

COPYRIGHTED BY

Bahaa Araji

May 2014

Embedding Location-Based Network Connectivity within IPv6 Address

A Thesis

Submitted to

The Faculty of the Department of Engineering Technology

University of Houston

In Partial Fulfillment

Of the Requirements for the Degree

Of

Master of Science in Engineering Technology - Network Communications Track

By

Bahaa Araji

May 2014

II

ACKNOWLEDGMENTS

For their advice, support, I wish to thank my brother Ali Araji and my cousin Mohamad

Berjawi, without their help I am sure I won’t do what I did in the past years.

For the two years of advice and encouragement, thanks to Dr.Deniz Gurkan, I learned a

lot from you during this period of time.

I would also like to thank POF developers (Huawei Technologies) who have provided

almost instant help with all my queries.

My deepest thanks to my parents who made me, the human being I am now.

Last but not least, thanks for who have always been there.

III

 Embedding Location-Based Network Connectivity within IPv6 Address

An Abstract of a Thesis

Submitted to

The Faculty of the Department of Engineering Technology

University of Houston

In Partial Fulfillment

Of the Requirements for the Degree

Of

Master of Science in Engineering Technology - Network Communications Track

By

Bahaa Araji

May 2014

IV

Abstract

IPv4 (Internet Protocol Version 4) the famous 32-bit address, has been used in

networks for many decades [1] and would not have sustained its usability without

NAT(Network Address Translation). IPv6 (Internet Protocol version 6) with its

128-bit address, provides slight routing information [2]. In this thesis, we present

ESPM (Embedding Switch ID, Port number, MAC address), Embedding Switch

Identification number, Port number and MAC (Media Access Control) Address

within IPv6 protocol and SDN technology, imposing a device connectivity

hierarchy upon the address space. We amend the IPv6 global addressing scheme

for hosts to include their MAC address as well as the switch and port numbers

that they are connected to. This scheme encodes information that would ordinarily

require a lookup or query packets and decrease CAM (Content Addressable

Memory) table entries on the switch by forwarding the packets using the ESPM

algorithm. After processing ESPM algorithm to check for OF (Open Flow)

controller ID, OF switch ID, and the Port ID, the amount of total packets

transferred on the network to fulfill an ICMP (Internet Control Message Protocol)

request-reply process decreased by 28.1% in 1-switch-2 host. In order to

demonstrate the feasibility of such an addressing scheme, we use POF (Protocol

Oblivious Forwarding) controller and POF switch [3] to implement ESPM and

then measure the impact on the number of network management packets

transferred between hosts during connectivity tests.

V

Table of Contents

Acknowledgments……………………………………………………………………….IV

Abstract………………………………………………………………………………….VI

List of Figures……………………………………………………………………..…….X

Chapter 1: Introduction……………………………………………...…….…………..1

 1.1 MAC and Ethernet…..……………………………………………….………..1

 1.2 ARP ……………..………………………..…………………...….……….……3

 1.3 IPv4 Packet Header………………………………………..…...……….…….4

 1.4 IPv6 Packet Header………………………………………...…..……….…….6

 1.5 CAM………………………………………………..……….…..……….……..7

 1.6 Claims…………………………………………..……………………….…..….8

Chapter 2: Background and Preparation……………………….…………………....9

 2.1 Technologies Used……………………………………..………………..……….9

 2.1.1 OpenFlow and Beacon…………………………………….……..…………..9

 2.2 Protocol Oblivious Forwarding (POF)………………………………………..12

Chapter 3: ESPM Architecture……………………………….…………..……….…..15

 3.1 Location-Based Internet Addressing- A History……………….…………….15

 3.2 Overview of the Approach…………………………….……………………….16

 3.3 ESPM Design…………………………………………………………………….16

VI

 3.4 Routing Protocol…………………………………..……………………………17

 3.5 Multicast and Broadcast……………………………..…………….……….....23

 3.6 Lookup Manager Services…………………………...………………………..24

 3.6.1 Security Measures………………………...…..…………………………….24

 3.7Mobility and Hosts Migration……………………….…………….…………..25

Chapter 4: Implementation……………………………………………….……………27

 4.1 Connectivity Use-case (Emulation)..……………………………….….….……27

 4.1.1 POF with ESPM (Emulation)….…..…………….…………….……………27

 4.1.2 OpenFlow without ESPM (Emulation)……………………....……..……..31

 4.2 Test-bed Used……….……………………………………………….……….…..33

 4.2.1 POF Test-bed…………………………...……………………….……………33

 4.2.2 OpenFlow Based Testbed……………………………………………….……36

 4.3 Implementing ESPM on GENI…………………………………..……….……..37

 4.4 Testing……………………..…………………………………….………………..39

 4.4.1 Testing Strategy…………………..……………….…………………………39

Chapter 5: Evaluation…….…………………………………………………..………..41

 5.1 Experiments Result……………………………………………………..……….41

 5.1.1 Results and Graphs…………………………………………………………..41

 5.1.2 Reduction in Packet…………………………………………………….……43

 5.1.3 CAM/TCAM Savings…………………………………….….………...…….44

 5.1.4 Summary of Results………………………………………………………….44

VII

Chapter 6: Conclusion…………………………………………………………………..45

 6.1 Future Work…………………..………………………………………………….45

List of References…………………………………………………………………….…..46

Appendix A………………...……………………………………………………………..48

VIII

LIST OF FIGURES

1.1 IPv4 Header Format.

1.2 IPv6 header Format.

2.1 OpenFlow switch and controller.

2.2 The header fields matched in an OpenFlow switch.

2.3 MAC address header format.

2.4 Forwarding process with POF.

3.1 Example fields in the IPv6 represent site ID, controller ID, switch ID, port ID, and the MAC
address.

3.2 Network Topology of the neighbor table.

3.3 Three-Tier Network.

3.4 Flow chart for ESPM routing/forwarding.

4.1 Network architecture implementation for ESPM-based addressing scheme.

4.2 ESPM addresses used in Case 1 and Case 2.

4.3 : Case 1 timeline of events for address assignment and communication.

4.4 Timeline of events for address assignment and communication in one Switch—one

Controller Network.

4.5 POF test-bed.

4.6 Creating Packet header in POF Controller.

4.7 Creating a flow Table.

4.8 OpenFlow Learning Switch Topology.

4.9 ESPM topology implemented on ProtoGeni.

5.1 Arp, ICMP and Broadcast packets graphical representation in ESPM experiment.

5.2 Arp, ICMP and Broadcast packets graphical representation in OF Learning Switch

experiment.

IX

5.3 packets exchanged between host1 and host2 during ping process in ESPM and

OpenFlow learning switch forwarding.

X

Chapter 1 Introduction

1.1 Ethernet and MAC

Network technologies are often split into layers based on the OSI model. The

most popular network layer protocol used in networks is Ethernet[4]. Ethernet is

the predominate standard applied to construct and access modern computer

networks. Ethernet is promulgated by the Institute of Electrical and Electronics

Engineers (IEEE) in various specifications as part of the IEEE 802 family of

standards. Ethernet defines a number of wiring and signaling standards for the

lower layers of the network. Ethernet networks carry all kinds of traffic over

multiple types of physical connections (wired or wireless), including 10 mega-bits

per second (Mbps), 100 Mbps, 1 giga-bits per second (Gbps), 10 Gbps, and 100

Gbps connections. It is used to transport data frames to the machines in a network

based on their Ethernet addresses, also known as hardware addresses or Media

Access Control (MAC) addresses. This essentially monitors the incoming data

from the network by the node. A different address is allocated to every interface

of a networking component. For example, a host with three physical Ethernet

interfaces will have three different MAC address, one for each interface. The

important feature of Ethernet addresses which authorizes this design is that all the

addresses are unique. This guarantees that the Ethernet frame is transferred to the

right interface without the necessity of any other information. An Ethernet

Address is six bytes or 48 bits(e.g. 00:16:8C:a2:94:06).

Broadcasting denotes sending the Ethernet frame/Packet to every end-device on

the local network. The domain of such frame/packet is bounded to a certain

broadcast domain. For example, the boundary between distinct domains is marked

1

by routers. Broadcast addressing is not favored by all protocols and is

fundamentally bounded to local area networks, as it does not impact the

effectiveness of the network like in the case of wide area networks. Whenever a

host wants to broadcast it will set all bits of the destination Ethernet address to

one which hands an address of ff:ff:ff:ff:ff:ff. In this case every end device in the

Ethernet broadcast domain is forced to get these frames. Broadcast is utilized

when certain information is sent to all nodes, or if the destination hardware

address is obscure. Dynamic assignments such as Dynamic Host Configuration

Protocol (DHCP) and Address Resolution Protocol (ARP) are not possible

without the use of Broadcast addressing.

Internet Protocol (IP) is the basic data-link protocol which is in charge of routing

and shifting packets across the network gateways on the internet. This is executed

using the IP address which is also known as logical address, which is assigned to

every end device on the network. Addresses assignment can be static (Manual) or

dynamic (using DHCP). The two popular versions of the IP address Protocol are

IPv4 and IPv6. The vast majority of networked devices support IP version 4

(IPv4) defined in RFC-791. IPv4 provides a 32 bit address field for each of the

source and destination of a packet. IP version 6 (IPv6) defined in RFC-2460,

provides a 128 bit source and destination address fields. IPv4 32 bits address long

is partitioned into 4 octets. Each octet is 8 bits and symbolizing a decimal number

from 0 to 255 (e.g. 192.168.2.5).

1.2 ARP

Address Resolution Protocol (ARP) was first presented in RFC 826 [5] in 1982

and is still in use. It is a networking protocol which is utilized to dynamically

discover the network layer address of a host in a network using its data link

address. In any regular network, this mapping would be between the IP address

(Network layer) and the Ethernet address (data link layer). This protocol has an

2

important role in linking the data-link and network layers together and permitting

them to work together.

In any network, it is common for hosts to be allocated a new IP Address when

they migrate or change their location, when their dynamic address lease time

expires. The source host who initiated the communication will use ARP to detect

the new IP to MAC address mapping for the destination host. For example, host 1

(source) with IP address 192.168.1.1 and Ethernet address MAC:

aa:aa:aa:aa:aa:aa wants to reach host 2 (destination) with IP address IP

192.168.1.2 and MAC: bb:bb:bb:bb:bb:bb. Host 1 will broadcast an ARP query

packet with its own IP and MAC address and Host 2’s IP Address on its NIC.

Since this message is a broadcast message, all hosts in the subnet will get it but

only host 2 will reply because he owns the target IP address. Host 2, with IP

address 192.168.1.2, will send a unicast ARP reply to Host 1 with its own MAC

address. After Host 1 receives the frame, he will record the mapping of host 2 and

starts sending the data to host 2. ARP packets do not have IP headers and hence

ARP can analyze addresses only within the same local network, and the

destination IP address has to be from the same subnet as the source IP address.

In order to decrease ARP broadcast messages for the same destination IP address,

all nodes preserve an ARP table on each device, which is used whenever a

mapping is needed. ARP request is only broadcasted if there is no matched entry

in the table. The table basically works like a cache each one of the entries will

expire if its not used for a certain amount of time.

ARP acts well in small networks since the number of broadcast messages in such

can be limited, and ARP messages consumes a very small fraction of the available

bandwidth. Nevertheless, broadcasting messages in large local networks (>10000

host) would not only eat more bandwidth, but would also stress hosts to process

the extra unnecessary broadcast messages. This problem recognizes ARP as

unscalable . A study at Carnegie Mellon University [6] scaled the number of ARP

requests and replies which reached a host in a network of 2456 hosts. They study

claimed that the host received 1150 ARPs per second and it averaged 89 ARPs

3

per second which adds up to about 45 kbps of traffic which can raise if the

number of hosts increase.

1.3 IPv4 Packet Header

IPv4 packet header consists of application information, which contains usage and

source and destination IP addresses. IPv4 packet headers include 20 bytes of data

and 8 octets long.

A packet is a network communication data unit containing fixed or variable

lengths. However, a single packet has three parts: header, body and trailer.A 20-

byte header contains 13 multipurpose fields (Figure 1.1).

Figure 1.1 : IPv4 Header Format

The following are specific header field descriptions:

Version: it is the Internet header format (4 bits).

Internet header length (IHL): stores IP header length information(4 bits).

4

Type of service (ToS): provides network service parameters(8 bits).

Datagram size: contains combined data and header length(16 bits).

Identification: contains a specific number for primary data identification(16

bits).

Flags: Three flags (3 bits).

Fragmentation offset: This is a fragment identification via offset value(13 bits).

Time to Live (TTL): Total number of routers allowing packet pass-through(8

bits).

Protocol: Header transport packet information(8 bits).

Header checksum: Checks communication errors(16 bits).

Source address: Source IP address(32 bits).

Destination address: Destination IP address(32 bits).

Options: Its used for additional information.

1.4 IPv6 Header

The new IPv6 header is actually much simpler than IPv4 header. The IPv6 header

has only 40 bytes, 32 of which are used for IPv6 addresses and the lasting 8 bytes

by 6 additional fields. Unlike IPv4, IPv6 headers do not have any optional

elements(Figure 1.2).

Figure 1.2 : IPv6 header Format

5

RFC 2460 defines the following IPv6 header fields:

Version : Same meaning from IPv4 to IPv6(4 bits).

Priority : Allows an application to specify the type of traffic(bits).

Flow Label :This will label a set of packets that belong to the same flow(24 bits).

Payload Length : Used to determine the length of the entire packet (16 bits).

Next Header : Indicates either the first extension header (if present) or the

protocol in the upper layer PDU (such as TCP, UDP, or ICMPv6(8 bits).

Hop Limit: Identifies the number of network segments(8bits).

Source Address :Source IPv6 address of the packet(128 bits).

Destination Address :Destination IPv6 address of the packet(128 bits).

Extension Headers : IPv6 specification defines 6 extension headers

1.5 CAM Table

A CAM (Content Addressable Memory) table[7] is a fundamental component in

the operation of the Ethernet switch. Ethernet switches link multiple computers on

a single network, almost the same way like hubs. Unlike other networking

devices, a switch contains a CAM table. The CAM table lets information routed

through the switch to be sent to a single computer on the network, and not to all

hosts connected to the switch. CAM tables can store a limited number of

addresses for specific MAC ports. A CAM is a memory device that implements a

lookup-table function in a single clock cycle using dedicated comparison

circuitry. CAM is a hardware search engine that is much faster than algorithmic

approaches for search-intensive applications. CAMs are formed of conventional

semiconductor memory (usually SRAM) with added comparison circuitry that

enables a search operation to complete in a single clock cycle. The two most

common search-intensive tasks that use CAMs are packet forwarding and packet

classification. In Internet routers, CAMs are among the most expensive circuit

elements in a network device.

6

1.6 Claims

We invented a new technique to embed network connectivity information into the

IPv6 address space through re-assignment of the address fields.

In order to justify the re-assigned address fields, we have implemented different

test strategies. This thesis will document the invention and testing methods along

with the measurement results.

I aimed to implement ESPM in conjunction with POF controller and POF

switches, and compare its efficiency against OpenFLow learning switch. More

specifically, we proposed to embed network topology information (e.g., switch

ports, port number, and MAC address) into the IPv6 address of a host. In the next

chapter we will continue discussing the background information about the

experiment, while in the later chapters we will examine the implementation and

evaluation of this system.

7

Chapter 2 Background

2.1 Technologies Used

Research was done to decide upon the suitable technologies, Controllers,

Switches and monitoring software for the Implementation. ESPM implementation

was intended to be a prototype, and not a deployable system.

2.1.1 OpenFlow and Beacon

 OpenFlow [8], a programmable network control plane framework, suits in as the

perfect candidate for my needs, as it permits, among other advantages,

reconfiguration of the action of an OpenFlow-compatible Ethernet switch

(referred to as the OpenFlow switch) and experimentation with network protocols.

OpenFlow keeps the packet forwarding function in the switch, but shifts the high-

level routing decisions out of the switch to an independent software controller

which typically runs on a server, thereby authorizing the programmer to easily

operate traffic in the software. The switch connects with the controller over a

secure channel using the Open-Flow protocol (see Figure 2.1).

8

Figure 2.1: OpenFlow switch and controller

The OpenFlow protocol preserves a table in the memory of each switch which

includes flow entries along with the coupled actions. A flow entry frames some of

the fields from the headers of the data-link, the network, and the transport layers

(see Figure 2.2), which are utilized to resemble the ingress packets. For example,

a TCP connection or all packets from a particular MAC address would be seen as

flows. Defined precisely, a flow is a set of packets whose headers give an exact

match on any number of these fields in the flow entry, and/or a partial match on

IP Source and Destination Addresses . An action can be any of the following:

• Forward packets through a specified port.

• Encapsulate the packet in an OpenFlow header and send it to the

controller.

• Packet drop.

When an OpenFlow switch gets a packet, it inspects the header of the packet. If

there exists a flow entry corresponding to the packet header, then the switch

performs the linked action. In the case of no matching flow, the packet is

encapsulated and forwarded to the OpenFlow controller. The controller, after

inspecting the packet header based on the flow entries, decides and executes the

best action for the packet. It may also forwards an OpenFlow packet including

this information back to the switch for it to add to its flow entry table for the

future packets of the same flow.

9

Using OpenFlow in the network to implement new network protocol is beneficial.

This is because OpenFlow enables the programmer to deal

Figure 2.2: The header fields matched in an OpenFlow switch

With high level concepts of protocol implementation instead of having him try to

run low-level hardware implementation when not required. OpenFlow protocol is

widely supported and hence wraps a broader range of deployable hardware.

OpenFlow is employed extensively by the network research community. It is easy

to participate with them as most researchers are convenient dealing with the

languages utilized for OpenFlow development (C++, JAVA and Python). In

addition, OpenFlow abstracts away unneeded details and supports maintain the

focus on the important features of the design.

A decrease in performance is expected when using OpenFlow because of the

additional load of processing the packet in software. However, this decrease

occurs only for the first packet of the flow, which needs to be sent to the

controller in order to find the matched action for the remaining flow packets. All

the future packets from the same flow would be handled directly by the switches

hardware lookup table. This hit would impact the performance of our system

when it comes to measuring the query latency, the time taken before a querying

host receives a reply.

Major vendors such as Hewlett-Packard and NEC, are part of the OpenFlow and

SDN (Software Defined Networking) project and make switches and routers

which are capable of running OpenFlow protocol. Linux machines with multiple

interfaces can be configured to operate as soft switches which support OpenFlow

by using applications such as Open vSwitch [9].Beacon is a programmable

OpenFlow controller which is used to control the behavior of OpenFlow switches

10

and routers by adding flow entries in their hardware tables for new flows .Beacon

is a Java-based OpenFlow controller platform. It is very easily developed using

the Eclipse Integrated Development Environment which runs on any operating

system (OS).

2.2 Protocol Oblivious Forwarding (POF)

The problem with current SDN is that the placement of each protocol field, such

as the IPv4 source address, is studied by the code that is preloaded into the

devices according to protocol format by the device vendor. If one new protocol

wants to be supported, the code must be modified.

The current OpenFlow-based SDN permits the programmability of network

devices by downloading flows into devices from the controller, but automatic

support of new protocols is an area that can be further developed. The

programmability of current SDN can only affect the present protocols. If one

service based on a new protocol wants to be deployed, the operator has to ask the

device vendor to change the code of the devices to support the new service. This

will drive to a long deployment cycle for new services based on new protocols.

POF indicates any protocol field with the following structure. The metadata is

considered as one special protocol header that can be configured by the controller.

Any metadata field is also denoted in the same way as below.

 field {

 type;

offset;

length;

};

The type” is used to indicate the field type, for which the value 0 means the field

is a packet data field and the value 1 means it is a metadata field. The “offset” is

11

the field’s start position relative to the current protocol head. The following

example shows the MAC protocol header format.

 Figure 2.3: MAC address header format

There are three fields: dst, src, and type. They are denoted as follows:

dst: {0, 0, 48}; /*packet field, offset is 0bit, length is 48bit*/

src: {0, 48, 48}; /*packet field, offset is 48bit, length is 48bit*/

type: {0, 96, 16}; /*packet field, offset is 96bit, length is 16bit*/

It is easy to see that any existing or new protocols can be denoted in the similar

way.

 The Three classic forwarding instructions/actions in POF (See Figure 2.4) :

Goto-Table: instructs micro-code to match one table with keys extracted from the

packet data or the metadata.

Set-Field: changes the value of a protocol field in a packet header.

Write-Metadata-From-Packet: copies the value of one packet field to the

metadata memory.

 POF uses multiple flow tables for packet processing to:

- Access control: forward/drop/send upward a packet.

- Output packet to designated port(s): unicast/multicast.

- Set/Modify the current protocol header.

- Copy the current protocol field to the metadata.

- Set the packet’s committed access rate.

POF handles packet headers layer by layer. Each layer has one or more relative

flow tables for parsing the next protocol, setting/modifying the current protocol

fields, adding/deleting protocol headers to/from the packet, or copying the

protocol header to the metadata. The flow tables dedicated to one layer cannot

12

handle any other preceding or rear protocol headers. Metadata can be used to hold

the previous protocol headers.

Figure 2.4: Forwarding process with POF

13

Chapter 3 ESPM Architecture

3.1 Location-Based Internet Addressing- A History

The Precursor to the Internet, ARPANET (Advanced Research Projects Agency

Network) was the world's first operational packet-switching network [10],

established in 1969 and it was implementing NCP (Network Control Protocol) to

authorize users to access their computer at remote locations or to send and

transmit emails and transfer files. ARPANET addresses were composed of 8 bits

(6 bits for the site and 2 bits for the host). As civilian use for the network

increased, the addressing system could not meet the requirements of the growing

networks. Therefore, the addressing system was replaced by an integrated

addressing system with centralized addressing capabilities, namely, the Internet

Protocol (IP).

TCP/IP was created for connections among networks rather than devices. Since

the origin of packet forwarding, the address was used to demonstrate the

geographical location of the device (in the early days of addresses, the first 6 bits

reflected the location).

In comparison with the original addressing schemes, ESPM proposes to add more

information such as the embedded routing into the address. In this respect, such

information will allow frame forwarding to be performed at line rate (with

minimal table lookup) and with less overhead on the network devices and links.

14

3.2 Overview of the Approach

ESPM adopts the approach of dynamic host configuration protocol (DHCP) [11]

and offers several advantages over regular dynamic addressing protocols. For

example, it equips the addressing platform with data forwarding while dynamic

addressing protocol just provides the logical information about the subnets used in

the network. After defining this new design (ESPM), we will discuss the benefits

of ESPM regarding forwarding table usage and decreasing broadcast packets on

the network. In addition, we will examine the pseudo-code used in the ESPM

operation and explore the basic operation and architecture of ESPM, such as

broadcast/multicast and host mobility.

3.3 ESPM design

In ESPM (Embedding Switch number, Port number and MAC Address), as soon

as a host is connected to a switch port, a new IPv6 address is assigned according

to switch ID, port ID, and the host MAC address. Each switch is controlled by

controller with a controller ID. The controller automatically and naturally

determines the address of the host based on its location in the routing path:

controller to switch, switch to port, and then port to host MAC. In this respect, an

ESPM address (Figure 3.1) consists of (the assigned bit space here is given as an

example):

• Site Prefix: 40 bits

• Controller ID: 10 bits

• Switch ID: 20 bits

• Port ID: 10 bits

• MAC Address: 48 bits

Similarly, a switch-to-switch connection (otherwise known as a trunk port) also

gets an IPv6 address assignment through their corresponding controllers. Trunk

15

ports will be identified through their ESPM address that will be different than the

regular ESPM host address by placing an all “1”s MAC address, i.e.,

FFFF:FFFF:FFFF. The controller and switch ID embedded in the trunk address

will assist in providing the path information between different switches or

controllers.

 Figure 3.1: Example fields in the IPv6 represent site ID, controller ID,

switch ID, port ID, and the MAC address.

3.4 Routing Protocol

ASSUMPTIONS: A centralized entity is envisioned to be assigning controller

IDs. Every switch in an ESPM system will contact the controller they belong to

(Local Controller) to retrieve a switch ID. In case the destination address is in a

different controller ID domain, the applicable trunk port will be used to forward

the packet based on flow settings in the switch. If no flow entry exists for such a

controller domain, the switch will forward the packet to the controller. Within a

site, we expect controllers to have full knowledge of the topology and trunk ports

on the switches. However, the trunk port definition for ESPM holds true for even

multi-site connections where edge in a site may connect to another edge switch at

another site and their port addresses will reflect the site ID differences.

More specifically, the local controller will learn and create a neighbor table. Such

a table can be visualized (Figure 3.2) and will be used to record and map the

16

ports of every switch to its adjacent and physically connected switches. In the

neighbor table below we assumed that all switches are connected to the first 3

ports.

Switch ID Port 1 Port 2 Port 3

Switch 1 Switch 2 Switch 3 Switch1(Controller 2)

Switch 2 Switch 1 Switch 2(Controller 2) Switch 3

Switch 3 Switch 1 Switch2 Switch3(Controller 2)

Figure 3.2: Network Topology of the neighbor table.

Using the bit field assignments in (Figure 3.1)

• 1099 billion site prefixes

• 1024 controllers on a single enterprise/site.

• 1.04 million switches for each controller ID (broadcast domain).

• 1024 ports for each switch ID.

17

Figure 3.3: Three-Tier Network

Current routing protocols run a distributed algorithm and associated protocol to

determine the optimal paths between end hosts. There is a hierarchy of route

determination and exchange mechanisms. OSPFv2 [12] and IS-IS are the main

link-state routing protocols with finer granularity algorithms such as Dijkstra

algorithm [13] to find the shortest path in a hierarchical network. In ESPM,

frames are routed through the network (Figure 3.3) to remote hosts by inspecting

only the controller ID with the switch ID. Once the controller ID is established to

be in the same domain with the source host, the switch ID is inspected next

(Figure 3.4). If the controller ID and/or switch ID refers to a different controller or

switch than where the host resides. The switch has to resort to the logically

connected controller. The controller is going to check the neighbor table and

Dijkstra algorithm to calculate and find the shortest path. The controller will push

a flow with the best output port to forward this packet towards, so it can reach a

switch in the destination controller domain.

18

A host may initiate a packet transfer with a specific destination address. The first

hop switch will check its TCAM table for an entry to process the packet. If the

switch did not find an entry, it will inspect the controller, switch and Port IDs of

the destination ESPM address and if any of the controller ID or switch ID is

different than the inspecting switch, it will direct the host’s packet header to the

controller to determine what flow to use. Controller will dissect this destination

address to come up with the appropriate output port the packet should take at this

particular switch by pushing a flow definition for the stream of upcoming packets.

The port number and MAC address are inspected only at the destination host’s

home switch. An ESPM switch can be treated as a layer 2/layer 3 device, connects

to hosts that acquire addresses starting with its switch ID, and delivers frames to

other switches by passing them to appropriate neighboring switches [14].

Pseudo-code of the ESPM forwarding:

Start

Switch receives a packet from a host on one of its ports.

IF TCAM table can forward the destination packet

 THEN Send to destination port number

ENDIF

While controller ID != switch controller ID

Check local controller for next switch hop

 Add new TCAM entry and send to next switch.

 IF TCAM forwards the packet

 THEN Send to destination port number

 ENDIF

While destination switch ID != Switch ID

 Check local controller for next switch hop

 Add a new TCAM entry and send to next switch.

At next switch: forward to the port number embedded in the destination address

Check and verify MAC address for the host

End

19

Start

Get Src &
Dst IP

Check
controller for
next switch
hop

 Switch ID == Dst
Switch ID

Send to the Dst port
number

Send the packet to
the Dst MAC
Address

End

N
O

YES

N
O

YES

IF
TCAM

Can Forward the
Packet?

N
O

YES

Add a new
entry to

TCAM and
send to next

switch

Check controller
for next switch
hop

Add a new entry
to TCAM and
send to next

switch

Send to the Dst
port number

IF TCAM can
forward

the packet

Send it to Dst
port number

YES

N
O

Src Controller
ID==Dst Controller

ID

Figure 3.4: Flow chart for ESPM routing/forwarding

20

Static entries never expire and hence are never removed from the table. All

mappings learnt from the network are defaulted to dynamic. This feature helps

reduce broadcast traffic for machines with fixed IP addresses.

When an entry is about to expire, the table issues a unicast ARP request, which is

directed to the mapping owner to verify if the mapping is still correct. The entry is

marked stale until the table hears a reply from the host or the stale entry times out.

Any requests for the stale mapping would be added to the Request Table. This is

done to avoid additional broadcast requests for the entry which is being verified.

If there is a reply, the stale entry is fully restored back into the table and all

outstanding requests are satisfied. If the stale entry times out, then it is very likely

that that the mapping no longer exists and the entry should be evicted from the

table. The eviction is done by a table-cleaning thread which checks the timestamp

for dynamic entries only. This thread runs once every half cache time so as to

ensure that the entries are removed from the table within the next half cache time

after expiration.

3.5 Multicast and Broadcast

 IPv6 supports the use of multicast addresses where information or services can be

enabled for a multicast group, i.e., group of interfaces. In ESPM, we will take the

addresses that start with ff00 and use that as the multicast range for groups. This

range (ff00::00 to ff00: ffff:ffff:ffff:ffff:ffff:ffff:ffff) will give us 16.7 million

groups on every enterprise. Since multicast group members can be any device in

the enterprise network, ESPM maps multicast groups to a special server that will

manage multicast groups on the site. Controllers will forward all multicast join

requests to the server, where the multicast groups will be created. When a device

wants to send a multicast message to its multicast group, the message will always

be forwarded up to the multicast-server and the multicast server will contact the

controllers to disseminate the message to multicast group members. To broadcast

a message to all members on the network, the multicast group FF02::1 is used,

21

and every host on the network join that group by default. To send a broadcast

message, the destination address is simply set to ff02::1.

In case a broadcast message needs to be sent to:

• All ports on a switch: replace the port ID with FF

• All switches on controller: replace switch ID with FF

• All switches

on a site: replace controller ID with FF

3.6 Lookup Manager Services

A directory service, Lookup Manager, runs on the Master controller and in

conjunction with the switches and controller. It handles the database for all

assigned addresses on the Site. It adds the assigned addresses and whenever a host

get removed from the switch port, the switch will contact the Lookup Manager

and removes the host from the database. Lookup Manager will map the local Mac

Address to a public-use Mac Address (uniquely and randomly assigned 48 bits

address that will replace the last 48 bits in the Assigned address) for the hosts that

connect with other sites and the internet.

The Look-up Manager will map the traffic in both ways. It will also replace the

Public-use Mac Address with Local Mac Address for the incoming traffic from

outside to the hosts inside the site.

3.6.1 Security Measures

The security and privacy implications of embedding hardware addresses in IPv6

address have been known and understood for some time now and the IETF

deprecates the use of hardware addresses in IPv6 Interface Identifiers. To reduce

and limit the attacks on the hosts using our addressing scheme, we placed Lookup

Manager services to runs and coordinates with the core switches on each site. The

22

Lookup Manager will map and replace the local MAC Address to a Public-use

MAC Address for the incoming and outgoing traffic. The Look-up Manager will

strip the hardware MAC Address field from the IPv6 address for the hosts

contacting the Internet and replace it with the Public-use Mac Address and vice-

versa for the traffic in the opposite direction.

To weaken all possibilities of internal data center structure deduction during

attacks, the Site ID, Controller switch ID and Public-use MAC Address will be a

random, non-consecutive numbers. Only the port number will be given in a

consecutive way according the switch's port number(e.g 1-24 or 1-48).

3.7 Mobility and Hosts Migration

 A consequence of introducing location-based hierarchy into IPv6 addresses is the

need to explicitly handle host mobility [15]. In a traditional Ethernet, hosts can

migrate between switches as the switches will learn the host’s new location as

soon as it sends a frame. With ESPM, if a host relocates to a new switch its IPv6

address changes and any of the CAM entries corresponding to the migrated host

become incorrect; frames will continue to be sent to the host’s old location for a

while.

 Our strategy to deal with ESPM host migration is that on the arrival of the

migrated host to the new switch, it will ask for an IPv6 address and the assigned

IP address will be saved in the Lookup manager. The lookup manager will

discover that the same physical MAC address acquiring two IPv6 addresses. To

deal with this case, the Lookup Manager will send a message to the old switch to

redirect incoming traffic to the new switch until the CAM entry that corresponds

to that host expires, then it will remove the old IPv6 address from its database.

23

Chapter 4 Implementation

4.1 Connectivity use cases (Emulation)

4.1.1 POF with ESPM(Emulation)

We have emulated ESPM implementation by utilizing the OpenFlow match fields

that correspond to the destination IP address, input port, and MAC address

(Figure 4.1). If ESPM is fully implemented, the OpenFlow protocol would match

the destination IPv6 address fields (with ESPM correspondence) to make a

decision on the forwarding of the flows. In our implementation, we designed a

network that contains a switch (OVS), a controller (NOX[16]), and two hosts

(Case1). We assigned each host an IPv6 address within the ESPM scheme. Host

A (MAC address: 1111.1111.1111) belongs to site ID=10, controller ID=1 and

connects to switch ID=1 on port 1. Therefore, if we add the binary bits of all the

five fields, we get the ESPM address for host A (Figure 4.2). Host B (MAC

address:2222.2222.2222) connects to port 2 on the same switch and therefore,

acquires the ESPM address ::4000:402:2222:2222:2222.

Assumption: In describing the flow of packets on the network, we excluded

switch registration to the local controller and the keep-alive packets(Figure 4.3)

24

Other OpenFlow-based
Sites with Controllers and

Switches

Other OpenFlow-based
Sites with Controllers and

Switches...
ESPM DB with

switch, controller,
site IDs

Run ESPM as a
northbound

application for
address assignment

policies

For every new host
connection, assign

a
new ESPM address

Computer

Computer
Computer

Controller

OpenFlow switchOpenFlow switch

ESPM OSPF

Controller

ESPM OSPF

...

SITE

Openflow Switches and
connected hosts

Figure 4.1: Network architecture implementation for ESPM-based

addressing scheme.

Bootstrap protocol runs on each host when connected to the switch. The

Bootp/DHCP “discover” packet is forwarded to the controller automatically

because the switch will be pre-programmed with a flow entry for such packets by

the controller. DHCP packet from the switch invokes the ESPM application in the

controller. Controller will reply to the switch with the ESPM address assigned to

the host. Switch will forward a “DHCP OFFER” packet to the host. DHCP

process continues with the host sending a confirmation “DHCP request” with the

assigned IP address to the switch. All such DHCP messages are pre-programmed

to be sent to the controller by the switch. Therefore, the controller will send a

“DHCP ACK” back to the switch. The switch will send the DHCP ACK packet

back to the host completing the DHCP-based ESPM address assignment.

25

Figure 4.2 : ESPM addresses used in Case 1 and Case 2.

In our experiment, host A pings host B and destination IPv6 field inside the

packet header will be analyzed by the ESPM code. Since the destination host

acquires the same Site ID, Controller ID, Switch ID, the switch will find the port

number that is embedded inside the ESPM address and forward the packet to that

port.

No ARP messages are exchanged. In fact, the controller does not even need to

insert a flow definition. However, the switch operates under ESPM principles

with pattern matching of destination IP address fields: site, controller, switch IDs,

and if all match, the port ID.

Host Site

ID

Controll

er ID

Switc

h ID

Port

No

MAC

Address

(Hex)

ESPM Address(16-bit block

Hex)

Host A 10 1 1 1 1111.1111.11

11

::A00:4000:401:1111:1111:1

111

Host B 10 1 1 2 2222.2222.22

22

::A00:4000:402:2222:2222:2

222

26

BootP/
DHCPDiscover

ESPM
App

BootP/
DHCPDiscover

ESPM
Offer

ESPM IP
address is
assigned ICMP sent

to Host B
Forward according to
destination IP pattern

match to Host B

Patterns

up
da

te
 D

B
ac

tiv
e

po
rt

ID

pre-program

filter flow

DHCP
Offer

DHCPREQUEST
ESPM Request

ESPM
ACK

DHCP
ACK

Host B reply
Forward

according to
destination IP

pattern match to
Host A

ComputerComputer

Host A Host BSwitch Controller

 Pre-programmed filter: all
DHCP to controller, no

broadcast

Figure 4.3: Case 1 timeline of events for address assignment and

communication.

Result: An overhead of 8 packets per host has been exchanged before a ping

message exchange was possible between host A and Host B. The total packets

exchanged were 20. However, an application for ESPM has to be hosted to filter

broadcasts from switches and maintain a data store for all IP address assignments,

controller and switch IDs, and any active ports on switches.

27

4.1.2 OpenFlow without ESPM (Emulation)

In OpenFlow architecture, the switch learns the binding of MAC addresses to

ports. Switch uses flooding of all other ports whenever destination address is not

in the binding table. After the user turns host A power on, host A sends a

broadcast request (DHCPDISCOVER), searching for a DHCP server to

answer(Figure 4.4). The switch broadcast that to the controller. The controller,

based on availability and usage policies ,finds an appropriate address (if any) to

give to host A.Then host A sends DHCP request to reserve the IPv6 address, and

gets back a DHCP ACK as a response for assigning IPv6 address to host A, and

host B obtains the an IPv6 address in an identical fashion. After host A pings host

B, on wireshark we found that host A sent an ARP request to the broadcast MAC

ad-dress asking for the MAC Address of B. After receiving the first ARP, the

switch has no flows yet and does not know how to forward this frame. It

encapsulates the frame in an Open-Flow packet and sends it to the controller

(packet IN). The controller orders the switch to send the frame out of all ports

(except for the originating) (Packet OUT). As the switch floods the frame, it is

received by host B. Host B will replies back to the switch, the switch asks the

controller for a flow, using an OpenFlow control packet.

The controller knows where the destination MAC address exists on the network

and orders the switch to create a flow. This flow can be used by the switch if any

following frame with the same features should arrive, finally the frame is

delivered to host A. Now that host A is familiar with the MAC address of host B,

it will be able to send ICMP request.

Host A sends an ICMP request and the switch forwards it to the controller who is

aware now of host B location, so it creates a flow with the specific traffic. ICMP

reply happens in the same manner as ICMP request. On wireshark we found that

28

28 packet (except switch registration to the controller and keep alive packets)

where exchanged to achieve ping between hosts.

BootP/
DHCPDisco

ver

ESPM
App

BootP/
DHCPDisco

ver
ESPM
Offer

ESPM IP
address is
assigned

ESPM IP
address is
assigned

ICMP sent
to Host B Switch 1 forwards the

packets to the controller

Patterns

up
da

te
 D

B
 a

ct
iv

e
po

rt
ID

pre-program

filter flow

DHCP
Offer

DHCP REQUEST ESPM
Request

ESPM
ACK

DHCP
ACK

Host B reply

Forward
according to

destination IP
pattern match to

Host B

ComputerComputer

Host A Host
BSwitch 1 Controller Switch 2

Controller sends
a flow with the
shortest path

Switch 1 sends the packet
to Switch 2

Switch 2
checks the
destination

port of Host B
Switch 2

forwards the
packets to the

controller

Controller
sends a flow

with the
shortest path

Switch 2 sends the
packet to Switch 1

Figure 4.4: Timeline of events for address assignment and communication in

one Switch—one Controller Network.

The controller knows where the destination MAC address exists on the network

and orders the switch to create a flow. This flow can be used by the switch if any

following frame with the same features should arrive, finally the frame is

delivered to host A. Now that host A is familiar with the MAC address of host B,

it will be able to send ICMP request.

29

Host A sends an ICMP request and the switch forwards it to the controller who is

aware now of host B location, so it creates a flow with the specific traffic. ICMP

reply happens in the same manner as ICMP request. On wireshark we found that

28 packet (except switch registration to the controller and keep alive packets)

where exchanged to achieve ping between hosts.

4.2 Test-bed Used

The aim of the implementation was to examine the behavior of ESPM and

compare its performance against that of OpenFlow forwarding procedure. The

experiments conducted measured the effectiveness of ESPM in decreasing control

messages in the network and hence eliminating the unnecessary broadcast packet

processing at the hosts.

Since the purpose of the implementation and evaluation is to compare between

two systems, we had to create two independent test-beds and compare their

behavior. The First test-bed was used to evaluate the ESPM method, while the

second one was used to evaluate OpenFLow forwarding procedure.

 4.2.1 POF Test-bed
 We chose to use physical machines instead of virtual machines to build the POF

network topology. The network topology designed for this experiment (Figure

4.1) includes four desktops (POF Controller—POF Switch—Host1—Host2).

The machines used for the experiment were running Ubuntu 12.4 with one

network card and one wireless network card installed. For the POF Switch we had

to replace the one port network card with four ports network card. On the POF

Switch, the four interfaces were used to implement the ESPM system. After

installing Ubuntu 12.4 on the machines, I started cabling the machines according

to the topology, since the desktops need to connect directly; I connected them

with crossover cables. The next step to achieve basic connectivity between

30

neighbor devices was to assign IP addresses on the network cards from the same

subnet.

Figure 4.5: POF test-bed

I started preparing the POF Controller machine by installing Java 6 JDK, JRE and

Eclipse. Then I downloaded the POF controller software and built it using Eclipse

and launched the POF controller with a GUI panel.

On the POF Switch, after downloading the POF Switch software and unpacking

the software tar file, I built the POF Switch manually with the “./configure” and

“make” commands[17]. Then I started and established a connection with the POF

Controller using the command “pofswitch –I 10.0.2.30” where 10.0.2.30 is the

POF Controller IP address.

For POF test-bed, the basic operation procedure is as below[18]:

1. Launch the POF Controller.

2. Launch the POF Switch (e.g. a software switch or a POF-enabled router).

3. Hello handshake process starts automatically.

4. Create new packet types in GUI panel on the POF Controller.

31

5. Create new tables in GUI panel.

6. Create new table entries in GUI panel.

7. The Switch side will get the OpenFlow Messages from the controller and

creates the tables, entries, etc., as directed. When the switch data path receives

any packets, the switch will process the packets based on the configured

processing flow.

So, after achieving a successful connection between the POF Switch and POF

controller, I started creating my packet header as shown in (Figure 4.6).

Figure 4.6: Creating Packet header in POF Controller

After creating the Packet header, I started creating the flow table as shown in

(figure 4.7). Since the switch port number is embedded in the Hosts IP address,

the flow table should take the last octet of the destination IP address which

represent the switch port number(DIP_4 field) as a find key. According to the

find key value, the instructions “APPLY_ACTIONS” will be to set the “Output

Port ID” as the find key value.

32

Figure 4.7: Creating a flow Table.

After creating the flow table, I submitted the instructions successfully to the

switch so it can process the traffic that will be generate later.

4.2.2 OpenFlow based test-bed

Due to a limited number of available test machines, we implemented the

OpenFlow test-bed on VirtualBox using Mininet and Beacon OF Controller.

Mininet is a network emulator which creates a network of virtual hosts, switches,

controllers, and links. Mininet [19] hosts run standard Linux network software,

and its switches support OpenFlow for highly flexible custom routing and

Software-Defined Networking. After downloading and installing mininet and

Eclipse on VirtualBox, I started Mininet using the command “sudo mn --topo

single,2 --switch ovsk --controller remote” to create the topology shown in

(Figure 4.8) and built the Beacon controller in Eclipse so it can connect to the

Virtual switch in Mininet.

33

Figure 4.8: OpenFlow Learning Switch Topology

So far in the OpenFlow test-bed, we created a simple OF Controller—OF Switch-

Host1 –Host2 topology were the OF Switch is acting as a L2 learning switch. A

L2 learning switch learns the mapping between MAC addresses and ports by

watching packets. If the switch has already seen a particular destination, it can

send to exactly one port; otherwise it must flood the packet out all ports, like a

hub. We verified the learning switch behavior by achieving successful ping

between Host1 and Host2.

4.3 Implementing ESPM on GENI

GENI (Global Environment for Network Innovations) is a facility concept being

discussed by the United States computing community with NSF (National Science

Foundation) funding. The purpose of GENI is to increase experimental research in

computer networking and distributed systems, and to speed the transition of this

research into products and services that will upgrade the economic

competitiveness of the United States. GENI planning efforts are established

around several focus areas, covering facility architecture, the backbone network,

34

distributed services, wireless/mobile/sensor sub networks. GENI is being actively

used for network research and education [20].

ProtoGENI is GPO-funded prototype implementation and deployment of GENI,

drove by the Flux research group at the University of Utah, and largely based on

our Emulab software. ProtoGENI is the Control Framework for GENI Cluster C,

the largest set of integrated projects in GENI. We implemented our experiment

(ESPM) on Proto GENI by starting with the following steps:

• Getting Emulab account

• Generate SSL Certificate

• Registering a slice name

• Allocating computer resources

Although ProtoGeni allows you to allocate PCs and VMs from its resources, but

for our experiment we need PCs, so we can remotely connect to the Ubuntu

desktop installed on them. We had some issues in allocating PCs resources from

ProtoGeni, Only Utah genirack had available resources at that time, so we used

four PCs to create our topology (Figure 4.9), and installed the same operation

system and software as the one we are using for the physical testbed.

I am using VNC viewer software to connect to the GUI interface of the machines,

and Putty software to connect to the CLI platform of the machines.

35

Figure 4.9: ESPM topology implemented on ProtoGeni

4.4 Testing

Testing was a definite phase of the development procedure so as to secure that the

system is working reliably and behaving as expected. Testing frameworks were

deployed to capture and filter the traffic, counts packets, and present it in real

time.

4.4.1 Testing Strategy

To test the complete ESPM system and compare its behavior to OpenFlow

learning switch, I executed a test that is going to trigger real ICMP traffic from

the ping command to propagate along both networks while the link between

Host2 and the Switch (POF Switch in ESPM and OVS switch in OpenFlow

36

Learning switch) were going up and down every 30 second. I wrote a script in

shell to perform this connect/disconnect action on the link. The behavior of the

traffic while we are sending continuous ICMP packets was examined using the

Wireshark network protocol analyzer. Wireshark allowed us to track the exact

path of each packet including OpenFlow traffic, in the network by monitoring the

flow of packets at each network interface. The next step after tracing the packets

was to capture and filter them. Our concern was the Arp, ICMP and Broadcast

packets since in our emulation experiment we came to the result that Arp and

broadcast packets will be eliminated from the total traffic exchanged during

ICMP process. We presented the filtered traffic in a real-time graph that compare

the number of ARP, ICMP and Broadcast packet [21].

37

Chapter 5: Evaluation

 5.1 Experiments Result

The primary objective of ESPM is to cut off unwanted ARP traffic and the

amount of broadcast traffic in the network. This is because ESPM eliminate the

need for broadcast; it will find the MAC address of the destination host by

extracting it from the destination address. This eventually helps to decrease

unnecessary ARP processing at the hosts. The amount of benefit that the network

can draw out of ESPM is proportional to the size of the network.

In both experiments, we are filtering for ARP, ICMP and Broadcast Packets.

Such OpenFLow traffic as Echo Request and Reply packets which are sent to

maintain the connection between the controller and the switch alive. Echo

requests consist of arbitrary data that are sent only once every 15 seconds, which

the switch simply wants to echo back. These packets are unicast messages that

are handled by the switches and not the hosts, and they do not load the network.

5.1.1 Results and Graphs

In both experiments, we lunched ping from Host1 to Host2 while running the

shell script to connect/disconnect the link between Host2 and the Switch.

Wireshark was used to monitor the flow of these ARP, ICMP and Broadcast

packets in the network and screenshots were taken from each experiment on

Host1 network interface, the interface between the Switch and the Controller and

Host2 network interface. Screenshots of these Wireshark capture are enclosed in

Appendix A.

38

The results from both tests are summarized in the graphs in Figure: 5.1 and

Figure: 5.2

Figure 5.1: Arp, ICMP and Broadcast packets graphical representation in

ESPM experiment.

Figure 5.2: Arp, ICMP and Broadcast packets graphical representation in

OF Learning Switch experiment.

39

In both graph, the primary axis, depicts the number of ARP, ICMP and

Broadcast packets sent or received by the target host over time.

5.1.2 Reduction in Packet

With this implementation, we attempted a comparison of ESPM forwarding

behavior to Ethernet forwarding manner in OpenFlow. From both implemented

testbed, we produced real traffic using ping to send ICMP packets. We

confirmed that packets were being sent to the exact host by using Wireshark

software. We examined the packets over the network before and after enabling

ESPM to find the benefits of the addressing scheme. The switch forwarding table

which maps the host’s MAC address to the host’s port number can be removed

when we use the ESPM algorithm to process the packets on one switch two hosts

network. The chart below (Figure 5.3) show the decrease in total packets

transferred to achieve ping between host 1 and host 2 by 28.1%.

Figure 5.3: packets exchanged between host1 and host2 during ping process

in ESPM and OpenFlow learning switch forwarding.

0

5

10

15

20

25

30

ESPM using POF Normal Forwarding

Number of packets

40

In ESPM, when a packet arriving at the switch ingress port will be checked for

its controller/switch IDs and when they match, there is no flow/action pair

needed to forward. The port ID embedded into the destination IP address will

suffice to forward the packet. The communication with a controller on flow entry

is also saved. Figure 5.3 displays the complete packet count during a ping

exchange from host 1 to host 2.

5.1.3 CAM/TCAM savings

The switch will check if the TCAM table can forward the packet. If not, the

switch will process the incoming packet by inspecting if the destination host is

on the same controller and switch IDs, so it can forward the packet to the

destination without adding a new entry to the forwarding table (CAM table). If

the destination host is not on the same switch, the controller will add a flow to

the switch, with the specified match/action fields. The inserted flow will be

represented in the TCAM table as a new entry. ESPM can lead to major decrease

in the size of the forwarding table, by removing the need for a CAM table and

relying on ESPM algorithm and TCAM table, to process the incoming packets.

5.1.4 Summary of Results

Through the implementation and evaluation of ESPM, we have successfully

collected positive proof demonstrating that further research into ESPM is a

worthwhile endeavor. The evaluation displayed significant reduction in the total

number of management messages across the network. This reduction develops the

overall performance of the network.

41

Chapter 6: Conclusion

6.1 Future Work

We implemented ESPM architecture on physical machines and on GENI testbed using

the SDN experimentation capabilities and ran experiments to test its effectiveness and

draw an analogy between its performance and conventional forwarding at layer 2. We

loaded up the responsibility of parsing of header fields of IPv6 packets to a northbound

application in order to setup reactive and proactive flows for IPv6 networks. Both

environments allowed us to test our location-based approach with programmable

portability and showed significant improvement as predicted, but there are still areas that

need more research as:

• Scalability of the ESPM with many domains.

• Mobility constraints on the addressing scheme (to be emulated using VM

migrations between networks).

• Connectivity and discovery considerations for new ESPM nodes.

• DHCP in ESPM: In the existing implementation, the IP addresses are either

manually given by the administrator or dynamically allocated by a separate

DHCP server. Look-up Manager Server teaches the host’s Controller ID, Switch

ID a, Port number and MAC address by listening to incoming DHCP requests

from the host during boot up process. This implies that the Lookup manager can

assign IP addresses and save them in its database so we can improve IP conflict

detection.

42

List of references

[1] V. Cerf, and R. Kahn, “A Protocol for Packet Network intercommunication”,
IEEE Transactions Communications, Vol. Corn-22, No. 5, May1974 pp. 637-648.

[2] S.Deering, and R.Hinden,”Internet Protocol, Version 6 (IPv6) Specification”,
RFC 2460, December 1998 http://tools.ietf.org/html/rfc2460.

[3]H.Song “Protocol-Oblivious Forwarding: Unleash the Power of SDN through a
Future-Proof Forwarding Plane “, Sigcomm 2013,
http://conferences.sigcomm.org/sigcomm/2013/papers/hotsdn/p127.pdf.

[4] R. M. Metcalfe and D. R. Boggs, “Ethernet: distributed packet switching for
local computer networks,” ACM Communications, vol. 19, no. 7, pp. 395–404, 1976.

[5] D.Plummer, "Ethernet Address Resolution Protocol: Orconverting network
protocol addresses to 48.bit Ethernet address for transmission on Ethernet
hardware", STD 37, RFC 826, November 1982.

[6] A. Myers, E. Ng, and H. Zhang, Rethinking the Service Model: Scaling Ethernet
to a Million Nodes, in ACM SIGCOMM Workshop on Hot Topics in Networking,
Nov. 2004.

[7] K. Pagiamtzis and A. Sheikholeslami, “Content-Addressable Memory (CAM)
circuits and architectures: a tutorial and survey,” IEEE Journal of Solid-State
Circuits, vol. 41, pp. 712–727, 2006.

[8] N. McKeown, T. Anderson, H. Balakrishnan,G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Communication Review, vol. 38, April
2008.

[9] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending networking into the virtualization layer,” Proc. HotNets, Oct. 2009.

[10] DARPA INTERNET PROGRAM "INTERNET PROTOCOL", RFC 791,
September 1981.

[11] R. Droms, “Dynamic Host Configuration Protocol,”RFC 2131 (Draft
Standard), Mar. 1997, updated by RFCs 3396, 4361.

[12] J. Moy, “OSPF Version 2”, RFC 2328 (Standard),
http://www.ietf.org/rfc/rfc2328.txt, Apr. 1998.

43

http://www.ietf.org/rfc/rfc2328.txt

[13] E. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, 1959.

[14] D. Wagner-Hall” NetFPGA Implementation of MOOSE”, May 2010.
http://www.cl.cam.ac.uk/~mas90/MOOSE/dwh-diss.pdf.

[15] C. Perkins, “IP Mobility Support for IPv4,”RFC 3344 (Proposed Standard),
Aug. 2002, updated by RFC 4721. [Online].
Available:http://www.ietf.org/rfc/rfc3344.txt

[16] The NOX Team, “Developing in NOX.” noxrepo.org/noxwiki/index.php/
Developing_in_NOX. Retrieved 03-30-2011.

[17] Y. Jingzhou, W. Xiaozhong “POF Switch Introlduction”
http://www.poforwarding.org/document/POFSwitch_Introduction.pdf.

[18] Jian Song, Zahi Chai “POF Controller Introduction”
http://www.poforwarding.org/document/POFController_Introduction.pdf.

[19] The Mininet Team ” Introduction to Mininet”
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet.

[20] http://en.wikipedia.org/wiki/Global_Environment_for_Network_Innovations

[21] I. Aggarwal "Implementation and Evaluation of ELK, an ARP scalability

enhancement", Corpus Christi College, May 2011.

44

http://www.cl.cam.ac.uk/%7Emas90/MOOSE/dwh-diss.pdf
http://www.poforwarding.org/document/POFSwitch_Introduction.pdf
http://www.poforwarding.org/document/POFController_Introduction.pdf
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
http://en.wikipedia.org/wiki/Global_Environment_for_Network_Innovations

Appendix A

Wireshark Screenshots

Figure A.1: Screenshot of Wireshark packet capture for the packets transferred between
the POF Controller and POF Switch.

45

Figure A.2: Screenshot of Wireshark packet capture for the packets sent and received by
host1.

46

