 3.17: PP reflection coefficient between a fractured water-saturated or-
thorhombic medium and VTI medium. The orthorhombic medium is the same
as the medium analyzed in the previous section, the underlying VTI medium is the
same as the background VTI medium to build the orthorhombic medium.

PP reflection coefficient is very large for water-saturated medium of any friability.

A medium saturated with gas has obvious less moduli than saturated with water.

Accordingly, the impedance contrast between the upper and lower layers is smaller

for water-saturated medium. Smaller impedance contrast makes water-saturated

medium generally has smaller reflection coefficient than gas-saturated medium. This

character is observed on the four PP reflection coefficient figures. Overall, reflection

coefficient characteristics in the water-saturated medium is very different from the

gas-saturated medium with the same fracture and background medium parameters.
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Figure 3.18: Contour plot of PP reflection coefficient between a fractured water-
saturated orthorhombic medium and VTI medium with different friability. The
input parameters are the same as Figure 3.17.
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3.6 Conclusions

GSA modeling of porous medium’s friability has observable seismic signatures, most

of these signatures have very large, non-monotonic, and nonlinear variations:

1, as friability increases, most stiffness-tensor components decrease in both me-

dia;

2, most extended Thomsen’s parameters decrease as friability increases. ǫ2, γ2,

δ2, and δ3 in gas-saturated medium and ǫ1, δ2, and δ3 in water-saturated medium

are very sensitive to friability, while others are not;

3, P and S1 waves have quasi vertical symmetry axis for both gas and water-

saturated media with small friability, while large friability makes P and S1 waves

in both gas and water-saturated media have quasi horizontal symmetry axis. For

the S2 wave in both media, phase velocity surfaces show large variations and little

transverse isotropy. There are sophisticated relationships between phase velocity

and friability out of the symmetry plane, especially for S2 wave;

4, zero friability corresponds to the largest critical angle and critical angles

mostly increase as azimuth angle increases;

5, normal incidence reflection coefficient is enough to detect the friability varia-

tion in gas-saturated reflection problem. Additionally, azimuthal variation of re-

flection coefficient in gas-saturated medium also depends strongly on friability.

Azimuthal variation of PP reflection coefficient is very large for water-saturated

medium of any friability.

These conclusions are only limited to my specific situation, extension of these

observations may not work if the medium parameters are not close to mine.
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Chapter 4

Influence of Fame Inelasticity on Poroviscoelastic

Reflections From a Gas-Water Contact

4.1 Introduction

Frequency-dependent phenomena are widely studied in seismology. Viscoelasticity,

Biot’s theory, and local flow are the three main groups for studying velocity dis-

persion and attenuation in fluid-saturated rocks (Müller et al., 2010). Viscoelastic

theory is a phenomenological theory without consideration of microscopic, meso-

scopic, or macroscopic rock structures. Further, Biot’s theory (Biot, 1956a,b) pre-

dicts frequency-dependent velocity and attenuation of saturated rock from dry rock

and fluid properties. They are two classical but entirely different approaches for in-

vestigating frequency-dependent seismic signatures. However, they can be combined

to produce the poroviscoelastic (hereafter refer as PVE) model.

Plane wave reflection and transmission (hereafter refer as R/T) problem can be

studied in both viscoelastic and Biot media: plane wave R/T in viscoelastic media

was studied by Ursin and Stovas (2002), Krebes and Daley (2007), and many others,

while Biot reflection was studied by Deresiewicz (1960), Dutta and Ode (1983), Liner

(2012), and many others. The frame inelasticity is considered to be important in

both laboratory (Bouzidi and Schmitt, 2012) and field work (Stoll and Kan, 1981) for
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calculating PVE reflection coefficient. However, these works consider the interface

between a water and PVE medium, which are mostly suitable for oceanic floor

applications. A theory is lacking in analyzing the influence of frame inelasticity on

the plane wave reflection between two PVE media. Since most earth layers are not

water but porous media, this approach is more general. It also corresponds directly

to the classical Zoeppritz equations in elastic medium.

First I briefly review the theory that constitutes PVE model, then I introduce the

method of PVE reflection calculation, finally I give some numerical results and dis-

cussions about the influence of frame inelasticity on PVE dispersions, attenuations,

reflections, and transmissions.

4.2 Poroviscoelastic dispersion and attenuation

4.2.1 Biot dispersion and attenuation

Because PVE model is a synthesis of Biot theory and viscoelasticity, here I give a

brief review of the Biot theory. Biot theory is based on the Lagrangian formulation

of kinetic and dissipation energy function (Biot, 1956a,b, 1962). The equations of

motion are:

(λ+ α2M + µ)∇(∇ • u) + µ∇2u+ αM∇(∇ •W) =
∂2

∂t2
(ρu+ ρfW)

αM∇(∇ • u) +M∇(∇ •W) =
∂2

∂t2

(

ρfu+
Sρf
β

W

)

+ b
∂W

∂t

(4.1)

here u is the matrix displacement, W is the relative displacement between matrix

and fluid multiplied by porosity, and α is the Biot-Willis’ coefficient. α and M are
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Symbol Physical meaning Value

Ks bulk modulus of the matrix 3.5×1010

Kfr bulk modulus of the frame 1.7×109

µ shear modulus of the frame 1.855×109

Kf bulk modulus of gas/water 2.2×107/2.4×109

ρ bulk density with gas/water saturation 1885/2155

ρf density of gas/water 100/1000

η viscosity of gas/water 1.5×10−5/0.001

β porosity 0.3

κ permeability 9.86923×10−13

a pore size 8.1114×10−6

S tortuosity 2.1667

Table 4.1: The parameters for Biot medium, gas, and water. The units are Interna-
tional System of Units.

expressed by equation 4.2. The meanings of some other parameters are in Table 4.1.

α = 1− Kfr

Ks

M =
K2

s

Ks[1 + β(
Ks

Kf

− 1)]−Kfr

(4.2)

By solving Euler’s equation in a three dimensional tube, I get b = η
κ
F (ζ), F (ζ) =

1

4
(

ζT (ζ)

1 + 2iT (ζ)/ζ
), T (ζ) =

ei3π/4J1(ζe
−iπ/4)

J0(ζe−iπ/4)
, and ζ = (ω/ωr)

1/2 = (
ωa2ρfl

η
)
1/2

. J0 and

J1 are the zero and first order Bessel functions of the first kind. F is the frequency

correction factor, which equals one for zero frequency. I incorporate the frequency

correction factor since it may have considerable influence on R/T coefficients in the

acoustic logging frequency range (Santos et al., 1992). Additional two parameters
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tortuosity S (Berryman, 1980) and pore size parameter a (Hovem and Ingram, 1979)

are determined as:

S = 1− 0.5× (1− 1/φ)

a = 2
√

5κ/φ

Essentially, the calculation of Biot dispersion and attenuation is a process of

solving differential equations 4.1. The medium is isotropic, so I can use Helmholtz

decomposition to get the displacement potential functions. Next with the assump-

tion of periodic plane waves, and after some manipulation of equation of motion and

Helmholtz decomposed displacements, I have (Carcione, 2007; Mavko et al., 2003):

1
V 2 =

−(HL+Mρ−2αMρf )±
√

(HL+Mρ−2αMρf )
2−4(α2M2−MH)(ρ2

f
−ρL)

2(α2M2−MH)
(4.3)

in which H = λ + α2M + 2µ and L =
Sρf
β

+
bi

ω
. These two velocities correspond

to the fast and slow P waves. L =
Sρf
β
− bi

ω
in Carcione (2007) and Mavko et al.

(2003), this is because of different assumption of the plane wave phases. Physically,

this means dispersion in Biot theory is dependent on the plane wave phase. The S

wave velocity is:

1
V 2 =

ρL−ρ2
f

µL

The attenuation properties of rocks are measured through the inverse quality factor:

1
Q
= MI

MR

4.2.2 Frame inelasticity

The synthesis of viscoelasticity and Biot theory is through modifying some poroelas-

tic parameters into complex numbers. After the synthesis, the PVE model still re-

lates the dry to saturated moduli, similar to Biot’s theory and Gassmann’s equation.

Rasolofosaon (1991) modifies the parameter H, which corresponds to the modulus
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of no relative motion between solid and fluid. H is also the effective saturated com-

pressional wave modulus in Gassmann’s equation. Carcione (1998) and Carcione

and Helle (1999) modify the modulus M that couples solid and fluid modulus into

complex number. However, their M and H values are based on assumption. As a

deduction, their results may be far from realistic. For example, Rasolofosaon (1991)

uses a standard linear solid model to simulate the dry moduli, but the parameters

quality factor and relaxation frequency are subjective.

In other respects, lots of experimental data show little dry rock quality factor

variation with frequency (Born, 1941; Toksöz et al., 1979; Spencer Jr, 1981; Tisato

and Quintal, 2013). And Bourbie et al. (1987) claim the dry rock attenuation

should not be excluded for experimental data interpretation. Therefore, I take the

simple method of direct modifications of dry moduli Kfr and µfr into complex

ones. The modification also leads to the changing of λ, α, H , and M from real

into complex moduli. Since the characteristics of fluid doesn’t change, the study of

frame inelasticity should be helpful for better characterization of fluid properties.

4.3 Poroviscoelastic reflection and transmission

coefficients

The PVE R/T problem is similar to poroelastic R/T problem, while the poroelastic

R/T coefficients calculation is similar to the Zoeppritz equation, they are both from

the matching of boundary conditions. Using poroelastic R/T coefficients to study

rock properties dates back to Deresiewicz (1960). These studies are based on Biot

theory or some approximations (Geertsma and Smit, 1961; Denneman et al., 2002;

Silin and Goloshubin, 2010) to suit for specific rocks. Among the rock properties,

viscous coupling (Yang and Sato, 1998), fluid flow condition (Wu et al., 1990; Yang,
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Figure 4.1: P wave reflection between two PVE media has three reflected and trans-
mitted waves, including slow P waves.

1999; Denneman et al., 2002), fluid saturation (Yang and Sato, 2000; Quintal et al.,

2011), pore pressure (Carcione, 2007), and frequency correction factor F (Santos

et al., 1992) were studied. Dutta and Ode (1983) pay particular attention to slow

P wave.

Similar to the poroelastic R/T problem, I study a plane fast compressional wave

incident on a horizontal interface, which generates six reflected and transmitted

waves including the slow P waves. It is schematically shown in Figure 4.1. Then six

boundary conditions are established for solving for the six waves’ amplitude. The
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boundary conditions follow from the balance of power input per unit area across

the interface (Deresiewicz and Skalak, 1963; Dutta and Ode, 1983; Carcione, 2007).

The modification of Biot theory into PVE theory doesn’t change these conditions:

1, continuity of matrix horizontal velocity;

2, continuity of matrix normal velocity;

3, continuity of relative normal velocity between frame and fluid multiplied by poros-

ity;

4, continuity of fluid pressure;

5, continuity of shear total stress;

6, continuity of normal total stress.

Zoeppritz equations’ boundary conditions use continuity of displacements instead

of velocities, which are same as the velocities boundary conditions 1 and 2 used here.

This is due to the common frequency denominator. I am using an open boundary

condition here, which is strongly related to high permeability and connected pores. If

relative normal velocity between frame and fluid is zero, then it is a closed boundary

condition, which makes the slow compressional wave hard to observe experimentally

(Rasolofosaon, 1988).

After some manipulations of boundary conditions, I have the equations that can
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be solved for the six R/T coefficients:
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sinα sinβ cos γ − sinα
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cos γ
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τ11 cosα τ12 cos β −τ13 sin γ τ21 cosα
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τ22 cos β
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τ23 sin γ
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V11
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in which:
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X1 =
λ1+α2

1
M1+α1M1τ11
V11

+ 2V11µ1(p
r
3)

2

X2 =
λ1+α2

1
M1+α1M1τ12
V12

+ 2V12µ1(p
r2
3 )

2

X3 = −2V13µ1p
rs
1 prs3

X4 = −λ2+α2

2
M2+α2M2τ21
V21

− 2V21µ2(p
t
3)

2

X5 = −λ2+α2

2
M2+α2M2τ22
V22

− 2V22µ2(p
t2
3 )

2

X6 = −2V23µ2p
ts
1 p

ts
3

X7 = −λ1+α2

1
M1+α1M1τ11
V11

− 2V11µ1(p3)
2

In these equations, A corresponds to R/T coefficients. α, β, γ, α
′

, β
′

, and γ
′

mean

the angles of reflected P1, reflected P2, reflected S, transmitted P1, transmitted P2,

and transmitted S waves, respectively. τ is the amplitude ratio of potential func-

tions of relative displacement between fluid and solid multiplied by porosity over

solid displacement. V11, V12, and V13 are velocities of P1, P2, and S waves in the

upper medium; V21, V22, and V23 are velocities of P1, P2, and S waves in the lower

medium. p means horizontal slowness. Notice α is both the Biot-Willis coefficient

and incidence angle. Other parameters’ meanings are in Table 4.1. Solving this equa-

tion, I can get the R/T coefficients for PVE media, and energy coefficients of each

wave mode can be calculated subsequently. However, since displacement instead of

energy is the most frequently considered factor in current seismic amplitude inter-

pretation (Hilterman, 2001), I will only consider displacement. The computation of

transmission coefficient is useful for computing reflection coefficients of multilayered

medium. At the same time, it is also helpful for characterizing laboratory ultrasonic

experiment if transmitted data is measured (Plona, 1985).
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4.4 Numerical results

Numerical results of the influence of frame inelasticity on PVE dispersion, atten-

uation, and reflection with gas or water saturation are presented here. The Biot

model parameters except pore size and tortuosity are from the widely used Dutta

and Ode data (Dutta and Ode, 1979), which is listed in Table 4.1. Due to the lack

of dry moduli attenuation data, I study the influence of frame inelasticity with Qfr

equals 10, 20, 40, and 80, respectively, which tries to mimic most range of Qfr in

sandstone (Toksöz et al., 1979; Tao et al., 1995). The variation makes the exami-

nation of the frame inelasticity’s influence on R/T coefficients more convenient. In

the meanwhile, the quality factor range also tries to at least include the realistic

situation. The PVE attenuation is the addition of the attenuation caused by the

viscoelastic and poroelastic mechanisms.

4.4.1 Poroviscoelastic dispersions and attenuations

Numerical results of dispersions and attenuations are plotted in Figure 4.2 with gas

saturation and Figure 4.3 with water saturation.

P and S wave dispersions are similarly and less influenced by frame inelasticity

variations than attenuations. In Biot attenuation, very low frequency (1-1000 Hz)

has extremely small attenuation, which is contradictory to some experimental re-

sults (Dvorkin and Nur, 1993). The PVE model corrects this contradiction that can

provide a possible better agreement with experimental results. For gas-saturated

sand, Biot attenuation is ignorable even with small frame inelasticity; for water satu-

ration, Biot attenuation is still small compared with overall attenuation. Compared

to Rasolofosaon (1991), different viscoelastic frame model such as stand linear solid

model and poroelastic parameter such as H doesn’t influence the characteristics that
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Figure 4.2: Biot and poroviscoelastic dispersions and attenuations for P1, P2, and
S waves with gas saturation. Dry rock and saturating fluid parameters are in Table
4.1.
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Figure 4.3: Biot and poroviscoelastic dispersions and attenuations for P1, P2, and S
waves with water saturation. Dry rock and saturating fluid parameters are in Table
4.1.
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overall PVE attenuation basically equals the addition caused by frame inelasticity

and poroelasticity. They are not perfectly equal to each other due to the definition

of attenuation.

Biot slow wave is a diffusive wave and mostly related to the fluid, thus in both

gas and water saturation, slow wave velocities and inverse quality factors are almost

not influenced by frame inelasticity variations. An exception is the attenuation

of water-saturated rock with strong frame inelasticity (Q=10), which have a small

relative deviation from Biot attenuation of about 7% in the low and intermediate

frequency band; the slow wave relative attenuation deviation at the high frequency

range is large, which is due to low level of Biot attenuation.

4.4.2 Poroviscoelastic reflection and transmission coefficients

Following Dutta and Ode (1983), I choose the typical seismic frequency 100 Hz and

high frequency 105 Hz and compare between Biot and PVE R/T coefficients. The

upper layer is gas-saturated and the lower layer is water-saturated. R/T coefficients

over the same frequency range and different incidence angles are plotted in Figure 4.4

and 4.5. R/T coefficients over the same incidence angle and different frequencies are

plotted in Figure 4.6 and 4.7. R/T coefficients in these two plots change smoothly

at low frequency and abruptly from the neighborhood of 104 Hz, which is also the

frequency range of the largest velocity variations and attenuations.

Figure 4.4 shows normal incidence R/T coefficients over 1-106 Hz. As the frame

inelasticity increases, almost all R/T coefficients decrease; exceptions are P1 re-

flection coefficient has irregular variations at very high frequency and P2 reflection

coefficient increases if the frequency is less than around 103 Hz. P1 wave reflection

coefficient has maximal decreasing of 6.5% around 104 Hz, which means this coef-

ficient also has the largest absolute coefficient decreasing. Although the absolute

fluctuation of P2 reflection coefficient is small over all frequency range, the maximal
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Figure 4.4: Poroviscoelastic normal reflection and transmission coefficients from a
gas-water contact with different dry rock quality factor and frequencies. S wave
with zero reflection and transmission coefficients are not shown.
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Figure 4.5: 40◦ incidence poroviscoelastic reflection and transmission coefficients
from a gas-water contact with different dry rock quality factor and frequencies.
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relative reflection coefficient increases about 6% between 10-100 Hz. Very small

maximal absolute and relative decreasing is observed of transmission coefficient.

The R/T coefficients of P1 wave with 40◦ incidence are plotted in Figure 4.5.

P1 wave incidence critical angle is about 43◦, so these results are still less than the

critical angle. The results have obvious larger overall absolute deviation from Biot

reflection than normal incidence, which can also be seen on Figure 4.6 and 4.7. P1

reflection coefficient has the largest absolute difference from Biot reflection than

other R/T coefficients of the low frequency range (1-103 Hz). Counting clockwise

from P1 wave reflection coefficient, largest relative fluctuations are on the order of

decreases 4%, decreases 1.5%, decreases 17%, increases 2.6 times, increases 20%, and

decreases 2% in the neighborhood of 106, 104, 104, 106, 106, and 10 Hz, respectively.

Figure 4.6 exhibits 100 Hz R/T coefficients over all incidence angle. P1 and

P2 waves R/T coefficients have largest absolute deviations from the Biot reflection

in the neighborhood of critical angle, while S wave R/T coefficients have largest

absolute deviations from the Biot reflection around 65◦. Counting clockwise from

P1 wave reflection, maximal relative coefficient variations are on the order of decrease

20%, decrease 10%, decrease 10%, and decrease 10%, decrease 90%, and decrease

11%, respectively. Note S wave’s R/T coefficients are zero at normal and grazing

incidence due to the polarization of incidence P1 wave. This observation is also

applicable to Figure 4.7. The S wave reflection coefficient is particularly striking

and noteworthy: it has the largest fluctuation from Biot reflection at 100 Hz of

small incidence angle. Most current field seismic explorations satisfy the frequency

and offset condition. Exploration seismologists should pay special attention to this

feature if they wish to estimate the Biot theory parameters from converted S wave

reflection coefficient.

105 Hz R/T coefficients over the entire incidence angle are in Figure 4.7. The

results show similar characteristics to Figure 4.6 in terms of largest deviations from
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Figure 4.6: Poroviscoelastic reflection and transmission coefficients from a gas-water
contact with different dry rock quality factor and incidence angles in 100 Hz.
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Figure 4.7: Poroviscoelastic reflection and transmission coefficients from a gas-water
contact with different dry rock quality factor and incidence angles in 105 Hz.
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Biot reflection except the S wave reflection coefficient also has large deviations at

small incidence angle around 30◦. Clockwise from P1 wave reflection, maximal

relative differences from Biot reflection are on the order of decrease 20%, decrease

8%, decrease 8%, decrease 6%, increase 1.2 times, and decrease 12%, respectively.

4.5 Discussion

The limitations of my research are: 1, plane wave approach may be not sufficient if

the source and receiver are close, in this case, point source radiation pattern can be

a good substitution (Tsvankin and Chesnokov, 1990); 2, geological structural may

not be flat, thus an effective reflection coefficient may offer a more flexible modeling

tool (Ayzenberg et al., 2007); 3, other factors such as anisotropy, nonlinearity, and

hysteresis can be incorporated based on specific rock properties; 4, from the per-

spective of experimental data, for most dry rocks, QP < QS (Toksöz et al., 1979),

thus the assumption that the frame quality factor QP = QS may need to be mod-

ified or measured directly; 5, influence of inhomogeneity angle (Carcione, 2007) is

another factor that can be considered; 6, the pore size parameter and tortuosity can

be measured instead of estimated (Bouzidi and Schmitt, 2012).

In places of large magnitude variations, such as near the critical angle, the mod-

eling results are dependent on the sampling rate. Hence the results are a rough

estimation.

4.6 Conclusions

This work studies poroviscoelastic AVO between a gas-water contact through analyz-

ing the influence of frame inelasticity on Biot dispersion, attenuation, and reflection

of a sand. Frame inelasticity has small influence on Biot P and S wave dispersion,
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and almost no influence on slow wave dispersion. Frame inelasticity has a substan-

tial impact on the Biot P and S wave attenuation, and relatively small impact on

Biot slow wave attenuation. At small and large incidence angles, frame inelastic-

ity has small influence on Biot reflection; near critical angle, frame inelasticity has

substantial impact on Biot reflection.

Some general remarks can be made about influence of frame inelasticity on PVE

R/T coefficients. Firstly, stronger frame inelasticity generally causes larger differ-

ences from Biot reflection, and the maximal differences are all caused by largest

frame inelasticity. Additionally, R/T coefficients are obviously deviated from Biot

reflection only with strong dry modulus attenuation (Qfr=10). Secondly, P2 wave

reflection coefficient is least influenced by frame inelasticity compare to P1 and S

R/T coefficients. Thirdly, similar to the purely elastic case (Krebes and Daley,

2007), introduction of frame inelasticity smooth out the Biot R/T coefficient’s gra-

dient discontinuities at critical angle. Lastly, normal incidence R/T coefficients

fluctuation on average are smallest compare to other three cases.

In current geological situation and theoretical framework, the computed results

show frame inelasticity is not ignorable for some geophysical applications. PP critical

angle reflectometry and PS wave reflection coefficient at near offset are the best

candidate tools for distinction of frame inelasticity. However, for normal incidence

PP wave characterization, frame inelasticity is not that important.
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Chapter 5

Conclusions and future work

My approach is proposed to distinguish between connected and disconnected pores

through analysis of seismic signatures, especially AVO. Although the comparisons

are not fully finished, this preliminary work may be considered as a starting point.

The main results are:

Firstly, simple isotropic, homogeneous, and lossless medium is analyzed with re-

gard to eight medium parameters. Results show the parameters all have significantly

different sensitivity to reflection coefficient.

Secondly, I use General Singular Approximation to model friability’s seismic

signatures. The friability has observable seismic signatures, most of these signatures

have very large, non-monotonic, and nonlinear variations. For my chosen model,

I observe: 1, as friability increases, most stiffness-tensor components decrease in

both media; 2, most extended Thomsen’s parameters decrease as friability increases.

ǫ2, γ2, δ2, and δ3 in gas-saturated medium and ǫ1, δ2, and δ3 in water-saturated

medium are very sensitive to friability, while others are not; 3, P and S1 waves

have quasi vertical symmetry axis for both gas and water-saturated media with

small friability. Large friability makes P and S1 waves in both gas and water-

saturated media have quasi horizontal symmetry axis. For the S2 wave in both

media, phase velocity surfaces show large variations and little transverse isotropy.
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The modeled results show sophisticated relationship between phase velocity and

friability out of the symmetry plane, especially for S2 wave; 4, friability equals

zero corresponds to the largest critical angle and critical angles mostly increase as

azimuth angle increases; 5, normal incidence reflection coefficient is enough to detect

the friability variation in gas-saturated reflection problem, azimuthal variation of

reflection coefficient in gas-saturated medium also depends strongly on friability.

Azimuthal variation of PP reflection coefficient is very large for water-saturated

medium of any friability.

Lastly, influence of frame inelasticity on wave dispersions, attenuations, and

reflection and transmission coefficients are computed and analyzed in detail. The

computed results use the data of a typical sand in the Gulf of Mexico with possible

values of frame inelasticity. Plotted numerical results show frame inelasticity has

considerable influence on reflection and transmission coefficients in some frequency

and incidence angle range.

There are still additional space of working based on the following considerations:

1, there are many existing other theories that deals with pore connectivity. For

example, Darcy’s law deals with permeability, double porosity theory explicitly splits

the porosity into connected and disconnected pores, and Biot-Willis parameter is

related to rock consolidation (Jiang, 2013). Consequently, comparisons with these

theories may reveal more insights about the friability parameter;

2, the anisotropic modeling algorithm is still preliminary and other signatures

such as anisotropic Poisson’s ratio, VP/VS, AVO gradient, moveout velocity, con-

verted mode wave, shear wave, spherical wave, surface wave, interface curvature,

pore space rugosity are not studied;

3, the interpretation of the PP reflection results in terms of weak anisotropic

reflection coefficient may reveal more about the practical relationship between fri-

ability and Thomsen’s parameters if the anisotropy is weak;
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4, different values of crack density, aspect ratio, and background stiffness-tensor

should be put into the program and the results should be interpreted;

5, the Biot and PVE theories are all frequency-dependent and attenuative, but

our GSA modeling is not. It would be useful if we can develop GSA into a frequency-

dependent theory with ellipsoid inclusions, then compare them in the same frequency

band (Chesnokov et al., 1998);

6, the GSAmodeling results are polar angle dependent and azimuthally anisotropic.

Nonetheless, the Biot and PVE theories are not. An averaging procedure or other

technique needs to be applied to the modeling results, so the uncertainties that

influence the comparison of pore connectivity are as few as possible;

7, application of the two theoretical frames to the same rock is strongly recom-

mended;

8, the application of propagator matrix method to multilayered anisotropic and

poroelastic media since real earth is multilayered.
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