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ABSTRACT

Inverse Scattering Series (ISS) algorithm can directly achieve the objectives of seismic

processing without requiring any subsurface information. For achieving the potential

capabilities of ISS algorithm, there are prerequisites that need to be satisfied. These

prerequisites (including separating the reference wave from the reflected data, estima-

tion of the source wavelet, and deghosting) can be satisfied by using Greens-theorem

methods. This dissertation provides three contributions in satisfying the prerequisites

for Inverse Scattering Series (ISS) multiple removal algorithm.

Chapter 2 examines the impact of a specific seismic-acquisition design (over/under

cables) on the wave-separation methods. When the depth difference between the two

cables is smaller, the wave-separation results are more accurate and have less errors.

In the (x, ω) domain, Green’s theorem requires the prediction point to be chosen away

from the measurement cable, but it can accommodate a non-flat cable (e.g., at ocean

bottom). Green’s theorem in the (k, ω) domain can predict the separated wavefields

on the cable. However, it requires a flat cable to perform Fourier transform over the

measurement surface.

Chapter 3 presents a method for determining the correct reference velocities. The

criteria for finding the correct reference velocities could be the invariances of source

wavelet at different output points below the cable for the point source data, or the

invariances along one radiation angle for the source array data.
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The third project investigates and compares three different wavelet estimation meth-

ods, including: (1) the Wiener filter method, (2) the spectral division method, and (3)

the Green’s-theorem method. Comparing with the other two methods, the Green’s-

theorem method demonstrates strength when the data contains random noise, since

it utilizes an integral along the measurement surface, which tends to reduce random

noise.
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1. INTRODUCTION AND BACKGROUND

One of the objectives of seismic exploration is to extract the Earth’s subsurface in-

formation from recorded seismic data in order to predict the location and extent of

hydrocarbon accumulations. This dissertation is part of a comprehensive strategy to

identify and address the outstanding and prioritized seismic-exploration challenges.

Seismic-processing methods are effective and successful when their assumptions and

prerequisites are satisfied. These methods can fail when the assumptions behind the

processing methods are not satisfied. In many circumstances, the seismic process-

ing and imaging methods require detailed and accurate subsurface information to be

effective. However, as the petroleum industry world-wide trend moves to more com-

plex and challenging offshore and on-shore plays, the inability to provide accurate

and detailed subsurface information has become an increasingly serious impediment

to the effectiveness of these methods. The inability of providing accurate and detailed

subsurface information motivates the search for new innovative methods that can de-

liver more effective capabilities than the current mainstream methods. One way to

address the challenge of the inability of providing detailed and accurate subsurface

information is to develop new methods that do not need subsurface information.

Inverse Scattering Series (ISS) methods offer a direct way of achieving the objectives

of seismic processing without requiring any subsurface information. Thus, it has the

capability to address the pressing challenges of the current seismic exploration in the
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Introduction

complex offshore and on-shore areas. However, while not requiring subsurface infor-

mation, ISS methods have their own assumptions and requirements. The assumptions

and requirements include having seismic data preprocessed before entering the com-

prehensive ISS algorithm. The prerequisites of ISS methods include: (1) identifying

and separating the reference wave from the reflected data, (2) estimating the source

signature and radiation pattern, and (3) source and receiver deghosting. When the

prerequisites are satisfied successfully, ISS methods can deliver their potential ca-

pabilities and effectiveness in achieving the objectives of data processing. These

prerequisites can be satisfied by using Green’s-theorem methods. Green’s-theorem

methods for the prerequisites also do not require any subsurface information, thus

are fully consistent with ISS methods. The combination of Green’s theorem for wave

separation and ISS methods provides every link in the processing chain with methods

that are direct, and do not require subsurface properties as a priori information.

This thesis falls with the part of the comprehensive strategy that deals with several

practical issues in the realization of prerequisites of ISS methods using the general

Green’s theorem methods. The greater realism and completeness we include in the

math-physics description of the seismic experiment, the more effectiveness can be

delivered by he seismic processing method.

Chapter 1 presents an introduction and background to the thesis. Section 1.1 provides

a general introduction of seismic exploration and the data processing chain required

by the ISS methods. Section 1.2 presents a tutorial on: (1) the basic theory of

the inverse scattering series and (2) the Green’s-theorem methods for satisfying the

prerequisites of ISS methods. In the last section, an overview of the specific advances

and contributions in this dissertation are reviewed, followed by a discussion of open

issues and future plans.
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Introduction

1.1 Introduction

Seismic physics is a subject that uses physics and mathematics methods to analyze

recorded seismic data, for predicting the structure and physical properties of the

subsurface. One of the ultimate purposes is to explore for potential hydrocarbon

reservoirs. Seismic surveys start with a man-made energy source generating a wave

propagating down into the Earth. The energy source could be air-guns in marine

seismic exploration, or dynamite, or Vibroseis for on-shore plays. As the wave propa-

gates down, it meets significant changes in the subsurface properties, where a portion

of the wave is reflected upward. The reflected waves are recorded by geophones or

hydrophones on land or in the ocean, respectively. The collection of the recorded

wavefields constitutes seismic reflection data. An example of the marine seismic ac-

quisition is shown in Figure 1.1.

The character of seismic data is affected by the source that generates the wave,

the properties of the Earth that the wave has experienced, and the nature of the

measurement or recording device (Weglein and Stolt, 2014). Therefore, the data

carries information from the energy source, the earth that the wave has experienced,

and the recording device. For a given source, the seismic energy recorded by one

receiver is a time sequence that contains several arrivals. These distinct arrivals

are called seismic events. Events are separated by (relatively) quiet time intervals.

From analyzing the reflected data (amplitude, phase, and shape), the subsurface

properties can be predicted, and ultimately the objective is to estimate the location

and properties of the potential hydrocarbon reservoirs in the Earth.

Many seismic processing and imaging methods require detailed and accurate subsur-

face information to process the data and image the subsurface. However, it becomes
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Introduction

more and more difficult to provide the accurate and detailed subsurface information

as the petroleum industry trend moves to more complex offshore and on-shore ar-

eas. New effective seismic processing methods are needed to address these challenges.

The Inverse Scattering Series (ISS) provide the opportunity/potential to achieve all

seismic processing goals without requiring any subsurface information. ISS meth-

ods have demonstrated great value and effectivenesses in providing capabilities (e.g.,

multiples prediction and removal, depth imaging and parameter inversion) for the

seismic processing tool-box, without needing subsurface information (Weglein et al.,

2003; Weglein, 2013).

The steps that seismic data are taken through from the moment they are recorded

until the time they are used to estimate subsurface properties can be described as a

seismic processing chain. ISS methods require us to follow a specific processing chain

to satisfy the data preparation requirement. At each processing step, we assume that

the previous steps have been successfully achieved. In order to describe the processing

chain, it is convenient to first define and catalogue different types of seismic events

according to their history in the subsurface. After defining the groups of events, we

describe the data processing chain required by ISS methods, for the final purpose of

imaging and inversion of the subsurface properties.

First, I use a marine towed-streamer acquisition as an example to illustrate the event

category (Figure 1.2). The events categories include:

(1) Reference wave. Perturbation theory separates the real world into two parts:

the reference medium, whose property is known, plus a perturbation, which is the

difference between the actual and reference properties. The wavefield that travels in

the reference medium is defined as the reference wave P0. The difference between the

reference wave and the actual wave is the scattered wave Ps. The choice of reference
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medium can be arbitrary depending on our purposes. The only commitment is the

reference medium plus the perturbation give the actual Earth and experiment. In a

marine environment, for the purpose of separating the reference wave and scattered

wave, the reference medium is chosen as a half-space of water plus a half-space of air.

In this reference medium, the reference wave includes the direct arrival, which travels

directly from the source to the receiver, and its ghost, which starts the history from the

source upward, hits the air-water interface, and then reaches the receiver. It is marked

as Event 1 in Figure 1.2. The reference wave P0 does not experience the subsurface

in its history. Since the objective is to determine subsurface properties from the data,

the first step in the seismic data processing is to remove P0 from the scattered wave

Ps. However, the reference wave contains information of the source wavelet, which is

also an essential information required in many processing steps. Therefore, it is useful

to identify and remove the reference wave before all the following data analysis.

(2) Ghosts. Ghosts include the source ghosts, the receiver ghosts, and the source-

receiver ghosts (Event 3 and 4 in Figure 1.2). Source ghosts are the events that begin

the propagation by traveling upward from the source to the air-water boundary, and

receiver ghosts are the ones that end the history by traveling downward from the air-

water boundary to the receiver. Source-receiver ghosts have both of the characters in

their traveling history. The process of removing ghosts is called deghosting. Deghost-

ing is an important data preprocessing step. Removing the ghosts will remove the

notches in the frequency spectrum and boost the low frequency contents, thus it can

enhance the resolution of seismic data.

After removing the reference wave and the ghosts from the data, seismic events are

classified into two groups,

(3) Primaries. After removing the ghosts, we define the wavefields that have expe-

5
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Fig. 1.1: Marine seismic acquisition. (http://www.open.edu/openlearn/science-
maths-technology/science/environmental-science/earths-physical-resources-
petroleum/content-section-3.2.1)

Fig. 1.2: Seismic events and the category
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rienced only one upward reflection in the subsurface as the primaries (Event 2 in

Figure 1.2).

(4) Multiples. After removing the ghosts, multiples are defined as the events that

have been reflected multiple times in the subsurface. Depending on the location

of the reflection, multiples can be classified as free surface multiples (Event 5 in

Figure 1.2) and internal multiples (Event 6 in Figure 1.2). Free surface multiples are

the events that have at least one downward reflection at the free surface (air-water

or air-land boundary), whereas internal multiples have all their downward reflections

happen below the free surface.

Fig. 1.3: Seismic data processing chain

Figure 1.3 shows the data processing chain required by ISS methods. After recording

the data, we need to: (1) identify and remove the reference wave, (2) remove ghosts,

(3) remove free surface multiples, (4) remove internal multiples, and finally (5) con-

duct imaging and inversion of subsurface. This processing chain can be understood

starting from the objective of seismic exploration – extracting the subsurface informa-

tion from the seismic data. Because the primaries have only experienced one upward

7
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reflection in the subsurface, it is relatively easy to estimate the structure and proper-

ties of reflectors from them. Currently, most seismic imaging and inversion methods

have the primary-only assumption, which assumes that the seismic data contain only

primaries.

Multiples contain information of the subsurface, too. However, the complex relation-

ship between multiples and the subsurface reflectors makes it difficult or impossible

to use multiples as useful signals for imaging. Therefore, we treat multiples as a

form of coherence noise that need to be removed. Multiple removal is one of the

biggest challenges in the seismic exploration. The current petroleum industry world-

wide trend is moving towards areas with more complex and challenging offshore and

on-shore plays. In these complex areas, multiples may be proximal to or interface

with primaries, which will make the traditional adaptive-subtraction method fail. To

solve this pressing issue, Inverse Scattering Series (ISS) methods provide a direct

and comprehensive way to separate the multiples and the primaries. In particular,

ISS free surface elimination method can predict the amplitude and phase of free sur-

face multiples accurately, and ISS internal multiple attenuation algorithm can predict

the exact phase and approximate amplitude of all internal multiples (Weglein et al.,

1997, 2003). It only uses reflected seismic data as the input, and does not require any

subsurface information.

In order to deliver the effectiveness and power of ISS multiple removal algorithms,

there are prerequisites that need to be satisfied. The prerequisites include: (1) iden-

tifying and separating the reference wave from the reflected data, (2) estimating the

source signature and radiation pattern, and (3) source and receiver deghosting. These

prerequisites can be realized by using Green’s-theorem methods. Green’s-theorem

methods for the prerequisites also do not require any subsurface information, thus
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are fully consistent with ISS algorithms. The combination of Green’s theorem for

wave separation and ISS methods provides every link in the processing chain with

methods that are direct, and do not require subsurface properties as a priori infor-

mation.

In order to make ISS algorithms stronger, Mission-Oriented Seismic Research Program

(M-OSRP) proposed a three-pronged strategy (Weglein, 2013), including:

(1) Improving satisfaction of prerequisites (in particular developing methods for on-

shore);

(2) Building stronger algorithms (eliminating internal multiples of all orders);

(3) Developing consistent adaptive criteria and subsequent prediction methods.

The research in this dissertation falls in the comprehensive strategy in improving

the satisfaction of data prerequisites of ISS multiple removal algorithm. In the next

section, in order to understand why ISS methods and Green’s-theorem methods can

achieve all the processing objectives without subsurface information, a tutorial on the

inverse scattering series and Green’s-theorem methods for prerequisites will be given.

For the details of the ISS multiple removal algorithm, readers are referred to Weglein

et al. (2003), Weglein et al. (1997), Carvalho (1992) and Araújo (1994). Recent tests

on offshore and on-shore field data can be found in Weglein (2013), Fu et al. (2010)

and Ferreira (2011), and recent research towards multiple elimination can be found

in Liang et al. (2013), Ma et al. (2011), Herrera and Weglein (2013) and Zou and

Weglein (2013).
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1.2 Inverse scattering series, Green’s theorem, and seismic data

preprocessing

In this section, a tutorial on the inverse scattering series and the Green’s theorem

methods for satisfying the data requirement of ISS methods will be given. Under-

standing the theory background of ISS methods will help us understand why this

powerful algorithm can achieve all the seismic processing objectives in principle with-

out needing any subsurface information.

Before introducing inverse-scattering series, we need to introduce the forward scat-

tering series. Scattering theory separates the actual medium as the reference medium

plus a perturbation. The choice of the reference medium can be arbitrary according

to our purposes. The only requirement is the reference plus the perturbation give the

actual earth and experiment. The forward scattering series construct the scattered

wave from the knowledge of the reference medium and perturbation. In the actual

medium, the wavefield satisfies the wave equation,

LG = δ, (1.1)

where L is the differential operator in the actual medium, G is the corresponding

Green’s function, and δ represents an impulsive source. Similarly, in the reference

medium, the wave equation is,

L0G0 = δ, (1.2)

where L0 represents the differential operator of the reference medium, G0 is the

Green’s function in the reference medium, and δ represents an impulsive source.

We define the perturbation operator, V , and the scattered field ψs as the differences

10
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between the actual and the reference, e.g.,

V = L− L0, (1.3)

ψs = G−G0. (1.4)

In perturbation theory, Lippmann-Schwinger equation (Taylor, 1972) tells us,

G = G0 +G0V G, (1.5)

which shows the relationship of the actual wavefield G, the reference wavefield G0,

and the perturbation V . Now, if we substitute G on the right side of Equation 1.5 as

itself, we can get an infinite series,

ψs = G−G0 = G0V G0 +G0V G0V G0 + ... (1.6)

= (ψs)1 + (ψs)2 + .... (1.7)

The above infinite series is the forward scattering series, which can predict the actual

wavefield from the reference Green’s function G0 and the perturbation operator V .

Forward scattering series is for modeling the wavefields from the known actual medium

(known L0 and V ).

On the other hand, inverse scattering series help us to predict the perturbation from

the measured data. Equation 1.7 indicates the scattered wavefield ψs can be written

as a series in terms of the perturbation V . This suggests that the perturbation V can

also be written as a series in terms of data,

V = V1 + V2 + V3 + ..., (1.8)
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where Vi means the ith order in (ψs)m.s.. If we substitute Equation 1.8 into Equa-

tion 1.6, and evaluate both sides of the equation on the measurement surface, we can

get a series of equations by collecting the terms of equal order in the data,

(ψs)m.s. = D = (G0V1G0)m.s. (1.9)

0 = (G0V2G0)m.s. + (G0V1G0V1G0)m.s. (1.10)

0 = (G0V3G0)m.s. + (G0V1G0V1G0V1G0)m.s.

+(G0V2G0V1G0)m.s. + (G0V1G0V2G0)m.s. (1.11)

... .

(ψs)m.s. is the measured scattered wavefield (the data), and G0 can be calculated

from the reference medium, hence, V1 can be solved directly from Equation 1.9. V1

is the linear portion of the perturbation in terms of the data. Having V1, we can

solve V2 from Equation 1.10 similarly, and likewise for the further terms of Vi. In the

end, the perturbation V = V1 + V2 + V3 + ... can be found directly from the scattered

wavefield on the measurement surface and the reference medium information, without

specifying any model type of the Earth (acoustic, elastic or anelastic etc.).

In fact, some subseries of the inverse scattering series can achieve some specific tasks

on their own. In practice, we use the idea of “isolated-tasks” to isolate the purposes of

data processing (Weglein et al., 2003). Some particular subseries of inverse scattering

series can predict and remove the free surface multiples, and some other subseries

can accomplish the task of attenuating the internal multiples from the data. For

the details of ISS multiple removal algorithm, readers are referred to Weglein et al.

(2003), Weglein et al. (1997), Carvalho (1992) and Araújo (1994). Recent tests on

offshore and on-shore field data can be found in Fu et al. (2010) and Ferreira (2011),
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and recent research towards beyond attenuation can be found in Liang et al. (2013),

Ma et al. (2011), Herrera and Weglein (2013) and Zou and Weglein (2013).

To make the ISS algorithms achieve their high fidelity of multiple prediction, nec-

essary prerequisites are needed. The prerequisites include: (1) removal of reference

wave, (2) removal of ghosts, and (3) estimation of source signature and radiation

patterns. Better delivery of the prerequisites will produce better multiple predic-

tions. The Green’s-theorem methods for prerequisites can achieve all these three

goals without needing any subsurface information. The flexibility of Green’s theorem

comes from the freedom of the choice of reference medium in perturbation theory. For

the current time, the Green’s-theorem methods for P0 Ps wave separation, deghost-

ing, and wavelet estimation in the marine environment is mature and have already

been tested in both synthetic data and field data (Zhang, 2007; Mayhan et al., 2011;

Mayhan and Weglein, 2013; Tang et al., 2013; Yang et al., 2013). In this section I

will use the marine seismic exploration as an example to introduce the basic theory

of Green’s-theorem-derived seismic data preprocessing methods.

Let’s assume that a source A(t) is placed at ~rs, and a receiver is placed at ~r. In an

acoustic, constant density world, the pressure wavefield P satisfies the wave equation,

(
∇2 − 1

c2(~r)

∂2

∂t2

)
P (~r, ~rs, ω) = A(t)δ(~r − ~rs). (1.12)

Fourier transform over time t gives the equation in the frequency domain,

(
∇2 +

ω2

c2(~r)

)
P (~r, ~rs, ω) = A(ω)δ(~r − ~rs). (1.13)

Perturbation theory separates the actual medium into a combination of an unper-

turbed medium, called the reference medium, and a perturbation. Perturbation α is
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defined by

1

c2(~r)
=

1

c20
[1− α(~r)],

where c0 is the velocity in a homogeneous reference medium. Now the actual velocity

is described in terms of the reference velocity, c0, and a perturbation, α(~r). Then

Equation 1.13 becomes

(
∇2 +

ω2

c20

)
P (~r, ~rs, ω) =

ω2

c20
α(~r)P (~r, ~rs, ω) + A(ω)δ(~r − ~rs)︸ ︷︷ ︸

ρ(~r,ω)

. (1.14)

The right-hand side of Equation 1.14 can be viewed as the source ρ of the wavefield

P . The source ρ has two terms: the perturbation α, which generates the scattered

wave Ps, and the active source A(ω), which is the energy source that generates the

wave P . The corresponding Green’s function satisfies,

(
∇2 +

ω2

c20

)
G0(~r, ~r′, ω) = δ(~r − ~r′). (1.15)

Equation 1.15 has infinite number of solutions of Green’s functions. Among these

infinite number of solutions, the causal solution, G+
0 , is generated when the source

goes off and moves away from the source. On the other hand, the anti-causal solution,

G−0 , exists for the time before the source explodes, and moves towards the source.

In order to predict a physical wavefield P , we need to use the causal solution G+
0 to
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calculate, i.e.,

P (~r, ~rs, ω) =

∫
∞
G+

0 (~r, ~r′, ω)ρ(~r′, ω)d~r′ (1.16)

=

∫
∞
G+

0 (~r, ~r′, ω)
[
k2α(~r′)P (~r′, ~rs, ω) + A(ω)δ(~r′ − ~rs)

]
d~r′

=

∫
∞
G+

0 (~r, ~r′, ω)k2α(~r′)P (~r′, ~rs, ω)d~r′ + A(ω)G+
0 (~r, ~rs, ω), (1.17)

where k = ω/c0. The first term on the right-hand side of Equation 1.17 is the source

that generates the difference between the total wavefield P and the reference wavefield

P0. Therefore, P0 is given by,

P0(~r, ~rs, ω) = A(ω)G+
0 (~r, ~rs, ω). (1.18)

The difference between P and P0 is defined as the scattered wavefield Ps, which is

Ps = P − P0. (1.19)

Thus, Ps satisfies

Ps(~r, ~rs, ω) =

∫
∞
G+

0 (~r, ~r′, ω)
ω2

c20
α(~r′)P (~r′, ~rs, ω)d~r′. (1.20)

On the other hand, according to Green’s theorem, a vector field A satisfies relation-

ship, ∫
V

d~r′(∇ ·A) =

∮
S

dSn̂ ·A. (1.21)

Now assuming the field has a form A = φ∇ψ−ψ∇φ, where φ and ψ are scalar fields,

15
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then we have the Green’s second identity,

∫
V

(φ∇′2ψ − ψ∇′2φ)d~r′ =

∮
S

[φ∇′ψ − ψ∇′φ] · n̂dS. (1.22)

Now suppose that φ = P and ψ = G0. Plugging Equation 1.14 and Equation 1.15

into Equation 1.22, we have the left hand side of Equation 1.22,

LHS =

∫
V

(P∇′2G0 −G0∇′2P )d~r′

=

∫
V

(
P (~r′, ~rs, ω)

[
−ω

2

c20
G0(~r, ~r′, ω) + δ(~r − ~r′)

]
−G0(~r, ~r′, ω)

[
−ω

2

c20
P (~r′, ~rs, ω) + ρ(~r′, ω)

])
d~r′

=

∫
V

P (~r′, ~rs, ω)δ(~r − ~r′)d~r′ −
∫
V

G0(~r, ~r′, ω)ρ(~r′, ω)d~r′. (1.23)

The right hand side of Equation 1.22 is the surface integral,

RHS =

∮
S

[P (~r′, ω)∇′G0(~r, ~r′, ω)−G0(~r, ~r
′, ω)∇′P (~r′, ω)] · n̂dS.

The value of the first term on the left hand side of Equation 1.22 depends on where

the observation point ~r is. If ~r is chosen to be inside the volume V , then the first

term becomes P (~r, ~rs, ω), due to the character of Dirac delta function. When ~r is

outside of the volume V , the volume integral becomes zero. Therefore,

~r in V P (~r, ω)

~r out V 0

 =

∫
V

G0(~r, ~r′, ω)ρ(~r′, ω)d~r′

+

∮
S

[P (~r′, ω)∇′G0(~r, ~r′, ω)−G0(~r, ~r′, ω)∇′P (~r′, ω)] · n̂dS.

(1.24)
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Equation 1.24 provides the basis for several applications of Green’s theorem in seismic

data processing. It enables us to predict the wavefield inside a volume V , when we

have the surface measurements of the wavefields and a complete knowledge of the

medium inside the volume, including the active sources and the medium properties.

All the Green’s-theorem-based seismic data preprocessing methods in this disserta-

tion, including separating the reference wave P0 and scattered wave Ps, source wavelet

and radiation estimation, and deghosting, use the form of Equation 1.24 as a frame-

work and a starting point.

When deriving Equation 1.24, the only requirement of Green’s function is that it sat-

isfies Equation 1.15. This means G0 can be either causal, or anti-causal, or any combi-

nations of them, as long as it satisfies Equation 1.15. When we choose G0 = G+
0 , and

~r to be inside V , we can compare Equation 1.24 with Equation 1.16. Equation 1.16

can be rewritten as,

P (~r, ~rs, ω) =

∫
∞
G+

0 ρd~r
′ =

∫
V

G+
0 ρd~r

′ +

∫
∞−V

G+
0 ρd~r

′. (1.25)

Equation 1.25 is valid at any point ~r in the space, while Equation 1.24 can only

provide the wavefield P inside the volume V . If we use G+
0 in Equation 1.24, and

choose the observation point ~r inside the volume V , the wavefield predicted by both

equations should be equal. The first term in both equations are the same. Therefore,

the second term should be equal, i.e.,

∫
∞−V

G+
0 ρd~r

′ =

∮
S

[P∇G+
0 −G+

0∇P ] · n̂dS. (1.26)

The above equation shows that the surface integral gives the contribution to the

portion of the field inside the volume V due to the sources outside the volume (Morse
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and Feshbach, 1953). The surface integral extinguishes the portion of the field in

the volume due to the sources inside the volume. This property can be used to

separate the fields into two parts: the fields that are contributed by the sources inside

the volume, and the fields that are due to the sources outside the volume. In this

dissertation, in each chapter I will start from the basis of Green’s theorem to discuss

the specific form of Green’s theorem for achieving our purposes (wavefield separation,

wavelet estimation, etc.).

1.3 Overview of the dissertation

This dissertation focuses the discussion in several outstanding issues in the realization

of the theories for satisfying prerequisites of ISS methods, including: (1) how the

actual data acquisition would impact the wave separation in the marine environment,

(2) how can we determine the reference velocities for land application, and (3) how

can we choose the appropriate wavelet estimation methods for different purposes. The

more realism and completeness we include in the description of the seismic experiment,

the more effectiveness these theories can deliver.

Chapter 2 discusses several practical issues of separating the reference wave and the

scattered wave in the marine seismic exploration. A realistic and accurate description

of how data are actually acquired is analyzed and incorporated. Green’s theorem

requires the wavefield P and its normal derivatives Pn on the measurement surface

as the input. In the marine application, over/under cable is often used for acquiring

the data, which measures the pressure wavefield at different depths. I use a finite-

difference approximation to obtain the normal derivatives of the wavefield. The test

result shows that the closer of the over/under cable is, the less error will be predicted
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in the wave-separation results. An adjustment of the current theory is proposed for

avoiding the finite difference approximation. In addition, the Green’s theorem wave

separation method is studied both in the (x, ω) domain and in the (k, ω) domain.

In the (x, ω) domain, Green’s theorem requires the prediction point of the separated

wave to be chosen away from the measurement cable. But it can accommodate a non-

flat cable, which is often used at ocean bottom. On the other hand, Green’s theorem

in the (k, ω) domain can predict the wavefield of P0 or Ps on the cable (separating

the wave types in the measured data). However, it requires a flat cable to perform

Fourier transform over the measurement surface.

In Chapter 3, I describe and address an issue that arises with the extension of the

marine prerequisites satisfaction to land application. In theory, the reference medium

information is supposed to be known. For the on-shore application, the near surface

medium property is often difficult to determine. ISS methods require the reference

medium to agree with the actual medium at and above the measurement surface.

Therefore, finding the reference medium property becomes a challenge for land. Chap-

ter 3 presents a method for determining the correct reference velocities. The method

depends on the fact that the wave-separation methods to determine the reference

wave and the source signature will produce the same wavelet at every output point

below the cable when the reference medium is correct. By “correct” we mean the ref-

erence medium agrees with the actual medium at and above the measurement surface.

I propose to use the invariances of source wavelet at different output points below

the cable (for the point source data), or invariances in one radiation angle (for the

source array data), as the criteria for having the correct reference velocities. This idea

is first shown using an analytic example and then tested using a synthetic example

in the marine environment. Future study will move towards complex on-shore near
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surface medium and reference wave prediction, based on a similar thinking of using

the invariances as the criteria.

Chapter 4 starts to discuss several different methods for source wavelet estimation,

including: (1) the Wiener filter method, (2) the spectral division method, and (3) the

Green’s theorem method. The comparison will help us choose the appropriate method

for wavelet estimation under different circumstances and purposes. The Wiener filter

method and spectral division method offer a direct way of extracting wavelet from

the reference wave. However, the reference wave may not always be available from

the data directly. The Green’s theorem method demonstrates strength when the

data contains noise, since it utilizes an integral along the measurement surface, which

tends to reduce random noise. In Chapter 4, I also present the wavelet estimation

result from a marine field data set, using the Wiener filter method. The wavelet

result is used in the first ISS depth imaging field data test for the purpose of data

regularization.

Chapter 5 gives a summary of this dissertation.
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2. IMPACT OF DATA ACQUISITION ON THE

WAVE SEPARATION METHOD

2.1 Chapter overview

In this chapter, I discuss several practical issues when realizing the Green’s-theorem-

based wave-separation theory in the marine seismic exploration. A realistic and ac-

curate description of how data are actually acquired is analyzed and incorporated for

a better realization of the wave separation theories. I consider how the details and

specifics of seismic acquisition impact the P0 Ps wave separation theories, as well as

how can we best accommodate the reality of the data acquisition design for the real-

ization of Green’s theorem. Green’s-theorem methods can separate P0 and Ps through

a surface integral along the cable, without requiring any subsurface information. The

inputs of Green’s theorem are the wavefield P and its normal derivative Pn on the

measurement surface. However, in the marine application, either over/under cable,

which measures the pressure wavefields at different depths, or the dual sensor cable,

which measures both the pressure and the vertical velocities, are used for acquiring

the data. To obtain the normal derivatives of the wavefield, I use a finite-difference

approximation of the wavefields from the over/under cable. Test results show that

this approximation will generate some errors when the depth between the over/under

cable is large. This issue can be solved by constructing the wavefield and its normal
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derivative at a new depth between the over/under cable, using the measured wave-

fields on both cables and a Green’s function that vanishes at the two cables. This is

an adjustment of the wave separation theory, for better accommodating the way data

are actually acquired.

In addition, the wave-separation theory is studied both in the (x, ω) domain and in

the (k, ω) domain. In the (x, ω) domain, Green’s theorem requires that the depth

difference between the prediction point and the measurement surface need to be at

least half of the receiver sampling. But it can accommodate a non-flat cable (e.g., at

ocean bottom). In order to predict the wavefield of P0 or Ps on the cable (separating

the wave types in the measured data), Green’s theorem in the (k, ω) domain can

achieve it. However, it requires a flat measuring cable to perform Fourier transform

over the measurement surface.

2.2 Theory

In Section 1.2, I have discussed the general framework of Green’s theorem for its

applications in the seismic data preprocessing. Now I will focus on the application

for separating the reference wave P0 and the scattered wave Ps, using the marine

exploration as an example.

The freedom of choosing the reference medium is the key of the flexibility and power

of Green’s-theorem methods. The only assumption is that the reference medium plus

the “sources” give the actual medium and experiment. The inverse-scattering series

methods require that the reference medium agree with the actual medium at and

above the measurement surface. Therefore, in the marine environment, we can choose

the reference medium as a half-space of air plus a half-space of water, separated by a
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free surface (Figure 2.1). Then on top of this reference mdium, there are two sources:

the air guns in the water column and the earth below the ocean bottom (Figure 2.2).

In this reference medium, the Green’s function G0 has two parts: Gd
0, which travels

directly from the source to the receiver, and GFS
0 , which has a downward reflection

at the free surface (Figure 2.3).

Fig. 2.1: Choosing the reference medium as a half-space of air and a half-space of water
in marine exploration

Fig. 2.2: Two sources: air guns and earth

Equation 1.26 tells us that the surface integral of
∮
S
[P∇G+

0 − G+
0∇P ] · n̂dS gives
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the contribution to the field inside the volume V due to the sources outside the

volume, when evaluated at ~r inside V . Choosing the reference medium as shown in

Figure 2.1, and the volume V as shown in Figure 2.4, when ~r is inside V , the above

surface integral provides the portion of wavefield P due to the sources outside the

volume, which are the active sources in this picture. The portion contributed by the

active sources are the reference wavefield P0, which is,

P0(~r, ω) =

∫
∞−V

d~r′ρairguns(~r′, ω)G+
0

=

∮
S

[P∇G+
0 −G+

0∇P ] · n̂dS. (2.1)

Equation 2.1 can provide the reference wavefield P0 at any point ~r below the mea-

surement surface, as long as we have P and ∂P
∂n

on the measurement surface. The

active source can be a single point source, or a source array, or with any character.

It also does not need the information of the subsurface. This character of Green’s

theorem is fully consistent with the Inverse Scattering Series methods, thus can serve

it perfectly.

Fig. 2.3: Green’s function in the reference medium
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Fig. 2.4: Choosing V as the hemisphere infinite space below the cable, and ~r below the cable
to predict P0.

Fig. 2.5: Choosing V as the space between the free surface and the cable, and ~r above the
cable to predict Ps.

Similarly, for the purpose of predicting the scattered wave Ps, we can choose the

volume as the region between the free surface and the measurement surface, with the

prediction point inside the volume (Figure 2.5). Then outside the volume the only

source is the Earth. The wavefield that is contributed from the earth is the scattered

wave Ps. Therefore, when we choose the volume as in Figure 2.5 and ~r inside V , we

can have,

Ps(~r, ω) =

∮
S

[P∇G+
0 −G+

0∇P ] · n̂dS. (2.2)
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Again, Equation 2.2 provides the portion of scattered wave Ps at any point above the

measurement surface from the wavefield P and its derivative ∂P
∂n

on the measurement

surface.

The surface integral along the closed surface S in practice becomes the integral along

the measurement surface. For the case of choosing V as the lower half semi-hemisphere

(Figure 2.4), the contribution from the infinite far-away boundary vanishes when

|~r| → ∞ when using a causal Green’s function G+
0 . From Equation 1.24, when ~r is

inside V ,

P (~r, ω) =

∫
V

G0(~r, ~r′, ω)ρ(~r′, ω)d~r′

+

∮
S

[P (~r′, ω)∇′G0(~r, ~r′, ω)−G0(~r, ~r′, ω)∇′P (~r′, ω)] · n̂dS. (2.3)

As |~r| → ∞, the second term of Equation 2.3 must vanish if G0 = G+
0 , because

P (~r, ω) =

∫
∞
G+

0 (~r, ~r′, ω)ρ(~r′, ω)d~r′. (2.4)

This condition only holds when using a causal Green’s function. If using an anti-

causal Green’s function G−0 , the surface integral does not vanish at a large |~r|.

For the volume chosen as in Figure 2.5, the contribution from the free surface also

vanishes, because both P and G0 are zero at this surface. Therefore, the integral

happens only along the measurement surface.
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2.3 Impact of acquisition on the wave separation result

From Equation 2.1 and 2.2, we can see that the inputs of Green’s theorem for wave

separation are the wavefield P and its normal derivative ∂P
∂n

on the measurement

surface. However, in practice, data acquisition can often affect the wave separation

results. In the marine environment, both over/under towed streamers and dual-sensor

streamers are recently widely used in the industry (Moldoveanu et al., 2007; Carlson

et al., 2007). An over/under towed-streamer consists of two streamers at different

depth (over/under) in the same vertical plane. Both of these cables measure the

pressure wavefield P using hydrophones. On the other hand, a dual sensor streamer

is one cable with sensors that can measure the pressure wavefield, P , and the verti-

cal component of the particle velocity, Vz, at the same depth simultaneously. Both

over/under cable and dual sensor cable have their advantages and shortcomings. For

the over/under cable, the instrument responses from both cables are the same, but

the measured fields are at different depths. Dual sensor cable can measure P and

Vz at the same depth, but the measurement of P and Vz have instrument response

differences. In addition, the measurement of Vz can have issues at the low frequency.

For the Green’s theorem-based deghosting method, Weglein et al. (2013) derived the

industry standard P − VZ summation deghosting method from Green’s theorem in

the (k, ω) domain. Weglein et al. (2013) proposed a new deghosting method that can

avoid the issues both in the (x, ω) domain and the P−Vz issues. In this chapter, I only

discuss the impact of over/under streamer acquisition to the Green’s theorem-based

P0 Ps wave separation results.
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2.3.1 The depth difference between the over/under cable

Since the wavefield P is the recorded data, the normal derivative Pn needs to be

calculated from the measurement of wavefield P in the marine environment. When

using an over/under cable, an easy way to calculate the normal derivative is to use a

finite approximation, which means subtracting the data of the upper cable from the

data of the lower cable and then divide by their depth difference, i.e.,

dP ( z2−z1
2

)

dz
=
P (z2)− P (z1)

z2 − z1
. (2.5)

As the above equation shows, the normal derivative of P is at the depth (z2 − z1)/2,

rather than at z1 or z2, where wavefield P is measured. Inputting dP ( z2−z1
2

)/dz and

P (z1) or P (z2) into the form of Green’s theorem, the finite approximation will cause

some errors in the wave separation results.

In our synthetic tests using the reflectivity method, we first used a 1D acoustic model

with the source at 5 m and two cables, one at a depth of 45 m and one at 50 m. (The

cables were placed unrealistically deep to better illustrate the results.) Thus the two

cables are separated by 5 m. An example of the total wavefield at depth 50 m is

shown in Figure 2.6.

Using Green’s theorem, the scattered wave Ps is predicted at 20 m, and P0 is predicted

at 80 m, as shown in Figure 2.7. Next, I reduce the depth difference between the two

cables to 1 m (one cable at 49 m, the other at 50 m). With the new configuration,

the predicted Ps at 20 m and P0 at 80 m are shown in Figure 2.8.

From these two results, it can be seen that when the depth difference is 5 m (in

Figure 2.7), there are several errors in both cases of P0 and Ps prediction, whereas
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Fig. 2.6: Synthetic data constructed at depth z = 50 m using reflectivity method

(a) (b) 

Fig. 2.7: Using an over/under cable with a 5 m depth difference. (a) Ps predicted at 20
m, (b) P0 predicted at 80 m.

29



Wave separation

(a) (b) 

Fig. 2.8: Using an over/under cable with a 1 m depth difference. (a) Ps predicted at 20
m, (b) P0 predicted at 80 m.

Fig. 2.9: Using three cables. (a) Ps predicted at 20 m, (b) P0 predicted at 80 m.
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in Figure 2.8, the predicted results are very satisfying. This indicates that reducing

the difference in the cable depths can significantly increase the accuracy of wave

separation results.

In reality, it is hard to make the over/under cable very close, as there are mechanic

issues (e.g., two cables might tangle together). To obtain an accurate dP/dz at the

same depth of P , now I consider the acquisition that uses three cables at different

depth. If assuming that the three cables are placed with equal vertical distance (depth

45 m, 50 m and 55 m in the example), then dP/dz at depth 50 m can be calculated

by

dP

dz
(50) =

P (55)− P (45)

55− 45
.

So now we have both P and dP/dz at depth 50 m. Using them as the inputs of Green’s

theorem, the predicted Ps at depth 20 m and P0 at 80 m are shown in Figure 2.9.

Comparing with the previous result from two cables separated by 5 m as shown in

Figure 2.7, it is clearly that the errors in the three cables case are less than those in

the result of two cables.

Another method that can avoid the issue of finite approximation of Pn is to construct

the wavefield P and Pn at a new depth between the upper and the lower cable, using

Green’s theorem. Now choose the volume as the space between the two cables, and

purposely construct the Green’s function that vanishes on both the two cables, defined

as GDD
0 . With this new Green’s function GDD

0 , the second term in the integral will

vanish on the surface. Therefore, the new wavefield P can be calculated from

P (~r, ω) =

∮
S

P (~r′, ω)
dGDD

0 (~r, ~r′mω)

dz′
d~r′. (2.6)
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Because there is no “source” ρ in this volume. A derivation of Equation 2.6 gives Pn,

dP (~r, ω)

dz
=

∮
S

P (~r′, ω)
d2GDD

0 (~r, ~r′mω)

dz′2
d~r′. (2.7)

The calculation of GDD
0 is shown in Appendix A, which is enlightened from Zhang

(2007). Now having P and Pn at the new depth between the over/under cable, it

is possible to input them into Green’s theorem method for wave separation, without

using any finite difference approximation.

2.3.2 The depth of the predicted wave

Fig. 2.10: The definition of 4z for predicting (a) Ps (b) P0.

Other factors may affect the estimated results. The actual experiment shows that the

choice of the prediction depth can change the quality of the wave separation result.

The depth difference between the prediction point and the measurement surface is

defined as 4z, illustrated in Figure 2.10. The sampling interval between the receivers

is defined as4x, which can be used as a unit to measure the length of4z. Figure 2.11

shows four results of Ps predicted at different depths above the measurement surface.
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(a) (b) 

(c) (d) 

Fig. 2.11: Predicted Ps when: (a) 4z =1/8 4x, (b) 4z =1/4 4x, (c) 4z =1/2 4x, and
(d)4z = 4x.
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(a) (b) 

(d) (c) 

Fig. 2.12: Predicted P0 when: (a) 4z =1/8 4x, (b) 4z =1/4 4x, (c) 4z =1/2 4x, and
(d)4z = 4x.

From (a) to (d), the distance between the prediction point and the cable becomes

larger. The results show that, when4z is very small compared with4x, the predicted
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Ps has many errors (Figure 2.11 (a) and (b)). When 4z becomes larger, Ps has fewer

errors (Figure 2.11 (c) and (d)). The conclusion is, in order to get a satisfying

prediction Ps result, 4z is required to be at least half of 4x. Likewise, Figure 2.12

shows the predicted results of P0 at different 4z. Similarly, only when the depth

difference between the predicted point and the actual cable 4z is larger than 1/2 of

the interval between traces, does the predicted direct wave have few residuals.

The reason behind this restriction lies in the form of the Green’s function. In 2D

marine environments, Green’s function and its normal derivative have the forms,

G0(~r, ~r′, ω) = − i
4

(
H

(1)
0 (kR+)−H(1)

0 (kR−)
)
, (2.8)

∂G0

∂z′
(~r, ~r′, ω) = −ik

4

(
H

(1)
1 (kR+)

z − z′

R+

+H
(1)
1 (kR−)

z + z′

R−

)
, (2.9)

where R± =
√

(x− x′)2 + (z ∓ z′)2. They are plotted in Figure 2.13 as a function

of the inline coordinate, x′. The measurement surface is located at depth z′ = 30m.

Different color lines indicate different prediction depths, z. The black line means the

prediction point is closest to the cable, and cyan line means the prediction point is

far away from the cable. As the prediction point moving away from the cable (4z

gets larger), both G0 and dG0/dz become more spreading. If we choose the prediction

point very close to the cable ( i.e., very small4z), the Green’s function and its normal

derivative become very local at one point. In this situation, it becomes impossible to

pick up their values in the calculation of the integral in Green’s theorem, which will

lead to the errors in the prediction of reference wave or scattered wave. Unless having

a large 4z, the calculation of Green’s theorem will suffer from this implementation

issue. This issue is also observed in deghosting method as mentioned in Weglein

et al. (2013), in which it purposes the deghosting method in the (k, ω) domain and
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Fig. 2.13: The Green’s function (top) and its normal derivative (bottom) as a function of
the inline coordinate, x′. The measurement surface is located at depth z′ = 30
m. Different color lines indicate different prediction depths, z. From the black
line to the cyan line, the prediction point is moving far away from the cable.

compares it with the method in the (x, ω) domain. Likewise, next I will discuss the P0

Ps wave separation in the (k, ω) domain, which can avoid this implementation issue.
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2.4 Wave separation in (k, ω) domain

As mentioned above, the form of Green’s function requires us to predict the wavefield

P0 or Ps below or above the measurement surface. In practice, it is often desired to

remove the reference wave from the measured data. This issue is especially important

for on-shore exploration, where strong ground rolls will be generated at near surface.

When the measurement surface is flat, it is possible to simplify the form of Green’s

theorem into the (k, ω) domain. In this case, we can avoid the implementation issue

of Green’s function. In this section, the derivation of Green’s theorem for wave

separation in the (k, ω) domain will be shown using a 2D marine example.

2.4.1 Theory

Assume in a 2D acoustic medium, the cable is placed at depth z′, and the prediction

point is at depth z. I start the derivation from the P0 Ps wave separation formula in

the (x, ω) domain, which is,

−P0(x, z, ω) when z > z′

Ps(x, z, ω) when zs < z < z′

 =

∫
m.s.

[
P (x′, z′, xs, zs, ω)

∂

∂z′
G0(x

′, z′, x, z, ω)−G0(x
′, z′, x, z, ω)

∂

∂z′
P (x′, z′, xs, zs, ω)

]
dx′.

(2.10)

The negative sign is due to the definition of the positive direction of n̂. In order to

derive the form in the (kx, ω) domain, we need to perform Fourier transform on both
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sides of Equation 2.10 over x. Then the right hand side becomes,

RHS =

∫∫
{P ∂

∂z′
G0 −G0

∂

∂z′
P}dx′ · exp(−ikxx)dx. (2.11)

Notice that only G0 and dG0/dz depend on x. First, let’s focus on Fourier transform-

ing G0(x
′, z′, x, z, ω) over x.

In the reference medium of half-space air and half-space water separated by a free

surface, Green’s function G0(~r′, ~r, ω) satisfies,

(∇′2 + k2)G0(~r′, ~r, ω) = δ(~r′ − ~r)− δ(~r′ − ~rI), (2.12)

where ~r′ = (x′, z′), ~r = (x, z) and ~rI = (x,−z). In order to simplify the calculation, I

use the plane wave decomposition of G0, which is the bilinear form,

G0(~r′, ~r, ω) =

∫
1

(2π)3
exp[i~k′ · (~r′ − ~r)]− exp[i~k′ · (~r′ − ~rI)]

−
∣∣∣~k′∣∣∣2 + k2 + iε

· d~k′. (2.13)

The 2D form of Equation 2.13 becomes,

G0(x
′, z′, x, z, ω) =

1

(2π)2∫
exp[ikx

′(x′ − x)][exp(ikz
′(z′ − z))− exp(ikz

′(z′ + z))]

−kx′2 − kz′2 + k2 + iε
·dkx′dkz ′.(2.14)

Utilizing reciprocity, we have,

G0(x
′, z′, x, z, ω) = G0(x, z, x

′, z′, ω)

=

∫
exp[ikx

′(x− x′)][exp(ikz
′(z − z′))− exp(ikz

′(z + z′))]

(2π)2[−kx′2 − kz′2 + k2 + iε]
·dkx′dkz ′. (2.15)
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Now Fourier transform over x with
∫

exp (−ikxx)dx,

∫
exp(−ikxx)G0(x

′, z′, x, z, ω)dx

=

∫ ∫
dx exp(−ikxx) exp(ikx

′x)︸ ︷︷ ︸
2πδ(kx−kx′)

exp(−ikx′x′) ·

exp(ikz
′(z − z′))− exp(ikz

′(z + z′))

−kx′2 − kz ′2 + k2 + iε
dkx

′dkz
′

= exp(−ikxx′)
∫

exp(ikz
′(z − z′))− exp(ikz

′(z + z′))

−kx2 − kz ′2 + k2 + iε
dkz

′

= exp(−ikxx′)
exp(iq|z − z′|)− exp(iq(z + z′))

2iq
, (2.16)

where q satisfies the condition q2 = k2 − k2x. And notice that the absolute value of

z + z′ is taken off since it’s always positive.

So far, we have the form of G0(kx, z, x
′, z′, ω). Next, let’s calculate the normal deriva-

tive of G0 by simply differentiating the result of Equation 2.16 with respect of z′.

∫
exp(−ikxx)

∂

∂z′
G0(x

′, z′, x, z, ω)dx

=
∂

∂z′

{
exp(−ikxx′)

exp(iq|z − z′|)− exp(iq(z + z′))

2iq

}
= exp(−ikxx′)[

iq sgn(z′ − z) exp(iq|z − z′|)
2iq

− iq exp(iq(z + z′))

2iq
]

= exp(−ikxx′)
sgn(z′ − z) exp(iq|z − z′|)− exp(iq(z + z′))

2
. (2.17)
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Now plug Equation 2.16 and Equation 2.17 into Equation 2.11, we have

RHS =∫
{P (x′, z′, xs, zs, ω)

∂G0(x
′, z′, kx, z, ω)

∂z′
−G0(x

′, z′, kx, z, ω)
∂P (x′, z′, xs, zs, ω)

∂z′
}dx′

=

∫
{ P (x′, z′, xs, zs, ω)

[
exp(−ikxx′)

sgn(z′ − z) exp(iq|z − z′|)− exp(iq(z + z′))

2

]
−
[
exp(−ikxx′)

exp(iq|z − z′|)− exp(iq(z + z′))

2iq

]
P ′(x′, z′, xs, zs, ω) } dx′

= P (kx, z
′, xs, zs, ω)

sgn(z′ − z) exp(iq|z − z′|)− exp(iq(z + z′))

2

−P ′(kx, z′, xs, zs, ω)
exp(iq|z − z′|)− exp(iq(z + z′))

2iq
(2.18)

The result of Equation 2.18 depends on the value of |z−z′|. When z > z′, which means

we choose the prediction point below the measurement surface, we have sgn(z′−z) =

−1. Considering the normal direction of the surface, we have the left hand side,

LHS = −P0(kx, z, xs, zs, ω). (2.19)

So, P0 becomes,

P0(kx, z, xs, zs, ω) = P (kx, z
′, xs, zs, ω)

exp (iq(z − z′)) + exp (iq(z + z′))

2

+ P ′(kx, z
′, xs, zs, ω)

exp (iq(z − z′))− exp (iq(z + z′))

2

=
(iqP + P ′) exp (iq(z − z′))

2iq
+

(iqP − P ′) exp (iq(z + z′))

2iq
.

(2.20)

Similarly, when choosing prediction point above the measurement surface, we have
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z < z′. So sgn(z′ − z) = 1. Then,

Ps(kx, z, xs, zs, ω) = P (kx, z
′, xs, zs, ω)

exp (iq(z′ − z))− exp (iq(z + z′))

2

− P ′(kx, z
′, xs, zs, ω)

exp (iq(z′ − z))− exp (iq(z + z′))

2

=
(iqP − P ′) exp (iq(z′ − z))

2iq
− (iqP − P ′) exp (iq(z + z′))

2iq
.

(2.21)

Equation 2.20 and Equation 2.21 give the expression of separating the reference wave

P0 and the scattered wave Ps in the (kx, ω) domain. Notice that in these results

q2 = ω2/c2 − k2x.

2.4.2 Discussion

Prediction on the cable The calculation in the (kx, ω) domain enables us to predict

P0 or Ps on the cable, which means isolating the wavefields from the data, rather

than predicting them at a different depth. When z = z′ = a, we can still set the sign

of (z − z′) as we want, and now we have,

P0(kx, a, ω) =
iqP + P ′

2iq
+

(iqP − P ′) exp (iq2a)

2iq
, (2.22)

Ps(kx, a, ω) =
iqP − P ′

2iq
− (iqP − P ′) exp (iq2a)

2iq
. (2.23)

As we can see, here

P0 + Ps = P.
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Wavelet estimation Having P0, it is also easy to estimate the source signature or

radiation pattern. Since

P0(kx, z, xs, zs, ω) = A(ω)G0(kx, z, xs, zs, ω),

and

G0(kx, z, xs, zs, ω) = exp(−ikxxs)
exp(iq(z − zs))− exp(iq(z + zs))

2iq
. (2.24)

The wavelet is,

A(ω) =
P0(kx, z, xs, zs, ω)

G0(kx, z, xs, zs, ω)

=
(iqP + P ′) exp(iq(z − z′)) + (iqP − P ′) exp(iq(z + z′))

exp(−ikxxs) [exp(iq(z − zs))− exp(iq(z + zs))]
. (2.25)

2.5 Conclusions

In this chapter, the Green’s-theorem-based method for separating the reference wave

P0 and the scattered wave Ps is shown in a marine set. The impact of acquisition

design (over/under cable) on the wave separation results is also presented. Two

factors of the acquisition design that may affect the prediction results are studied:

(1) the depth difference between the over/under cable, and (2) the depth difference

between the prediction point and the cable.

For the first issue, the closer the two cables are, the more accurate normal derivative

of wavefield ∂P/∂n it will produce from a finite difference approximation. Having the

measured wavefields at three cables will help to get more accurate prediction results.

Another way to avoid this issue is to construct P and ∂P/∂n at a depth between the
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over/under cable using a new Green’s function GDD
0 , whose value vanishes on both

cables.

For the second issue, results show that only when choosing the prediction point away

enough from the measurement surface, the wave separation has less errors and satis-

fying. The reason lies in the form of the Green’s function and its normal derivative,

which have a very local shape when the prediction point z is chosen to be very close

to the cable. In order to predict the wavefield on the cable, or isolate the wavefields

of P0 or Ps from the data, Green’s theorem in the (k, ω) domain is introduced. How-

ever, it requires a flat measurement surface to perform Fourier transform over the

inline coordinate. On the other hand, in the (x, ω) domain, Green’s theorem can

accommodate non-flat measurement surface, such as in the case of ocean bottom.
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3. DETERMINING REFERENCE-MEDIUM

PROPERTIES

3.1 Chapter overview

In this chapter, I will show a first step towards extending the prerequisite satisfaction

from offshore to land. For seismic exploration on land, one big challenge is to remove

the surface wave/reference wave from the reflected data. Because of the complex

feature of on-shore near surface medium, understanding of the near surface property

becomes a critical issue. This chapter will use marine seismic exploration as a starting

point, to illustrate how the invariances in the wavelet estimation can be used as the

criteria for predicting the reference medium properties. An analytic example will be

shown first to explain the idea of invariances in the wavelet estimation. For a point

source, the source wavelet estimated at any point beneath the measurement surface

should stay the same, while for a source array, the estimated source wavelet in one

radiation angle should be invariant. These invariances could be criteria for verifying

that we have the correct reference velocity.
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3.2 Introduction

The current trend in the petroleum industry is to explore in deep water and in areas

that have complex geology, where primary and multiple events often may be inter-

fering with or proximal to each other. In such cases, removal of the multiple events

becomes a big challenge. Inverse Scattering Series (ISS) methods offer a direct way

of removing free-surface multiples and attenuating internal multiples without requir-

ing any subsurface information. These methods have prerequisites that need to be

satisfied. The prerequisites include identifying and removing the reference wave, esti-

mating the source wavelet and radiation pattern, and deghosting source and receiver.

In order to deliver the high fidelity expected of ISS multiple predictions, effective

preprocessing methods need to be developed and improved Zhang (2007); Mayhan

et al. (2011); Mayhan and Weglein (2013); Tang et al. (2013); Yang et al. (2013).

As seismic exploration moves to increasingly complex and difficult on-shore and off-

shore plays, there are additional fundamental issues and challenges that need to be

resolved. Among these issues and challenges, removal of the reference wave on land

is a pressing and interesting topic. Scattering theory separates the real world into

two parts: the reference medium, whose property is known, plus a perturbation. ISS

methods require that the reference medium agree with the actual medium on and

above the measurement surface. The wave that travels in the reference medium is the

reference wave, and it does not experience the earth in its history, so it contains no

subsurface information. It is important to identify and remove reference waves before

the following data-processing steps.

As mentioned in Section 1.2, in inverse scattering series, the data D on the measure-
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ment surface is,

D = (G−G0)m.s.

= G0V G

= G0V G0 +G0V G0V G0 + ...

As the above equation shows, the very first step of any ISS methods (free surface

multiple removal, internal multiple removal and depth imaging) is removing G0. From

the wave equation,

L0G0 = δ,

in order to predict and remove G0, we need to know L0, which is the reference

medium. ISS methods only require the reference medium information to agree with

the actual medium at and above the measurement surface. For marine environment,

the property of water at the near surface area, where receivers are placed, is relatively

easy to define. However, for on-shore seismic applications, the near surface properties

are often complicated and difficult to determine. For example, the conditions of rocks,

soil or minerals in the near surface are not easy to define due to weathering. Strong

ground rolls can be generated, and it can obscure reflected seismic data. To remove

the ground roll/reference wave, the physical properties of the near surface is needed.

In order to study the complex on-shore or ocean bottom near surface property, I

propose to start from seeking criteria which can determine whether we have the

correct reference medium information or not. The criteria could be the presence

of some invariance that only the correct reference velocity would satisfy. I use a

marine seismic application as a starting point to pursue this idea. First, consider

an isotropic point source, which has an isotropic source wavelet in every radiation
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direction. Green’s theorem can estimate the wavelet signature everywhere below the

measurement surface. When using the correct reference velocity, the results for the

wavelet should be invariant for all output points below the measurement surface.

Using this property, the value of reference velocity we use in the wavelet calculation

that leads to an invariance of the estimated source wavelet is the correct reference

velocity. Furthermore, instead of using a single point source, in practice, source arrays

which have angle radiation pattern are widely used in industry (Loveridge et al.,

1984). Then the invariance of the estimated wavelet will happen when estimating

the wavelet at different points along one radiation angle. Similarly, only the correct

reference velocity can lead to the invariance. Thus, the invariances of the source

wavelet indicate that we have found the correct reference velocity.

3.3 Theory

3.3.1 Green’s theorem for wavelet estimation

Section 1.2 shows the framework of Green’s theorem method, and Section 2.2 gives

the formula of P0 PS wave separation. The source signature information can be

extracted once we have the reference wave P0 predicted from Green’s theorem. P0

can be calculated from Equation 2.1 when choosing prediction point ~r below the

measurement surface,

P0(~r, ~rsω) =

∫
m.s.

[
P (~r′, ~rs, ω)

dG+
0 (~r, ~r′, ω)

dz
−G+

0 (~r, ~r′, ω)
dP (~r′, ~rs, ω)

dz

]
· d~r′ (3.1)

From the relationship between the reference wave P0 and source wavelet A given by

47



Reference medium properties

Equation 1.18,

P0(~r, ~rs, ω) = A(ω)G+
0 (~r, ~rs, ω). (3.2)

Therefore, source wavelet A(ω) can be estimated by performing a surface integral and

then being divided by the corresponding Green’s function.

A(ω) =

1

G+
0 (~r, ~rs, ω)

∫
m.s.

[
P (~r′, ~rs, ω)

dG+
0 (~r, ~r′, ω)

dz
−G+

0 (~r, ~r′, ω)
dP (~r′, ~rs, ω)

dz

]
· d~r′ (3.3)

In marine seismic exploration as shown in Figure 3.1, for the purpose of estimating

wavelet, we choose the reference medium as a half-space of air plus a half-space of

water. Thus, Green’s function consists of two parts,

G0 = Gd
0 +GFS

0 . (3.4)

Equation 3.3 is the equation of the Green’s theorem-based wavelet estimation method.

~r′ is a point on the measurement surface, and ~r is the prediction point, which needs

to be chosen below the measurement surface. This equation is valid for any ~r below

the cable. Both the numerator and the denominator of Equation 3.3 are functions

of ~r, ~rs and ω. However, their quotient A(ω) is not a function of the observation

point ~r. This independence implies that A(ω) is independent of the prediction point

~r. Using this property, we can have the criterion for having the correct reference

velocity. A wrong reference velocity in the Green’s function will break this property.

The quotient will become a function of ~r. Next, an analytic example in 1D earth will

be shown to illustrate this idea.
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air 
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Earth 
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Fig. 3.1: Marine seismic exploration configuration.

3.3.2 An analytical example

In this section, an analytical example of wavelet estimation will be given to illustrate

the idea of invariance. I start with a 1D example. 1D means the wave propagates only

in z direction, and the Earth also only has z direction variance. The configuration

is shown in Figure 3.2. Therefore, the “measurement surface” is one point at depth

z′ = a. The surface integral changes to the value of (P∇G0 − G0∇P ) at the two

ends: infinite z′ = ∞ and the measurement surface z′ = a. As discussed above, the

prediction point z is chosen as below the measurement surface z′ = a. Therefore,

z > a > zs. The existence of free surface is equal to an image source. Therefore, the

Green’s function satisfies the wave equation,

(
d2

dz2
+ k2)G0(z, z

′, ω) = δ(z − z′)− δ(z + z′). (3.5)
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So Green’s function G0 and its normal derivative dG0/dz
′ in 1D are,

G0(z, z
′, ω) =

exp(ik|z − z′|)
2ik

=
exp(ik(z − z′))− exp(ik(z + z′))

2ik
, (3.6)

d

dz′
G0(z, z

′, ω) =
− exp(ik(z − z′))− exp(ik(z + z′))

2
. (3.7)

In this example, there is no perturbation below the measurement surface. Therefore,

the measured wavefield P equals the reference wave P0. On the measurement surface

z′ = a, the wavefield P and its normal derivative dP/dz′ are,

P (z′, zs, ω) = A(ω)G0(z
′, zs, ω)

= A(ω)
exp(ik(z′ − zs))− exp(ik(z′ + zs))

2ik
, (3.8)

d

dz′
P (z′, zs, ω) = A(ω)

d

dz′
G0(z

′, zs, ω)

= A(ω)
exp(ik(z′ − zs))− exp(ik(z′ + zs))

2
. (3.9)

So the predicted reference wave P0(z, zs, ω) is,

P0(z, zs, ω) = |∞z′=a
[
(z′, zs, ω)

d

dz′
G0(z, z

′, ω)−G0(z, z
′, ω)

d

dz′
P (z′, zs, ω)

]
= 0−

[
A(ω)

[exp(ik(a− zs))− exp(ik(a+ zs))]

2ik

[− exp(ik(z − a))− exp(ik(z + a))]

2

− [exp(ik(z − a))− exp(ik(z + a))]

2ik
A(ω)

[exp(ik(a− zs))− exp(ik(a+ zs))]

2

]
= A(ω)

1

2ik
[exp(ik(z − zs))− exp(ik(z + zs))]. (3.10)
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Therefore,

P0(z, zs, ω)

G0(z, zs, ω)
=
A(ω) 1

2ik
[exp(ik(z − zs))− exp(ik(z + zs))]

1
2ik

[exp(ik(z − zs))− exp(ik(z + zs))]
= A(ω) (3.11)

The above equation shows that even though both P0 and G0 depend on the prediction

point z, their quotient A(ω) is independent of z. When a wrong reference velocity

c′0 is used to predict the wavelet, Green’s functions in the above equation contains a

wrong wavenumber k′ = ω/c′0. We now have,

P0(z, zs, ω) = |∞z′=aP (z′, zs, ω) d
dz′
G0(z, z

′, ω)−G0(z, z
′, ω) d

dz′
P (z′, zs, ω)

= 0−
[
A(ω)

[exp(ik(a− zs))− exp(ik(a+ zs))]

2ik

[− exp(ik′(z − a))− exp(ik′(z + a))]

2

− [exp(ik′(z − a))− exp(ik′(z + a))]

2ik′
A(ω)

[exp(ik(a− zs))− exp(ik(a+ zs))]

2

]
= A(ω)(

1

4ik
+

1

4ik′
)[exp(i(k′z − kzs + (k − k′)a))− exp(i(k′z + kzs) + (k − k′)a))].

(3.12)

So the wavelet becomes,

P0(z, zs, ω)

G0(z, zs, ω)

=
A(ω)( 1

4ik
+ 1

4ik′
)[exp(i(k′z − kzs + (k − k′)a))− exp(i(k′z + kzs) + (k − k′)a))]

1
2ik′

[exp(ik′(z − zs))− exp(ik′(z + zs))]

(3.13)

Now using the wrong reference velocity to calculate the wavelet, the result of A(ω)

depends on the observation point z. So the property of invariance no longer exists.

By observing the invariance of predicted wavelet at different output points under the
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cable, we can determine if we have the correct reference velocity or not. We use an

marine environment as an example to test this idea.

Discussion In order to better illustrate the idea and keep it simple, the above 1D

example has included a free surface. If we remove the free surface, then both wavefield

P and the Green’s function G0 have only the first term. Now in the result of using

a wrong reference velocity, the prediction point, which only depends on z, will be

canceled in the above equation. Equation 3.12 now becomes,

P0(z, zs, ω)

= |∞z′=aP (z′, zs, ω)
d

dz′
G0(z, z

′, ω)−G0(z, z
′, ω)

d

dz′
P (z′, zs, ω)

= 0−
[
A(ω)

exp(ik(a− zs))
2ik

− exp(ik′(z − a))

2

− exp(ik′(z − a))

2ik′
A(ω)

exp(ik(a− zs))
2

]
= A(ω)(

1

4ik
+

1

4ik′
)[exp(i(k′z − kzs + (k − k′)a))]. (3.14)

Dividing a Green’s function with the wrong wavenumber k′, the wavelet becomes,

P0(z, zs, ω)

G0(z, zs, ω)
=

A(ω)( 1
4ik

+ 1
4ik′

)[exp(i(k′z − kzs + (k − k′)a))]
1

2ik′
[exp(ik′(z − zs))]

= A(ω)
k′ + k

2k
exp[i(k − k′)(a− zs)]. (3.15)

Even though the above wavelet result is not correct, it is no longer dependent with

the prediction point z. Does it mean that the invariance no longer holds? No. The

reason is that our assumption has assumed a 1D world. If we analyze the problem

in 2D or 3D without free surface, we can do it in the (k, ω) domain as in Section 2.4,
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using a bilinear form of Green’s function. Equation 2.16 gives the 2D Green’s function

in (kx, ω) domain. When there is no free surface, it is,

G0(kx, z, x
′, z′, ω) = exp(−ikxx′)

exp(iq|z − z′|)
2iq

, (3.16)

where q satisfies the condition q2 = k2− k2x. This form is exactly the same form with

the 1D Green’s function, except that k becomes q. Now, it is clear that the estimated

wavelet, if using a wrong reference velocity, will have the same form of Equation 3.15,

with the replacement of k to be q. The result is still independent of z, but it is

actually dependent of the coordinate x. How do we know it? If it is independent of x,

then the form in (kx, ω) domain should be in the form of δ(kx). But it is not. So it is

actually dependent of the prediction point (x, z). To avoid this complicated analysis,

in the beginning of this section I used the simple example of 1D with free surface to

illustrate the idea.

Fig. 3.2: A 1D example
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3.3.3 Radiation pattern

In the previous section, we focused on solving the wavelet from a point source at

δ(~r − ~rs). In a more general case, an extended source array that consists of several

point source could be used in seismic exploration. In this case, the source displays a

radiation pattern in different radiation angles. The radiation pattern from a single

effective point source could be estimated by assuming that A(ω) is a function of the

radiation angle θ (using far field approximation).

x 

z 

0 
r’ 

r 

θ 

y 

Fig. 3.3: A general extended source.

Figure 3.3 shows an example of a general extended source ρ(~r). Wavefield at ~r gen-

erated from this source array can be calculated from the integral,

P0(~r, ω) =

∫
G0(~r, ~r′, ω)ρ(~r′)d~r′. (3.17)

In 3D propagation, Green’s function in frequency domain can be written as

G0(~r, ~r′, ω) =
eik|~r−

~r′|

|~r − ~r′|
. (3.18)
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In the far field, |~r| >> |~r′|, we have approximation,

|~r − ~r′| =

√
(~r − ~r′)2

=

√
r2 − 2~r · ~r′ + r′2

= r[1− 2~r · ~r′
r2

+
r′2

r2
]1/2

= r(1− ~r · ~r′
r2

+
r′2

2r2
+ ...)

= r − n̂ · ~r′ +O(
1

r
). (3.19)

The above equation uses Taylor series (1 + x)1/2 = 1 + 1
2
x+O(x2), and n̂ is the unit

vector in the direction of ~r. And similarly,

1

|~r − ~r′|
=

1

r
+
n̂ · ~r′
r2

+ ... =
1

r
+O(

1

r2
). (3.20)

Then in the far field, Equation 3.17 becomes

P0(~r, ω) =

∫
eik(r−n̂·

~r′)

r
ρ(~r′)d~r′

=
eikr

r

∫
e−ikn̂·

~r′ρ(~r′)d~r′

=
eikr

r
ρ̃(kn̂). (3.21)

Therefore, if we treat seismic data generated from an extended source as if from a

point source, we can get the source wavelet,

A(ω, θ) =
P0(~r, ω)

G0(~r, ω)
= ρ̃(kn̂).

Since n̂ is the direction from the source to the observation point, the estimated wavelet
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result will display variances in different radiation angle. However, in one radiation

angle n̂, wavelet A(ω, θ) will be the same. This could be used as a criterion for

determining the correct reference velocity. If using a wrong reference velocity, this

invariance at one radiation angle will not be satisfied. The property of invariances at

one radiation angle will be broken. I will examine this property in the synthetic test.

3.4 Point source

In this test, we use the Cagnidard-de Hoop method to model over-under cable data.

Then using the Green’s theorem of Equation 3.3, we estimate wavelet A(ω), at dif-

ferent points at a fixed depth. We predict the estimated wavelet results by using

different reference velocities:

(1) the correct reference velocity c0 = 1500 m/s;

(2) a wrong reference velocity c0 = 1490 m/s;

(3) an additional wrong reference velocity c0 = 1450 m/s.

The estimated reference wavefields P0 are shown in Figure 3.4, and the corresponding

wavelet are presented in Figure 3.5. Figure 3.4 indicates that the wrong reference

velocities also lead to errors in the prediction of P0. The estimated source wavelet

results show that when using the correct reference velocity, the wavelet displays in-

variance at different offset, while wrong velocities give different wavelet prediction at

different output points.

Therefore, only the correct reference velocity can result in the invariance of the es-

timated wavelet. When the reference velocities become progressively more incorrect,
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the errors of the wavelet invariance also becomes larger. This conclusion will also

help us in finding the correct reference velocity.

(a) (b) (c) 

Fig. 3.4: P0 estimated using (a) correct c0 = 1500 m/s, (b) wrong c0 = 1490 m/s, (c)
wrong c0 = 1450 m/s

3.5 Source array

In this section, instead of using a point source, I will test data generated by a source

array. The source array consists of 7 point sources separated at 3 m, as shown in

Figure 3.6. First, we will estimate source wavelet along a horizontal cable, whose

radiation angles are different. We predict source wavelet at depth 56m, from offset

0 m to 606 m, whose radiation angles are from 0◦ to 85◦. The results in Figure 3.7

show the radiation pattern in different offset (radiation angle). Next, we estimate

the wavelet A(ω, θ) in one radiation angle. The estimated wavelet results in angle

5.8◦, using both the correct reference velocity (1500 m/s) and the wrong reference

velocity (1450 m/s), are shown in Figure 3.8. From these results, we can see that
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(a)

(b)

(c)

Fig. 3.5: A(t) estimated using (a) correct c0 = 1500 m/s, (b) wrong c0 = 1490 m/s, and
(c) wrong c0 = 1450 m/s

only when using the correct reference velocity, we can observe the invariance of the

source array wavelet in one radiation angle, whereas the wrong reference velocity will

lead to differences in the wavelet estimation along one radiation angle.
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18m 

3m 

Fig. 3.6: Source array

Fig. 3.7: Radiation pattern of the source array in Figure 3.6, estimated from offset 0 m to
606 m.

3.6 Conclusions

This chapter has shown that the invariances of a wavelet estimated by using Green’s

theorem could be a criterion for determining the correct reference velocity. For a point

source, the invariance occurs for the output points anywhere below the measurement

surface, while for a source array, the invariance is for output points along one radiation
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Fig. 3.8: Wavelet estimated at depths 36 m, 56 m, 76 m, 96 m, 116 m, 136 m, and 156 m,
at the same radiation angle and using (a) the correct reference wave c0 = 1500
m/s and (b) a wrong reference velocity c0 = 1450 m/s.

angle. This idea is illustrated using a marine seismic application as a starting point.

Using a similar thinking, in the future study we will focus on solving the complex

on-shore or ocean-bottom near surface medium problems. For complex on-shore or

ocean bottom problems, understanding of the near surface property could enable us

to predict and remove the ground roll/reference wave on land, and thereby enhance

the capability of subsequent multiple removal processing steps for the challenge of

on-shore multiple attenuation.
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4. STUDY OF WAVELET ESTIMATION

METHODS

4.1 Chapter overview

Source-signature estimation is an important step in seismic exploration. The knowl-

edge of source signature is essential to identify and remove the contribution of the

source from the recorded data. It is needed in many steps of seismic data processing,

such as multiple removal and ISS depth imaging. In this chapter, I focus the dis-

cussion on comparing different methods for wavelet estimation. Three methods will

be introduced step by step: (1) the Wiener-filter method, (2) the spectral-division

method and (3) the Green’s-theorem method. The relationship of these methods will

be discussed. Synthetic data, both with and without noise, will be tested using the

three methods. Results show that all three methods can predict the source wavelet

very well when the data set contains no noise. When the data contains noise, the

Green’s-theorem method demonstrates strength, since it utilizes an integral along the

measurement surface, which tends to reduce random noise. In addition, a marine

field data set, Kristin data, will be tested using the Wiener filter method. The result

of the source wavelet is used in the first field data test of ISS depth imaging for the

purpose of data regularization.
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4.2 Wavelet estimation methods

4.2.1 Wiener filter method

The Wiener filter method, developed by Norbert Wiener (Wiener, 1949), has great

practical use for implementation in many fields of signal data processing, such as

linear prediction, channel equalization and system identification (Robinson and Tre-

itel, 1980; Vaseghi, 2008). It is typically used when given the inputs and outputs of

a system, to estimate the character of the system, or in the estimation of a signal

observed in noise. The objective criterion of Wiener filter is the least-mean-square

error between the filter output and the desired signal. The coefficients of the filter are

obtained by minimizing the average squared-error function with respect of the filter

coefficients. The solution of the coefficients uses the information of the autocorrela-

tion of the input and the cross-correlation of the input and the desired signal. This

powerful method provides us an approach of doing deconvolution robustly in the time

domain, which avoids the instability of a division. Also, with the length of the filter

given as a priori information, the predicted result is very stable.

For seismic exploration, the Wiener filter method can extract a wavelet from the

reference wave and the reference Green’s function. This method has straightforward

physical meaning and does not involve complicated numerical calculation.

In the case of surface marine seismic, the separation between the reference and scat-

tered fields depends on the depth of the water bottom. If the water is sufficiently

deep, the reference and scattered fields do not interfere, and it is possible to estimate

the wavelet by deconvolving the reference wavefield by the Green’s function of the

reference medium.
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In this section I will first introduce the necessary background of convolutional model,

and then present the theory of Wiener filter method. These sections are extracted

from Sheriff and Geldart (1994) and Robinson and Treitel (1980) with different signal

notations for a better understanding of our specific application. Next, the compar-

ison and relationship of Wiener filter method and the spectral division method are

discussed.

When the source signature is an impulsive spike δ(t) at ~rs, what the receiver at ~r

record will be the Green’s function. Assume the source is a point source, ρ(~r, t) =

A(t)δ(~r − ~rs). Also assuming the wavelet A(t) has a finite length time, we can break

it up into a sum of a set of impulsive functions in time, which means

A(t) =

∫ ∞
−∞

A(τ)δ(t− τ)dτ. (4.1)

Assuming the linearity and time-invariance of the earth, the response would become

P (~r, ~rs, t) =

∫ ∞
−∞

A(τ)G(~r, ~rs, t− τ)dτ. (4.2)

The contribution to the recorded trace at time t from the portion of wavelet at time τ

is A(τ)G(t− τ). The total of response at t is the sum of all times within the wavelet.

The length of the recorded data is the sum of wavelet and the Green’s function.

The Equation 4.2 can also be derived in the frequency domain. Assuming source

ρ(~r, ω) and Green’s function G(~r, ~r′, ω), the wavefield would be

P (~r, ~rs, ω) =

∫ ∞
−∞

d~r′ρ(~r′, ω)G(~r, ~r′, ω) (4.3)
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Assuming the source is a point source, ρ(~r, ω) = A(ω)δ(~r − ~rs), we can obtain,

P (~r, ~rs, ω) = A(ω)G(~r, ~rs, ω) (4.4)

Equation 4.2 and Equation 4.4 are the same relation presented in different domain.

A Fourier transform over t of Equation 4.2 will give us Equation 4.4.

∫ ∞
−∞

eiωtdt

∫ ∞
−∞

A(τ)G(~r, ~rs, t− τ)dτ (4.5)

t−τ=s−−−→
∫ ∞
−∞

eiωsds

∫ ∞
−∞

A(τ)G(~r, ~rs, s)e
iωtdτ (4.6)

=

∫ ∞
−∞

G(~r, ~rs, s)e
iωsds

∫ ∞
−∞

A(τ)eiωtdτ (4.7)

= G(~r, ~rs, ω)A(ω) (4.8)

In scattering theory, we treat the actual medium as a combination of an unperturbed

medium, called the reference medium, plus a perturbation. According to the convo-

lutional model, in the reference medium world, the wavefield P0 is the convolution of

the wavelet A(t) with the reference Green’s function G0, so

P0(~r, ~rs, t) =

∫ ∞
−∞

A(τ)G0(~r, ~rs, t− τ)dτ. (4.9)

The reference wave P0 can be extracted directly from raw data where P0 and the

scattered wave Ps do not overlap. The reference Green’s function G0 can be calculated

from the wave equation easily once we defined the reference medium as a half space

of air plus a half space of water in the marine set.

To solve wavelet A(t) from Equation 4.9, one possible solution is to convert this
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equation to the frequency domain, which becomes

P0(~r, ~rs, ω) = A(ω)G0(~r, ~rs, ω), (4.10)

so that wavelet in frequency domain can be solved by a division of P0(~r, ~rs, ω) and

G0(~r, ~rs, ω). However, to avoid the instability issues caused by the division, I use the

Wiener filter method to calculate wavelet A(t) in the time domain.

Using the Wiener filter method, we treat the wavelet A(t) as a shaping filter that

shapes the input signal (Green’s function G0(~r, ~rs, t)) to be the desired signal (refer-

ence wave P0(~r, ~rs, t)), as shown in Figure 4.1.

Fig. 4.1: Wavelet A(t) is treated as a filter that shapes the Green’s function to be the
reference wave.

The Wiener filter method uses a least-square criterion to find the “best” filter. Sup-

pose that we have an input signal G0(t) and a filter A(t), which together give an

output signal X(t). While we need output P0(t), the difference between then are

defined as error E(t).

X(t) =

∫ ∞
−∞

A(τ)G0(t− τ)dτ = A(t) ∗G0(t) (4.11)

E(t) = P0(t)−X(t) (4.12)

Here ∗means convolution. In the actual seismic data processing, functions are discrete

number series. So from now on, I use the discrete expression. Assume that the filter
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A is a series (A0, A1, A2, ..., Am), the input Green’s function is (G0, G1, G2, ..., Gn),

and the desired P wave is (P0, P1, P2, ..., Pm+n), so that

Xt =
m∑
s=0

AsGt−s t = 0, 1, 2, ...,m+ n. (4.13)

Et = Pt −Xt = Pt −
m∑
s=0

AsGt−s t = 0, 1, 2, ...,m+ n. (4.14)

In order to have the output signal close to the desired function, we need to minimize

the energy of error, which is defined as I,

I =
m+n∑
t=0

E2
t (4.15)

=
m+n∑
t=0

(Pt −
m∑
s=0

AsGt−s)
2. (4.16)

Here we are looking for a least-square error with the choice of filter coefficients An,

which corresponds to the Wiener filter. So the partial derivative of error energy with

each coefficients of filter should be zero, i.e.,

∂I

∂Ai
= 0 i = 0, 1, 2, ...,m. (4.17)
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An example of A0 shows

∂I

∂A0

=
∂

∂A0

[
m+n∑
t=0

(Pt −
m∑
s=0

AsGt−s)
2

]
(4.18)

=
m+n∑
t=0

[
∂

∂A0

(Pt −
m∑
s=0

AsGt−s)
2

]
(4.19)

=
m+n∑
t=0

[
2(Pt −

m∑
s=0

AsGt−s)

][
− ∂

∂A0

(
m∑
s=0

AsGt−s)

]
(4.20)

= 2
m+n∑
t=0

[
(Pt −

m∑
s=0

AsGt−s)(−Gt)

]
(4.21)

= 2

[
−

m+n∑
t=0

Pt ·Gt +
m∑
s=0

As · (
m+n∑
t=0

Gt−sGt)

]
(4.22)

= 0. (4.23)

So we have,
m∑
s=0

As · (
m+n∑
t=0

Gt−sGt) =
m+n∑
t=0

Pt ·Gt. (4.24)

Now we start using the concept of correlation, which measures the similarity of two

functions (Sheriff and Geldart, 1994). It also shows how the similarity varies as

we shift one trace with respect of the other. The mathematical definition of cross-

correlation φxy(τ) of two functions xt and yt is

φxy(τ) =
∑
t=0

xt+τyt. (4.25)

The definition implies that we shift the function x over the other by τ , then multiply

the corresponding part of the two functions and sum up for each value of t. The

larger φ(τ) is, the more similar the two signals are at lag τ . Likewise, auto-correlation
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measures how a function correlates with itself shifted in a time, defined as

φxx(τ) =
∑
t=0

xt+τxt. (4.26)

Back to Equation 4.24, we use the correlation of input Gt and desired signal Pt and

the auto-correlation of Gt as

φPG(0) =
m+n∑
t=0

Pt ·Gt (4.27)

φGG(s) = φGG(−s) =
m+n∑
t=0

Gt−sGt. (4.28)

Notice that auto-correlation is an even function. Equation 4.24 becomes,

m∑
s=0

As · φGG(s) = φPG(0). (4.29)

Equation 4.29 comes from the partial derivative of error energy by the first coefficient

A0 of filter. Similar results can be obtained from the remaining differential equations

of Equation 4.17, which implies,

m∑
s=0

As · φGG(i− s) = φPG(i) i = 0, 1, 2, ...,m. (4.30)

The above equations can be written in a matrix form, which is,



φGG(0) φGG(1) ... φGG(m)

φGG(1) φGG(0) ... φGG(m− 1)

...
...

...
...

φGG(m) φGG(m− 1) ... φGG(0)





A0

A1

...

Am


=



φPG(0)

φPG(1)

...

φPG(m)


. (4.31)
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The above set of equations are the most important relationship in Wiener filter

method. From these equations, the filter At can be solved by using Toeplitz re-

cursion (Robinson and Treitel, 1980). The detailed steps of Wiener filter application

are shown in Appendix B.

Fig. 4.2: Wiener filter method

4.2.2 Spectral division method

4.2.2.1 Theory

Spectral division method for wavelet estimation comes closely from the relationship

of P0 and G0 in the frequency domain, which is

P0(~r, ~rs, ω) = G0(~r, ~rs, ω)A(ω).

So that

A(ω) =
P0(~r, ~rs, ω)

G0(~r, ~rs, ω)
. (4.32)
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While in practice, for avoiding the instability issue that may caused by the division

by a zero, we put a small ε in the denominator,

A(ω) =
P0 (~r, ~rs, ω)G0

*(~r, ~rs, ω)

G0(~r, ~rs, ω)G0
*(~r, ~rs, ω) + ε

, (4.33)

where G∗0(~r, ~rs, ω) means the conjugate of G0(~r, ~rs, ω).

In the test using data set with noise, the results show that the choice of the value of

ε will affect the prediction of source wavelet.

4.2.2.2 Relationship of Wiener filter method and spectral division method

The relationship of recorded data P0, G0, and A in the time domain is

P0(t) = A(t) ∗G0(t), (4.34)

where ∗ means convolution. Now I will show that starting from the above convolution

and utilizing the definition of correlation, it is possible to get the equations that the

Wiener filter method uses.

First we correlate the trace P0(t) with Green’s function. According to the definition

of correlation in the integral form,

φPG(t) =

∫ ∞
−∞

P0(τ + t)G0(τ)dτ (4.35)

=

∫ ∞
−∞

P0(τ)G0(τ − t)dτ (4.36)

=

∫ ∞
−∞

P0(τ)G0[−(t− τ)]dτ (4.37)

= P0(t) ∗G0(−t) (4.38)
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Now plug Equation 4.34 into the above equation, we have

φPG(t) = (A(t) ∗G0(t)) ∗G0(−t) (4.39)

= A(t) ∗ (G0(t) ∗G0(−t)) (4.40)

= A(t) ∗ φGG(t) (4.41)

=

∫ ∞
−∞

A(τ)φGG(t− τ)dτ (4.42)

Comparing with Equation 4.30, which says,

m∑
s=0

As · φGG(i− s) = φPG(i) i = 0, 1, 2, ...,m (4.43)

we can see that these two equations are eventually the same. One is in a discrete

form, and the other is in a continuous form.

4.2.3 Green’s theorem

The Green’s theorem based wavelet estimation method follows the theory of separat-

ing the reference wave P0 introduced in Chapter 2. The source wavelet A(ω) can be

estimated by

A(ω) =
P0(~r, ~rs, ω)

G0(~r, ~rs, ω)
=

∫
m.s.

[
P (~r′, ω)∇′G0(~r, ~r′, ω)−G(~r, ~r′, ω)∇′P (~r′, ω)

]
· n̂d~r′

G0(~r, ~rs, ω)
.

(4.44)

The inputs are the measured total wavefield P and its normal derivative ∇P on

the measurement surface, rather than the reference wave P0, which is required by the

previous two methods. The Green’s theorem method can extract the source signature

or radiation pattern, with the inclusion of instrument response of the measuring
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device. In addition, the integral over the measurement surface can smooth noises in

the data. While the other two methods, the Wiener filter method and the spectral

division method, both estimate the source wavelet trace by trace. This means they

cannot accommodate noisy data very well.

4.3 Test results

In this section, I will compare the three wavelet estimation methods using both syn-

thetic data and field data set.

4.3.1 Synthetic data

0
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0.8

T
im

e(
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Trace Number

Fig. 4.3: Synthetic data generated using Cagniard-de Hoop method. P0 and Ps are not
interfering. No noise is included.

The synthetic data set is generated by Cagniard-de Hoop method, with a 2D line
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source and 1D subsurface. The source is placed at depth 2 m, and receivers at depth

6 m. The reflector is at 400 m. An example of the data is shown in Figure 4.3, with

offset from 0 to 400 m. I purposely generate the data with non-interfering reference

wave P0 and scattered wave Ps, so that P0 can be extracted directly from the data.

4.3.1.1 Without noises

In the first test, I use perfect data without any noise to test the three wavelet esti-

mation methods.

For the Wiener-filter method and the spectral division method, the reference wave

P0 comes from the data directly, which are shown in Figure 4.3. The estimated

wavelet results by using these two methods are shown in Figure 4.4 and Figure 4.5,

respectively. The red lines are the true wavelet used in the data modeling, and the

green lines are the predicted wavelet. For both of the results, the red line and green

line are almost overlapping. The conclusion is that when there is no noise in the data,

these two methods can both predict perfect wavelet results very well.

When estimating the wavelet using Green’s theorem, we need to use over/under cable

to calculate dP/dz. First, I estimate P0 at depth 18 m (below the cable), then predict

the wavelet A(t) result at different offsets. Figure 4.6 shows the predicted wavelet

result (green line) and the comparison with the true wavelet (red line). These two lines

are also almost overlapping together, indicating the estimated wavelet is accurate.

From the comparison, it is clear that all these three methods can extract the wavelet

very well when there is no noise in the data. The Wiener filter method and spectral

division method use the reference wave directly, whereas the Green’s theorem method

uses the total wavefield and its normal derivatives as the inputs. The first two methods
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Fig. 4.4: Wavelet estimation result using Wiener filter method. (a) Wavelet estimated at
different offset. (b) Comparison of the true wavelet used in the modeling (red
line) and the estimated wavelet (green line).
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Fig. 4.5: Wavelet estimation result using spectral division method. (a) Wavelet estimated
at different offset. (b) Comparison of the true wavelet used in the modeling (red
line) and the estimated wavelet (green line).
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Fig. 4.6: Wavelet estimation result using Green’s theorem. (a) Wavelet estimated at dif-
ferent offset. (b) Comparison of the true wavelet used in the modeling (red line)
and the estimated wavelet (green line).

are direct and easy to operate. However, in practice, the reference wave may interfere

with the scattered wave (e.g., in shallow water area), thus they are not directly

available for us to use. In this occasion, the Green’s theorem method can serve as a

good way to estimate the wavelet.

4.3.1.2 With noise

In the next test, I add a random white noise into the data set in Figure 4.3. In

the original data set, as the offset gets larger, the amplitude of P0 becomes smaller.

Therefore, the signal-noise-ratio in the noisy data set is varying throughout the offsets.

The data with random noise is shown in Figure 4.7. In order to show the different

signal-noise-ratio, I focused in four regions indicated by the number 1,2,3,4.
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Fig. 4.7: Synthetic data generated with random white noises. Each number indicates a

region with different signal-noise-ratio. The wiggle plots are extracted from the

above data set, at four regions indicated by the numbers correspondingly.
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Next, I estimate the source wavelet using these three methods:

(1) The wavelet results performed by using the Wiener filter method is shown in

Figure 4.8, correspondingly. When the signal-ratio is large in the near offset region,

this method can predict a satisfying wavelet result. However, in the larger noise

regions, this method fails to predict a Ricker wavelet shape, which is the true wavelet

we used in data modeling.

As Equation 4.30 shows, when using the Wiener filter method, the length of the filter

(estimated wavelet) can be decided by us. In the result shown in Figure 4.8, the

length of the wavelet is chosen as 301 points (i.e., m = 301 in Equation 4.30). The

choice of this number will affect the estimated result. Figure 4.9 compares the results

when using different lengths of the wavelet. In this particular test, setting the length

of the wavelet shorter (301 points vs 501 points) gives a better and stable prediction.

This comparison shows that choosing a proper length of the filter can optimize the

prediction result.

(2) The wavelet results performed by using the spectral division method is shown in

Figure 4.10. Similarly, in the small-noise region, this method can predict the wavelet

shape very well, whereas when the noise gets larger compared with the signal, the

estimated wavelet becomes more unstable.

In the theory of spectral division method, a small number ε is employed for avoiding

a division by zero. The test results also indicate that the choice of this small number

will affect the estimated result. Figure 4.11 shows the comparison of using different

ε in this particular test. In Figure 4.10, ε = 0.0001 is used for optimizing the wavelet

result.

(3) When using the Green’s-theorem method, it will first predict the reference wave
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P0 from the total wavefields. P0 is shown in Figure 4.12. We can see that the noise in

the original data set is clearly reduced in the estimated reference wave. Figure 4.13

shows the wavelet estimation at the four different areas. Comparing with the above

two methods, Green’s theorem demonstrates a more stable and clean result. It can

smooth the noise in the data, because the surface integral in the algorithm can cancel

the random noise. On the other hand, the Wiener-filter method and the spectral

division method both perform wavelet estimation trace by trace, thus they cannot

accommodate the noises very well.

In order to compare the results from these three method more clearly, Figure 4.14 and

Figure 4.15 put the estimated wavelet results together, showing the three results for

both large and small SNR data sets. When the noise is small, these three methods

can predict the wavelet correctly. As for a large noise data set, the Wiener filter

method and spectral division are less effective as the Green’s-theorem method, since

the Green’s-theorem method utilizes an integral along all the traces, while the other

two methods estimate the wavelet trace by trace.
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Fig. 4.8: Wavelet estimation result using Wiener filter at different signal-noise-ratio re-

gions.
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Fig. 4.9: Estimated wavelet results at region 3 when choosing the length of the wavelet as

(a) 501 points and (b) 301 points.
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Fig. 4.10: Wavelet estimation result using spectral division at different signal-noise-ratio

regions.
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Fig. 4.11: Estimated wavelet results at region 3 when choosing different ε (a) ε = 0.01, (b)

ε = 0.0001, and (c) ε = 0.00001.
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Fig. 4.12: (a)Input data with noise, (b) the output P0 using Green’s theorem

82



Wavelet estimation

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T
im

e(
s)

50 100 150 200
Trace Number

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T
im

e(
s)

1 2 3 4 5
Trace Number

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T
im

e(
s)

20 22 24 26
Trace Number

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T
im

e(
s)

60 61 62 63 64 65
Trace Number

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T
im

e(
s)

100 101 102 103 104 105
Trace Number

Fig. 4.13: Wavelet estimation result using Green’s theorem at different signal-noise-ratio

regions.
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Fig. 4.14: Estimated wavelet result when SNR is large using (a) Wiener filter (b) spectral

division (c) Green’s theorem
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Fig. 4.15: Estimated wavelet result when SNR is small using (a) Wiener filter (b) spectral

division (c) Green’s theorem
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4.3.2 Kristin field data

Kristin field data set is measured at the North Norwegian Sea, and it is the first field

data test of ISS depth imaging algorithm (Liu et al., 2011; Weglein et al., 2012a,b).

In the depth imaging test, the source wavelet information is essential for regularizing

the data, in order to have more low frequency contents, which is required by the ISS

imaging algorithm. For this data set, I use the Wiener-filter method to extract the

source wavelet from the reference wave and the reference Green’s function.

In Kristin data, the reference wave P0 can be identified from the raw data directly

where P0 and scattered wave Ps do not overlap, as shown in Figure 4.16. The causal

Fig. 4.16: Kristin data, Type I, cable II (sources at depth 7 m and receivers at depth 18
m)
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reference Green’s function is,

G0(~r, ~r
′
, ω) =

1

4π
(
eikR

R
− eikRI

RI

) (4.45)

= Gd
0 +GFS

0 , (4.46)

where k = ω/c0, ~r = (x, y, z), ~r
′
= (x′, y′, z′) and

R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (4.47)

RI =
√

(x− x′)2 + (y − y′)2 + (z + z′)2. (4.48)

Here Gd
0 represents the portion of the direct arrival from the source to the receiver,

and GFS
0 represents the wave that experiences a reflection at the air-water interface in

the reference medium. The only information required for calculating Green’s function

is the location of the source and receiver, therefore the reference Green’s function can

be calculated directly.

Having the reference wave P0 obtained directly from the raw data, the reference

Green’s function G0 calculated from the configuration of source and receiver, and

using Equation 4.9, the wavelet A(t) can be extracted independently from each trace.

In Kristin data cable II with sources located at depth 7 m and receivers at depth 18

m, the wavelet estimation result is shown in Figure 4.17. For cable III (sources at

depth 7 m, receivers at depth 25 m), wavelet result is shown in Figure 4.18.
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Fig. 4.17: Wavelet A(t) using Wiener filter method, cable II (sources at depth 7 m and

receivers at depth 18 m)

Fig. 4.18: Wavelet A(t) using Wiener filter method, cable III (sources at depth 7 m and

receivers at depth 25 m)

Discussion The results shown so far are obtained using the total Green’s function

G0 for a homogeneous half space of water, which is composed of a direct Green’s

function Gd
0 plus a free surface Green’s function GFS

0 . If the direct Green’s function

Gd
0 is used instead of the total Green’s function G0 in Equation 4.46, the result is

shown in Figure 4.19.

The result in Figure 4.19 can be interpreted as an estimation of the effect of the

source in the presence of a free-surface, as proven by the decreasing amplitude trends
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for increasing offsets. The reason can be found in the expression of Gd
0. As

Gd
0(~r, ~r

′, ω) =
1

4π

eikR

R
(4.49)

and

G0(~r, ~r′, ω) =
1

4π
(
eikR

R
− eikRI

RI

), (4.50)

at large offset, the two terms of total G0 tend to cancel each other, thus G0 gets

smaller, whereas Gd
0 still gets larger as distance grows. On the other hand, the

reference wave P0 also consists of the direct arrive and its free surface ghost, which

will cancel each other at the large offset, too. Therefore, when using the total G0,

the amplitude of wavelet is stable, while Gd
0 makes wavelet vanish.

Fig. 4.19: Wavelet A(t), cable II (sources at depth 7 m and receivers at depth 18 m), using
direct Green’s function Gd0.

4.4 Conclusions

In this chapter, I study and analyze three different source wavelet estimation methods,

which are (1) the Wiener-filter method, (2) the spectral division method and (3)
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the Green’s theorem method. In the synthetic data tests, if the data contains no

noise, all the three methods can estimate the source signature very well. When the

data contains random noise, the Green’s theorem method demonstrates strength in

smoothing the noises in the results. Because Green’s theorem uses a surface integral

along all the traces in the data, whereas the other two methods estimate wavelet

trace by trace. In the marine field data test, I use Wiener filter method to extract

the wavelet from the reference wave directly. The estimated result is utilized in the

first ISS depth imaging field test for data regularization purpose.
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5. SUMMARY

This dissertation focuses on solving several practical issues in satisfying the prerequi-

sites of ISS multiple removal algorithm. The better the prerequisites are satisfied, the

better delivery of the ISS multiple prediction results we can get. In order to satisfy

the prerequisites better, more realistic descriptions of the seismic experiment need to

be included in the realization of the theories.

For better separating the reference wave from the reflected seismic data, I consider to

incorporate the data acquisition design into the data processing. I have shown that

for an over/under cable acquisition, there are several practical issues that will affect

the wave separation results. Firstly, the depth difference between the over/under

cable will affect the wave separation result. The closer of the two cables are, the more

accurate prediction results the theory will predict. It is due to the fact that, with a

closer over/under cable, the normal derivative of the wavefield on the measurement

surface becomes more accurate, under a finite difference approximation. Secondly,

the choice of the prediction point also influences the separation results. The form of

the Green’s function in the (x, ω) domain restricts us from predicting the separated

wave on the cable. The prediction points cannot be chosen on the cable, but at least

half of the receiver sampling away from the cable. By converting Green’s theorem to

the wavenumber domain, it becomes possible to predict the reference wave/scattered

wave on the cable, which means, isolate them from the measured data. The same
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issue is also being observed in the application of Green’s theorem for deghosting.

Chapter 4 starts to address an issue when extending the prerequisites satisfaction to

the on-shore exploration. The near surface medium property on land is often complex

and difficult to determine. ISS methods require that the reference medium agree with

the actual medium at and above the measurement surface. Thus, determining the

reference medium property becomes a big challenge for land application. I propose to

use invariances of the source wavelet estimation as the criteria for obtaining the correct

reference velocity. This idea is illustrated and tested using a marine environment. For

data generated from a point source, the invariance happens at every point below the

measurement surface, and for data with radiation pattern, the invariance can be

found along one radiation angle. In the future study, the similar thinking of using the

invariances in the reference wave prediction could be use, to move towards complex

on-shore or ocean bottom reference medium problems.

The source signature information is essential in many seismic data processing steps,

including multiple removal and depth imaging. In Chapter 3, I study three different

wavelet estimation methods: (1) the Wiener filter method, (2) the spectral division

method and (3) the Green’s theorem method. Each method has its own advantages

and disadvantages. The Wiener filter method and spectral division method offer a

direct way of extracting wavelet from the reference wave, but the reference wave may

not always be available from the data. Synthetic data with noise results show that

the Green’s theorem method can smooth the noise in the data very well, because it

contains a surface integral along all the traces, whereas the other two methods only

perform wavelet estimation trace by trace. The Kristin field data test using Wiener

filter method provides a useful source wavelet information for the data regularization

in the first ISS depth imaging field data test.
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A. DERIVATION OF 2D GDD
0

This appendix provides mathematic details on calculation of the Green’s function

GDD
0 which vanishes both on the over and the under cables. In Appendix B in Zhang

(2007), a 2D GDD
0 is shown, whose values vanish on the free surface (z = 0) and on

one cable (z = a). In this appendix, GDD
0 vanishes on two cables at different depth

z = a and z = b. This Green’s function will be used to construct the wavefield and

its normal derivatives at a new depth between the two cables, as Equation 2.6 and

2.7 have shown.

Assume that a 2D source is at (ξ, η), and two cables are located at z = a and z = b

(b > a). The Green’s function satisfies the wave equation,

(∇2 + k2)GDD
0 = δ(x− ξ)δ(z − η). (A.1)

In order to make GDD
0 = 0 when z = a and z = b, it is reasonable to assume it has

this form,

GDD
0 (x, z; ξ, η) =

√
2

a

∞∑
n=1

gn(x) sin

(
πn

b− a
(z − a)

)
. (A.2)
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Now plug Equation A.2 into Equation A.1, the result is,

LHS =

(
∂2

∂x2
+

∂2

∂z2
+ k2

)
GDD

0 (x, z, ξ, η)

=

√
2

a

∞∑
n=1

[
d2

dx2
− n2π2

(b− a)2
+ k2

]
gn(x) sin

(
πn

b− a
(z − a)

)
= δ(x− ξ)δ(z − η) = RHS. (A.3)

Now multiply
√

2
a

sin
(
mπ
b−a(z − a)

)
on both sides of the equation, and integrating over

z from 0 to a, we have,

d2

dx2
gm(x)− (

m2π2

(b− a)2
− k2)gm(x) =

√
2

a
sin

(
mπ

b− a
(η − a)

)
δ(x− ξ). (A.4)

When deriving the above equation, we utilized the relationship,

∫ a

0

sin

(
nπ

b− a
(z − a)

)
sin

(
mπ

b− a
(z − a)

)
dz =

a

2
δmn, (A.5)

when b < 2a.

Since the solution should be physical, we assume that gm(x) has this form,

 gm(x) = Aekxx x < ξ

gm(x) = Be−kxx x > ξ
(A.6)

Assuming k2x = m2π2

(b−a)2 − k
2 > 0, when x = ξ, the boundary condition gives,

kxAe
kxξ = kxBe

−kxξ (A.7)

−Akxekxξ −Bkxe−kxξ =

√
2

a
sin

(
mπ

b− a
(η − a)

)
(A.8)
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Then A and B can be solved as,

A = − 1

kx

1√
2a
sin

(
mπ

b− a
(η − a)

)
e−kxξ (A.9)

B = − 1

kx

1√
2a
sin

(
mπ

b− a
(η − a)

)
ekxξ (A.10)

So,

gm(x) = − 1

kx

1√
2a
sin

(
mπ

b− a
(η − a)

)
e−kx|x−ξ|. (A.11)

Now we obtain the form of GDD
0 , which is,

GDD
0 = −1

a

∞∑
n=1

1

sqrt n2π2

(b−a)2 − k2
sin

(
nπ

b− a
(η − a)

)
e
−
√

n2π2

(b−a)2
−k2|x−ξ|

sin

(
nπ

b− a
(z − a)

)
.

(A.12)

It is clear that GDD
0 = 0 when z = a or z = b. The assumptions of the above solution

are b < 2a and n2π2

(b−a)2 − k
2 > 0, which often can be satisfied.

Differentiate Equation A.12, we can obtain dGDD
0 /dz, which is,

d

dz
GDD

0 = − nπ

a(b− a)
·

∞∑
n=1

1√
n2π2

(b−a)2 − k2
sin

(
nπ

b− a
(η − a)

)
e
−
√

n2π2

(b−a)2
−k2|x−ξ|

cos

(
nπ

b− a
(z − a)

)
.

(A.13)
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B. DETAILED STEPS IN APPLYING THE WIENER

FILTER

From the theory introduced in Section 4.2.1, the specific steps of doing wavelet esti-

mation using the Wiener-filter method are as follows.

1. Prepare reference Green’s function (input signal) as discrete series (G0, G1, G2, ..., Gn)

with length n+1 and reference wave (desired signal) as discrete series (P0, P1, P2, ..., Pm+n)

with length m + n + 1. Assume the length of filter (wavelet) is m + 1. In Kristin

data’s case, we assume the wavelet has 501 discrete points.

2. Calculate the auto-correlation of input signal (G0, G1, G2, ..., Gn) for lag from 0 to

m, i.e.

φGG(0) =
n∑
t=0

Gt ·Gt = G2
0 +G2

1 +G2
2 + ...+G2

n (B.1)

φGG(1) =
n−1∑
t=0

Gt ·Gt+1 = G0G1 +G1G2 +G2G3 + ...Gn−1Gn (B.2)

... (B.3)

φGG(m) =
n−m∑
t=0

Gt ·Gt+1 = G0Gm +G1Gm+1 + ...+Gn−mGn (B.4)

3. Calculate the cross-correlation of the desired signal (P0, P1, P2, ..., Pm+n) and the
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input signal (G0, G1, G2, ..., Gn) for lag from 0 to m, i.e.

φPG(0) =
n∑
t=0

Pt ·Gt = P0G0 + P1G1 + P2G2 + ...+ PnGn (B.5)

φPG(1) =
n−1∑
t=0

Pt ·Gt+1 = P0G1 + P1G2 + P2G3 + ...Pn−1Gn (B.6)

... (B.7)

φPG(m) =
n−m∑
t=0

Pt ·Gt+1 = P0Gm + P1Gm+1 + ...+ Pn−mGn (B.8)

4. Plug all the φGG and φPG into Equations 4.31. Using Toeplitz recursion, coeffi-

cients of filter (A0, A1, A2, ..., Am) can be solved. In this way the wavelet signature is

estimated.
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