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Abstract

In this dissertation, I describe a novel method to conduct stress studies via

the combination of a physiological and an observational information channel. The

method enables the quantification of aroused emotional states and their disambigua-

tion into positive or negative instances. The physiological channel targets sympa-

thetic responses and is materialized as a perspiratory signal extracted from thermal

imagery of the perinasal area. The observational channel is materialized via decoding

of facial expressions. Decoding is usually performed in the visible spectrum, however

I have developed an algorithm to carry this out using thermal imagery instead. Thus,

thermal imaging is used for both physiological and observational analysis. The poten-

tial of this dual-unobtrusive methodology was demonstrated with two stress studies.

The first study was about surgeons’ interaction with laparoscopic training boxes —

representative of the dexterous genre. The second study was about operator over-

loading where the participants played a car driving game while being interrupted by

phone calls and text messages.
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Chapter 1

Introduction

Stress (defined here as physiological arousal) is an ever-present mechanism that

helps humans cope with perceived or real threats or challenges. Upon stimulus, the

sympathetic nervous system signals the adrenergic and the cholinergic receptors. The

former result in the elevation of cardiovascular operations, while the latter result in

activation of sweat glands on the fingers, perinasal area, and other peripheral parts

of the body. We focus on the cholinergic receptors as they are more dynamic.

Stress has been suspected to play a key role in human performance for quite some

time [22]. In the early 20th century, Yerkes and Dodson postulated their famous hy-

pothesis regarding the relation of stress to human performance [44]. Figure 1.1, taken

from [9] indicates the two curves representing two kinds of tasks — simple and diffi-

cult. For simple or well-learned tasks, the relationship can be considered linear with
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improvements in performance as arousal increases. For complex, unfamiliar, or diffi-

cult tasks, the relationship between arousal and performance becomes inverse, with

declines in performance as arousal increases. For such tasks, performance increases

with stress up to a point and decreases past that — a relationship that proved to be

true in several experimental studies.

P
e
rf
o
rm
a
n
ce

Strong

Weak

Simple task

Focused attention, flashbulb

memory, fear conditioning

Difficult task
Impairment of

divided attention, working
memory, decision-making

and multitasking

hgiHwoL

Arousal

Figure 1.1: The actual version of Yerkes-Dodson law based on the findings and

theorizing of Yerkes and Dodson

So stress monitoring is important for finding the optimal human performance

envelope. To our advantage, stress is ubiquitous due to its physiological manifesta-

tion [37]. Previous work demonstrated that during emotional arousal physiological

signs materialize on the face, such as increased blood flow in the peri-orbital area [23]
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and transient perspiration on the perinasal area [29]. These signs have thermophysi-

ological footprints and quantification methods have been proposed based on thermal

imaging in [35] and [29]. Between the periorbital and perinasal signal, the latter

is of particular interest to this work, because it is part of a cluster of sympathetic

responses on sensory organs (tactile and olfactory) that are closely related to emo-

tions [29]. Because the perinasal response is sympathetic in nature, it is non-specific

to negative or positive arousal.
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Figure 1.2: Perspiration signals for Eustress (a) and Distress (b)

Figure 1.2 depicts two different types of arousal — Eustress (positive stress) and

Distress (negative stress). The physiological response is similar for these two differ-

ent types of arousal. Physiological measurement (perinasal perspiration here) is an

invaluable channel for stress study but one that that is nonspecific. It meets the

implicit measurement objective but not the greater detail objective. With respect
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to stress, it provides a good measure of activation, but it does not provide a mea-

sure of valence. This shortcoming of the physiological response can be addressed by

complementing it with a new dimension of the observation of facial expressions. Fa-

cial expressions are formed through coordinated muscle actions and can be classified

using the Facial Action Coding System (FACS) [12]. FACS breaks down the develop-

ment of expressions into sets of basic units. It was designed to measure visible facial

behavior in any context, not just in emotions, and has become the gold standard for

facial-measurement systems.

In my dissertation, I used the perspiration extraction method described in [29]

to derive the perinasal signals. In addition, I have developed a new method to de-

code facial expressions in thermal modality rather than visual imagery. Hence, both

physiological and observational analysis can be carried out under a single imaging

modality.

The remainder of the dissertation features a thermal imaging method for facial

expression recognition (TACS — Thermal Action Coding System). It is followed by

a description of two field studies of stress. The objective of these stress studies was to

investigate the role of stress on performance in as realistic conditions as possible and

as objectively as possible. I then present the accuracy results of TACS on these field

studies. Also, the collected neurophysiological data from these studies were analyzed

by the proposed tandem approach. The stress analysis results brim with intriguing

leads about human nature under stress.
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Chapter 2

Background

2.1 Thermal Imaging

Our research mainly focuses on facial physiology in the mid-wave thermal infrared

spectrum. The thermal infrared spectrum is composed of electromagnetic energy

with wavelengths between three and eight micrometers (see Figure 2.2). In contrast

to energy in the visible band, which is reflected off surfaces, energy in the thermal

infrared spectrum of the electromagnetic spectrum represents energy radiated by

objects.

All objects at finite temperature emit non-trivial amounts of electromagnetic

radiation in the thermal infrared (3-14 m). According to Plancks law, the power of

emission M(λ, T ) at a specific wavelength depends on the objects temperature as

follows:
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Figure 2.1: The electromagnetic spectrum. The mid-wave infrared spectrum is high-

lighted by the arrow.

M(λ, T ) =
c1
λ5

(
1

e(c2/λT ) − 1

)
W

m2 − µm
, (2.1)

where the first radiation constant, c1 = 3.7411×108W−µm4/m2, the second constant

c2 = 1.4388×104µm−K, and λ is the wavelength expressed in µm . As temperature

increases, radiation (M(λ, T )) increases (see figure 2.2).

According to the Stefan-Boltzmann law, the power of emission over several wave-

lengths can be obtained by integrating equation 2.2:

M(∆λ, T ) =

∫ λ2

λ1

M(λ, T )dλ, (2.2)

where ∆λ = λ1−λ2 . Since our sensing device operates in the Mid-Wave Infrared

(MWIR) spectrum, λ1 = 3µm and λ2 = 5µm in our case.
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Figure 2.2: Black body spectrum. The graph shows a significant amount of en-

ergy radiation change in the thermal infrared band (300-1400 nm) due to change in

temperature.

Thermal data collection in our research has been accomplished by ATHEMOS

(Automatic THermal MOnitoring System), which we have developed in-house (see

figure 2.3).

The 2D grid of the thermal camera captures the radiation energy of objects.

Based on the excitation level of grid points, the processing unit converts the energy

value at each grid point into a temperature value. Once the data have been converted

to temperatures, they are transferred to a data storage unit, such as a computer hard

7



Figure 2.3: Custom thermal imaging system, ATHEMOS. The custom thermal imag-

ing system developed by our group integrates a computer, a thermal camera, and

several peripheral hardware components.

disk. The raw image must be mapped to useful color values in order to visualize it

easily.
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Figure 2.4: Thermal image. A sample thermal image of a subject. The bar on the

right side shows the mapping between color and temperature in degrees centigrade.

2.2 Emotion Classification

When it comes to emotions/affect classification, there are two major theories,

viz. Basic Emotions and Circumplex Model.
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2.2.1 Basic Emotions

Anger Fear Disgust

Surprise Happiness Sad

Figure 2.5: Six basic emotions

The basic emotions theory, as the name suggests, posits that humans are evo-

lutionarily endowed with a discrete and restricted set of basic emotions [10]. The

basic emotions are — anger, fear, disgust, surprise, happiness, and sadness. The

theory states that each of these basic emotions is independent of the others and has

a distinct neurophysiological signature. Each emotion is unique in its behavioral,

psychological, and physiological manifestations. Each emotion is associated with a

characteristic facial expression.
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2.2.2 Circumplex Model of Emotions

The Circumplex Model is a dimensional model that regards emotions as a con-

tinuum of highly interrelated and often ambiguous states. The two dimensions are

valence and arousal. Each and every emotion is the consequence of a linear combi-

nation of these two independent dimensions. (see figure 2.6)

2.2.3 Challenges and pitfalls of the existing emotion theories

Basic emotion theory has primarily relied on the expressive manifestation of emo-

tions rather than the core physiological bases of emotions. Existing theories of emo-

tions (including the above two) lack a quantitative model to describe a persons

affective state. One of the major contributors to this shortcoming is the subjective

evaluation of emotions by the participants. These subjective self-reports are usually

acquired through the use of rating scales, or some form of imagery such as cartoon

images or photographs of human faces. These self-reports rely on a persons introspec-

tive abilities to imagine or recall emotionally laden experiences. Research has shown

that such self reports can often be inaccurate simply because of the inability of an

individual to access their own emotions. Nisbettin in his research [26] reported that

humans do not have direct introspective access to many (if not most) of their mental

processes. This suggests that emotions are not altogether distinct and independent

from each other.

11



Figure 2.6: Circumplex model of emotions

2.2.4 Novel Stress Model Proposed

I have proposed a new stress model — Thermal Affective Stress Model (TASM). It

derives it structure from the circumplex model where the dimensions are arousal and

valence. Arousal is proxied by the quantitative measure of physiology (perspiration

in our research) and the valence is measured by the quantitative measure of affective

display (facial expressions extent in our research). Facial expression extent is the

12



portion of the frames where the subject makes an affective display. It is described

as the percentage of the total frames.

Even though the proposed stress model takes the dimensionality aspect of emo-

tions from the circumplex model, but unlike the latter, it is quantitative in its eval-

uation (see figure 2.7). The perspiration extraction method was developed by Dr.

Shastri [30]. A brief description of the method is in the Stress Study chapter. I have

developed facial expression recognition software using thermal imagery. The details

for it are mentioned in the following chapter.

(P
er

sp
ira

tio
n)

Arousal

Valence (Positive Facial 
Expression)

(Negative Facial
Expression)

Figure 2.7: Thermal Affective Stress Model – TASM
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Chapter 3

Facial Expression Recognition in

Thermal Imagery

The detection and recognition of human facial expressions is a challenging task.

Among different individuals the geometry, size, and color of the face vary greatly.

Furthermore, a single expression can be formed at many different intensities and

speeds, sometimes so subtle that it goes unnoticed to a human observer. This intense

variance compounded with the subtlety of expressions necessitates more detailed and

automated approaches to facial expression detection.

Visual cameras are most commonly used to capture facial data due to their low

cost and ubiquitous availability. Several automated facial expression recognition

algorithms were proposed in the recent years from visual imagery [14], [27], [6].
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Bartlett et. al reported 93% accuracy of automated facial recognition on the Cohn-

Kanade expression dataset [5], and recently Kotsia and Pitas reported classification

accuracy of 99.7% and 95.1% on the same dataset [21]. Visual approaches, while

shown to be quite effective on particular databases, have a few unaddressed obstacles.

A major drawback is their tendency to lose accuracy when classifying subjects of

darker skin tones. The OpenCV face detection system, which has become a basis for

comparison shows a significant disparity in the accuracy of classifying dark- versus

light-skinned subjects [41]. Furthermore, many databases used to test visual-based

expression recognition systems, have a narrow variety of positions, textures, and

intensities of light. This usually simplifies the task of classification and result in

higher accuracy measurements. Hence, visual approaches tend to perform well under

sterile lab conditions, but under varied light conditions, they may operate at lower

accuracies [41]. This is one of the major reasons why most market available softwares

perform sub-optimally in a free flowing experiment where participants make constant

motion creating variations in reflectance. To illustrate my point, I processed visual

videos from a dataset [8] using CERT [24] software. The classification accuracy was

20.45% on this dataset even though the author claims to have achieved 80% accuracy

on a spontaneous facial expression dataset.

Thermal imaging is a well known alternative to visual imagery because of its

illumination invariance [31]. A thermal camera measures the radiations emitted

from the surface of the skin, which is a result of heat dissipation from the body’s

core due to blood flow, metabolic activities, subcutaneous tissue structure, and the

15



Test

AUs

Classified AUs No Detection

1+2 4 9 10 12 NaN

1+2 11 2 16 0 5 31

4 0 6 20 0 3 17

9 0 0 2 0 0 5

10 0 0 0 0 0 3

12 0 0 9 1 28 26

Table 3.1: Confusion matrix for facial expressions from deception study dataset [8].

CERT software was used for facial expression recognition in the visual imagery.

sympathetic nervous activities. Though study has been done in the area of thermal

face recognition [20], few have attempted to explore facial expression recognition

using this modality. Khan et al. explored and proved through statistical analysis, the

feasibility of automated facial expression classification through thermal imaging [19].

Yoshitomi et al. reported success rates of 90% [45]. An unsupervised local and

global feature localization algorithm for facial expression classification was proposed

by Trujilo [34].

Thermal imagery stands as an alternative which may potentially eliminate the

illumination problem encountered in the visual imagery. However, it may pose a

possible challenge as facial thermograms may change depending on ambient temper-

ature and the physical condition of the subject. This would render difficult, the task
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of acquiring similar features for the same expressions.

In the next section of the dissertation, I will describe an experiment conducted

to study the sensitivity of visual and thermal imagery to illumination and airflow

variations, thus benchmarking thermal imagery against visual.

3.1 Benchmarking Thermal Imagery for Facial Ex-

pression Recognition

This was a feasibility study where I collected simultaneously visual and thermal

imagery of participants in conditions of illumination and airflow variations. Spacial

PCA was applied to the 13 fiducial regions of the human face recordings in both the

thermal and visual imagery. I will present comparative results from both modalities.

To the best of our knowledge, this is the first time such a comparative study is being

reported. This work was published in International Symposium on Visual Computing

(ISVC) [39].

FACS, developed by psychologists Ekman and Friesen [11], is most commonly

used to classify human facial expressions through analysis of possible contortions of

facial geometry. FACS breaks down the development of expressions into particular

action units, each of which is derived from a muscle or muscle groups in the head. In

this study, I classified a total of 8 action units (AU 1+2, 4, 6+12, 9, 10, 12, 15, 17).

I selected these specific action units because they are the exemplary when forming
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Action Unit Principal Emotion

1 + 2 Suprise

4 Anger and Fear

6 + 12 Happiness

9 Disgust

10 Disgust

12 Happiness

15 Sadness

17 Disgust and Confusion

Table 3.2: General classification of the 8 selected action units.

any of the 6 universal emotions (see Table 3.1) [13].

Our automated facial expression recognition algorithm mainly contains three

steps - face acquisition, facial feature extraction, and expression classification. In

this section, I will explain in detail our experimental setup to collect simultaneous

visual and thermal facial data, local facial feature extraction algorithm, and expres-

sion classification methods.

Experimental Setup. A snapshot of our experimental setup can be seen in the

figure 3.1. A total of 8 subjects participated in our experiments with age range from

20 to 30 years, both genders, and varying ethnicities. To facilitate comparison, I

collected simultaneous data from both midwave-thermal infrared and a monochrome-

CCD visual cameras as shown in figure 3.1. The room is equipped with three lighting
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Figure 3.1: The experimental setup used to simultaneously collect thermal and visual

facial data from subjects.

positions — subject’s right, top and front, to simulate the effect of illumination

variation on visual imagery. We used a portable fan to simulate the effect of variable

atmospheric air conditions on thermal imagery. The subjects were instructed to

rinse their face and apply a small amount of 70% isopropyl alcohol. In order to

ensure that the evaporation of the volatile alcohol mixture did not adversely affect

the data, each subject waited a mandatory period of 15 minutes before beginning the

data collection. A FACS encoder trained each subject regarding the facial expressions

they were supposed to make during the data collection by showing them the videos of

each expression. Each subject was allowed as much time as they needed to practice

each expression, and they also have an option to skip any expression, if they so
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Figure 3.2: The 13 regions of interest used to capture facial movement and deforma-

tion.

desired. For each subject, I first recorded their relaxed and neutral expression for 25

seconds, followed by a visual instruction on a screen in front of them regarding the

next expression they are supposed to make. The subjects were asked to repeat each

expression 14 times at any intensity of their choice in order to simulate the variety

of natural expression in everyday formulation.

Local Feature Extraction. The typical feature extraction algorithms in automated

facial expression recognition can be categorized as holistic (where the face is processed

as a whole), and local (where only facial features or areas that are prone to change

with facial expressions are processed) [14]. Our feature extraction algorithm falls in

the latter category with regions of interest (ROIs) placed at 13 fudicial points on the

face (as shown in figure 3.2). The ROIs are carefully chosen according to various
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facial muscles involved in different FACS action units as explained below:

ROIs 1 and 2: measures contraction of the frontalis muscles which raise the

eyebrows. The raising of the eyebrows, present in FACS action units 1 and 2, are

most commonly associated with expressions of surprise. The vertical placement of

ROIs 1 and 2 distinguish between action unit combination 1+2 and 4. Action unit

4 affects mostly ROI 2 because the skin is only slightly stretched on the forehead,

producing lower values in ROI 1.

ROI 3: captures the translation of the tissue actuated by the corrugator and

procerus muscles. These muscles are used to furrow the brow, action unit 4, when

one is angry or sad. This ROI detects both the translation of the eyebrow and the

deformation in the skin in between the eyebrows that generate signal.

ROIs 4 and 5: detects the orbicularis oculi. These are used to detect action

unit 6, the critical difference between a Duchenne smile (AU 6 and 12) and a simple

smile (AU 6). These ROIs detect the subtle raising of upper-cheek tissue and the

wrinkling of the outer eye-edge.

ROI 6: measures the quadratus labii superioris which is responsible for scrunch-

ing the nose tissue. This is most commonly formed when a person is disgusted at

something.

ROIs 7 and 8: additional measures to detect the lower set of elevator muscles,

used to raise the tissue surrounding the nose. These attempt to measure action unit

10, a secondary expression of disgust. These measure the translation of new tissue
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Table 3.3: Regions of interest based on the facial anatomy.

Example

Image

Principal

Emotions

Action

Unit

Indicative

ROIs

ROIs

Placement

Surprise 1 + 2 1, 2, 3

Anger and

Fear
4 2, 3

Happiness 6+12 4, 6, 9, 10

Disgust 9 5, 7, 8

Disgust 10 7, 8

Happiness 12 9, 10

Sadness 15 11, 12

Disgust and

Confusion
17 13
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from around the nose, just above the periorbital region.

ROIs 9 and 10: detects the contraction of the zygomaticus muscles, used most

strongly in smiles. These measure action unit 12, the widening of the lips. These

detect specifically the translation of cheek tissue as well as the crease formed at the

edges of the mouth during a smile.

ROIs 11 and 12: measures the contraction of the triangularis, which lowers

the other edges of the mouth into a frown. Action unit 15 is necessary for express-

ing sadness. These two ROIs measure both tissue translation and crease formation

around the bottom edges of the mouth.

ROI 13: measures the change in the tissue attached to the mentalis. This allows

for the measurement of any chin flexion, especially used to raise the lower lip.

The thermal and visual facial videos were recorded at 25 and 30 fps, respectively.

We computed the neutral ROIs by computing the mean values in each ROI from

first 25 seconds of the video, when the subjects made neutral expression. Then the

principal components were computed for each ROI by treating each pixel within the

ROI as a variable. The frames corresponding to greatest change from the neutral ROI

will have the largest principal component values during the expression as depicted

in figure 3.3.

After the principal components have been found for all ROIs, a profile for each

expression is determined by computing the standard deviation of each ROI-principal

component. To do this, we first annotate the onset (marking the start) and offset
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Figure 3.3: PCA values from ROIs 3 (depicted by dotted lines) and 9 (depicted by

solid lines) while the subject is making (a) angry expression, AU 4 (Brow lowerer)

and (b) happy expression, AU12 (Lip corner puller). It can be clearly seen that

PCA values are larger for ROI 3 during angry expression, while it has large values

for ROI 9 during happy expression.

(marking the end) frames for each expression as shown in figure 3.3. The standard

deviation-expression profiles are generated by computing the standard deviation of

each of the 13 ROIs during the window between the onset and offset. These expres-

sion profiles denote the amount of deviation found over the course of the expression,

and hence are used to train the classifier.

Classification. The standard deviation-expression profiles computed in the feature

extraction step are used to train feed-forward multilayer perceptrons [15] for both

visual and thermal modalities. Each multilayer perceptron utilizes 14 input nodes,

10 sigmoid nodes in the hidden layer and 8 output nodes to classify expressions.

Thermal and visual perceptron classifiers were generated separately by training them
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with expressions that were coded by a certified FACs encoder to determine a ground

truth.

Experimental Results and Discussion. In order to test the performance of each

of the thermal and visual modalities during both ideal and challenging conditions,

each subject was asked to participate in two sessions - Phase I and Phase II. In this

section, I will present results from each of these sessions.

Phase I — Illumination Variance. In the first session (Phase I), I introduced

variability in visual imagery by using different lighting positions (subject’s right,

top and front) in the room for different subjects during the data collection. This

resulted in a considerable variability in visual imagery (as shown in figure 3.4a) and

hence posed a challenging condition for the visual perceptron classifier. However,

the room temperature was maintained constant throughout the session, maintaining

an ideal condition for thermal imagery. The Phase I dataset consisted of a total of

448 expressions from each of the thermal and visual modalities.

We used 10-fold cross validation and percentage split in order to test the clas-

sification accuracy. Table 3.4(left) shows the confusion matrix and Table 3.5 shows

the accuracy for all the test-action units from thermal and visual modalities. As we

expected, thermal modality performed better than visual modality because visual

imagery was affected by the illumination variance introduced in the dataset.

Phase II — Temperature Variance. In the second session (Phase II), I intro-

duced variability in the thermal imagery by blowing an air fan (from subject’s right,
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a                                              b

Min                                          Max

Figure 3.4: (a) A sample from Phase I (illumination variance) dataset. The top row

shows the thermal and visual images acquired while lighting was from subject’s right,

second row shows corresponding images from another subject when the lighting was

from the top. (b) A sample from Phase II (temperature variance) dataset. The top

row shows the thermal and visual images acquired while air is blown from subject’s

right, second row shows corresponding images from another subject while air is blown

from the front. The bottom row shows the color map used for thermal images.
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left and front), affecting the subject’s thermal signature. This introduced a consid-

erable variability in thermal imagery (as shown in Figure 3.4b), posing challenging

conditions for the thermal perceptron classifier. However, the lighting in the room

was maintained constant throughout the session — an ideal condition for visual im-

agery. The Phase II dataset consisted of a total of 448 expressions from each of the

thermal and visual modalities.

Table 3.4 (right) shows the confusion matrix and Table 3.5 shows the accuracy

for all the test action units from thermal and visual modalities. As we expected, the

visual modality has better results in Phase II than in Phase I, since constant lighting

is maintained during the data collection. However, an interesting observation is

that despite the temperature variance introduced in the dataset, thermal modality

remains unaffected in Phase II and has an almost-similar performance to that in

Phase I.

The features fed to the classifiers are the principal components computed in

each of the ROIs, which actually measures the change from neutral ROI during the

expression. In the visual imagery, much of this change is a result of the formation

of shadows on portions of face depending on the particular expression being made.

It is possible that no new shadows are formed in the case of planar deformations or

poor lighting. This is the reason why the classifier performance was poor on Phase

I dataset where different lighting conditions were used during data collection. The

thermal data, however, captured not only the translation, but also the deformation

of the tissue due to the unique heat patterns generated on face during the expression.
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Example Test

M
o
d
a
li
ty Phase I (Illumination Variance) Phase II (Temperature Variance)

Images AUs Classified AUs Classified AUs

1+2 4 6+12 9 10 12 15 17 1+2 4 6+12 9 10 12 15 17

1
+

2 T 50 1 0 1 0 0 0 0 40 0 0 0 0 0 0 0

V 48 2 0 1 0 0 0 1 39 0 0 0 0 0 1 0

4

T 1 50 0 0 0 0 0 0 0 34 0 0 0 0 1 0

V 4 44 0 3 0 0 0 0 0 35 0 0 0 0 0 0

6
+

1
2 T 0 0 49 0 1 0 0 0 0 0 38 0 0 1 0 0

V 0 0 36 0 5 6 1 2 0 0 38 0 0 1 0 0

9

T 0 1 0 48 1 1 0 1 0 0 0 54 0 0 0 0

V 1 1 0 50 0 0 0 0 0 0 1 53 0 0 0 0

1
0

T 0 0 1 0 54 0 1 0 0 0 0 0 45 0 0 0

V 0 0 0 2 54 0 0 0 0 0 0 0 45 0 0 0

1
2

T 0 0 3 0 1 45 0 1 0 0 3 0 0 40 4 2

V 0 0 4 0 0 46 0 0 2 0 1 0 0 43 3 0

1
5

T 0 2 0 0 1 1 35 0 0 0 1 0 0 2 35 1

V 0 0 0 0 0 0 35 4 0 0 0 0 0 6 32 1

1
7

T 0 0 1 0 0 0 1 53 0 0 1 0 0 0 0 51

V 2 0 0 0 1 3 3 46 0 0 0 0 0 0 0 52

Table 3.4: Confusion matrices of Phase I (illumination variance) and Phase II (temperature

variance) experiments; for thermal and visual modalities, and their fusion
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Thermal Visual

Illumination Experiment Precision 94.81% 88.64%

Airflow Experiment Precision 94.6% 94.6%

Table 3.5: Accuracy of Phase I (illumination variance) and Phase II (temperature

variance) experiments for thermal and visual modalities.

These deformations introduce variability that can always be measured by principal

components. Hence, the classifier performance was same on both Phase I and Phase

II datasets, even though considerable variability was introduced on the thermal data

in Phase II by using an air fan.

There are a few challenges in classification of certain action units that were no-

ticed in both modalities. The largest type of misclassification in the thermal domain

is between action units 1+2 and 4. This error is caused largely by low intensity action

unit 1+2, which develops a weak signal in the topmost ROI 1. This mostly resembles

the low signal generated by action unit 4, and hence, confuses the perceptron classi-

fier. In these cases, the perceptron misclassified the lower signal action unit 1+2 as

action unit 4. Similarly, there is considerable misclassification between action units

1+2 and 4 in the visual approach, although the reason is slightly different. Medium

to strong contraction of the frontalis (AU 1+2) creates wrinkles on the forehead,

which casts shadows and in turn affects the PCA output. In a few instances, the

intensity was so low that very few shadows were generated, and therefore, it was

classified as action unit 4.
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The second largest source of misclassification in both modalities is between action

unit 12 and 15. AU 12 pulls the corner of the lips back and upwards (obliquely)

creating a wide U shape to the mouth while AU 15, the lip corner depressor, pulls

the lip corners down. Both of these action units produce strong signals in the ROIs

placed in the buccal region (ROIs 9, 10, 11 and 12 ), which in turn confuses the

perceptron classifier in some cases, and hence leads to misclassification.

The third largest source of misclassification in thermal imagery is between action

unit combination 6+12 and 12. This error is caused when the two ROIs measuring

the orbicularis oculi do not detect the subtle deformation of the skin around the eye

socket.

Conclusion. The visual approach has long been considered the most powerful ap-

proach to facial expression recognition. We have shown through pilot experiments

that the thermal modality can be an alternative to visual modality that can overcome

some of its shortcomings, such as illumination dependency. We have collected two

sessions of simultaneous thermal and visual facial expression datasets, with each ses-

sion comprising a challenging variability in each modality. We noticed that the visual

modality has best performance when the lighting conditions are kept constant, but

the performance degraded considerably when illumination variance was introduced

in the dataset. However, the thermal modality performed equally well even in the

presence of heat variability in the dataset. To the best of our knowledge this is the

first comparative study between the two modalities for automated facial expression

recognition.
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The results from the above study led to choosing thermal imagery for facial

expression recognition. In the following section, I describe the actual algorithm

developed.

3.2 Thermal Action Coding System — TACS

Thermal Action Coding System (TACS) is the facial expression recognition al-

gorithm that I have developed for the thermal imagery. The methodology of this

automation tool and its application in the surgical training study was published

in the proceedings of the 2012 ACM Conference on Human Factors in Computing

Systems (CHI) [40]. We have tracked 7 regions of interest (ROIs) on the thermal

imagery of the face (figure 3.5). The tracking algorithm used is described in [46].

The ROIs were carefully chosen to align with facial muscles heavily involved in emo-

tional action units (see table 3.6). Each ROI was abstracted by its centroid that was

tracked over time forming a trajectory. The centroid of ROI-5 (nose) was used as a

reference, because the nose is the most stable part of the face and is largely invariant

under expressions.

Evolving Euclidean distances between centroid trajectories were used as indica-

tors of muscle actions. Specifically, the algorithm computed the Euclidean distances

d(x,5) between each ROI-x (x 6= 5) and ROI-5 from the onset till the offset of every

expression (figure 3.6A). A feature vector for each expression was then formed by

computing the standard deviations of these Euclidean-distance signals (figure 3.6B).
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Figure 3.5: The seven ROIs used to capture facial muscle movement and deformation
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33



These feature vectors capture the characteristic inter-muscle deformations over

the course of expressions, and hence can be used to train a classifier. The training

was done on expressions made out of 5 action unit combinations (AU 1+2, 4, 9,

10, and 12). I chose a feed-forward multilayer perceptron for classification. The

multilayer perceptron featured 13 input nodes, 12 sigmoid nodes in the hidden layer,

and 5 output nodes to classify expressions. The accuracy results of TACS for the

two stress studies have been mentioned in the results chapter.

3.3 System Architecture

As we recall, the proposed stress model has two dimensions — arousal and va-

lence. Perspiration measure is a proxy for arousal with higher perspiration indicating

higher arousal. Similarly, the extent of the affective display via the facial expressions

is a proxy for valence. Figure 3.7 depicts the system architecture for the stress model.

Using the Flir thermal camera SDK, the system aquires the real-time thermal frames.

On these thermal frames, one tracker can is placed on the peri-nasal area for perspi-

ration extraction and seven trackers are placed for tracking facial muscle movement.

The output of these trackers go to the perspiration extraction and facial expression

recognition methods. Finally, the output from these methods are sent to the stress

model module which uses the information from the valence to disambiguate the type

of arousal.
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Example

Image

Muscular

Action

Facial

Muscles

AU ROI Place-

ment
Frontalis,

Pars Medi-

alis, Pars

Lateralis

1+2

Corrugator

Supercilii,

Depressor

Supercilli

4

Levator

Labii, Su-

perioris

Alaquae

Nasi

9

Levator

Labii Supe-

rioris

10

Zygomaticus

Major
12

Table 3.6: Dynamic trackers placement based on facial anatomy.
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Figure 3.7: System architecture for the stress model.
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Chapter 4

Conducting Stress Studies

The very first hurdle in studying stress is generating it. Stress should be studied

in an environment where it arises naturally. A very important part of my dissertation

was to conducted stress studies. The premise was to have stress studies with different

types of stressors (see Table 4.1) and with minimal interference (without wiring the

subjects). Conducting these studies took a lot of work. It involved writing an IRB,

designing the experimental setup, subject scheduling, lots of practices, data collection

and data management.

In each stress study, a participant’s face was imaged with a thermal and visual

camera throughout the experimental session. We used a Thermo Vision SC6000

Mid-Wave Infrared (MWIR) camera from FLIR [1] with a MWIR 100 mm lens and

a CCD monochrome visual camera from ImagingSource [18]. The thermal imaging

data were used to extract the perinasal perspiration signal and for facial expression
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Study Type of Stressor

Surgeon Stress Dexterous Challenge + Loss of Proprioception

Operator Overloading Cognitive Load + Motor Conflict + Emotional Stress

Table 4.1: Stress Studies designed for different types of stressors.

recognition (see figure 4.1 for more details). The visual imaging data were used

to decode the participant’s facial expressions, done manually, for generating ground

truth for validating my facial expression recognition algorithm (TACS).

The perspiration extraction method developed by Dr. Shastri was applied to

both the stress studies. The results from these stress studies have been mentioned

in the results chapter.

Perspiration Extraction Method. To quantify sympathetic responses, we ex-

tracted the transient perspiratory signal in the perinasal area from the thermal imag-

ing data. This signal extraction was performed according to the method described

in [30]. Specifically, on the initial frame of every thermal clip, we selected the Mea-

surement Region of Interest (MROI) on the lower part of the perinasal area (see

figure 4.2). This MROI was tracked over time via a tracker that was specifically

designed to track facial tissue in thermal imaging [46]. The tracker was based on

particle-filtering driven by a probabilistic template mechanism with spatial and tem-

poral smoothing components.
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Figure 4.1: Sensing instruments
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A morphology-based segmentation algorithm was applied on the MROI of each

frame to quantify the perspiratory response [30]. In sympathetic excitement, perspi-

ration pores are activated appearing as small cold spots in thermal imagery. These

spots feature a distinct morphological pattern – “cold” inner area transitioning to a

“hot” surrounding background. The segmentation algorithm delineated the perspi-

ration spots, thus computing the perspiration intensity for every thermal frame.

The tracking step along with the physiological computation step were iteratively

applied until the end of the thermal clip. Thus, we obtained a 1D perspiration signal

from a sequence of 2D thermal frames.
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Figure 4.2: (a) First Image Row: Virtual tissue tracker (black rectangle) at work as

a subject exhibits head motion during execution of Task 3 in Stress Study I. Second

Image Row: Motion-corrected perinasal area snapshots throughtout the performance

period. The end effect could be considered virtual tethering of a virtual probe, so

that the measurement area remains as consistent as in conventional measurements

with tethered physical probes. (b1) Thermal image of the face. Spots S1, S2, and

S3 are ‘cold’ spots indicative of perspiration. (b2) 3D thermal plot of the area

surrounding perspiration spots S1, S2, and S3. The conic shape of the spot profiles

denotes the gradual transition from a ‘cold’ core to a ‘hot’ surrounding background.

(b3) Outcome of the morphological extraction algorithm as 3D energy plot.
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4.1 Stress Study I — Surgical Training

The Surgeon Stress Study focuses on stress generated due to dexterous chal-

lenge. When it comes to stress due to dexterity, specific experimental studies focused

overwhelmingly on aviation, where the effect of stress on performance is deemed

paramount [25]. There have also been some studies on the effect of stress on sur-

gical performance [3, 4, 16]. Both the aviator and surgeon professions are critical to

society and involve dexterity. Due to the introduction of new technologies, such as

laparoscopy in surgery and unmanned aerial vehicles in aviation, required skills in

the two professions look increasingly similar (e.g., maintaining dexterity despite loss

of proprioception). Emerging professions, such as robot tele-operators and actors

controlling avatars, fall under the same skilled category. While this convergence of

skilled professions takes place, the literature on addressing issues of stress versus

performance in dexterous tasks remains fragmented (per profession) and lacks ap-

propriate methods and unifying abstractions. Indeed, common threads in many pub-

lished studies are the use of subjective or snapshot stress indicators and the reliance

on non-orthogonal performance measures that are often culturally defined. The key

aim of our investigation is to use our proposed objective stress-measurement method

that is unobtrusive and real-time. We monitored stress and performance patterns

among surgeons during training in an inanimate laparoscopic skills lab. The selected

activity locus merely serves as a sample window through which we can observe the

human behaviors of interest.
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Subjects. Grouping was consistent with the standard categorization of surgical-skill

level [36]. Specifically, nTotal = 17 surgeons randomly volunteered from: (1) a pool

of novices (nN = 7 : 5 male/2 female) comprised of surgical residents or technicians

with no surgical-practice record and limited training in laparoscopic surgical skills;

(2) a pool of experienced surgeons (nE = 10 : 7 male/3 female) with an extensive

surgical-practice record and at least some experience with the tested laparoscopic-

surgical skills.

Table 4.2: Make-up of surgeon pool.

Level n(Male/Female) Age[yr]

(1) Novices 7 (5/2) 26.0 ± 2.6

(2) Experts 10 (7/3) 35.8 ± 9.0

Data shown as mean ± s.d.
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Task 1

Task 2

Task 3

Figure 4.3: Surgeon imaged thermally and visuallly during trial execution in the

inanimate-laparoscopic skills lab of the Methodist Institute for Technology, Innova-

tion, and Education (MITTIESM). The panels to the right of the figure show details

inside the surgical training box during the execution of the three different tasks.

The surgeons were controlled (analysis of variance, P > 0.05) for general psycho-

logical traits such as, anxiety [33], positive affect [38], and shyness [7] that could bias

the experimental results. All surgeons were recruited from the Methodist Hospital.

All training took place in the inanimate laparoscopic-skills lab of the Methodist Insti-

tute for Technology, Innovation, and Education (MITIESM) in Houston, Texas. The

Institutional Review Boards of the University of Houston and the Methodist Hos-

pital approved the study and all subjects signed informed-consent forms, including

publication statements.
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Study Design. The surgeons trained on three laparoscopic drills that were chosen

to cover the full spectrum of difficulty according to conventional wisdom (see figure

4.3).

Task1: A simple, ad hoc, drill where a string is manipulated from one end to the

other via its colored sections.

Task 2: A more challenging drill that requires the cutting of a circular pattern on a

piece of gauze. It is part of the Fundamentals of Laparoscopic Surgery (FLS),

a widely-accepted educational-module in laparoscopic surgery [32].

Task 3: A highly complex drill that requires precise suturing on a fine-rubber tube.

This is also part of FLS.

Training was longitudinal, with repeat sessions spread over the course of a few

months; every session included multiple trials of each task. In our analysis, we studied

the stress indicators which included neurophysiological (via thermal imaging) and

observational (via visual imaging).

Neurophysiologically, stress was tracked through the perinasal response. Specif-

ically, in every trial i of a task j in session k for a surgeon l (x ≡ (j, k, l)), we

quantified the entire perinasal-perspiratory signal E(x, i) and represented it via its

mean intensity E(x, i). Then, we tracked stress by computing the mean-signal in-

tensity µE(x) ≡
∑I

i=1 E(x, i)/I over all trials i = 1, . . . , I of task j in session k for

surgeon l. With the aid of observational variable (facial expressions), we were able
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to disambiguate instances of negative (distress) versus positive (eustress) excitation

in a sympathetic signal, such as the perinasal.

Before each session, every surgeon completed a State Anxiety Inventory (SAI)

sheet [33]. Scoring of SAI gave an indication of the surgeons stress level prior to the

execution of the protocol.

4.2 Stress Study II — Operator Overloading

Although concurrent performance of multiple tasks is part of human life, insuffi-

cient research has been done to understand its effect on human emotional states and

performance. The purpose of this study was to develop an effective tool to gauge

stress-load of operators engaging in multi-tasking. The study design focused on cell-

phone and texting communication during driving simulation — a classic example of

operator overloading.

Driver distraction has been a topic of discussion since the last century. The

hypnotic effect of windshield wipers on driving performance was debated in 1905.

Around the 1930s, the focus was on the impact of the radio programs on the primary

driving task. In the current era, the debate has gained attention for cell phone usage

in the vehicle. There are several studies devoted to designing a monitoring system

for vehicle-drivers distraction. Yamaguchi et al. proposed the monitoring of drivers

stress using biomarkers [42]. Healey et al. used four types of physiological sensors,

electrocardiogram (EKG), electromyogram (EMG), skin conductivity (EDA, GSR),
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and respiration (through chest cavity expansion) for monitoring driving stress [17].

Yamakoshi and his group used differential skin temperature as a driving stress index

[43]. Previous work has primarily relied on on-body sensors for use in cars. On-body

sensors may not be practical for continuous monitoring. In addition, they restrict

users’ motion and increase their awareness of being monitored. Therefore, it is not

an effective way of continuous monitoring. With our current stress measurement

method, we can now monitor participants passively and contact-free and thus, is

suitable for continuous monitoring. We used a popular car racing game as a testing

platform and introduced two ubiquitous disruptions: an involved-phone conversation

with some emotional content and a text exchange. We monitored each participant’s

behavior during a gaming session via three complementary information channels:

(a) The evolution of the participant’s sympathetic responses. (b) The evolution

of the participant’s facial expressions. (c) The evolution of the participant’s game

performance. The first two channels quantified the participant’s affect while the

third was monitored his/her output. Once again, all three channels were real-time,

objective, and unobtrusive (thermal imaging for sympathetic quantification, visual

imaging for decoding of facial expressions, and screen recording for quantification of

performance).

Subjects. We recruited n = 23 participants for the experiment. The dataset

included participants of both genders (9 females/14 males) with mean age 24.56

(24.56 ± 5.45 (s.d.)) and substantive gaming experience (more than year). We ex-

cluded people without a driver’s license.
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Study Design. We selected a car racing game called Test Drive: Unlimited for this

experiment. It represents a popular game genre, which requires minimal learning

period, as it draws on people’s driving experience. The game runs on a XBOX-360

game console and comes complete with a steering wheel, break pedal, and gas pedal.

As gaming interruptions, we introduced two cell phone activities, talking and texting,

using an iPhone.

Upon arrival, each participant completed a biographic questionnaire. Next, the

participant familiarized herself with the game setup for 10 min. She was also given

the opportunity to familiarize herself with the iPhone operations for calling and

texting. After this learning phase, the participant relaxed for 3 min (BL) during

which she listened to smoothing music. This relaxation phased aimed to reduce

excitation built during the earlier activities, so that the main experiment starts with

the participant’s sympathetic system close to the tonic level.

During the main experiment, each participant played the car racing game. Part

of her gaming session featured two multitasking disruptions: phone calling (P) and

texting (T). Specifically, the timeline of the gaming session was as follows: 1 min

pure gaming, about 4 min gaming while talking over the phone, 1 min pure gaming,

5 min relaxation period, 1 min pure gaming, about 4 min gaming while texting, and

1 min pure gaming. In fact, we randomized the order of calling and texting in the

trials. This randomization and the intervening relaxation between the multitasking

periods aimed to minimize the effect of confounding factors. At the end of the exper-

iment, the participant was debriefed regarding her game experience. This feedback
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Figure 4.4: Experimental setup for the driving simulation game.

was later used for subjective analysis. The questions posed to the participant over

the phone were designed to build-up her cognitive distraction and also charge her

emotionally. The question-set included a combination of simple, cognitive, and un-

comfortable questions:

Simple

Q1: Do not hang up until you are told so. Do you understand?
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Q2: Is there anyone else in the room, yes or no?

Q3: Are you single or married?

Cognitive

Q4: Who won the American civil war, the north or the south?

Q5: What is the sum of 16 + 28?

Q6: How many ‘e’ letters are in the word embarrassment?

Uncomfortable

Q7: Did you ever take anything from a place where you worked?

Q8: Did you ever tell a lie to make yourself look good?

Q9: lf I told you I don’t believe what you are saying would that upset you? Why?

Q10: What do you consider to be your greatest strengths?

Q11: Think about people that really irritate you. Why do they bother or annoy

you?

Q12: What is the worst job you ever had and why did you dislike it?

Cognitive

Q13: My grandfather’s daughter hit her daughter. How are the daughters related?

Q14: What is the sum of 58 + 74?

Closing
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Q15: What is good about talking over the phone while driving?

Q16: You may now hang up the phone and pay attention to the game

In the texting session we posed 5 simple questions to each participant. Each

successive texting question required a lengthier response, thus building up the visual

and motor distraction to the gamer.

Q1: Are you male or female?

Q2: Where were you born?

Q3: Type your university name and address.

Q4: What are your plans for the weekends?

Q5: What is good about texting while driving?
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Figure 4.5: Experimental protocol for operator overloading study.
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Chapter 5

Results

5.1 TACS Validation Results

A certified FACS expert decoded facial expressions in the visual stream. These

were used as ground-truth to assess the accuracy of the computational-facial expression-

recognition method in the thermal stream. We used multilayer perceptron with 10-

fold cross-validation and percentage-split in order to test the classification accuracy.

In the surgical training study, from 977 training trials (1-4 min each), I found 244

expressions made out of the five action unit combinations (AU 1+2, 4, 9, 10, and 12).

These were the five AUs on which I trained my classifier. For stress study II, I found

95 such facial expressions. For study II there wasn’t enough expressions of AUs 9

and 10 to train the classifier. I also applied my facial recognition software on an

extra dataset from the deception study conducted by the CPL lab in the University
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of Houston. In this extra dataset, there were a total of 185 expressions from of the

above 5 types of AU combinations.

The recognition rate for the facial expressions from the two stress studies and

the extra dataset were 81.55%, 80% and 79.46% respectively — an excellent perfor-

mance if one takes into account the realism of these studies (see tables 5.1 5.2 5.3).

The method accuracy on the conglomeration of facial expressions from all the stress

studies was 75% (see table 5.4). The above accuracy results are a testament to the

robustness and scalability of TACS. Hence, one can use this automated method in

field practice (as we did) to disambiguate physiological signals. The gain is tremen-

dous savings in labor and expense at the cost of some accuracy. If the data set is

large, such as in the above studies, one can argue that the benefits far outweigh any

losses.

5.2 Stress Analysis for the Two Stress Studies

5.2.1 Study Variables

Our stress model requires the observational annotation of the neurophysiological

response in its arousal dimension and the extent of the facial expression as the valence

dimension. This resulted in a more detailed level of stress analysis. Specifically, we

quantified just the portions of the perinasal perspiratory signal where the participants

showed facial expressions manifesting negative feelings (distress); let us denote this
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Test

AUs

Classified AUs

1+2 4 9 10 12

1+2 6 5 3 3 1

4 3 39 0 3 0

9 2 1 5 7 5

10 0 2 1 69 3

12 1 1 0 4 80

Table 5.1: Confusion matrix for facial expressions from Stress Study I — Surgical

Training.

Test

AUs

Classified AUs

1+2 4 12

1+2 7 9 2

4 1 38 5

12 1 1 31

Table 5.2: Confusion matrix for facial expressions from Stress Study II — Operator

Overloading.
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Test

AUs

Classified AUs

1+2 4 9 10 12

1+2 53 9 1 0 2

4 9 34 0 0 3

9 2 0 4 0 1

10 1 0 0 0 2

12 4 4 0 0 56

Table 5.3: Confusion matrix for facial expressions from an extra dataset from the

deception study conducted by the CPL lab in the University of Houston.

Test

AUs

Classified AUs

1+2 4 9 10 12

1+2 52 29 3 10 8

4 14 103 0 7 11

9 7 3 5 10 3

10 0 3 0 71 7

12 3 9 1 4 166

Table 5.4: Confusion matrix for facial expressions from the two studies and the extra

dataset.
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negative affect signal as EN(x) (with mean EN(x)) and its extent (percent of total

frames in the trial) as N(x). In this case, we tracked stress by computing the mean

signal intensity µEN
(x) ≡

∑I
i=1EN(x)/I over all the negative affect signal portions

i = 1, . . . , I. We also computed the mean extent µN(x) ≡ N(x) of the negative affect

signal portions. Therefore, at this level of analysis, distress changes were evident not

only via the changes of µEN
(x), but also via the changes of µN(x) (see Figure 5.1).

At the same time, we tracked positive excitation by quantifying the portions of

the perinasal perspiratory signal where the surgeon had facial expressions manifesting

positive feelings (eustress); let us denote this positive affect signal as EP (x) (with

mean EP (x)) and its extent (percent of total frames in the trial) as P (x). These

positive-affect signal portions were characterized by mean intensity, µEP
(x), as well

as mean extent, µP (x), similarly to the negative affect signal portions. Therefore,

eustress changes were evident either via the changes of µEP
(x) or µP (x).

5.2.2 Stress Analysis on Stress Study I — Surgical Training

5.2.2.1 Qualitative Analysis

Figure 5.2 shows a characteristic example of eustress from the study set. About

130 seconds into the drill, the perinasal signal of the surgeon exhibited elevation,

which is characteristic of arousal. The signal by itself is not informative as to the

type of arousal (positive or negative). However, once the observational channel is

included in the analysis, it can be safely inferred that this is a bout of eustress.
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Figure 5.1: The gray 1D signal is the perspiration signal. The horizontal red and

green bars at the bottom are the annotated time intervals for negative and posi-

tive facial expressions. With the aid of observations, the perspiration signal can be

disambiguated into distress or eustress signal.
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Figure 5.2: A bout of eustress for an experienced surgeon (D005), as indicated by

the locally elevated perinasal signal and the positive facial expressions.
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Figure 5.3: Bouts of distress for a novice surgeon (D025), as indicated by the fluc-

tuating perinasal signal and the negative facial expressions.

Indeed, the experimental context supports this conclusion, as this is an experienced

surgeon who successfully addressed a technical challenge towards the end of the drill,

causing the physiological arousal to be accompanied by a sense of accomplishment.

Figure 5.3 shows a characteristic example of distress from the experimental set.

The surgeon seems to be undergoing a roller-coaster of emotional arousal. The dis-

tressing type of arousals is informed by the observational channel. Indeed, this is a
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Figure 5.4: Distribution per skill level of mean perspiration intensity µE(x) (ln(.)

transformation to comply with the ANOVA assumptions). ln(µE(x)) is −6.0626 ±

0.6926 (s.d.) for novices and −6.8614± 0.6319 (s.d.) for expert surgeons.

novice surgeon who performed multiple errors during the execution of the drill, caus-

ing a sequence of physiological arousals to be accompanied by a sense of foreboding.

This unobtrusive and highly automated quantification and qualification of emo-

tional states may prove a powerful tool in large field studies of human-machine

interactions.

5.2.2.2 Quantitative Analysis

Looking purely at the unguided perspiration signal, we notice that novice surgeons

perspire significantly more than the expert surgeons (see figure 5.4). And since these

signals are agnostic to the types of stress, we are restricted by this limitation to infer

further.
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However for the same study, after using the proposed stress model, whereby

we focus on the portions of the perspiration signals marked by the negative facial

expressions we can infer that novice surgeons experience significantly higher distress.

The boxplots in figure 5.5 depicts the distress arousal as well as its extent. Novice

surgeons have significantly higher distress arousal and significantly higher distress

extent. Since the stress model is a dimensional model we see in the scatter plot

distress for each surgeon for different trials 5.6. The stress profile for the novices

(represented by the red points) can been seen clustered around the upper left part of

the quadrant while the experts (blue points) have lower arousal and lower negative

valence. The average stress profile for the novice and expert surgeon cohorts is

depicted by the solid colored red and blue points respectively.

These results look intuitive, however prior to this research there wasn’t any quan-

tifiable means to study stress with its nuances.

Another auxiliary finding was that positive expressions were extremely rare. In

fact, the experienced surgeons were almost exclusively the ones who exhibited brief

positive feelings during task execution (analysis of variance, P < 0.01 - 5.8). It

was particularly intriguing that some of these positive feelings were associated with

occasional errors (figure 5.7) - an indication that experienced surgeons positively

embraced slight misfortune, perhaps as an antidote to boredom. These results further

consolidate our study design which was primarily about stress generation — we

were expecting higher stress for the novice surgeons and little positive expressions.

These results were published in the National Center for Human Performance (NCHP,
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Figure 5.5: (a). Distribution per skill level of mean stress responses during ex-

pressed negative feelings µEN
(x) (

√
. transformation to comply with the ANOVA

assumptions).
√
µEN

(x) is 0.0447 ± 0.0204 (s.d.) for novices and 0.0205 ± 0.0169

(s.d.) for experienced surgeons. (b) Distribution per skill level of mean distress ex-

tent µN(x) (
√
. transformation to comply with the ANOVA assumptions).

√
µN(x) is

0.6457±0.2279 (s.d.) for novices and 0.3963±0.2928 (s.d.) for experienced surgeons.
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Figure 5.6: The stress model representing distress for all the trials of all the surgeons.

The red points are distress levels for the novice surgeons and the red points are for

the expert surgeons. The bigger solid points represents an average distress level for

the each surgeon level.
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2010) [2] and also in the Scientific Reports [28].

0

0.2

0.4

Novices Experienced

Level

p < 0.01

Figure 5.8: Distribution of extent of expressed positive feelings µP (x) during tasking

per skill level. For novices
√
µP (x) is 0.0682 ± 0.1938 (s.d.) while for experienced

surgeons is 0.1316±0.2946 (s.d.). We used
√
. transformation to comply with ANOVA

assumptions.

5.2.3 Stress Analysis on Stress Study II — Operator Over-

loading

Protocol. Upon arrival each participant completed a biographic questionnaire.

Next, the participant familiarized herself with the game setup for 10 min. She

was also given the opportunity to familiarize herself with the iPhone operations for

calling and texting. After this learning phase, the participant relaxed for 3 min (BL)

during which she listened to smooth music. This relaxation phase aimed to reduce
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Figure 5.7: Experienced surgeon’s (subject ID: D001) thermo-physiological (peri-

nasal) and observational (facial) images during execution of Task 3, Session 4, Trial

2. The corresponding perspiration (stress) signal is shown in the middle. There is

an elevation in the signal due to some excitation, about 30 sec into the execution of

the trial. This excitation is positive, as the FACS-decoding [12] of facial expressions

indicates along the timeline (bottom). This response was due to an error committed

by the surgeon (needle drop), from which he quickly recovered.
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excitation built during the earlier activities, so that the main experiment starts with

the participants sympathetic system close to the tonic level.

During the main experiment, each participant played the car racing game. Part

of the gaming session featured two multitasking disruptions: phone calling (P) and

texting (T). Specifically, the timeline of the gaming session was as follows: 1 min

pure gaming, about 3 min gaming while talking over the phone, 1 min pure gaming,

5 min relaxation period, 1 min pure gaming, about 3 min gaming while texting, and

1 min pure gaming. The order of calling and texting was randomized 5.9.

Thus, for each subject we start with the Baseline period and we have two sessions:

P and T, each on consisting of three segments: Pre, Activity, Post, where in pre and

post we have pure game play, while in the activity segment the subject plays the

phone and simultaneously is texting/talking on the iPhone. Using thermal camera,

we measure the perinasal perspiration intensity for which we obtain the mean value

over each segment of each session of the experiment.

5.2.3.1 Quantitative Analysis

Using thermal camera, we measure the perinasal perspiration intensity for which

we obtain the mean value over each segment of each session of the experiment (see

figure 5.10). To comply with the ANOVA assumptions, we transformed the mean

intensity using the natural logarithm function (to achieve equal variance among the

groups). For each of the 23 participating subjects, we have a total of 7 repeated
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Figure 5.9: Protocol for the operator overloading. There are three sessions — Base-

line, Cellphone, and Texting. Cellphone and Texting sessions are further divided

into three segments — solo game play, interrupted game play, and post solo game

play.
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measurements of the ln(mean perspiration) during each of the 7 segments of the

experiment (BL, Pre P, P Post P, Pre T, T, Post T). In this repeated measure design,

the segment is a fixed Factor (taking 7 values) while the Subject (taking 23 values

for each of the participants) is a random factor.

We ran the repeated measure ANOVA for this data and observed that there

seem to exist significant differences among the different segments of the experiment

(ANOVA, p < 0.01). Furthermore, this significance is lost when we remove the multi-

tasking segments (ANOVA, p > 0.01). These results consolidate the study design of

generating sufficient arousal for the multitasking sessions while maintaining uniform

arousal otherwise (see figure 5.10).

Next, we compared the physiological responses for the multi-tasking segments

only and found that there was a significant difference in the mean responses. The

physiological arousal for the P segment was significantly higher than the T segment.

Finally, we applied our proposed stress model to the multi-tasking segments. We

observed no statistical difference in the distress levels. Both in the distress arousal

and the distress extent, there was no significant difference (see figures 5.11). We

also observe no statistical difference in the amounts of error committed in the two

multi-tasking segments (figure 5.13). Based on the above results, we can conclude

that emotionally loaded phone conversations can be as detrimental to the driver as

sending text messages while driving. This quantitative conclusion about driver’s

distress levels was only made possible by the proposed stress model. Figure 5.12

plots the distress profile for all the subjects in the multi-tasking segments. The red
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points are for the phone conversation segment and the blue points are for the texting

segment. In the stress model’s distress quadrant, the blue and the red points are in

proximity to each other.

When we applied the stress model in the operator overloading study, we noticed

that the distress levels were not significantly different in the two multitasking seg-

ments. However, the overall unguided perspiration levels were significantly different

in those two multi-tasking segments. In other words, the specific analysis was differ-

ent than the unguided analysis. This was not the case in the surgical training study.

There we noticed the novice surgeons had significantly higher perspiration level and

also significantly higher distress level. This differences in the results from the two

stress studies can be partly understood by plotting the percentage of times partic-

ipants make negative and positive facial expressions — since the overall unguided

signal contains both the distress and eustress portions. Figure 5.14 indicates the

potential reason for the varying results in the two stress studies. The operator over-

loading study had a higher percentage of positive facial expressions and this affected

the overall perspiration signal that included the eustress portions. In the surgical

training study, since there were fewer positive facial expressions, the contribution of

the eustress portion to the overall perspiration was minimal.
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Figure 5.10: Box-plots for the overall perspiration response for all the subjects across

the segments. We used the ln (.) transformations to comply with the analysis of

variance assumptions.
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Figure 5.11: Box-plots denoting the distress intensity and distress extent for the

multi-tasking segments. We used the sqrt (.) transformations to comply with the

analysis of variance assumptions.
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Figure 5.12: The stress-model representing distress for all the subjects in the multi-

tasking segments. The red points are distress levels for the phone segment and the

red points are for the texting segment. The bigger solid points represent an average

distress level for each segment.
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Figure 5.13: Box-plots for errors committed in the multi-tasking segments. We used

the sqrt(.) transformations to comply with the analysis of variance assumptions.
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Figure 5.14: The plot depicts the percentage of the negative and positive facial

expressions made by the participants in each study. Green region represents the

positive facial expression percentage and the red region represents the negative facial

expression percentage.
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Chapter 6

Conclusion

The detailed stress analysis on the two stress studies was made possible by the

introduction of a new stress model of combining physiology (perinasal perspiration

in our case) with the observation of facial expressions. Using the suite of perspiration

extraction method developed by Dr. Shastri along with my proposed facial expression

recognition method (TACS), we are now capable of unobtrusively quantifying human

stress responses in natural settings. Instead of using the traditional visual imagery

for expression recognition, I used thermal imagery. The benchmarking experiment

conducted to compare the two modalities for expression recognition showed that

thermal imagery has an added benefit of being minimally affected by illumination

variance. This enhanced the robustness of TACS and made it possible to be used in

field studies. If the result of my current work is any guide, the method is not only

a valuable tool for scientific discovery, but also a technology that may be used in
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practice to objectively assess human performance under stress.

Future studies may benefit from the proposed stress model that is not only com-

prehensive (quantitative and qualitative), but also economical (single imaging modal-

ity with no labor). A future work to my dissertation would be to compare distress

with eustress for participants in the two stress studies.
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