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ABSTRACT 

 This dissertation comprises of six chapters with chapters 2-4 being individual case 

studies, each case study corresponding to a project involving use of mathematical 

modeling to characterize the effect of antimicrobials on bacterial populations.   

 In the second chapter a novel mathematical modeling framework to characterize 

the inoculum effect is proposed. In our approach the inoculum effect was solely attributed 

to reduced effective drug exposure. Accordingly, a simplified model pharmacodynamic 

model was developed where the reduced effective drug exposure was expressed as a 

function of initial bacterial burden. A case of Escherichia coli against a combination of 

piperacillin and tazobactum was used to characterize the model and validate the model 

assumptions. 

 In the third chapter, a pharmacodynamic model was used to characterize the 

biphasic killing profiles observed for the effect of flouroquinolones against both gram-

positive and gram-negative bacteria. Time-kill experiment data for the Escherichia coli 

against moxifloxacin and Staphyloccocus aureus against levofloxacin was used to 

characterize the model. Further, the model was used to make predictions regarding the 

design of the optimal dosing strategy which was selectively validated in the Hollow Fiber 

Infection Model. 

 In chapter four, the issue of fluctuating bacterial susceptibilities in the presence of 

a combination antibiotic and inhibitor was addressed using a novel modeling approach. 

Instantaneous Minimum Inhibitory Concentration (MICi) was defined to capture 

fluctuating susceptibilities. A theoretical concept capturing fluctuating susceptibility over 

time was used to define a novel pharmacodynamic index (Time above instantaneous MIC 
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[T > MICi]). The approach was illustrated using a novel beta-lactamase inhibitor MK-

7655 in combination with imipenem against a clinical isolate of Klesiella pneumonia 

Klebseilla pneumoniae. 

 Finally in the fourth chapter mathematical modeling was used to characterize 

immune-response (granulocyte clearance) against bacterial infections. The semi-

mechanistic immune response model was then integrated with a drug effect model to 

characterize bacterial dynamics in the presence of both immune and drug pressure. The 

immune-response model was used to characterize bacterial time-kill dynamics for naïve 

and neutropenic mice. The immune-drug integrated model was later used to model the 

invivo time-kill data for naïve and neutropenic mice infected with Klebsiella pneumoniae  

(KP-1470) treated with PF-05081090.
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CHAPTER 1 

1INTRODUCTION AND MOTIVATION 

1.1 MODELING BACKGROUND 

 Bacterial resistance to antibiotics has reached alarming proportions, with 

potentially grave consequences for public health (13, 17, 26, 32, 38, 40, 64).  The need to 

preserve the efficacy of existing antibiotics against bacterial pathogens and to rapidly 

develop new antibiotics is imperative.  For either task, it is essential to identify effective 

dosing regimens, such that an antibiotic can safely cure bacterial infections.  

Identification of effective dosing regimens may start with standard time-kill experiments, 

namely a set of in vitro experiments where a bacterial population is exposed to a number 

of different time-invariant concentrations of an antibiotic, and the size of the population 

is monitored over time (e.g.., 24 hours).  The data collected can be used to design 

effective dosing regimens for realistic antibiotic pharmacokinetics (variation of antibiotic 

concentration over time in humans).  Extrapolation from time-kill experimental data to 

realistic dosing regimen design can be substantially aided by mathematical modeling of 

time-kill dynamics. Such modeling aims to determine whether part of a bacterial 

population is resistant to an antibiotic at a certain concentration.  Therefore, it is logical 

to think of a bacterial population as comprised of subpopulations that are susceptible or 

resistant to the antibiotic.  While this dichotomy is intuitively appealing, using it to model 

time-kill dynamics may lead to erroneous predictions.  Specifically, it has been shown 

that fitting time-kill data over 24 hours with a model comprising two (resistant and 
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susceptible) subpopulation balances may fail to predict eventual regrowth of the entire 

population due to growth of the resistant subpopulation (43).   

 To remedy this problem, Nikolaou et al. (43) introduced a new model structure 

to describe time-kill dynamics.  Rather than considering two distinct subpopulations, this 

structure employs a distribution of the bacterial kill rate over an entire bacterial 

population exposed to an antibiotic concentration.  The resulting infinite differential 

equations for the cumulants of the kill rate distribution were shown to fully capture time-

kill dynamics.  Under heuristic simplifying assumptions, a finite number of differential 

equations was obtained, yielding a closed-form expression for the size of a bacterial 

population over time.  This expression allows relatively simple parameter estimation 

from experimental data and subsequent use of the model for extrapolation of population 

size over time. 

            The heuristic approach to handling the cumulant equations referred to in the 

preceding paragraph was shown to work on experimental data (43) i.e., it was capable of 

using time-kill data over 24 hours to predict regrowth of the corresponding bacterial 

population beyond 24 hours. 

 Consider a bacterial population of 0N  bacteria in an environment of an antibiotic 

at a fixed concentration C.  This is the setting in standard in vitro experiments, where the 

effect of an antibiotic at a series of twofold dilutions is investigated.  Under the 

assumption that all bacteria have the same susceptibility to the antibiotic at concentration 

C, one can write the standard population balance equations. 
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Physiological growth rate:  Because a growing bacterial population will eventually 

saturate, the logistic growth equation for the physiological growth rate can be used in 

eqn. for long growing populations, to yield 

  
max kill rate 

due to antibiotic
physiological growth rate

( )
( ) 1 ( ( )) ( )g

dN N t
K N t r C t N t

dt N

 
   

 
,  0(0) .N N  (1) 

The logistic growth equation is based upon the fact that bacterial population in absence of 

antibacterial antibiotic would not continue to grow exponentially forever. Any bacterial 

inoculum in presence of limited nutrient would follow the lag-log-stationary growth 

pattern. The stationary growth phase is the saturation phase wherein the growth rate 

becomes negligible.  

Kill rate:  The kill rate term ( ( ))r C t varies with every drug and bacteria combination. A 

commonly used expression for kill rate is the Hill expression where ( ( ))r C t is defined as 

  
50

( ) ,
H

H H

KC
r C

C C



 (2)   

where kK  is the maximal kill rate achieved as C  ; 50C  is a constant equal to the 

antibacterial antibiotic concentration at which 50% of the maximal kill rate is achieved; 

and H  is the Hill exponent, corresponding to how inflected ( ( ))r C t  is as a function of C. 

Consider now a heterogeneous bacterial population in which resistance to an antibacterial 

antibiotic varies among bacteria, with more resistant bacteria corresponding to lower kill 

rate constants ( )r C .  For a given antibacterial antibiotic concentration C, one may 

consider a distribution of ( )r C  over the bacterial population.  Considering such a 

distribution is plausible from a physiological viewpoint, given that variability is expected 
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within any given species.  From a therapeutic viewpoint, the desired outcome for a given 

antibacterial antibiotic concentration is the eventual killing of all bacteria and avoidance 

of any regrowth.  The following theorem provides the basis for an analysis that can help 

extrapolate ordinary 24-hour in vitro experimental data, to make predictions about 

eventual elimination or regrowth of heterogeneous populations. 

            Consider a population of ( )N t  bacterial cells exposed to an antibiotic at 

concentration C . Discretize this population into subpopulations, each having ( )iN t  cells, 

such that  

  ( ) ( )i

i

N t N t .   (3) 

Each subpopulation satisfies the cell balance 

   
max

( )
1 ( )i

g i i

dN N t
K r C N t

dt N

  
     

  

. (4) 

with a corresponding kill rate constant  ir C .  All subpopulations are assumed to share 

the same physiological growth rate constant gK , because they correspond to the same 

basic species.  Further, growth saturation is assumed to be governed by the same term 

max1 ( )N t N .  Even though eqn. 4 is conceptually appealing, it is of little use for 

modeling experimental data, because the size of individual subpopulations, ( )iN t , 

cannot realistically be measured in time-kill experiments.  What is routinely measured in 

such experiments is the size of the entire population, ( )N t , over time, for which 

summation of eqn. 4 over all i  yields 
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 
max

max

( )
1 ( )

( )
1 ( ) ( )

g i i

i

g

dN N t
K r C N t

dt N

N t
K t N t

N


  
     

  

  
     

  


. (5) 

where the average ( )t  of the kill rate constant  ir C  is defined in a standard way as 

      ( ) ,ˆ i i

i

t r C f r C t   (6) 

with 

    
( )

, ˆ
( )

i
i

N t
f r C t

N t
   (7) 

The quantity  ( ),if r C t  can be thought of as the probability distribution function for 

the kill rate constant  ir C  over the entire population at a given antibiotic concentration 

C  and at time t . 

 The above eqn. 5 makes intuitive sense, since it suggests that the dynamics of the 

entire population is similar to the dynamics of individual subpopulations, the only 

difference being that the average kill rate over the entire population affects the overall 

population dynamics.  The population average of the kill rate constant, ( ),t  decreases 

over time, as the percentage of more resistant subpopulations in the overall population 

increases.   

 Consider the following kill rate average which declines exponentially with time 

  
2 2(0) (0)

( ) (0) ,At

b R

t e
A A

 
      (8) 
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   ( ) .Att Re b     (9) 

For heterogeneous populations subjected to a time invariant concentration C the average 

kill rate coefficient would eventually reach a value b for each C. This is because whatever 

mixture of susceptible population we start with eventually all the susceptible would be 

killed by the drug to leave just the resistant one as t . This population at t   

would eventually be homogeneous. It is assumed that the initial average kill rate and the 

kill rate as t   follow the functional form given by eqn.(2). The initial average kill 

rate and kill rate average as t   are thus given as 

  
50

,
H

k

H H

K C
R b

C C
 


 (10) 

  
50

.
Hb

b

Hb Hb

b

K C
b

C C



 (11) 
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1.2 BASIC MICROBIOLOGY PROCEDURES AND TERMINOLOGY 

1.2.1  Minimum Inhibitory Concentration (MIC) 

Minimum inhibitory concentration (MIC) is the minimum concentration of the 

antimicrobial which will inhibit visible growth of microorganism after overnight 

incubation. A pictorial representation of MIC is shown in Figure 1-1. MIC is the most 

basic laboratory measurement of activity of an antimicrobial against a microorganism. 

MIC is important to confirm resistance of a microorganism against an antimicrobial agent 

(4). A better antimicrobial agent has lower MIC values. 

 

 

Figure 1-1 Broth dilution method for measuring MIC 

 

 

 

Increasing concentration 
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1.2.2 Time-kill study 

 Time-kill study is an experimental procedure used to measure the dynamics of 

antimicrobial pressure on bacterial populations. In a typical time-kill study a fixed 

bacterial burden is exposed to time-invariant escalating concentrations of antimicrobial 

and the change in bacterial burden with time is observed. Such a change in bacterial 

burden with time could be quantified by collecting bacterial samples at fixed time points 

(eg. 0, 2, 4, 6, 8, 12 and 24 h) and plating the samples to observe the colony forming units 

per ml (cfu/ml) after 24 h incubation.  

While MIC is important to measure the susceptibility of  a microorganism to an 

antimicrobial, it does not give any information on the kill kinetics. Time-kill studies help 

in measuring the rate of killing by the antimicrobial. Such a study is useful in 

understanding the onset of resistance and suboptimal drug pressures that may be causing 

it. A typical time-kill study data is shown in Figure 1-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2 A typical time-kill data for levofloxacin against Staphylococcus aureus (SA-

29213). N is bacterial population measured as colony forming units per ml (cfu/ml) 

Concentration of levofloxacin is scaled in multiples of MIC. 
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1.3 INOCULUM EFFECT 

 Inoculum effect is the reduced bacterial kill observed at higher bacterial burden.  

A typical example of inoculum effect is shown in Figure 1-3.  In this time-kill study it is 

clearly evident that as the baseline (initial) bacterial inoculum is increased from 10
5
 

CFU/ml to 10
8
 CFU/ml, the same concentrations of drug are unable to kill the bacteria 

with same effect. For baseline inoculum of 10
5
 CFU/ml higher drug concentrations are 

able to contain the bacteria. However, for 10
8
 CFU/ml all of the drug concentrations fail 

to completely eradicate the bacteria. This reduction in killing effect is observed gradually 

for baseline inoculum of 10
6
 CFU/ml and 10

7
 CFU/ml. 

 The inoculum effect is a phenomenon that has been described for many different 

antibiotics and how they affect several different organisms after it was first discovered in 

1945 (65).  A general observation is that a higher concentration of organisms requires a 

higher concentration of antibiotic to achieve the same degree of bacterial killing.  

Simplistically, it would make sense that the more organisms there are to kill; the more 

antibiotic molecules are needed to do so.  However, the mechanisms for the 

inoculum effect could be much more complex, depending upon the number of 

antibiotic molecules necessary to kill a single organism, the various resistance 

mechanisms employed by bacteria, the quantity of inactivating enzymes produced by the 

organisms, the growth cycle characteristics of the organisms, and so forth.  Regardless of 

the mechanism, it appears that in most cases, a higher concentration of bacteria i.e. a 

greater number of bacteria in any given volume of fluid or tissue will decrease the 

effectiveness of antibiotics.   
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Figure 1-3 Time kill studies of piperacillin / tazobactam against E. coli ATCC 25922. 

Data shown as mean ± standard deviation. Baseline inoculum (A) 10
5
 CFU/ml; (B) 10

6
 

CFU/ml.  
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Figure 1-3 Time kill studies of piperacillin / tazobactam against E. coli ATCC 25922. 

Data shown as mean ± standard deviation. Baseline inoculum (C) 10
7
 CFU/ml; (D) 10

8
 

CFU/ml. (Continued). 
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1.4 PHARMACODYNAMICS OF DIFFERENT CLASSES OF 

ANTIMICROBIALS 

For an antibiotic to eradicate an organism, three major factors must occur. First, 

the antibiotic must bind to its target site(s) in the bacterium. To reach the binding site is 

no easy matter. It must penetrate the outer membrane of the organism (penetration 

resistance), avoid being pumped out of the membrane (efflux pump resistance), and 

remain intact as a molecule (e.g., avoid hydrolysis by beta-lactamases). Once the target is 

reached, the antibiotic can still be useless if the binding site has changed its molecular 

configuration and no longer allows the drug to attach. A range of different binding sites 

has been identified including ribosomes, penicillin-binding proteins, DNA 

topoisomerase/gyrase, and the cell membrane itself. The crucial binding site will vary 

with the antibiotic class. These binding sites can be defined as points of biochemical 

reaction crucial to the survival of the bacterium. Thus, by binding to these sites, the 

antibiotic interferes with the chemical reaction resulting in the death of the bacterium. 

Second, the drug must not only attach to its binding target but also must occupy an 

adequate number of binding sites, which is related to its concentration within the 

microorganism. 

Third, for an antibiotic to work effectively, the antibiotic should remain at the 

binding site for a sufficient period of time in order for the metabolic processes of the 

bacteria to be sufficiently inhibited. 

Thus, the two major determinants of bacteria killing include the concentration and 

the time that the antibiotic remains on these binding sites. The area under the 

concentration curve (AUC) after a dose of antibiotic measures how high (concentration) 
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and how long (time) the antibiotic levels remain above the target MIC during any one 

dosing interval. In essence, the AUC indirectly measures the two major factors for 

bacterial eradication and quantifies the amount of exposure of the organism to the 

antibiotic during any one dosing interval. 

Time-Dependent Killing: 

  For certain classes of antibiotics, the major killing effect against an organism is 

produced by either the time or the concentration of the drug at the binding site. In fact, of 

these two factors of bacterial killing, the killing process may be so minimal that it can be 

ignored in the prediction of a clinical response. For instance, certain antibiotics, like beta-

lactams (penicillins, cephalosporins, carbapenems, monobactams), clindamycin, 

macrolides (erythromycin, clarithromycin), oxazolidinones (linezolid), can be effective 

because of the extensive amount of time the antibiotic binds to the microorganism. The 

inhibitory effect can be effective because their concentration exceeds the MIC for the 

microorganism. Hence, these antibiotics are referred to as time-dependent antibiotics. For 

time-dependent drugs, the pharmacodynamic parameter can be simplified to the time that 

serum concentrations remain above the MIC during the dosing interval (T>MIC) , Figure 

1-4.  

Concentration-Dependent Killing: 

 Other classes of antibiotics, such as aminoglycosides and quinolones, have high 

concentrations at the binding site which eradicates the microorganism and, hence, these 

drugs are considered to have a different kind of bacterial killing, named concentration-

dependent killing. For concentration-dependent agents, the pharmacodynamic parameter 

can be simplified as a Cmax/MIC ratio.  
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 These concepts have been even further refined from studies performed in animal 

models of sepsis, in-vitro pharmacokinetic models and volunteer studies. For instance, for 

antibiotics with time-dependent killing, the optimal responses occur when the time that 

the drug remains above the MIC is equal or greater than 50% of the dosing interval. For 

agents with concentration-dependent killing, the best responses occur when the 

concentrations are > 10 times above the MIC for their target organism (s) at the site of 

infection (15) For agents with concentration-dependent killing, it has also been shown 

that clinical responses can be predicted as well as the peak/MIC ratio by measuring the 

AUC over the dosing interval and dividing that value by the antibiotic’s MIC against the 

target organism. In essence, the AUC/MIC ratio becomes a “default” pharmacodynamic 

concept for the peak/MIC ratio for antibiotics with concentration-dependent killing. 

This concept has been studied best with the fluoroquinolones. For instance, 

certain organisms require modest AUC/MIC ratio for their prompt 

eradication, Streptococcus pneumoniaeand most other Gram-positive bacteria are 

typically rapidly killed by quinolones at an AUC/MIC24hr ratio > 30) whereas others, 

like Pseudomonas aeruginosa and most other aerobic Gram-negative bacteria, require 

much greater exposure of time to quinolones (AUC/MIC24hr ratios > 100-125) (20, 67). 
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Figure 1-4 Plot showing the area under the concentration curve and MIC. Different 

pharmacodynamic indices are also shown.



16 

 

1.5 ANTIBIOTIC-INHIBITOR COMBINATION PHARMACODYNAMICS 

Since the development of new drugs is a long, non-trivial process unable to meet 

the current demand (21), alternative to restore the effectiveness of existing drugs should 

be investigated. A viable approach towards that end is the development of inhibitors 

designed to target specific resistance mechanism(s). For instance, it has long been known 

that resistance mediated by production of beta-lactamases could be tackled by an 

inhibitor which inhibits the function of the beta-lactamases (drug hydrolysis). Similarly, 

efflux pump inhibitors could be used against bacteria that over-express efflux pumps to 

extrude drugs from the bacterial cells, thereby decreasing intracellular drug 

concentration.  

Despite inhibitors being developed since a long time, the design of optimal dosing 

strategy for them is unprecedented. Depending on the class of antibiotics different 

pharmacodynamic indices such as Cmax/MIC, AUC/MIC and T > MIC could be useful in 

determine optimal dosing strategies (1). However, such indices may not be immediately 

applicable to inhibitors since the susceptibility of the bacteria increases with inhibitor 

concentration. In contrast the MIC for drug-bacteria combination is determined in 

absence of inhibitor (intrinsic MIC). This calls into question the use T > MIC where in 

presence of inhibitor the MIC may be significantly lower than intrinsic MIC. This issue is 

further aggravated when both the drug and inhibitor concentrations fluctuate with time 

governed by their respective pharmacokinetics. In such a case ideally, the MIC is 

changing with every instant of time thus giving rise to fluctuating susceptibilities. As in 

the case of a single antimicrobial agent, variables such as dose, dosing interval and inter-
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subject pharmacokinetic differences make the process of determining optimal dosing 

regimens for drug/inhibitor combinations non-trivial. Therefore, comprehensive 

assessment of all possible dosing strategies is impractical in pre-clinical and clinical 

investigations. In empirical selection of dosing regimens the full potential of these new 

inhibitor candidates may not be realized. The use of mathematical modeling and 

simulation comes in extremely handy to address some of these complicated issues for 

antibiotic-inhibitor combinations. 
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1.6 IMMUNE RESPONSE AND ANTIMICROBIAL EFFECT 

For any infected individual immune system is body’s intrinsic defense mechnism 

against the infection. The innate immune response primarily involves granulocytes as the 

first line of such defense. Granulocytes play a major in clearing many bacterial 

infections. In-spite of this, there are few efforts to delineate the role of granulocytes in 

clearing infection. 

With the concern of bacterial resistance to antibiotics, the race to develop new 

antibiotics with optimal dosing strategies has taken pace. Mathematical modeling is one 

of the decision support tools which could help in speeding up the pre-clinical and clinical 

development of new antibiotics. While there have been numerous efforts to characterize 

the effect of antibiotics on dynamic bacterial populations, little attention has been paid to 

the role of immune system. In-vivo experiments to characterize the drug effect were done 

primarily on neutropenic animals undermining the role of immune system. If the 

contribution of immune system is overlooked, there is a possibility that the dose 

predictions are suboptimal; further aggravating the issue of resistance. 

Integrating the immune response with drug effect would help in demarcating how 

much of the curing ability is due to antibiotics and how much is due to immune response. 

An ideal experimental series to integrate the immune response with drug effect would be 

first to characterize the immune response with no-drug in-vivo experiments and then 

integrate the resulting immune response with drug effect in-vivo data. Such an exercise 

would also help to determine if there is any interaction between the immune system and 

drug. When such integration is achieved at in-vivo level it could be extrapolated to 
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complex human like systems. Our work is a small step forward in quantifying the 

contributions of immune system and drug effect. 
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1.7 OBJECTIVES OF RESEARCH 

In summary the present research work has four objectives: 

A)  Development of a mathematical modeling framework to characterize the inoculum 

effect. 

B) Development of a pharmacodynamic model to characterize resistance against 

fluoroquinolones and make optimal dosing strategy predictions. 

C) Development of a novel mathematical modeling and simulation framework to guide 

design of optimal dosing regimens for antibiotic-inhibitor combination. 

D) Development of semi-mechanistic modeling framework to characterize immune 

response and integrate the immune response with drug effect. 

             The entire thesis is divided into four case studies making 4 core chapters as 

follows. Chapter 2 discussed the novel mathematical framework to explain inoculum 

effect. Chapter 3 is about a modeling of flouroquinolones and making optimal 

predictions. 4
th

chapter consists of novel mathematical modeling framework to describe 

dynamics of antibiotic-inhibitor combination. Finally chapter 5 comprises of modeling 

framework to characterize immune response and integrate the immune response with 

drug effect. Finally all case studies are concluded in chapter 6. 
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CHAPTER 2 

2MATHEMATICAL MODELING FRAMEWORK TO 

CHARACTERIZE INOCULUM EFFECT 

2.1 INTRODUCTION 

Escherichia coli is part of the human gastrointestinal flora and a common 

pathogen implicated in intra-abdominal infections such as perforated appendicitis and 

peritonitis.  Beta-lactams are often the empiric drug of choice for the management of 

severe intra-abdominal infections, in view of their spectrum of activity and safety profile.  

In intra-abdominal infections, a heavy bacterial burden is commonly encountered and the 

clinical utility of the beta-lactams may be limited by the inoculum effect.  This 

phenomenon is believed to be due to the physiologic state of the bacterial cells, or 

preferential expression of different penicillin-binding proteins, rendering the bacteria less 

susceptible to beta-lactams (53).  Biofilm production and quorum sensing may also be 

involved.   

We and others have previously developed mathematical models to capture the 

dynamic relationship between a heterogeneous microbial population and constant drug 

concentrations (33, 41, 43, 48, 60, 66).  Our models were further refined to predict the 

microbial response to multiple antimicrobial agent dosing regimens (fluctuating drug 

concentration over time) efficiently (42, 62).  Such a modeling approach could be used as 

a decision-support tool for dosing regimen design, and it may be used at different stages 

of drug development.  It is often observed that killing could be more pronounced against 

a lower bacterial burden than with a higher bacterial burden (8, 10, 55).  Capturing this 
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phenomenon in a mathematical model would require a killing function dependent on 

bacterial burden.  However, one common assumption in most modeling approaches is 

that the killing function is independent of the bacterial burden (11, 36, 57).  This 

modeling assumption is often restrictive and is only useful when there is not a very 

significant change in bacterial susceptibility to antimicrobials, as the bacterial burden 

changes.  In other cases, it may be misleading in making accurate predictions about the 

bacterial behaviors.  For example, an experiment with a higher bacterial burden may 

suggest a dosing exposure requirement to suppress regrowth, but this may overestimate 

the requirement to suppress regrowth at lower bacterial burdens.  In order to capture the 

overall picture satisfactorily, we need a more robust model which conclusions can be 

extended over a wide range of bacterial burden.   
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2.2 MATERIALS AND METHODS 

The objective of this study was to extend our mathematical modeling approach 

proposed previously, to further account for the reduced in-vitro killing observed.  For 

illustrative purposes, a standard wild-type E. coli strain with various baseline inocula was 

used in this investigation. 

2.2.1 Antimicrobial agents 

Piperacillin and tazobactam were purchased from Sigma (St. Louis, MO).  A 

stock solution of each antimicrobial agent in sterile water was prepared, aliquoted, and 

stored at -70C.  Prior to each susceptibility testing, an aliquot of the drug was thawed 

and diluted to the desired concentrations with cation-adjusted Mueller-Hinton broth (Ca-

MHB) (BBL, Sparks, MD). 

2.2.2 Microorganisms 

E. coli ATCC 25922 (American Type Culture Collection, Rockville, MD) was 

used in the study.  The bacteria were stored at -70C in Protect (Key scientific products, 

Round Rock, TX) storage vials.  Fresh isolates were sub-cultured twice on 5% blood agar 

plates (Hardy Diagnostics, Santa Maria, CA) for 24 hours at 35C prior to each 

experiment. 

2.2.3 Susceptibility studies 

Minimum inhibitory concentration (MIC) / minimum bactericidal concentration 

(MBC) were determined in Ca-MHB using a modified macrobroth dilution method as 

described by the CLSI.(5)  The final concentration of bacteria in each macrobroth 

dilution tube was approximately 510
5
 CFU/ml of Ca-MHB.  Serial twofold dilutions of 
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drugs were used.  The MIC was defined as the lowest concentration of drug that resulted 

in no visible growth after 24 hours of incubation at 35C in ambient air.  Samples (50 l) 

from clear tubes and the cloudy tube with the highest drug concentration were plated on 

Mueller-Hinton agar (MHA) plates (Hardy Diagnostics, Santa Maria, CA).  The MBC 

was defined as the lowest concentration of drug that resulted in  99.9% kill of the initial 

inoculum.  Drug carry-over effect was assessed by visual inspection of the distribution of 

colonies on media plates.  The studies were conducted in duplicate and repeated at least 

once on a separate day. 

2.2.4 Time kill experiments 

Time-kill studies were performed using different inocula ranging from 

approximately 110
5
 to 110

8
 CFU/ml at baseline.  A clinically achievable unbound 

concentration range of piperacillin (0 – 512 mg/l) / tazobactam (4 mg/l in all 

investigations to minimize effect of any constitutive beta-lactamase, if present), were 

used, and the drug concentrations were normalized to multiples of MIC.  Serial samples 

(baseline, 2, 4, 8, 12 and 24 hours) were obtained in duplicate over 24 hours; viable 

bacterial burden was determined by quantitative culture.  Prior to culturing the bacteria 

quantitatively, the bacterial samples were centrifuged at 10000 G for 15 minutes, and 

reconstituted with sterile normal saline in order to minimize drug carry-over effect.  Total 

bacterial populations were quantified by spiral plating (Spiral Biotech, Bethesda, MD) 

10 serial dilutions of the samples (50 l) onto MHA plates.  The media plates were 

incubated at 35C for up to 24 hours, then bacterial density from each sample was 

enumerated visually.  The theoretical reliable lower limit of detection was 400 CFU/ml. 
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2.2.5 Mathematical modeling 

Based on our previous work (43), all time-kill profiles of E. coli over 24 hours 

were modeled collectively.  During our investigation, several related mathematical model 

structures were evaluated.  The modified structure of the final growth dynamics model is 

shown in Figure 2-1.  Briefly, the rate of change of bacteria over time was expressed as 

the difference between the intrinsic bacterial growth rate and the (sigmoidal) kill rate 

provided by the antimicrobial agent.  Decline in kill rate over time and regrowth were 

attributed to adaptation, which was modeled as reduction in the kill function, using a 

saturable function of antimicrobial agent selective pressure [both piperacillin effective 

concentration (C) and time (t)].  In addition, to account for the inoculum effect, an 

effective drug concentration was used in all killing and adaptation terms, which was 

explicitly modeled as a sigmoidal function of the initial inoculum.  The effective drug 

concentration can be conceptualized as the result of a biofilm barrier put up by a dense 

bacterial population (i.e., the greater the bacterial population, the greater the drug barrier, 

and thus the less effective drug concentration). Biofilm is basically an aggregate of 

bacteria in a matric of external polymeric substance.  The modeling estimation process 

involved 2 steps.  The intrinsic bacterial growth rate (Kg) and maximal bacterial 

population size (Nmax - to account for contact inhibition) were first determined from 

placebo (control) experiments.  Using these parameter estimates, the parameter values in 

the killing function were subsequently determined using data from all active treatment 

experiments simultaneously.  The performance of different model candidates were 

assessed by visual fit to the data, and discriminated using the Akaike's information 
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criterion.  The rule of parsimony was used.  All modeling was performed with MATLAB 

version 7.5 (The MathWorks, Inc., Natick, MA). 
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Figure 2-1 Bacterial growth dynamics model and various model parameters  

Population balance for a bacterial population:  

Rate of change of bacteria over time = Intrinsic growth rate – Kill rate by antimicrobial agent 
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G – growth rate function 

K – kill rate function 

Kg – growth rate constant for bacterial population 

N(t) – concentration of bacterial population at time t  

Nmax – maximum population size  

 C(t) – concentration of drug at time t 

 Ceff(t) – effective concentration of drug at time t 

Kk – maximal kill rate constant for bacterial population  

C50k – concentration to achieve 50% maximal kill rate of the initial population 

C50b – concentration to achieve 50% maximal kill rate of the most resistant  

population 

H – sigmoidicity constant for bacterial population 

     A – adaptation function 
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N50 – bacterial population which 50% of actual drug concentration is in effect 

Q – sigmoidicity constant for drug concentration 

C50a – concentration to achieve 50% maximal adaptation rate  

Ha – sigmoidicity constant for bacterial adaptation 

2.2.6 Sensitivity analysis 

After the model fitting, selected parameters were evaluated for sensitivity with 

respect to their best fit estimates.  This was done by plotting the 95% joint confidence 

intervals for a selected group of parameters.  The joint confidence plots were produced 

using the Fischer test.  If (1-) is the confidence level and S() is residual sum of squares 

at the point estimate  , the (1-) confidence region for P-parameters in the vector  is 

the region where  satisfies the inequality: 

( )S  ≤ ( )S 
( , ; )

(1 +  *  ) (12)
( )

F P N P
P

N P



   

2.2.7 Experimental validation 

The association of a bacterial population size with biomass was assessed semi-

quantitatively using a modified colorimetric assay as described previously (25).  Briefly, 

a late log-phase growth culture of E. coli was diluted and inoculated into 1/4 strength Ca-

MHB (final density of 110
5
 or 110

8
 CFU/ml).  The bacteria were incubated in an in-

vitro assay (Calgary Biofilm device, MBEC, Calgary, AB) at 37 C on a platform shaker 
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for 24 hours.  Three pegs were randomly removed from the lid of the assay.  Media and 

non-adherent planktonic bacteria were removed by vortexing briefly in saline, after which 

they were transferred and fully immersed in 0.1% crystal violet for 15 minutes.  After 

removing the excessive dye solution, the attached dye was eluted using 95% ethanol, and 

the absorbance at 580 nm was determined using a spectrophotometer.  Uninoculated 

growth medium was used as a negative control.  Pseudomonas aeruginosa ATCC 700888 

(a known biofilm hyperproducer) was used as a positive control. 
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2.3 RESULTS 

2.3.1 Susceptibility studies 

`The MIC/MBC of the E. coli isolate to piperacillin were found to be 2/2 mg/l, 

respectively.  The susceptibilities to piperacillin did not change in the presence of 

tazobactam. 

2.3.2 Time-kill experimets 

Data from the time-kill studies are as shown in Figure 2-2.  As anticipated from 

other previous investigations (2, 3, 8, 13, 22), the killing of piperacillin was considerably 

reduced as the baseline inoculum increased from 110
5
 to 110

8
 CFU/ml.  Significant 

reduction in bacterial burden (> 2 log drop at 24 hours) was observed with 4 MIC when 

the baseline inoculum was 110
5
 CFU/ml (Figure 2-2A), compared to 256 MIC when 

the baseline inoculum was 110
8
 CFU/ml (Figure 2-2D). 



31 

A 

 

 

 

 

 

 

 

 

 

B  

 

 

 

 

 

 

 

 

 

 

Figure 2-2 Time kill studies of piperacillin / tazobactam against E. coli ATCC 25922. 

Data shown as mean ± standard deviation.  Baseline inoculum (A) 10
5
 CFU/ml; (B) 10

6
 

CFU/ml. Continued.. 
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Figure 2-2  Time kill studies of piperacillin / tazobactam against E. coli ATCC 25922. 

Data shown as mean ± standard deviation.  Baseline inoculum (C) 10
7
 CFU/ml; (D) 10

8
 

CFU/ml.  
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2.3.3 Mathematical modeling 

The model best-fits to the data are as shown in Figure 2-3.  The estimates of the 

best-fit model parameters are as shown in Table 2–1.  Taken as a whole, the observations 

in bacterial burdens over time were reasonably described by the model.  Several 

alternative model candidates were explored (data not shown).  Generally, the fits of these 

alternative models to the experimental data were less satisfactory when: (1) the 

adaptation function was condensed to a single parameter (as expected); and (2) the actual 

(instead of effective) drug concentration was used in the killing / adaptation functions. 

Additionally, we attempted to incorporate drug degradation in the model as (i) a zero 

order decay with a degradation constant of 0.01 h
-1

 and (ii) a first order decay with a 

degradation rate constant of 0.015 h
-1

. The final best-fit parameter estimates were not 

found to be significantly different from the original estimates when the drug degradation 

was not considered.  
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Figure 2-3 Model fits to the experimental data. (A) Overlay of experimental data with the 

best-fit model. Red symbols (and dotted lines) represent experimental data: +, placebo; ○, 

0.25×MIC; *, 1×MIC; ●, 4×MIC; ×, 16×MIC; □, 64×MIC; ◊, 256×MIC. Blue (solid) 

lines depict the best fit model. 



35 

0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

12

Observed Log CFU/ml

B
es

t-
fit

 L
og

 C
F

U
/m

l

 

 

R
2
 = 0.88 

The best-fit regression line is given by: 

Best-fit = 0.94 * Observed + 0.68 
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Figure 2-3 Model fits to the experimental data (B) Correlation between observed and 

best-fit bacterial burden.  



36 

 

2.3.4 Sensitivity analysis 

The 95% confidence intervals are shown in Table 1.1, and the corresponding 

confidence regions for selected parameter groups are shown in Figure 2-4.  The lower 

and upper confidence limits have been deduced from confidence regions.  It was done by 

examining the plot and finding the maximum variation in each parameter within the plot. 

A 

 

Figure 2-4 95% joint confidence region for: (A) Kg and logNmax;.  

 

 

 

B 
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Figure 2-4 95% joint confidence region for: (B) C50a and Ha  

C 

 
Figure 2-4 95% joint confidence region for: (C) Kk, C50k and H. 
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Table 2-1 Final estimates of the best-fit model parameters 

 Point estimates 95% Confidence limits 

  Upper Limit Lower Limit 

Kg (h
-1

)  1.3078 1.17 1.47 

Nmax (10
8
 CFU/ml) 8.3357 6.886 10.715 

Kk (h
-1

)  2.79 2.5 3.05 

C50k (mg/l) 0.51 0.22 0.68 

C50b (mg/l) 40.31 *  

H 0.5 0.3 0.62 

C50a (mg/l) 962.19 367.2 2615 

Ha 0.592 0.542 0.662 

Log N50 (CFU/ml) 6.55 *  

Q 0.8 *  

 

Kg – growth rate constant for bacterial population 

Nmax – maximum population size  

Kk – maximal kill rate constant for bacterial population  

C50k – concentration to achieve 50% maximal kill rate of the initial population 

C50b – concentration to achieve 50% maximal kill rate of the most resistant population 

H – sigmoidicity constant for bacterial population 

C50a – concentration to achieve 50% maximal adaptation rate 

Ha – sigmoidicity constant for bacterial adaptation  

N50 – bacterial population which 50% drug concentration is in effect 

Q – sigmoidicity constant for effective drug concentration 

 

* Unable to determine.  The non-linear confidence region plotting method was found to 

be inadequate.  The sum of squares flattened off in case of these parameters. 
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2.3.5 Experimental validation 

The results of the colorimetric assay are shown in Figure 2-5.  There was a significant 

difference in biomass formation as the initial bacterial density was increased from 110
5
 

CFU/ml to 110
8
 CFU/ml (p = 0.002, student’s t-test). 

 

 

 
Figure 2-5 Comparison of absorbance values in biofilm assay. 

 

Each condition was examined in triplicate 

Control – bacteria-free media (negative control) 

EC – E. coli ATCC 25922 

PA – P. aeruginosa ATCC 700888 (a known biofilm hyperproducer - positive control) 
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2.4 DISCUSSION 

Inoculum effect has been the subject of study for several recent investigations.  

Different researchers have attempted to characterize the phenomenon in various ways.  

Udekwu et al. conducted experiments with a wide variety of antimicrobial agents against 

a wild-type Staphylococcus aureus and witnessed a consistent reduction in antibiotic 

efficacy at high cell densities (63).  Using a series of escalating inocula (ranging from 

210
4
 CFU/ml to 910

7
 CFU/ml), the effect on MIC was not linear and was not noticed 

until the starting inoculum was in the order of 10
7
.  One logical concept was the reduction 

in the effective concentration of the drug available to the bacteria.  Consequently, 

mechanisms such as decrease in drug molecules per bacterium or denaturing drug at high 

bacterial densities were proposed to explain the reduced efficacy observed.  However, the 

bacterial burdens were only assessed at specific time points (e.g., 3 and 18 hours) and the 

mathematical models were not fit to actual experimental data over time to substantiate 

these theoretical concepts.   

These experimental observations reported previously were similar to our 

experience.  The functional forms of the relationship between the bacterial density and 

efficacy of an antimicrobial agent were also consistent in both studies, as reflected by the 

model parameter estimate of Log N50 ( 6.55) in this study.  Our work further extended on 

their conceptual framework, and expressed the specific density (inoculum) effect as the 

effective antimicrobial agent concentration available for bacterial kill.  Specifically, the 

killing function was assumed to be inversely dependent on initial bacterial burden in a 

nonlinear fashion (i.e., bacterial killing was expected to increase with decreasing initial 
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burden).  In addition, we also included a model fit to serial bacterial burden data over 

time. 

On the other hand, Bulitta et al. tried to explain the inoculum effect with the help 

of mechanistic-based models (9).  The proposed modeling approach was shown to be 

useful in predicting the growth of resistant P. aeruginosa in external datasets, which 

could facilitate effective design of dosing regimens.  However, the proposed model was 

of moderate to high complexity; a total of 17 parameters were involved and with several 

interconnected steps.  Furthermore, no experimental evidence was put forth to support 

some of the underlying mechanistic modeling assumptions.  In contrast, our model 

structure was much less complex, and the functional relationship between initial 

inoculum and effective drug concentration proposed in our model was more straight 

forward.  As a result, the identifiability of the model and the confidence interval of the 

parameter estimates would likely be improved.  Also, some experimental evidence was 

provided to support the key conceptual framework.   

There are several limitations with this study.  Modeling was performed in only 

one drug-pathogen in this study.  We have previously performed similar time-kill studies 

with several beta-lactams against a variety of E. coli isolates expressing different beta-

lactamases (55), and the drug-pathogen combination reported in this study was the most 

dramatic illustrating the inoculum effect.  As a result, we expect the same mathematical 

model would be relevant to other drug-pathogen combinations as well.   

From the mechanistic perspective, the inoculum effect was solely attributed to the 

reduced effective drug exposure.  We provided some experimental data as shown in 

Figure 2-5 to substantiate the validity of our postulation.  However, we recognized that 
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this might still be an oversimplification of the complex interaction between an 

antimicrobial agent and a bacterial population.  Individual bacterial cell in a dense 

population could be in a different physiological state (e.g., slower growth, metabolism or 

in an inactive state), in addition to being encased in a biofilm barrier.  Despite that, in 

search of a useful mathematical model to predict bacterial response to an antimicrobial 

exposure, it is not always necessary to capture all the physiological processes 

comprehensively in the model.  The role of quorum sensing was not investigated.  From 

the modeling perspective, the inoculum effect was attributed to the baseline inoculum 

only.  In reality, the effective drug concentration may be dependent on additional 

variable(s) other than the baseline inoculum.  For example, it might also be a function of 

evolving bacterial burden.  Although we are not describing effective concentration as a 

function of instantaneous population in this study, the modeling framework is one step 

towards this direction.  Investigations are in progress to explore if effective drug 

concentration should be expressed as a function of instantaneous bacterial burden.   
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CHAPTER 3 

3MODELING OF BIPHASIC KILLING OF 

FLUOROQUINOLONES: GUIDING OPTIMAL DOSING 

REGIMEN DESIGN 

3.1 INTRODUCTION 

The problem of bacterial resistance against antimicrobials has reached alarming 

proportions in recent decades. Evidence suggests that resistance development could be 

correlated to the use of suboptimal dosing regimens (29, 57, 27, 56, 62, 34, 68). On the 

other hand, optimal dosing regimens are associated with a higher likelihood to suppress 

the development of resistance.  However, determining the optimal dosing regimen for a 

new antimicrobial is not a trivial task, since a large number of control variables can result 

in number of different scenarios to be considered. As a result, only a restricted number of 

dosing regimens are usually evaluated experimentally for new antimicrobial candidates.  

Thus, a purely experimental approach to antimicrobial development is restrictive, in that 

it may result in inefficiency or missed opportunities. Mathematical modelling can be a 

useful aid in antimicrobial development and use. It can offer unique and valuable 

guidance towards the design and testing of dosing regimens at various stages of 

development.  This can significantly reduce the number of experiments necessary in pre-

clinical and clinical investigations. 
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In our previous work, we developed a modelling approach to characterize the effect of 

antimicrobials on heterogeneous bacterial populations (43).  In addition, we developed a 

modelling framework that can predict the efficacy of different dosing regimens (42).  So 

far, the modelling approach has been so far validated on only selective drug-bacteria 

combinations and has been found to be reasonably accurate.  To ensure the robustness of 

the approach (so that it can be used with confidence in guiding the design of clinical 

trials), it is necessary to evaluate it for a broader range of drug-bacteria combinations.  

The objective of this study was to evaluate the performance of the modelling approach on 

predicting the impact of quinolone (moxifloxacin and levofloxacin) exposures on 

resistance development in Gram positive (Staphylococcus aureus) and Gram negative 

(Escherichia coli) bacteria 
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3.2 MATERIALS AND METHODS 

3.2.1 Antimicrobial agents 

 Moxifloxacin powder was provided by Bayer Pharmaceuticals (West Haven, CT) 

and levofloxacin powder was purchased from Waterstone Technologies (Carmel, IN).  A 

stock solution of each antimicrobial agent in sterile water was prepared, aliquoted, and 

stored at -70C.  Prior to each experiment, an aliquot of the agent was thawed and diluted 

to the desired concentrations with cation-adjusted Mueller-Hinton broth (Ca-MHB) 

(BBL, Sparks, MD) or sterile water.  

3.2.2 Microorganisms 

 Two standard wild-type microorganisms: Escherichia coli MG1655 and 

Staphylococcus aureus ATCC 29213 (American Type Culture Collection, Rockville, 

MD) were used in the study.  The bacteria were stored at -70C in Protect (Key 

scientific products, Round Rock, TX) storage vials.  Fresh isolates were sub-cultured 

twice on 5% blood agar plates (Hardy Diagnostics, Santa Maria, CA) for 24 hours at 

35C prior to each experiment. 

3.2.3 Susceptibility studies 

 Minimum inhibitory concentration (MIC) was determined in Ca-MHB using a 

modified macrobroth dilution method as described by the CLSI (12).  The final 

concentration of bacteria in each macrobroth dilution tube was approximately 510
5
 

cfu/mL of Ca-MHB.  Serial twofold dilutions of drugs were used.  The MIC was defined 

as the lowest concentration of drug that resulted in no visible growth after 24 hours of 

incubation at 35C in ambient air.  To determine the minimum bactericidal concentration 
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(MBC), samples (50 L) from clear tubes and the cloudy tube with the highest drug 

concentration were plated on Mueller-Hinton agar (MHA) plates (Hardy Diagnostics, 

Santa Maria, CA).  The MBC was defined as the lowest concentration of drug that 

resulted in  99.9% kill of the initial inoculum.  Drug carry-over effect was assessed by 

visual inspection of the distribution of colonies on media plates.  The studies were 

conducted in duplicate and repeated at least once on a separate day.  

3.2.4 Mutation frequency 

Suspensions of E. coli MG 1655 and S. aureus ATCC 29213 were allowed to 

grow overnight.  The suspensions were diluted serially (10) and plated onto drug-free 

MHA and MHA supplemented with 3 MIC of moxifloxacin (for E. coli) or levofloxacin 

(for S. aureus), respectively.  The media plates were incubated for up to 72 hours at 

35°C.  Colonies were counted and the mutation frequency of resistance was determined 

by dividing the bacterial burden on drug-supplemented plates by the bacterial burden on 

drug-free plates.  The studies were conducted three times on separate days. 

3.2.5 Time-kill studies 

Time-kill studies were performed in 20 mL, using inocula of approximately 110
8
 

cfu/mL at baseline for E. coli MG1655 and approximately 110
7
 cfu/mL at baseline for 

S. aureus ATCC 29213, respectively.  A concentration range of moxifloxacin (0-8 mg/L) 

and levofloxacin (0-16 mg/L) were used for E. coli MG1655 and S. aureus ATCC 29213, 

respectively.  The drug concentrations were normalized to multiples of the respective 

MIC.  Serial samples (baseline, 2, 4, 8, 12 and 24 hours) were obtained in duplicate over 

24 hours; viable bacterial burden was determined by quantitative culture.  Prior to 

culturing the bacteria quantitatively, the bacterial samples were centrifuged at 10 000 G 



47 

for 15 minutes, and reconstituted with sterile normal saline to minimize drug carry-over 

effect.  Total bacterial populations were quantified by spiral plating (Spiral Biotech, 

Bethesda, MD) 10 serial dilutions of the samples (50 L) onto MHA plates.  The media 

plates were incubated for up to 24 hours at 35C; bacterial density from each sample was 

enumerated visually.  The theoretical (reliable) lower limit of detection was 400 cfu/mL. 

3.2.6 Mathematical modeling 

For each bacterium, all time-kill profiles were modeled collectively to derive a 

model fit and model parameter estimates.  Briefly, the rate of change of bacteria over 

time was expressed as the difference between the intrinsic bacterial growth rate and the 

(sigmoidal) kill rate (provided by the antimicrobial agent).  In both time-kill data sets, a 

biphasic killing profile was observed.  Initially there was a rapid decline in bacterial 

burden, followed by a much more gradual reduction.  This feature prompted the need for 

different maximal kill rates for the initial phase and latter phase, namely kK  and bK  

respectively.  Similarly, the concentrations needed to achieve half the maximal kill rates 

were different for both phases, namely 50C  and 50bC .  The decline in kill rate and 

regrowth over time was attributed to adaptation, expressed by a coefficient A .  Several 

hierarchical model candidates (using identical maximal kill rates, concentration-

dependent adaptation, etc.) were evaluated.  The mathematical structure of the final 

population dynamics model is as shown in Figure 3-1.  The parameter estimation process 

involved two steps.  The intrinsic bacterial growth rate ( gK ) and maximal bacterial 

population size (Nmax - to account for contact inhibition) were first derived from placebo 

control experiments.  Using these fixed growth parameter estimates, the parameter values 

in the killing function were subsequently derived using data from all active treatment 
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experiments simultaneously.  All modelling was performed with MATLAB version 7.5 

(The MathWorks, Inc., Natick, MA).  The MATLAB differential equation solver ode45 

was used together with fmincon for optimisation. 
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Figure 3-1 Bacterial growth dynamics model and various model parameters  

Population balance for a bacterial population:  

Rate of change of bacteria  = Intrinsic growth rate – Kill rate by antimicrobial agent 

( )
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G – growth rate function 

K – kill rate function 

Kg – growth rate constant for bacterial population 

N(t) – concentration of bacterial population at time t  

Nmax – maximum population size  

 C(t) – concentration of drug at time t 

 Kk – maximal kill rate constant for susceptible bacterial population  

  Kb – maximal kill rate constant for most resistant bacterial population 

C50 – concentration to achieve 50% maximal kill rate of the initial population 

C50b – concentration to achieve 50% maximal kill rate of the most resistant  

population 

H – sigmoidicity constant for bacterial population 

A – adaptation function 
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3.2.7 Computer model predictions  

Using the best-fit model parameter values derived, qualitative microbial responses 

(with respect to whether resistance would develop over time) to various clinically 

relevant drug exposures were predicted.  Briefly, the average kill rate ( D ) of different 

dosing regimens against the most resistant population was derived as shown previously 

(43), and compared to the growth rate ( gK ) of bacterial population. Resistance 

development over time is anticipated if D/Kg<1.  The pharmacokinetic parameters of 

moxifloxacin and levofloxacin were derived from previous studies (15).  All simulations 

were performed with MATLAB version 7.5 (The MathWorks, Inc., Natick, MA) and 

Mathematica 6.0 (Wolfram Research, Inc., champaign, IL). 

3.2.8 Experimental validation 

The computer simulations were compared to experimental data from an in-vitro 

hollow-fiber infection model with selected antimicrobial agent exposures for up to 120 

hours.  The experimental setup has been described elsewhere (59).  A human-like 

elimination half-life [approximately 12 hours for moxifloxacin (24, 51) and 5-7 hours for 

levofloxacin (46)] was simulated in the infection models.  Serial samples were obtained 

from circulatory loop of the infection models over time to ascertain the simulated 

pharmacokinetic exposures by a validated HPLC assay (49, 50).  

In addition, serial samples were obtained at baseline, 4, and 8 hours and daily 

(predose) in duplicate from each hollow-fiber system for quantitative culture as described 

above (to define the effects of various drug exposures on the bacterial population).  In 

addition to total bacterial population, subpopulations with reduced susceptibility were 

quantified by culturing samples on cation-adjusted MHA plates supplemented with the 
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exposed agent (moxifloxacin or levofloxacin) at a concentration of 3 MIC.  The medium 

plates were incubated at 35°C for up to 24 hours (total population) and 72 hours 

(subpopulations with reduced susceptibility), and the bacterial density of each sample 

was enumerated visually.  Susceptibilities of the isolates recovered from the drug-

supplemented medium plates at the end of the experiments to the exposed agent were 

repeated to confirm the emergence of resistance.  The mechanism of resistance was 

confirmed by PCR of the quinolone resistant determining regions (QRDR) of gyrA and 

parC (or grlA in S. aureus) genes of the resistant isolates (49, 50).  

3.2.9 Biofitness 

In the mathematical modelling analysis, the growth rate constant was assumed to 

be the same for all bacteria, regardless of fluoroquinolone susceptibility.  To support this 

assumption, parallel time-growth experiments were performed on the parent (susceptible) 

and a randomly-selected daughter (resistant) strain which has undergone molecular 

investigations.  A baseline inoculum of approximately 110
5
 cfu/mL was used.  Serial 

time samples (baseline, 1, 2, 3, 4, 6, 8, 24 hours) were taken in triplicate.  Viable bacterial 

burden for each time sample was obtained by quantitative culture as described above.  

The growth function of the mathematical model (Figure 1) was fit to the bacterial burden-

time profiles to derive the growth rates, and they were compared using student’s t-test. 

3.2.10   Resistance amplification 

To substantiate resistance amplification as a plausible cause of regrowth, 

levofloxacin time-kill experiments (control, 0.125 mg/L and 0.25 mg/L) were repeated as 

described above.  After 24 hours, each suspension (10 mL) was washed, diluted and 

plated onto drug-free MHA and MHA supplemented with 3 MIC of levofloxacin.  The 
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proportion of the bacterial population with reduced susceptibility was determined as 

described above and compared. 
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3.3 RESULTS 

3.3.1 Susceptibility studies and mutation frequency 

 

The MIC and MBC of moxifloxacin for the E. coli MG1655 isolate were found to 

be 0.0625 and 0.0625 mg/L, respectively.  On the other hand, the MIC and MBC of 

levofloxacin for the S. aureus ATCC 29213 isolate were found to be 0.25 and 1 mg/L, 

respectively.  The mutation frequency of moxifloxacin / levofloxacin resistance (at 3 

MIC) was approximately 0.5-3 x 10
-9

 in E. coli MG1655, and 2-8 x 10
-9

 in S. aureus 

ATCC 29213.  Based on these mutation frequencies, pre-existing mutants could be 

present and the inocula used in time-kill / hollow fiber model studies are therefore 

deemed to be heterogeneous. 

3.3.2 Time-kill studies 

In both sets of time-kill studies, a biphasic killing profile was observed.  These 

bacterial burden-time profiles were reasonably described by the model.  Data from the 

time-kill studies and model fits to the data are shown as overlay plots in Figure 3-2.  The 

correlation plots are shown in Figure 3-3.  The estimates of the best-fit model parameters 

are shown in Table 3–1. 



54 

0 4 8 12 16 20 24
0

1

2

3

4

5

6

7

8

9

10

time [h]

lo
g
N

 [
C

F
U

/m
l]

 

 

Placebo

0.5 x MIC

2 x MIC

8 x MIC

32 x MIC

128 x MIC

A 

0 4 8 12 16 20 24
0

2

4

6

8

10

Time [h]

lo
g

N
 [
C

F
U

/m
l]

 

Figure 3-2 Model fits to the experimental data in time kill studies. Symbols are observed 

experimental data and solid lines are best fit model predictions. (A) Moxifloxacin against 

Escherichia coli MG1655.
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Figure 3-2 Model fits to the experimental data in time kill studies. Symbols are observed 

experimental data and solid lines are best fit model predictions. (B) levofloxacin against 

Staphylococcus. aureus ATCC 29213.
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Figure 3-3 Correlation plots between experiment and model. (A) Moxifloxacin against 

Escherichia coli MG1655.  
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Figure 3-3 Correlation plots between experiment and model. (B) levofloxacin against 

Staphalococcus aureus ATCC 229213. 
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Table 3-1 Estimates of the best-fit model parameters (95% confidence intervals) 

Parameter E. coli MG1655 S. aureus 29213 

Kg (h
-1

)  0.89 (0.58-1.58) 0.51 (0.32-0.81) 

Nmax (10
9 
cfu/mL) 1.15 (0.83-1.66 ) 0.29

 
(0.13-0.83) 

Kk (h
-1

)  12.00 (11.18-13.03) 4.01 (3.78-4.46) 

Kb (h
-1

)  0.93 (0.90-1.01) 0.52 (0.48-0.59) 

C50 (mg/L) 0.22 (0.19-0.26) 0.30 (0.23-0.36) 

C50b (mg/L) 0.05 (0.011-0.0704) 0.10 (0.01-0.14) 

H 2.23 (1.77-3.81) 1.43 (1.07-2.2) 

A (h
-1

) 0.82 (0.76-0.85) 1.29 (0.27-0.32) 

  

 

3.3.3 Computer model prediction and experimental validation 

Using the best-fit model parameter estimates, predictions were made relating to 

emergence of resistance as a function of daily dose and dosing interval.  In all cases, there 

was a significant reduction in bacterial burden initially.  Regrowth and resistance 

emergence was subsequently observed with suboptimal dosing regimens, but not with 

optimal regimens.  For both bacteria, the mathematical model predictions were in general 

agreement with experimental results.  A moxifloxacin dose of 85 mg once daily (q24h) 

would be necessary to suppress E coli resistance (Appendix 1 – for reviewing purpose 

only).  We have previously shown that a simulated dose of moxifloxacin 80 mg once 

daily resulted in emergence of resistance over time, whereas resistance suppression was 

observed with 120 mg once daily (49). 
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A more comprehensive analysis was performed for levofloxacin as shown in 

Figure 3-4.  Based on the model predictions, a dose of 166 mg twice daily and 487 mg 

once daily was necessary to suppress the emergence of resistance.  A total of 8 different 

and escalating dosing regimens were used to experimentally verify the predictive 

performance of the model.  The predictive performance of the model is as shown in 

Figure 3-4.  Overall from Figure 3-4, the model prediction was reasonably reliable in 

predicting resistance emergence in 75% (6 out of 8) of the dosing experiments. For 

instance in Figure 3-4, if the model were perfect all the dark circles (levofloxacin 

exposures found to suppress bacterial population) would have been in non-shaded zone 

whereas the white circles (levofloxacin exposures found to be associated with regrowth) 

would have been in the shaded zone. However, 2 of the dark circles miss the expected 

zone which overall would results in 6 out of 8 experiments (75%) being predicted 

correctly.  Typical pharmacokinetic profiles and bacterial responses observed are as 

shown in Figure 3-5.   

 

 

 

 

 

 

 

 

Figure 3-4 Predictive performance of levofloxacin dosing strategy to suppress resistance 

in S. aureus ATCC 29213. 
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The non-shaded area depicts dosing regimens (combinations of daily dose and 

dosing frequency) predicted to suppress resistance selection; shaded area depicts dosing 

regimens predicted to be associated with regrowth (resistance selection) over time.  

Analytically, the exposures required to suppress resistance predicted were: 487 mg q24h 

(daily dose = 487 mg); 166 mg q12h (daily dose = 332 mg); and 103 mg q8h (daily dose 

= 309 mg).  The open and filled circles depict the selective validation experiments 

preformed, superimposed on the model predictions.  All filled circles should ideally be in 

the white area, and all open circles in the shaded area.  Overall, 6 out of 8 experiments 

were consistent with the model prediction (75% prediction success). 
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A 

 

Figure 3-5 Representative observed levofloxacin pharmacokinetic simulations (A) in the 

infection models. (A) Open circles are experimental observations and continuous lines 

are model best-fit. The experiments were performed up to 120 hours or when the hollow-

fiber cartridge could no longer confine the bacteria, whichever occurred earlier.



62 

B 

 

Figure 3-5 Representative observed bacterial (S. aureus) responses (B) in the infection 

models. (B) Data shown as mean ± standard deviation. The experiments were performed 

up to 120 hours or when the hollow-fiber cartridge could no longer confine the bacteria, 

whichever occurred earlier.
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3.3.4  Confirmation of resistance 

 

The mechanism of moxifloxacin resistance in E. coli (Ser 83 Leu substitution in 

gyrA) has been previously published (49). Three randomly selected resistant isolates of S. 

aureus were recovered from the drug-supplemented plates at the end of experiment 

corresponding to levofloxacin 40 mg q12h.  Susceptibility studies revealed levofloxacin 

resistance with 6- to 8- fold elevation in MIC; subsequent sequencing of QRDR showed 

substitution of Ser 80 Phe in grlA, and no mutation was observed in gyrA.  In addition, 4 

resistant isolates were recovered from the drug-supplemented plates from the experiment 

corresponding to levofloxacin 100 mg q24h.  Levofloxacin resistance was observed with 

96- to 128-fold increase in MIC.  Sequencing of QRDR revealed substitution of Ser 84 

Leu in gyrA and Ser 80 Phe in grlA. 

3.3.5 Accounting for Biofitness and amplification of resistance 

 For both bacteria, time-growth studies revealed there was no significant 

difference in the growth rates between the parent (wild-type) and daughter (resistant) 

strains.  The growth rates (mean ± SD) were 0.58 ± 0.01 h
-1

 vs 0.56 ± 0.012 h
-1

 in E. coli 

(p = 0.11) and 0.53 ± 0.01 h
-1

 vs 0.49 ± 0.024 h
-1

 in S. aureus (p = 0.07).  Under sub-

inhibitory levofloxacin concentrations, the proportion of the bacterial (S. aureus) 

population with reduced susceptibility was found to be higher after 24 hours. Under sub-

inhibitory levofloxacin concentrations;0 mg/L (control), 0.125 mg/L and 0.25 mg/L the 

proportion of the bacterial (S. aureus) population with reduced susceptibility after 24 

hours was 1.8 x 10
-9

, 5.9 x 10
-9

 and 1.9 x 10
-8

 respectively. 
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3.4 DISCUSSION 

Fluoroquinolone pharmacodynamics has been investigated extensively and it is 

well accepted that fluoroquinolones exhibit concentration-dependent antimicrobial 

activity (14, 3).  Both AUC/MIC and Cmax/MIC have been recognized to be the most 

important pharmacodynamic indices for quinolones (23, 47, 19).  However, the exposure 

necessary for favorable outcomes may not be the same for different bacteria.  A 

pharmacodynamic study of fluoroquinolones on Streptococcus pneumoniae revealed that 

an AUC/MIC ratio > 33.7 was necessary for clinical and microbiological responses (2), 

but a significantly higher AUC/MIC ratio (> 125) was necessary against Gram negative 

bacteria (23).  Furthermore, significantly different drug exposures were necessary to 

suppress resistance in S. pneumoniae and Pseudomonas aeruginosa (34).  

The feasibility of fluoroquinolones to suppress resistance has also been examined 

by our group.  In-vitro studies on the effect of moxifloxacin against a high inoculum of E. 

coli indicated that a clinical dose higher than 80 mg/day (AUC/MIC > 117) was 

associated with resistance suppression (49).  A more general study has reported an 

inverted-U relationship between fluoroquinolone exposures and resistance amplification 

(56), resistance amplification is minimal at low drug exposures, which rises to a peak at 

intermediate exposures, and eventually becoming negligible again at high enough 

exposures.  Similarly, in-vivo studies have demonstrated that resistance emergence in P. 

aeruginosa and S. pneumoniae could be related to fluoroquinolone exposures (29, 22).  

In this work we modeled the effect of two different fluoroquinolones on both 

Gram negative and Gram positive bacteria.  In time-kill studies, the classical 

concentration-dependent activity of fluoroquinolone was not observed.  Instead a 
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biphasic killing profile was seen.  There was concentration-dependent killing during the 

initial phase (i.e., bacterial burden reduction can be directly correlated to the drug 

concentration).  However, during the latter phase there seemed to be little or no 

correlation between the reduction in bacterial burden and concentration of drug.  Most of 

the killing profiles emerged as a bundle towards an asymptote.  A similar phenomenon 

was observed in both Gram positive and Gram negative bacteria.  Such an observation 

revealed that fluoroquinolone activity could be a complex combination of concentration-

dependent and independent killing. To describe the population dynamics for both 

bacteria, an alternative modelling structure rather than the general structure developed 

previously was necessary.
8
  Thus, keeping the key aspects of the previous framework, we 

have developed a model structure which was able to describe the bacterial population 

dynamics for such complex phenomena.  Instead of assuming the presence of two 

discrete populations, we described a heterogeneous population with infinite number of 

sub-populations with different drug susceptibilities.  Under a drug selective pressure, 

there was a gradual change from one type (concentration dependent) of profile to another 

(bundling) over time.  This is a novel and unique feature of a single population model 

that we propose.  Previous attempts of allowing just the maximum kill rate to vary did not 

result in satisfactory predictions (data not shown).   

We demonstrated that the model was satisfactory to describe the dynamics of 

bacterial population under the effect of fluoroquinolones. Furthermore, selective 

validation showed that the model predictions in the extended time frame (with respect to 

resistance development) were in reasonable agreement with experiments using clinically 

relevant drug exposures (i.e., fluctuating concentration over time).  In the model, we 
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made an assumption of similar growth rates for all bacteria regardless of susceptibility.  

This was later substantiated via time-growth experiments showing that there was no 

significant difference between the growth rates of parent (susceptible) and a daughter 

(resistant) strain.  However, if there was a small biofitness cost associated with resistance, 

it could have explained the bias we observed in the model predictions.  A lower drug 

exposure than anticipated would be needed to suppress resistance development over time.  

Additionally, resistance amplification was proposed as a mechanism contributing to 

bacterial regrowth.  This assumption was also supported by our experimental data.  

Finally, the mechanism of quinolone resistance was also confirmed by relevant molecular 

studies.  We recognized that the biphasic killing profiles in time-kill studies could have 

been modeled using the non-susceptible persister concept (41).  However, the emergence 

of resistance observed in hollow-fiber infections models over time would not have been 

predicted.     

An attractive feature of the model presented is that it does not require detailed 

knowledge of the mechanism of resistance as inputs.  Based on data from simple time-kill 

studies, we were able to make reasonable predictions on the likelihood of resistance 

development for both the drug-bacteria combinations.  This aspect of the model is 

especially useful in early drug development, since very often little is known about the 

resistance mechanism for novel entities.  In short, our model was validated for two more 

drug-bacteria combinations, strengthening the robustness of the modelling approach.  We 

also showed how slight changes in the model structure could help to explain the 

dynamics for different drug-bacteria combinations without a significant loss of predictive 

performance.  
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However as with all other modeling approaches our approach is not perfect. It can 

extract only that information which is contained in the data. If the data lacks dynamics 

necessary for the model to make sound predictions, it may not be able to give predictions 

exactly in agreement with experiment. These limitations could be partly overcome by 

quantifying the uncertainty in model parameters and model predictions.The confidence 

intervals that have been determined for individual parameters are one –way to address 

this uncertainty. Another way is to compute bootstrapped distributions for individual 

parameters and model predictions using repeated sampling from the original data. 

In conclusion, we extended the modelling framework to describe the activity of 

fluoroquinolones against both Gram positive and Gram negative bacteria, which allow 

optimal dosing regimens to be designed.  Our modelling approach is a promising decision 

support tool to guide investigation of new drug candidates.  Further in-vivo investigations 

are ongoing to further extend our modelling approach. 
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CHAPTER 4 

4NOVEL MATHEMTICAL MODELING FRAMEWORK TO 

GUIDE DESIGN OF OPTIMAL DOSING STRATEGIES 

FOR BETA-LACTAMASE INHIBITORS 

4.1 INTRODUCTION 

Bacterial resistance to antimicrobial agents has been rising at an alarming rate, 

and may result in many common infections becoming untreatable in the future. The cost 

of treatment as well as the risk of mortality will increase with resistance (35). This has 

led to an urgent demand for new molecular entities attacking novel molecular targets via 

completely different pathways. However, the development of new drugs is a long, non-

trivial process which has not been able to meet the current demand (54). An alternative is 

to restore the effectiveness of existing drugs. A viable approach towards that end is the 

development of inhibitors designed to target specific resistance mechanism(s). For 

instance, it has long been known that resistance mediated by production of beta-

lactamases could be tackled by an inhibitor which inhibits the function of the beta-

lactamases (drug hydrolysis). Similarly, efflux pump inhibitors could be used against 

bacteria that over-express efflux pumps to extrude drugs from the bacterial cells, thereby 

decreasing intracellular drug concentration.  

Despite the fact that inhibitors have been clinically available for a long time, 

optimal dosing strategies for inhibitors are not well established. Pharmacokinetic and 

pharmacodynamic (PK/PD) indices such as AUC/MIC, Cmax/MIC and time above MIC 
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(T>MIC) have been used widely to guide the optimal dosing of antibiotics (1). However, 

such indices may not be immediately applicable to inhibitors, since these inhibitors 

themselves have relatively weak to no intrinsic antimicrobial activity (16) and are 

generally administered in combination with an antimicrobial agent. As in the case of a 

single antimicrobial agent, variables such as dose, dosing interval and inter-subject 

pharmacokinetic differences make the process of determining optimal dosing regimens 

for drug/inhibitor combinations non-trivial. Therefore, comprehensive assessment of all 

possible dosing strategies is impractical in pre-clinical and clinical investigations. On the 

other hand, the full potential of these new inhibitor candidates may not be realized with 

empirical selection. 

 Mathematical modeling and computer simulation could greatly reduce the amount 

of experimental work involved in optimal dosing regimen design, simultaneously 

allowing comprehensive evaluation of numerous dosing strategies for drug / inhibitor 

combinations. It can be used as a decision support tool in guiding dosing strategy for the 

combination. Starting with feasible dosing strategies, modeling can produce a short list of 

the most promising strategies, which can then be evaluated experimentally. In this study, 

we propose such a modeling framework, and apply it to guide the design of optimal 

dosing strategies of a beta-lactamase inhibitor used in combination with an antimicrobial 

agent. To demonstrate our approach, a novel beta-lactamase inhibitor MK-7655, was 

used in combination with imipenem against a clinical strain of Klebsiella pneumoniae. 



70 

 

4.2 MATERIALS AND METHODS 

4.2.1 Antimicrobial agents and Inhibitors 

Imipenem was used in combination with an experimental beta lactamase inhibitor, 

MK-7655. Both imipenem and MK-7655 were obtained from Merck (Whitehouse 

Station, NJ). The first order elimination half life for both imipenem (44) and MK-7655 

(data on file, available on request) in healthy volunteers was approximately 1-1.5 h. 

4.2.2 Microorganisms 

A Klebsiella pneumoniae carbapenemase (KPC-2)-producing clinical isolate of 

Klebsiella pneumoniae (KP6339 / CL6339) was provided by Merck (Whitehouse Station, 

NJ) and used in the study. Details of molecular confirmations were published previously 

(12).  The bacterium was stored at –70°C
 
in Protect

®
 (Key Scientific Products, Round 

Rock, TX) storage
 
vials. Fresh isolates were sub-cultured twice on 5% blood agar

 
plates 

(Hardy Diagnostics, Santa Maria, CA) for 24 h at 35°C
 
prior to each experiment. 

4.2.3 Susceptibility studies 

Susceptibility of KP6339 to imipenem was assessed in the presence of escalating 

concentrations of MK-7655 (0-32 mg/l) in two-fold increments, using a modified broth 

dilution method (2). MIC was defined as the minimum drug concentration which resulted 

in no visible growth after incubation for 24 h at 35
o
C. All MIC experiments were 

conducted in triplicate and repeated at least once on a separate day. 

4.2.4 Mathematical modeling and simulations 

The dependency of MIC reduction on inhibitor concentration was characterized 

using a modified sigmoid Emax type model (39), as shown. 
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50

log log (13)
H

H H

I
MIC MIC I

I I
 

  

MIC = Minimum inhibitory concentration in presence of inhibitor 

MIC0 = Intrinsic minimum inhibitory concentration 

I = Inhibitor concentration 

Imax= Maximum inhibitor effect 

H = Sigmoidicity co-efficient 

I50 = Inhibitor concentration for 50% of maximum inhibitory effect 

 

  Logarithms of MIC taken to base 2 were used to fit the data and estimate the best-

fit parameters. Taking logarithms of MIC taken to base 2 ensures prevention of 

overweighing in fitting a heteroskedastic data. The model was then used to simulate an 

instantaneous MIC (MICi) profile, as a function of MK-7655 concentration. 

Conceptually, MICi could be thought of as a measure of imipenem susceptibility when 

MK-7655 concentration fluctuates with time. The instantaneous MIC profile was then 

superimposed on a clinically achievable imipenem serum concentration profile 

(corresponding to a clinical dose of 500 mg every 6 h), as shown in Figure 4-1. The time 

above MICi (T>MICi) was assessed quantitatively. When both imipenem concentration 

and MICi fluctuated within their respective dosing intervals, T>MICi was the total time 

when drug concentration was higher than MICi, and reported as percentage of the dosing 

interval. The effect of different magnitudes of T>MICi were assessed subsequently for 

different inhibitor dosing strategies (dose and dosing intervals). The pharmacokinetic 

profiles for the imipenem and MK-7655 are governed by following equations, 



72 

  

infusion rate elimination 0.5 ,

D
inD eD D

t t

T T

dC
R k C

dt
 

  
 

  , (15) 

                                   

infusion rate elimination 0.5 ,

I
inI eI I

t t

T T

dC
R k C

dt
 

  
 

  , (16) 

  
0.5 ,

D
eD D

t t

T T

dC
k C

dt  
  
 

  , (17) 

  
0.5 .

I
eI I

t t

T T

dC
k C

dt  
  
 

  , (18) 

Drug concentration

Inhibitor concentration

Drug infusion rate

Inhibitor infusion rate

Drug elimination constant

Inhibitor elimination constant

Dosing interval

0.5 first half hour of ev

D

I

inD

inI

eD

eI

C

C

R

R

k

k

T

t t

T T















 
   
 

ery interval

All pharmacokinetics for half hour zero order infusion

 



73 

A 

0 6 12 18 24
0

10

20

30

40

50

60

70

Time (h)

Im
ip

e
n

e
m

 c
o

n
c
e
n

tr
a
ti

o
n

 (
m

g
/l

)

 

 

 

Figure 4-1 Different concentration-time profiles. (A) Imipenem concentrations resulting 

from a clinical dose of 500 mg every 6 h. 
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Figure 4-1 (B) A typical instantaneous MIC (MICi) profile with fluctuating MK-7655 

concentrations. 
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Figure 4-1 (C) Imipenem concentration profile superimposed with MICi 
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The AUC for imipenem was computed by integrating the area under the 

imipenem profile for 24 h divided by 24. Similarly, average MICi was computed by 

integrating the area under the instantaneous MIC profile for 24 h divided by 24. 

However, when analyzed, a trend in bacterial response was not observed with increasing 

AUC/average MICi. 

4.2.5 Experimental validation 

An in vitro hollow fiber infection model (HFIM) was used to validate model 

predictions for clinically achievable concentrations of imipenem / MK-7655. The details 

of the HFIM setup were described elsewhere (57). An imipenem concentration profile 

equivalent to 500 mg every 6 h was maintained in the background; the dosing interval 

and Cmax (40 mg/l) of imipenem were kept the same for all experiments. A series of 

HFIM experiments were performed with different Cmax and dosing intervals of MK-7655, 

corresponding to escalating predicted T>MICi values (0%, 45%, 69% and 99%) as shown 

in Table 3.1.   

An overnight culture of KP6339 was inoculated into pre-warmed cation-adjusted 

Mueller-Hinton broth (Ca-MHB) (BBL, Sparks, MD) and incubated further at 35°C until 

log-phase growth. The bacterial suspension was diluted to approximately 1 × 10
5
 CFU/ml 

with Ca-MHB based on absorbance at 630 nm. Twenty ml of the diluted suspension was 

used in each experiment. At the start of each dosing interval, imipenem and MK-7655 

were administered as infusions over 30 minutes. All experiments were run for 48 h and 

serial samples were obtained in duplicate (0, 6, 12, 24 and 48 h) to determine viable 

bacterial burden. Bacterial samples were centrifuged and washed once, before plating (50 

μl) on drug-free Mueller-Hinton Agar (MHA) plates (BD Diagnostics, Sparks, MD). The 
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MHA plates were incubated for 24 h at 35
o
C and colony forming units were visually 

enumerated. To ascertain the simulated pharmacokinetic profiles of imipenem / MK-

7655, samples were withdrawn from the circulatory loop of the system and assayed in 

selected experiments. Subsequently a one-compartment model was fit to the 

concentration-time profiles of both imipenem and MK-7655. 
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4.3 RESULTS 

4.3.1 Susceptibility studies and Mathematical modeling 

 In the absence of MK-7655, imipenem MIC of KP6339 was 64 mg/l. A MK-7655 

concentration dependent decrease in imipenem MIC was observed, which was well 

characterized using parameter estimates shown in Figure 4-2. Different MK-7655 dosing 

regimens were simulated and the corresponding T>MICi are as shown in Table 4–1 and 

Figure 4-4. Additionally, two different dosing regimens of MK-7655 resulting in a 

similar T>MICi (69%) were also identified. 
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Figure 4-2 Model fit to experimental MIC data. 

 

Open circles represent imipenem MIC in the presence of different MK-7655 

concentrations. Solid line represents model fit with best fit parameters and 95% 

confidence intervals: Imax = 7.10(6.70-7.50) mg/l, H = 1.34(1.00-1.68), and I50 = 

0.94(0.75-1.13) mg/l.  When I → ∞ , MIC → 0.47 mg/l 
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Table 4-1 T>MICi for different MK-7655 dosing strategies 

MK-7655 

(mg/l) 

Dosing interval 

(h) 

MK AUC (0-

24) 

T>MICi 

(%) 

AUC/Average 

MICi 

0 - 0 0 0.22 

2 6 0.71 45 0.86 

6 6 2.12 69 3.19 

20 12 3.54 69 1.10 

20 6 7.06 99 13.71 

*All regimens had an identical backbone IPM profile and AUC = 14.1 
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4.3.2 Experimental validation 

Results of the HFIM experiments were in reasonable agreement with the model 

predictions.  An apparent trend in bacterial response was observed as T>MICi increased, 

as shown in Figure 4-3A. For the isolate investigated, T>MICi greater than 69% was 

needed to suppress the bacterial population over time. Two experiments were performed 

with different MK-7655 dosing regimens resulting in a similar T>MICi. As shown in 

Figure 4-3B, the bacterial response in these experiments was comparable and within 

experimental errors. 

 

A 

 

 Figure 4-3 (A) Observed bacterial burden over time with different T>MICi exposures.  
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B 

 

Figure 4-3 (B) Effect observed with different MK-7655 dosing regimens achieving 

similar T>MICi. Solid line: MK-7655 Cmax = 6mg/l, q6h. Dashed line: MK-7655 Cmax = 

20mg/l, q12h. Simulated T>MICi was 69% in both cases. 
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Figure 4-4  Superimposed imipenem concentration (solid line) and different iMIC  

(dotted line) profiles. (A) T>MICi = 0%. With no inhibitor MICi is constant at intrinsic 

MIC (B) T>MICi = 45%.  
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Figure 4-4 Superimposed imipenem concentration (solid line) and different iMIC  (dotted 

line) profiles. (C) T>MICi = 69%. (D) T>MICi = 69%.
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Figure 4-4 Superimposed imipenem concentration (solid line) and different iMIC  (dotted 

line) profiles. (E) T>MICi = 99%. 
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4.4 DISCUSSION 

Lack of antimicrobials with novel mechanisms against resistant bacteria has led to 

development of inhibitors which aim at restoring effectiveness of existing ones, by 

targeting specific resistance mechanism(s). Inhibitors intrinsically do not have significant 

antimicrobial activity and must be administered in combination with an antimicrobial 

agent. Intermittent dosing of an inhibitor typically results in fluctuating susceptibility 

(MIC) of the target pathogen over time; the use of conventional PK/PD indices such as 

AUC/MIC, T>MIC and Cmax/MIC may not be directly applicable under these 

circumstances. Thus, optimal dosing strategy for inhibitors may require an unprecedented 

modeling and simulation approach to address the additional system complexity.   

In our previous work, we have characterized the antimicrobial-bacteria interaction 

using a variety of modeling approaches, including conventional PK/PD indices (61). An 

approach that is simple enough yet provides us valuable insight into the system to meet 

the final objectives is most desired. Such an approach would have fewer computation 

requirements but would be novel enough to make useful predictions. Keeping this in 

mind, a mathematical modeling framework was proposed to guide the design of dosing 

regimens for drug/inhibitor combinations.  The proposed modeling framework was based 

on the concept of fluctuating susceptibilities and was useful in predicting the in vitro 

activity of MK-7655 in combination with imipenem. With minimal modification of a 

standard MIC measurement procedure, the experimental setup was relatively 

straightforward and detailed knowledge of the mechanism of inhibitor action was not 

necessary. However, the framework was not completely empirical and useful information 

of the inhibition profiles could be indirectly captured irrespective of enzyme type, 
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expression level or inhibitor affinity. The efficiency and expression levels of an enzyme 

could have direct consequences on bacterial susceptibility, which in turn would affect 

intrinsic MIC (MIC0). For example, the MIC0 would be relatively low (e.g., 2 - 4× 

elevation from baseline level) for a bacterium poorly expressing a low-efficiency 

enzyme. On the other hand, for a highly efficient enzyme expressed at a high level, the 

corresponding MIC0 would be much higher (e.g., 64 - 128× elevation from baseline 

level). Similarly, the potency and affinity of an enzyme inhibitor could be represented by 

the magnitudes of I50 and Imax. For instance, the high potency and affinity of MK-7655 

against the KPC-2 enzyme was reflected in a high Imax and a low I50 value. 

While the framework was simple and efficient in characterizing the activity of 

MK-7655, there were limitations. First, the pharmacological effect of the inhibitor 

(prevention of drug hydrolysis by the enzyme) was not explicitly characterized in the 

model. Instantaneous MIC is a theoretical concept used to reflect fluctuating 

susceptibilities over time, which may not be verified experimentally easily.  Second, the 

novel pharmacodynamic index T>MICi could be used as a surrogate to the conventional 

index T>MIC, when applying to fluctuating susceptibilities. Consistent with our 

expectation, an apparent trend was observed in bacterial response with increasing 

T>MICi. However, additional investigations are required to define a robust threshold of 

T>MICi for optimal killing by applying the framework to a larger number of drug-

inhibitor-pathogen combinations. To ascertain the robustness of the modeling approach 

studies of longer duration need to be carried out, which shall be considered in future 

investigations.  Similarly, more comprehensive dose fractionation studies should be 

performed to ascertain if similar T>MICi indeed correspond to a similar bacterial 
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response. If validated, the proposed framework could be generalized for a variety of 

inhibition mechanisms and used to screen multiple inhibitor dosing strategies. 

Instantaneous MIC could be extended to define Cmax/MICi and AUC/MICi as surrogates 

to other conventional pharmacodynamic indices, in analogy to related indices used for 

assessment of antimicrobial agent effectiveness.  The mathematical modeling framework 

could be used as a decision support tool to guide inhibitor dosing regimen design in both 

developmental as well as clinical stage.  

 In summary, an alternative computational approach is proposed for dosing 

strategy design of a beta-lactamase inhibitor. The results are promising and further in vivo 

investigations are warranted. 
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CHAPTER 5 

5 SEMI-MECHANISTIC INTEGRATED DRUG EFFECT 

AND IMMUNE RESPONSE (GRANULOCYTE 

CLEARANCE) MODEL USING NAIVE AND 

NEUTROPENIC MICE 

5.1 INTRODUCTION 

Animal infection models such as the murine thigh and pneumonia models play a 

pivotal role in antimicrobial drug discovery and development by providing valuable 

pharmacokinetic and pharmacodynamic (PK/PD) insight.  These infection models have 

been used to identify the PK/PD exposure targets for a given antibacterial agent 

associated with bacterial killing and magnitude of the PK/PD index required to achieve 

therapeutic effects facilitating the prediction of antimicrobial activity in humans. 

Although PK/PD infection models have been successfully used in early-stage drug 

evaluation, there are several factors that need to be delineated such as immune response, 

and resistance development before they can be used to predict dose in the clinical with 

high confidence. In the vast majority of these models used in drug discovery and 

development the animals are rendered severely neurtopeunic using cyclophosphamide to 

establish infection. Hence, the role of immune response and possible drug immune 

interactions are often not considered during human dose prediction using these models. 
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In an infected individual, the innate immune response primarily involving 

granulocytes often takes the first stand during an infection. Granulocytes play a key role 

in the clearance of many bacterial infections. There are very limited efforts to date to 

delineate the role of granulocytes to the ability to clear infection during chemotherapy 

(46, 47, 48) in the context of drug discovery using the neutropenic animal models. The 

contribution of the immune system is thus often not explicitly considered during drug 

dose and dose regimen determination. 

The aim of the present work is to delineate antibacterial activity attributed to drug 

effect and host immune response (granulocyte activity) by using time course bacterial 

burden from naïve and nuetropeunic mice with and without drug treatment. First, 

granulocyte activity will be characterized with the help of a semi-mechanistic immune 

response model using data from untreated naive and neurtopenic mice infection mode 

against KP1490-07. The immune response model will then be integrated with semi-

mechanistic drug effect pharmacokinetic / pharmacodynamic (PK/PD) model to describe 

time course in vivo data from treated neutropenic mice. The model will then be used to 

predict treated naive mice as validation step. 
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5.2 MATERIALS AND METHODS 

5.2.1 Microorganisms and Reagents 

Drug A, an LpxC inhibitor (in 40% sulfobutyl ether (SBE) cyclodextrin), was 

used against Klebsiella pneumoniae (KP-1490-07). The MIC of drug A versus KP-1490-

07 is 0.5 mg/mL. The strain was incubated at 35°C in ambient atmosphere as described 

by the Clinical Laboratory Standards Institute (52).  Cyclophosphamide monohydrate 

(Alfa Aesar Lot#K25U038) was used to achieve immune suppression. 

5.2.2 In-vitro growth study 

In vitro bacterial growth study was performed following CLSI methodology (12).  

Specifically, testing was carried out in 10 mL of Brain Heart Infusion medium (BHI) and 

incubated at 35C with ambient atmosphere (n=2).  Serial media samples (100 

µL/sample) were collected at t=0, 2, 4, 6, 8, 12 and 24h. 

5.2.3 In-vivo time-kill studies 

All in vivo procedures were approved and reviewed by Pfizer’s Institutional 

Animal Care and Welfare Committee. Female CF-1 mice (n=5) were rendered 

neutropenic with two oral doses of cyclophosphamide with150 and 100 mg/kg at -4 and -

1 days prior to challenge to achieve immune suppression. Inoculum was prepared in 5 

mL of BHI from frozen culture of KP-1490-07, incubated at 37
o
C overnight and adjusted 

to an OD600 of 1.1 prior to challenge both to naïve and neutropenic mice. At time of 

challenge mice were anesthetized with isofluorane and inoculated intranasally with 50 

mL of bacterial suspension (6.5 log10 cfu/mouse). At 2 hours post-challenge (T=0 hr in 

PD time course) naïve and neutropenic mice received single subcutaneous (SC) doses of 
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drug A dissolved in 40% SBE cyclodextrin at a dose volume of 10 mL/kg  (ten-fold dose 

titration from 300 to 3 mg/kg). Bacterial burden was enumerated at predetermined time-

points (0, 2, 4, 6, 8, and 24 hr post-dose). After the mice were euthanized at each time 

point lungs were aseptically harvested and homogenized in sterile saline. The samples 

were then serially diluted and plated on MacConkey plates to determine tissue burden. 

5.2.4 Mathematical modeling 

A semi-mechanistic model that integrates both the immune response and drug 

effects was employed. In this model as shown in Figure 5-1, the rate of change of 

bacterial growth over time was expressed as the difference between the intrinsic bacterial 

growth rate, kill rate by drug, kill rate by immune system and natural death rate. A one 

population drug effect model (49) was employed that assumes a continuous 

subpopulation of bacteria with adaptation estimated as a shift in EC50. Using the in vitro 

growth data the growth parameters of the model were estimated. The immune response 

was modeled using a semi-mechanistic approach with a maximum saturable killing rate 

by granulocytes. The kill rate is maximum (KIM) at very low to low bacterial burdens 

whereas it decreases as the bacterial burden increases. Such a decrease in kill rate with 

bacterial burden is necessary to account for inoculum effect (reduction in killing action as 

bacterial inoculum increases). The intensity of inoculum effect could be different for 

different for different bacteria and is modulated using the parameter Smax. Additionally 

the immune system takes time to kick off after an infection. This delay in onset of the 

immune response is accounted for by the parameter dkI. The immune response 

(granulocyte clearance) model was characterized using in vivo data from naïve and 

neutropenic mice at different starting inocula (no drug treatment). Integration of drug 
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effect was completed using time-kill data from drug treated neutropenic mice by utilizing 

fixed immune response parameters. PK from mice was fitted to a two compartment 

model. The integrated model was validated using time kill-data from neutropenic mice in 

a separate study. The model was further utilized to predict combined drug and 

granulocyte time kill from naïve mice observed in an additional study. The model was 

implemented in Monolix software (Paris, France). 
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Figure 5-1 Bacterial growth dynamics model with immune response and drug effect 

Population balance for a bacterial population:  

Rate of change of bacteria over time = Intrinsic growth rate – Kill rate by drug – Kill rate 

by immune response-Natural death rate 
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G – growth rate function 

KI – kill rate by immune response 

KN  – kill rate by natural death 

Kg – growth rate constant for bacterial population 

N(t) – concentration of bacterial population at time t  

Nmax – maximum population size  

 KIM – maximal kill rate constant by immune response 

  Kd – maximal kill rate constant by natural death 

dkg – growth delay 

dkI – immune response delay 
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Smax – maximum reduction in immune response kill rate due to inoculum effect 

            N50 – Critical inoculum for the onset of inoculum effect 

K – drug kill function 

 Kk – maximal drug kill rate constant  

C50 – concentration to achieve 50% maximal kill rate 

H – sigmoidicity constant for bacterial population 

α – adaptation function 

β – maximum extent of adaptation 

            τ – rate of adaptation 
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5.3 RESULTS 

5.3.1 In-vivo time-kill studies 

Time course of KP-1490-07 burden in lung as a function of initial inoculum 

burden in naïve and neutropenic mice without and with drug treatment is shown in Figure 

5-2 and Figure 5–3 respectively. In naïve mice without drug treatment (Figure 5-2A), net 

kill attributed to granulocyte activity in naïve mice was demonstrated with initial 

inoculum burden ranging from 1.6x10
2
  to 4.0x10

7
 cfu/mL per lung challenges. Not 

unexpectedly, neutropenic mice demonstrated net killing for bacterial challenges less 

than 1.6x10
3
 cfu/mL, net growth for challenges greater than 2.4x10

4
 cfu/mL and stasis for 

burden level of 1.6x10
4
 cfu/mL (Figure 5-2B). 

 For naïve mice with drug treatment, at 1x10
7
 cfu/mL bacterial challenge, rapid 

initial killing was affected by the antibacterial drug for the mid and high dose treated 

groups (30 and 300 mg/kg, Figure 5–3A) to a final net 2-3 log-kill. For neutropenic mice 

at 1x10
7
 cfu/mL, bacterial burden containment of the bacteria was not achieved for the 

untreated and low dose groups while stasis and 3-log kill were achieved by the mid and 

high doses, respectively (Figure 5–3B). Similar results were also observed with 2×10
6
 

cfu/mL bacterial burden. 
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Figure 5-2 Time course of KP-1490-07 burden in lung as a function of initial inoculum 

burden without drug treatment in (A) naïve mice. 
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Figure 5-2 Time course of KP-1490-07 burden in lung as a function of initial inoculum 

burden without drug treatment in (B) neutropenic mice. 
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Figure 5-3 Data from in-vivo time kill studies with drug (PF-05081090) for mice infected 

with Klebsiella Pneumoniae, KP-1490-07.  A) Naïve mice.
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Figure 5-3 Data from in-vivo time kill studies with drug (PF-05081090) for mice infected 

with Klebsiella Pneumoniae, KP-1490-07.   B) Neutropenic mice. 

 

5.3.2 Mathematical model fitting and interpretation of results 

The model-fit overlay plots with and without drug treatment is shown in Figure 5-4 and  

Figure 5-5 respectively for naïve and neuropenic mice. Granulocyte killing in naïve as 

well as neutropenic mice was well described by the proposed PK/PD model. A two-

compartment pharmacokinectic model was used to characterize the drug 

pharmacokinetics. The drug PK paramters are as shown in Table 5–2. .The model 

parameter estimates for immune response and, with integrated immune reponse and drug 

effect are shown in Table 5–1 and Table 5–3 respectively. The granulocyte kill rate was 

estimated to be approximately 1.8 h
-1

 both for naïve and neutropenic mice. The effect of 

bacterial burden on the granulocyte killing rate was however different for naïve (1.6x10
10
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cfu/mL) and for neutropenic (2.8x10
6 

cfu/mL) mice. In order to quantify the drug effect 

in addition to the granulocyte activity drug treated naïve and neutropeunic mice data were 

employed using the the integrated PK/PD model. The model reasonably described the 

time kill data observed in naïve and neutropenic mice receiving drug treatment (Figure 5-

5). Parameter estimates for the neutropenic mice suggests additional drug kill rate of 2.88 

h
-1

 with EC50 of  approximately 0.47 µg/mL and for the naïve mice an additional kill rate 

of 1.73 h
-1

 with EC50 of approximately 0.375 µg/mL.  
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Figure 5-4 Model fits to experimental data in time kill studies for immune response 

without drug for mice infected with Klebsiella Pneumoniae, KP-1490-07.  A) Naïve 

mice. Blue markers represent experimental data and red continuous lines represent model 

best-fit. For each box Y-axis is log10 cfu/lung and X-axis is time in hours. One box     

represents one experiment (initial inoculum).
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Figure 5-4 Model fits to experimental data in time kill studies for immune response 

without drug for mice infected with Klebsiella Pneumoniae, KP-1490-07.  B) 

Neutropenic mice. Blue markers represent experimental data and red continuous lines 

represent model best-fit. For each box Y-axis is log10 cfu/lung and X-axis is time in  

hours. One box  represents one experiment (initial inoculum).
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Table 5-1 Parameter estimates to characterize immune response.  

 

 

Parameter Naïve mice(SE %) Neutropenic mice 

Kg (h
-1

) 1.85 1.65 

Nmax (CFU/ml) 10
9.3

 10
9.3

 

KIM (h
-1

) 1.7(1) 1.4(3) 

Kd (h
-1

) 0.4 0.38 

N50 1.6x10
8 

2.8x10
6 

dkg - - 

dkI 0.92(5) 0.78(7) 

Smax 0.5 0.5 

 

*growth delay was not required although there in the model. Data did not show much 

growth delay. 
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Data Dose(mg/kg) 

1,2,3,4 3 

5,6,7,8 30 

9,10,11,12 300 

 

 

Figure 5-5 Model fits to experimental data in time kill studies for immune response with 

drug (PF-05081090) for mice infected with Klebsiella Pneumoniae, KP-1490-07.  A) 

Naïve mice. Blue markers represent the experimental data. Red continuous lines are 

population fits to data. For each box Y-axis is log10 cfu/lung and X-axis is time in hours. 

One box represents one experiment. 
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Data Dose(mg/kg) 

1,2,3,4 3 

5,6,7,8 30 

9,10,11,12 300 

 

Figure 5-5 Model fits to experimental data in time kill studies for immune response with 

drug (PF-05081090) for mice infected with Klebsiella Pneumoniae, KP-1490-07.  B) 

Neutropenic mice. Blue markers represent the experimental data. Red continuous lines 

are population fits to data. For each box Y-axis is log10 cfu/lung and X-axis is time in 

hours. One box represents one experiment. 

 

Table 5-2 Parameter estimates of two compartment pharmacokinetic (PK) model for drug 

PF-05081090  

PK parameter Estimate 

Cl 4.59 

V1 4.55 

V2 15.1 

Q 0.334 
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Table 5-3 Parameter estimates to characterize integration of drug (PF-05081090) effect 

and immune response in mice infected with Klebsiella Pneumoniae, KP-1490-07. 

 

Parameter Naïve mice Neutropenic mice 

Kg (h
-1

) 1.85(Fixed) 1.65(Fixed) 

Nmax (CFU/ml) 10
9.3

(Fixed) 10
9.3

(Fixed) 

KIM (h
-1

) 1.8(Fixed) 1.49(Fixed) 

Kd (h
-1

) 0.4(Fixed) 0.38(Fixed) 

N50 1.6x10
8
(Fixed) 2.8x10

6
(Fixed) 

dkg - - 

dkI 1.43(Fixed) 1.1(Fixed) 

Smax 0.5(Fixed) 0.5(Fixed) 

Kk (h
-1

) 1.73(5) 2.88(5) 

τ  0.0946(31) 0.0732(33) 

β (h
-1

) 36.1(30) 28.1(18) 

H (h
-1

) 3(Fixed) 3(Fixed) 

C50 0.375(20)
 

0.472(7)
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5.4 DISCUSSION 

From the early use of scaled serum half-life to the recent use of dynamic PKPD 

approaches, prediction of clinical dose and dosing regimen has gone through a couple of 

evolutions. The use of PKPD indices from preclinical infection models have scored a 

number of successful predictions for the clinic for new drugs. However, as new drug 

action mechanisms and combination therapy are needed to combat the menacingly 

increasing bacterial resistance, the use of PKPD indices which marry the efficacy to a 

single index (e.g AUC/MIC, %T>MIC) is incapable of dose and dosing regimen 

optimization for the clinic.  The recent evolution thus requires the use of mechanism-

based dynamic PK/PD approaches. These approaches leverage time course in vitro, and 

in vivo studies and incorporate the involved biochemical pathways of the antimicrobial 

agent(s) into the mathematical model.  

It has been recognized that despite the higher dimensionality, thus more 

information into the interaction of bacteria and antibacterial agent, the main drawback of 

such approaches is that the missing of one component of the system, i.e. the immunity in 

the prediction of clinical dose. These models assume that if the antimicrobial agent can 

keep the bacterial burden in the manageable threshold (i.e. achieve stasis, 1-log reduction, 

2-log reduction depending on the immunity suppression level of the patient), then the 

immune system can take care of the rest. Not only is this a hand waving exercise, but also 

the interaction of the antimicrobial agent with the immune system, either 

pharmacokinetically or pharmacodynamically, is completely ignored. Efforts to delineate 

the contribution of immune kill (mainly granulocyte) in the antimicrobial drug 

development, and the use of integrated immune and drug kill semi-mechanistic models 
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would be imperative in the future to accurately predict doses for immune-compromised 

and intact patients. 

The pharmacokinetic and pharmacodynamic modulatory effects of antimicrobial 

agents to the innate and specific immunity have been well documented (31, 28). 

Microlides and specifically telithromycin is prime example that modulates the PK by 

distributing to the white blood cells that increases the exposure of the drug to the bacteria. 

Also telithromycine suppresses INF-γ production thus modulating the pro-inflammatory 

mediators (cytokines). These effects account for the effectiveness of telithromycin. 

Leijh et al. (31) and Drusano et al. (18) have characterized the effect of bacterial burden 

on granulocyte clearance. Specifically Drusano et al. (18) have shown that granulocyte 

kill function is saturable with bacterial and the immune system would not be able to 

contain infection by high baseline bacterial burden. We also observed an effect of 

inoculum on immune response albeit in a different way. In our system, the kill rate by 

granulocytes decrease with inoculum, with the decrease saturating at high inocula. 

Additionally our observations showed a delay in the onset of immune response which 

was appropriately included in the immune response kill function. One of the efforts to 

integrate the immune response and drug effect is by Hope et al (28), where they 

characterized the change in burden of C. albicans in presence of drug and granulocyte 

kill. Our model is very similar to the model used by them except that we characterize the 

change in bacterial burden. However, similar to Drusano et al. they have characterized 

the inoculum effect as saturable function, which was modified in our case as described 

above.  
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The effect of bacterial inoculum on the granulocyte kill rate was different for naïve 

(1.6x10
10

 cfu/mL) and for neutropenic (2.8x10
6 

cfu/mL) mice.  This is expected since in 

neutropenic mice we expect the decrease in maximal granulocyte kill rate would be faster 

because of their compromised immune system. However, the maximal granulocyte kill 

rate, being an intrinsic characteristic, remains unchanged in both the naïve and 

neutropenic settings, further attesting the consistency of the model. However, the model 

assumes that there is no interaction between drug and granulocytes which may not hold 

true. If there is indeed any interaction, then significant differences would be expected 

between naïve and neutropenic settings, since the change in immune response would 

eventually affect drug action. Additional investigations on different strains/species are 

necessary to ascertain if drug and immune response interaction is universal or species 

dependent phenomenon. 
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CHAPTER 6 

6CONCLUSIONS AND FUTURE DIRECTIONS 

In our research we have applied novel mathematical modeling techniques to 

charactize diiferent phenomenon that are seen when antimicrobials are used to treat a 

bacterial infection both in-vitro and in-vivo. 

In the first case study, we describe the phenomenon of inoculum effect using a 

simplified mathematical model. Specifically the cause of the phenomenon was attributed 

to the biofilm barrier that could develop as the bacterial cell density increases. This may 

be an over simplification of the actual mechanism. However, with respect to explaining 

the reduced kill at higher inoculum, our approach was found adequate enough. Starking 

features of the approach are a simple model with inoculum effect related to initial 

bacterial cell concentration (baseline inoculum). Not only was the model able to describe 

the data, we also characterized the statistics of the model parameters using novel ways to 

compute confidence intervals. This type of statistical analysis is novel in the sense we 

used the concepts of joint confidence regions to quantify uncertainity in the model 

paramteters. The assumptions of the model were validated using simple colorimetry 

experiments.  

As a future direction, one may need to investigate the phenomena of inoculum 

effect much more mechanistically. Experiments could be designed to lyse the bacterial 

cells and actually see the concentration of drug inside the cell. That way transport 

equations could be used to describe the mass transfer limitations when drug passes from 
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bulk liquid to bacterial cell. Additionally, the phenomenon could be attributed to 

instantaneous bacterial population instead of baseline bacterial burden.  

In the second case study, flouroquinolone pharmacodynamics were characterized 

using a mathematical model. The pharmacodynamics were studied for both gram-positive 

and gram-negative bacteria although on different drugs. Concepts of concentration 

dependency and time dependency were applied and was show that both types of 

dependencies were seen at different times (biphasic) of the drug exposure. The model 

parameters were again analysed statistically for joint confidence regions and non-linear 

type confidence intervals. Finally the model optimal parameters were used to make 

optimal predictions using surface plot methodology.  As for predictions the numbers were 

very close to the clinically relevant doses for levofloxacin. While these predictions are for 

an early stage in-vitro study, they could be used as flags in the drug development process. 

For example, if the predictions from in-vitro expriments suggest that the dose required to 

suppress the bacterial population is much higher (orders of magnitude) than the 

permissible dose(based on toxicity/safety studies), then it is a possible red flag to decide 

upon the fate the of the candidate molecule (very early in the development stage) 

As a future study one could investigate the role of persister populations and apply 

a relevant modeling framework to characterize the data. Better quantifying the 

susceptible, resiatant and dormant modes of the bacterial subpopulations could help in 

better model building and more optimal predictions. 

In case study three, a novel mathematical framework and pharmacodynamic index 

was proposed to investigate the dynamics of antibitotic-inhibitor combinations. Such a 

framework could be very useful in designing optimal dosing strategy for the 
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combination.. A novel comcept of instantaneous MIC was introduced to capture 

fluctuating susceptibilities. This instantaneous MIC is hypothetical and ia a modeling 

convenience to capture fluctuating suscpetibilities. Nevertheless, the model could 

incorporate the properties of different inhibitors within its parameters. Additionally, the 

innovative surrogate index T > MICi could be translated to concentration dependent 

drugs as Cmax/MICi and AUC/MICi. 

One could use such a approach to investigate a range of drug-inhibitor-bug 

combinations and test for robustness. Another important aspect is to define a robust 

threshold for the novel pharmacodynamic index such that its cut-off for efficacy is 

similar for a range of drug-inhibitor-bug combinations.  Although it has been assumed in 

our approach that inhibitors inherently do not have any antimicrobial properties, it is very 

much possible that an inhibitor has significant antimicrobial properties. For example a 

beta-lactamase inhibitor may denature the beta-lactamase enzyme as well as bind itself to 

the penicillin binding proteins (PBPs). In such a case apart from studies to quantify 

fluctuating susceptibilities, one may need to incorporate the inhibitory effect into the 

pharmacodynamic model and characterize relevant combination data.  

In the final case study immune response was characterized using a novel semi-

mechanistic model and subsequently integrated with a drug effect model. Such a study is 

very important in quantifying the contribution of immune response in clearing  bacterial 

infections. This in turn is crucial in designing optimal dosing regimens since neglecting 

the immune component may result in overprediction of the required dose to clear the 

infection. Such suboptimal dosing is not advised considering that suboptimal dosing 

results in amplification of resistance. In this case study, we were successfully able to 
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characterize the suppression or amplification of infection in both naïve and neutropenic 

mice. The model was robust in the sense that almost similar parameter values were 

obtained for the immune system component for both naïve and neutropenic mice. 

Additionally similar parameter values were used to when integrating with the drug 

component and the model was good enough.  

In our study the model to characterize immune component was fairly simple. 

However, immune response is a highly complex phenomenon with various networks 

involved in it. Nevertheless our effort was amongst the first of its kind in integrating both 

components at semi-mechanistic level. The approach could be extended with inclusion of 

the immune system-drug interaction. Additionally, one could apply a very detailed 

systems biology/pharmacology approach to quantify exact mechanisms involved in the 

process. 

In a nutshell, our use of mathematical modeling is very novel and includes all 

aspects of modeling, simulation, statistics and experimental validation. The mathematics 

as shown is useful in a variety of scenarios involving infection and therapy. Such models 

are useful in providing quick assessment of the drug candidate at early stage of 

development without being intensive. The demonstrated approach holds a lot of promise 

in preclinical and clinical drug development process. 
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