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ABSTRACT 

Introduction 
Functional interactions among muscles, indicated by muscle networks, reflect the 

effort of the central nervous system in reducing the redundancy of the musculoskeletal 

system in motor control. Efforts have been devoted to characterizing muscle network 

patterns in healthy subjects, however, alterations of muscle networks associated with 

stroke remain unexplored.  

Methods 
Muscle networks were assessed for eight key upper extremity muscles in mild, 

moderate, and severe stroke survivors and compared to healthy controls to identify 

stroke linked alterations in the neural oscillatory drive to muscles. Intermuscular 

coherence was computed for all possible muscle connections and were further 

decomposed via non-negative matrix factorization (NNMF) to identify the common 

spectral patterns of coherence underlying the muscle networks. 

Results 
Results demonstrated that the number of identified muscle networks during force 

generation is reduced in stroke survivors compared to healthy controls, and the 

number decreases as the severity of stroke increases. Stroke patients also showed 

reduced coherence of higher frequencies, particularly in the in the alpha, beta, and 

gamma bands.  

Conclusions 
The findings in this study could provide a new prospective for understanding the 

motor control recovery during post-stroke rehabilitation and inform future motor 

rehabilitation for post-stroke survivors. 
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CHAPTER 1 – INTRODUCTION 

1.1 Background 

The central nervous system (CNS) simplifies motor-control tasks by 

simultaneously co-activating sets of muscles as motor modules to reduce the high 

degrees of freedom of the musculoskeletal system (Bizzi et al., 1991; Bizzi et al., 

2008). Muscle synergies are defined as sets of muscles typically activated together as 

motor modules during force generation (Davella et al., 2003; Bizzi and Cheung, 

2013), and can be calculated using non-negative matrix factorization (NNMF) to 

identify anatomical coordination of muscles (Lee and Seung, 1999). However, muscle 

synergies cannot quantify the functional synchrony among muscles as intermuscular 

coherence can (Li et al., 2016). Coherence is a measure of associativity between two 

signals at certain frequencies, and intermuscular coherence can be used to assess the 

common neural input among muscles.  

Stroke is a debilitating motor-impairment disease that severely affects motor 

control and muscle coordination, leading to abnormal patterns in force generation in 

affected muscles. The effects of stroke on motor-task performance have traditionally 

been studied via muscle synergy analysis (Roh et al., 2013; Roh et al., 2015) as well as 

intermuscular coherence (Kisiel-Sajewicz et al., 2011; Fisher et al., 2012). In 2013 

Roh et al. discovered alterations in muscle synergy patterns in chronic severe stroke 

patients which were not observed in healthy controls. Abnormal co-activation of the 

anterior, middle, and posterior deltoid fibers was identified in the severely impaired 

stroke patients whereas healthy controls exhibited co-activation of the anterior and 
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middle deltoids in one synergy and co-activation of the middle and posterior deltoids 

in another synergy. The clavicular fibers of the pectoralis major were also discovered 

to become more isolated in a separate muscle synergy in severe stroke patients 

whereas the pectoralis major was synergistic with the anterior and middle deltoid 

fibers in healthy controls. Roh et al. furthered these results in 2015 by including 

mildly and moderately impaired stroke patients in the study. It was found that 

alterations to proximal muscle synergies were evident in lesser severity of stroke 

impairment, but still most pronounced in the severe stroke patients. Synergies relevant 

to shoulder movement were most affected in the lesser severity stroke patients, 

potentially indicating an inability for post-stroke survivors to selectively activate 

deltoid muscles. Kisiel-Sajewicz et al. discovered reduced functional coupling between 

the synergistic muscle pair of anterior deltoid and triceps brachii muscles in a target 

reaching paradigm using intermuscular coherence when comparing severe stroke 

impairment to healthy controls in the frequency range of 0 – 11 Hz. These results 

suggested that reduced functional connectivity between synergistic muscles can help 

explain poor motor control in target-reaching tasks and could be due to the loss or 

reduction of the common oscillatory neural drive as input to muscles at the specified 

frequency range, likely as a result of damage to the cortico-spinal pathways. Fisher et 

al. concluded from their study that intermuscular coherence in the beta band (15 – 30 

Hz) was dependent on the presence of an intact cortico-spinal tract, despite possible 

anterior horn cell destruction. Beta band intermuscular coherence was observed to be 

greater in magnitude for healthy controls versus patients with primary lateral sclerosis 
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and was shown to have great promise in acting as a sub-clinical biomarker for motor 

neuron disease. 

Additional studies have also identified modulations to the neural drive to muscles 

in functional connectivity studies using coherence. In one study involving hand 

muscles in two distinct pinch tasks, modulations to the oscillatory neural drive were 

found as either an increase or decrease in coherence at the 10 Hz and 40 Hz (Laine and 

Valero-Cuevas 2017). The presence of somatosensory feedback in bimanual upper 

arm flexion and extension was also found to increase the neural coupling between 

muscles in the alpha and gamma bands (Nguyen et al., 2017). Task-dependent 

modulations of intermuscular coherence in the 15 – 30 Hz range was also discovered 

during a ramping force generation versus force hold period study (Kilner et al., 1999). 

Coherence has also been studied between the brain and muscles using MEG 

recordings (Kilner et al., 2000). Kilner et al. reported beta band coherence in the 15 – 

30 Hz range to be related to specific parameters of hand motor function based on their 

experimental design based on precision grip tasks.  

1.2 Contribution to The Field 

Muscle network analysis is a novel method which was recently developed to study 

the functional connectivity of muscles in order to further explain the neural origin of 

muscle synergies and their capacity to simplify motor control (Boonstra et al., 2015). 

So far, coherence muscle networks have only been studied in healthy individuals 

during postural tasks (Boonstra et al., 2015; Kerkman et al., 2018) as well as gait 

analysis (Kerkman et al., 2020). While muscle synergies and intermuscular coherence 
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have been studied separately in stroke patients they have not been studied together. It 

has been shown by Boonstra et al. and Kerkman et al. that muscle synergies and 

coherence muscle networks are complementary to each other and both necessary in 

order to explain the effort of the central nervous system in simplifying motor control 

and the vast number of degrees of freedom in the musculoskeletal system. There is a 

clear lack of information regarding functional muscle connectivity in terms of 

coherence muscle networks in the stroke disease group which can help better 

understand the changes in muscle synergies as stroke impairment increases in severity. 

In this study, functional muscle connectivity is explored from isometric force 

generation of post-stroke survivors of various impairment levels and compared to 

functional connectivity of healthy controls through intermuscular coherence and 

muscle network analysis.  

1.3 Hypothesis and Specific Aims 

This study aims to provide a detail-oriented perspective into the negative effects 

stroke can have on functional muscle connectivity via muscle network analysis. Three 

specific aims are proposed in order to test this hypothesis. Considering the previous 

background information, it is hypothesized that stroke induces some alterations to the 

functional connectivity among muscles which are manifest in the muscle networks. 

The first specific aim entails analyzing the power spectral density (PSD) of upper-arm 

muscles during isometric force generation to observe any primary underlying 

differences in the frequency domain which will ultimately results in some intergroup 

differences of intermuscular coherence. The second specific aim involves calculating 
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the intermuscular coherence (IMC) of muscle pairs for mild, moderate, and severe 

post-stroke survivors and statistically comparing them to intermuscular coherence of 

healthy control participants. The third specific aim includes identifying the number of 

muscle networks necessary to explain isometric force generation in stroke patients and 

healthy controls as well numerically quantifying these networks with graph theory 

measures to further explain the implications of these emergent muscle networks. 
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CHAPTER 2 – MATERIALS AND METHODS 

2.1 Participants and Demographics 

Eight mild post-stroke survivors, eight moderate post-stroke survivors, ten severe 

post-stroke survivors, with either single hemorrhagic stroke or ischemic stroke, and six 

age-matched healthy participants were recruited. Healthy participants were 

neurologically healthy and possessed neither muscular nor orthopedic impairments of 

upper limbs. Stroke survivor demographics and clinical scores are noted in Table 1. 

Surface electromyography of the affected limb was assessed in the stroke survivors 

(eight/eight/ten datasets) whereas both limbs of healthy participants were assessed 

(twelve datasets). Stroke survivor demographics and Fugyl-Meyer Assessment (FMA) 

clinical scores are adapted from Roh et al.. The FMA score is an index used to 

quantify the extent of sensory-motor capacity following a stroke. FMA is also a good 

indicator of post-stroke recovery with motor rehabilitation. The FMA scale is 

subdivided into the following categories: motor function (upper and lower limb), 

sensory function, balance, range of motion of joints, and joint pain. In Table 1 the 

score for the entire assessment (/66) as well as the sub-scores for individual tests 

related to elbow and shoulder functionality (/22) are implemented. The study was 

performed in accordance with the Declaration of Helsinki, with the approval of the 

Northwestern University Institutional Review Board. Each participant gave informed 

consent before testing.  
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Table 1. Participant Demographics and Clinical Scores. 

   Mean SD Range 

Hemiparetic group (n = 24)      

Mildly impaired (n = 8)      

 Age (yrs)  55.6 9.5 46-70 

 Months post-stroke  51.0 24.6 23-89 

 FMA score (/66)  55.3 5.3 50-66 

 FMA score (/22)  19.6 2.3 16-22 

 Sex (M/F) 5/3    

 Affected side (L/R) 2/6    

Moderately impaired (n = 8)      

 Age (yrs)  56.0 8.7 44-68 

 Months post-stroke  82.1 60.0 21-179 

 FMA score (/66)  36.1 7.0 29-45 

 FMA score (/22)  16.1 22 13-19 

 Sex (M/F) 6/2    

 Affected side (L/R) 4/4    

Severely impaired (n = 8)      

 Age (yrs)  61.8 10.0 53-81 

 Months post-stroke  174.8 94.7 68-302 

 FMA score (/66)  17.5 3.8 12-23 

 FMA score (/22)  10.3 1.6 8-12 
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Table 1 continued.      

 Sex (M/F) 3/5    

 Affected side (L/R) 3/5    

Control group (n = 6)      

 Age  63.2 7.6 52-73 

 Sex (M/F) 4/2    

2.2 Data Acquisition 

Hand position and 3D forces generated at the hand were recorded using the Multi-

Axis Cartesian-based Arm Rehabilitation Machine (MACARM). The MACARM is a 

cable-robot designed for upper limb motor rehabilitation (Mayhew et al., 2005; Beer et 

al., 2008). Forces, arm orientation, and handle position were sampled at 64 Hz. sEMG 

were recorded (Bagnoli 8; Delsys, Boston, MA) from eight elbow and shoulder 

muscles: brachioradialis (BRD), biceps brachii (BIm), triceps brachii, long and lateral 

heads (TRIlong & TRIlat, respectively), anterior, middle, and posterior deltoid fibers 

(AD, MD, PD, respectively), and the pectoralis major (PECTclav). sEMG signals 

were amplified (x1000), online band-pass filtered (20-450 Hz), and sampled at 1920 

Hz. Data acquisition between the MACARM and sEMG amplifier were synchronized 

with a common clock and trigger. 

2.3 Experimental Design 

Participants voluntarily generated forces in a self-paced manner in 54 different 

directions approximately distributed uniformly in 3D force space while grasping the 

gimbaled handle of the MACARM with their hand in front of the ipsilateral shoulder. 
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The high number of targets in multiple directions ensures robustness of muscle 

synergy analysis by observing co-activation of muscles in a wider range of motion 

such that the results are not biased towards a specific direction. Force magnitude was 

set at 40% maximum lateral force for all subjects. A successful trial required for the 

participant to match a cursor to a target sphere for at least 800 milliseconds. Stroke 

patients performed the task with their affected limb while healthy controls performed 

the task with both arms. An intertrial interval of 10 seconds and a 1-minute resting 

period were introduced to avoid muscle fatigue. All participants were right-hand 

dominant. An illustration of the target reaching protocol is presented below in Figure 

1. The red sphere indicates the starting position for the hand in force generation. The 

blue spheres are the different targets which must be reached by the subjects. 

 

 

Figure 1. Experimental Setup. 54 targets in 3D Cartesian space approximately normally distributed. 
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2.4 Data Analysis 

First, the isometric contraction phase of each trial was extracted. The data was 

then further demeaned, rectified via the Hilbert transform, and normalized to unit 

variance to prevent subsequent analyses to be biased by high-variance muscles. 

Signals from all trials were then concatenated in order to provide more samples for 

time-frequency analysis. The Hilbert transform yields the complex-valued analytic 

signal,  

composed of the original signal, x, and a 90° phase shifted version of the original 

signal, 𝑥̃. Rectification via the Hilbert transform produces similar results to full-wave 

rectification (Myers et al., 2003; Boonstra et al., 2012). The instantaneous amplitude 

of the sEMG was recovered from the Hilbert amplitude. Power spectral density (PSD) 

of the normalized sEMG envelopes was determined using the modified Welch 

periodogram. PSD is the measure of a signal’s power content observed at discrete 

frequencies. A Hanning window with a length of 500 milliseconds and 50% overlap 

was applied in the frequency range of 0 – 50 Hz with a spectral resolution of 2 Hz. 

Intermuscular coherence of the eight upper-arm muscles was calculated via the 

magnitude-squared coherence. The formula for magnitude-squared coherence is 

where it is derived by calculating the cross-spectrum between two signals, Pxy, and 

normalizing it to the signals’ auto-spectra, Pxx and Pyy. Coherence was calculated from 

𝐴𝐻 =  √𝑥2 +  𝑥̃2 (1) 

𝐶(𝑓)𝑥𝑦
2 =  

|𝑃𝑥𝑦|
2

𝑃𝑥𝑥𝑥𝑃𝑦𝑦
, 

       

(2) 
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0 – 50 Hz with a window size of 500 milliseconds and 50% overlap resulting in a 

frequency resolution of 2 Hz.  

After calculating intermuscular coherence for every muscle combination (28 

pairs), coherence matrices were subjected to non-negative matrix factorization 

(NNMF). NNMF returns a lower-rank approximation of input data and is akin to 

principal component analysis except with the added non-negative constraints. NNMF 

was implemented to identify unique spectral patterns shared by muscles in the 

coherence matrices. NNMF returns weight coefficients (strength of muscle 

contribution) and activation patterns (identified patterns in coherence). Coherence was 

modeled as a k-ranked reconstruction matrix, M, with residual reconstruction error 

matrix E 

M has dimensions: f the number of frequencies where coherence is evaluated, m the 

total number of muscle pairs, and k being the requested matrix rank. This resulted in 

two matrices, W and H. 

Since the number of unique muscle networks needed to explain the force 

generation is unknown prior to analysis, variance accounted for (VAF) was used to 

determine the minimum number of muscle networks necessary to explain 

intermuscular coherence with a threshold of 90% of VAF (Wojtara et al., 2014). VAF 

describes how well the results from NNMF can describe the variance of the input data. 

VAF was calculated using the Frobenius norms of the error matrix E and 

reconstruction matrix M 

𝑀𝑓 𝑥 𝑚 = 𝑊𝑓 𝑥 𝑘 𝑥 𝐻𝑘 𝑥 𝑚 +  𝐸𝑓 𝑥 𝑚. (3) 
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𝑉𝐴𝐹 = 1 −  
|𝐸|𝑓𝑟𝑜

2

|𝑀|𝑓𝑟𝑜
2 , 

(4) 

where the error matrix E is equal to the reconstruction matrix M subtracted from the 

original coherence matrix. These activation patterns parsed from the coherence matrix 

are the unique frequency patterns shared by sets of muscles during the force 

generation period. The weight coefficients are taken to be the undirected weighted 

functional connectivity matrices. Functional connectivity matrices where thresholded 

only for visual inspection using the minimum-spanning tree algorithm.  

Graph theory measures were calculated from normalized functional connectivity 

matrices. The betweenness centrality (BC), clustering coefficient (CC), global 

efficiency (GE), and node strength (NS) were compared between healthy participants 

and stroke survivors. BC is a measure of the degree of a node being in-between other 

nodes and is calculated using the number of shortest path lengths passing through the 

node of interest. The CC is a network measure of how likely it is for nodes of interest 

to cluster together. GE is the average inverse shortest path length in the network. NS is 

a measure of the participation of a node and is calculated by summing the edge 

weights connected to the node of interest. 

Additionally, the means of power spectral density and intermuscular coherence in 

the δ (0-4 Hz), θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), and γ (30-50 Hz) bands were 

statistically compared via a One-Way Analysis of Variance (ANOVA) with a pre-set 

alpha level of 0.05. Prior to statistical testing, coherence values were further 

normalized via the hyperbolic tangent transformation to facilitate statistical 

comparison across participants and groups 
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where L is the number of disjoint sections used in the calculation of intermuscular 

coherence. ANOVA tests resulting in significant differences of the mean were 

followed up with a multiple comparison test using Tukey’s Honestly Significant 

Difference Procedure. All ANOVA tests were balanced studies, such that an equal 

number of subjects were used (eight datasets per group). All offline data processing 

was conducted within the MATLAB environment. All network visualization and 

graph theory analysis were performed using the Brain Connectivity Toolbox (Rubinov 

and Sporns, 2010). A general overview of the entire data processing can be found in 

Figure 2 below.  

 

Figure 2. EMG Processing Pipeline. (A) EMG pre-processing steps. (B) EMG post-processing, including statistical 

tests and coherence muscle network analysis.  

 
𝑍 =  𝑡𝑎𝑛−1 (√𝐶𝑥𝑦) × √𝐿, 

(5) 
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CHAPTER 3 – RESULTS 

3.1 Power Spectral Density 

The normalized power spectral density of EMG collected during the isometric 

force generation period reveals some significant differences in frequency content 

between the healthy controls and chronic stroke survivors. As seen in Figure 3, healthy 

controls exhibit a higher magnitude of PSD at most frequencies in normalized EMG 

envelopes in the range of 0 – 50 Hz. Overall, there are four distinct spectral peaks 

visible, namely, δ, α, β, and γ. Healthy controls exhibited greater magnitude PSD in 

the α band in BIm, TRIlong, TRIlat, PD, and PECTclav. Healthy controls also showed 

greater magnitude PSD versus mild and moderate impairment stroke in the β and γ 

bands overall in TRIlong, TRIlat, AD, MD, PD, and PECTclav. Surprisingly, severe 

impairment stroke patients displayed similar or higher magnitude of PSD in β and γ 

bands for TRIlong, AD, PD, and PECTclav. These underlying differences in the 

frequency domain serve as the foundation for future multi-group differences in 

coherence and functional connectivity analysis. 
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Figure 3. Normalized Welch PSD for Healthy Controls & Multi-Severity Stroke Groups. 

 Since some clear spectral differences in the PSD are observed visually, the mean 

value of PSD in the δ, θ, α, β, and γ frequency bands were extracted in order to make a 

multi-group statistical comparison. One-way ANOVA p-values are reported in Table 

2. Table 2 shows significant differences were revealed primarily in the higher 

frequency bands including α, β, and γ. Most of the significant differences manifested 

in the triceps, deltoids, and pectoralis muscles. Very few statistical differences were 
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observed in the lower δ and θ frequency bands and were only found in the triceps 

muscles. ANOVA tests resulting in significant differences were followed up with 

multiple-comparisons tests to verify which groups were statistically different from 

each other. Tables of multiple-comparison test results include the frequency bands of 

interest, p-values, and mean group differences to identify which group has higher or 

lower PSD values compared to the other group. 

Table 2. ANOVA p-values for Normalized Welch PSD. Alpha level set at 0.05. Significant p-values are marked with 

asterisks.  

 BRD BIm TRIlong TRIlat AD MD PD PECTclav 

δ 0.1206 0.3051 0.0147* 0.0590 0.1438 0.2361 0.2002 0.2041 

θ 0.5619 0.8303 0.0060* 0.0224* 0.2496 0.2178 0.1314 0.3628 

α 0.9672 0.8680 0.0015* 0.0383* 0.2196 0.1690 0.0495* 0.0176* 

β 0.7134 0.6705 0.0288* 0.0299* 0.0283* 0.0352* 0.0062* 0.0127* 

γ 0.5298 0.7181 0.0069* 0.0035* 0.0035* 0.0007* 0.0017* 0.3236 

Table 3 displays the muscles indicating significant differences in the mean PSD in 

specific frequency bands for healthy controls versus the mild, moderate, and severe 

impairment stroke groups. Healthy controls had significantly higher mean PSD in all 

frequency bands compared to both the mild and moderate impairment stroke severity 

groups. However, no statistically significant differences in mean PSD were observed 

for healthy control group versus the chronic severe impairment stroke group. The long 

and lateral triceps heads held consistent differences in healthy versus mild impairment 

stroke patients. Healthy controls exhibited significantly higher mean PSD values in 
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higher frequency bands compared to moderate impairment stroke patients in the long 

and lateral triceps heads along with the anterior, middle, and posterior deltoid fibers.  

Table 3. Multiple Comparisons Test for Normalized Welch PSD in Healthy vs Multi-Severity Stroke Groups. 

Group 1  

vs. 

Group 2 

Frequency 

Band 
Muscle p-value 

Group 1 

M +/- SD 

Group 2 

M +/- SD 

Healthy 

vs. 

Mild 

     

 δ TRIlong 0.0114 

0.0055 

+/- 

0.0022 

0.0018 

+/- 

0.0013 

 θ TRIlong 0.0032 

0.0059 

+/- 

0.0021 

0.0018 

+/- 

0.0013 

  TRIlat 0.0164 

0.0051 

+/- 

0.0024 

0.0021 

+/- 

0.0007 

 α TRIlong 0.0008 

0.0069 

+/- 

0.0023 

0.0022 

+/- 

0.0014 

  TRIlat 0.0352 

0.0067 

+/- 

0.0033 

0.0031 

+/- 

0.0012 

 β TRIlong 0.0178 

0.0056 

+/- 

0.0014 

0.0032 

+/- 

0.0010 

  TRIlat 0.0317 

0.0060 

+/- 

0.0018 

0.0034 

+/- 

0.0010 

 γ TRIlat 0.0359 

0.0050 

+/- 

0.0011 

0.0036 

+/- 

0.0008 

  MD 0.0105 

0.0058 

+/- 

0.0014 

0.0039 

+/- 

0.0009 

Healthy 

vs. 

Moderate 

     

 α TRIlong 0.0244 

0.0069 

+/- 

0.0023 

0.0036 

+/- 

0.0025 
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Table 3 continued.      

  PD 0.0369 

0.0042 

+/- 

0.0027 

0.0014 

+/- 

0.0009 

  PECTclav 0.0101 

0.0092 

+/- 

0.0062 

0.0028 

+/- 

0.0022 

 β PD 0.0346 

0.0045 

+/- 

0.0012 

0.0026 

+/- 

0.0013 

 γ TRIlong 0.0206 

0.0045 

+/- 

0.0009 

0.0032 

+/- 

0.0009 

  TRIlat 0.0042 

0.0050 

+/- 

0.0011 

0.0032 

+/- 

0.0011 

  AD 0.0039 

0.0049 

+/- 

0.0013 

0.0031 

+/- 

0.0007 

  MD 0.0005 

0.0058 

+/- 

0.0014 

0.0033 

+/- 

0.0011 

  PD 0.0017 

0.0056 

+/- 

0.0011 

0.0030 

+/- 

0.0016 

Table 4 below holds the multiple-comparisons test results for stroke group 

comparisons of mean PSD values in different spectral ranges. Significant group 

differences were only observed in moderate versus chronic severe impairment stroke 

patients. The long and lateral triceps heads repeatedly showed significant statistical 

differences in the β and γ bands. Severe impairment stroke patients maintained higher 

average PSD values compared to the moderate impairment stroke patients.   
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Table 4.Multiple Comparisons Test for Normalized Welch PSD in Multi-Severity Stroke Comparison. 

Group 1 

vs. 

Group 2 

Frequency 

Band 
Muscle 

p-

value 

Group 1 

M +/- SD 

Group 2 

M +/- SD 

Moderate 

vs. 

Severe 

     

 β TRIlong 0.0114 

0.0031 

+/- 

0.0012 

0.0054 

+/- 

0.0013 

  TRIlong 0.0032 

0.0026 

+/- 

0.0013 

0.0049 

+/- 

0.0015 

  TRIlat 0.0164 

0.0037 

+/- 

0.0012 

0.0064 

+/- 

0.0023 

 γ TRIlong 0.0008 

0.0032 

+/- 

0.0009 

0.0047 

+/- 

0.0008 

  TRIlat 0.0352 

0.0031 

+/- 

0.0007 

0.0046 

+/- 

0.0009 

  TRIlong 0.0178 

0.0030 

+/- 

0.0016 

0.0051 

+/- 

0.0007 

3.2 Intermuscular Coherence 

Observing intermuscular coherence during the isometric force generation period 

in Figure 4 it is apparent that the magnitude of coherence tends to be reduced in post-

stroke survivors compared to healthy individuals in most of the muscle pairs. There 

are, however, few muscle pairs where coherence of stroke survivor muscles are similar 

magnitude to the coherence of healthy controls, and few muscle pairs where stroke 

survivors exhibit slightly greater coherence versus healthy controls.   
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Figure 4. Average Intermuscular Coherence for Healthy Controls & Multi-Severity Stroke Groups. 

Visually, the most different aspect of coherence between healthy controls and 

stroke survivors is within the AD-MD, MD-PD, and TRIlong-TRIlat muscle-pairs. As 

the severity of stroke impairment increases, the magnitude of coherence in the AD-

MD connection decreases. Healthy controls and mild impairment stroke patients hold 

similar values in the β and γ bands. Healthy controls also maintain higher coherence in 

the α band versus all levels of stroke impairment. Moderate impairment stroke 

displayed greater broadband coherence from α to γ bands versus all other groups in the 

MD-PD connection. Severe impairment stroke patients displayed greater coherence in 

the δ band for the following muscle pairs: BRD-BIm, BRD-TRIlat, BRD-AD, BRD-

MD, and BRD-PECTclav.  
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Average coherence values in the δ, θ, α, β, and γ bands were extracted and 

compared with One-Way ANOVA statistical tests for quantitative analysis following 

normalization via the hyperbolic tangent transformation. Table 5 below holds the p-

values from ANOVA testing. Muscle-pairs with significant differences in the mean 

normalized coherence are indicated with asterisks.  

Table 5. ANOVA p-values for Normalized Coherence. Alpha level set at 0.05. Significant p-values are marked with 

asterisks. 

 δ θ α β γ 

BRD-BIm 0.7589 0.8154 0.7279 0.6119 0.6329 

BRD-TRIlong 0.0410* 0.0630 0.1180 0.1758 0.1075 

BRD-TRIlat 0.2379 0.3117 0.1335 0.2414 0.5728 

BRD-AD 0.2292 0.2985 0.2183 0.4656 0.3730 

BRD-MD 0.0312* 0.0223* 0.0521 0.0391* 0.2859 

BRD-PD 0.6233 0.2967 0.5088 0.5898 0.3559 

BRD-PECTclav 0.3521 0.1650 0.7811 0.6732 0.6357 

BIm-TRIlong 0.1268 0.0755 0.0432* 0.2992 0.7231 

BIm-TRIlat 0.1386 0.0124* 0.0555 0.1021 0.3298 

BIm-AD 0.5049 0.9086 0.9258 0.9988 0.2646 

BIm-MD 0.6471 0.9461 0.4979 0.9660 0.6106 

BIm-PD 0.5464 0.3118 0.8111 0.2576 0.5408 

BIm-PECTclav 0.7265 0.5158 0.0723 0.3560 0.7462 

TRIlong-TRIlat 0.1104 0.1508 0.1556 0.6552 0.8910 

TRIlong-AD 0.3579 0.6533 0.4472 0.2924 0.6598 
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Table 5 continued.      

TRIlong-MD 0.4929 0.4426 0.4091 0.3906 0.7224 

TRIlong-PD 0.6609 0.6945 0.0035* 0.3137 0.3906 

TRIlong-PECTclav 0.2848 0.8471 0.0691 0.4401 0.3453 

TRIlat-AD 0.5596 0.8362 0.3420 0.8932 0.6596 

TRIlat-MD 0.1286 0.0406* 0.4338 0.4477 0.4323 

TRIlat-PD 0.2506 0.4753 0.2845 0.3329 0.4608 

TRIlat-PECTclav 0.4385 0.6395 0.3955 0.2367 0.9523 

AD-MD 0.0697 0.0022* 0.0004* 0.0005* 0.0186* 

AD-PD 0.8356 0.7416 0.6984 0.1765 0.0570 

AD-PECTclav 0.2340 0.2229 0.2356 0.7751 0.2733 

MD-PD 0.9629 0.6531 0.3382 0.4589 0.0920 

MD-PECTclav 0.5103 0.8717 0.8468 0.7661 0.4195 

PD-PECTclav 0.3927 0.8549 0.0440* 0.2306 0.0315* 

Only two muscle-pairs held significant differences in δ band coherence, namely 

BRD-TRIlong and BRD-MD. BRD-MD, BIm-TRIlat, TRIlat-MD, and AD-MD 

muscle pairs suggested significant difference in coherence in the θ band. The α band 

presented significant difference in mean normalized coherence for BIm-TRIlong, 

TRIlong-PD, AD-MD, and PD-PECTclav. Only two muscle pairs were found to have 

significant differences in the β band, including BRD-MD and AD-MD. Lastly, AD-

MD and PD-PECTclav showed significant differences in the γ band. All of the 

previously mentioned combinations of muscle-pairs and frequency bands were 
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submitted to multiple-comparisons tests to identify which groups were significantly 

different from others.  

Table 6 displays the results from multiple-comparisons test for healthy controls 

versus mild, moderate, and severe impairment stroke patients. Healthy controls were 

found to have significantly greater coherence in the θ and α bands for the AD-MD 

connection versus mild impairment stroke patients. Healthy controls also displayed 

greater θ band coherence in the BIm-TRIlat connection compared to mild and 

moderate impairment stroke patients. Most of the significant differences in mean 

normalized coherence were identified when comparing healthy controls to severe 

impairment stroke patients. AD-MD was consistently different for θ, α, β, and γ bands 

when comparing healthy controls to chronic severe stroke patients.  

Table 6. Multiple Comparisons Tests for Normalized Coherence in Healthy vs. Multi-Severity Stroke Groups. 

Group 1  

vs. 

Group 2 

Frequency 

Band 
Muscle-Pair p-value 

Group 1 

M +/- SD 

Group 2 

M +/- SD 

Healthy 

vs. 

Mild 

     

 θ 

BIm 

- 

TRIlat 

0.0169 

3.8130 

+/- 

2.8788 

1.3759 

+/- 

0.5061 

  AD-MD 0.0261 

6.7441 

+/- 

2.6637 

3.5110 

+/- 

2.1293 

 α AD-MD 0.0056 

7.7766 

+/- 

3.0605 

3.7034 

+/- 

2.1698 

Healthy 

vs. 

Moderate 

     

 θ 

BIm 

- 

TRIlat 

0.0272 

3.8130 

+/- 

2.8788 

1.5284 

+/- 

0.6039 
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Table 6 continued.     

 α AD-MD 0.0397 

7.7766 

+/- 

3.0605 

4.6128 

+/- 

2.0332 

Healthy 

vs. 

Severe 

     

 θ 

TRIlat 

- 

MD 

0.0315 

3.1600 

+/- 

2.0508 

1.5369 

+/- 

0.4842 

  AD-MD 0.0014 

3.8130 

+/- 

2.8788 

2.2540 

+/- 

1.2560 

 α 

TRIlong 

- 

PD 

0.0018 

4.0125 

+/- 

1.3005 

1.6851 

+/- 

0.7674 

  AD-MD 0.0002 

7.7766 

+/- 

3.0605 

2.3820 

+/- 

1.3149 

 β AD-MD 0.0008 

5.7433 

+/- 

1.9836 

2.1003 

+/- 

0.4424 

 γ AD-MD 0.0489 

5.3501 

+/- 

2.3159 

1.8488 

+/- 

0.6250 

Stroke groups were also compared to each other with multiple-comparisons tests 

and the results are displayed in Table 7. Moderate impairment stroke patients showed 

increased γ band coherence versus mild impairment stroke patients in the PD-

PECTclav connection. Chronic severe impairment stroke patients displayed greater 

magnitude coherence in the δ, θ, and β bands for BRD-MD compared to mild 

impairment stroke patients. Lastly, Severe impairment stroke patients had higher θ 

band coherence versus moderate impairment stroke patients for BRD-MD muscle pair 

however moderate impairment stroke patients showed greater β and γ band coherence 

versus severe impairment stroke patients in the AD-MD connection.  
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Table 7. Multiple Comparisons Test for Normalized Coherence in Multi-Severity Stroke Groups. 

Group 1  

vs. 

Group 2 

Frequency 

Band 
Muscle-Pair p-value 

Group 1 

M +/- SD 

Group 2 

M +/- SD 

Mild 

vs. 

Moderate 

     

 γ 

PD 

- 

PECTclav 

0.0314 

1.4698 

+/- 

0.2009 

2.107 

+/- 

0.6504 

Mild 

vs.  

Severe 

     

 δ BRD-MD 0.0346 

1.2047 

+/- 

0.3090 

5.8007 

+/- 

5.9314 

 θ BRD-MD 0.0449 

1.4256 

+/- 

0.5555 

4.4633 

+/- 

4.1800 

 β BRD-MD 0.0350 

1.2332 

+/- 

0.1645 

2.7546 

+/- 

1.9885 

Moderate 

vs.  

Severe 

     

 θ BRD-MD 0.0301 

1.2322 

+/- 

0.7365 

4.4633 

+/- 

4.1800 

 β AD-MD 0.0021 

5.4413 

+/- 

1.5300 

2.1003 

+/- 

0.4424 

 γ AD-MD 0.0191 

5.6350 

+/- 

2.6414 

1.8488 

+/- 

0.6250 

3.3 Number of Networks Needed 

Variance explained from spectral coherence patterns extracted by NNMF 

indicated different minimum number of muscle networks necessary to explain 

coherence patterns across groups. Healthy controls exhibited distinct functional 

muscle association in four distinct spectral ranges (H1-H4) whereas post-stroke 
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survivors showed less functional connectivity. Mild stroke patients exhibited 

functional connectivity in three spectral ranges (I1-I3). Moderate and chronic severe 

stroke patients were observed to possess coherence in only two spectral ranges (O1-

O2 and S1-S2, respectively). Figure 5 demonstrates the change in magnitude of 

variance explained in coherence with increasing number of spectral patterns identified 

from coherence. 

 

Figure 5. Variance Accounted For (VAF). Error bars indicate standard error of the mean. Threshold set at 0.9. 

3.4 Muscle Network Topology 

Visualizing the network backbones for isometric force generation shows the 

dominant network edges and gives a basic indication as to which muscles are more 

important to the network. For all figures displaying functional muscle networks the 

left-hand column contains the coherence patterns identified from NNMF in increasing 

order of spectral content, the middle column holds thresholded connectivity matrices 

and the right-most column shows the network topology corresponding to a specific 

coherence pattern and functional connectivity matrix. Edge weights are plotted as 

“low” (dashed), “medium” (thin), and “high” (thick) strengths proportional to the 
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maximum edge weight per network per group. Network labels are also provided 

toward the left-hand side of the coherence patterns. Figure 6 highlights the network 

backbones of healthy muscle networks. The healthy muscle networks’ peak spectral 

patterns lie in the δ and θ bands, α band, β band, and γ bands. The H1 network 

includes BRD-BIm, TRIlat-TRIlong, BIm-TRIlat, AD-MD, and MD-PD as high 

strength edges. AD-MD and MD-PD appear as high strength edges once again in the 

H2 network. The only high strength edges within the H3 and H4 networks is AD-MD.  

 
(a) (b) (c) 

Figure 6. Healthy Muscle Networks. (a) Coherence Patterns. (b) Connectivity Matrices. (c) Network Topology. 
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Figure 7 depicts the mild stroke muscle networks network backbones. The mild 

stroke muscle networks seem to focus on combined δ and θ bands, combined α  and β  

bands, and the γ  band. AD-MD and MD-PD reappear as high strength edges in the I1 

and I2 functional muscle networks. BIm-TRIlong, TRIlat-TRIlong, TRIlong-PD, AD-

MD, and MD-PECTclav are the dominant edges in the I3 network.  

 
(a) (b) (c) 

Figure 7. Mild Stroke Muscle Networks. (a) Coherence Patterns. (b) Connectivity Matrices. (c) Network Topology. 

Figure 8 depicts the moderate stroke muscle networks network backbones. The 

coherence patterns extracted from moderate impairment stroke survivors are much 

simpler in comparison to that of the healthy controls. The frequency content of the 

stroke muscle networks peaks in the combined δ, θ, and α bands for network O1 and 

the combined β and γ bands for network O2. BIm-BRD, TRIlat-TRIlong, and AD-MD 
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appear as the dominant edges in the O1 network whereas AD-MD, AD-PD, and MD-

PD are the high strength edges in the O2 network. 

 
(a) (b) (c) 

Figure 8. Moderate Stroke Muscle Networks. (a) Coherence Patterns. (b) Connectivity Matrices. (c) Network 

Topology. 

Figure 9 depicts the severe stroke muscle networks network backbones. The 

coherence pattern associated with the S1 network peaks in the combined δ and θ 

bands. The S2 network is concentrated mostly in the β bands with some small 

spillover into low γ spectral range. High strength edges in the S1 network include 

BRD-BIm and TRIlat-TRIlong. High strength edges in the S2 network include TRIlat-

TRIlong and MD-PD.  
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(a) (b) (c) 

Figure 9. Severe Stroke Muscle Networks. (a) Coherence Patterns. (b) Connectivity Matrices. (c) Network 

Topology. 

3.5 Network Metrics 

The functional muscle networks were quantified via graph theory analysis to 

better explain the contribution of each individual muscle to the entire network. Error 

bars in Figure 10 reflect the standard error of the means (SEM) of the network metrics.  

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 10. Node Strength Network Metric. (a) Healthy. (b) Mild Stroke. (c) Moderate Stroke. (d) Severe Stroke. 
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The node strength network metric derived from isometric force generation give an 

insight into which muscles participate the most as nodes in the network. For the 

healthy controls, the H1 network showed the BRD, BIm, TRIlong, TRIlat, AD, MD, 

and PD nodes to have the highest node strength on average. The H2 network included 

the AD, MD, and PD nodes with higher node strength. In the H3 network the AD, 

MD, and PD nodes all have the higher magnitude node strength. The H4 network node 

strength is dominated once again with AD and MD nodes. Overall, the AD, MD, and 

PD muscles seem to be the dominant nodes with the most node strength, especially as 

the frequency content of coherence patterns increases. 

In mild stroke muscle networks, nodes AD and MD seem to have the most node 

strength in the I1 networks. MD and PD nodes hold the higher node strength in the I2 

network. Nodes TRIlong and MD have the most node strength in the I3 network. In 

moderate stroke muscle networks, TRIlong, MD, and PD seem to dominate the node 

strength of the O1 network whereas AD, MD, and PD contribute the most towards the 

O2 network node strength. For severe stroke muscle networks BRD, TRIlong, and MD 

are the nodes with more node strength in the S1 network. TRIlong, AD, MD, and PD 

nodes have the most node strength in the S2 network. 
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CHAPTER 4 – DISCUSSION 

4.1 Reduced Power Spectral Density Post-Stroke 

The power spectral density observed from chronic stroke survivors as compared to 

healthy controls reveals the initial differences in the frequency domain that prelude the 

differences in functional muscle connectivity revealed by intermuscular coherence. As 

evidenced in the results, the magnitude of power spectral density was reduced overall 

post-stroke. This change in power spectral density was most evident in the higher 

frequency bands, namely: α, β, and γ. The reduction in power spectral density was 

noticeable in the TRIlat, TRIlong, AD, MD, and PD muscles with ANOVA. PSD in 

healthy controls were found to be statistically significantly higher versus mild and 

moderate impairment stroke patients but no statistically significant difference was 

found between the healthy controls and chronic severe stroke patients. However, 

severe stroke patients were found to have significantly higher β and γ band PSD 

versus moderate stroke patients primarily in the AD and PD muscles.  

Overall, the results of statistical comparison of normalized power spectral density 

indicates that the triceps heads and deltoid fibers tend to show the most difference in 

the frequency domain when comparing healthy controls and stroke patients of multiple 

impairment levels. This reduction in power spectral density post-stroke is consistent 

with other findings in literature with the interosseous muscle of stroke patients (Li et 

al., 2014).  

4.2 Reduced Intermuscular Coherence Post-Stroke 

Simplified functional muscle connectivity was observed in the chronic stroke 

survivors during isometric force generation as compared to the healthy controls. 
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Healthy controls exhibited functional connectivity at four distinct spectral bands: 

combined δ and θ, α, β, and γ. Stroke survivors presented with reduced functional 

connectivity in the β and γ bands primarily. Several synergistic muscle-pairs 

previously identified by Roh et al. appear to be highly coherent, such as TRIlat-

TRIlong, AD-MD, AD-PD, and MD-PD. The BRD-BIm muscle-pair is one common 

synergy for both healthy controls and stroke patients of any severity that do not appear 

to have much coherence at any frequency except for the lower frequencies of the δ 

band. The synergistic AD-MD muscle pair proved to have the most statistically 

significant differences in the mean of normalized coherence from the θ band all the 

way to the γ band. However, there were a few non-synergistic muscle-pairs that also 

indicated some statistically significant differences in mean normalized coherence.  

Healthy controls consistently exhibited a greater magnitude of coherence in the 

synergistic AD-MD muscle pair in θ, α, β, and γ bands compared to all severities of 

stroke impairment investigated in this study. When comparing the various levels of 

stroke impairment, the non-synergistic BRD-MD muscle pair repeatedly showed that 

greater severity of stroke impairment coincides with higher magnitude of coherence in 

that connection in the lower δ and θ bands. Statistical tests on normalized coherence 

between healthy controls and chronic severe stroke patients also coincide with 

previous results from Kisiel-Sajewicz et al. in that significant difference in coherence 

was identified between deltoid and triceps muscles. Kisiel-Sajewicz et al. found 

significantly higher coherence for the aforementioned muscles in the 0 – 11 Hz 

spectral range. The statistical tests from this study indicate significantly higher θ band 
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(4 – 8 Hz) coherence in healthy controls versus chronic severe patients in the TRIlat-

MD muscle connection (p = 0.0315) as well as significantly higher α band (8 – 12 Hz) 

coherence in the TRIlong-PD muscle connection (p = 0.0018). An interesting 

observation to gather from the multiple-comparisons tests of coherence between stroke 

impairment levels is that higher magnitude of coherence in the synergistic coupling of 

AD and MD muscles is still associated with reduced stroke impairment severity. This 

significant difference in coherence between moderate and severe impairment stroke 

patients coincides with the more obvious observation found when comparing healthy 

controls to stroke patients in general. It is possible that functional coupling of 

synergistic muscles may prove to be a reliable biomarker in stroke motor recovery and 

assessment. 

Both power spectral density and intermuscular coherence indicate some 

significance in the coupling of synergistic deltoid and triceps muscles when comparing 

neurologically healthy individuals and impaired stroke patients. These points are 

further solidified through the more complex muscle network analysis.  

4.3 Fewer Muscle Networks Post-Stroke 

It was identified that four muscle networks were necessary to explain coherence 

patterns in healthy controls but only three muscle networks were needed to explain 

coherence from the same task in moderate stroke survivors, and two muscle networks 

were identified for both moderate and severe stroke survivors. This is an interesting 

observation as the increased severity of stroke impairment is associated with reduced 

functional coupling in the upper arm muscles, indicating a simplified functional 
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control scheme. Another qualitative observation that can be gathered by the coherence 

patterns extracted by NNMF is that increased stroke impairment levels are associated 

with higher magnitude of coherence in the delta band. For example, the average peak 

coherence value for δ band extracted for the H1 network is approximately 0.2 whereas 

for the I1 network that value is just slightly higher than 0.2. However, the O1 network 

shows an increase from 0.2 to 0.3 for δ band coherence and finally the S1 network 

increases up to a magnitude of 0.6.  

The topology of muscle network backbones identified by a minimum-spanning 

tree algorithm identified some key network edges that corroborated to previous muscle 

synergy findings. Roh et al. previously indicated the following synergistic muscles for 

the healthy controls: BRD-BIm, TRIlat-TRIlong, AD-MD, and MD-PD. The high 

strength network edges for healthy controls consisted of: BRD-BIm, TRIlat-TRIlong, 

AD-MD, and TRIlong-PD. The MD-PD synergistic pairs of muscles were identified as 

medium strength edges in half of the stable force generation healthy muscle networks. 

Mild stroke muscle networks involved AD-MD, MD-PD, and TRIlat-TRIlong as high 

strength edge weights that were also found to be synergistic muscles in Roh et al. 

(2015). The synergistic BRD-BIm muscle connection was not found to contribute 

much to either of the mild stroke muscle networks as they were found to be low 

strength edges. The coherence patterns associated with the I2 muscle network appears 

to include the combined α and β spectral ranges. Fractionation and merging of muscle 

synergies has previously been reported in motor-impairing disease studies and it is 

possible that the functional muscle connections in the alpha and beta bands merged 
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post-stroke due to the neurological consequences of stroke on the cortex and cortico-

spinal pathways (Fisher et al., 2012). Moderate stroke networks included the following 

synergistic muscles during isometric force generation: BRD-BIm, TRIlat, TRIlong, 

AD-MD, AD-PD, and MD-PD. The coherence pattern associated with the O1 muscle 

network shows a merging of the δ, θ, and α bands whereas the β and γ bands are 

merged in the O2 network. Synergistic muscles from severe stroke patients during 

stable force generation involved: BRD-BIm, TRIlat-TRIlong, AD-MD, AD-PD, and 

MD-PD. TRIlat-TRIlong, BRD-BIm, and MD-PD were identified as high strength 

network edges during stable force generation whereas AD-MD and AD-PD were 

found to be considered medium strength edges in the muscle networks. Synergistic 

muscles co-activated in stable force generation are also confirmed to be functionally 

associated to each other in different frequency bands via intermuscular coherence. 

It is evident that the functional motor control scheme is simplified post-stroke. 

Frequency bands are not segregated by separate muscle networks in stroke in contrast 

to healthy controls, especially higher frequency bands more commonly associated with 

sensorimotor tasks. The lower number of muscle networks in stroke patients suggests 

that not only muscle coordination but also the functional coupling between muscles is 

altered. Inducing the increase of coherence within these higher frequency bands may 

be key in successful motor rehabilitation post-stroke. 

Roh et al., previously observed four muscle synergies needed to explain the sEMG 

activation patterns for both healthy and stroke groups, respectively. The stroke groups 

shared two similar synergies to the healthy control group but differed in abnormal co-
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activation of deltoid head fibers. It is noteworthy that although the number of muscle 

synergies defined in the time domain were comparable across all four groups, the 

functional coupling of those synergies defined in the frequency domain is not the 

same. The apparent functional connectivity between AD and PD within stroke muscle 

networks coincides with the abnormal muscle synergy patterns identified by Roh et al. 

According to Kerkman et al. it seems likely that intermuscular coherence at very 

low frequencies in the delta band identifies the covariation of rectified EMG 

envelopes that are crucial in muscle synergy analysis. Additionally, it was conjectured 

that muscle networks associated with higher intermuscular coherence content may in 

fact be isolating different functional pathways of the neuromuscular system (Kerkman 

et al., 2020). Indeed, synergistic muscles were identified to be high strength edges in 

coherence muscle networks with lower spectral components in the delta band for both 

healthy controls and all stroke impairment groups.  

It is possible that cortical lesions caused by stroke impair the neural oscillatory 

drive to the upper-arm and elbow muscles in higher frequency bands by altering the 

corticospinal pathways, resulting in a simpler functional control scheme to compensate 

for lower efficiency in motor execution. The absence of unique coherence patterns in 

higher frequency bands in stroke patients is evidence of some alteration in the 

common input to motor neurons. Since functional connectivity seems to be highly 

affected by the anatomical muscle networks as suggested by Kerkman et al., it is 

conceivable to reason that the alteration in muscle co-activation after stroke ultimately 

influences the magnitude and morphology of intermuscular coherence. 
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4.4 Study Limitations 

This study has two limitations: only one trial was performed per target position 

and the isometric period of each trial was relatively short (3 – 6 s). To compensate for 

this, all trials per subject were concatenated to provide a greater number of samples for 

coherence analysis and a shorter windows size of 500 milliseconds was implemented 

for smoothing spectral features such as power spectral density and magnitude-squared 

coherence. Intermuscular coherence of stroke patients should be observed with a 

larger cohort and increased trial duration without inducing patient muscle fatigue or 

distress for the patients to validate the results of this study.  
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4.5 Future Work 

Future work would benefit from combining brain networks, muscle networks, and 

muscle synergies to provide better insight on the negative effects of other motor-

impairing diseases on the neuromuscular system and improve therapy and 

rehabilitation for those in need of it. Muscle networks have clinical monitoring 

potential and as such, the effects of motor rehabilitation in stroke patients on muscle 

network metrics should be determined as a potential biomarker of neurophysiological 

recovery.  
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CHAPTER 5 – CONCLUSION 

Using novel muscle network analysis to assess the functional co-activation of 

muscles, it has been shown that post-stroke survivors exhibit differences in muscle 

connectivity during isometric force generation in upper arm reaching movements as 

compared to healthy controls in the frequency domain. Statistically significant 

reductions in power spectral density and intermuscular coherence were identified in 

higher frequency bands between healthy controls and stroke patients of mild, 

moderate, and severe impairment. Functional connectivity in eight key upper-arm 

muscles was assessed via intermuscular coherence and patterns in coherence were 

identified using non-negative matrix factorization. A reduced number of muscle 

networks was identified for increased severity of stroke impairment. Muscle networks 

were quantified with node strength. Synergistic muscles in stable force generation 

were found to be key network edges in muscle networks. Understanding the 

underlying neural drive to muscles in post-stroke survivors can prove vital in 

improving motor rehabilitation by identifying the abnormal nodes in the muscle 

networks and targeting them heavily in the guided physical therapy process.  
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CHAPTER 6 – SUPPLEMENTARY FIGURES 

6.1 Additional Network Metric Figures 

  
(a) (b) 

  
(c) (d) 

Figure 11. Global Efficiency Network Metric. (a) Healthy. (b) Mild Stroke. (c) Moderate Stroke. (d) Severe Stroke.  
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 12. Betweenness Centrality Network Metric. (a) Healthy. (b) Mild Stroke. (c) Moderate Stroke. (d) Severe 

Stroke. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 13. Clustering Coefficient Network Metric. (a) Healthy. (b) Mild Stroke. (c) Moderate Stroke. (d) Severe 

Stroke. 
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