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Abstract

Peer-to-peer communication has been recently consideveal gopular issue for local area
services. An innovative resource allocation scheme is ggeg to improve the performance of
mobile peer-to-peer, i.e., device-to-device (D2D), cominations as an underlay in the downlink
(DL) cellular networks. To optimize the system sum rate dlierresource sharing of both D2D and
cellular modes, we introduce a reverse iterative combiradtauction as the allocation mechanism.
In the auction, all the spectrum resources are considereal s&t of resource units, which as
bidders compete to obtain business while the packages oD#i2 pairs are auctioned off as
goods in each auction round. We first formulate the valuatibrach resource unit, as a basis
of the proposed auction. And then a detailed non-monotoegcehding price auction algorithm
is explained depending on the utility function that acceuiar the channel gain from D2D and
the costs for the system. Further, we prove that the propasetion-based scheme is cheat-proof,

and converges in a finite number of iteration rounds. We éxpt@an-monotonicity in the price
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update process and show lower complexity compared to aitradi combinatorial allocation. The
simulation results demonstrate that the algorithm effityeleads to a good performance on the

system sum rate.
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I. INTRODUCTION

As one of next-generation wireless communication systéisd Generation Partnership
Project (3GPP) Long Term Evolution (LTE) is committed to \ade technologies for high
data rates and system capacity. Further, LTE-Advanced-{AJt#as defined to support new
components for LTE to meet higher communication demahdsl|d¢al area services are
considered as popular issues to be improved, and by reupgxram resources local data
rates have been increased dramatically. However, theamnsed spectrum reuse may bring
inconvenience for local service providers to guaranteeabletcontrolled environment, e.g.,
ad hoc network(]2], which is not in the control of the baseista{BS) or other central
nodes. Hence, accessing to the licensed spectrum hagedtraach attention.

Device-to-Device (D2D) communication is a technology comgnt for LTE-A. The ex-
isting researches allow D2D as an underlay to the cellulavork to increase the spectral
efficiency [1], [3]. In D2D communication, user equipment$ES) transmit data signals to
each other over a direct link using the cellular resourcetead of through the BS, which
differs from femtocell[[4] where users communicate with ktedp of small low-power cellular
base stations. D2D users communicate directly while reimgicontrolled under the BS.
Therefore, the potential of improving spectral utilizatibas promoted much work in recent
years [5]-[10], which shows that D2D can improve systemaqreriinces by reusing cellular
resources. As a result, D2D is expected to be a key featungosi@ol by next generation
cellular networks.

Although D2D communication brings improvement in specéfiiciency and makes large
benefits on system capacity, it also causes interferendeetodllular network as a result of
spectrum sharing. Thus, an efficient interference cootiinanust be formulated to guarantee
a target performance level of the cellular communicationeré exists several work about
the power control of D2D UEs for restricting co-channel ifeesnce [1], [3], [11], [12].
The authors in[[13] utilized MIMO transmission schemes toidvunterference from cellular
downlink to D2D receivers sharing the same resources, whiois at guaranteeing D2D
performances. Interference management both from celial&2D communication and from

D2D to cellular networks are considered in[[14]. In order watlier improve the gain from



intra-cell spectrum reuse, properly pairing the cellulad 2D users for sharing the same
resources has been studiéd![15],/[16]. The author$ in [16pgsed an alternative greedy
heuristic algorithm to lessen interference to the primatjutar networks using channel state
information (CSI). The scheme is easy-operated but canreMept signaling overhead. In
[17], the resource allocation scheme avoids the harmfelrfi@tence by tracking the near-far
interference, identifies the interfering cellular usensgd anakes the uplink (UL) frequency
bands efficiently used. Also, the target is to prevent ieterice from cellular to D2D
communication. In[[18], the authors provided analysis otinmpm resource allocation and
power control between the cellular and D2D connections share the same resources for
different resource sharing modes, and evaluated the peafare of the D2D underlay system
in both a single cell scenario and the Manhattan grid enw@mt. Then, the schemes are to
further optimize the resource usage among users sharingatihe resources. Based on the
aforementioned work, it indicates that by proper resouraaaggement, D2D communication
can effectively improve the system throughput with theriieieence between cellular networks
and D2D transmissions being restricted. However, the prolf allocating cellular resources
to D2D transmissions is of great complexity. Our works difiem all mentioned above in
that we consider a scheme to maximize the system sum ratddwyired multiple pairs share
one cellular user’s spectrum resource.

Game theory offers a set of mathematical tools to study tmeptex interactions among
interdependent rational players and to predict their adwiaf strategies [19]. In the present
researches, game theory including a large number of diffegjame methods are used to
analyze resource allocation problems, such as power argless spectrum allocations in
communication networks [20], resource management in gédls and distributed resource
coordination in mega-scale container terminal [22]..In][20e authors proposed a sequential
auction for sharing the wireless resource, which is mandmged spectrum broker that
collects bids and allocates discrete resource units usisggaential second-price auction.
A combinatorial auction model for resource management wasduced in([21],[[22]. The
combinatorial auction-based resource allocation meshaailows an agent (bidder) to place

bids on combinations of resources, called “packages” erathan just individual resource



unit.

Actually, the combinatorial auctions (CAs) have been erygibin a variety of industries
for, e.g., truckload transportation, airport arrival anepdrture slots, as well as wireless
communication services. The benchmark environment ofi@uc¢heory is the private value
model, introduced by Vickrey (1961), in which one bidder laagalue for each package of
items and the value is not related to the private informatibother bidders[[23]. Much of
work has not recognized that bidders care in complex waystdhe items they compete. The
CAs motivate bidders to fully express their preferencesciiis an advantage in improving
system efficiency and auction revenues. Up to that pointjrgarest is to apply the CA game
in solving arbitrary D2D links reusing the same cellulargiiency bands with the purpose
of optimizing the system capacity.

However, it exists a series of problems and challenges in, G@4eh as pricing and bidding
rules, the winner determination problem (WDP) which, as tioeed in the literature, leads
to the NP-hard allocation problem. Therefore, we focus @etvolution mechanisms named
iterative combinatorial auctions (I-CAs) [24], [25]. InQAs, the bidders submit multiple
bids iteratively, and the auctioneer computes provisi@tlalcations and ask prices in each
auction round.

In this paper, we study an effective spectrum resource ailmac for D2D communication
as an underlay to further improve system efficiency basedhen-CA. The whole system
consists of the BS, multiple cellular users that receivenag from the BS, and multiple
D2D pairs that communicate with respective receivers uditensed spectrum resources.
Considering that interference minimization is a key poimd anultiple D2D pairs sharing the
same resources can bring large benefits on system capaeitigrmulate the problem as a
reverse I-CA game. That means, the resources as the biduepete to obtain business, while
D2D links as the goods or services wait to be sold. By this Way/packages of D2D pairs are
auctioned off in each auction round. Furthermore, we ingatt some important properties
of the proposed resource allocation mechanism such as-phezt; convergence and price-
monotonicity. Part of our work has been published!in/ [26],ichhintroduces a sequential

second price auction as the allocation mechanism for D2Denayl communication, and



explains the detailed algorithm using an N-ary tree. In thiwk, we further reduce the
computational complexity and apply our scheme to WINNERh&mnel models [27] which
contain a well-known indoor scenario. The simulation ressshow that the auction algorithm
leads to a good performance on the system sum rate, and esokigh system efficiency
while has lower complexity than the exhaustive search atloo.

The rest of the paper is organized as follows: In Seclion k&, describe the system
model of the D2D communication underlaying cellular netkyaand give the explanation
and expression of the system sum rate. The primary probleiormsulated in Section T]I.
In Section[1V, the resource allocation algorithm based oreense I-CA is proposed. In
Section[Y, the main properties of the proposed algorithmiavestigated. In Sectiop VI,
we present the numerical simulation results and relevaalysis on the system sum rate,

algorithm efficiency, and properties. Finally, we draw tlemdusions in Sectioh MII.

I[l. SYSTEM MODEL

In this section, we introduce the system model for D2D urededommunication. The
scenario of multiple D2D and cellular users is first desatjbend then, the expression of

system sum rate is given.

A. Scenario Description

A model of a single cell with multiple users is considered.gk®wn in Fig[ll, UEs with
data signals between each other are in the D2D communicaibaie while UEs that transmit
data signals with the BS keep in the traditional cellular mmdg8ach user is equipped with a
single omnidirectional antenna. The locations of cellusers and D2D pairs are randomly set
and traversing the whole cell. Without loss of generalitg, @nploy the uniform distribution
to describe the user locations which is proposed for sysiemlation in [28]. Notice that
from stochastic geometry with for Poisson distributiog tisers are uniformly located as
well if the number of users is known [29]. For simplicity andrity, we illustrate co-channel
interference scenario involving three UEs (UBE,; and UE,,), and omit the interference
and control signal signs among others. Ug a traditional cellular user that is distributed

uniformly in the cell. UE; and UE,, are close enough to satisfy the distance constraints



of D2D communication, and at the same time they also have aorwating demands. One
member of the D2D pair UE, is distributed uniformly in the cell, and the position of the
other member UE; follows a uniform distribution inside a region at mastfrom UE; ;.

The existing researches |17], [18] confirm that with powentoal or resource scheduling
mechanism, the inter-cell interference can be managedesitigz. Therefore, we place an
emphasis on the intra-cell interference, which is due tousse sharing of D2D and cellular
communication. Generally speaking, the session setup & &dmmunication requires the
following steps [[1]:

1) A request of communicating is initiated by one UE pair.

2) The system detects traffic originating from and destirethé UE in the same subnet.

3) If the traffic fulfills a certain criterion (e.g., data ratéhe system considers the traffic

as the potential D2D traffic.

4) The BS checks if D2D communication offers higher throughp

5) If both UEs are D2D capable and D2D communication offeghér throughput, the

BS may set up a D2D bearer.

The cross-layer processes of resource control can be pedtan the above steps, and be
generally summarized as: the transmitters (both celluted B2D users) send detecting
signals. Then CSI would be obtained by corresponding receiand be feedback to the
control center (e.g. the BS). The power control and spectllocation are conducted based
on certain principles. Finally, the BS sends control sigrtal users according to allocation
results.

Even if the D2D connection setup is successful, the BS stdlntain detecting if UE
should be back to the cellular communication mode. Furtbeenthe BS maintains the radio
resource control for both cellular and D2D communicatioas&l on these communication
features, our work mainly focuses on assigning cellulaoueses to D2D communication.

In this paper, we consider a scenario of sharing downlink)(Bdsource of the cellular
network as shown in Fig.] 1. We assume MEs the transmitter of the D2D pair sharing the
same sub-channel with the BS, and thus,WU&s the D2D receiver receives interference from

the BS. Also, the cellular receiver UEs exposed to interference from WE In addition,



the D2D users feed back the CSI to the BS, whereas the BS titansomtrol signals to the
D2D pair, in the way that the system achieves D2D power cobaind resource allocation.
During the DL period of the cellular system, both celluladdd2D users receive interfer-
ence as they share the same sub-channels. Here, we assuraeyticallular user’s resource
blocks (RBs) can be shared with multiple D2D pairs and eachqgaam use more than one
user’s RBs for transmitting. We assume the numbers of eelusers and D2D pairs in the
model areC' and D, respectively. During the DL period, the BS transmits signato the
c-th (¢ = 1,2,...,C) cellular user, and thé-th (d = 1,2,..., D) D2D pair uses the same
spectrum resources transmitting sigmal The received signals at UEand D2D receiver]

are written as

Ye = V PBthxc + Z 5cd\/ﬁdhdcxd + Ne, (l)
d
Yd = \/Fdhddxd + v/ Pehpqv. + Z Baar\/ Pohaara + na, (2)
d/

where Pg, P; and P, are the transmit power of BS, D2D transmitiérd’, respectively.
hi; is the channel response of the- j link that is from equipments to j. n. andn, are
the additive white Gaussian noise (AWGN) at the receiverth wne-sided power spectral
density (PSD)N,. 5.4 represents the presence of interference satisfging= 1 when RBs
of UE ¢ are assigned to UH, otherwises,.; = 0. As a cellular user can share resources with
multiple D2D pairs, it also satisfies < > 5.4 < D. Similarly, S,y represents the presence
of interference between D2D paidsandc(li’.

In this paper, the channel is modeled as the Rayleigh facdiagmel, and thus, the channel
response follows the independent itentical complex Gaagdistribution. In addition, the free

«

space propagation path-loss model= P, - (d/dy)”“, is used where?, and P represent
signal power measured d§ andd away from the transmitter, respectivelyis the path-loss

exponent. Hence, the received power of each link can be sxgdeas
Py =P 0% =P - (i)™ - hi, 3

where P, ;; andd,; are the received power and the distance ofithe; link, respectively.

P, represents the transmit power of equipménand h, is the complex Gaussian channel



coefficient that obeys the distributi@\/ (0, 1). Besides, we simplify the received power at

dp = 1 equals the transmit power.

B. System Sum Rate

For the purpose of maximizing the network capacity, the a@ign interference plus noise

ratio (SINR) should be considered as an important indicatbe SINR of user is
PR,

—_— 4
Rnt,j+N0 ( )

Vi =

where P, ; denotes the interference signal power received by gisand IV, accounts for
the terminal noise at the receiver.

Determined by the Shannon capacity formula, we can cakula channel rate corre-
sponding to the SINR of cellular and D2D users. As cellularssuffer interference from
D2D communicating that sharing the same spectrum resotineejnterference power of

cellular userc is

Pute =Y BeaPahl,. (5)

d
While the interference of D2D receivdris from both BS and D2D users that are assigned

the same resources to, the interference power of di®an be expressed as
Pint,d = PBhQBd + Z ﬁdd’Pd’hZ/d- (6)
d/

Based on[(4),[(5), and](6), we can obtain the channel rate loflaeuserc and D2D

receiverd as

R.=1log, [ 1+ Pl 7)
c = 10 5

2 Zd: BeaPah3, + No
Rg =log, | 1 (8)

* Pgh%, + %; Baw Poh%,+ No |’
respectively. Hered # d'. So " B4 Pyh?%, represents the interference from the other D2D
pairs that share spectrum regources with gair

The DL system sum rate can be defined as

c D
R= (Rc Y &m) : (9)

d=1



In the next section, we formulate the problem of designihg for each D2D pair as an

optimization issue of maximizing.

I1l. PROBLEM FORMULATION

In this section, we introduce two concepts: valuation maahel utility function, which are

bases of the auction mechanism. Also, some definitions &engi

A. Valuation Model

As D2D communication shares the same spectrum resource<elltilar communication
at the same time slot, the co-channel interference shouldriked as much as possible to
optimize the system performance. The radio signals expegielifferent degrees of fading,
and thus, the amount of interference depends on transmgpamd spatial distances. Accord-
ingly, we focus on assigning appropriate resource bloclBs{Rccupied by cellular users to
D2D pairs in order to minimize interference to achieve a bigéystem sum rate. Next, we
formulate the relation between the allocation result aredrtdte of the shared channel. The
relation can be defined as a value function whose target valtiee channel rate.

We defineD as a package of variables representing the index of D2D paatsshare the
same resources. We assume the total pairs can Mrsach packages. Thus, if the members
of the k-th (¢ = 1,2,..., N) D2D user package share resources with cellular use¢he

channel rates of UE and D2D paird (d € D,) can be written as

RF=log, | 1+ Pl , (10)
> Pihi. + Ny
deDy,
Pk
Rt =log, | 1+ dd , 11
d'€Dy—{d}

respectively. The rate of the operating channel shared by d&d D2D pairsd € Dy, is

Ry = RE+ > Rl (12)

deDy,
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According to [10)~ (12), when assigning resources of UKo the k-th package of D2D

pairs, the channel rate is given by

Vi) = logy | 1+ o 2D + 3 logy | 1+ Fuhi
c =10 e}
2 > Pahi+No | & 2 Pgh%,+ > PyhZ,+ N
deDy, d'eDy—{d}
(13)

In the proposed reverse I-CA mechanism, we consider speatesources occupied by
cellular userc as one of the bidders who submit bids to compete for the paskafD2D
pairs, in order to maximize the channel rate. It is obvious tinere would be a gain of
channel rate owing to D2D communicating as long as the dmuttan to data signals from
D2D is larger than that to interference signals. Considgtine constraint of a positive value,

we define the performance gain as
ve(k) = mazx (V.(k) — V,,0), (14)

which is the private valuation of bidderfor the package of D2D pair®;. Here,V, denotes

the channel rate of UE without co-channel interference and is obtained by

Pgh?
V. = log, (1 4 — B Be BC) ) (15)
No

Thus, we have the following definition:
Definition 1: A valuation modelV = {v.(k)} is a set of the private valuations of all

biddersc € {1,2,...,C} for all package®D, C {1,2,...,D} (k € {1,2,...,N}).

B. Utility Function

In the auction, the cellular resource denotedchybtains a gain by getting a package of
D2D communications. However, there exists some cost sudwomatsol signals transmission
and information feedback during the access process. Weedgfencost as a pay price.

Definition 2: The price to be payed by the biddefor the packagéD, is calledpay price
denoted byP.(k). The unit price of itemd (Vk, d € Dy) can be denoted by,.(d).

Here, we consider linear anonymous prides [24], which mélaagrices are linear if the

price of a package is equal to the sum of the prices of its itemd the prices are anonymous
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if the prices of the same package for different bidders ateedhus, we have

Pelk) =Y _pe(d)=> p(d),Ve=12...C. (16)

deDy, deDy,

Therefore, the payment of a bidder is determined by the umiep(d) and the size of
bidding packageD;.
Definition 3: Bidder utility, or namedbidder payoffi/.(k) expresses satisfaction of bidder

¢ getting packagé,. The bidder utility can be defined as
U (k) = v, (k) — P.(k). (17)

Based on[(14),[(16)[ (A 7)/.(k) in (13) andV, in (15), we can obtain the utility of bidder

c as

PBhQB Pdh?ld
U.(k) =1 1+ < + E 1 1+
(k) =log; > Pahi.+No | 5 o Pphyy+ >3 Pohly+ No
deDy, k d'€Dp—{d}
Pgh3,
— log, (1 + BTOB) - > " p(d). (18)

deDy

In order to describe the allocation outcome intuitively, giree the definition below.

Definition 4: The result of the auction is a spectrum allocation denojed b= (X1, Xs, ..., X¢),
which allocates a corresponding package to each bidder.tAadillocated packages may
not intersect\(, j, X; N X; = 0).

We consider a set of binary variablés.(k)} to redefine the allocation as

. { 1, if X, =Dy, 19)
0, otherwise

According to the literature, two most popular bidding laages are exclusive-OR (XOR),
which allows a bidder to submit multiple bids but at most orighe bids can win, and
additive-OR (OR), which allows one to submit multiple bidelaany non-intersecting com-
bination of the bids can win. We consider the XOR bidding laege in this paper. Thus,
[@9) satisfiesS_r ,z. (k) < 1 andr  z.(k) = 0 = X, = @ for Ve = 1,2,...,C. If
given an allocationY, the total bidder utility of all bidders can be denotedlag(X) =
S SN x.(k)U.(K). Furthermore, the auctioneer revenue is denoted @) =

Zle Efle z.(k)P.(k), which is usually considered to be the auctioneer’s gain.
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IV. RESOURCEALLOCATION ALGORITHM BASED ON REVERSEITERATIVE

COMBINATORIAL AUCTION

In this section, we formulate the resource allocation foDO@®mmunication as a reverse
I-CA game. First, we introduce some concepts of the I-CA ganiden, we investigate

details of the allocation process.

A. Reverse lterative Combinatorial Auction Game

As mentioned before, we assume the total spectrum resocareeBvided intaC' units with
each one already providing communication service to orlalaeluser. By the auction game,
the spectrum units are assigned Ao user packages$D;, D, ..., Dy}, with each package
consisting of at least one D2D pair. In other words, the spattunits compete to obtain
D2D communication for improving the channel rate.

During an I-CA game, the auctioneer announces an initia@epfor each item, and then,
the bidders submit to the auctioneer their bids at the ctipene. As long as the demand
exceeds the supply, or on the contrary that the supply escteldemand, the auctioneer
updates (raises or reduces) the corresponding price anautiieon goes to the next round.

Obviously, it can be shown that the overall gain, which idels the total gain of the
auctioneer and all bidders does not depend on the pay pnutegduals to the sum of the

allocated packages’ valuations, i.e.,

=D () Pe(k)+ D> e (k) [(ve (k) — P (K))]
=Y e (k)ve (k). (20)

As our original intention, we employ the I-CA to obtain an @gnt allocation for spectrum
resources.
Definition 5: An efficient allocationdenoted byX = (X, X,, ..., X¢) = {Z.(k)} is an

allocation that maximizes the overall gain.
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Given the private bidder valuations for all possible padsim [14), an efficient allocation
can be obtained by solving the combinatorial allocatiorbfm (CAP).

Definition 6: The Combinatorial Allocation Problem (CAP)also sometimes referred as
Winner Determination Problem (WDR)leads to an efficient allocation by maximizing the
overall gain:  max Zle ve (k), where 2™ denotes the set of all possible allocations.

Dyp=Xc€EXEX
An integer linear program using the binary decision vagaljlz.(k)} is formulated for

the CAP as

C N

maxZZxc (k) v (k), (21)
c=1 k=1

N

st Y m(k)<1LVee{1,2,....C},
k=1
C
> > w(k)<1,vde{1,2,....D}.
Dy:d€Dy, c=1

The objective function maximizes the overall gain, and tbestraints guarantee: 1) at most
one package can be allocated to each bidder; 2) each itenotcharsold more than once.
In fact, there might be multiple optimal solutions of the CAfh the same objective
function. From the auctioneer’s point of view, tie-breakirules are needed to determine
which of the optimal solutions is selected. In a real auctitve auctioneer does not know
the private valuations of the bidders, neither can it soheeNP-hard problem. To solve the
CAP, the auctioneer selects the winners on the basis of thenitted bids in each round.
Therefore, in case of the XOR bidding language, the WDP fdatran is similar to the CAP

and the only difference is the objective function

max Z Z z. (k)P (k), (22)

whereP!(k) represents the pay price of biddefor packageD, in roundt.
Based on Definition 5, the overcome of a CA is not always efiiciélere, we employ
allocating efficiency as a primary measure to benchmarkians:t

Definition 7: Allocating efficiencyin CAs can be expressed as the ratio of the overall
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gain of the final allocation to that of an efficient allocatif24]
A(X) + Uan (X)
A() + ()

E(X) = : (23)

which has&(X') € [0, 1].

B. Algorithm for Resource Allocation

In this subsection, the details of the allocation schemedbas reverse I-CA are introduced.
We has modeled the D2D resource allocation problem as aseVdLA game and gave the
valuation model, utility function and other important cepts. Many I-CA designs, especially
for the centralized I-CA design, are based on ask prices prfice-based I-CA designs differ
by the pricing scheme and price update rules. In the propaigedithm, linear prices are used
as mentioned in Subsection III-B for they are easy to undedsfor bidders and convenient
to communicate in each auction round. Because of the im&rée from D2D links, cellular
channels should guarantee the performance of cellulagmsyisefore allowing the D2D access.
Hence, we consider a descending price criterion in the @lgor Prices update by a greedy
mode that once a bidder submits a bid for items or packagesdiresponding prices are
fixed, otherwise the prices are decreased.

At the beginning of the allocation, the BS collects the lamainformation of all the D2D
pairs. In addition, the round indeéx= 0, the initial ask pricep°(d) for each item (D2D pair)
d, and the fixed price reductiod > 0 are set up. When the initial prices are announced
to all the bidders (i.e. spectrum resources occupied byleelUES), each bidder submits
bids, which consist of its desired packages and the cornepg pay prices. Jump bidding
where bidders are allowed to bid higher than the prices, isalowed in our scheme, thus
bidders always bid at the current prices. According to the*@#oposed in Definition 6 and
the analysis about the WDP, we simplify the problem of mazing the overall gain as a
process of collecting the highest pay price. As a resuldédnd bids for packageD,, as long
asU.(k) > 0. Combining [(16) and(17), we have

ve (k) = Ph(k) =Y p'( (24)

deDy,
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where the round indek > 0. In this case, let:(k) = {D,, P.(k)} denote the submitted bid
at the end of round, andB* = {0’,(k)} denotes all the bids. Wheh {24) is not satisfied, bid
bL(k) = {0,0}.

If 3d € Dy, satisfiesvd!.(k) € B, Dy ¢ V.(k), it reveals that the supply exceeds the demand.
Then, the BS sets=t + 1, p'*(d) = p'(d) — A whered is the over-supplied item, and the
auction moves on to the next round.

In a normal case, as long as the price of a package decredsesdéidder’'s valuation
for that package, the bidder submits a bid for it. The BS alles the package to the bidder,
and fixes the corresponding prices of items. At the same tooastrained by the XOR
bidding language, the bidder is not allowed to particip&ie following auction rounds. As
the asking prices decrease discretely every round, it mey asituation that more than one
bidders bid for packages containing the same items sinmediasly. The BS detects the bids
of all the bidders: 1) it exist$! (k) = b (k) # {0,0} (&1 # 2,k € {1,2,...,N}); 2) it
existsbl, (k1) = {Dy,, P! (k1) }, b, (ko) = {Dpy, P (ko) (ky # koycr,00 € {1,2,...,C)

satisfying Dy, N Dy, # (. If either of the above conditions is satisfied, the overaindnd

1@2

exceeds supply for at least one item. Then, the BS sets a fimegty’(d) = p’(d) + ¢
whered is the temporary over-demanded item, andan be set by = A/i wherei is an
integer factor that affects the convergence rate. The atilme can be determined by multiple
iterations.

The auction continues until all the D2D links are auctiondfdoo every channel wins a

package. Our algorithm is detailed in Table I.

V. ANALYSIS OF THE PROPOSEDRESOURCEALLOCATION ALGORITHM

In this section, we investigate the important propertiestted proposed auction-based

resource allocation mechanism.

A. Cheat-Proof

As the general definition, cheat-proof means that repothiegrue demand in each auction
round is a best response for each bidder.

Proposition 1: The resource allocation algorithm based on the revers& is€heat-proof.
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Proof: From (18), we can get that the utility of bidd&f.(k) depends on the valuation
of the package it bids and unit prices of the items. In detdilis the interference (between
cellular and D2D communications) that mainly affects thdityt As the expression is
extremely complex to resolve, we consider the case thatamdyitem constitutes the package

without loss of generality. The utility of biddercan be rewritten as

Pph? Ph2 Pph?
Uc(d) = log, (1 Lol ) + log, (1 I ih3a _) — log, (1 + 71;\;;3) —p'(d),
0

PihZ. + Ny Pgh%,, + Ny
(25)
and the differential expressions of the utility with respech,. andhg, are
U, (d —2P;hg.Psh?
U (d) _ 3 AT <0, (26)
Ohge In2 (Ph3, + Peh3, + No) (Pihi, + No)
. 2
ou, (d) 2PghpqPihs, <0, 27)

Ohpa W2 (Pgh?, + Pah2, + No) (PshZ, + No)
respectively. Accordingly, utility/.(d) is a monotonically decreasing function with respect to
both hy. and hgy. Thus, the optimal strategy is to bid the D2D link that haswaeiochannel
gain with the cellular transmitter and receiver.

In a descending price auction, items are always too experneiafford at the beginning.
With the number of iterationg increasing, the prices of items drop off. Given a package
Dy, in round ¢, bidder ¢ has the right to submit bidD;, P!(k)} or {(,0}. Given that all
the other bidders submit their true demands according _th (24 consider the strategy of
bidderc in two cases: 1) it bids {0, 0} when its true valuation foD,, satisfied/.(k) > 0,
it will quit this round and lose the package which maximizessahannel rate; 2) it bids
{Dy, PL(k)} when its true valuation foD,, satisfied/.(k) < 0 and finally wins the package,
it will obviously get a negative surplus that is unwanted.

From the above analysis, we can conclude that the optimatkegly for cellular channel
is to submit its true demand in each round, or it will get a los#s utility as a result of

any deceiving. That is, the proposed resource allocatigarghm is cheat-proof. [ |

B. Convergence

In this subsection, we prove that the proposed algorithmtivasonvergence property.
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Proposition 22 The resource allocation algorithm based on the revers@ Ik@s the
convergence property that the number of the iterations igefin
Proof: : According to Theorem 1, all the bidders submit their truendads in each

auction round, in order to obtain the utility from winningrofn (18), we can derive
U —U = A >0, (28)

wherel(! denotes the utility of bidder in round¢. According to the algorithm, we have
that bidderc will get zero utility with no bid if¢/* < 0, and have an opportunity to win a
positive utility with bid {Dy,, PL(k)} if U: > 0. Therefore, in the beginning, bidderplays
a waiting game, and ondé!(k) > 0, it will bid for D,. As long as it is the only one that
submits a bid, it will get the package. With a sufficientlygar and A > 0, we can finally
getz.(k) = 1. Similarly, if more than one bidders bid for the same item, ecaé® have an
allocation by ascending price process with the stepA. Subjected to > i ze(k) <1
in (21), the package can not be sold once more. Thus, for @ﬁmr?kbdeefg;:pl)ackagesf,
the number of iterations is finite. That is, the proposed sehe/ould reach convergenca

In addition, the value of the price step has a direct impact on the speed of convergence
of the proposed scheme. The scheme converges fast whenlarge, while it converges
slowly when A is small. The fine tuning) also has the same nature, but less impact on

convergence.

C. Price Monotonicity

In an I-CA game, the price updates through several ways,menotonically increasing,
monotonically decreasing and non-monotonic modes. Heere,fagus on the price non-
monotonicity in the proposed reverse I-CA algorithm.

Proposition 3. In the proposed descending price auction, the raising ipeices in a
round may be necessary to reflect the competitive situaMmreover, it brings efficiency
improvement.

Proof: From the algorithm proposed in Table I, there exists a sanahat more than
one bidders submit bids for the same package or differeritgugs with intersection when

prices are reduced to some certain values. But auctions tallow one item being obtained
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by multiple bidders as the second constraint[inl (21) showsthis situation, raising the
corresponding prices by a fine tuning= A/i makes bidders to reinspect their utility
functions. Once a bidder finds its utility less than zero, uitg] from the competition.

By a finite number of iterations, the winner converges to omedr. Since the ascending
price process maximizes the auctioneer revenue as sho@®)nthe allocation has higher

efficiency than a random allocation in that situation. [ |

D. Complexity

As mentioned before, a traditional CAP in fact is an NP-haabfem, the normal solution
of which is the centralized exhaustive search. We set tleahtimber of items to be allocated
is m, and the number of bidders is. For an exhaustive optimal algorithm, an item can
be allocated withn possible results. Thus, all the items are allocated witlhh™ possible
results. The complexity of the algorithm can be denotedXgy™). In the proposed reverse
I-CA scheme, bidders reveal their entire utility functiore., they calculate valuations for
all possible packages, the number of whictCjs+ C2, + --- +C™ = 2™ — 1. If the total
number of iterations i$, the complexity of the auction-based schem®is: (2™ — 1) + t).
From the proposed algorithm, we haye(d) = p° (d) — A -t > 0 (The fine tuning has a
small impact on the result and can be omitted here). So thetvease ist = p° (d)/A.

It is obvious that for sufficient large values of andn, general values of°(d) and A,

a much lower complexity is obtained by using the proposeérs|-CA scheme. That is,
O(n™) > O(n (2™ —1) + p°(d)/A). If we constrain the number of D2D pairs sharing the
same channel to one, the complexity would be further redtwe&d(n - m + p° (d)/A). And

the performance of this reduced scheme is included in thelation in Subsection VI-A.

E. Overhead

In D2D underlay system, the BS is still the control centeredaurce allocation, and the
global CSI should indeed be available at the BS for the preppeasheme. In addition to the
CSI detection, feedback, and the control signaling traasiom, the reverse I-CA scheme does

not need additional signaling overhead compared to egis@source scheduling schemes
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such as maximum carrier to interference (Max C/l) and propoal fair (PF), which also
need the global CSI to optimize the system performance. Tiferehce is that the reverse I-
CA scheme requires more complicated CSI due to the interéerbetween D2D and cellular
network.

At the beginning of the allocation, the transmitters needdnd some packets containing
detection signals. Then, the obtained CSI at each termi»@D(or cellular receiver) would
be feedback to the BS. After that, iteration process wouldcbeducted at the BS, and
no signaling needs to be exchanged among the network nodésthen control signals
forwarding.

Methods, such as CSI feedback compression and signal figoeiould help reduce
the overhead. In addition, the future work on D2D commumeaicould consider some
mechanism that limit the number of D2D pairs sharing the sah@nnel by, e.g. distance
constraint, which would obviously help reduce the overh@&ad for this paper, the target is

to obtain the nearest-optimal solution, wherefore we docowoisider the simplification.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide the simulation results to illagt the performances of the
proposed reverse I-CA algorithm. Besides, we give the macgsanalysis for the results. The
main simulation parameters are listed in Tdble Il. As shawhig.[1, simulations are carried
out in a single cell. Both path-loss model and shadow fadnegcansidered for cellular and
D2D links. The wireless propagation is modeled accordingVidlNER 1l channel models
[27], and D2D channel is based on office/indoor scenarioevtdllular channel is based on

the urban microcell scenario.

A. System Sum Rate

The system sum rate with different numbers of D2D pairs affdrént numbers of resource
units using the proposed auction algorithm is illustrate&ig.[2 ~ Fig.[4. The sum rate can
be obtained from[(9).

From Fig[2 and Fid.l4, we can see that the system sum rate gosghuboth the number

of D2D pairs and the number of resource units increasing. @ side, when the amount
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of resources is fixed, more D2D users contribute to a highstesy sum rate. On the other
side, as the amount of resource increases, the probakiligsources with less interference
to D2D links being assigned to them enhances, which can ledHdet increased sum rate.
This phenomenon is similar to the effect of multiuser diigr®efinitely, cellular users also
contributes to the performance.

From another perspective, Hitr2Fig.[4 shows the system sum rate for different allocation
algorithms. The curve marked exhaustive optimal is sinealdtty the exhaustive search way,
which guarantees a top bound of the system sum rate. The cuavked reduced R-I-CA
is the result of a reduced reverse I-CA scheme, in which thebau of D2D pairs sharing
the same cellular resources is constrained to one. The cnavked R-I-CA represents the
performance of the proposed reverse I-CA algorithm, andlaiseé one is the simulation
result using random allocation of spectrum resourcestlfinge can see that the proposed
auction algorithm is relatively much superior to the randaliocation. Secondly, the optimal
allocation results in the highest system sum rate, but tpersarity compared to R-I1-CA is
quite small, especially when the number of cellular reseuncits increases as Fig. 4 shows.
Moreover, we find that the performance of reduced R-I-CA apipnates to that of R-I-CA
scheme in case of 8 resource units, but differs obviouslyasef 2 resource units shown
in Fig.[3. The reason for this phenomenon is that the comstodithe reduced R-I-CA limits
D2D pairs accessing to the network when the number of ressurnits is less than that of

D2D pairs, thus a large capacity loss products.

B. System Efficiency

We define the system efficiency as= R/R,,, where®,, represents the exhaustive
optimal sum rate. Fid.]5 shows the system efficiency withedéft numbers of D2D pairs
and different numbers of resource units. The simulationiltaadicates that the proposed
algorithm provides high (the lowest value gfis around 0.7) system efficiency. Moreover,
the efficiency is stable over different parameters of usatsrasources.

As to the point of efficiency value being about 0.7, the nundferesource units and the

number of D2D pairs are both small. The linear price rule ténmidders to bid the maximal
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valuation packages, but to bid the packages having maxiveshge unit valuation. For this
reason, the efficiency decreases slightly.

As to other points, the efficiency is stable above 0.9, whaeflects a small performance gap
between the proposed algorithm and the exhaustive seahgmsc In fact, the descending
price rule determines the bidder that has the highest bidusremt items would win the
corresponding package, which maximizes the current dvgaath. However, the gap cannot
be avoided as the algorithm essentially follows a local, mapproximate global optimum

principle.

C. Price Monotonicity

Fig.[8 shows an example of the price non-monotonicity in #erse |I-CA scheme. The
four curves represent unit price of four D2D pairs. As theaeggd detail shows, the unit
price of D2D pair2 has an ascending process during the auction. As thejseemuch less
than descending stefy, the phenomenon of ascending price is hard to pick out. When t
items have been sold out, their prices are fixed to the sellithge. And from the figure, we

can find that the D2D pai2 is the last one to be sold.

VII. CONCLUSIONS

In this paper, we have investigated how to reduce the eftdatsterference between D2D
and cellular users, in order to improve the system sum rata 02D underlay network. We
have proposed the reverse iterative combinatorial au@®ithe mechanism to allocate the
spectrum resources for D2D communications with multiplerysairs. We have formulated
the valuation of each D2D pair for each resource unit, and #plained a detailed auction
algorithm depending on the utility function. A non-monammescending price iteration
process has been modeled and analyzed to be cheat-prowérgenn a finite number of
rounds, and has low complexity. The simulation results sttt the system sum rate goes
up with both the number of D2D pairs and the number of resourgés increasing. The
proposed auction algorithm is much superior to the randdotaion, and provides high

system efficiency, which is stable over different paransetédrusers and resources.
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TABLE |
THE RESOURCE ALLOCATION ALGORITHM

x Initial State:

The BS collects the location information of all D2D pairs.eTtaluation of thec-th resource unit
for packagek is v.(k),c =1,2,...,C,k =1,2,..., N, which is given by[(I¥). The round index
t = 0, and the initial priceP°(d), the fixed price reductiod\ > 0 are set up.

x Resource Allocation Algorithm:
1. Bidderc submits bids{Dy, P.(k)} depending on its utility.
* bidder ¢ bids for packageD;. as long ad/.(k) > 0, which is represented b (P4).
* If Uc(k) < 0, bidderc submits{@, 0}.
2. If 3d € Dy, satisfiesvdl (k) € B, Dy, ¢ bi(k), the BS setg =t + 1, p'(d) = p'(d) — A where
d is the over-supplied item, and the auction moves on to thé meemd. Return to step 1.
3. The BS detects the bids of all the bidders:
1) it existsbl, (k) = b, (k) # {0,0} (c1 # c2,k € {1,2,...,N});
2) it exists bl (k1) = {Di,, Pl (k1)}, bl,(k2) = {Di,,Pl(k2)} (k1 # ka,c1,c0 €
{1,2,...,C}) satisfyingDy, N Dy, # 0.
4. If neither of the conditions in step 3 is satisfied, go tgpsfe Otherwise, the overall demand
exceeds supply for at least one item. The BS gétd) = p'(d) + J, and$ can be set by = A/i
wherei is an integer factor. Return to step 1.
5. The allocation can be determined by repeating the abapms.sfThe auction continues until all
D2D links are auctioned off or every cellular channel winsagkage.

TABLE I
MAIN SIMULATION PARAMETERS

Parameter Value

Cellular layout Isolated cell, 1-sector

System area The radius of the cell is 500 m
Noise spectral density -174 dBm/Hz

Sub-carrier bandwidth 15 kHz

Noise figure 9 dB at device

Antenna gains BS: 14 dBi; Device: 0 dBi

The maximum distance of D2) 5 m

Transmit power BS: 46 dBm; Device: 23 dBm

24



Fig. 1. System model
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