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Abstract

In this work, we design techniques to use energy instrumentation to study the health

and workloads of a computing system. Analysis of energy consumption with the goal

of understanding the computing system in an uncontrolled environment is an open

research area. The main challenge is to infer the system state only from discrete

time-series energy data.

We have analyzed power-consumption data on computing systems. Our focus is

on how to distinguish various events and how to reveal the health of the system.

In addition to studying the data collected in a laboratory environment, we have

analyzed 3-years of continuous energy measurements of a large enterprise computing

environment. We can infer system health, failures, activities, and trends from energy

data.

We have investigated power-consumption data of networking systems, especially

the low-power wireless networks. We designed two novel features called High-Power-

Length-Counter and High-Power-Overlap-Counter. We evaluated our approaches on

three real-world testbeds and various network scenarios. We found that these features

reveal network protocols, application workloads, and routing topology from energy

data alone. This information was not possible to reveal only from energy data prior

to this work.

The contributions of this work are: (a) Techniques to analyze and reveal health

information of computing system. The energy profiling during boot up, idle and fail-

ure exposes operating states of the system. (b) Design of two novel features that use

fine-grained energy-instrumentation data on networking systems, to identify routing

protocol, infer network topology, and determine application workloads. Our proposed
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features can achieve 97% accuracy when used to identify the routing protocols, and

infer the network topology with 98% accuracy. (c) Identification of sources of waste

in computing systems. We found that, at least 60% of energy consumed per day

was wasted when the collection of computers we studied were left in idle state in a

computer lab environment.
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Chapter 1

Introduction

1.1 Energy-Instrumentation Research

Recently, researchers from various background have been attracted to the study

of energy consumption of computers. Computers run on electricity. The cost of

electricity is not small, and sometimes it is a big burden on the environment. And

sometimes electrical power supply systems can be at risk, when our computers work

improperly. Therefore, understanding the normal and abnormal power consumption

behavior of our computer system is important for both environmental protection

and safety. Furthermore, by analyzing the energy consumption of the computing

system, we may find specific patterns when software fault occurs and thus improve

the reliability of the computing system.

Currently, tremendous amounts of energy are wasted in computing system[65].
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Saving energy on computers may contribute to protecting the environment from

global warming. New algorithms and mechanics are needed for making the current

computing systems run more efficiently. There has been recent interest in under-

standing power draw of a collection of machines, e.g., in data centers [22, 51, 20, 12]

or computers in a building [45, 28, 62]. These studies provide measurement-based

models of computer power use in buildings. These models can be used to test new

approaches to make computing infrastructures in buildings more energy-efficient.

While these datasets are extremely useful to the community, most of their work were

concentrating on understand the power consumption based on given types of work-

load. Thus, studying the power profile from another direction, e.g., revealing the

workloads from the power consumption can be a valuable asset for the computing

research community.

Energy instrumentation and its analysis could also serve as a tool to gain a better

understanding of the network, either as a complementary instrumentation or when

other types of instrumentation are not available or not convenient. In the first order,

a network that is expected to use a few mW of power but is found to be using

a few tens of mW of power, we could infer that there is something unusual and

worthy of further diagnosis. Even when we do not have access to the source code

(for example, nodes that we might purchase commercially), we could use energy

instrumentation to validate that the activities performed by the nodes are consistent

with their expected behavior. Thus, energy instrumentation can be used to validate

sensor network operations when other instrumentation is costly or unavailable, such

as reverse engineering on closed source devices.
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We motivate these possibilities with two examples from real-world devices. Mon-

ster PowerControl is a commercially available smart plug to which appliances can

be connected. The outlets can be controlled using a smartphone. The system has a

base station connected to a home Internet router and other user devices communi-

cate with the base station on the 900MHz band. We measure the power used by the

plugs to reveal four properties of the system without any source code.

First, we can tell the power state (On/Off) of plug outlet from the energy draw.

As shown in Figure 1.1(a), the plug itself consumes 0.10A - 0.11A when the outlet

is in power off state. After we turn on the outlet at 12s, the current increases to

0.17A - 0.18A even without any appliance plugged into the smart plug. Second, the

current draw gives hints about the episodic communication between the plug and base

station. Figure 1.1(a) has arrows corresponding to the radio communication events

(verified using the timing of the link LED). Third, we can verify that the devices

query the base station for new commands rather than the base station pushing

messages to the devices: the episodic crests continue even when we turn off the base

station. Fourth, the current draw can also give hints about the wireless connectivity

between the user devices and the base station. We moved the user devices farther

from the base station until it got disconnected. Figure 1.1(b) shows the spikes

in current that appear when the base station is not reachable indicating the node

scanning for the base station.

We may not be able to derive such detailed insights from power profiling of all

smart devices. Belkin WeMo switch, for instance, directly connects to a household

WiFi router. In this device, we do not observe a periodic query pattern but we

3
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Figure 1.1: Current draw of smart plug can reveal its working states

found that whenever we send a command from a smartphone, there is a spike in

current on the device suggesting a proposal in which the Cloud pushses commands

to the device. Thus, depending on the device and the system, different amounts of

information about the smart devices and their systems, protocols, and applications

may be revealed by power profiling.

1.2 Addressed Research Questions

On the computing system and networks, it is hard to study and understand the de-

tailed working states on the system, including the software and hardware activities.

Furthermore, it is difficult to accurately predict the system failure in advance, to

prevent any data and economic loss. The existing solution by using software moni-

toring is able to monitor the software activities on the computing system, but there

is not enough information to monitor every hardware components in the system. On

the networking system, besides online debug each device in the network, there is
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hardly a method to efficiently reveal the current working states each single device.

In this dissertation, we consider, broadly speaking, how the health information of

the computing system can be reflected on the energy consumption data.

The motivation of this work is to provide a non-intrusive method to study what is

happening on the system, by analyzing the power consumption data. Every electronic

system consumes energy, so the power consumption data is always available, even

during the period when the system fails to run. Energy instrumentation and its

analysis could also serve as a tool to gain a better understanding of the system,

either as a complementary instrumentation or when other types of instrumentation

are not available or not convenient.

The immediate implication of this work is that demonstration of the energy in-

strumentation can not only be used to classify the workloads on the system, but also

can be used to detect various events happening on the system, such as system boot

up, failure and workload change.

The long term implications of this work are to use this work as a starting point,

to build a comprehensive diagnostic system by monitoring the energy consumption

on the computing systems. Like software monitoring, energy monitoring can au-

tomatically monitor the activities and workloads on the system. Furthermore, the

usage of the energy also can be used to diagnose the hardware performance, even to

predict and prevent the system failure by recognizing the energy patterns.

In particular, we address how to understand the fine-grained energy consumption

data on computing systems, and consider how to extract the features from the energy

5



data to reveal the detailed workloads on a networking systems. To that end, we

address the following research topics in this dissertation:

• How to design and implement an instrumentation system on com-

puting systems as a foundation for energy study.

Instruments should be deployed in the way that power draw can be measured

for a long period of time. We investigated the possibility of using smart plugs,

hall-sensor and commercialized power strip to record the energy consumption

behavior of various systems. A general-purpose power meter should be able to

gather data for inferring various system properties and should be programmer-

able to fit various real-world situations.

• How to detect computing activities solely from power activities, and

based on which how to avoid energy waste and reveal the perfor-

mance changes in computing systems.

Previous studies on system recognition adopt various ways to infer the prop-

erties of a system. Many system test methods require intrusive sensors. From

our point of view, the energy consumption behavior alone may reveal certain

important characteristic of computer systems. For instance, power draw data

collected from smart plugs may provide us useful information to infer the sys-

tem status, especially under abnormal system behavior. When we successfully

gather enough data and correctly infer system behavior, we are able to explore

the possibilities of predicting such system behavior. The most common and the

most important system status is perhaps the computer failure case, such as blue

6



screen for Windows and kernel panic for Linux. By predicting the computer

failure we may advance our research in next step to be more practical in real

world applications. We may be able to improve the reliability and efficiency of

massive computing services.

• How to extend the energy analysis on computing systems to the

network system, in which protocols can be recognized, its workload

can be evaluated, and the detail routing topology can be disclosed.

Based on the further exploration of energy instruments we are able to raise

the same question for network systems, e.g., wireless sensor network. The

energy efficiency is a key character for wireless sensor network. By analyzing

the power draw of each nodes in the network we may improve the design of

energy efficient sensor network. Furthermore, the system status may also be

inferred for the network. For instance, protocols as well as certain network

activities can be inferred. However there are few existing methods on this

topic. We proposed to explore the possibilities from the machine learning

and signal processing perspectives. We hope to be able to evaluate, validate,

predict various information for the network level system, so that we may deploy

robustness, efficiency, environment friendly for future networking community.

1.3 Research Contributions

The key research contributions of this dissertation as summarized as follows:

7



Understanding Desktop Energy Footprint in an Academic Computer

Lab

We design and deploy power-usage and user-activity instrumentation in an aca-

demic computer lab, and we present a large dataset describing computing power data

in a shared homogeneous computing environment. Our measurement-study logged

power use and user activity on 22 computers in one of the computer labs for over 30

days. We collected 59.6 million power readings and 220.3 million user activity read-

ings. In addition to understanding the relation between user activities and power

draw, in particular, we identify at least 60% of energy consumed per day was wasted

when the computers were left in idle state in a computer lab environment

Energy Measurements and Analysis to Understand Computing Sys-

tems

We implement the energy instrument system to collect and analyze power con-

sumption data on computing systems. We present energy patterns to reflect the

health information of computing system, in particular during the system boot up,

idle and failure periods. Algorithms are designed to identify these events from con-

tinuous energy data. Our proposed algorithms detected 270 Pre-OS boot up events

among an 18-month power trace, and accurately detected the 8 out of 8 failures

from a 19-month power trace. Analysis over 30 months of data reveals the energy

consumption changes over time, and the temperature value affects the health of the

computing systems.
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Revealing Protocol Information and Activity from Energy Instrumen-

tation in Wireless Network

We study the design of classification features based on energy data with the goal of

revealing protocol, network, and application information. Our experiments on three

real-world testbeds increases our confidence in the accuracy of the results, which in-

clude evaluating the proposed features across multiple protocols, network topologies,

and application workloads. The classification evaluations with those features can

identify the routing protocol with more than 90% accuracy and application work-

loads with 85% accuracy. We also demonstrate how to reveal the routing topology in

the network, including the next hop for each node, with just energy instrumentation,

with 98% accuracy.
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Chapter 2

Related Works

There is a large amount of work in energy measurement and analysis. In this chapter,

we describe the existing work related to energy instrumentation on computers, servers

and networks, from the perspective of the device level and the system level.

2.1 Energy Profiling on Computing Systems

In this section we give an overview of research related to wireless power meter,

measurement of energy consumption, and machine idle proportion in enterprise data

centers.

10



2.1.1 Power-Meter Design

Since power consumption has become a significant concern in the development of

all kinds of computing laboratories and data centers, much progress and various

measurement methods have been designed to measure the power used by the systems,

such as the work of Cornil et al. [11], who use the Fluke ampere meter to measure

the current from the power supply. Serra et al. [53] use an AD7757 IC chip based

on the shunt resistor from Analog Devices for measuring electric power. Lifton et

al. [43], introduced the MIT Plug sensor network, which embodied the idea of

designing sensor nodes to seamlessly become a part of their environment. Koller et

al. proposed an application-aware power meter for data centers, which addressed the

challenges of estimating the power drawn by the whole center.

Unlike tradional power meters, where the results can only be displayed on local

LEDs or saved as data onto flash drives and read later, wireless power meters can

transmit the power readings to a remote database to be processed later. There

are several wireless powers meter that have been designed in recent years, such as

ACme [33] or commercial meters such as The UFO Power Center. Jiang, et al. [34]

deployed ACme meters for high-fidelity monitoring of electrical usage in a building.

Krioukov, et al. [38] presented a personalized smartphone application designed to

control the lighting, heating and cooling in user’s vicinity, by using ACme for the

sensing and actuation. PowerNet [36] is a platform from Stanford University used

for collecting, viewing, and analyzing plug-level power data collected. The goal of

PowerNet is aiming at answering questions about total power usage, variation, and

efficiency. In our work, we use PowerNet meters to collect power readings.
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2.1.2 Computer Energy Measurement Studies

Many measurement studies have contributed to understanding energy consumption

in commercial buildings and households. [35] reported a hybrid sensor network based

on PowerNet for monitoring the power and utilization of computing systems. Their

3-month monitoring and measurements revealed the IT-related power waste and

savings opportunities. Dawson-Haggerty et al. [14] developed a stratified sampling

method for surveying energy use and conducted a year-long, 455-meter deployment of

wireless plug-load electric meters in a large commercial building. They found that the

interior of a commercial building is a dynamic environment and confirmed the value

of point-to-point routing in a real sensor network deployment. ViridiScope [37] is an

indirect power monitoring system. It estimates an appliance’s power consumption

by placing a magnetic sensor near a power cord, based on the fact that the appliance

emits measureable magnetic signals when it consumes energy. The eMeter system

[46] provides device level energy consumption in a household that is based on a single

sensor. This system can provide real time energy usage to a user’s smart phone,

which makes it possible to get consumers to save energy. Hnat, et al. [31] studied

a large-scale residential sensing system for monitoring people’s energy consumption

in their homes. In this project, the team experienced significant connectivity and

access challenges in the home-environment. In this measurement study, we collect

and analyze power readings from an academic computer lab environment and put

the results in the context of user behavior.
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2.1.3 Large-Scale Energy Instrumentation

Several previous studies have addressed the energy consumption problem in comput-

ing. They may be categorized into two groups, i.e., i) measurements and analysis on

a large scale of energy costs in computer systems, ii) green algorithms that might

contribute to the design of future computer systems.

Yamini et al. [65] studied power management in cloud computing, and they

proposed to use a green algorithm to enable lower energy usage in private and public

clouds. Many researches have been focused on computers and data centers, while a

few others have further considered all computing related resources. Wang et al., [61]

studied the energy consumption, and they carried out measurements across five major

cities. Their analysis showed that during the four years of experimental time, the

IT-related electricity consumption was a major challenge in environment protection.

Studies on power consumption of computers may help us to optimize the de-

sign of computer systems and architectures. Krithika et al. [39] studied the power

consumption of processors, including Intel and AMD xenon processors. Their find-

ings are helpful for computer processor designers. Gong et al., [24] proposed fuzzy

comprehensive evaluation criteria for future cloud system design.

Barroso et al. [5] studied CPU utilization of more than 5,000 servers during a

six-month period. Their results showed those servers mostly operated between 10%

and 50% of their maximum utilization levels, which follows the distributed systems

design principles. Energy-proportional computers would significantly increase the

energy efficiency since computers spend most of their time at moderate utilization
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range.

However, very few studies have addressed the detection of computer failures and

their relation to energy waste. Computer failures may cause unexpected damage in

real-time computing systems. For instance, in a nuclear plant, modern command,

control and communication system consisted of hundreds of computers. The risk of

computer failure in such systems is very high. Alemzadeh et al. [4] revealed the high

risk caused by computer failures in medical devices and their impacts on patients.

Chen et al. [9] studied software service failure from system input and internal mea-

surements. If we can predict computer failure both hardware and software, we may

reduce the risk and improve computing system reliability.

2.2 Energy Study on Networking Systems

In this section, we will give an overview of research related to energy measurement,

profiling, and their applications on wireless sensor networks.

2.2.1 Device-Level Energy Measurements

Hardware instrumentation: Energy consumption is a significant concern in the

design and development of WSN; hence much progress and various measurement

methods have been designed to measure the energy used by the nodes. In earlier

days, researchers used an oscilloscope to measure energy consumed by the motes [7].
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FlockLab [44] has power meters attached to motes so the researchers could under-

stand the energy footprint of their protocols and applications. Epic [21] motes are

probably the most well-known example of such nodes. Epic is an open mote plat-

form for application-driven design. It integrated an iCount-based energy metering

system which is based on a linear model on the time each unit was on. LEAP2 [55]

provides unprecedented capabilities for directly observing energy usage for wireless

sensor nodes in real-time with microsecond-scale time resolution that enables power

profiling for each hardware subsystem. Researchers demonstrated node states can

be accurately inferred from power traces [63]. In addition to inferring the working

states on individual nodes, in this work, we are able to infer additional information,

such as the actual routing topology.

Software instrumentation: people use number of transmissions as proxy for

energy. There are other proxies people have used. PowerTOSSIM [54] employs

a novel code-transformation technique to estimate the number of CPU cycles exe-

cuted by each node, to estimate the power consumption for each node. Researchers

proposed a software based on-line code-level energy estimation model in which the

mechanism uses the current draw of each component during different periods and ag-

gregates them together to produce the total energy consumption [18]. PowerBooter

[67] is an automated power model construction technique to monitor power consump-

tion on smart phone by built-in battery voltage sensors. Our techniques can use data

from hardware or software instrumentation.
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2.2.2 Applications of Energy Measurement

While the primary reason for energy measurement is to understand the energy used

by a sensor network system, researchers have found other use for energy data. Power

Trace Testing is presented in [64], which designed a method to automatically investi-

gate the correctness of a WSN system by utilizing non-intrusive power measurement.

In the testcase the system was able to detect an unexpected use of hardware com-

ponent, which is not as scheduled. Dunkels et al. [17] used power-state tracking

to estimate the wireless network power consumption on the network-level. Their

approach can even break down the power consumption into individual activities on

each node which enables the power profiling of the pre-activity energy cost. The de-

sign of our work, by using the feature name HPLC, is able to detect the unexpected

application layer parameter changes such as transmission interval or packet size only

from the energy instrumentation.

2.2.3 Revealing Privacy and Security Information

Researchers proposed a technique that used link-layer header data to infer network

topology, de-anonymize servers present in an anonymized network, to break their

anonymization[50]. Researchers demonstrated that even without priori-knowledge of

household activities, it is still possible to extract complex usage patterns and privacy

information from the household smart meter [47]. In this work, we are also able to

reveal several unexpected pieces of information, such as instant routing topology and

location of sink node. All of the information revealed in the work is only based on the
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energy data, unlike approaches which access the routing information from decoding

the packet headers.

2.2.4 Energy Consumption Evaluation of Protocols

There is also a large field of work on study the energy efficiency on the network

protocols. Kumar et al. [40] studied the power consumption of four routing protocols

through simulations. The simulation results showed the Flooding routing protocol

was the worst in terms of power efficiency due to its relatively simple design while

the nodes running protocol LEACH used the lowest average energy compared to the

other protocols.

Siva and Daniel [49] proposed a centralized routing protocol called BCDCP.

They compared the average energy dissipation values of this protocol to those of

other clustering-based protocols by simulations. In their simulation they assumed

the energy for transmitting and receiving a k-bit data message is determined by the

distance between two nodes, and they applied the same parameters of energy con-

sumption rate of radio operations used in [30]. The evaluation parts show BCDCP

outperformed the other protocols in terms of system lifetime and energy consumption

reduction on each node.

While some papers focused on measuring the power consumption on different

nodes, others tried to summarize the relationship between power consumption and

performance of different routing protocols. To the best of the author’s knowledge,

there have been few reports in the literature to date about the possibility to retrieve
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and understand the patterns from energy consumption data or radio activities on

the wireless sensor network.
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Chapter 3

Understanding Desktop Energy

Footprint

Energy-efficient computing has emerged as a major area of research and engineering

in the recent years. As a result, hardware as well as software has become more

energy efficient over the years. This progress is partly made possible by careful

study of energy consumption of various components within a computing system.

Identification of energy hotspots in hardware and software components helps us focus

our effort in the areas that are likely to maximize the impact on computer power

draw. Partial of this chapter has been published on [26].
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3.1 Motivation and Overview

In order to prepare the knowledge of design a comprehensive energy instrumentation

system, and enhance data analysis skills, we conduct a measurement study of power

use in an academic shared computing lab environment. In academic buildings, these

shared computer labs contribute for a sizable fraction of total energy use. Two

factors differentiate this setting from the settings profiled in prior studies. First, the

computer labs in a university setting are largely homogeneous: the labs have one

or a small number of desktop models. This homogeneity makes this environment

more similar to data centers than a typical population of computers in an academic

research building. Second, the computers are shared across a number of users. The

computers in a shared lab are not personal computers used by a single user. During

the course of a day tens of students might log in and use a given computer. Thus,

understanding power use of a single computer requires accounting for different users

and their different computing requirements.

Recent studies have shown that the vast majority of workstations and desktop

computers remain idle most of the time, which the average CPU idleness at 97.9%

in classroom, while the average unused memory is 42.1% [16]. Heap et al. [29]

performed 15-minute periodic resource monitor studies on Windows and Unix servers.

The study found that Windows servers are idle for approximately 95% of the day

respectively, while Unix servers had an average of 85% CPU idleness. Another study

showed the average idle time for desktop machines was up to 80% of the day [3].

20



While some papers focus on measuring the power consumption for different ma-

chines, and others tried to summarize the relationship between power consumption

and performance, however, to the best of the authors’ knowledge, there have been

few reports in the literature to date about the relationship between user behavior

and energy consumptions, on the same type of computers.

In this work, we design an instrumentation for the computer lab. The instru-

mentation consists of two sets of sensing systems. First, there are wireless power

meters that continuously monitor power draw of each desktop and transmit to a

server using wireless network. We use power meters [36] to build our wireless energy

sensing system. Second, a small service installed on each desktop PC monitors major

user events and logs this information in a database. Using data collected with this

infrastructure, we can develop a detailed understanding of power draw and the user

activities on the computers that drive power use on the computers.

We collected 280 million samples of power and user activity readings in this work.

Analyzing this data, we found a considerable heterogeneity in power use despite

identical hardware and software configurations on the computers. This difference

in power use across the machines is the result of several factors which we quantify

in this chapter. Different users present a different type of computing load on the

computers. They might use computers for different lengths of time. Finally, although

the computers are expected to be identical, errors or mis-configurations cause these

computers to become different and hence might result in different energy use. Our

results also show that the computers were only used for a small fraction of uptime,

which means the majority of energy used in the computer lab was wasted.
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Figure 3.1: Architecture of computer energy and user activity instrumentation sys-
tem

3.2 Instrumentation Design

We instrumented a computer lab to collect two sets of information: power draw of

computers and user activity on the computers. The architecture of sensing system is

shown in figure 3.1. The power readings and user activity logs were sent to a database

server by wireless and wired network. Undergraduate and graduate students visit

this lab for academic purpose, such as to finish programming homework or to access

remote server by using ssh client. There are no scheduled classes in the lab. There

are 22 desktops made by Gateway located in 4 rows, equipped with Intel Core2 duo

1.88G CPU and 2048 MB memory, running Windows XP. These desktops have CPU

and monitor in a single package. There is no policy to restrict students from using

any specific computer, but students are required to login with their personal student

ID before using it. And this log in, log out activity was automatically recorded in
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database.

3.2.1 Wireless Energy Meter

We use PowerNet [36] nodes to measure the power draw of a computer. The computer

power cable is plugged to a PowerNet node and the PowerNet node is plugged to an

AC outlet. These meters have energy metering ICs and MSP430 microcontroller for

sensor control and data processing. The meter can sample power draw at up to 14

KHz. The power meters also have a IEEE 802.15.4 radio chip CC2420 running at 2.4

GHz unlicensed spectrum. We use RPL [56] running on TinyOS [41] for collecting

power measurements.

We programmed PowerNet nodes to sample current at 10 Hz. The nodes pack

20 readings into a single packet and send it to the base station. Each reading is 2

bytes. 20 readings and metadata results in a 58 byte application payload. Metadata

include a local sequence number, time stamp, and node ID. We increment the local

sequence number after sending each packet. We used a local timer value as time

stamp. Although this time is not globally synchronized, it is sufficient to study the

time gap between the packets.

3.2.2 Process Monitor

We wrote a C++ application to measure CPU usage and installed as a Windows

Service on all computers in the lab. Every second, the process monitor calculates

each processs CPU usage by using Windows Management Instrumentation (WMI)
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API [1]. The process monitor then transmits the list of processes and their CPU

utilization to a database server over wired Ethernet. We installed the process monitor

as a windows service so that it starts automatically during bootup and continuously

collects information regarding processes running in the computer even when no one

is logged in to the computer. The process monitor itself uses in average 0.45% (with

a peak of 0.8%) of CPU resource, which we can safely ignore from our calculation.

3.2.3 User Authentication Monitor

We use a C# application to monitor user authentication. It records user log-in

and log-out activities, user ID, machine name, and then saves this information on a

database server.

3.2.4 Meter Calibration

We calibrated all the power meters before deployment. We performed six point

calibration with resistive loads from 40 to 260 watts. This range is within the power

draw range of a desktop, typically between 80 and 180 watts. The ground truth in

Watts of resistive loads was calculated by using its instantaneous current multiplied

by the potential difference across this component, which was measured by a high-

precision multi-meter.

We first connect all of the resistive loads through one power meter. We then turn

on the first load, wait for a few seconds until the temperature is stabilized, then take

50 raw readings using the meter and calculate the average. Then, we repeat the same
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process by turning the load one by one. After we have 6 average raw readings at 6

different loads, we use Polynomial curve fitting function in Matlab to calculate the

coefficients of raw readings of degree 1 that fits the ground truth. After calibration,

all of the 24 lines overlap as expected because they are all measuring the current

through the same resistive loads. After calibration, the Mean Square Error (MSE)

in power readings across all of the meters was less than 0.2.

3.2.5 Data collection rate

Initially, the process monitor reported all the processes and their utilization to the

database server. After analyzing utilization data for two weeks, we found that 85% of

the readings had a utilization of 0%. We optimized network transmission and storage

for these processes using a simple compression, which is tag a list of processes with

a single utilization number of 0% rather than (process, utilization) tuple for each

process. This optimization reduced the number of rows in the database by around

90%.

3.3 Evaluation

Our analysis of data collected in this study reveals up to 13.42 times difference in

energy footprints of different computers in the lab. Furthermore, we found up even

though computers have identical manufacturer specifications, their power draws can

be significantly different. In this section, we elaborate on these findings.
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3.3.1 Power across time

We first study the temporal trends in power draw of the computers in the lab.

We found that the power draw can change by as much as 197.31% over the course

of a day. When idle, most computers required around 70 watts. The maximum

power requirement was 138.12 watts. The power changes depending on the load on

the computer was due to user activities. Figure 3.2 shows the power draw of each

machine for 12 days. Different machines show different temporal patterns. In this

figure, day 6 and day 7 are weekends. No student was allowed to use the computers

in the lab during that period, which is why the power was stable. Figure 3.3 plots

the distribution of power draw across time for each computer. It shows that all

computers spend at least 29% of the time drawing power less than 70 watts.

Aggregating the power draw from all the computers, we find that the total power

drawn by the computers changes across time as shown in figure 3.4. It shows a min-

imum of 400 watts and a maximum of 1580 watts as total power used by computers

in the lab.

3.3.2 Power across activities

One of the reasons for different power draw across time is the changing user activities.

The activity most relevant to understanding power draw is a student logging into the

computer, launching applications, and after some period, logging off. In figure 3.5,

we plot the CDF of average power for sessions during which users were logged in and

were not logged in. The power is generally higher when the user is logged in compared
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Figure 3.2: Average power draw of each computer across time

to when the user is not logged in, approximately 80-140 watts compared to 20-80

watts on most of the machines. The reason it consumed more energy when user was

logged in, is not only that more CPU operations were performed, but also hard disk

read-write operations, graphics card calculations, and network transmissions which

expend more energy. Some of the blue lines stay around 20 watts for large fraction of

time. That means those machines were left in power-off status. For a small fraction

of the dataset, the computers use more power when a user is not logged in compared

to when a user is logged in. This is because the Windows was performing system

updates or scheduled virus scan. Our test indicates this model of machines consume

approximately 15 - 22 watts power even when power is turned off; that was mainly

because the internal capacities are still charging.
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Figure 3.3: CDF of power draw of each computer

3.3.3 Power across machines

Although all the computers in the lab have identical manufacturer specification and

software installation, each computer is slightly different due to manufacturing differ-

ence, hardware abuse and errors over time, and unintentional errors and updates on

the software. For example, some machines do not have McAfee VirusScan installed,

while others do. It is believed that such discrepancy is due to software configuration

errors accumulating over time.

To understand the difference between the machines, we study two sets of trace.

We first plot the distribution of power draw when no user is logged in and CPU

utilization is 0-1% in figure 3.6. The figure shows even when all the computers are
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Figure 3.4: Total power used by all the computers

idle, the power draw across the machines is in 85-115 watts range. In the same figure,

we also plot the power draw when a user is logged in and the CPU utilization is 99-

100%. When the machines are fully utilized, the power draw across the machines are

in the 108-136 watts range. Thus, our results show that even though computers of

similar manufacturer specification and software installation are subjected to similar

CPU loads, the power draw can be significantly different.

3.3.4 Power across students

In figure 3.7,we plot the total computing energy used by 30 students who logged in

the most number of times during the two weeks. Each line represents the total energy
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Figure 3.5: CDF of power draw of each computer when a user is logged in and not
logged in

used by a student. The dots shows the value of energy consumed during that log-in

period. All of these numbers were captured during the same period as the figures

showed in pervious sections. We can see that around 80% of students used less than

1,000 kilojoules, while only 0.5% of students used more than 3,000 kilojoules, which

is mostly caused by students having been logged in for a significantly longer period,

compared to other students.

From figure 3.8 we can tell each student has her unique average power usage, but

70% of these values are in the range of 100-120 watts. In some cases the average

power is below 100 watts mainly because after the user logged in, the user left the

computer idle or performed some simple tasks like writing emails. The user activity
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Figure 3.6: CDF of power draw when CPU utilization is 0-1% and 99-100%

log indicates that no high workload task was performed on that computer during

that period.

3.4 Discussion

Instrumenting all the computers in a lab is a capital and time intensive process. It

is natural to ask if we can use CPU utilization as a proxy for power use. To answer

this question, we try to interpret the power draw shown in Figure 3.9 in context

of corresponding CPU utilization distribution. Each line in the figure represents

individual machine. It is not surprising to see that the fraction of CPU utilization

while user is not logged in stays below 30%-40% on most machines, which was caused
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Figure 3.7: Energy consumed by each student

by some background processes like real-time back up and viruses scans. On the other

hand, when a user is logged in, the CPU utilization is distributed in the range of 40%

- 90%. While users are using the machine, they will consume more CPU resource,

since every user task requires additional CPU operations.

Considering these results, using CPU utilization as a proxy for power draw seems

promising. However, using CPU utilization to estimate power draw at a finer gran-

ularity is not as promising.
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Figure 3.8: Average power used by each student

3.5 Summary

In this work, we described the sensing system that instruments the energy con-

sumption and user activity in an academic computer lab. We measured the power

consumption, CPU utilization, and user activity across a homogeneous set of desktop

computers. We studied the factors that drive the heterogeneity in energy use across

the desktops and lessons learn from the real-world measurement on 22 machines over

one month. We found that the energy consumption of each computer is highly re-

lated to individual user behavior, and the 60% of energy consumed every day was

during the computer was on and no one was logged in.
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Figure 3.9: CDF of CPU utilization on all computers
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Chapter 4

Understanding Computing

Systems from Energy

Instrumentation

Nowadays, computers are one of the most critical devices used in almost every field.

For those fields that heavily rely on computer systems, such as finance, communi-

cation, public service and military, the cost of system failure is tremendously large.

The prediction of such failures is not straightforward. In this chapter, we propose

novel techniques for computer failure detection from energy consumption data. The

power measurements data may provide us very useful information in some failure

scenarios. However, there are two limits of what we can detect with the power in-

strumentation. The instrumented values are the aggregated power consumption on

the whole device. The detected value cannot reflect the changes in drawing power
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by individual component of the device. At current stage of this work, our proposed

system can only detect the interference-free events, i.e., during given period, only

one event is happening on the computing system, there are no other applications or

events actively running at the same time. In our experiments, the power draw shows

distinguishable patterns when the computer launch different applications at a time,

even use same application to open different files. However, at current stage, our pro-

posed energy instrumentation is not able to distinguish multiple events concurrent

running on same computer.

We first study the energy consumption on computer systems, including desktop

computers and server computers. We collected 30GB of energy consumption data

over 37 months. This data set contains the energy consumption measurements con-

taining everyday use of computers in lab. The measurements of energy consumption

show that the average energy consumption during boot up periods has increased,

and the maximum power draw also increased.

We further studied the potential relationship between computer failure and its

power consumption pattern. One common failure, the Blue Screen of Death is con-

sidered. Its power draw follows the same pattern, regardless of the specific reasons

that caused the computer failure. Power consumption calculated from the presence

of Blue Screen to reboot is constant.

The contributions of this work are three-fold, i) construct a large data-set for

studying computer power consumption and its relation with common computer fail-

ures, ii) extraction and analysis of power features that correlated to boot up, idle

and failure, iii) a novel method to model and detect blue screen failure and Pre-OS
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boot up from energy consumption data.

4.1 Definitions

In this section, we define the terms computer boot up, computer idle, and computer

failure that we used in this work. The reason to study these three events is because

these event can reflect the power consumption properties of the computer without

the interference from the operation system and the user activities.

4.1.1 Computer Boot Up

In this chapter, we try to answer this specific question: Does the same computer

consume the same amount of energy for boot up over a long period of time? To answer

this question, we introduce the definition of the boot up process on a computer, then

define a term called Pre-OS boot up that we use in section 4.3.2.

Computer system booting is the process of loading an Operation System (OS)

into a computer’s main memory, in order to prepare the computer for a user to use.

The basic system boot process on a computer system given in [19] is comprised of

the following major steps:

1. Turn on the computer’s power button.

2. The computer initializes the CPU and reset registers.

3. The CPU loads BIOS (Basic Input/Output System) which holds its startup
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instructions.

4. The BIOS runs POST (Power-On Self Test) and other necessary hardware

checks.

5. CPU initialization is completed if all tests are passed.

6. BIOS finds the storage drive where the OS is installed.

7. The BIOS copies the OS files into memory and executes them.

8. The OS takes over the control of the boot process.

9. The OS checks hardware inventory and loads hardware drivers.

10. The OS is ready for the user to use.

Because the manufacture of OS publishes security updates and even distribution

upgrades over a long period of time, which potentially will cause the time length to

copy OS files, the OS execution time changes. In this study we focus on the boot

up process until step 6, in order to remove the influence caused by the OS changes.

We define the Pre-OS boot up on a computer as the process that starts when the

computer’s power button was pressed, until the moment when BIOS is ready to load

OS files. This process is stable over a long-term period unless the BIOS was updated.

We study the Pre-OS boot up changes during a 18-month period, and the results are

presented in section 4.3.2.
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4.1.2 Idle

Periodic verification that the computer is in an idle state is a common setting on

various Operating Systems. If the computer is verified as idle, the OS turns off the

monitor and puts the computer into sleep state as one of the default operations to

save energy.

The Task Scheduler in Microsoft Windows verifies that the computer is in idle

state every 15 minutes, by using two criteria to check the idle state: user absence and

lack of resource consumption[8]. The user absence is defined as there being no mouse

and keyboard input during a given period of time. The Windows expects an active

user to interact with the input devices every few minutes, so if there is no input

longer than the threshold value, Windows assumes the user is absent. Furthermore,

if all of the processors and the disks in the computer were idle for more than 90% of

time during last detection interval, Windows will consider this computer is idle.

In our work, we define the idle state in the controlled environment as the period

during which there is no user interaction, and no background third-party application

is running. On the enterprise computing dataset, due to lack of the ground truth

of the computer and user activities information, we consider the computer is in idle

state based on its power consumption value. If the power is less than the maximum

power data, the standard deviation of the power data during the given period is less

than 10W, and only when this period is longer than 30 minutes, we assume this

computer is in idle state.
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4.1.3 Computer Failure

Even though the modern computers are designed with complex hardware and ad-

vanced software, it is still hard to prevent computer failure from happening at all.

A Kernel Panic is one of the actions taken by the Unix OS upon detecting a critical

failure, and usually the OS cannot safely recover from this type of failure. The Kernel

Panic could happen during the booting up period, to prevent the system from being

properly loaded. The following list gives the common reasons of Kernel Panic: bug

in kernel, missing or corrupted disk volumes, failing hardware driver, unsupported

hardware.

After a system failure on a computer installed with Microsoft Windows, the Blue

Screen of Death (BSoD) shows the error code and its symbolic name. Although

this error information was designed to help software engineers to locate the prob-

lem, finding the actual reason that caused the BSoD is a time-consuming job. By

default, Windows creates a memory dump file to the local hard disk when the failure

happens. After that, Windows will restart the computer. Overheating of compo-

nents, problems of power supply, memory fault, stack overflow, and hardware driver

bugs are the common reasons to cause BSoD on a Windows machine. We trigger

BSoD in a controlled lab environment by 8 different reasons and study their power

consumption patterns in section 4.2.5.
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4.2 Evaluations in a Laboratory Environment

In this section, we study the energy consumption patterns of one desktop computer in

the lab environment, so that we are able to generate various events and instrument

the power consumption during these events, such as computer boot up, idle and

failure. Meanwhile, performing all of the experiments in a controlled lab environment

can help us to evaluate our proposed algorithms performance before we apply them

on the dataset without ground truth information.

4.2.1 Instrumentation Design

The instrumentation settings include a computer installed with Microsoft Windows

7, a hall-effect current sensor attached to the computer’s power cord to measure the

current draw on the computer, a Data Acquisition (DAQ) device connected to the

hall-effect sensor to record the sensing values from the hall-effect sensor, and a laptop

that monitors and records the DAQ’s readings. In order to reduce the interference

caused by background running services and applications, we re-installed a fresh copy

of Windows. We test the current sampling rate from 100Hz to 800Hz with a step

size of 100. The results show 100Hz sampling rate is sufficient to capture the current

changes, so in our experiments we select 100Hz to measure the current draw.
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4.2.2 Design of Algorithm for Event Detection

In order to automatically detect the various events on computing system only from

the power draw, we designed an algorithm and evaluated its performance in this

section, before we applied it on the large enterprise dataset. The main idea of the

algorithm is first to apply Gaussian filter to remove the outliers caused by the meter

reading error from the raw data, then to perform Sobel operator on the smoothed

data to calculate the gradient value. The gradient value indicates the change step of

power consumption readings. Finally, based on the patterns of gradient values, the

algorithm identified each of the events from the power draw. The detailed design

of the algorithm to detect boot, idle and failure are described in the following three

sub-sections.

4.2.3 Boot

We explain and evaluate the algorithm to detect the boot up and Pre-OS boot

events here. The top part of figure 4.1 shows power draw measured by the DAQ

device during the first 50s starting from when the user pressed the power button

on the computer. Near the time 3s when the power button was pressed, the power

consumption value rapidly increased from 6W to 100W in less than 1.5 second, which

is caused by most of the components in the computer powering up. The bottom

part of figure 4.1 shows the corresponding gradient value calculated by the Sobel

Operator. The gradient values are all 0 before the moment when the power button

was pressed, since there were not changes during that period. Then the gradient
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Figure 4.1: Boot up event detected by using power draw

value sharply increased to 4 at the same moment when the power consumption value

increased from 6W to 100W. After the computer boot up, although the power draw

shows fluctuations, there is no power change sharper than the boot up moment, so

the gradient value never exceeded 4 after boot up. Based on this observation, we

designed the algorithm to detect a boot up event in algorithm 1.

The red vertical lines in the figure 4.1 mark the boot up time detected by this al-

gorithm. We evaluated this algorithm on two different computers. Among 10 power

draw datasets which contain the boot up event, this algorithm achieved to 98% accu-

racy to detect the boot up events. When we apply this algorithm to computer with
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Algorithm 1 Detect Boot

1: procedure boot(P, n, r) . P: power consumption array, n: size of array P, r:
power sampling rate

2: Initialize B
3: G← Sobel(P ) . Use Sobel operator to get gradient
4: for i← R, n do
5: if G(i) ≥ 3 then
6: if P (i−R) ≤ 15 then
7: B ← i . Add timestamp i to boot up array B
8: end if
9: end if

10: end for
11: return B . The array of Boot up timestamp
12: end procedure

different hardware configurations, the threshold value of 3 might need adjustment

according to the power consumption on that particular machine. When we have

enough power consumption data, we can set this threshold value to the maximum

gradient value minus 1.

Next, we describe the algorithm to detect Pre-OS boot. As described in section

4.1.1, a computer boot up includes 10 major steps. The booting process starts with

the CPU reset, then hardware self checks, until BIOS locates the storage driver

where the OS is installed, where the Pre-OS boot ends. After that, BIOS copies

OS files into memory, and launches OS when it is ready. We have carefully tested

when the OS starts to copy OS files into memory. Every time when the computer

boots up, there is a short period of black screen on the monitor, between when the

computer finishes its self tests and the OS logo appears on the screen. To verify that

this is the moment when Pre-OS boot up ends, we have plugged a newly formatted

hard drive without any OS installed on it. The black screen still appears after the
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Figure 4.2: Pre-OS boot up period detected by using power draw

computer’s self test, then immediately shows on the monitor with the error message

“No Bootable Devices Error”. With this experiment, we confirmed that after the

black screen appeared on the monitor, the BIOS started to looking for the OS files.

The main purpose here is to locate a consistent boot up period which is not affected

by the OS files. Although we cannot precisely confirm when the BIOS starts to read

for the OS, what we can confirm by this experiment is that our algorithm can detect

the black screen event, that is consistent across boot up events and not affected by

the OS changes.

While the DAQ device recorded the power draw during the computer boot up,
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we also recorded the time when the black screen appeared on the monitor, which

is annotated in the top part of figure 4.2. A close look at the power draw curve

shows a 10W increase. Accordingly, there is a 0.5 rise in the gradient curve, which

is shown in the bottom part of figure 4.2.In the algorithm, after we detect the first

sharp gradient, in the range of 10s to 20s, we look for the gradient larger than 0.4

for the Pre-OS boot event. We also noted that starting from 10s after the computer

boots up, the gradient values were consistent and were always less than 0.5. We used

algorithm 2 to detect when the Pre-OS boot ends:

Algorithm 2 Detect Pre-OS Boot

1: procedure PreOS-Boot(P, n, r)
2: InitializeB
3: G← Sobel(P ) . Use Sobel operator to get gradient
4: for i← R, n do
5: if G(i) ≥ 3 then
6: if P (i−R) ≤ 15 then
7: for j ← i + 10r, i + 20r do
8: if G(j) ≥ 0.4 then
9: B ← i . Add timestamp i to Pre-OS boot up array B

10: end if
11: end for
12: end if
13: end if
14: end for
15: return B . The Pre-OS Boot timestamp
16: end procedure

Applying this algorithm to the dataset used in figure 4.2, the second red vertical

line marks the moment detected by this algorithm. So that the period between the

two red vertical lines were the Pre-OS period. To test the stability of this algorithm,

we applied it on ten power boot up power consumption datasets. The results showed
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that this algorithm could detect the moment of the 10W power increasing. This out-

put may not precisely detect the moment when the OS starts loading the OS files,

but the output consistency the locates the same 10W power increase pattern. Con-

sistency is our top priority, since the Pre-OS Boot Up defines a consistent computer

boot up period, which avoids the OS’s variations.

4.2.4 Idle

Computer idle has been identified as one of the major sources of energy waste in a

computer lab environment [27]. In this part, we show the energy instrumentation

that could help users to identify computers’ extra activities during idle state. We

measured the energy draw on an idle computer continuously for 10 hours, to find out

how the computer consumed energy during its idle period. Our observation was that

the power consumption values on the target computer kept consistent in the range

of 104W to 107W, except the power increased to 130W to 140W every 5 minutes, as

annotated in top part of figure 4.3. This 30% instant increase in power only lasted

less than 200 milliseconds, every time. We checked the Windows default background

service settings, and found out that the group policy refresh interval was 5 minutes,

which matched the instant current increase interval. In order to verify that this

group policy refresh action generated extra energy consumption, we changed this

interval value in the computer configuration interface to 30 minutes, and repeated

the current instrumentation after rebooting. The measurement results showed that

the instant current increase interval changed to 30 minutes, which confirmed that the

group policy refresh runs in the background and generates extra energy consumption.
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Figure 4.3: Idle detected by using power draw

As observed in figure 4.3, both of the power draw and gradient values are consis-

tent, except the instant increase every 5 minutes. Windows considered the computer

as idle when its 90% resource are idle, so we proposed the algorithm 3 to use power

draw to detect the computer idle period.

4.2.5 Failure

In this part, we study how the power draw changes when critical failure occurs on the

computer. We generated the BSoD on the Windows computer by using eight types
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Algorithm 3 Detect Idle

1: procedure Idle(P, Pm) . P: sub-array of power consumption, Pm: Maximum
of power consumption on this computer

2: G← Sobel(P ) . Use Sobel operator to get gradient
3: X ← Std(P ) . Standard deviation of P
4: Y ← Std(G) . Standard deviation of G
5: Z ← Ave(P ) . Average of P
6: if X ≤ 10 then
7: if Y ≤ 0.4 then
8: if Z ≥ 10 then
9: if Z ≤ 0.6 ∗ Pm then

10: return True . This period is Idle
11: end if
12: end if
13: end if
14: end if
15: return False . This period is not Idle
16: end procedure

of reasons, which included: high Interrupt Request Levels (IRQL) fault (system-

mode), high IRQL fault (user-mode), buffer overflow, code overwrite, stack trash,

stack overflow, hard coded breakpoint, and double free. We focused on the power

consumption data during the period starting from the moment when the BSoD was

triggered, until the moment when the computer restarted itself, which is shown in

figure 4.4 starting from 4s until 11s. As the top part shows, the power consumption

rapidly increased 80% from 110W to 190W as soon as the BSoD started. During

the BSoD period, all of the major components inside the computer, such as the

CPU, hard drive, and fans were all running at their maximum speed, which caused

the power draw to significantly increase. The instrumentation showed the power

draw stayed at its max level until the BSoD screen disappeared on the monitor,

then the power draw dropped to 115W. At the same time, the computer began the
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Figure 4.4: BSoD period detected by using power draw

restart process to recover itself from failure. The measurements were repeated 3

times for each reason on the same computer, generating a total of 24 sets of data.

Our conclusion is that regardless of which reason triggered the BSoD, the power

draw showed the same pattern: rapid increase to 190W and remained at that level

for 7 to 8 seconds, then dropped to 115W. During the same period, the gradient

value increased to 4 when the BSoD appeared on the screen, the gradient value

immediately returned and stayed around 0, until the moment it dropped to -3, when

the computer restarted. Totally we have measured 24 times of the BSoD triggered

by 8 type of reasons, all of the length of the BSoD are last for 8s. So that below
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algorithm we check the gradient in a range of 5s to 15s, to cover to period of the

BSoD event. With these observations, we designed the algorithm 4 to detect BSoD

failure on the computer.

Algorithm 4 Detect BSoD

1: procedure BSoD(P, n, r)
2: G← Sobel(P ) . Use Sobel operator to get gradient
3: for i← R, n do
4: if G(i) ≥ 3 then
5: for j ← i + 5 ∗ r, i + 15 ∗ r do
6: if G(j) ≤ −2 then
7: Gstd← Std(G[i : j]) . Standard deviation of during i to j
8: if Gstd ≤ 0.5 then
9: return True . Detected BSoD

10: end if
11: end if
12: end for
13: end if
14: end for
15: end procedure

The period between two red vertical lines in 4.4 indicates the BSoD period de-

tected by this algorithm. In order to test the performance of this algorithm in a

more complex dataset, we evaluated it on a 5-minute experiment, which included

boot up, short period of idle, and user interactions. The results of this experiment

are shown in figure 4.5, we manually triggered the BSoD the around 13:58:50. The

red vertical lines indicate the moment when the gradient value was more than 3. As

shown in the figure, there are more than red lines marked, but due to the second

resection in our algorithm, there is only one green vertical line which shows when

the BSoD ended. That left only one period between the red and green line as the

BSoD period, which exactly maps to the correct BSoD period.

51



Time
0

50

100

150

200
Po

w
er

(W
)

13:56:00 13:57:00 13:58:00 13:59:00 14:00:00 14:01:00
Time

-15
-10

-5
0
5

10
15
20

G
ra

di
en

t
Va

lu
e

Figure 4.5: Use power draw to detect BSoD period in a longer scenario.

In this part, we designed four algorithms to detect boot, Pre-OS boot, idle, BSoD

failure events only based on power consumption data, and also demonstrated that

these algorithms could help us to identify that all of these four events have happened

on the computer only by monitoring the power draw. Compared to installing monitor

programs on the computer to detect failure and abnormal behavior, the method

of monitoring the power consumption on the power cord neither requires having

the privilege of installing programs on the computer, nor occupying the computer’s

computing resources.
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4.3 Evaluations on Enterprise Computing Envi-

ronment

In this section, we study the energy consumption from PowerNet [36], a 3-year con-

tinuous energy measurements of a large enterprise computing environment, and use

our proposed algorithms in last part to detect various events on computer and to

reveal the insignificant changes which only can be discovered over a long period of

time.

4.3.1 Dataset Background

The PowerNet project from Stanford University was aimed at characterizing and

understanding the energy consumption by computing devices and communication

equipment. The network of power meters monitored 270 end-devices, including 54

desktops, 31 laptops, 26 servers, 30 printers and 19 network switches. The power

cord on each device was plugged to a PowerNet meter, and the PowerNet meter

was plugged to an AC outlet. These meters have energy metering ICs and MSP430

micro-controller for sensor control and data processing. The meter measured and

recorded the power draw at 1 Hz. The raw data of PowerNet meter readings are

more than 30GB, starting from May 2010 to June 2013, spanning 37 months.
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4.3.2 Boot

PowerNet contained the energy usage data for more than 3 years, and this part

studies the power consumption changes during the Pre-OS boot up period on one

desktop computer across 18-month period. This is the only desktop that we can find

in the dataset which has regular power on and power off events, the other machines

are either always kept power on, or the available energy only covers a very short

of time period. First we explain the step by step process about how to identify

every Pre-OS boot up event from the continuous power monitor data. In figure 4.6,

each dot shows the average power consumption during every 1 minute period, from

May 1st, 2010 until December 31st, 2011. During this 18-month period, the power

data is mainly distributed in two major ranges. The first range is recorded while

the computer is powered off, and the readings are around 5W. This small amount

of energy is consumed by the internal components inside the computer, such as the

network interface card is kept in stand-by mode and waiting for the remote wake up

command. The other major power readings are recorded while the computer is under

active use, and the readings are distributed in 55W to 75W range. The energy draw

changes depending on the workloads on the computer; a higher workload usually

consumes more energy.

Figure 4.7 shows how the power consumption changed during 24 hours on a

weekday. According to this figure, the computer was powered on at approximately

09:50am, and was shut down around 4pm. Because the power change values during

the power up and the shut down moment are significantly larger than other times of

change in power, we could use the maximum positive gradient value during the whole
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Figure 4.6: Power draw across an 18-month period on same computer

data period to identify the power up event, and use the maximum negative gradient

value to identify the shut down event. The green vertical line and red vertical line

in figure 4.7 mark the power up and shut down moments detected by this algorithm.

A close look at the computer boots up event is shown in figure 4.8, which plots the

power draw starting from 1 minute before until 5 minutes after the power button

was pressed. Although the computer hardware components are different between the

computer measured in PowerNet and the desktop computer that we instrumented

in section 4.2.3, the general trend of the power draw during the computer booting

are similar to each other. The power rapidly increase immediately after the power

button was pressed, then drops 20% to 30% while the computer is loading BIOS.

Based on the definition of Pre-OS booting given in section 4.1.1, we extract the

power consumption data during the Pre-OS boot up period and plot it in figure 4.9.

Note the time scale we used in this figure only covers 40 seconds. In the rest of this
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Figure 4.7: Power draw during one day period

part, we study the changes of the power consumption during the Pre-OS boot up

period, which is instrumented on the same computer across an 18-month time frame.

Power Consumption during Pre-OS boot: We calculate the average power

consumption by using the total power consumption during the Pre-OS boot up di-

vides by its time length. As shown in figure 4.10, the blue dots show the raw average

values, the green curve shows moving average value in a sliding window size equals to

10. This green color moving average curve suggests the average power consumption

has a rising trend during the 18-month period, which lead us to apply the linear re-

gression and plot it as the red straight line in the figure. The linear regression result

reveals this Pre-OS boot up event on this computer consumes 5.9% more energy.

While the age of the computer rises, the energy efficiency of its components drops.

For example, accumulation of dust reduces the efficiency of the fan, which increases

its energy consumption to maintain the air flow. The reason of the linear regression
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Figure 4.8: Power draw during the boot up period

curve is not a straight line, is because there were some gaps in the raw dateset, we

plot the linear regression curve skipped those gaps.

The maximum power consumption value during Pre-OS boot up is another in-

teresting metric to reflect the energy proprieties of the computer. If this value shows

a significant change, it could reveal some components are not working properly. We

plot the maximum readings during the same time period in figure 4.11. Similar to

the trend observed in the average power consumption, the linear regression suggests

the maximum value has increased from 92.1W to 94.8W, which has 2.9% increase.

Power Consumption before Pre-OS Boot: We also studied the average

power consumption right before the power on event, in order to study the energy

draw while the computer is powered off and check how it changes over a long time

period. We calculate the average values during a 10s window size which ends at the

moment when the computer was switched on. As shown in figure 4.12, the average
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Figure 4.9: Pre-OS booting period detected by using power draw

power consumption values also increased 1.7%. This experiment also confirms that

the energy efficiency on the computer drops over long terms of usage. Even during

its power off state, the average energy consumption value raised as the value during

boot up periods.

We also analyze the total time length of the Pre-OS boot up events. There was a

up to 3 seconds of fluctuation in terms of the total time length, the linear regression

shows this metric keeps steady during the 18-month period, which confirms with our

definition of Pre-OS boot up keeping constants over a long time period. After the

computer booted up, it consumes energy every second. So the total energy consumed

during the Pre-OS boot up period is highly correlated with the total time length of

the Pre-OS boot up event. The linear regression of total energy consumption also

suggests this metric stays stable during this 18-month period.
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Figure 4.10: Average power draw during the Pre-OS booting period

4.3.3 Idle

In this part, we study the power draw while the computer is in idle state, across

a 29-month period. We select two computers in the PowerNet dataset, these two

computers are rarely powered off during this 29-month period. Then we plot the

power draw during 24 hours every day, this set of figures shows that the power

consumption values are consistent during the period between late night until early

morning, when usually no user is working at the office. We select the duration

between 12AM until 5AM and calculate the average power consumption during this

period. Figure 4.13 plots the average values from December 1st, 2010, until May 1st,

2013. The liner regression result, the red line in the figure, shows the average power

consumption during the idle period on the computer has increased 0.5W during this

29-month period. Although this is not a significant increase, this observation is

consistent with our previous finding in section 4.3.2, which concludes the average
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Figure 4.11: Maximum power draw during the Pre-OS booting period

power consumption of a computer will increase over years.

The green curve in figure 4.13 also shows a periodic patterns, in which the value

drops to 161.5W around winter in each year, then increases to 164.5W during summer

time. This periodic rise and drop per year leads us to study the correlation between

the average power consumption and daily average temperature. We retrieved the

historic weather data [2] at the city where PowerNet dataset was generated. In

figure 4.14, the blue dots are the moving average of the power consumption during

idle period with window size 10, the red plus symbol are the same moving average of

the temperature value with the same window size. The missing blue dots are due to

the interrupted power measurements. This figure shows that the power consumption

values are correlated to the temperature value, where the Pearson’s correlation is

0.60. When the Pearson’s correlation value equals to 1, it means the two variables

are have a perfect positive correlation, 0 means has no correlation. The correlation
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Figure 4.12: Average power draw before the Pre-OS booting period

value between the average daily temperature and average power consumption is 0.60,

although it is not a perfect positive correlation, it still shows the power consumption

have similar changing trend with temperature. In general, during the summer period,

the computer consumes 1.5% more energy compared to the winter period. We found

that, the A/C was not working during the off business hours, so that the outdoor

temperature affects these computers’ working environment. In order to confirm that

the power increase during summer time was not caused by the meter reading error,

which reports larger readings in the higher temperature environment, we also analyze

the power consumption on a network switch, which has fixed power draw regardless of

the workload. The same type of meter attached to the switch reports consistent power

consumption value over a one year period. The result shows the switch consumes 10W

of power consistently without any fluctuation. This verified that the temperature

change does not bring any extra reading errors on the power meter. After we verified
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Figure 4.13: Average power draw during Idle Period

the power meter report stable values regardless of the room temperature, then we

can confirm the power draw changes of the computer were caused by the workloads

changes, which has the possibility caused by temperature variations. One of the

reasons that the computer consumes more power during summer period would be

because it needs more energy to remove the waste heat. However, since winter has

a cooler room temperature, the computer needs less energy to cool itself.

4.3.4 Failure

If we can identify the computer failure only from analyzing the power consumption

data on computers, such as detecting computer freeze or BSoD, this method can act

as an alternative approach to monitoring the computer states. We are able to use

the energy data to identify one type of failure in the PowerNet dataset, on which

computers always are forced to have a reboot to recover from that kind of failure.
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Figure 4.14: Correlation between average value of power consumption and room
temperature

Figure 4.15 shows the power consumption of one desktop over 24 hours, on a

weekday. During the business hours of 8:30 until 16:30, this computer is being

actively used, which can be reflected by the fluctuation of the power readings. This

computer was not turned off in the previous day so that the power reading starting

from 0:00 is around 40W. As marked in the figure, this computer enters into a failure

state around 0:30, from where the power consumption value increases to 62W and

keeps very stable at that value for the next 8 hours. This failure ends by a computer

reboot which happened at 8:20, when the user started to use the computer. The

restart also can be confirmed by analyzing the power draw, which reduced to 0W

then followed by a reboot power consumption patterns which we found in section

4.2.3

In the 19 months of power consumption dataset of this computer, we were able
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Figure 4.15: Failure event detected by using power draw

to detect this type of failure appeared 8 times. All of these events are followed

by a computer restart. We also studied the power consumption data starting from

3 minutes ahead of the misbehavior, no obvious pattern could be retrieved. We

need to detect a larger number of computer failures, then cross analyze the energy

consumption data from different machines, to check if any potential patterns could

be revealed.

4.3.5 Algorithm Stability with Noise

In order to test the error tolerance of our proposed algorithm, we added random

noise which following normal distribution to the daily power consumption data. The

results show if we add a random noise value in the range 0W to 40W to the every

value in the raw data, our proposed algorithm still can accurately detect the boot up

event with 94% of precision and 100% of recall. If the the top limit of the random
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value increases to 45W, our proposed algorithm performance starts to drop, which

reports 39% of precision but with 99% of recall.

4.4 Summary

In this chapter we proposed algorithms to detect various events on computing sys-

tems, includes boot up, Pre-OS boot up, idle and failure. These algorithms have

been evaluated with the experiments that we performed in a controlled lab environ-

ment. The results shows all of these algorithms are able to 95% detect the boot

up events. Then we applied these algorithms to understand the power data from

a large-scale enterprise computing environment. Our proposed algorithms detected

270 Pre-OS boot up events among an 18-month power trace, 567 idle events among

a 29-month power trace, and achieved to locate all of the 8 failures from a 19-month

power trace. By detecting all of these events across long period of time, we revealed

the insignificant changes of power on computing systems, which could to be due to

the components’ aging.
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Chapter 5

Understanding Networking

Systems from Energy

Instrumentation

Energy instrumentation has a long history of research in networking systems, espe-

cially in wireless sensor network. Energy efficient protocols and applications are one

of the key research objectives of Wireless Sensor Network (WSN) research, because

the battery life limits the network’s operation time. Energy instrumentation and

analysis allows us to determine if the proposed protocol is better than the state-of-

the-art. Various hardware-based energy instrumentation [21][44], simulation based

study of energy footprint [54], and using radio activity as a proxy for energy have

all found widespread adoption in the community.

In this chapter, we argue that despite the long history of energy instrumentation

66



in WSN, we have not fully understood the implications of energy instrumentation

in WSNs. Other communities have found that instrumentation of any type must

be performed with care. Otherwise, there can be privacy and security implications.

Memory access, CPU use patterns, or other types of system information could serve

as side channels to reveal information about the user or the workload [68]. Previous

work has indicated that power measurements can also act as a side channel with the

potential to compromise private information about the users [47]. We study these

issues and implications in the context of sensor networks.

To measure energy efficiency of a sensor network protocol, it is sufficient to use

some statistical measures such as average of energy used and compare across nodes or

protocols. In this work, we found that such coarse statistical measures are inadequate

to reveal detailed network activities. Hence, we design a few features based on energy

data to be able to better discriminate different activities and other information about

the network or the protocol.

We evaluate the design of our energy instrumentation and classification accu-

racy of those features by doing extensive experiments on three WSN testbeds. In

our experiments, we consider four different protocols, two different channels, different

topologies, and various application layer packet sizes and transmission intervals. Our

results from analyzing four million energy data and radio activity points, indicate

that energy instrumentation and carefully designed features can not only reveal infor-

mation about the network protocol but also some information about the application

and the workload.

Although detection of anomalies or validation of node activities is already useful,
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we take energy instrumentation one step further by asking: could energy instrumen-

tation be used to understand various aspects of network operation? For example, can

we tell what protocol is running in the network? Can we characterize the network

topology based on power instrumentation? Can we understand some aspects of the

application based on just power data? In this chapter, we attempt to answer these

questions as a pretext for a broader discussion on the role energy instrumentation

could play in WSN diagnostics. We first examine the properties of power instru-

mentation necessary to study the above-mentioned implications and opportunities.

Coarse-grained power instrumentation, while enough to get a general idea of energy

instrumentation, is not sufficient if we want to reveal fine-grained activity informa-

tion about the network. Such fine-grained energy data may be obtained directly

using power meters on some mote platforms or by keeping track of radio on-and-off

times if radio is the dominant power using device on the platform.

5.1 Feature and Instrumentation Design

5.1.1 Features Design

In this section, we first describe three commonly used features and then compare

them against two new features that we designed to reveal information about the

network. The experiment results on three testbeds indicate that our designed features

not only significantly outperform commonly used features in terms of classification

accuracy, but can also reveal more information that cannot be achieved by existing
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features.

5.1.1.1 Energy Consumption (EC)

Statistical values such as average and standard deviation are commonly used to

analyse and compare the energy consumption properties of wireless network protocols

[6]. On FlockLab, which provides power profiling, we calculate the mean, variance

and standard deviation values of energy consumption within a 10s window of the

energy profiling data, use these three statistical values as the attributes.

5.1.1.2 Number of Awake Nodes (NAN)

The number of active nodes is the total amount of nodes in the network with their

radio chip in awake mode. This number is another commonly used feature to study

a protocol’s energy performance [66] or its sensing coverage area [32]. Similar to the

previous feature, we calculate the mean, variance and standard deviation values of

the number of awake nodes within a 10s window size and use them as the attributes.

5.1.1.3 Number of Snooped Packets (NSP)

Snooper node can overhear the nearby transmitting packets. Authors in [58] use

multiple snooper nodes to overhear the traffic to study the scalability problem in

wireless sensor network. It is common to ask if it is possible to characterize the

protocols running on a network using only snooper nodes. We tested this idea by

assigning 2 nodes as snooper on FlockLab which can record the timestamps of each
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overheard packet. We used a sliding window of 10s, with 1s step size to create

a ten-dimensional feature, where each attribute is the number of packets snooped

during every second. Our experiment showed that this feature can achieve better

classification accuracy compared to using statistical values during 10s window size.

5.1.1.4 High-Power-Length Counter (HPLC)

Before we explain in detail what our proposed feature HPLC is, let us first introduce

High-Power Length (HPL). We define HPL as the total time that the power draw on

a node stayed in high value during each awake-sleep cycle, e.g., the red dots showed in

figure 5.2, which represents the period of radio is in awake state. The length of time

a node stays in awake mode is not a fixed value, it depends on the preamble length,

the packet size, the time before a node receives acknowledgment, etc. The HPL is

calculated by subtracting the previous timestamp of radio-turning-on event from the

timestamp of radio-turning-off event. During the experimental period, whenever a

node turns on and off its radio, the node will records the timestamp and its related

HPL value.

Based on our experiment observations , we used the threshold values 25ms and

100ms to divide the HPL into three categories corresponding to a node performing

CCA check, receiving packets and transmitting packets with high possibility, respec-

tively. We name these three ranges as T1,T2 and T3 as defined below, where T

presents the HPL of each time:
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T1 : T ≤ 25ms (5.1)

T2 : 25ms < T ≤ 100ms (5.2)

T3 : 100ms < T (5.3)

Within 10s disjoint window size, we count the total number of HPL in each of

these ranges, and use these three counters are the feature, named High Power Length

Counter, i.e., HPLC = [m1, m2, m3] , where m1 is the number of HPLs that satisfy

the predicate T1 (1). m2 and m3 are defined analogously.

In summary, within a given window size, we count the total number of High

Power Length (HPL) in each of three ranges (use 25ms and 100ms as the threshold),

and use each of these three counters as the feature. The feature vectors of the HPLC

are the three counters of the HPL. For example, [199, 20, 50]. On the experiments

to classify network protocol, we run four experiments, each of them using one of the

four network protocols. Except the network protocols, we tried our best to make the

workload similar across protocols, and use identical settings, such as to use the same

testbed and the same MAC layer protocol. The purpose of this type of experiment

is to identify the HPLC belonging to which category, where each category is the

experiment running one of the four network protocols.

The Box plot in figure 5.1 shows the distribution of HPLC across the 1 hour

experiments with four protocols each. This figure shows each protocol has its unique

distribution of HPLC in the three categories.
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Figure 5.1: Distribution of HPLC of four protocols, each color represents each pro-
tocol

5.1.1.5 High Power Overlap Counter (HPOC)

When a node successfully transmits a packet, the radio on both the transmitter and

the receiver must be in awake state. In other words, if two nodes have exchanged

packets, the intersection of their radio awake time must not be empty, i.e., their

power draw in high level must have a overlapped time. We count the times of two

nodes have their power draw both stay in high range overlapped during a given

period of time, and we call it High Power Overlap Counter. We use this feature to

help us infer the network topology in section 5.2.2.1.

In other words, we first calculate the number of times the power draws of two

nodes in high range overlapped during a given period of time, in order to get an

array with (n-1)*(n-2) values, each value is the HPOC between each node pair.We

do not use HPOC for Classification. In this work, for each node A in the network,
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we use above array to locate the node B which is at the maximum HPOC with node

A. Then we say node A and B have a direct communication.

HPLC and HPOC can be derived from the energy measurements on FlockLab,

by using mean-shift clustering algorithm to cluster the energy reading into radio on

and radio off classes. On Indriya and Twonet without energy meters, we measure the

HPL using software instrumentation. In order to compare the performance between

using real energy data and using radio activities, we also use software measuring

HPL on FlockLab. In the rest of the paper, we explore which of these four features

are useful for different purposes.

5.1.2 Experiment Settings

5.1.2.1 Protocols

The network protocol is a formal set of rules, conventions and data structure that

governs how computers and other network devices exchange information over a net-

work [57]. We refer the protocols as the network protocols that are designed for the

low power wireless sensor networks.

The purpose of a Collection Protocol is to allow a sink to reliably collect the

data packets generated from every node in the network. In our experiments, we

use Collection Tree Protocol (CTP) [23] and MultiHopLQI(LQI) [60], which are

two of the most commonly used multi-hop reliable collection routing protocols. A

Dissemination Protocol is designed to reliably deliver data packet from the base
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station to every node in the network. In our experiments, we use Drip [59] and

DHV [13] dissemination protocols.

These protocols use different algorithms, metrics and methodologies to achieve

their design purposes. For instance, in the collection protocols, CTP uses Expected

Transmission Count (ETX) as the metric to select packet forwarding path, Multiho-

pLQI uses the Link Quality Indicator (LQI) to find the best next hop.

In our work, we define the pattern as the number of packets have been transmitted

and received during a given time length. Since, the design principles of the protocols

are different, besides transmitting the data packets in the network, different protocol

uses different algorithms to generate and transmit control packets. Such as CTP

broadcasts its control beacon packet using an adaptive timer, the interval doubles

in a stable network. However, MultihopLQI always broadcasts its control beacon

packet at a fixed interval. Our proposed feature can not only detect the data packet

transmission events, but also can capture the control packet transmissions, therefore,

is able to identify different protocols from the energy instrumentation.

We make two assumptions about the protocols for this system to work. The first

assumption is that all of these protocols are designed to transmit different amount of

control packets during same time period, especially each protocol generates various

number of frames on the physical layer even they have same application layer work-

loads. If all of the protocols sending same amount of packets during the given window

size, our proposed work is not able to distinguish them. The second assumption is

that there is only one factor has changed in the same set of experiments. Either only

the network layer protocol is different, or only the MAC layer protocol is different.
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Our proposed work is not able to distinguish the instances with combined different

network protocols and different MAC layer protocols.

5.1.2.2 Testbed and Motes

We instrument the power use and radio chips activities on three testbeds. Flock-

Lab provides high-resolution power measurement profiling and GPIO pin tracing.

Indriya [15] has over 100 wireless sensor nodes. Twonet [42] is a testbed with dual-

radio nodes, which can operate in 2.4 GHz and 900 MHz. We set the Twonet nodes

to run on 900 MHz to verify that our proposed approach works with 900 MHz as

well. We chose Tmote on FlockLab and Indriya, Opal on Twonet. We use TinyOS

for our experiments.

5.1.2.3 Power Readings and Radio Activities

It is conventional wisdom in sensor networking research that radio is the dominant

user of energy on a mote. However, even with a simple sensing application, there

may be enough energy consumption from sensing, computation, and storage that just

keeping track of radio activities may not accurately approximate energy consumption

of a mote. To test if this is true on the mote platform we use for our experiments,

we ran an application on Flocklab to sample using the light and temperature sensor

every 1s and 1.5s, respectively. Every 10 seconds each node combined its last 20

sensor readings and sent it to the root node. In order to make this application

closely resemble a real life scenario and use more components on the node, we also
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Figure 5.2: The power draw on a wireless sensor nodes

set the node to write the packet contents into its local flash memory every 50s. In

figure 5.2, we show the current measurements with 1KHz sampling and annotation

indicating various activities on the mote. Even though our sensing application uses

sensors and flash storage, radio can still provide a good approximation of total energy

use.

5.1.2.4 Low Power Listening(LPL)

The main idea of LPL is to save the energy on the nodes. When using LPL, the node

wakes up periodically to perform Clear Channel Assessment (CCA) [48]. The node

stays awake until the packet is received if it detects any preamble on the wireless

medium. Otherwise it turns off its radio and switches back to sleep mode to save

energy. In this study, we set LPL sleep intervals to 200ms.

5.1.3 Evaluation Design

In this section, we describe experiment setup and evaluation design.

76



We ran four protocols in 16 different configurations (channel, data rate, topology,

packet size, sniffers), and we collected the energy instrumentation data and radio

activity data. In addition, we performed experiments in 6 configurations with one

or two protocols depending on the specific evaluation goals for specific protocols.

For example, changing sink node in CTP. We collected 1-3 rounds of data for each

protocol-configuration combination. Each round is one hour in length and generates

3.8 - 12.1 million samples of readings.

5.1.3.1 Experiment configurations

The challenge is to identify the network protocol from a identical workload settings.

If the workload are different, it difficulties to distinguish each network dropped dras-

tically. Though it is impossible to ensure exactly the same workload across collection

and dissemination protocols, we tried our best to make the workload similar across

protocols by matching the packet sending interval, using the similar payload size

with the same sink node for all of the four experiments in each set.

5.1.3.2 Testbed

We use 30 nodes on FlockLab and 105 nodes on Indriya. These two testbeds use

nodes that run on IEEE 802.15.4 2.4GHz. On Twonet, we selected 60 nodes to run

on IEEE 802.15.4 900MHz. Together these three testbeds cover the network size

from small scale with 30 nodes to large scale with 105 nodes, and also different radio

bands of 900MHz and 2.4GHz. To test the stability of our proposed features in the
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environment with external interference, we run experiments on overlapping (ch13)

and non-overlapping (ch26) channels with WiFi.

5.1.3.3 Classifier Training

For each feature EC, NAN and HPLC, we use a 10s disjoint window to extract the

three attributes. Hence, for one hour experiment, we have 360 feature vectors. We

then combine all the feature vectors from the 4 experiments belonging to the same

set to generate 1440 feature vectors. For NSP, we use a 10s sliding window with a

step size 1s to extract 10 attributives for each feature vector.

We test four different types of classifiers, namely J48, Logistic, Bagging and

NaiveBayes. These are implemented in Weka [25], which has a collection of machine

learning algorithms for data mining tasks.

J48 is an open source Java implementation of the C4.5 algorithm in Weka. C4.5

builds a decision tree, which uses divide-and-conquer ideas to solve the hard problem

by recursively split it into several simple sub-problems. At each node of the decision

tree, C4.5 selects one attribute to divide the samples into different sub-tree. This

operation recurs until all of the samples belong to the same sub-tree, which C4.5

assigns as a leaf node. J48 is one of the common classification algorithms used

in machine learning area. One of the main advantages of the J48 classifier is low

training cost, and the ability of the algorithm to report the results in a relatively

short amount of time.

Nave Bayes is based on the Bayesian theorem of conditional probability with
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strong independence assumptions. The design idea of the Nave Bayes is based on

the assumption, that the value of a feature is unrelated to the absence or presence

of any other feature. The major advantage of Nave Bates is that, it only requires

a small amount of training data to train the classifier, and that it is not sensitive

to irrelevant features. Due to the design of Nave Bayes, its training and testing

speed faster compare to other more sophisticated algorithms, and it usually can give

a classification results.

Bagging, also known as Bootstrap aggregating, is an ensemble method that uses

random sampling instances with replacement to create separate sample sets of the

training dataset, in order to improve the robustness over a single estimator. It is

always a good idea to try this method in machine learning problem. For each of the

sample sets, one classification algorithm is applied and a model is generated. The

results from these sample sets are combined, usually by majority voting or averaging.

Bagging classifier might be helpful to build a moderately good classification method

by applying the independent aggregating method. Another advantage is that it is

possible to run Bagging in parallel mode to reduce the execution time.

Logistic classifier implemented in Weka is using a multinomial logistic regression

model with a ridge estimator. In general, the logistic regression is a statistical method

adapted to classification, which is used for analyzing a sample dataset with one

or more independent variables that determine an output. The main advantage of

logistic regression is that only a few statistical assumptions are required for its use,

it is simple to use, and have low variance. Our experiments using logistic method

shows this classifier performs very well to identify the network protocols.
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We use 90% of samples for training and 10% for testing. We perform 10-fold

cross-validation to compute the accuracy of different classifiers. The classification

accuracy results are averaged across the 10 folds.

5.1.3.4 Other Settings

We record the routing path in the packet payload and use them only for verification

purposes, not for any classification. We skip the instrumentation data collected

during the first 20s of an experiment to ensure all the nodes are programmed and

the network has warmed up. We use the B-MAC[52], which is the default MAC

protocol implementation in TinyOS. We use channel 13 and 26 on 2.4GHz radio

band, and channel 6 on 900MHz. We performed experiments on other channels on

both 2.4 GHz and 900 MHz bands but do not present those results as they are

qualitatively similar to the results we present.

5.2 Evaluation

5.2.1 Identify Routing Protocols

In this section we compare the accuracy of the four classifiers for the task of iden-

tifying the protocol running in the network using the four features. If the network

is not running as expected, the network has switched to a different protocol, we can

detect them by using our proposed feature.
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Figure 5.3: Classification accuracy using four features.

5.2.1.1 Performance with different features

Figure 5.3(a) shows the results of experiments performed on FlockLab using the three

commonly used features in terms of four classification algorithms. EC achieves 59%

accuracy using J48. NSP only reports 42.8%. The best accuracy is achieved by using

NAN, which is 70.4%. We plot the results by using HPLC calculated by software

measurements on radio activities in the first group of figure 5.3(b), which shows

all four algorithms of using HPLC could achieve more than 90% accuracy. Figure

5.3(b) also shows the classification accuracy of using software measured HPLC on

Indriya and Twonet, where the average accuracy is above 97% and 98%, respectively.

These two figures show three highlights of HPLC: it gives the highest classification

accuracy compared to the other three features, it gives the most stable results over

the four classification algorithms; it generates the most stable accuracy results on

three testbeds, with different network layout and different radio bands. Note, in

order to compare the performance of four features on the same testbed, we extracted

all of them from the same experiment on FlockLab.

To test the performance of HPLC with an external interference, we also study the
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Figure 5.4: Classification accuracy using HPLC

classification accuracy of using HPLC extracted from directly measuring the power

consumption or software measuring the radio activities. Figure 5.4 shows the accu-

racy results in the experiments performed using channel overlapping with WiFi in

the left two groups and not overlapping with WiFi in the right two groups. In each

channel, the HPLC retrieved by power and radio are also plotted. All of the four

groups achieve similar accuracy. Depending on the algorithm, the accuracy is in the

range of 82% and 92%. These two figures clearly show our proposed feature HPLC

can achieve high accuracy, across different testbeds, network size, radio channels.

The reason why HPLC computed using radio instrumentation reports higher accu-

racy compare to HPLC computed using power instrumentation, is because the radio

instrumentation is measured by interrupt, which records the accurate radio On and

Off event time. However, the 100Hz power profiling only measures the instantaneous

current value every 10ms, it is possible to miss some very short power changes be-

tween every two samples. We also evaluate HPLC by training it on sample sets from

one experiment configuration and then testing it on data from another experiment
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configuration. We have 7 such cases and HPLC’s accuracy was between 82-97%.

Since power meter is only provided on FlockLab, we are using the software retrieved

HPLC in rest of the paper.

The reason why HPLC gives the best classification results is because it can cap-

ture the unique patterns between the protocols. Even with similar workload, due to

their protocol design, the control messages of each protocol is designed uniquely, e.g.

the time interval between transmit control packets and number of control packets.

While the workloads from the application layer are the same, using HPLC makes

it feasible to distinguish the protocols by looking at the patterns in radio activi-

ties triggered by transmit and receive packets, including data packets and control

packets.

Although Energy Consumption (EC) could capture the node activities over a

period, unlike HPLC, which takes into account the time length of each wake up event,

EC lacks this timing information. Also, EC only capture the accumulative energy

consumption during that given period, it can not detect any radio behaviors. With

an identical application layer workload, EC does not have an accurate measurement

of each node’s activity, which makes it is hard to classify the protocols correctly.

The Number of Awake Nodes (NAN) in the network is not equal to the number of

nodes performing transmission operations. The awake nodes may be performing CCA

checks or waiting for the acknowledgement packet. Meanwhile, this accumulative

number of awake nodes may remain unchanged when there are a certain number

of nodes that switch on and an equal number nodes that switch off at the same

time. Hence, NAN does not capture the differences in nodes transmission activities
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Figure 5.5: Unsupervised clustering results of alternative protocols

in sufficient granularity to be useful for classifying protocols.

Number of Snooped Packets (NSP) are highly related to the physical location of

the snooper node. The number of snooped packets is much larger if the snooper is

near the sink compared to at edge of network. When we run LPL in the network,

the snooper also captures a large number of duplicate packets due to retransmission.

Even though we found that using the 10 attributes in a sliding window is better than

the statistic values across disjoint window, the overall classification result is less than

45%.

5.2.1.2 Cluster Analysis of Alternating Protocols

Next, we evaluate the effectiveness of HPLC for clustering two protocols running

during different periods. We switch back and forth between two protocols several

times during a one-hour experiment. All 30 nodes on FlockLab run CTP for 600s,

then stop CTP and start DHV for the next 600s, so on and so forth. We use a
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general non-parametric cluster algorithm, MeanShift [10] to cluster the HPLC from

the measurements. We use a 10s disjoint window to calculate the HPLC. Out of

360 snapshots, only 18 of them were mis-clustered; thus, the percentage of correctly

clustered snapshots is 95%. In Figure 5.5, yellow and green backgrounds show the

periods with correct clustering, while red shows the mis-clustered period. All of mis-

clustered periods (red) happen right after CTP starts. During the warm up period of

CTP, the nodes exchange a lot of control packets to setup routing paths, so the radio

transmit more packets compared to the stable period. This causes the algorithm

to mis-cluster CTP as DHV because DHV has more T2 events compare to CTP.

This experiment confirms that HPLC can correctly identify the protocols running

during different periods, and can also detect the moment when the protocol changes.

Because of its design, HPLC captures the change in control overhead caused by a

protocol switch. Hence, we expect our proposed approach to also cluster three or

more protocols, and even to detect the moment when the workload changes.

We also study the number of snooped packets logged by one and two snoopers

placed in the network during the same experiment; however, there are no clear pat-

terns that can help us distinguish between the two protocols. Thus, we show that

naive features such as number of snooped packets are not sufficient to correctly iden-

tify the protocols, while features such as HPLC can accurately distinguish between

different protocols.
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Figure 5.6: Heatmap of HPOC. Darker color shows larger number of HPOC between
each pair of nodes.

5.2.2 Infer Network Topology

Next, we study the effectiveness of HPOC in revealing information about the network

topology and routing path for each node.

5.2.2.1 Parent Node and Routing Path

The HPOC across two nodes can be used to estimate the parent-child relationship

across the network running multi-hop collection protocol such as CTP. If two nodes

have a parent-child relationship, then each time they exchange a packet, the radio

on time on the nodes will overlap. We remove the radio overlap length that are too

short (less than 0.025s) to focus on significant overlaps in our analysis. If a parent

has multiple children, the parent will have distinct overlaps with each child.

Figure 5.6 shows the heatmap of HPOC across every node-pair during the 200s
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(b) Actual Topology

Figure 5.7: Use HPOC to reveal the topology of whole network. Green circles indi-
cated the node with correct parent node, red circles indicate the node with wrong
parent node.

window size on FlockLab. The darker color represents those two nodes having larger

overlapped times. A heuristic to find the parent for a node is to simply designate

the node with which a node has the largest overlap as its parent. For example, for

y=20, the pixel at x=10 is darkest. Hence, we guess that node 10 is the parent of

node 20. If multiple nodes have the same overlap length, we use overlap information

from adjacent time window. We use this heuristic for each node in the heatmap and

construct the routing topology, which is shown in figure 5.7(a). We found that this

inferred topology based on the heatmap is surprisingly close to the actual routing

topology shown in figure 5.7(b). Only the nodes marked red had the wrong estimate

of routing parent. We ran CTP and LQI multiple times on the testbed and used the

heuristics above to estimate the routing topology. The estimation accuracy across

the experiments was 97.8% and 90.2% for CTP and LQI protocol, respectively.
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Figure 5.8: Use HPLC to detect sink node changes

5.2.2.2 Sink Node

Next we study how to identify the sink with HPLC. During each 100s window period,

the nodes with the maximum number of T2 had the highest probability to be the

sink node, since the T2 could reflect the number of receive events. We ran CTP

for one hour, where the sink node changed every 600s. The red curve in figure 5.8

shows the true sink node ID while the blue curve shows the predicted sink node ID.

The result shows that identifying the sink using HPLC is accurate and feasible. The

slight lag between predicted and actual sink is due to the 100s window when we

calculate HPLC.

5.2.2.3 Leaf Nodes

The number of events belonging to the range of T3 can give a rough approximation

of the number of transmissions by a node. If this number is less than the average of
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Figure 5.9: True Positive Rate of using HPLC to detect application throughput

all the nodes, we can mark that node as a leaf. It turns out, even this simple method

can identify leaf nodes with accuracy of up to 95.1% and 93.3% for CTP and LQI,

respectively.

5.2.3 Determine Application Workloads

In this section, we evaluate the effectiveness of HPLC to distinguish different ap-

plication workloads, including various packet transmission interval, application layer

payload size, and packet jitter. In this section, all of the experiments were run on

FlockLab. We used J48 algorithm to perform the classification test.
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Figure 5.10: True Positive Rate of using HPLC to detect packet size and jitter

5.2.3.1 Packet Transmission Interval on Same Protocol

We run CTP with data being generated at three different intervals: 5s, 10s, and 20s.

The same strategy was used to generate the dataset, i.e., retrieve feature vectors

from each test case then mix them all together. We calculate the true positive rate

when classifying each interval from the mixed dataset. We use 10s as the window

size to calculate the HPLC, and its corresponding true positive rate are plotted with

blue color in Figure 5.9(a). The first bar shows when the interval is equal to 5s,

the true positive rate is 99.2%. Then true positive rate decreases to 91.9% and even

drops to 76.5% for interval length 10s and 20s, respectively. The drop is due to the

packet transmission interval becoming larger than the HPLC window. Thus, true

positive rate increases with a larger HPLC window size (30s), especially when it is

longer than the interval value, as shows in the same figure with red color.
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5.2.3.2 Packet Transmission Interval over Various Protocols

In Figure 5.9(b), we plot the results from determining packet intervals across four

protocols. The true positive rate can reach up to 98.3%. The average accuracy to

classify one of the instances from all of the 12 combinations of 4 protocol and 3

intervals is 87.5%. Furthermore, the true positive rate of classifying four protocols

with a 5s transmission interval from the 12 combinations are all above 90%.

5.2.3.3 Packet Size

We then vary the data packet size sent with CTP and LQI from 10 to 50 to 100 bytes.

The dataset includes a total 6 distinct types of instances, which are the combination

of two protocols and three packet sizes. Figure 5.10(a) shows the results. The overall

accuracy to classify one instance from 6 combinations is 82.8%, and it turns out that

a smaller packet size is more likely to be classified correctly.

5.2.3.4 Packet Jitter

To understand if HPLC can be used to determine if data packets are sent strictly

periodically or with jitter, we perform two experiments. In the experiment with

jitter, we set the data packet interval to be a random value between 10s and 11s,

we name this type as 10.Xs. In the experiment without jitter, we send a data

packet every 10s sharply, marked as 10.0s. If most of the nodes are send the packet

with exactly the same interval, the possibility of congestion and re-transmission will

increase, which will cause more packet transmission events(T3). In the network with
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jitter, the collision chance is lower due to each node sending packets with different

intervals. Figure 5.10(b) shows the true positive rate to distinguish one of the four

combinations of two protocol with and with out jitter, all of the four true positive

rate are above 95%.

5.3 Summary

In this chapter, we demonstrated that energy instrumentation can be a powerful

tool to study and reveal information about the network, protocol, or workload. We

designed features for classification and analysis based on energy instrumentation.

We found that the feature called High Power Length Counter is especially versatile

in revealing information across protocols and application workload, such as up to

97% accurate for classifying protocols, 100% accurate for locating the sink node,

and an average of 87.5% accurate for classifying workloads. Furthermore, another

feature named High-Power Overlapped Counter could reveal the parent node for

each node, even to disclose the actual network topology with 98% accuracy. Our

extensive experimental results performed on three different testbeds over 100 test

cases suggest that our proposed features are robust across the testbeds, radio bands

and radio channels, and even outperform existing commonly used features in terms

of stability over various algorithms.
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Chapter 6

Conclusion

This dissertation addressed the question about how to use the energy consumption to

understand the computing and networking systems. We investigated the instrumen-

tation designs, workload classification, patterns during various behavior, and identify

the energy waste in a computer lab.

6.1 Summary of Contributions

6.1.1 Understanding Desktop Energy Footprint in an Aca-

demic Computer Lab

We study how to design and implement instrumentation for analyzing power con-

sumption in an academic computer lab, and present a large dataset describing both
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computing power data and user activities in a shared homogeneous computing en-

vironment. Power draw and user activities are compared and their relationship is

studied to identify energy waste in the academic lab setting. We found that the en-

ergy consumption of each computer was highly related to individual user behavior,

and that 60% of energy consumed every day was while the computer was on and no

one was logged in.

6.1.2 Energy Measurements and Analysis to Understand Com-

puting Systems

The energy instrument system is implemented to collect and analyze power consump-

tion data on computing systems. With the aim of revealing computer system health

status, we studied energy patterns in various computer activities, particularly during

the system boot up, idle and failure periods. Over 30 months of data we succeeded

in modeling the relationship between these events and the energy patterns.

6.1.3 Revealing Protocol Information and Activity from En-

ergy Instrumentation in Wireless Network

Based on the instrumentation for energy analysis we extended our work from single

computer activities to the network level analysis. Network level protocol, and ap-

plication information were successfully inferred from features based on energy data.

The repeated experiments on three real-world testbeds increased our confidence in
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the accuracy results, which evaluated the proposed features across multiple protocols,

network topologies, and application workloads. The routing protocol was successfully

identified with an accuracy of 97%. The application workloads were detected with

87.5% accuracy. We then further demonstrated how to reveal the routing topol-

ogy in the network, including the next hop for each node, based solely on energy

instrumentation; we reached an accuracy of 98%.

6.2 Open Issues and Future Work

6.2.1 Limitations of the Energy Instrumentation System

We have designed the energy instrumentation architecture for each system in this

work. Although each system has its own constraints and requirements, it is hard to

extend our existing instrumentation system to a new development. The PowerNet

meter we used to measure the energy consumption in the computer lab supported

wireless transmission, however, it did require a dedicated low power wireless interface

device as the gateway to receive the message on the computer. The specific per-

outlet sensing power strip which monitored the current draws in the data center is

inconvenient to transport and to monitor regular computing devices. The hall-effect

sensor held the advantage of accurate sensing, but it require an additional DAQ

device to capture the readings.

It might be a benefit for the community, if we can build a portable and universal
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power monitoring device. This device should provide following features: (1) Plug-

and-play: like a socket adapter, plug this device between the A/C socket and the

monitor device, then it monitor function should be ready to work. (2) Support WiFi:

the measured energy data should be able to send to a remote database or local

computer though WiFi, using an extra cable to read the data is very inconvenient

and hard to develop in a large scale. (3) Adjustable sampling rate: the sampling

frequency is able to adjust for different purposes. (4) Low error rate: the value of

the data becomes low if the error rate of the data is high.

6.2.2 Performance of Healthy Monitor on Computing Sys-

tems

Before we can evaluate the information revealed from energy data, we must have a

reliable monitoring system to collect the ground truth on the computing system. On

our current implementation of system activity monitor system, one of the limitation

is it only collects CPU and memory utilization information, but it does not collect

other resource utilization information, such as hard drive, network interface or CPU

frequency. In our preliminary work, we have demonstrated that besides the CPU,

GPU also dominates the total power consumption on a computer which has a GPU.

The challenge is how to reduce the resource consumption of the monitoring program

when it checks every component on the system at a very fast speed, plus the workload

introduced by transmitting these reading results to a remote data center.
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In addition to the components utilization for monitoring, how to efficiently moni-

tor the system failure is another open research topic. It is impossible to let the system

record all of its failures which have happened on itself, and it is also a challenge for

a external system to identify the failures.

6.2.3 Using Energy Data to Predict Failure

In this work we have achieved understanding of the system’s various information

after we obtain its energy consumption data. We can use the real-time energy data

to predict the system’s behavior. For instance, if we can predict the system failure, it

will be a significant benefit to the community. Recognizing the energy patterns right

before the failure not only can predict it, but also enables the chance to prevent the

system from going into failure. However, how to reproduce the innumerable failure

types on the computing system is more of a challenge than researching the energy

patterns.
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