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The collapse of a one-dimensional cavity in a compressible, inviscid liquid is treated exactly. Results
of numerical computations for some specific examples are presented.

In contrast with the analogous phenomenon in three
dimensions, the collapse of a one-dimensional cavity in
a liquid is not followed by a rebound. The physical
reason for this behavior is that, due to the geometry,
there is no convergence of flow which concentrates the
kinetic energy into a smaller and smaller region. As a
consequence, the cavity approaches its equilibrium
dimensions with a continuously diminishing velocity.
In turn, the absence of high velocities stopped (or re-
versed) in a very short time, has the consequence that
the pressure waves irradiated into the liquid are com-
paratively weak. Hence, although a shock wave is
formed in the liquid, it appears far away from the lo-
cation of the cavity, and the magnitude of the dis-
continuities across it is very small.

To analyze this phenomenon we consider a long
(semi-infinite) tube filled with an inviscid liquid; body
forces will be neglected. A small region at the closed
end of the tube is occupied by a gas, the pressure P, of
which is smaller than the pressure p. of the liquid.
Both fluids are initially in uniform conditions of pres-
sure and density, and equilibrium is achieved by means
of a diaphragm located at X,, which is made to dis-
appear instantaneously at time ¢=0. Distances are
measured from the closed end of the tube.

Although (in contrast with the three-dimensional
case) an incompressible treatment of the one-dimen-
sional collapse is meaningless, an approximate descrip-
tion can still be obtained quite simply using the acousti-

cal approximation. When the diaphragm is removed,
the liquid acquires in a time At a velocity U(0+4) that
can be estimated assuming that the mass of liquid in-
volved has a length of the order cAt, where ¢ is the ve-
locity of sound in the liquid. Indeed, by Newton’s law,

LU (0+)/At](Atpc)~Po—py
and hence
U(0+)=~=(Po—pa)/pec.

If the pressure P inside the cavity is assumed uniform,
it will be a function of the position X of the gas-liquid
interface, so that the above equation can be extended
to give the approximate law of motion of the latter:

dX _P(X)—pa

U= 7&7 o

(1)
This equation will provide sufficient accuracy in the
majority of cases. However, it may be of interest to
note that an exact solution to the problem can be ob-
tained as follows.

As in the above approximate discussion, it is assumed
that the gas can be treated as a uniform homentropic
fluid; it is also assumed that its pressure—density re-
lationship is of the polytropic form

PX7v=Py Xy, (2)

The two cases y=1 (isothermal) and y=1.4 (adia-
batic) will be considered in detail. For the liquid, use
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is made of a relationship of the modified Tait form

(p+B)/ (putB) = (o/p=)™ 3)

It is well known that when the values B=3000 atm,
n=7 are sclected, Eq. (3) describes quite accurately
the behavior of water.? From (3), the velocity of
sound in the liquid can be computed:

c=[(p+B)/(petB) JnVitc,,

where ¢.2=#n(po+B)/pw. Assuming that the cavity
wall maintains a plane configuration throughout the
collapse, the condition on the normal stresses across
it is obviously piiquia= pess- Therefore, the equation of
motion of the gas-liquid interface can readily be de-
rived by applying the method of characteristics®:

X 2 [(Po(Xo/X)"—I-B‘)("—lW”_ 1]
1" '

Ta patB

n—
(4)

This is the exact counterpart of the approximate rela-
tion (1). It may be verified that the latter can be re-
covered carrying out an expansion in powers of (p/B)
and neglecting terms of second order or higher.

From Eq. (4) it can be deduced that at the point
X., defined by

Po(Xo/Xe)7= pu, (5)

both velocity and acceleration of the interface vanish.
It is interesting to note that this also holds if the poly-
tropic exponent v is assumed to be a function of X, at
least insofar as dy/dX does not diverge as X—X.. This
gives confidence that the somewhat crude approxima-
tions involved in the description of the gas do not con-
siderably alter the picture. It may be observed that
both Egs. (1) and (4) predict an infinite duration of
the collapse; for example, Eq. (1) can be integrated

-
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Fic. 1. Position of the gas-liquid interface as a function of
time for the adiabatic (curves 1 and 2) and isothermal (curves
3 and 4) cases in terms of dimensionless variables. The ambient
pressure is p,=1 atm, the initial bubble pressure Po=10"1 atm
(curves 1 and 3) and Py=10"% atm (curves 2 and 4).
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F16. 2. Velocity profiles in the liquid at three different instants
of time showing the formation of the shock wave in the case y=1,
Py=10"% atm. The ambient pressure is p,=1 atm, and dimen-
sionless variables are used.

exactly in the isothermal case with the result
t=(puoo/ Pec) [ Xo— X — X, log(X — X.) / (Xo— X.) ].

It is evident from this expression that o as X—X,=
P, DXO/ P w0

Equation (4) as it stands can only be integrated
numerically. The results for the motion of the cavity
wall are shown in Fig. 1 in terms of the dimensionless
variables

X1=X/Xo,

It is apparent that they are much more sensitive to
changes in Py than in v. Indeed, the effect of ¥ shows up
essentially only near the end of the collapse through
its influence on the limit value X, in Eq. (5).

From the equation of the characteristic lines,

2= (Cot¥(v+1)u)t+f(u), (6)

[where f(u) is determined by requiring that this relation
can be satisfied at the bubble wall4] it is now possible
to obtain the pressure and velocity profiles in the liquid.
An example is shown in Fig. 2, in which the gradual
steepening of the velocity wave into a shock wave is
evident. The exact location (x,, %) of the formation
of the latter can be obtained by considering, together
with Eq. (4), the relations?

- (@)
ou , ou? .

Upon substitution of (6) these become:

h=1ce/Xo, U=%/Co.

au
%(7"'1) 'd_t t,—C,,—%('Y—l) U=01

aU aU\? &
(U)+c., u 0.

1 e wm [ —— — =
1-DU 3~ \g dr
Now, substituting for U from Eq. (4), the characteris-
tic on which the shock wave appears can be deter-
mined. For example, for the case to which Fig. 2 refers,
one obtains x,="7.54 X 105X, £,=7.33X10°X/c.
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illuminating discussions.
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The transition from near free molecule flow to slow viscous continuum flow through a slit has been studied
experimentally. The measurements have been compared with the results of a theoretical analysis of the
expected flow through a slit with zero length in the flow direction.

Much effort has been expended in attempts to under-
stand phenomena in the transition region between free
molecule and continuum flow. Recently, Blum! has
analyzed the transition from free molecule to slow
viscous continuum flow (pressure difference small com-
pared with average pressure) through an ideal slit (zero
length in the flow direction, infinite lateral length, and
a finite gap width) using both an iteration method and
a variational technique. Precise data for the flow
through a slit constructed so as to approximate an
ideal slit have been obtained and compared with Blum’s
theoretical work.

The slit was constructed by mounting two razor
blades over a square hole machined through the center
of a flanged cylindrical mounting base. The gap width
of the slit is 9.59X 103 ¢cm and the lateral length is
0.8357 cm. Optical examination indicated that the
length in the flow direction is less than about 10~* cm.

The method for measuring flow is a pressure difference
decay technique developed by Berman and Lund.? In
this method an initial pressure difference is developed
across the slit, and the time decay of this pressure
difference is followed. An analysis of such a pressure
decay was carried out by Maegley,® who designed and
built the precision flow measuring equipment used to
obtain the data for the flow through a slit.

A reduced flow variable W is defined as the ratio
of the mass flow through the slit to the free molecule
mass flow through an orifice with the same cross-
sectional area and pressure drop. Maegley’s analysis
gives the following expression for the reduced flow:

W =[4VVe/(V+ V) Avte] In[(Ap)y/ (Ap)2], (1)

where A is the cross-sectional area, v is the mean
thermal speed, V; and V, are the equipment volumes
up and downstream of the slit, respectively, Ap is a
pressure difference across the slit, and f; is the time
required for a decay to proceed between the two pres-
sure differences. A reduced pressure X is defined by

X =2hp/ uv, (2

where % is the gap width, u is the dynamic viscosity,
and P is the average pressure for a deccy. The Kaudsen
number Kn, defined as the molecular mean free path
A divided by the gap width, is related to X by Kn=
x/2X if the rigid sphere viscosity u=3pt\ is used. For
equal up and downstream volumes, and isothermal
conditions, the reduced flow and the reduced pressure
are constant for a given decay.

Figure 1 shows the data for argon and helium flow
through the slit. For argon, the slope dW/dX is of
order 1 for X <0.05, and large changes in the flow rate
with increasing X are observed. The continuum region
appears to be reached at about X=10. The experi-
mental continuum slope is determined by using a linear
least-squares fit of the data for X>10.5. The slope is
0.1965 with a standard deviation of 0.0003, a value
which is within 0.059%, of the theoretical value of f¢r
determined by Roscoe. The linear least-squares fit
also leads to an intercept at X =0 of 1.165. The dif-
ference between this intercept and the free molecule
flow intercept is called an apparent slip effect. The
apparent slip effect for argon flow through our slit is
estimated to be 16.5%, of the theoretical free molecule
flow through an ideal orifice.



