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Abstract

Peer-to-peer communication has been recently considered as a popular issue for local area

services. An innovative resource allocation scheme is proposed to improve the performance of

mobile peer-to-peer, i.e., device-to-device (D2D), communications as an underlay in the downlink

(DL) cellular networks. To optimize the system sum rate overthe resource sharing of both D2D and

cellular modes, we introduce a reverse iterative combinatorial auction as the allocation mechanism.

In the auction, all the spectrum resources are considered asa set of resource units, which as

bidders compete to obtain business while the packages of theD2D pairs are auctioned off as

goods in each auction round. We first formulate the valuationof each resource unit, as a basis

of the proposed auction. And then a detailed non-monotonic descending price auction algorithm

is explained depending on the utility function that accounts for the channel gain from D2D and

the costs for the system. Further, we prove that the proposedauction-based scheme is cheat-proof,

and converges in a finite number of iteration rounds. We explain non-monotonicity in the price

update process and show lower complexity compared to a traditional combinatorial allocation. The

simulation results demonstrate that the algorithm efficiently leads to a good performance on the

system sum rate.
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I. INTRODUCTION

As one of next-generation wireless communication systems,Third Generation Partnership

Project (3GPP) Long Term Evolution (LTE) is committed to provide technologies for high

data rates and system capacity. Further, LTE-Advanced (LTE-A) was defined to support new

components for LTE to meet higher communication demands [1]. Local area services are

considered as popular issues to be improved, and by reusing spectrum resources local data

rates have been increased dramatically. However, the unlicensed spectrum reuse may bring

inconvenience for local service providers to guarantee a stable controlled environment, e.g.,

ad hoc network [2], which is not in the control of the base station (BS) or other central

nodes. Hence, accessing to the licensed spectrum has attracted much attention.

Device-to-Device (D2D) communication is a technology component for LTE-A. The ex-

isting researches allow D2D as an underlay to the cellular network to increase the spectral

efficiency [1], [3]. In D2D communication, user equipments (UEs) transmit data signals to

each other over a direct link using the cellular resources instead of through the BS, which

differs from femtocell [4] where users communicate with thehelp of small low-power cellular

base stations. D2D users communicate directly while remaining controlled under the BS.

Therefore, the potential of improving spectral utilization has promoted much work in recent

years [5]–[10], which shows that D2D can improve system performances by reusing cellular

resources. As a result, D2D is expected to be a key feature supported by next generation

cellular networks.

Although D2D communication brings improvement in spectralefficiency and makes large

benefits on system capacity, it also causes interference to the cellular network as a result of

spectrum sharing. Thus, an efficient interference coordination must be formulated to guarantee

a target performance level of the cellular communication. There exists several work about

the power control of D2D UEs for restricting co-channel interference [1], [3], [11], [12].

The authors in [13] utilized MIMO transmission schemes to avoid interference from cellular

downlink to D2D receivers sharing the same resources, whichaims at guaranteeing D2D

performances. Interference management both from cellularto D2D communication and from

D2D to cellular networks are considered in [14]. In order to further improve the gain from
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intra-cell spectrum reuse, properly pairing the cellular and D2D users for sharing the same

resources has been studied [15], [16]. The authors in [16] proposed an alternative greedy

heuristic algorithm to lessen interference to the primary cellular networks using channel state

information (CSI). The scheme is easy-operated but cannot prevent signaling overhead. In

[17], the resource allocation scheme avoids the harmful interference by tracking the near-far

interference, identifies the interfering cellular users, and makes the uplink (UL) frequency

bands efficiently used. Also, the target is to prevent interference from cellular to D2D

communication. In [18], the authors provided analysis on optimum resource allocation and

power control between the cellular and D2D connections thatshare the same resources for

different resource sharing modes, and evaluated the performance of the D2D underlay system

in both a single cell scenario and the Manhattan grid environment. Then, the schemes are to

further optimize the resource usage among users sharing thesame resources. Based on the

aforementioned work, it indicates that by proper resource management, D2D communication

can effectively improve the system throughput with the interference between cellular networks

and D2D transmissions being restricted. However, the problem of allocating cellular resources

to D2D transmissions is of great complexity. Our works differ from all mentioned above in

that we consider a scheme to maximize the system sum rate by allowing multiple pairs share

one cellular user’s spectrum resource.

Game theory offers a set of mathematical tools to study the complex interactions among

interdependent rational players and to predict their choices of strategies [19]. In the present

researches, game theory including a large number of different game methods are used to

analyze resource allocation problems, such as power and wireless spectrum allocations in

communication networks [20], resource management in grids[21], and distributed resource

coordination in mega-scale container terminal [22]. In [20], the authors proposed a sequential

auction for sharing the wireless resource, which is managedby a spectrum broker that

collects bids and allocates discrete resource units using asequential second-price auction.

A combinatorial auction model for resource management was introduced in [21], [22]. The

combinatorial auction-based resource allocation mechanism allows an agent (bidder) to place

bids on combinations of resources, called “packages”, rather than just individual resource
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unit.

Actually, the combinatorial auctions (CAs) have been employed in a variety of industries

for, e.g., truckload transportation, airport arrival and departure slots, as well as wireless

communication services. The benchmark environment of auction theory is the private value

model, introduced by Vickrey (1961), in which one bidder hasa value for each package of

items and the value is not related to the private informationof other bidders [23]. Much of

work has not recognized that bidders care in complex ways about the items they compete. The

CAs motivate bidders to fully express their preferences, which is an advantage in improving

system efficiency and auction revenues. Up to that point, ourinterest is to apply the CA game

in solving arbitrary D2D links reusing the same cellular frequency bands with the purpose

of optimizing the system capacity.

However, it exists a series of problems and challenges in CAs, such as pricing and bidding

rules, the winner determination problem (WDP) which, as mentioned in the literature, leads

to the NP-hard allocation problem. Therefore, we focus on the evolution mechanisms named

iterative combinatorial auctions (I-CAs) [24], [25]. In I-CAs, the bidders submit multiple

bids iteratively, and the auctioneer computes provisionalallocations and ask prices in each

auction round.

In this paper, we study an effective spectrum resource allocation for D2D communication

as an underlay to further improve system efficiency based on the I-CA. The whole system

consists of the BS, multiple cellular users that receive signals from the BS, and multiple

D2D pairs that communicate with respective receivers usinglicensed spectrum resources.

Considering that interference minimization is a key point and multiple D2D pairs sharing the

same resources can bring large benefits on system capacity, we formulate the problem as a

reverse I-CA game. That means, the resources as the bidders compete to obtain business, while

D2D links as the goods or services wait to be sold. By this way,the packages of D2D pairs are

auctioned off in each auction round. Furthermore, we investigate some important properties

of the proposed resource allocation mechanism such as cheat-proof, convergence and price-

monotonicity. Part of our work has been published in [26], which introduces a sequential

second price auction as the allocation mechanism for D2D underlay communication, and
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explains the detailed algorithm using an N-ary tree. In thiswork, we further reduce the

computational complexity and apply our scheme to WINNER II channel models [27] which

contain a well-known indoor scenario. The simulation results show that the auction algorithm

leads to a good performance on the system sum rate, and provides high system efficiency

while has lower complexity than the exhaustive search allocation.

The rest of the paper is organized as follows: In Section II, we describe the system

model of the D2D communication underlaying cellular network, and give the explanation

and expression of the system sum rate. The primary problem isformulated in Section III.

In Section IV, the resource allocation algorithm based on a reverse I-CA is proposed. In

Section V, the main properties of the proposed algorithm areinvestigated. In Section VI,

we present the numerical simulation results and relevant analysis on the system sum rate,

algorithm efficiency, and properties. Finally, we draw the conclusions in Section VII.

II. SYSTEM MODEL

In this section, we introduce the system model for D2D underlay communication. The

scenario of multiple D2D and cellular users is first described, and then, the expression of

system sum rate is given.

A. Scenario Description

A model of a single cell with multiple users is considered. Asshown in Fig. 1, UEs with

data signals between each other are in the D2D communicationmode while UEs that transmit

data signals with the BS keep in the traditional cellular mode. Each user is equipped with a

single omnidirectional antenna. The locations of cellularusers and D2D pairs are randomly set

and traversing the whole cell. Without loss of generality, we employ the uniform distribution

to describe the user locations which is proposed for system simulation in [28]. Notice that

from stochastic geometry with for Poisson distributions, the users are uniformly located as

well if the number of users is known [29]. For simplicity and clarity, we illustrate co-channel

interference scenario involving three UEs (UEc, UEd,1 and UEd,2), and omit the interference

and control signal signs among others. UEc is a traditional cellular user that is distributed

uniformly in the cell. UEd,1 and UEd,2 are close enough to satisfy the distance constraints
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of D2D communication, and at the same time they also have communicating demands. One

member of the D2D pair UEd,1 is distributed uniformly in the cell, and the position of the

other member UEd,2 follows a uniform distribution inside a region at mostL from UEd,1.

The existing researches [17], [18] confirm that with power control or resource scheduling

mechanism, the inter-cell interference can be managed efficiently. Therefore, we place an

emphasis on the intra-cell interference, which is due to resource sharing of D2D and cellular

communication. Generally speaking, the session setup of D2D communication requires the

following steps [1]:

1) A request of communicating is initiated by one UE pair.

2) The system detects traffic originating from and destined to the UE in the same subnet.

3) If the traffic fulfills a certain criterion (e.g., data rate), the system considers the traffic

as the potential D2D traffic.

4) The BS checks if D2D communication offers higher throughput.

5) If both UEs are D2D capable and D2D communication offers higher throughput, the

BS may set up a D2D bearer.

The cross-layer processes of resource control can be contained in the above steps, and be

generally summarized as: the transmitters (both cellular and D2D users) send detecting

signals. Then CSI would be obtained by corresponding receivers and be feedback to the

control center (e.g. the BS). The power control and spectrumallocation are conducted based

on certain principles. Finally, the BS sends control signals to users according to allocation

results.

Even if the D2D connection setup is successful, the BS still maintain detecting if UE

should be back to the cellular communication mode. Furthermore, the BS maintains the radio

resource control for both cellular and D2D communication. Based on these communication

features, our work mainly focuses on assigning cellular resources to D2D communication.

In this paper, we consider a scenario of sharing downlink (DL) resource of the cellular

network as shown in Fig. 1. We assume UEd,1 is the transmitter of the D2D pair sharing the

same sub-channel with the BS, and thus, UEd,2 as the D2D receiver receives interference from

the BS. Also, the cellular receiver UEc is exposed to interference from UEd,1. In addition,
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the D2D users feed back the CSI to the BS, whereas the BS transmits control signals to the

D2D pair, in the way that the system achieves D2D power control and resource allocation.

During the DL period of the cellular system, both cellular and D2D users receive interfer-

ence as they share the same sub-channels. Here, we assume that any cellular user’s resource

blocks (RBs) can be shared with multiple D2D pairs and each pair can use more than one

user’s RBs for transmitting. We assume the numbers of cellular users and D2D pairs in the

model areC andD, respectively. During the DL period, the BS transmits signal xc to the

c-th (c = 1, 2, ..., C) cellular user, and thed-th (d = 1, 2, ..., D) D2D pair uses the same

spectrum resources transmitting signalxd. The received signals at UEc and D2D receiverd

are written as

yc =
√

PBhBcxc +
∑

d

βcd

√

Pdhdcxd + nc, (1)

yd =
√

Pdhddxd +
√

PBhBdxc +
∑

d′

βdd′

√

Pd′hd′dxd′ + nd, (2)

wherePB, Pd and Pd′ are the transmit power of BS, D2D transmitterd, d′, respectively.

hij is the channel response of thei − j link that is from equipmentsi to j. nc andnd are

the additive white Gaussian noise (AWGN) at the receivers with one-sided power spectral

density (PSD)N0. βcd represents the presence of interference satisfyingβcd = 1 when RBs

of UE c are assigned to UEd, otherwiseβcd = 0. As a cellular user can share resources with

multiple D2D pairs, it also satisfies0 ≤
∑

d

βcd ≤ D. Similarly, βdd′ represents the presence

of interference between D2D pairsd andd′.

In this paper, the channel is modeled as the Rayleigh fading channel, and thus, the channel

response follows the independent itentical complex Gaussian distribution. In addition, the free

space propagation path-loss model,P = P0 · (d/d0)
−α, is used whereP0 andP represent

signal power measured atd0 andd away from the transmitter, respectively.α is the path-loss

exponent. Hence, the received power of each link can be expressed as

Pr,ij = Pi · h
2

ij = Pi · (dij)
−α · h2

0, (3)

wherePr,ij and dij are the received power and the distance of thei − j link, respectively.

Pi represents the transmit power of equipmenti, andh0 is the complex Gaussian channel
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coefficient that obeys the distributionCN (0, 1). Besides, we simplify the received power at

d0 = 1 equals the transmit power.

B. System Sum Rate

For the purpose of maximizing the network capacity, the signal to interference plus noise

ratio (SINR) should be considered as an important indicator. The SINR of userj is

γj =
Pih

2
ij

Pint,j +N0

, (4)

wherePint,j denotes the interference signal power received by userj, andN0 accounts for

the terminal noise at the receiver.

Determined by the Shannon capacity formula, we can calculate the channel rate corre-

sponding to the SINR of cellular and D2D users. As cellular users suffer interference from

D2D communicating that sharing the same spectrum resource,the interference power of

cellular userc is

Pint,c =
∑

d

βcdPdh
2

dc. (5)

While the interference of D2D receiverd is from both BS and D2D users that are assigned

the same resources to, the interference power of userd can be expressed as

Pint,d = PBh
2

Bd +
∑

d′

βdd′Pd′h
2

d′d. (6)

Based on (4), (5), and (6), we can obtain the channel rate of cellular user c and D2D

receiverd as

Rc = log2



1 +
PBh

2
Bc

∑

d

βcdPdh2
dc +N0



 , (7)

Rd = log2



1 +
Pdh

2
dd

PBh2
Bd +

∑

d′
βdd′Pd′h2

d′d +N0



 , (8)

respectively. Here,d 6= d′. So
∑

d′
βdd′Pd′h

2
d′d represents the interference from the other D2D

pairs that share spectrum resources with paird.

The DL system sum rate can be defined as

ℜ =

C
∑

c=1

(

Rc +

D
∑

d=1

βcdRd

)

. (9)
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In the next section, we formulate the problem of designingβcd for each D2D pair as an

optimization issue of maximizingℜ.

III. PROBLEM FORMULATION

In this section, we introduce two concepts: valuation modeland utility function, which are

bases of the auction mechanism. Also, some definitions are given.

A. Valuation Model

As D2D communication shares the same spectrum resources with cellular communication

at the same time slot, the co-channel interference should belimited as much as possible to

optimize the system performance. The radio signals experience different degrees of fading,

and thus, the amount of interference depends on transmit power and spatial distances. Accord-

ingly, we focus on assigning appropriate resource blocks (RBs) occupied by cellular users to

D2D pairs in order to minimize interference to achieve a higher system sum rate. Next, we

formulate the relation between the allocation result and the rate of the shared channel. The

relation can be defined as a value function whose target valueis the channel rate.

We defineD as a package of variables representing the index of D2D pairsthat share the

same resources. We assume the total pairs can formN such packages. Thus, if the members

of the k-th (k = 1, 2, ..., N) D2D user package share resources with cellular userc, the

channel rates of UEc and D2D paird (d ∈ Dk) can be written as

Rk
c = log2






1 +

PBh
2
Bc

∑

d∈Dk

Pdh2
dc +N0






, (10)

Rk
d = log2






1 +

Pdh
2
dd

PBh
2
Bd +

∑

d′∈Dk−{d}

Pd′h
2
d′d +N0






, (11)

respectively. The rate of the operating channel shared by UEc and D2D pairsd ∈ Dk is

Rck = Rk
c +

∑

d∈Dk

Rk
d. (12)
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According to (10)∼ (12), when assigning resources of UEc to thek-th package of D2D

pairs, the channel rate is given by

Vc(k) = log2






1 +

PBh
2
Bc

∑

d∈Dk

Pdh
2
dc +N0






+
∑

d∈Dk

log2






1 +

Pdh
2
dd

PBh
2
Bd +

∑

d′∈Dk−{d}

Pd′h
2
d′d +N0






.

(13)

In the proposed reverse I-CA mechanism, we consider spectrum resources occupied by

cellular userc as one of the bidders who submit bids to compete for the packages of D2D

pairs, in order to maximize the channel rate. It is obvious that there would be a gain of

channel rate owing to D2D communicating as long as the contribution to data signals from

D2D is larger than that to interference signals. Considering the constraint of a positive value,

we define the performance gain as

vc(k) = max (Vc(k)− Vc, 0) , (14)

which is the private valuation of bidderc for the package of D2D pairsDk. Here,Vc denotes

the channel rate of UEc without co-channel interference and is obtained by

Vc = log2

(

1 +
PBh

2
Bc

N0

)

. (15)

Thus, we have the following definition:

Definition 1: A valuation modelV = {vc (k)} is a set of the private valuations of all

biddersc ∈ {1, 2, . . . , C} for all packagesDk ⊆ {1, 2, . . . , D} (k ∈ {1, 2, . . . , N}).

B. Utility Function

In the auction, the cellular resource denoted byc obtains a gain by getting a package of

D2D communications. However, there exists some cost such ascontrol signals transmission

and information feedback during the access process. We define the cost as a pay price.

Definition 2: The price to be payed by the bidderc for the packageDk is calledpay price

denoted byPc(k). The unit price of itemd (∀k, d ∈ Dk) can be denoted bypc(d).

Here, we consider linear anonymous prices [24], which meansthe prices are linear if the

price of a package is equal to the sum of the prices of its items, and the prices are anonymous
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if the prices of the same package for different bidders are equal. Thus, we have

Pc(k) =
∑

d∈Dk

pc (d) =
∑

d∈Dk

p (d), ∀c = 1, 2, . . . , C. (16)

Therefore, the payment of a bidder is determined by the unit price p(d) and the size of

bidding packageDk.

Definition 3: Bidder utility, or namedbidder payoffUc(k) expresses satisfaction of bidder

c getting packageDk. The bidder utility can be defined as

Uc(k) = vc (k)− Pc(k). (17)

Based on (14), (16), (17),Vc(k) in (13) andVc in (15), we can obtain the utility of bidder

c as

Uc(k) = log2






1 +

PBh
2
Bc

∑

d∈Dk

Pdh
2
dc +N0






+
∑

d∈Dk

log2






1 +

Pdh
2
dd

PBh
2
Bd +

∑

d′∈Dk−{d}

Pd′h
2
d′d +N0







− log2

(

1 +
PBh

2
Bc

N0

)

−
∑

d∈Dk

p (d). (18)

In order to describe the allocation outcome intuitively, wegive the definition below.

Definition 4: The result of the auction is a spectrum allocation denoted by X = (X1, X2, . . . , XC),

which allocates a corresponding package to each bidder. Andthe allocated packages may

not intersect (∀i, j, Xi ∩Xj = ∅).

We consider a set of binary variables{xc(k)} to redefine the allocation as

xc (k) =







1, if Xc = Dk,

0, otherwise.
(19)

According to the literature, two most popular bidding languages are exclusive-OR (XOR),

which allows a bidder to submit multiple bids but at most one of the bids can win, and

additive-OR (OR), which allows one to submit multiple bids and any non-intersecting com-

bination of the bids can win. We consider the XOR bidding language in this paper. Thus,

(19) satisfies
∑N

k=1
xc (k) ≤ 1 and

∑N

k=1
xc (k) = 0 ⇒ Xc = ∅ for ∀c = 1, 2, . . . , C. If

given an allocationX , the total bidder utility of all bidders can be denoted asUall(X ) =
∑C

c=1

∑N

k=1
xc(k)Uc(k). Furthermore, the auctioneer revenue is denoted asA(X ) =

∑C

c=1

∑N

k=1
xc(k)Pc(k), which is usually considered to be the auctioneer’s gain.
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IV. RESOURCEALLOCATION ALGORITHM BASED ON REVERSE ITERATIVE

COMBINATORIAL AUCTION

In this section, we formulate the resource allocation for D2D communication as a reverse

I-CA game. First, we introduce some concepts of the I-CA games. Then, we investigate

details of the allocation process.

A. Reverse Iterative Combinatorial Auction Game

As mentioned before, we assume the total spectrum resourcesare divided intoC units with

each one already providing communication service to one cellular user. By the auction game,

the spectrum units are assigned toN user packages{D1,D2, ...,DN}, with each package

consisting of at least one D2D pair. In other words, the spectrum units compete to obtain

D2D communication for improving the channel rate.

During an I-CA game, the auctioneer announces an initial price for each item, and then,

the bidders submit to the auctioneer their bids at the current price. As long as the demand

exceeds the supply, or on the contrary that the supply exceeds the demand, the auctioneer

updates (raises or reduces) the corresponding price and theauction goes to the next round.

Obviously, it can be shown that the overall gain, which includes the total gain of the

auctioneer and all bidders does not depend on the pay price, but equals to the sum of the

allocated packages’ valuations, i.e.,

A (X ) + Uall (X ) =
C
∑

c=1

N
∑

k=1

xc (k)Pc (k) +
C
∑

c=1

N
∑

k=1

xc (k)Uc (k)

=
C
∑

c=1

N
∑

k=1

xc (k)Pc (k) +
C
∑

c=1

N
∑

k=1

xc (k) [(vc (k)−Pc (k))]

=

C
∑

c=1

N
∑

k=1

xc (k) vc (k). (20)

As our original intention, we employ the I-CA to obtain an efficient allocation for spectrum

resources.

Definition 5: An efficient allocationdenoted byX̃ = (X̃1, X̃2, . . . , X̃C) = {x̃c(k)} is an

allocation that maximizes the overall gain.



13

Given the private bidder valuations for all possible packages in (14), an efficient allocation

can be obtained by solving the combinatorial allocation problem (CAP).

Definition 6: The Combinatorial Allocation Problem (CAP), also sometimes referred as

Winner Determination Problem (WDP), leads to an efficient allocation by maximizing the

overall gain: max
Dk=Xc∈X∈X

∑C

c=1
vc (k), whereX denotes the set of all possible allocations.

An integer linear program using the binary decision variables {xc(k)} is formulated for

the CAP as

max
C
∑

c=1

N
∑

k=1

xc (k) vc (k), (21)

s.t.

N
∑

k=1

xc(k) ≤ 1, ∀c ∈ {1, 2, . . . , C} ,

∑

Dk:d∈Dk

C
∑

c=1

xc(k) ≤ 1, ∀d ∈ {1, 2, . . . , D} .

The objective function maximizes the overall gain, and the constraints guarantee: 1) at most

one package can be allocated to each bidder; 2) each item cannot be sold more than once.

In fact, there might be multiple optimal solutions of the CAPwith the same objective

function. From the auctioneer’s point of view, tie-breaking rules are needed to determine

which of the optimal solutions is selected. In a real auction, the auctioneer does not know

the private valuations of the bidders, neither can it solve the NP-hard problem. To solve the

CAP, the auctioneer selects the winners on the basis of the submitted bids in each round.

Therefore, in case of the XOR bidding language, the WDP formulation is similar to the CAP

and the only difference is the objective function

max

C
∑

c=1

N
∑

k=1

xc (k)P
t
c (k), (22)

whereP t
c(k) represents the pay price of bidderc for packageDk in round t.

Based on Definition 5, the overcome of a CA is not always efficient. Here, we employ

allocating efficiency as a primary measure to benchmark auctions.

Definition 7: Allocating efficiency in CAs can be expressed as the ratio of the overall
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gain of the final allocation to that of an efficient allocation[24]

E(X ) =
A (X ) + Uall (X )

A
(

X̃
)

+ Uall

(

X̃
) , (23)

which hasE(X ) ∈ [0, 1].

B. Algorithm for Resource Allocation

In this subsection, the details of the allocation scheme based on reverse I-CA are introduced.

We has modeled the D2D resource allocation problem as a reverse I-CA game and gave the

valuation model, utility function and other important concepts. Many I-CA designs, especially

for the centralized I-CA design, are based on ask prices. Theprice-based I-CA designs differ

by the pricing scheme and price update rules. In the proposedalgorithm, linear prices are used

as mentioned in Subsection III-B for they are easy to understand for bidders and convenient

to communicate in each auction round. Because of the interference from D2D links, cellular

channels should guarantee the performance of cellular system before allowing the D2D access.

Hence, we consider a descending price criterion in the algorithm. Prices update by a greedy

mode that once a bidder submits a bid for items or packages thecorresponding prices are

fixed, otherwise the prices are decreased.

At the beginning of the allocation, the BS collects the location information of all the D2D

pairs. In addition, the round indext = 0, the initial ask pricep0(d) for each item (D2D pair)

d, and the fixed price reduction∆ > 0 are set up. When the initial prices are announced

to all the bidders (i.e. spectrum resources occupied by cellular UEs), each bidder submits

bids, which consist of its desired packages and the corresponding pay prices. Jump bidding

where bidders are allowed to bid higher than the prices, is not allowed in our scheme, thus

bidders always bid at the current prices. According to the CAP proposed in Definition 6 and

the analysis about the WDP, we simplify the problem of maximizing the overall gain as a

process of collecting the highest pay price. As a result, bidder c bids for packageDk as long

asUc(k) ≥ 0. Combining (16) and (17), we have

vc (k) ≥ P t
c (k) =

∑

d∈Dk

pt (d), (24)
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where the round indext ≥ 0. In this case, letbtc(k) = {Dk,P
t
c(k)} denote the submitted bid

at the end of roundt, andBt = {btc(k)} denotes all the bids. When (24) is not satisfied, bid

btc(k) = {∅, 0}.

If ∃d ∈ Dk satisfies∀btc(k) ∈ Bt,Dk /∈ btc(k), it reveals that the supply exceeds the demand.

Then, the BS setst = t+1, pt+1(d) = pt(d)−∆ whered is the over-supplied item, and the

auction moves on to the next round.

In a normal case, as long as the price of a package decreases below a bidder’s valuation

for that package, the bidder submits a bid for it. The BS allocates the package to the bidder,

and fixes the corresponding prices of items. At the same time,constrained by the XOR

bidding language, the bidder is not allowed to participate the following auction rounds. As

the asking prices decrease discretely every round, it may exist a situation that more than one

bidders bid for packages containing the same items simultaneously. The BS detects the bids

of all the bidders: 1) it existsbtc1(k) = btc2(k) 6= {∅, 0} (c1 6= c2, k ∈ {1, 2, . . . , N}); 2) it

existsbtc1(k1) =
{

Dk1,P
t
c1
(k1)

}

, btc2(k2) =
{

Dk2,P
t
c2
(k2)

}

(k1 6= k2, c1, c2 ∈ {1, 2, . . . , C})

satisfyingDk1 ∩ Dk2 6= ∅. If either of the above conditions is satisfied, the overall demand

exceeds supply for at least one item. Then, the BS sets a fine tuning pt(d) = pt(d) + δ

whered is the temporary over-demanded item, andδ can be set byδ = ∆/i wherei is an

integer factor that affects the convergence rate. The allocation can be determined by multiple

iterations.

The auction continues until all the D2D links are auctioned off or every channel wins a

package. Our algorithm is detailed in Table I.

V. ANALYSIS OF THE PROPOSEDRESOURCEALLOCATION ALGORITHM

In this section, we investigate the important properties ofthe proposed auction-based

resource allocation mechanism.

A. Cheat-Proof

As the general definition, cheat-proof means that reportingthe true demand in each auction

round is a best response for each bidder.

Proposition 1: The resource allocation algorithm based on the reverse I-CA is cheat-proof.
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Proof: From (18), we can get that the utility of bidderUc(k) depends on the valuation

of the package it bids and unit prices of the items. In details, it is the interference (between

cellular and D2D communications) that mainly affects the utility. As the expression is

extremely complex to resolve, we consider the case that onlyone item constitutes the package

without loss of generality. The utility of bidderc can be rewritten as

Uc(d) = log2

(

1 +
PBh

2
Bc

Pdh
2
dc +N0

)

+ log2

(

1 +
Pdh

2
dd

PBh
2
Bd +N0

)

− log2

(

1 +
PBh

2
Bc

N0

)

− pt (d) ,

(25)

and the differential expressions of the utility with respect to hdc andhBd are

∂Uc (d)

∂hdc

=
−2PdhdcPBh

2
Bc

ln 2 (Pdh
2
dc + PBh

2
Bc +N0) (Pdh

2
dc +N0)

< 0, (26)

∂Uc (d)

∂hBd

=
−2PBhBdPdh

2
dd

ln 2 (PBh
2
Bd + Pdh

2
dd +N0) (PBh

2
Bd +N0)

< 0, (27)

respectively. Accordingly, utilityUc(d) is a monotonically decreasing function with respect to

bothhdc andhBd. Thus, the optimal strategy is to bid the D2D link that has a lower channel

gain with the cellular transmitter and receiver.

In a descending price auction, items are always too expensive to afford at the beginning.

With the number of iterationst increasing, the prices of items drop off. Given a package

Dk in round t, bidder c has the right to submit bid{Dk,P t
c(k)} or {∅, 0}. Given that all

the other bidders submit their true demands according to (24), we consider the strategy of

bidderc in two cases: 1) ifc bids {∅, 0} when its true valuation forDk satisfiesUc(k) ≥ 0,

it will quit this round and lose the package which maximizes its channel rate; 2) ifc bids

{Dk,P t
c(k)} when its true valuation forDk satisfiesUc(k) < 0 and finally wins the package,

it will obviously get a negative surplus that is unwanted.

From the above analysis, we can conclude that the optimal strategy for cellular channelc

is to submit its true demand in each round, or it will get a lossin its utility as a result of

any deceiving. That is, the proposed resource allocation algorithm is cheat-proof.

B. Convergence

In this subsection, we prove that the proposed algorithm hasthe convergence property.
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Proposition 2: The resource allocation algorithm based on the reverse I-CA has the

convergence property that the number of the iterations is finite.

Proof: : According to Theorem 1, all the bidders submit their true demands in each

auction round, in order to obtain the utility from winning. From (18), we can derive

U t+1

c − U t
c = ∆ > 0, (28)

whereU t
c denotes the utility of bidderc in round t. According to the algorithm, we have

that bidderc will get zero utility with no bid if U t
c < 0, and have an opportunity to win a

positive utility with bid {Dk,P t
c(k)} if U t

c ≥ 0. Therefore, in the beginning, bidderc plays

a waiting game, and onceU t
c(k) ≥ 0, it will bid for Dk. As long as it is the only one that

submits a bid, it will get the package. With a sufficiently large t and∆ > 0, we can finally

get xc(k) = 1. Similarly, if more than one bidders bid for the same item, wecan have an

allocation by ascending price process with the stepδ < ∆. Subjected to
∑

Dk:d∈Dk

C
∑

c=1

xc(k) ≤ 1

in (21), the package can not be sold once more. Thus, for a finite number of packagesN ,

the number of iterations is finite. That is, the proposed scheme would reach convergence.

In addition, the value of the price step∆ has a direct impact on the speed of convergence

of the proposed scheme. The scheme converges fast when∆ is large, while it converges

slowly when∆ is small. The fine tuningδ also has the same nature, but less impact on

convergence.

C. Price Monotonicity

In an I-CA game, the price updates through several ways, i.e., monotonically increasing,

monotonically decreasing and non-monotonic modes. Here, we focus on the price non-

monotonicity in the proposed reverse I-CA algorithm.

Proposition 3: In the proposed descending price auction, the raising itemprices in a

round may be necessary to reflect the competitive situation.Moreover, it brings efficiency

improvement.

Proof: From the algorithm proposed in Table I, there exists a situation that more than

one bidders submit bids for the same package or different packages with intersection when

prices are reduced to some certain values. But auctions do not allow one item being obtained
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by multiple bidders as the second constraint in (21) shows. In this situation, raising the

corresponding prices by a fine tuningδ = ∆/i makes bidders to reinspect their utility

functions. Once a bidder finds its utility less than zero, it quits from the competition.

By a finite number of iterations, the winner converges to one bidder. Since the ascending

price process maximizes the auctioneer revenue as shown in (22), the allocation has higher

efficiency than a random allocation in that situation.

D. Complexity

As mentioned before, a traditional CAP in fact is an NP-hard problem, the normal solution

of which is the centralized exhaustive search. We set that the number of items to be allocated

is m, and the number of bidders isn. For an exhaustive optimal algorithm, an item can

be allocated withn possible results. Thus, all them items are allocated withnm possible

results. The complexity of the algorithm can be denoted byO(nm). In the proposed reverse

I-CA scheme, bidders reveal their entire utility function,i.e., they calculate valuations for

all possible packages, the number of which isC1
m + C2

m + · · · + Cm
m = 2m − 1. If the total

number of iterations ist, the complexity of the auction-based scheme isO(n (2m − 1) + t).

From the proposed algorithm, we havept (d) = p0 (d) − ∆ · t ≥ 0 (The fine tuning has a

small impact on the result and can be omitted here). So the worst case ist = p0 (d)/∆.

It is obvious that for sufficient large values ofm and n, general values ofp0(d) and ∆,

a much lower complexity is obtained by using the proposed reverse I-CA scheme. That is,

O(nm) > O(n (2m − 1) + p0 (d)/∆). If we constrain the number of D2D pairs sharing the

same channel to one, the complexity would be further reducedto O(n ·m+ p0 (d)/∆). And

the performance of this reduced scheme is included in the simulation in Subsection VI-A.

E. Overhead

In D2D underlay system, the BS is still the control center of resource allocation, and the

global CSI should indeed be available at the BS for the proposed scheme. In addition to the

CSI detection, feedback, and the control signaling transmission, the reverse I-CA scheme does

not need additional signaling overhead compared to existing resource scheduling schemes
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such as maximum carrier to interference (Max C/I) and proportional fair (PF), which also

need the global CSI to optimize the system performance. The difference is that the reverse I-

CA scheme requires more complicated CSI due to the interference between D2D and cellular

network.

At the beginning of the allocation, the transmitters need tosend some packets containing

detection signals. Then, the obtained CSI at each terminal (D2D or cellular receiver) would

be feedback to the BS. After that, iteration process would beconducted at the BS, and

no signaling needs to be exchanged among the network nodes until the control signals

forwarding.

Methods, such as CSI feedback compression and signal flooding, would help reduce

the overhead. In addition, the future work on D2D communication could consider some

mechanism that limit the number of D2D pairs sharing the samechannel by, e.g. distance

constraint, which would obviously help reduce the overhead. But for this paper, the target is

to obtain the nearest-optimal solution, wherefore we do notconsider the simplification.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide the simulation results to illustrate the performances of the

proposed reverse I-CA algorithm. Besides, we give the necessary analysis for the results. The

main simulation parameters are listed in Table II. As shown in Fig. 1, simulations are carried

out in a single cell. Both path-loss model and shadow fading are considered for cellular and

D2D links. The wireless propagation is modeled according toWINNER II channel models

[27], and D2D channel is based on office/indoor scenario while cellular channel is based on

the urban microcell scenario.

A. System Sum Rate

The system sum rate with different numbers of D2D pairs and different numbers of resource

units using the proposed auction algorithm is illustrated in Fig. 2∼ Fig. 4. The sum rate can

be obtained from (9).

From Fig. 2 and Fig. 4, we can see that the system sum rate goes up with both the number

of D2D pairs and the number of resource units increasing. On one side, when the amount
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of resources is fixed, more D2D users contribute to a higher system sum rate. On the other

side, as the amount of resource increases, the probability of resources with less interference

to D2D links being assigned to them enhances, which can lead to the increased sum rate.

This phenomenon is similar to the effect of multiuser diversity. Definitely, cellular users also

contributes to the performance.

From another perspective, Fig.2∼ Fig. 4 shows the system sum rate for different allocation

algorithms. The curve marked exhaustive optimal is simulated by the exhaustive search way,

which guarantees a top bound of the system sum rate. The curvemarked reduced R-I-CA

is the result of a reduced reverse I-CA scheme, in which the number of D2D pairs sharing

the same cellular resources is constrained to one. The curvemarked R-I-CA represents the

performance of the proposed reverse I-CA algorithm, and thelast one is the simulation

result using random allocation of spectrum resources. Firstly, we can see that the proposed

auction algorithm is relatively much superior to the randomallocation. Secondly, the optimal

allocation results in the highest system sum rate, but the superiority compared to R-I-CA is

quite small, especially when the number of cellular resource units increases as Fig. 4 shows.

Moreover, we find that the performance of reduced R-I-CA approximates to that of R-I-CA

scheme in case of 8 resource units, but differs obviously in case of 2 resource units shown

in Fig. 3. The reason for this phenomenon is that the constraint of the reduced R-I-CA limits

D2D pairs accessing to the network when the number of resources units is less than that of

D2D pairs, thus a large capacity loss products.

B. System Efficiency

We define the system efficiency asη = ℜ/ℜopt, whereℜopt represents the exhaustive

optimal sum rate. Fig. 5 shows the system efficiency with different numbers of D2D pairs

and different numbers of resource units. The simulation result indicates that the proposed

algorithm provides high (the lowest value ofη is around 0.7) system efficiency. Moreover,

the efficiency is stable over different parameters of users and resources.

As to the point of efficiency value being about 0.7, the numberof resource units and the

number of D2D pairs are both small. The linear price rule limits bidders to bid the maximal
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valuation packages, but to bid the packages having maximal average unit valuation. For this

reason, the efficiency decreases slightly.

As to other points, the efficiency is stable above 0.9, which reflects a small performance gap

between the proposed algorithm and the exhaustive search scheme. In fact, the descending

price rule determines the bidder that has the highest bid on current items would win the

corresponding package, which maximizes the current overall gain. However, the gap cannot

be avoided as the algorithm essentially follows a local, or an approximate global optimum

principle.

C. Price Monotonicity

Fig. 6 shows an example of the price non-monotonicity in the reverse I-CA scheme. The

four curves represent unit price of four D2D pairs. As the enlarged detail shows, the unit

price of D2D pair2 has an ascending process during the auction. As the stepδ is much less

than descending step∆, the phenomenon of ascending price is hard to pick out. When the

items have been sold out, their prices are fixed to the sellingvalue. And from the figure, we

can find that the D2D pair2 is the last one to be sold.

VII. CONCLUSIONS

In this paper, we have investigated how to reduce the effectsof interference between D2D

and cellular users, in order to improve the system sum rate for a D2D underlay network. We

have proposed the reverse iterative combinatorial auctionas the mechanism to allocate the

spectrum resources for D2D communications with multiple user pairs. We have formulated

the valuation of each D2D pair for each resource unit, and then explained a detailed auction

algorithm depending on the utility function. A non-monotonic descending price iteration

process has been modeled and analyzed to be cheat-proof, converge in a finite number of

rounds, and has low complexity. The simulation results showthat the system sum rate goes

up with both the number of D2D pairs and the number of resourceunits increasing. The

proposed auction algorithm is much superior to the random allocation, and provides high

system efficiency, which is stable over different parameters of users and resources.
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TABLE I

THE RESOURCE ALLOCATION ALGORITHM

∗ Initial State:

The BS collects the location information of all D2D pairs. The valuation of thec-th resource unit

for packagek is vc(k), c = 1, 2, . . . , C, k = 1, 2, . . . , N , which is given by (14). The round index

t = 0, and the initial priceP 0(d), the fixed price reduction∆ > 0 are set up.

∗ Resource Allocation Algorithm:

1. Bidderc submits bids{Dk,Pc(k)} depending on its utility.

⋆ bidder c bids for packageDk as long asUc(k) ≥ 0, which is represented by (24).

⋆ If Uc(k) < 0, bidderc submits{∅, 0}.

2. If ∃d ∈ Dk satisfies∀btc(k) ∈ Bt,Dk /∈ btc(k), the BS setst = t+1, pt+1(d) = pt(d)−∆ where

d is the over-supplied item, and the auction moves on to the next round. Return to step 1.

3. The BS detects the bids of all the bidders:

1) it existsbtc1(k) = btc2(k) 6= {∅, 0} (c1 6= c2, k ∈ {1, 2, . . . , N});

2) it exists btc1(k1) =
{

Dk1
,Pt

c1
(k1)

}

, btc2(k2) =
{

Dk2
,Pt

c2
(k2)

}

(k1 6= k2, c1, c2 ∈

{1, 2, . . . , C}) satisfyingDk1
∩ Dk2

6= ∅.

4. If neither of the conditions in step 3 is satisfied, go to step 5. Otherwise, the overall demand

exceeds supply for at least one item. The BS setspt(d) = pt(d) + δ, andδ can be set byδ = ∆/i

wherei is an integer factor. Return to step 1.

5. The allocation can be determined by repeating the above steps. The auction continues until all

D2D links are auctioned off or every cellular channel wins a package.

TABLE II

MAIN SIMULATION PARAMETERS

Parameter Value

Cellular layout Isolated cell, 1-sector

System area The radius of the cell is 500 m

Noise spectral density -174 dBm/Hz

Sub-carrier bandwidth 15 kHz

Noise figure 9 dB at device

Antenna gains BS: 14 dBi; Device: 0 dBi

The maximum distance of D2D 5 m

Transmit power BS: 46 dBm; Device: 23 dBm
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Fig. 1. System model of D2D communication underlaying cellular networks with downlink resource sharing.
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Fig. 2. System sum rate for different allocation algorithmsin the case of 8 resource units.
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Fig. 3. System sum rate for different allocation algorithmsin the case of 2 resource units.
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Fig. 4. System sum rate for different allocation algorithmsin the case of 4 D2D pairs.
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Fig. 6. Price monotonicity: an example of price non-monotonicity in the reverse I-CA scheme.
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