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ABSTRACT 

The reflectivity series and resulting waveform for a generalized-simple layer (arbitrary 

reflection coefficients on top and base) can be separated into unique even and odd 

components, each having a different tuning curve.  Amplitudes at peak frequency of 

pure-impulse pairs are independent of thickness, for either the original reflectivity, its 

odd, or even component. For seismic data with a non-flat spectrum, dividing the data 

spectrum over some useable band by the wavelet spectrum results in amplitudes at peak 

frequency that are independent of thickness. Comparing peak-frequency amplitudes for 

even and odd components to that of the total waveform, provides clues as to the nature 

of the layering.  

 

Correlations between spectral-isofrequency-amplitude traces (time-varying-spectral 

amplitude at individual frequencies) provide a means of finding frequency notches 

induced by layer reflectivity. Isofrequency-amplitude traces tend to be strongly 

correlated amongst frequencies at spectral nulls; and amongst those that are not at those 

frequency notches. Spectral-principal-component-amplitude attributes take advantage 

of this property, and are indicative of layer thickness. With proper trace scaling and 

spectral balancing, spectral-PC amplitudes are independent of layer’s reflection 

coefficients. Layers with only odd and even pair reflection coefficients have distinctive-

spectral-principal component to thickness relationships in synthetic-wedge models. 
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Three spectral-PC attributes individually delineate amplitudes from: 1) an isolated 

reflection not affected by tuning; 2) tuning of an even reflection pair; and 3) tuning of an 

odd reflection pair in a 3-D-synthetic-channel model. As with the synthetic model, a 

good attribute versus true-reservoir-thickness relationship is seen in real seismic and 

well data from the Hoover field in the Gulf of Mexico. 
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Chapter 1   

Introduction 

 

Quantifying and visualizing frequency-dependent-seismic responses is a key objective 

of quantitative-seismic interpretation. These responses include effects such as thin-bed 

tuning (Chen et al., 2008), fluid-induced-reflectivity variation, attenuation and 

dispersion (Castagna et al., 2003, Korneev et al., 2004), waveform variation with offset 

(Yang, 2003), etc. Understanding these frequency-dependent responses may help 

differentiate fluid effects from stratigraphic variation in reflectivity. However, direct 

correlation of seismic amplitude and frequency content to reservoir properties is difficult 

when these factors simultaneously influence seismic responses (Chen et al., 2008, Li et 

al., 2011, Liner and Bodmann, 2010).   

 

The thickness-amplitude relationship, as one of the earlier seismic-geology relationships 

studied, is complex due to the involvement of variation in layer-acoustic properties as 

well as frequency content in seismic data. Widess (1973) illustrated the relationship 

between seismic-reflection amplitude and layer thickness for an isolated-thin layer (a 

tuning curve). He also introduced the idea of a seismic-tuning thickness, i.e., the 

thickness corresponding to approximately a half-period of the dominant frequency of 

the seismic wavelet, at which thickness maximum constructive interference between top 
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and base reflectors occurs. Kallweit and Wood (1982) dealt with the fact that the “Widess 

model” is not general and corresponds to the special case of equal- and opposite- 

reflection coefficients at the top and base of a layer. They showed that the tuning curve 

is inverted when reflection coefficients are the same sign; in that case, maximum-

destructive interference occurs at half-period-time thickness and maximum constructive 

interference occurs at zero thickness. Chung and Lawton (1995) and Puryear and 

Castagna (2008) studied the tuning behavior of the more-general case of arbitrary pairs 

of reflection coefficients.  

 

One of the ideas to investigate frequency-dependent seismic responses is to first study 

seismic response at individual frequencies. Taner et al. (1979) used instantaneous-

spectral attributes from the complex seismic trace, which is an extension of the 

conventional-seismic trace. Partyka et al. (1999) applied spectral decomposition to 

seismic data to image thickness changes and subtle discontinuities.  Since that time, 

many authors have investigated spectral decomposition as an interpretation tool. 

Castagna et al. (2003) and Sinha et al. (2005) discuss using spectral decomposition as a 

direct-hydrocarbon indicator. Marfurt and Kirlin (2001) and Liu and Marfurt (2007) 

demonstrate that using peak-amplitude, peak-frequency and coherence attributes give 

better visualization of channel features. Khare and Martinez (2008) show that amplitude 

ratios of frequency components are indicative of thickness variations.  
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Multiattribute-analysis techniques can make use of spectral decomposition, treating each 

frequency as an individual attribute. As one of the common types of multiattribute 

techniques, principal component analysis (PCA), can be useful in showing correlation 

relations between all frequency components (Guo et al., 2009). Principal components of a 

time-frequency analysis are orthogonal-linear combinations of individual frequencies 

ranked by the variance of the data that they account for. Principle component analysis 

(1) allows for reduction of the data dimensionality by elimination of insignificant 

principal components, (2) aids in multiattribute analysis due to the superiority of 

orthogonal attributes in multiple regression, and (3) provides independent 

visualizations of the geology, each PC potentially highlighting different geological 

features. We begin with the concept of the spectral isofrequency-amplitude trace, which 

represents amplitude versus time at a given frequency and investigate correlations 

between isofrequency traces and layer thickness. Also, we explore the use of Varimax 

rotation of principal components to separate frequency responses. The Varimax norm 

was formerly applied to test seismic data spikiness (Wiggins, 1978), zero-phase 

correlation (Levy and Oldenburg, 1987) and focusing (Fomel et al., 2007). When applied 

to balanced frequency gather data, the Varimax rotation of the first few spectral PCs, 

which usually represent most of information, finds their best correlation to specific 
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frequency bands. As a result, each Varimax-rotated-spectral PC represents, for the most 

part, an independent band of frequencies. 

 

In this dissertation, we first discuss the seismic-tuning effect from a generalized-simple 

layer in chapter 2. Any seismic reflection or seismogram from a layer can be 

decomposed into a real- and an imaginary-Fourier component, given that the center of 

layer is known. Frequency-domain-tuning curves prove to be superior to time-domain-

tuning curves, having better resolution, and independence from reflection-coefficient 

change. In chapter 3, we demonstrate the concept and properties of an isofrequency-

amplitude trace, and correlations between isofrequency traces, which are determined by 

thickness of layers. Chapter 4 introduces how principal component analysis of 

isofrequency-amplitude trace data takes advantage of the correlations, and produces 

statistically significant and independent spectral PCs. Also, Varimax rotation is explored 

as an interpretation tool of spectral PCs for their frequency content and geophysical 

meaning. In Chapter 5, 2D-synthetic-layer and wedge models, 3D-synthetic model 

containing a turbidite channel, and real datasets from the Fort-Worth basin, Texas and 

the Gulf of Mexico are used to test the effectiveness of spectral-PC attributes in 

delineating thickness variation. Chapter 6 summarize this dissertation briefly with 

conclusions.   
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Chapter 2   

Generalized Tuning of Seismic-Reflection Events From 

Simple Layers 

 

2.1 Background 

Widess (1973) illustrated the relationship between seismic reflection amplitude and layer 

thickness for an isolated thin layer (a tuning curve). He also introduced the idea of a 

seismic tuning thickness (the thickness corresponding to approximately a half-period of 

the dominant frequency of the seismic wavelet at which maximum constructive 

interference between top and base reflectors occurs; see Figure 2.1a).  Kallweit and 

Wood (1982) dealt with the fact that the “Widess model” is not general and corresponds 

to the special case of equal and opposite reflection coefficients at the top and base of a 

layer.  They showed that the tuning curve is inverted (Figure 2.1b) when reflection 

coefficients are the same sign; in that case, maximum destructive interference occurs at 

half-period time thickness and maximum constructive interference occurs at zero 

thickness.  Chung and Lawton (1995) and Puryear and Castagna (2008) studied the 

tuning behavior of the more-general case of arbitrary pairs of reflection coefficients.  

Various time domain attributes are tested in the same fashion as the tuning curve in the 

“Widess model”, “Kallweit-Wood model” and two examples of the generic models. The 
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results are included in Appendix A. One can conclude from these studies that tuning 

curves based on the Widess model can be seriously in error when applied to a layer with 

arbitrary reflection coefficients and that a more-general approach for understanding 

resolution is, thus, needed.  

 

It is apparent from the Partyka et al. (1999) seminal paper on spectral decomposition 

that, in the frequency domain, for an isolated layer and a flat wavelet spectrum, the 

maximum amplitude of the reflectivity spectrum is independent of the layer thickness.  

Marfurt and Kirlin (2001) generalized this conclusion to an arbitrary pair of reflection 

coefficients.  Application of this fact to interpretation of real seismograms is complicated 

when the seismic wavelet has a non-flat amplitude spectrum over the band of the data, 

and when wave propagation is not adequately described by a simple convolutional 

model.  As a first step, these papers suggest that proper consideration of tuning must 

consider what happens in both the time and frequency domains. In light of these 

developments, the purpose of this chapter is, within the context of the convolutional 

model, to (1) synthesize and illustrate improvements in our understanding of seismic 

resolution, (2) review the current state-of-the-art, and (3) recommend best practices for 

seismic interpretation purposes. 
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Figure 2.1 Classical tuning curves of time domain peak amplitude versus thickness for a 30 Hz 

Ricker wavelet (a) Widess (1973) model (b) Kallweit and Wood (1982) model. 

 

2.2 Reflectivity Spectrum of a Generalized-Simple Layer 

We define a simple layer as one with only two reflection coefficients; one at the top and 

one at the base.  In practice, impedance profiles are rarely that simple, but (1) a simple 

layer is a good starting point to understand more complex behavior, and (2) reflectivity 

sequences can sometimes be approximated by an equivalent simple layer that exhibits 

similar behavior to a more complex sequence of reflection coefficients, particularly in an 

earth with a blocky impedance profile.  As compared to the treatments by Widess (1973) 

and Kallweit and Wood (1982), we will investigate the case of a generalized simple layer 

where the reflection coefficients need not be equal in magnitude and can have arbitrary 

sign. 
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Following Puryear and Castagna (2008) the generalized simple layer can be represented 

as: 

 g(t) = r1δ(t-T/2) + r2 δ(t+T/2)       , (2.1) 

where, g(t) is the reflectivity series as a function of time, T is the layer two-way time 

thickness, r1 and r2 are the reflection coefficients at top and base of the layer respectively, 

and δ is the Dirac-delta function. 

 

As any time series can be uniquely divided into even and odd parts (Bracewell, 1965), 

we now define even, ge(t), and odd, go(t), reflectivity series components by 

 ge(t) = reδ(t-T/2) + re δ(t+T/2)        (2.2) 

and 

 go(t) = roδ(t-T/2) + ro δ(t+T/2) (2.3) 

where, ge(t) and go(t) sum to g(t) and re and ro are the even and odd reflection coefficients 

given by 

 re = (r1+ r2)/2 (2.4) 

and 

 ro = (r1- r2)/2 . (2.5) 

The frequency spectrum, G(f), is then 

 G(f) = (2re)cos(πfT) + i(2ro)sin(πfT)   . (2.6) 
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The real part of the complex spectrum, Re[G(f)], is the spectrum of the even part of the 

reflectivity series while the imaginary part of the complex spectrum, Im[G(f)], is the 

spectrum of the odd part of the reflectivity series.  Each of these is a sinusoidal variation 

of amplitude with frequency with maxima equal to twice the even or odd reflectivity. 

 

Equation (2.6) can be manipulated to reveal some interesting behavior and help us 

understand the resolution of a generalized layer. We first consider the spectrum of the 

even part of the reflectivity series, Re[G(f)], which upon differentiation gives: 

 
𝜕𝑅𝑒[𝐺(𝑓)]

𝜕𝑓
/Re[G(f)] = -πT tan(πfT)  . (2.7) 

This equation allows computation of layer thickness from the real part of the reflectivity 

spectrum without knowing the reflection coefficient magnitudes.  The form of equation 

(2.7) also reveals strong sensitivity to thickness even as the layer thickness becomes very 

small.  This suggests strong sensitivity of the spectrum to thickness even below tuning 

for the even part of the signal (in the absence of noise). This should not be surprising 

given Kallweit and Wood’s (1982) tuning curves which show strong amplitude 

sensitivity at small thicknesses below ¼  period. This equation provides a thickness 

estimate for every frequency within a given useable band, and thus, in the simple layer 

case, can produce reliable estimates of thickness when averaged over many frequencies; 
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while variations of thickness estimates for different frequencies can reveal poor data 

quality or more complex layering.   

 

Similarly, for the odd part of the reflectivity series we obtain: 

 Im[G(f)]/
𝜕𝐼𝑚[𝐺(𝑓)]

𝜕𝑓
 = (1/πT) tan(πfT)   . (2.8) 

From inspection of equation (2.8), one can conclude that as time thickness goes to zero, 

estimation of T from the spectrum of the odd part of the reflectivity becomes unstable. 

This can be seen by taking the limit of the right-hand side of equation (2.8) as T 

approaches zero; which is simply f.  Thus, as Widess (1973) concluded with wedge 

modeling, there is no sensitivity to thickness for very thin layers with equal and 

opposite reflection coefficients.   On the other hand, from the spectrum of the even 

component, as thickness goes to zero the right-hand side of equation (t) becomes linear 

in f with a coefficient proportional to T2; in other words, equation (2.7) is highly sensitive 

to thickness even for thin layers.  It can readily be shown that ratioing equations (2.7) 

and (2.8) yields a simple direct solution for T which is unfortunately also unstable as 

thickness approaches zero and thus is not given here.  Similarly, multiplying (2.5) and 

(2.6) provides a useful, if more complex, direct solution that is not restricted to thin 

layers.   
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−𝑎𝑟𝑐𝑡𝑎𝑛{

𝜕𝑅𝑒[𝐺(𝑓)]

𝜕𝑓
𝐼𝑚[𝐺(𝑓)]/𝜕𝐼𝑚[𝐺(𝑓)]

𝜕𝑓
𝑅e[G(f)]}1/2 = πfT    . 

(2.9) 

Puryear and Castagna (2008) show that once thickness is obtained from equations (2.7 

and 2.8), the reflection coefficients can be determined from the real and imaginary parts 

of equation (2.6).  Of course, any frequency where the amplitude in any denominator 

term approaches zero should be avoided in these calculations. These manipulations 

suggest that the even part of a seismic signal has better resolution than the odd part for 

very thin layers.  This is the basis for spectral inversion (Puryear and Castagna, 2008) but 

can also be used to better understand signals from thin layers as discussed below. 

 

2.3 An Example 

Assuming the center of a simple layer is known, it is possible to solve and separate the 

even and odd pair of any reflection in time and frequency domain by simply using the 

Fourier transform. The detailed workflow can be seen in Appendix B. For illustration, let 

us consider a 10 ms thick general simple layer with a top reflection coefficient r1 = .2 and 

a base reflection coefficient r2 = -.1 (Figure 2.2).  The maximum amplitude of the 

reflectivity spectrum is given by |r1| + |r2| and the minimum amplitude is |r1- r2|. The 

reflection coefficients of the even part are re = .05 at top and base, and the odd reflection 

coefficients are ro =.15 at the top and -ro = -.15 at the base.  These layer reflectivities are, 
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respectively, even and odd impulse pairs which have sinusoidal frequency spectra. The 

amplitude spectrum of the reflectivity (Figure 2.3a) is the square root of the sum of the 

squares of the real and imaginary parts of the complex reflectivity spectrum given by 

equation (2.6).  The amplitude spectrum of the even part of the reflectivity is a rectified 

cosine function (Figure 2.3b) and the amplitude spectrum of the odd part of the 

reflectivity is a rectified sin function (Figure 2.3c). The maximum amplitude at the 

frequency peaks for the reflectivity spectrum of the even part of the reflectivity is equal 

to 2re and equal to 2ro for the odd part of the reflectivity.  In both cases the minimum 

amplitude is zero. For a broad band wavelet with a flat spectrum, the resulting 

amplitude at any peak frequency is thus independent of thickness, which makes it a 

fundamentally different quantity than peak amplitude in the time domain. Similarly, as 

pointed out by Partyka et al., (1999) the peak frequencies, and spacing between spectral 

peaks, depends only on time thickness and is independent of reflection coefficient.  

 

 

Figure 2.2 Reflectivity for for a 10 ms thick layer and has reflection coefficients of .2 at the top and 

-.1 at the base. (a) Reflectivity series. (b) Even part of the reflectivity. (c) Odd part of the 

reflectivity.  
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Figure 2.3 Reflectivity spectra for a 10 ms thick layer and has reflection coefficients of .2 at the top 

and -.1 at the base. Amplitude spectrum of (a) reflectivity series; (b) even part of reflectivity, (c) 

odd part of the reflectivity. 

 

Of course, the example above does not include the effects of a band-limited seismic 

wavelet with general frequency and phase.  For our purposes, we will assume that the 

wavelet is stable enough, and smooth enough in the frequency domain (without 

frequency nulls) over some useful bandwidth, such that the wavelet spectrum can be 

divided out, and that resulting spectra can be treated as reflectivity spectra over some 

useable band.  

 

2.4 Generalized-Tuning Curves for a Wedge Model 

To model a realistic thin-layer situation, we convolve the reflectivity spectra with a 30 

Hz Ricker wavelet and measure amplitudes at peak frequency (Figure 2.4) as layer 

thickness thins well below tuning.  Note that since the Ricker wavelet amplitude 

spectrum is not flat, the behavior is similar to that observed in the time domain (see 

Figure 2.1) for even and odd components.  The total amplitude is dominated by the odd 
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component near tuning where the odd component constructively interferes and the even 

component destructively interferes.  As the layer thins, the odd component becomes 

weaker while the even component becomes stronger. As thickness approaches zero, 

amplitude does not go to zero as in the Widess model, but rather the even component 

dominates for very thin layers.  This behavior is similar to that observed in the time 

domain (Puryear and Castagna, 2008).  This is a consequence of the fact that the Ricker 

wavelet spectrum is not flat.  We can shape the wavelet spectrum to a flat response over 

a desired bandwidth by dividing the data by the Ricker wavelet spectrum.  The result 

are amplitudes at peak frequency that are independent of thickness (Figure 2.5). 
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Figure 2.4 Amplitude at peak frequency for a wedge model using a 30 Hz Ricker wavelet. 

Reflection coefficients is .2 at the top and -.1 at the base. The dashed and dotted line represents 

tuning thickness of the Ricker wavelet and a 30 Hz sinusoid, respectively. 
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Figure 2.5 Amplitude at peak frequency for a wedge model using a 30 Hz Ricker wavelet with the 

Ricker wavelet spectrum divided out over the useable bandwidth. Reflection coefficients is .2 at 

the top and -.1 at the base. 

 

The significance of this is important for seismic interpretation and multiattribute 

analysis.  In analyses making use of amplitudes, we of course assume that overburden 

variations, and any other non-local factors, affecting amplitudes have been corrected for. 

For conventional time-domain amplitudes, below tuning, if thickness changes, 

amplitudes change.  Thus, when seismic amplitude changes in a thin layer, it is 

unknown whether that amplitude change is caused by a rock properties change (and a 
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corresponding reflection coefficient change) or a layer thickness change.  For amplitudes 

at peak frequency on properly frequency balanced spectra (with the wavelet divided 

out) as shown in Figure 2.5, a local amplitude change can be related directly to reflection 

coefficient changes. This makes amplitude analysis more robust and powerful. 

 

Another interesting effect evident in Figure 2.5 is that the amplitude at peak frequency is 

virtually the same as the amplitude of the odd component.  This is not always the case. 

Since the amplitude at a peak frequency for a general impulse pair, Atotal, is given by 

 Atotal = |r1| + |r2| (2.10) 

The amplitude at a peak frequency for the even part, Aeven, is then 

 Aeven = |r1+ r2| (2.11) 

and the amplitude at a peak frequency for the odd part, Aodd, is 

 Aodd = |r1 - r2| (2.12) 

If r1 and r2 are the same sign (as would result from an impedance staircase) then 

 Aeven = |r1+ r2| = |r1| + |r2| = Atotal (2.13) 

On the other hand, if r1 and r2 are opposite sign (as would result from an isolated layer of 

abnormally high or low impedance encased in material with equal impedance above 

and below the layer) then 

 Aodd = |r1 - r2| = |r1| + |r2| = Atotal (2.14) 
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Thus, by comparing the amplitudes at peak frequency of the even and odd components 

to that of the total waveform, one can determine if one is dealing with either of these 

idealized simple layers or a more complex situation, in which case neither component 

may exhibit the same amplitude at peak frequency as the total waveform. 

 

Finally, amplitude tuning curves for even and odd components for peak amplitudes in 

the time and frequency domains (Figure 2.6) are compared. It is important to note that 

the amplitude tuning effects are larger in the frequency domain when the spectra have 

not been normalized by the wavelet spectrum. 

 

 

Figure 2.6 Peak amplitude in time (line) and frequency domain (circle) for wedge model with (a) 

odd reflection pair, and (b) even reflection pair after convolved with 30 Hz Ricker wavelet. 
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2.5 Summary 

In the general case of arbitrary reflection coefficients at the top and base of a simple 

layer, amplitude tuning may deviate significantly from the Widess model.  This is 

particularly true for layers well below tuning.  When observing the total tuning 

response, such behavior can be complex and difficult to understand.  However, tuning 

phenomena can be greatly simplified by (1) separating tuning responses for the unique 

even and odd components of a waveform, and (2) looking at amplitudes at peak 

frequencies of the spectral response.  Most significantly, we find that the even 

component of the reflectivity dominates amplitudes as thickness approaches zero, and 

provides the possibility of resolving reflectors well below tuning. Furthermore, by 

flattening the wavelet spectrum over some useful frequency band, we find that the 

amplitude at peak frequency is independent of layer thickness.  This has potentially 

important consequences for amplitude analysis. Finally, comparing amplitudes at peak 

frequency for even and odd components to that of the total waveform provides clues as 

to the nature of the layer being investigated. 
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Chapter 3   

Spectral Decomposition and Correlation Between 

Isofrequency Traces  

 

3.1 Spectral decomposition, spectral amplitude, and the isofrequency trace 

Since the inception of the Fourier Transform, frequency components of an arbitrary time 

series or signal can be revealed by transforming the signal from the time domain into the 

frequency domain. The process of the Fourier transform cross-correlates the input signal 

and a series of sine and cosine waves of different frequencies, which can be viewed as 

template functions. For a windowed signal calculated, the process of Fourier transform 

is equivalent to measuring similarity between the signal and the template functions. The 

output frequency information consists of spectral amplitude, which are correlation 

coefficients between the signal and the bases functions, as for variable frequency and 

phase.  

 

However, for an arbitrary signal, the Fourier transform cannot provide time-varying 

information since it considers the input signal as a whole.  Gabor (1946) introduced the 

short-time Fourier transform by using an analysis window that slides through the signal 

over time.  At each time sample, a time-specific Fourier transform of the windowed 

signal is performed. The spectrum of truncated signal is assigned to the time sample at 
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the center of the window.  To capture the "short duration" temporal variation in the 

signal, using a shorter window is desirable. However, using a shorter window, which 

means more shortly truncated bases functions, distorts the signal spectrum by 

convolving it with the window spectrum. This is one example of the uncertainty 

principle, which indicates that for a given algorithm of time-frequency analysis, the 

product of time- and frequency- resolution is fixed with a constant value as the window 

length varies. For more recent spectral decomposition techniques that use windows of 

variable length or a dictionary of wavelets, product of time- and frequency-resolution at 

a given frequency can differ from that of the short-time Fourier transform. However, 

there should always be a limit of the resolution product for each method; hence there is 

always a trade-off between time- and frequency-resolution.  

 

For an arbitrary signal (Figure 3.1a), to interpret its amplitude spectrum variation over 

time, instead of plotting the amplitude spectrum for each truncation of the signal as a 

function of time (Figure 3.1b), it is now standard procedure to use some key feature of 

the amplitude spectrum as a spectral attribute. These include frequency at which 

amplitude reaches maximum (peak frequency), amplitude at peak frequency (peak 

amplitude), bandwidth, spectral shape, etc. To display a complete spectral 

decomposition amplitude spectrum, it is usually plotted as a time-frequency panel 

(Figure 3.1c). At each point on the panel, the color or intensity represent spectral 
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amplitude, which are also correlation coefficients of truncated signal to basis. To show 

spectral amplitude variation over time, it is also possible to plot spectral amplitude for 

each single frequency as an individual attribute, referred to here as an “isofrequency-

amplitude trace” or “isofrequency trace”. The smoothly varying spectral amplitude over 

time at each individual frequency can be plotted as seismic traces (Figure 3.1d). Here, 

the isofrequency-amplitude trace is a frequency domain seismic attribute. No inference 

related to properties of a regular seismic time trace, such as phase or frequency should 

be drawn from the isofrequency-amplitude trace.  
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Figure 3.1 Comparison of an arbitrary signal (a), its spectral amplitude result displayed as 

amplitude spectrum at time samples (b), time-frequency intensity panel (c), and isofrequency-

amplitude traces.  
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3.2 Correlation between isofrequency-amplitude traces 

Correlation between isofrequency-amplitude traces of a signal can be the result of 

similarity between isofrequency-amplitude traces of the reflectivity series and the 

wavelet, as well as due to the poor resolution of the spectral decomposition algorithm, 

e.g., as would be caused by the window effect. From the Fourier convolution theorem, 

the amplitude spectrum of a signal equals the product of the reflectivity series spectrum 

and the wavelet spectrum. For example, the amplitude spectrum of a 30 Hz Ricker 

wavelet has amplitude frequency variation that is a continuous curve (Figure 3.2a). This 

suggest that isofrequency-amplitude traces are highly correlated, regardless of variation 

in amplitude magnitude over frequency. For the simplest situation, if the truncated 

reflection series contains only one reflector, the amplitude spectrum and isofrequency-

amplitude trace waveforms of the reflectivity series remain unchanged over frequency. 

Hence the amplitude spectrum of the signal and the shape of isofrequency-amplitude 

traces will only be determined by those of the wavelet (Figure 3.2, b-d).  

 

The correlation matrix (r) is usually applied to quantify the correlativeness between 

multiple measurements from a few sample points. The correlation coefficient is a 

calculation of how well measurements x and y acquired at k observation points fit 

around the linear regression of the points. The equation for calculating correlation 

coefficient is: 
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 𝑟𝑥𝑦 =  
∑ (𝑥𝑖−𝑥̅) (𝑦𝑖−𝑦̅)
𝑘
𝑖=1

√∑ (𝑥𝑖−𝑥̅)
2𝑘

𝑖=1  √∑ (𝑦𝑖−𝑦̅)
2𝑘

𝑖=1

      . (3.1) 

Here 𝒙̅ and 𝒚̅ are mean values of all points from isofrequency-amplitude traces x and y, 

respectively. Also, xi and yi are the ith sample of measured points. In our application, 

each point on the matrix is the correlation coefficient between two isofrequency-

amplitude traces x and y (rxy). A schematic illustrating this process is given in Figure 3.3.  
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Figure 3.2 Time view (a), amplitude spectrum view (b), spectral intensity view (c), and 

isofrequency trace view (d) of a one-reflector model, a 30 Hz Ricker wavelet, and the convolved 

signal.   
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(a) 

d o1 o2 o3 o4 o5 o… ok 

f1 d11 d12 d13 d14 d15 … d1k 

f2 d21 d22 d23 d24 d25 … d2k 

f3 d31 d32 d33 d34 d35 … d3k 

f… … … … … … … d…k 

fm dm1 dm2 dm3 dm4 dm5 dm… dmk 

(b) 

r f1 f2 f3 f… fm 

f1 r11     
f2 r21 r22    
f3 r31 r32 r33   
f… … … … …  
fm rm1 rm2 rm3 rm… rmm 

 

Figure 3.3 Schematic showing isofrequency-amplitude traces d (k samples and m frequencies) (a), 

and correlation matrix (b) calculated from the isofrequency-amplitude traces. 

 

 

 

Figure 3.4 Correlation coefficient between isofrequency-amplitude traces within typical 

bandwidth (10-70 Hz) of Reflectivity of one reflector (a), 30 Hz Ricker wavelet (b) and signal 

constructed by convolution of the previous two (c).  
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Figure 3.5 Average correlation coefficient between isofrequency-amplitude traces within typical 

bandwidth (10-70 Hz) of reflectivity for one reflector (a), 30 Hz Ricker wavelet (b) and signal 

constructed by convolution of the previous two (c). 

 

Figure 3.4 shows the correlation matrix of isofrequency-amplitude traces of the (a) 

reflectivity, (b) wavelet and (c) signal of the above model with one simple reflector. The 

upper-right half of the matrices are zeroed out because that would be the identical to the 

lower-left half. Because isofrequency traces of reflectivity in this model are frequency 

independent, (a), the correlation matrix of the signal isofrequency traces, (c), show 

correlation relations mainly controlled by that of the wavelet, (b). One could also 

calculate a simple average of correlation coefficients for each isofrequency-amplitude 

trace to all other isofrequency traces over the entire bandwidth (Figure 3.5), which 

would be equivalent to calculating the average correlation coefficient for each row or 

(a) (b) (c)

A
v
er

ag
e 

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t 

(u
n

it
le

ss
)

Frequency (Hz) Frequency (Hz) Frequency (Hz)



 
 

29 

column in Figure 3.3(b). The average correlation coefficient plot in Figure 3.5 shows the 

same trend as in Figure 3.4.  

 

As reflectivity series become more complex, especially when seismically-thin layers are 

involved, correlation between isofrequency-amplitude traces can be complex as well, 

especially at frequencies where spectral notches occur.  A spectral notch forms when 

reflections from the top and bottom of a layer most destructively interfere with each 

other. Partyka et al. (1999) point out that the frequency of a spectral notch is directly 

determined by the time thickness of the layer. From the derivation of Marfurt and Kirlin 

(2001), we summarize simply that for a model with one simple layer (reflection on top 

and bottom having the same magnitude) of time thickness ∆t, the most destructive 

frequency (Fdes) occurs at:  

(1) For same magnitude and opposite sign reflections: 

 𝐹𝑑𝑒𝑠 =
𝑁

∆t
; (3.2) 

(2) Or, same magnitude and same sign reflections:  

 𝐹𝑑𝑒𝑠 =
𝑁 + 0.5

∆t
; (3.3) 

where N = 0, 1, 2, 3... . 

 

Figure 3.6(a) shows an example with one simple layer of 24 ms time thickness which has 

the same and opposite sign reflection coefficients on top and bottom. The seismic time 
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signal is created by convolving the reflectivity with a 30 Hz Ricker wavelet. The notches 

in trace amplitude spectrum (Figure 3.6b) of reflectivity are “passed on” to the spectrum 

of signal, especially within the typical usable bandwidth of the wavelet.  They are also 

reflected in the time-frequency panel, with low amplitudes shown at notch frequencies 

(Figure 3.6c). This results in poorly correlated spectral waveforms at notch frequencies 

(Figure 3.6d).  

 

Figure 3.7(a) compares the correlation matrix of isofrequency traces of reflectivity, 

wavelet and signal. For the wavelet, within usable bandwidth of a 30 Hz Ricker wavelet 

(10 to 70 Hz), high correlations are found between all isofrequency traces. While for the 

reflectivity series, clear low correlation occurs around the notch frequency, i.e., 42 Hz, 

for this 24 ms layer model. If we calculate a simple average of correlation coefficients 

over all frequencies (Figure 3.7b), isofrequency traces of the signal show low correlation 

coefficients around notch frequencies almost identical to that of the reflectivity series, 

which is determined by layer thickness.  
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Figure 3.6 Time view (a), amplitude spectrum view (b), spectral intensity view (c), and 

isofrequency trace view (d) of a 24 ms layer with pure odd reflection pair, a 30 Hz Ricker wavelet, 

and the convolved signal.    
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Figure 3.7 Amplitude spectrum (a), Correlation coefficient between isofrequency traces (b), 

Average correlation coefficient (c) of the one layer reflectivity model, wavelet, and signal within 

typical usable bandwidth of the wavelet used (10 to 70 Hz).  
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Using these simple examples, we have seen that understanding of the correlation 

behavior between isofrequency-amplitude traces provide a simple means to find 

spectral notches in the seismic signal within the usable bandwidth, given that amplitude 

spectrum of the wavelet is null-free. Because spectral notch frequency is generally 

considered directly connected to geology, by simply isolating those poorly correlated 

isofrequency-amplitude traces that are well correlated to each other, we can develop a 

spectral amplitude attribute that is narrow band or geologically oriented.  

 

This objective could be reached, as shown in the one-layer model, by calculating the 

average correlation coefficient over the usable frequency bands (Figure 3.7c). However, 

in some more complex situations, simple arithmetic averaging couldn’t successfully find 

notch frequencies in the data. Figure 3.8 describes a slightly more complex model 

consisting of five reflectors with the same and opposite sign reflections. The four layers 

that compose the model time thicknesses of 28, 24, 24, and 28 ms. From Figure 3.8 we 

can clearly see that in the frequency domain, frequency notches and the “zone” of low 

correlation in the correlation matrix (Figure 3.9b) is far too complex to be represented 

using an arithmetically averaged correlation coefficient curve (Figure 3.9c).  

 

Here, eigen-decomposition will be used as a tool to extract eigen-amplitude attributes 

that contain most of the information from the correlation matrix. In addition, a 
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hyperspace rotation technique will be applied on the truncated eigenvector matrix to 

unveil and interpret key independent factors for each extracted eigen-amplitude 

attribute.  
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Figure 3.8 Time view (a), amplitude spectrum view (b), spectral intensity view (c), and 

isofrequency trace view (d) of a complex reflectivity model of four layers with mixed thickness 

(28, 24, 24, and 28 ms), a 30 Hz Ricker wavelet, and the convolved signal.   
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Figure 3.9 Amplitude spectrum (a), Correlation coefficient between isofrequency traces (b), 

Average correlation coefficient (c) of the complex reflectivity model, wavelet, and signal within 

typical usable bandwidth of the wavelet used (10 to 70 Hz).  
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Chapter 4   

Spectral Principal Component (PC) Analysis 

 

As discussed in the previous chapter, isofrequency-amplitude traces tend to be strongly 

correlated between frequencies at spectral nulls; and amongst those that are not at those 

frequency notches. To take advantage of this clustering behavior, we show in this 

chapter methods including principal component analysis (PCA), an eigen-

decomposition based mathematical tool to try to extract individual events behind 

isofrequency-amplitude traces; and Varimax rotation method to understand or interpret 

more easily the extracted spectral-PC attributes in physically meaningful terms, i.e., 

individual frequencies.  

 

4.1 PC analysis of isofrequency-amplitude traces – dimension reduction 

The mathematical basis of PCA is eigen-decomposition of a correlation matrix or 

covariance matrix for multi-variat data. The correlation coefficient is equivalent to 

covariance normalized by the mean values of the variables, hence we apply it here for its 

simplicity. Because the correlation matrix is always diagonalizable, using eigen-

decomposition we can write correlation matrix as the sum of its m eigenvalues (λ) 

multiplied by the corresponding eigenvectors (Vi) and the transpose of each (ViT): 
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 𝑟 = (
𝑉11 ⋯ 𝑉1𝑚
⋮ ⋱ ⋮
𝑉𝑚1 ⋯ 𝑉𝑚𝑚

)(
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑚

)(
𝑉11 ⋯ 𝑉𝑚1
⋮ ⋱ ⋮
𝑉1𝑚 ⋯ 𝑉𝑚𝑚

)      , (4.1) 

or in shorter form 

 𝑟 = ∑ 𝜆𝑖 ∗ 𝑉𝑖 ∗ 𝑉𝑖
𝑇𝑚

𝑖=1     . (4.2) 

Again, here r represent correlation matrix of isofrequency-amplitude traces, same as in 

chapter 3 (equation 3.1). In this expression, eigenvalues indicate the amount of variance 

that is represented by each eigenvector. Comparing all m eigenvalues, usually only the 

first few (e.g., 1st, 2nd… pst) are large enough to be significant. As a result, we can create a 

matrix by excluding the non-significant terms, without losing much variance in the 

original r matrix.  The process can be written as: 

 𝑟′ = (

𝑉11 ⋯ 𝑉1𝑝
⋮ ⋱ ⋮
𝑉𝑝1 ⋯ 𝑉𝑝𝑝

)(

𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑝

)(

𝑉11 ⋯ 𝑉𝑝1
⋮ ⋱ ⋮
𝑉1𝑝 ⋯ 𝑉𝑝𝑝

) ≈ 𝑟  , (4.3) 

 

or in shorter form: 

 𝑟 ≈∑𝜆𝑖 ∗ 𝑉𝑖 ∗ 𝑉𝑖
𝑇

𝑝

𝑖=1

= 𝑟′. (4.4) 

Furthermore, if we rearrange above equation by incorporate scalar λ into the two 

matrices, we would have:  

 𝑟′ = (
√𝜆1𝑉11 ⋯ √𝜆1𝑉1𝑝
⋮ ⋱ ⋮

√𝜆𝑝𝑉𝑝1 ⋯ √𝜆𝑝𝑉𝑝𝑝

) (

√𝜆1𝑉11 ⋯ √𝜆𝑝𝑉𝑝1
⋮ ⋱ ⋮

√𝜆1𝑉1𝑝 ⋯ √𝜆𝑝𝑉𝑝𝑝

) ≈ 𝑟  , (4.5) 

or in shorter form: 
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 𝑟′ = (√𝜆1 𝑉1 √𝜆2 𝑉2 ⋯  √𝜆𝑝 𝑉𝑝) 

(

  
 

√λ1 𝑉1
𝑇

√λ2 𝑉2
𝑇

⋯

√λp 𝑉𝑝
𝑇

)

  
 
≈ 𝑟. (4.6) 

 

Here if we define vectors 

 𝑅′𝑖 = √𝜆𝑖𝑉𝑖, (4.7) 

where i range from 1 to p, each 𝑅′𝑖 vector can be seen as the original eigenvector or PC 

coefficient normalized by square root of the eigenvalue, i.e., √𝜆𝑖, which equals to its 

standard deviation. Then the original r matrix can be reconstructed with a significant 

degree of confidence by multiplication of matrix R’ and its transpose. In other words, we 

can create a correlation matrix r’ only using a reduced number of p vectors but still 

representing most information in the original r matrix: 

 𝑟′ = 𝑅′ ∗ 𝑅′𝑇 ≈ 𝑟. (4.8) 

The amount of variance represented by the new matrix (r’) with selected p eigenvectors 

can be estimated using the proportion that sum of selected eigenvalues out of the sum of 

all eigenvalues, the equation can be:  

 𝑓𝑣𝑎𝑟 =
∑ 𝜆𝑖
𝑝
𝑖=1

∑ 𝜆𝑖
𝑚
𝑖=1

    . (4.9) 

Here 𝑓𝑣𝑎𝑟 represent the fraction of variance. This can be used as a criterion to determine 

the value of p. Usually the selected p eigenvectors need to collectively represent variance 

greater than a threshold, e.g., in some cases 85% of total variance. The second criterion 
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is, for an m-variable matrix, eigenvalues that are less than 1 are usually considered 

insignificant. Sometimes a third criterion is to find p at which point there is a change of 

slope occurred in an eigenvalue-PC number plot, or scree plot (Figure 4.1). For example, 

for the two-layer synthetic model we used in the last section, the first two PCs are 

selected to be significant. The reason is that the two PCs account for more than 90% of 

the variance, the eigenvalues corresponding to them are all greater than one, and the 

selection of the first two PCs doesn’t violate the scree plot rule.  

 

In addition to the three criteria applied to determine the selection of PCs, one can double 

check the ability for a limited number of eigenvector to represent most of the variation 

from the original input data by comparing the original correlation matrix and the 

reconstructed correlation matrix with selected PCs. Figure 4.2 and 4.4 compare the (a) 

original correlation matrix to that reconstructed with (b) only the first PC; (c) the first 

two PCs; and (d) the first three PCs. The residue correlation matrix plots (Figure 4.2 and 

4.4, e-g) and the residue histogram plots (Figure 4.3 and 4.5) show that using the first 

two PCs is good enough to reduce the level of residue to under 0.5% and 2% on the 

average respectively, which may be judged adequate. 
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Figure 4.1 Scree plot for (a) the simple 24 ms layer model as seen in Figure 3.5; (b) the complex 

layer model, as seen in Figure 3.7. The blue horizontal lines indicate eigenvalue equal to one. In 

both cases, only the first two PCs have eigenvalues greater than zero.  
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Figure 4.2 Correlation matrix original signal (Figure 3.6) (a); one reconstructed with only PC1 (b); 

(c) PC1 and PC2; and (d) PC1 through PC3. Residue correlation matrix from the original (e, f, g). 
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Figure 4.3 Histogram and a Gaussian fit of residue (red lines) after recreating the correlation 

matrix using only PC1 (a), PC1 and PC2 (b), and summation of PC1, PC2, and PC3 (c) for the 

simple layer model.    
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Figure 4.4 Correlation matrix of original signal (Figure 3.8) (a); reconstructed with only PC1 (b); 

(c) with PC1 and PC2; and (d) with PC1 through PC3. Residue correlation matrix from the 

original (e, f, g).   
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Figure 4.5 Histogram and a Gaussian fit of residue after recreating the correlation matrix using 

only PC1 (a), PC1 and PC2 (b), and summation of PC1, PC2, and PC3 (c) for the complex layer 

model.   

 

After determining the number of PCs to keep (value of p), typically the most frequent 

application of the p number of eigenvectors is to use them as coefficients to project the 

original data in their most significant directions. Here we define D as a matrix of 

isofrequency-amplitude for the m frequencies and k samples. With the p number 

determined, it is common to calculate a PC score for each eigenvector by multiplying the 

input data D by the p eigenvectors: 

 (

𝑃𝐶11 ⋯ 𝑃𝐶1𝑘
⋮ ⋱ ⋮

𝑃𝐶𝑝1 ⋯ 𝑃𝐶𝑝𝑘

) = (

𝑉11 ⋯ 𝑉1𝑚
⋮ ⋱ ⋮
𝑉𝑝1 ⋯ 𝑉𝑝𝑚

)(
𝐷11 ⋯ 𝐷1𝑘
⋮ ⋱ ⋮
𝐷𝑚1 ⋯ 𝐷𝑚𝑘

)   , (4.10) 
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or in shorter form 

 𝑃𝐶𝑖 = 𝑉𝑖
𝑇 ∗ 𝐷, (4.11) 

where i range from 1 to p.  

 

Before the multiplication procedure, the isofrequency-amplitude matrix D is usually 

balanced to remove relative amplitude variation inherited from wavelet. For this study 

we applied the same algorithm as in Liu and Marfurt (2007). After the multiplication 

procedure, the calculated PC score can be considered a projection of input data D in the 

new p directions that are orthogonal to each other and show the most variation.  

 

For the two-layer model examples, as seen Figure 4.6 and 4.7), the spectral PC1 and PC2 

traces show different amplitude. Compared to the isofrequency-amplitude trace (mid 

panel), it has been shown that the spectral-PC trace takes advantage of the power of 

spectral decomposition while containing almost the same information but with less 

redundancy. Compared to the original seismic trace (left panel), each of the spectral-PC 

traces deliver a subset of information, which we will later be shown to be physically 

meaningful.  
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Figure 4.6 Original seismic trace from the simple layer model (a); isofrequency-amplitude traces 

within the usable bandwidth (10-70 Hz) (b); and trace of the first and second spectral PC (c).   
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Figure 4.7 Original seismic trace from the complex layer model (a); isofrequency-amplitude traces 

within the usable bandwidth (10-70 Hz) (b); and trace of the first and second spectral PC (c).   

  

(a) Seismic
(b) iso-frequency amplitude traces

(relative amplitude, unitless)

(unitless)

(c) Spectral PC

(unitless)



 
 

49 

4.2 Independence of PCs 

If our only purpose is to remove random noise, the projected PCs as in right panel of 

Figure 4.6 and 4.7 would usually suffice. However, one important property of the eigen-

decomposition is often neglected while doing so. By definition, the eigenvectors are 

algebraically uncorrelated/independent and geometrically orthogonal to each other. This 

would suggest a possibly more useful application of the projected PC scores, i.e., each 

one of the selected significant PCs, defined by the first p eigenvectors, should all 

represent one physical process that is independent in nature. In the two synthetic 

models we have been using, if we plot a reconstructed correlation matrix using only 

PC1, or PC2 and compare them to the original correlation matrix (Figure 4.8-a, and 4.9-

a), we would see that the PC1 matrix bares the most resemblance to the original, which 

is consistent in the notion that PC1 should contain the most information compared to the 

other PCs. However, in comparison, the PC2 correlation matrices are always different to 

that of PC1 as also shown in Figure 4.8 (b) and 4.9 (b), which are the simple average of 

correlation coefficient values of all frequencies over frequency. In addition, for the 

complex model, the PC2 matrix even shows negative correlation between a low 

frequency band (15-40 Hz) to a high frequency band (40-65 Hz), suggesting complex 

relationships beyond what could be interpreted using a simple average. This would 

suggest the necessity of using a higher dimensional matrix manipulating method.  

  



 
 

50 

 

Figure 4.8 (a) Correlation matrix of original signal (Figure 4.2a); one reconstructed with only the 

first PC; and only the second PC. (b) Average correlation coefficient for the original signal; that 

reconstructed with only PC1; and that with only PC2.  
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Figure 4.9 (a) Correlation matrix of original signal (Figure 4.4a); one reconstructed with only the 

first PC; and only the second PC. (b) Average correlation coefficient for the original signal; that 

reconstructed with only PC1; and that with only PC2.  
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4.3 Interpreting PCs – Rotation of PC coefficients 

In previous derivations, the process of creating matrix r’ (equation 4.8) can be seen as a 

simple model where the R’ matrix is multiplied with its transpose. However, the making 

of this model is not unique. We should be able to find a number of p-by-p matrices X, 

where  

 𝑋 ∗ 𝑋𝑇 = 𝐼, (4.12) 

so that  

 𝑟𝑣
′ = (𝑅′𝑋) ∗ (𝑋𝑇𝑅′

𝑇
) = 𝑟′ (4.13) 

is equivalent to the model r’. This is effectively a rotation of the r’ matrix. In fact, there 

are an infinite number of orthogonal matrices X that are possible, each corresponding to a 

particular rotation to R’. We can take advantage of this property to find one particular 

angle of rotation so that the PCs defined previously by eigenvectors (equation 4.11) can 

be most easily interpreted.  

 

Varimax rotation is one of the most common method for orthogonal matrix rotation. For 

data created from covariance matrix, Varimax rotation starts with scaling the R’ 

coefficients.  However, since our data model is created using correlation matrix, which is 

a normalized covariance matrix, the scaling can be skipped. A general expression of the 

Varimax criterion (Kaiser, 1958) is given as: 
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 𝑅′𝑣 = 𝑎𝑟𝑔𝑚𝑎𝑥 (∑ ∑ (𝛬𝑅′)𝑖𝑗
4𝑝

𝑖=1
𝑚
𝑗=1 −

1

𝑝
∑ (∑ (𝛬𝑅′)𝑖𝑗

2𝑝
𝑖=1 )

2𝑚
𝑗=1 )  , (4.14) 

Where argmax means “arguments of the maxima”. Symbol 𝛬 indicates variance. There 

are multiple methods capable of solving for R’v. One of the algorithms is by bivariate 

rotation, which is described in detail in Appendix C. The objective is to rotate the input 

p-by-p R’ matrix so that the Varimax criterion is met in all p dimensions (columns) in R’. 

Data points would have the maximum variation along the new axes, or scattering as 

close to the axes as possible in the p dimension hyperspace. A schematic is shown in 

Figure 4.10 to show both (a) finding the eigenvector from a dataset by eigen-

decomposition; and (b) rotate the selected p coordinates to obtain the maximum 

variation.  

 

One of the important things about selecting a method of rotation is that the effect of 

rotating the coordinate should not change the information represented by the R’ matrix 

that can be reconstructed using the new coefficients. The Varimax criterion is selected as 

a method of rotation, because it preserves the orthogonality in the R’ matrix. We can 

examine whether this is the case using the two models we have seen earlier.  In Figure 

4.11 and 4.12, we compare the original correlation matrix of model (a), reconstructed 

correlation matrix using the p selected PCs (b), to the reconstructed correlation matrix 

with rotated p PCs (c). From the residue plots (d and e), the rotated and unrotated PCs 

have no difference in terms of information contained.   
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Figure 4.10 (a) Schematic showing finding the eigenvalue and eigenvector of PC1 and PC2 of the 

dataset (red arrows). (b) Varimax rotation of the original axes x and y maximize variation of PC1 

and PC2 coordinates. 
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What we also hope is that after the rotation, the R’ matrix can be interpreted with ease. 

The success of the rotation can be judged that R’ values are driven towards either zero or 

their maximum possible absolute value (scaled to unity). This helps differentiate more 

easily, in rotated coordinates, variables with large absolute R’ values, which are 

considered significant, and variables with near-zero R’ values, which are not significant. 

From the same two synthetic models, the Varimax rotated PC coefficient (R’v) plot 

(Figure 4.13 and 4.14, d) has coefficients are more distinct compared to the original 

coefficients (Figure 4.13 and 4.14, c), making any coefficient-based automated 

interpretation much easier.  
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Figure 4.11 (a) Correlation matrix of the original simple layer model (Figure 4.2a); (b) that 

reconstructed with PC1 and PC2 in original coordinates; (c) that reconstructed with PC1 and PC2 

in rotated coordinates after the Varimax criteria. Residue in percentage between (a) and (b), (a) 

and (c), and (d) and (e) is shown in (d), (e) and (f), respectively.   
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Figure 4.12 (a) Correlation matrix of the original complex layer model (same as in Figure 4.4a); (b) 

that reconstructed with PC1 and PC2 in original coordinates; (c) that reconstructed with PC1 and 

PC2 in rotated coordinates after the Varimax criteria. Residue in percentage between (a) and (b), 

(a) and (c), and (d) and (e) is shown in (d), (e) and (f), respectively.   

 

Note that generally (for any type of data), what is unveiled from rotated R’ is just a 

pattern that exists in the data. No causal inferences should be made directly from this 
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waves of various frequencies. As we do see in multiple examples using isofrequency-

amplitude data (Figure 4.13 and 4.14, d), in the rotated R’ matrix, coefficients of some 

frequencies have more similar values compared to other frequencies. This is similar to, 

or in fact, the direct result of, the clustering behavior as we have seen in the correlation 

matrix presented earlier (Figure 4.11 and 4.12).  

 

For the two synthetic model cases, using the Varimax rotated PC coefficients, we could 

see more clearly that each PC can be related to a few significant frequencies. The results 

show that PC1 has a preference for representing amplitude information of frequencies 

that is are affected by the tuning effect, while PC2 tends to reflect amplitude information 

that is affected by tuning (Figure 4.13 and 4.14, d).  
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Figure 4.13 (a) Eigenvector coefficients, (b) PC coefficients (R), (c) rotated-PC coefficients (R’), (d) 

absolute value of rotated-PC coefficients of PC1 and PC2 for the simple layer model.   
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Figure 4.14 (a) Eigenvector coefficients, (b) PC coefficients (R), (c) rotated PC coefficients (R’), (d) 

absolute value of rotated PC coefficients of PC1 and PC2 for the complex layer model.   
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the original time-domain seismic trace using a designed Fourier filter. The difference is 

that for a conventional band-pass filtering in the Fourier domain, parameters of a 

designed filter are determined arbitrarily or by experience. In contrast, in spectral-PC 

projection, it is the data itself that decide the coefficients for multiplication (i.e., 

eigenvector, equation 4.11), or the angle of projection, based on the inter-correlation 

relationship. Even though the reason for the decision of angle is not apparent in the 

original coefficients or eigenvector (V), yet by rotating the normalized truncated 

eigenvector (R’v matrix) the significant frequencies behind each projection direction (PC) 

is highlighted (Figure 4.13 and 4.14, d).  

 

The value of this is that one can now interpret, with a certain confidence that each one of 

the spectral-PC-amplitude traces (Figure 4.6 and 4.7, c) result from a unique geophysical 

process. A flowchart is given in Figure 4.15 to show how this workflow can be applied to 

3D seismic data. In the next chapter, synthetic and real data examples will test how 

amplitude of spectral-PC traces can be related to the thickness of layers. 
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Figure 4.15 Flow chart to calculate spectral-PC amplitude for 3D seismic data from frequency 

cubes. 

 

  

Spectral PC 
amplitude traces 

(PC1, …, PCp)

Rotated R’v
coefficients

3D isofrequency
cubes (f1… fm)

1D isofrequency
traces (f1… fm)

Spectral PC amplitude traces 
in ① now are associated with 
certain frequency band in ②

last trace?
No

3D spectral PC 
amplitude cube: 

Frequency band 1

3D spectral PC 
amplitude cube : 

Frequency band p
…

① ②



 
 

63 

Chapter 5   

Application of the Spectral-PC-amplitude attribute 

 

In the previous chapter, steps to calculate spectral principal component (PC) amplitude 

traces from isofrequency-amplitude traces were described. We showed that using the 

Varimax rotation method, individual spectral-PC amplitude can be indicative of tuning 

or non-tuning.  In this chapter we test this workflow using synthetic layer and wedge 

models, synthetic 3D model data of a turbidite channel system, and real 3D data that 

includes thickness variations associated with karst features in north Texas, USA and a 

producing field in the deep-water Gulf of Mexico.  

 

5.1 Synthetic layer/wedge model 

From equation 4.11, spectral-PC amplitude is determined from isofrequency-amplitude 

traces and the resulting eigenvectors selected. The amplitude of each time sample for a 

specific PC (PCi ) is calculated by multiplying the (scaled and balanced) amplitude 

spectrum at that time by a vector of coefficients, which points to a direction of maximum 

variation in a hyperspace, i.e., an eigenvector. For any simple layer, amplitude of the 

spectral-PC trace is affected by the properties of the layer, e.g., reflection coefficient and 

layer thickness. In order to examine these influences on amplitude of the PC trace, a few 
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simple layer or wedge models are tested accordingly using the same algorithm 

exemplified using the single trace case.  

 

5.1.1 Constant-thickness odd pair, varying reflection coefficient 

The first example is for a layer composed of two parallel reflectors with the same and 

opposite sign reflections on top and bottom of the layer. The reflection coefficient varies 

from 0.05 to 0.3, with layer thickness unchanged as 24 ms (Figure 5.1a). Processing the 

data (Figure 5.1b) using the same procedure outlined in the previous chapter (Figure 

4.16) on a trace-by-trace basis, the resulting spectral-PC-amplitude trace (plotted as a 

waveform) and the amplitude in the center of layer (usually the same as the peak) is 

shown in Figure 5.2. The results indicate that for a layer of fixed thickness, both PC1 and 

PC2 amplitude is linearly proportional to reflection coefficient in the model. This can be 

seen as if the traces are scaled differently for various reflection coefficients. The reason 

for that is, as reflection coefficient (RC) increase, the amplitude spectrum of the 

reflectivity would increase, and the data amplitude spectrum would increase 

accordingly (Figure 5.3). As a result, the PC spectral waveforms have a peak amplitude 

that increases as a function of RC.  However, if before the spectral decomposition 

algorithm, a scaling procedure is included that normalizes the input seismic trace by its 

peak amplitude, then the spectral decomposition result would be unaffected by RC, 

given that the wavelet stays unchanged and the noise level is low enough. As a result, if 
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we re-do the same workflow on the same data with one extra scaling step, we would see 

that both PC 1 and 2 amplitude are now independent of RC magnitude (Figure 5.4).  

 

 

 
Figure 5.1 (a) Synthetic model containing one 24 ms-thick-low-impedance layer with same 

magnitude and opposite-sign reflection on top and base of layer. (b) Seismic traces generated 

from the model.   
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Figure 5.2 Spectral-PC-amplitude trace and peak amplitude for PC1 (a, and b) and PC2 (c, and d) 

of the layer model from analysis without normalizing isofrequency-amplitude traces.   

  

(a)

(b)

(c)

(d)

R
el

at
iv

e 
am

p
li

tu
d

e 
(u

n
it

le
ss

)
R

el
at

iv
e 

am
p

li
tu

d
e 

(u
n

it
le

ss
)

(unitless)

(unitless)

(unitless)

(unitless)



 
 

67 

 
Figure 5.3 Amplitude spectrum of reflectivity, wavelet, and signal for a 24-ms thick, odd model 

with (a) -0.05 and +0.05 reflection pair; and (b) -0.1 and 0.1 reflection pair on top and base of layer, 

respectively.   
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Figure 5.4 Spectral-PC-amplitude trace and peak amplitude for PC1 (a and b) and PC2 (c and d) 

of the layer model from analysis after normalizing isofrequency-amplitude traces.   
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5.1.2 Odd-reflection pair, varying thickness (wedge model) 

As the effect of RC has been removed using a proper scaling, thickness variation is to be 

tested on how it affects spectral-PC traces. Model 2 consists of two reflections of the 

same magnitude and opposite sign so that a continuous thickness increase forms a 

"wedge" (Figure 5.5a). A synthetic seismogram is generated with the same 30 Hz 

wavelet (Figure 5.5b). Following the same workflow (Figure 4.16) in a trace-by-trace 

fashion, the resulting spectral-PC traces and amplitudes are shown in Figure 5.6. PC 1 

waveform and amplitude is relatively constant over thickness comparing to PC2. For 

thickness over one period for the 30 Hz wavelet, PC 2 amplitude is fairly constant. 

However, as thickness decreases from 16 ms, which is the thickness where maximum 

interference is expected, PC2 amplitude increases almost linearly as a function of 

thickness (Figure 5.6b). An interpretation for this could be that, at thickness of maximum 

destructive interference (16 ms), reflection from top and base of layer (peak and trough 

in signal) overlap perfectly to the side lobes of one other (Figure 5.5b). As thickness 

decreases from thickness of maximum destructive interference to zero, although the 

period of the new waveform remains constant (that of the derivative of 30 Hz Ricker 

wavelet), the shape of waveform keeps changing and amplitude continues to decrease. 

This, on one hand can be observed by increased peak amplitude in a Fourier amplitude 

spectrum, and also can be shown by PC 2 amplitude increases because of intensified 

tuning.   
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Figure 5.5 (a) Synthetic model containing one layer with unified impedance (low compared to 

media above and below) and gradually-increased thickness. (b) Seismic traces generated from the 

model.   

 

Although in this sense, conventional peak amplitude and PC2 spectra amplitude seem to 

work equally well. However, in comparison, the benefit of using PC spectral amplitude 

over traditional time-domain peak amplitude is that, by doing spectral decomposition to 

the seismic trace and proper trace scaling, the effect of laterally changing reflection 

coefficients and overburden attenuation variations can be minimized, as shown in 

Figure 5.4.  This property is especially useful where in most real situations, tracking 

peak or trough in time-domain seismic data in a regional or reservoir mapping situation 
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is always the more practical and robust approach. As seismic traces are picked and 

scaled by peak amplitude (t), we would assume the effect of noise is minimized 

proportionally. Also, since the peak amplitude is only useful for the scaling step, it is not 

directly related to thickness as is required for conventional tuning curves. For the PC 

algorithm used here, where differentiating whether the peak/trough amplitude is caused 

by a single reflector or thin layer (below or above layer thickness) is not necessary, layer 

thickness information can be most effectively extracted with the tuning affected PC 

spectral amplitude. 
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Figure 5.6 Spectral-PC-amplitude trace and peak amplitude for PC1 (a, and b) and PC2 (c, and d) 

for the wedge model (odd pair) for analysis after normalizing isofrequency-amplitude traces.   
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5.1.3 Even-reflection pair, varying thickness (wedge model) 

We also tested the behavior of the spectral-PC trace and amplitude for a wedge model 

with the same magnitude and same sign of the reflection on top and base of the wedge 

(Figure 5.7). Similar to what is seen in the odd-pair model case (Figure 5.6a), PC1 

spectral waveform and amplitude are fairly constant over thickness as compared to PC2, 

which tends to be representative of frequencies affected by tuning. However, PC2 sees 

high amplitudes at the tuning thickness, the one where destructive interference reaches 

maxima, while decreases as thickness approaches zero. Our interpretation is that, as 

thickness reaches 16 ms the side lobe of top or base precisely match the main lobe of 

base or top. This creates a double-peak shaped wavelet that represent the maximum 

waveform shape change compared to the original wavelet, hence the maximum tuning 

effect. In contrast, for very thin layers, e.g., 2 ms, although amplitude of the waveform is 

almost twice the original, the shape of waveform doesn’t differ as much from a scaled 

original Ricker wavelet, meaning a much smaller tuning effect.  
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Figure 5.7 (a) Synthetic model containing one layer with unified impedance (medium compared 

to media above and below) and gradually-increased thickness. (b) Seismic traces generated from 

the model.   
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Figure 5.8 Spectral-PC-amplitude trace and peak amplitude for PC1 (a, and b) and PC2 (c, and d) 

for the wedge model (even pair) for analysis after normalizing isofrequency-amplitude traces.   
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5.1.4 Robustness of spectral-PC amplitude in the presence of noise 

To test the robustness of the PC spectral amplitude attribute, we created noise-affected 

models by adding the noise-free odd model (Figure 5.5a) with noise traces of 10, 20, 30, 

and 40 percent root-mean-square (RMS) error. The error trace is created by generating a 

Gaussian distributed trace that has a mean of zero and desired standard deviation (RMS 

error) proportional to the input trace. For each noise level, 50 trials are tested at each 

thickness.  

 

Figure 5.9 compares result of the noise-free model (a) to that of the noise-affected models 

(b-e). Point markers indicate mean amplitude out of 50 trials and the error bars show 

one standard deviation higher and lower from the mean. Generally, PC1 is much less 

affected by noise compared to PC2, and is also very close to the noise-free model result. 

This is because the PC1 amplitude is generated by projecting the amplitude spectrum to 

the most significant direction, hence would be less affected by noise. PC2 amplitude 

exhibits good stability and resemblance to the noise-free case when thickness is greater 

than 16 ms. For 2 to 16 ms traces, the mean-amplitude curve still fits the same general 

trend in the noise-free model with a higher standard deviation value. This suggests, in a 

scenario where a non-random moderate-level noise is present, the PC2 amplitude would 

still be able to maintain a thickness resolution.  
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Another possible application suggested here is that, since the PC1 amplitude is relatively 

stable over thickness in the presence of strong noise when a trace scaling is applied in 

the workflow, the PC1 amplitude alone can be used as an attribute for lateral reflection 

coefficient variation if the scaling is not included in the workflow. As seen in the noise-

free case, the PC amplitude is linearly proportional to RC (Figure 5.2), so the PC1 

amplitude would work better, especially in the presence of strong noise.  
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Figure 5.9 Peak amplitude of spectral PC1 and PC2 from (a) noise-free odd pair model; models 

with RMS noise of (b) 10%; (c) 20%; (d) 30%; (e) 40%. Vertical lines indicate one standard 

deviation above and below mean value after 50 trials.   
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5.2 Three-Dimensional-Synthetic-channel model 

A 3D synthetic model involving a channel encased in thin layers is used to test the PCA 

workflow for 3D data (Figure 4.16). The synthetic data has an average dominant 

frequency of 20 Hz (Figure 5.10). Using conventional commercial software, we are able 

to pick a surface at the peak which should correspond to the horizon of the channel. The 

time structure and amplitude map is shown in Figure 5.11.  

 

 

 
Figure 5.10 Amplitude spectrum of the synthetic-channel-model data centered at the horizon of 

the channel.  
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Figure 5.11 Time-structure map (a) and seismic-amplitude map (b) on the horizon of the channel. 

Black arrow show location of incised valley.   

 

From the time structure map, a typical interpretation for this map would be that the 

channel is located on top of a dome-like structure. The center of the map is on a 

structural high compared to the north and south ends with clear two-way-time gradient. 

Also the channel in the north part of map (black arrow) is deeply incised compared to 

the south meander part. The amplitude map doesn’t show any sign that would suggest 

otherwise. However, the impedance model and thickness map of the channel (Figure 

5.12), shows that the north end of the channel is not that deep compared to some 

sections of the channel in the southern part (black arrow). This could result from the fact 
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that the deepest section of channel has a thickness of about 40-45 ms, which is the 

around the tuning thickness for the 20 Hz dominant frequency of this data. In a 

conventional post-stack seismic data, thickness below the "tuning thickness" of the 

wavelet suggests the reflected waveform will approach the derivative of the original 

wavelet. As a result, the mapped time thickness following the "peak" would be different 

from the true thickness.  

 

 
Figure 5.12 (a) True thickness of the channel as measured from impedance model; (b) and (c) 

shows impedance section of the model located on the two dash lines in (a).   

 

In addition to the complex waveform shape, it is also hard to estimate thickness of the 

channel itself due to interference from very thin layers above and below. As shown in 

Figure 5.12, the studied channel in this model is encased between a soft layer of material 
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even reflection pair for the most part. From the true model, thickness of the channel 

ranges from 10 to 42 ms, which make it always below “tuning thickness”, i.e., impossible 

to pick from seismic. 

 

 
Figure 5.13 Single frequency (a) 10 Hz, (b) 30 Hz, and (c) 55 Hz map of only the channel from the 

picked seismic horizon.   

 

Spectral decomposition is performed on the seismic data to generate multiple single 
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frequency resolution compared to some newer methods, it is conceptually simple and 

also sufficient for this simple synthetic model data. Also, for the next few figures, only 

data that is directly in the channel is displayed to avoid confusion. Figure 5.13 shows the 

single frequency display of the studied channel at 10 Hz (a), 30 Hz (b), and 55 Hz (c). 

Notice in the 10 Hz display, spectral amplitude is generally higher in the north and 

south ends, and lower in middle of the channel. This is not indicative of channel 

thickness change. Although there are different patterns shown in the three panels, which 

are represent low, medium, and high frequency, however it is not clear how spectral 

amplitude for single frequency data can be related to thickness nor channel feature.  

 

 
Figure 5.14 Typical eigenvalue-scree plot of a trace in the channel.   

 

We conducted the spectral-PCA workflow as described in Figure 4.16. Based on the data, 

the first three PCs capture most of the information in single traces from 10 to 70 Hz 
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(Figure 5.14). The resultant spectral-PC-amplitude map of the studied channel using PC1 

(a), PC2 (b), and PC3 (c) are shown in Figure 5.15. The general observation is that, the 

behavior of spectral-PC amplitudes are comparable to what is seen for the wedge model 

case. The channel mapped by PC1 is more continuous laterally, since PC1 is considered 

the non-tuning affected amplitude. PC2 highlights the thick part of the channel, as seen 

in Figure 5.12(a). Because the reflection pair of the channel is closer to the even pair 

model (Figure 5.8) as opposed to the odd pair model (Figure 5.6), it is conceptually 

understandable that high amplitude in tuning-affected PC2 corresponds to the section of 

the channel where thickness is around 40-45 ms, where it is close to the tuning thickness 

for a 20 Hz wavelet, similar to what’s shown in the even reflection pair wedge model 

(Figure 5.8b). In addition, the PC3 amplitude map shows high values in the thinner part 

of the map, which is similar to what is seen in the odd reflection pair wedge model 

(Figure 5.6b).  
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Figure 5.15 Spectral (a) PC1-, (b) PC2-, and (c) PC3-amplitude map of the studied channel. 

 

Figure 5.16 shows cross-plots of the PC amplitudes for PC 1, 2, and 3 against the true 

channel thickness in the original impedance model. Mean value and standard deviation 

are calculated and plotted for each thickness and PC. Comparing the three panels, it is 

clear that PC1 has the lowest mean PC amplitudes and lowest variation, indicating that 

it is the one that is less affected by tuning. The PC2 and PC3 amplitude over thickness 

curve bears striking resemblance to the pure odd and even pair results, suggesting that 
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spectral-PC analysis is able to extract individually the seismic responses of even and odd 

portions of the impulse pair.  

 

 
Figure 5.16 Channel thickness plotted against average-peak amplitudes of spectral (a) PC1, (b) 

PC2, and (c) PC3. Short bar indicates one standard deviation above or below average amplitude.   
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In summary, this synthetic channel model shows that spectral-PC amplitude seems to be 

working better in displaying layer thickness variation comparted to the original seismic 

data and single frequency maps. However, as shown in the wedge model, if we were to 

quantitatively relate thickness variation especially below tuning thickness using PC 

spectral amplitude, it is important that the layer reflection pair be exactly the same 

magnitude and opposite sign, i.e., an odd pair (Figure 5.6). Although from this example, 

it seems that the third PC is most sensitive to the odd component of the reflectivity. 

There are limitations however. To do quantitative thickness estimation, a few conditions 

might need to be met. For example, the center of the layer needs to be known. More 

importantly, response from the odd pair must be much larger than the noise. In the 

future, if we would apply techniques that could robustly separate the odd and even pair, 

the spectral-PC amplitude using only the odd pair should be able to map thickness 

quantitatively with higher confidence.  

 

5.3 Real-data examples 

5.3.1 Boonsville-field dataset in north Texas, USA 

The spectral-PC amplitude method was used to map thickness variation in a karsted 

area in a 3-D post-stack time-migrated seismic data from the Boonsville field, Fort Worth 

Basin, United States (Hardage et al., 1996a). A time slice at 1.005 second two-way-time 

(TWT) is chosen for study (Figure 5.17a). Note that the dominant frequency around this 
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time slice (using a 140 ms calculation window, Figure 5.17b) is relatively higher than 

common land seismic data. A cross-sectional view of seismic data (Figure 5.17c) shows 

multiple structural depressions resulting from deep karst sink holes in this area.  

 
Figure 5.17 (a) Seismic-amplitude map at 1.005 second in the Boonsville-field dataset (red 

indicates hard reflection); (b) amplitude spectra around the time slice; (c) seismic profile that 

cross the time slice along the black line in (a) (Hardage et al., 1996).   

 

The spectral-PC analysis was applied to the 3D data following the workflow in Figure 

4.15. Based on the data, the first three PCs represent most of the information in single 

traces from 10 to 70 Hz. Although the real data is supposed to be more complex, as seen 

for the simple layer case (Figure 4.13 and 4.14), by rotation of the PC coefficients, it is 

much easier to find specific frequency contents represented by each PC. As shown in 
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Figure 4.15, as each spectral PC is associated with a certain frequency band, especially in 

a 3D setting, it would be more reasonable to “resort” and display spectral-PC amplitude 

of matching “characteristic” frequency bands, which should be the “non-tuning 

affected”, “even pair affected”, and “odd pair affected”, as opposed to the conventional 

way to sort and display PCs strictly following the rank from high to low importance (1st, 

2nd… etc.). Using the Boonsville field data, Figure 5.18 compares single frequency slices 

from spectral decomposition (a), spectral-PC amplitude without “resorting” or the 

conventional way (b), and PC spectral amplitude mapping with the “resorting” (c) on 

time slice 1.005 sec TWT. The 10, 40 and 75 Hz time slices are selected to represent 

interference patterns in low, medium and high frequency bands of seismic data. The 

conventional PC1 spectral attribute (b) recreates the pattern of the dominant (medium) 

frequency data, while the 2nd and 3rd PCs don’t correlate to a specific frequency band or 

geological feature. After the Varimax rotation, and resorting, the PC1 amplitude is 

usually interpreted as not affected by tuning, PC2 and PC3 are interpreted as either 

affected by odd and even reflection pairs, and hence are indicative of thinner and thicker 

layers, respectively.  
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Figure 5.18 (a) Single-frequency image, (b) conventional spectral-PC amplitude, and (c) resorted 

spectral-PC-amplitude map in the Boonsville data at time 1.005 second. 

 

Figure 5.19 illustrates color rendering of the three types of display:  input 10, 40, and 75 

Hz data (a), conventional PCs 1-2-3 (b), and the resorted “large, medium and small 

thickness” PCs (c). At a large scale, the spectral decomposition-based images show 

patterns like the original seismic (Figure 5.17a). The RGB composite image of single 

frequencies shows smooth color variations, with little indication of subtle features. In 

detail, the RGB composite image of conventional PCs (b) looks noisy thus inhibiting 

interpretation of frequency-dependent features.  In comparison, the composite image of 

the Varimax rotated PCs (c) shows smooth large scale variation as well as subtle 

features. The feature highlighted in the squares (Figure 5.17a and 5.19) is interpreted as a 
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sink hole due to karst depression of the Ellenburger group beneath the selected time 

slice (as interpreted on the seismic section; Figure 5.17c). The inner ring of this bulls-eye 

feature is dominated by the high frequency Varimax rotated PC attribute. This high 

frequency event indicates the maximum reduction of layer thickness, possibly due to 

stretching and/or thinning of rock layers caused by normal faulting induced by the karst 

depression. 
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Figure 5.19 RGB rending at time slice 1.005 sec of the Boonsville-field dataset using (a) 10-40-75 

Hz single frequency; (b) conventional PC1-2-3; and (c) resorted PCs of large-medium-small 

thickness.   
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5.3.2 Hoover-field dataset in the Gulf of Mexico 

The Hoover field from the Alamos Canyon block of the Gulf of Mexico is located some 

160 miles offshore south of Galveston, Texas, USA in 4800 feet of water (Figure 5.20). It 

utilized the world's deepest offshore drilling and production platform at that time. The 

main reservoir in this field is associated with a sand levee in a deep water turbidite 

system. The discovery and subsequent wells confirmed the amplitude-based extent of 

the reservoirs (Higgins, 1998).  

 

 

Figure 5.20 Geographic location of the Hoover field in the Gulf of Mexico.  
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Figure 5.21 Amplitude of Inline 32795 (W-E direction) section from the Hoover-field-seismic data.   

 

Figure 5.21 show a seismic amplitude section along Inline 32795 from the Hoover-field 

dataset. Reflectors in this region are generally flat, which is good for both imaging and 

interpretation. The water bottom reflection is located at depth of around 1980 ms two-

way time. Two bright spots can be seen in this section at depth of around 2980 ms, 

which corresponds to levees (or splays) on both sides of the main channel (between 

Xline 25600 to 26400). The levee system associated with the channel is the main sand 

reservoir. 

 

Figure 5.22 is the time structure map created by tracing the soft reflector associated with 

the main reservoir. In addition, Figure 5.23 show the seismic amplitude map extracted 
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from the picked horizon. The black square in Figure 5.22 and the yellow dash square in 

Figure 5.23 show the area where spectral-PC analysis will be performed, which aims to 

map reservoir rock associated with the sand levee system.  

 

 

 
Figure 5.22 Time-structure map of interpreted horizon of the main reservoir in the Hoover-field-

seismic data. Spectral-PC attributes are calculated in area surrounded by black line. 
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Figure 5.23 Amplitude map of interpreted horizon of the main reservoir in the Hoover-field-

seismic data. Spectral-PC attributes are calculated in area surrounded by yellow dash line.  

 

Spectral-PC result at well locations 

Figure 5.24 shows the amplitude map of the picked seismic horizon (soft reflection) 

associated with the major oil reservoir, together with locations of the discovery well and 

development wells at which each well penetrates the main reservoir. Thickness of the 

sand are calculated from log data from the nine wells, which ranges from 36 to 102 feet, 

with a median thickness of 62 feet.  

 

The first step for calculating spectral-PC-amplitude attribute is to find a usable wavelet 

amplitude spectrum for the seismic data. Water bottom reflections from the nine traces 

are extracted using a window to calculate a wavelet. Figure 5.25 shows the waveform of 

the water bottom reflection from the nine traces. Because the seismic data was sampled 
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at a 4 ms-per-sample rate (blue curve), in order to smooth the waveform, a spline 

interpolation of the waveform is performed using 1 ms-per-sample rate (red curve) 

before calculating the wavelet. Figure 5.26 show the average amplitude spectrum and 

wavelet calculated from the windowed water bottom reflection events. The wavelet has 

a high spectral energy above noise between the frequencies 10 to 70 Hz. Hence, later 

spectral decomposition and PCA of the isofrequency data will apply the same range of 

frequencies. 

 

 
Figure 5.24 Seismic amplitude extracted from horizon of the main reservoir (soft reflection). 

Orange dots signifies location of wellheads and location at which each well penetrate the main 

reservoir.    
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Figure 5.25 Waveform of water-bottom reflections from original (blue) and resampled (red) 

seismic traces where each well penetrates the reservoir in Figure 5.24.  

 

 
Figure 5.26 (a) Amplitude spectrum of the wavelet extracted from water-bottom reflections; (b) 

extracted wavelet in time domain.   
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Figure 5.27 Seismic trace at locations where wells penetrate the reservoir.   
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Figure 5.27 show real seismic traces at locations where each well penetrates the 

reservoir, with arrows pointing to the interpreted reservoir location. Not all traces 

displays a clear 90-degree phase-shifted waveform, which is what’s shown in the pure 

odd model (Figure 5.5b). This poor resolution of the reservoir is partly due to 1) having 

one stronger reflection above or below the interpreted reservoir reflection (trough); or 2) 

having multiple reflections of similar strength that are adjacent to the reservoir 

reflection. This suggest a spectral decomposition algorithm with higher time and 

frequency resolution (compared to short-time Fourier transform) might be able to 

improve the resolution of isofrequency-amplitude traces.  

 

Spectral-PC-amplitude trace for all nine wells are calculated following the same 

workflow as in Figure 4.15, results are displayed in Figure 5.28. As in Figure 5.24, the 

only traces that show good 90-degree phase shifted waveforms (solid arrow) generate 

spectral-PC waveforms with the peak aligned with the center of the layer, as seen in all 

the synthetic examples, e.g., Figure 5.6(a, c). 
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Figure 5.28 Spectral-PC-amplitude trace for PC1 and PC2 at well locations.   
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Comparing results from one-layer model, log-based model, and real-seismic trace  

Reflection events in real geology are never simply pure odd or even pairs. In addition, 

usually there are more than only two reflectors in an analysis window. For example, the 

real logs shown in Figure 5.29 suggest that a clear oil-water contact exists at the bottom 

of the oil layer. As a result, the density log shows an increasing ramp as oppose to sharp 

step. Figure 5.30 compares spectral-PC peak amplitude, at different thicknesses, of 

synthetic data from a model containing one simple low-impedance layer to the synthetic 

data created based on blocked true log reflectivity. Although spectral-PC amplitude 

from the log-based model is generally larger than that in the simple model, a clear linear 

trend can be seen. In addition, Figure 5.31 compares spectral-PC amplitude from the 

simple model data to the true seismic traces from a well where the reservoir can be 

resolved (thick enough). Although real geology can be more complex than the simple 

one-layer wedge model (Figure 5.29), the linear trend suggest that, due to the relatively 

flat geology and good lateral continuity in this region, the spectral-PC-amplitude 

attribute can be indicative of lateral variation of equivalent thickness in the analysis 

window. 
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Figure 5.29 Gamma-ray, caliper, resistivity, density, porosity, and HPEF logs from discovery well 

AC001. Black arrow indicates oil-water contact.   
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Figure 5.30 Comparison between spectral-PC amplitude results of synthetic data from pure one-

layer-odd model and log-based model.   
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Figure 5.31 Comparison between spectral-PC amplitude results of synthetic data from pure one-

layer-odd model and real-seismic data at well locations.   
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Mapping spectral-PC amplitude  

Figure 5.32(a) and Figure 5.33 (a) display spectral PC1 and PC2 amplitude attributes 

computed within the analyzed area (Figure 5.22 and 5.23). Extent of the main sand 

reservoir is interpreted and shown in Figure 5.32(b) and Figure 5.33(b). The main sand 

reservoir has clearly lower PC amplitude compared to the surrounding area. This can be 

interpreted as relatively greater equivalent layer thickness of the reservoir. We can also 

see the same trend from the synthetic wedge model for an isolated low impedance layer 

(Figure 5.31).  

 

Comparing the interpreted reservoir extent from spectral-PC attributes and the original 

seismic (Figure 5.34), we see a good match on the upper boundary of the bright spot. At 

the lower part of the analyzed window, the reservoir boundary interpreted from spectral 

PC (yellow dash) seems to extend further away from the bright spot while maintaining 

the overall shape. This on one hand, suggests that the spectral-PC attribute is, as shown 

in the synthetic example (Figure 5.4), independent of layer reflectivity or seismic 

amplitude. On the other hand, the southern edge of bright spot could suggest the 

location of the oil-water contact, which is clearly defined in numerous resistivity logs in 

this region (e.g., Figure 5.29).  
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Figure 5.32 Spectral-PC1-amplitude-attribute map (a) and interpreted extent of the reservoir (b, 

dash line) around the sand levee.    
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Figure 5.33 Spectral-PC2-amplitude-attribute map (a) and interpreted extended of the reservoir 

(b, dash line) around the sand levee.    
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Figure 5.34 Seismic-amplitude map and extended of the reservoir interpreted from spectral-PC 

attribute (yellow dash curve) around the sand levee. 
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Chapter 6   

Conclusion 

 

The complex nature of seismic amplitude involves thin-layer tuning, fluid involved 

effects, and lateral wavelet variation besides the conventional understanding of simply 

reflection strength. First of all, the reflectivity series and seismic waveform of a 

generalized simple layer can be separated into unique even and odd components. 

Particularly, the odd and even component of the seismic waveform have different 

tuning curves. The odd component exhibits maximum constructive interference at the 

tuning time thickness; while the even component exhibits maximum destructive 

interference at the tuning time thickness and maximum constructive interference at zero 

thickness.  This discrepancy of odd and even component in amplitude-layer thickness 

relationship shows that they have different sensitivity to layer thickness. By dividing the 

data amplitude spectrum by the amplitude spectrum of the wavelet within a usable 

band, the peak frequency amplitudes are independent of thickness.  Comparing peak 

frequency amplitudes for even and odd components to that of the total waveform, 

provides clues as to the nature of the layering, as to either a “hard or soft streak” or a 

“staircase” shaped impedance model. 
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Principal component analysis (PCA) of isofrequency-amplitude trace data delineates 

thin-layer-thickness variation by taking advantage of correlation relationship between 

isofrequency traces. Isofrequency traces tends to be correlated between those at 

frequency notches, and amongst those not at spectral nulls. By extracting amplitude 

associated with notch frequencies, the spectral-PC analysis quickly examines the vast 

isofrequency-amplitude dataset and produces spectral-PC amplitude that is indicative to 

thickness. Three spectral-PC amplitudes individually delineate amplitudes from: 1) an 

isolated reflection not affected by tuning; 2) tuning of an even reflection pair; and 3) 

tuning of an odd reflection pair, in synthetic 2-D wedges and a 3-D synthetic turbidite 

model. Results from the PC spectral amplitude demonstrate more clearly a karst 

depression on the Boonsville dataset. In an offshore Gulf of Mexico data example, 

spectral-PC attributes show similar trends as the synthetic model, when comparing 

spectral-PC amplitude to true log-based reservoir thickness.  
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Time-domain-seismic attributes on various wedge models 

 

We tested a series of time domain seismic attributes on four wedge models with (1) odd 

reflection pair (r1 = -1, r2 = 1); (2) even reflection pair (r1 = 1, r2 = 1); (c) mixed reflection 

pair (r1 = -1, r2 = 0.5); and (d) mix reflection pair (r1 = 1, r2 = 0.5).  

 

The attributes tested are: Figure A.1: peak amplitude, envelope, second derivative. 

Figure A.2: peak-peak / peak-trough time. Figure A.3: peak amplitude times peak-peak / 

peak-trough time. Figure A.4: Peak instantaneous frequency. Figure A.5: Response 

frequency (peak frequency at peak of envelope). Figure A.6: Sweetness (dividing 

reflection strength by the square root of instantaneous frequency). Figure A.7: Response 

sweetness. 
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Figure A.1 Peak amplitude, envelope, second derivative of waveform of the wedge model.   
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Figure A.2 Peak-peak / peak-trough time of the wedge model. 
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Figure A.3 Peak amplitude multiply peak-peak / peak-trough time of the wedge model.   
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Figure A.4 Peak-instantaneous frequency of the wedge model.  
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Figure A.5 Response frequency of the wedge model.   
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Figure A.6 Sweetness of the wedge model.   
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Figure A.7 Response sweetness of the wedge model.   
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Workflow for Separating Even- and Odd- Components of an 

Arbitrary-Reflection Pair 

 

For any arbitrary seismic reflection pair of seismogram, it is possible to separate the even 

and odd part of the data using simply Fourier transform once the center is decided. 

Figure B1 describes the general workflow and MATLAB code example for this 

workflow. The general idea is to perform Fourier transform to the data, take the real and 

imaginary part separately, and use inverse Fourier transform to convert the real and 

imaginary part back to time domain individually, then the even and odd part of the data 

is obtained, respectively.  

 

An example of a 10 ms mixed reflection pair is used to show the workflow as presented 

in Figure B2, B3, and B4, for its time representation, amplitude spectrum, and phase 

diagram, respectively. A seismogram is created by convolving the same reflection pair to 

a 30 Hz Ricker wavelet. The same workflow is also able to separate the even and odd 

part just like the reflection pair, as shown in Figure B5, B6, and B7, for its time 

representation, amplitude spectrum, and phase diagram, respectively.  
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Also a spectral division can be used to remove the effect of wavelet spectrum and 

recover amplitude spectrum of reflection pair once the amplitude spectrum of wavelet is 

known. An example using a 40 ms thick mixed reflection layer and 30 Hz wavelet. The 

spectral division can be performed on either the amplitude spectrum of original seismic 

waveform (Figure B8), even part of the waveform (Figure B9), or odd part of the 

waveform (Figure B10).  

 

 
 

Figure B.1 Workflow of separating the real and imaginary component of any Fourier series using 

Fourier transform. 

 

  

Input trace

Complex Input trace

Real component (f) Imaginary component (f)

Real component (t) Imaginary component (t)

FFT

IFFT IFFT, take imaginary part

Take real Take imaginary

Note: fftshift and fftshift are MATLAB function that shift data so that MATLAB process the data with 
time zero at actual center. 

dfft = fft(fftshift(data));

dre = real (dfft); dim = imag (dfft);

datare = ifftshift (ifft(dre)); dataim = imag(ifftshift (ifft(dim));

data
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Figure B.2 A mixed reflection pair (a), the even part (b), and odd part (c). 

  

0 20 40 60 80 100 120
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100 120
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100 120
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(b) Real component (c) Imaginary component

(a) Input trace

R
el

at
iv

e 
am

p
lit

u
d

e 
(u

n
it

le
ss

)
R

el
at

iv
e 

am
p

lit
u

d
e 

(u
n

it
le

ss
)

R
el

at
iv

e 
am

p
lit

u
d

e 
(u

n
it

le
ss

)

Time (ms)

Time (ms) Time (ms)



 
 

124 

 

Figure B.3 Amplitude spectrum of a mixed-reflection pair (a), the even part (b), and odd part (c). 
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Figure B.4 Phase spectrum of a mixed-reflection pair (a), the even part (b), and odd part (c). 
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Figure B.5 Seismogram of a mixed-reflection pair from 10 ms layer convolved with 30 Hz Ricker 

wavelet (a), the even part (b), and odd part (c).  
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Figure B.6 Amplitude spectrum of a mixed-reflection pair from 10 ms layer convolved with 30 Hz 

Ricker wavelet (a), the even part (b), and odd part (c).  
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Figure B.7 Phase diagram a mixed-reflection pair from 10 ms layer convolved with 30 Hz Ricker 

wavelet (a), the even part (b), and odd part (c).  
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Figure B.8 Amplitude spectrum of signal from a 40-ms-thick layer (upper); 30 Hz Ricker wavelet 

(middle); quotient of signal and wavelet amplitude spectrum (lower). 
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Figure B.9 Amplitude spectrum of even part of signal from a 40-ms-thick layer (upper); 30 Hz 

Ricker wavelet (middle); quotient of signal even part and wavelet amplitude spectrum (lower). 
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Figure B.10 Amplitude spectrum of odd part of signal from a 40-ms-thick layer (upper); 30 Hz 

Ricker wavelet (middle); quotient of signal odd part and wavelet amplitude spectrum (lower). 
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An algorithm for Varimax rotation of PC coefficient matrix 

 

One of the conceptually simple algorithm to solve the argument of maximum PC 

coefficient matrix (R’) is by performing bivariate rotations iteratively. Each iteration 

begins with selection of two columns in the m-by-p R’ matrix, Ri and Rj, which defines a 

2-dimension plane within the p-dimension hyperspace. Next, the angle for rotation in 

the selected 2-d plane can be calculated by the following equation (Kaiser, 1958). 

Φ =
1

4
𝑡𝑎𝑛−1

2[𝑛∑(𝑅′𝑖
2 − 𝑅′𝑗

2) (2𝑅′𝑖𝑅′𝑗) − ∑(𝑅′𝑖
2 − 𝑅𝑗

′2)∑(2𝑅′𝑖𝑅′𝑗)  ]

𝑝 {∑ [(𝑅′𝑖
2 − 𝑅′𝑗

2)
2
− (2𝑅′𝑖𝑅′𝑗)

2]} − {[∑(𝑅′𝑖
2 − 𝑅′𝑗

2)]
2
− [∑(2𝑅′𝑖𝑅′𝑗)]

2
}
 

The rotation of the selected two columns is performed by multiplying it to a rotation 

matrix [
𝑐𝑜𝑠 𝛷 −𝑠𝑖𝑛𝛷
𝑠𝑖𝑛𝛷 𝑐𝑜𝑠 𝛷

]. As a result, data points in this 2-d plane now have the highest 

variation along the new axes, i.e., are closest to the two axes. After that, rotation is 

performed on different pairs of columns. The total number of rotations for each iteration 

depends on p, the number of columns in R’ that is used. The value of i range from 1 to p, 

j range from (i+1) to p. By counting combination, the number of rotations for each 

iteration is 𝐶2
𝑝

. The iteration continues until a small enough rotation angle is reached, 

indicating the Varimax criterion is met in all p dimensions (columns) in R’.  

Another algorithm that is computationally more efficient using singular value 

decomposition can be find in Lawley and Maxwell (1971).    
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