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Abstract 

Reinforcement-learning brain machine interfaces could reduce the number of times 

a neural prosthesis has to be updated daily for individual use. This can be achieved by using 

reward signals that are present in cortical neural activity but firing rates have been shown 

to be varied across trials, even if the same stimulus is being presented. This trial-to-trial 

variability, also known as noise correlation, is shared across a neuronal population and has 

been shown to be modulated by attention, learning, and behavior. To investigate this the 

current study performs a noise correlation analysis using data recorded from the primary 

motor cortex (M1) of two rhesus monkeys performing a grip force task (GFT). It is seen 

that the noise correlation generally increases with the presentation of a rewarding cue. The 

results also suggest a stimulus dependence as well as independence to changes in firing 

rates.  
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Chapter 1 Introduction 

 One of the challenges in neuroscience is understanding the communication between 

a population of neurons, and how their interplay can lead to a variety of cognitive and 

physiological processes. One major area that has great interest is understanding how these 

populations respond to desirable experiences, tasks, or outcomes. A diverse body of 

literature suggests that midbrain structures, known as the reward system, control responses 

to a rewarding stimulus and are thought to use the neurotransmitter dopamine to 

communicate between neurons (Schultz et al., 1997; Yager et al., 2015). This system has 

been based on the theory of incentive salience and has been linked to learning tasks or 

habits and behavioral choices (Cohen and Frank, 2009). These reward-linked cognitive 

processes have been found in the cortical regions of the brain as well (Kapogiannis et al., 

2008; Molina-Luna et al., 2009; Hosp et al., 2011; McNiel et al., 2016; Ramakrishnana et 

al., 2017) Since reward is an essential part of development and growth, studying this system 

and how it encodes for reward is valuable.   

Many studies have focused on the relevant similarities or differences in the reaction 

to reward across species, while others aim their attention at how the excitability of neurons 

differs for different regions of the brain. (Schoenbaum and Setlow, 2001; Schultz, 2015) 

These studies have detailed how cortical structures also play a role in the reward system. 

It has been shown that the primary motor cortex (M1) modulates for reward (Roesch and 

Olson, 2004; An et al., 2018(a); Tarigoppula et al., 2018). Since M1 is shown to also encode 

for movement and force, it makes for a compelling case to record from there when 

developing a reinforcement learning brain machine interface (Marsh et al., 2015; An et al., 

2018(b)).  
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Some studies observe the rate at which a neuron fires and have used it to gauge how 

excitable it is to reward (Roesch and Olson, 2004; Bayer and Gilmcher 2005). This would 

work in the case if neurons always fired in the same behavior, but it has been shown that 

neurons can have variable spiking activity in response to the repeated presentation of an 

identical stimulus (Tolhurst et al., 1983; Shadlen and Newsome, 1998). Other studies have 

shown that this varied response from one trial to the next can be shared across neurons 

(Gawne and Richmond, 1993; Zohary et al, 1994; Lee et al, 1998). This trial-to-trial 

variability can diminish the signal-to-noise ratio of a neuron population and was thought 

to limit the amount of information transferred in it (Zohary et al, 1994; Abbot and Dayan, 

1998, Moreno-Bote et al., 2014). However, correlations have been shown to be more 

indicative for sensory coding, and it has been shown to be modulated by learning, behavior, 

and stimulus (Gutnisky and Dragoi 2008; Cohen and Maunsell, 2009; Mitchell et al., 2009; 

Douglas and Cohen, 2016)  

In the current study, we look at M1 correlated variability of nonhuman primates 

(NHPs) analyzed during a grip force task and compare the results between rewarding and 

nonrewarding trials. The goal of our work is to show that noise correlation in M1 is 

modulated by reward.  
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Chapter 2 Method 

2.1 Behavioral task 

 One male bonnet macaque (NHP S, Macaca Radiata) and one female rhesus 

macaque (NHP P, Macaca Mulatta) were trained to manually perform or passively observe 

a grip force task (GFT) to obtain a fruit juice reward. In this, a projection of a virtual 3-D 

environment consisting of a table, a cylinder target, and a simulated robotic arm (Barret 

WAM) is presented to the subjects. This simulation was visualized using rviz from the 

Robot Operating System built on a PC running Ubuntu Linux. A force transducer is situated 

in front of the NHPs. During manual tasks, the NHPs had to reach out with their right arm 

and grasp the transducer and apply the desired force. During the observation task, the NHPs 

would sit and watch as the desired force is delivered automatically by the simulation. Each 

of these tasks had a uniformly random distribution of rewarding and nonrewarding trial 

structure.  

 

Fig. 1     Grip force task (GFT). Scene description below figures. (a) Manual task. (b) 

Observational task. (a) and (b) are reproduced with permission from An et al., 2018(a). 
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There are 7 scenes to the GFT; reset, cue presentation, reaching, grasping, 

transporting, releasing, and success/reward delivery. The simulated robot arm resets itself 

a predetermined distance away from the target in the first scene. The cue presentation scene 

is represented by green squares flying in from the top left side to the center of the simulated 

environment. The number of squares represents the amount of fruit juice reward that will 

be delivered after a successfully completed trial. In the case of a nonrewarding trial, no 

cues are displayed. Data used in this analysis only consisted of two levels of reward: either 

no reward or one. This cue is present throughout the trial. Reaching is automatically 

performed by the simulation with the end effector of the robot moving towards the cylinder 

target. When the robot has positioned itself just before the target, the task will move into 

the grasping scene. During this scene, two blue rectangles are displayed in the foreground 

in front of the target. They are separated a specified distance apart, and area of the squares 

represent the accepted range of force that the NHPs will have to apply to move to the next 

scene. The NHPs would then reach out and grasp the transducer in front of them. The 

amount of force they apply is represented as a red bar that grows between the blue 

rectangles. Once the bar has entered and stayed within the accepted range, the simulation 

moves onto the transportation scene. The simulated arm will automatically pick up and 

move the target to a random location on the table, so long as the desired force is still 

applied. After the transportation is complete, the NHPs would then have to let go of the 

force transducer to proceed to the releasing scene. The success scene is immediately after 

the release, and the reward is delivered if the trial was of the rewarding type. After the 

success scene, the GFT will move onto the next trial and start the scenes over.  
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If the NHPs were to fail a trial (either by applying too much or not enough force, 

thus falling out of the desired force range during grasp and transport scenes), they would 

have to repeat the trial at the same reward level. For example, if the NHPS were to fail a 

nonrewarding trial during manual trials, the next trial would be nonrewarding as well. This 

was implemented to help deter the NHPs from purposefully failing nonrewarding trials. 

Only successful trials were included in this analysis. 

2.2 Surgery 

 After the NHPs were proficiently trained for the GFT, they were implanted with a 

96-channel platinum microelectrode arrays (10 x 10 Utah array with 400 µm electrode 

separation, Blackrock Microsystems) in M1 in the left hemisphere, contralateral to the right 

hand. The implantation technique is detailed in previous work (Chhatbar et al. 2010; Marsh 

et al. 2015). 

2.3 Neural Data Recording 

 After the NHPs recovered for two to three weeks, neural signals from M1 were 

recorded using a multichannel acquisition processor system (MAP, Plexon Inc). The 

signals were amplified, bandpass filtered from 170 Hz to 8 kHz, sampled at 40 kHz, and 

thresholded to determine possible spiking activity. The Sort Client on the MAP further 

sorted the spikes using principle component-based methods with waveform matching. The 

sorted spikes were further processed through Offline Sorter (Plexon Inc). Well isolated 

clusters were considered and any with less than realistic inter-spike interval histograms or 

with spike shapes that did not follow convention were eliminated. 
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2.4 Session analysis 

 After the final sort of the neural data offline, three manual and three observational 

sessions from NHP S and P each were used. NHP S manual sessions had 131, 79, and 71 

units respectively while their observational sessions had 133, 128, and 81 units. NHP P 

manual sessions consisted of 79, 86, and 88 units while their observational sessions had 

98, 125, and 70 units. Each session was analyzed individually, and the correlations are then 

pooled.  

2.5 Neuron population response to reward 

The average response of the population was calculated before movement of the 

simulated robot arm and around success scenes. 1000 ms before the reaching scene and 

500 ms before and after the success scene were used for response analysis, and 100 ms 

time bins with a sliding window of 5 ms were used to calculate the response.  This meant 

that there was a 95% overlap between a time bin and those adjacent to it. The firing rate, 

R, for bin number b of unit n during trial k is found in with 

𝑅𝑛
𝑘(𝑏) =  

𝑆𝑛
𝑘(𝑏)

𝑇
, 

(1) 

where S is the spike count in the bin and T is the size of the bin in ms. The binned firing 

rates are then averaged across all K trials with 

𝑅𝑛(𝑏)̅̅ ̅̅ ̅̅ ̅̅ =  
∑ 𝑅𝑛

𝑘(𝑏)𝐾
𝑘=1

𝐾
, 

(2) 

to find the average response of a unit during the recording session. The average unit 

responses are then averaged to find the population response using  

𝑅(𝑏)̅̅ ̅̅ ̅̅ =  
∑ 𝑅𝑛(𝑏)̅̅ ̅̅ ̅̅ ̅̅𝑁

𝑛=1

𝑁
, 

(3) 



7 
 

where N is the total number of units present in the recording session. This is depicted in 

Fig. 2 for an example unit during cue period for rewarding trials. Fig. 2(c) shows the 

average response across all trials.  

 

Fig. 2     Example of a unit’s average response peri-cue for rewarding trials. Red dashed 

line represents the time when the cue is presented. (a) Raster of unit spike times. (b) 

Response from an example trial. (c) Average response across trials. 

2.6 Noise correlation 

The spike times of each unit were extracted and separated into spike trains. Since 

rewarding trials will have the cue moving in at the beginning of the cue scene, the analysis 

takes 500 ms before this as pre-cue period and 500 ms after the cue has fully arrived as 

post-cue period. For nonrewarding trials, 500 ms before and after the cue scene is used. 

For the success scene, 500 ms before and after are considered as pre-reward and post-

reward periods. Even though nonrewarding trials do not have reward delivered, the periods 

are still called the same.  
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Fig. 3     Visual example of how the noise of a unit’s response for a given trial is 

calculated. (a) Unit response for a trial. (b) Average of the unit response. (c) The average 

response is subtracted from the unit response to find the noise. 

To find the noise, we subtracted the mean of the normalized response of a unit 

during either a rewarding or a nonrewarding trial of a session from that unit’s normalized 

response during that trial. An example of this is illustrated in Fig. 3 where (c) is the noise 

associated with the example unit during the example trial. Mathematically, the spike trains 

from each session was first binned as previously described in section 2.5 using Eq. 1. Each 

bin was then Min-Max normalized by  

𝑅𝑛𝑜𝑟𝑚𝑛
𝑘(𝑏) =  

𝑅𝑛
𝑘(𝑏)−𝑅𝑚𝑖𝑛𝑛

𝑅𝑚𝑎𝑥𝑛−𝑅𝑚𝑖𝑛𝑛

, 
(4) 

where 𝑅𝑚𝑖𝑛𝑛
 is the minimum value for the bin across the recording session and Rmaxn

 is 

the maximum. Then, the mean response for each unit across trial types was then calculated 

using 
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𝑅𝑛𝑜𝑟𝑚𝑛
(𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  

∑ 𝑅𝑛𝑜𝑟𝑚𝑛
𝑘(𝑏)𝐾

𝑘=1

𝐾
, 

(5) 

where K is the total number of trials for the given trial type. The noise of a unit during any 

given trial was determined by subtracting the mean response of the unit for that trial type 

from the response during that trial. This is expressed as 

𝑅𝑛𝑜𝑖𝑠𝑒𝑛
𝑘(𝑏) = 𝑅𝑛𝑜𝑟𝑚𝑛

𝑘(𝑏) − 𝑅𝑛𝑜𝑟𝑚𝑛
(𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . (6) 

where 𝑅𝑛𝑜𝑖𝑠𝑒𝒏
𝒌 represents all the bins b in trial k for unit n. It is then split into the different 

trial periods. The total noise of a neuron during a trial period for a recording session was 

formed by concatenated back to back the noise across all the trials. For example, neuron n 

would be made with 

𝑅𝑛𝑜𝑖𝑠𝑒𝑛
=  [𝑅𝑛𝑜𝑖𝑠𝑒𝑛

1 ; 𝑅𝑛𝑜𝑖𝑠𝑒𝑛
2 ; 𝑅𝑛𝑜𝑖𝑠𝑒𝑛

3 ; … ; 𝑅𝑛𝑜𝑖𝑠𝑒𝑛
𝑚]. (7) 

The noise correlation between a pair of neurons is the Pearson correlation coefficient 

between their trial-to-trial concatenated noises. This is accomplished with 

𝑟𝑛𝑜𝑖𝑠𝑒(𝑛1,𝑛2)
=  

𝑐𝑜𝑣(𝑅𝑛𝑜𝑖𝑠𝑒𝑛1
, 𝑅𝑛𝑜𝑖𝑠𝑒𝑛2

)

𝜎𝑛𝑜𝑖𝑠𝑒𝑛1
∗ 𝜎𝑛𝑜𝑖𝑠𝑒𝑛2

.  
(8) 

This was performed by using MATLAB’s corr( ) function. The p-values were assessed to 

determine if the correlation coefficients between the unit pairs were significantly different 

than zero, and coefficients found to be significant were recorded. The sessions were then 

checked for unit pairs that were present in both rewarding and nonrewarding trials. Those 

that were not were eliminated.  

Taking the average correlation coefficients across the population would 

underestimate the actual correlation coefficient (Silver and Dunlap, 1987). To get a closer 
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estimation of the mean correlation coefficient, the 𝑟𝑛𝑜𝑖𝑠𝑒 values were first Fisher z-

transformed using 

𝑧𝑛𝑜𝑖𝑠𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(𝑟𝑛𝑜𝑖𝑠𝑒) =  
1

2
𝑙𝑜𝑔 (

1+𝑟𝑛𝑜𝑖𝑠𝑒(𝑛1,𝑛2)

1−𝑟𝑛𝑜𝑖𝑠𝑒(𝑛1,𝑛2)

). 

 

(9) 

The average of 𝑧𝑛𝑜𝑖𝑠𝑒  was found, and this new value was inverse transformed it back to an 

𝑟𝑛𝑜𝑖𝑠𝑒  value using the hyperbolic tangent function 

𝑟𝑛𝑜𝑖𝑠𝑒̅̅ ̅̅ ̅̅ ̅ = tanh(𝑧𝑛𝑜𝑖𝑠𝑒̅̅ ̅̅ ̅̅ ̅) =  
𝑒2𝑧𝑛𝑜𝑖𝑠𝑒−1

𝑒2𝑧𝑛𝑜𝑖𝑠𝑒+1
. (10) 

 

Fig. 4     Example of significant correlations from an NHP S manual session. (a) 

Population of noise correlations in a population that are statistically different from zero. 

(b) Finding the mean noise correlation of the blue percentage from (a)  

2.7 Firing rate vs noise correlation 

 It has been reported that an increase in firing rates could cause an increase in 

correlations in unit pairs, and the presentation of a stimulus has been shown to increase 
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firing rates in NHPs. This is particularly important in noise correlation analysis as different 

stimuli can elicit responses of varying strength which can affect the correlational structure. 

One way to relate a unit pair’s correlation coefficient to their average firing rates is to take 

the geometric mean rate (GMR). This was chosen as it was shown that the GMR estimated 

correlations better than the arithmetic mean (Schultz et al., 2015). Post-cue and post-reward 

periods are used for this section. To find the GMR, we take the results from Eq. 2, the 

average response of a unit across trials, and find the mean firing rate of the unit by using 

𝑅𝑛
̅̅̅̅ =  

∑ 𝑅𝑛(𝑏)̅̅ ̅̅ ̅̅ ̅̅𝐵
𝑏

𝐵
, 

(11) 

where B is the total number of bins. The GMR between two units is determined by 

𝐺𝑀𝑅𝑛1,𝑛2 =  √𝑅𝑛1
̅̅ ̅̅ ̅ ∗ 𝑅𝑛2

̅̅ ̅̅ ̅. 
(12) 

The GMR of a pair of units during a trial period is then plotted against their noise 

correlation. All unit pairs from the recording sessions of an NHP were combined and 

separated into 10 bins, each having an equal number of pairs. The average GMR and noise 

correlation are plotted for each of the bins.  

2.8 Significantly modulating units 

 The analysis of section 2.6 was repeated for units who significantly modulated their 

average firing rate across trial types and then for those within trial periods. Unit activity 

has been shown be different between rewarding and nonrewarding trials (Marsh et al., 

2015), so it is worth observing units that significantly change their rates across cue and 

reward period during rewarding trials. The goal of this section was to observe how the 

noise correlation changes if only units that showed a significantly difference in their firing 

rates between the lack of and presentation of a stimulus (cue or reward) were considered. 
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Post-cue and post-reward periods of rewarding and nonrewarding trials were used to 

determine significant difference in this section.  

The unit activity was binned, and Min-Max normalized as in section 2.5 and 2.6. 

Then the mean response of the unit was determined. The mean responses were separated 

into trial periods and tested between post-cue periods and then between post-reward 

periods for a change in response across rewarding and nonrewarding trials. The Wilcoxon 

signed-rank test was used to determine the significant change. This test was used as firing 

rate distribution was not assumed to have any distribution, and because responses from the 

same units were being compared. This test was performed with MATLAB’s signrank( ) 

function. Units with a p-value < 0.05 was determined as significantly modulating across 

trial types. Those that did not meet this were eliminated from the analysis. Since the units 

are tested for cue period and then for reward period, they could be in both peri-cue and 

peri-reward noise correlation analysis, in one or the other, or in neither.  

 After units were found to be significantly modulating, the same analysis in section 

2.6 was performed on them; that is subtracting mean response from individual trial 

responses, separate and concatenate trial periods of similar trial type, finding the noise 

correlation of the neuron population, Fisher z-transformation, averaging, and then inverse 

transforming back to correlation value. 

 



13 
 

 

Fig. 5     Work flow for eliminating units that do not modulate their activity across trial 

types. Unit N would be checked separately for (a) cue and (b) reward periods. 

2.9 Mean-matched noise correlation 

 The results of section 2.8 could explain the relationship between firing rates and 

noise correlation. Although, other studies have shown that the noise correlations can be 

stimulus dependent as well as being firing rate independent (Kohn and Smith, 2005, Banyai 

et al., 2018). The goal of this section is to show that even though noise correlation and 

firing rates are not entirely independent of one another, changes in noise correlation are not 

trivially explained by dissimilarities in firing rate.  

 One way to accomplish this would be to control the firing rates of the pairs of 

neurons, but this would require controlling evoked responses by first cataloging the 

responses to stimuli used. As this is excessive and difficult to do the GMR distributions of 

rewarding and nonrewarding trials were equated instead. First, the GMR of unit pairs 

having significant noise correlations found with Eq. 11 are separated into trial periods. The 

trial periods were compared between rewarding and nonrewarding and the one with the 

maximum value was used to determine the behavior of a histogram used to plot the 

distributions, 40 bins equally spaced up to the maximum values found. Rewarding and 

nonrewarding distributions were plotted together and the area of overlap between them was 



14 
 

taken down as a new, marginal distribution. The rewarding and nonrewarding distributions 

are subsampled to match this marginal distribution, and the correlation coefficient of the 

subsampled data is used to complete the noise correlation analysis.   



15 
 

Chapter 3 Results 

3.1 Population response to the presence or lack of cue and reward stimuli 

 To understand how the population of units respond to stimuli, the average response 

is first observed. The units were binned and averaged across the population for all 

successful trials. They are plotted along with their standard error of the mean (SEM), which 

is shaded in the figures below. Each session is displayed separately for both the peri-cue 

and peri-reward time periods.  

Fig. 6 – 9 show the average population response of example sessions from NHP S 

and P for rewarding, red line, and nonrewarding trials, blue line. The other sessions 

population responses are in the appendix, Fig. A.1-A.4. The shaded area represents the 

standard error of the mean (SEM). The plots in the left column are for peri-cue period and 

the right for peri-reward. The vertical dashed black line represents when a stimulus was, or 

would have been, delivered during that period.  

NHP S follows the general trend of previously described subjects. This is that for a 

preferred cue there is an increase in the firing rate. This is seen in all peri-cue plots for all 

manual and observational sessions for the GFT of NHP S. Average responses show that 

there is a trend similar for the peri-reward period across all manual and observational 

sessions as well. Firing rates during this period tended to decrease for rewarding trials when 

compared to nonrewarding ones.  

On the other hand, NHP P’s average population responses are varied. The average 

response in the cue periods across the manual and observation sessions is distinguishable 

by the slight increase in firing rates before 500 ms. The rewarding periods are like that of 

NHP S for manual sessions, as firing rates are generally lower for rewarding trials.  
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The differences that are observed in these trial periods show that population 

modulation for reward occurs in M1 during the GFT during cueing and reward periods. 

This is especially true for the manual task.  The interactions between the neurons is further 

analyzed in the sections below. 

Average population response for NHP S Manual GFT 

(a) Peri-cue period (pre-movement) (b) Peri-reward period (success) 

  

Fig. 6     Average population response for a manual session for NHP S. Red for 

rewarding and blue for nonrewarding. Shaded region represents the SEM. (a) Peri-cue 

period. (b) Peri-reward period 

Average population response for NHP S Observational GFT 

(a) Peri-cue period (pre-movement) (b) Peri-reward period (success) 

  

Fig. 7     Average population response for an observational session for NHP S. Red for 

rewarding and blue for nonrewarding. Shaded region represents the SEM. (a) Peri-cue 

period. (b) Peri-reward period 
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Average population response for NHP P Manual GFT 

(a) Peri-cue period (pre-movement) (b) Peri-reward period (success) 

  

Fig. 8     Average population response for a manual session for NHP P. Red for 

rewarding and blue for nonrewarding. Shaded region represents the SEM. (a) Peri-cue 

period. (b) Peri-reward period 

Average population response for NHP P Observational GFT 

(a) Peri-cue period (pre-movement) (b) Peri-reward period (success) 

  

Fig. 9     Average population response for an observational session for NHP P. Red for 

rewarding and blue for nonrewarding. Shaded region represents the SEM. (a) Peri-cue 

period. (b) Peri-reward period 

 

3.2 Average noise correlations are higher for rewarding trials 

 The binned data is Min-Max normalized, and the mean response of a unit is 

subtracted from their individual trial responses to extract the noise. These resulting trial 

noise responses are concatenated from trial-to-trial and repeated for all units. The 

concatenated noises are compared using Pearson’s correlation coefficient and significant 
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unit-pairs are determined and recorded. After Fisher z-transforming the significant unit pair 

correlations the average value is found and then reverse Fisher z-transformed back to 

correlation. The average correlation coefficients for pooled from all sessions are plotted 

along with the SEM, Fig. 10 and 13. Red bars represent rewarding trials and blue for 

nonrewarding. The significant difference between average coefficients of rewarding and 

nonrewarding trial periods was tested with Wilcoxon signed rank test and the results of this 

test is displayed above the trial period. One asterisk represents a signed rank test with p-

value < 0.05, two for p-value < 0.01, and three asterisks for p-value < 0.001. These 

represents the noise correlation distributions that are found in Fig. 11, 12 and 14, 15. In 

these figures, the color of the asterisk represents which distribution is higher. 

The noise correlation for both NHPs during manual and observational tasks show 

that average correlation value varies in strength and significance across trial periods and 

trial types for all sessions. The average coefficients generally fell into an expected range, 

0.01 – 0.3 as reported by other work (Cohen & Kohn, 2011). One trial period that is seen 

to have more consistency is post-cue. For most manual and observational sessions, 

rewarding trials had a higher or significantly higher average correlation coefficient 

compared to nonrewarding trials.  

The NHPs do differ in the post-reward period. NHP S tended to have lower 

correlation for rewarding trials compared to nonrewarding ones, and the opposite is true 

for NHP P. This may be explained by behavioral differences between the subjects, and 

more on this is presented in the discussion section.  
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NHP S Raw Noise Correlation 

(a) Manual (b) Observational 

  

Fig. 10     Average noise correlation coefficient for NHP S manual and observational 

sessions separated by trial periods. Red for rewarding and blue for nonrewarding. (a) 

Pooled manual sessions. (b) Pooled observational sessions. 

NHP S Noise Correlation Distribution – Manual Task 

(a) 

 

(b) 

 

Fig. 11     Noise correlation distribution of NHP S during manual task. Red represents 

rewarding trial distribution and blue for nonrewarding. (a) depicts distribution during 

the post-cue period and (b) for post-reward period. 
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NHP S Noise Correlation Distribution – Observational Task 

(a) 

 

(b) 

 

Fig. 12     Noise correlation distribution of NHP S during observational task. Red 

represents rewarding trial distribution and blue for nonrewarding. (a) depicts 

distribution during the post-cue period and (b) for post-reward period. 

NHP P Raw Noise Correlation 

(a) Manual (b) Observational 

  

Fig. 13     Average noise correlation coefficient for NHP P manual and observational 

sessions separated by trial periods. Red for rewarding and blue for nonrewarding. (a) 

Pooled manual sessions. (b) Pooled observational sessions. 
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NHP P Noise Correlation Distribution – Manual Task 

(a) 

 

(b) 

 

Fig. 14     Noise correlation distribution of NHP P during manual task. Red represents 

rewarding trial distribution and blue for nonrewarding. (a) depicts distribution during 

the post-cue period and (b) for post-reward period.
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NHP P Noise Correlation Distribution – Observational Task 

(a) 

 

(b) 

 

Fig. 15     Noise correlation distribution of NHP S during observational task. Red 

represents rewarding trial distribution and blue for nonrewarding. (a) depicts 

distribution during the post-cue period and (b) for post-reward period. 

3.3 Firing rates and Correlations  

 To visually observe what relations firing rates and correlation have, they are plotted 

together. First, the significant correlations for post-cue and post-reward periods of 

rewarding and nonrewarding trials are plotted against their GMR. Then, these points are 

split into ten bins with an equal number of markers. The GMR and the output correlations 

are averaged and then the averages are plotted with their SEM. The difference between 

rewarding and nonrewarding plots were tested with Wilcoxon signed rank test to determine 

which distribution was significantly higher. Red lines are for the rewarding distribution 

and the blue lines are for the nonrewarding. Asterisks are assigned like that of section 3.2. 
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The relationship between unit pairs GMR and their correlations differ slightly 

between the NHPs. Post-cue periods for the NHPs were observed to have significantly 

higher distribution for rewarding trials compared to nonrewarding, except for NHP S’s 

observation sessions. Post-reward period results are more varied with some sessions 

showing a higher distribution for nonrewarding and others showing no significant 

differences. 

There seems to be a linear relationship displayed in some of the figures below. NHP 

S’s observational post-cue period and all NHP P’s trial period plots show a positive linear 

relationship between GMR and the resulting correlation coefficients. NHP S’s manual 

sessions show a negative linear relationship. 
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NHP S GMR vs Noise Correlation 

(a) Manual 

Post-Cue Period Post-Reward Period 

  

(b) Observational 

Post-Cue Period Post-Reward Period 

  

Fig. 16     GMR, √𝑉𝑖 ∗ 𝑉𝑗, vs average correlation coefficient for NHP S. The subplots on 

the left represents post-cue period and the ones on the right for post-reward. (a) Manual 

sessions. (b) Observational sessions 
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NHP P GMR vs Noise Correlation 

(a) Manual 

Post-Cue Period Post-Reward Period 

  

(b) Observational 

Post-Cue Period Post-Reward Period 

  

Fig. 17     GMR, √𝑉𝑖 ∗ 𝑉𝑗, vs average correlation coefficient for NHP P. The subplots on 

the left represents post-cue period and the ones on the right for post-reward. (a) Manual 

sessions. (b) Observational sessions 

3.4 Significantly modulating units 

 To observe how firing rate modulation across trial types effect the noise correlation, 

units are separated into different subpopulations, those that significantly changed their 

firing rates between rewarding and nonrewarding trials for post-cue/reward periods and 

those that do not significantly change. Significant differences were checked with Wilcoxon 

signed-rank test. The percentage of units for each subpopulation is displayed in Fig. 18 and 
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19 with the total number of units in the pooled sessions above the pie charts. The blue 

portion of the pie chart represents units who have modulated their firing rates, and the 

portion in yellow are those that did not change. Those that do not modulate for reward were 

eliminated from this analysis. The rest were analyzed in the same manner as previously 

described.  

We see a difference for NHP S’s manual sessions, where the noise correlation 

distribution is no longer significantly different between rewarding and nonrewarding trials. 

The average across the other NHP sessions show that for post-cue period rewarding trials 

had higher noise correlations than nonrewarding trials, marked by the asterisks above the 

bars for the trial period. NHP S and P still differed in post-reward periods as S had lower 

correlations in rewarding trials while P had higher when compared to nonrewarding trials. 

These results tell us that only considering firing rates as a metric for reward would result 

in  

NHP S Percent of Units Moodulating Firing Rates 

(a) Manual (b) Observational 

 

Fig. 18     Percent of units that have modulated their mean firing rates across rewarding 

and nonrewarding trials for NHP S pooled from sessions. Number in the top right is total 

number of units. (a) Manual sessions. (b) Observation sessions. 
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NHP P Percent of Units Moodulating Firing Rates 

(a) Manual (b) Observational 

 

Fig. 19     Percent of units that have modulated their mean firing rates across rewarding 

and nonrewarding trials for NHP P pooled from sessions. Number in the top right is total 

number of units. (a) Manual sessions. (b) Observation sessions. 

NHP S Noise Correlation of Signiicant Units 

(a) Manual (b) Observational 

  

Fig. 20     Pooled average noise correlation for NHP S separated by trial periods. Red 

for rewarding and blue for nonrewarding. (a) Manual sessions. (b) Observation sessions. 
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NHP P Noise Correlation of Signiicant Units 

(a) Manual (b) Observational 

  

Fig. 21     Pooled average noise correlation for NHP P separated by trial periods. Red 

for rewarding and blue for nonrewarding. (a) Manual sessions. (b) Observation sessions. 

Another way we can look at this is by analyzing those unit pairs that we have 

eliminated, the yellow portion of the pie charts in Fig. 18 and 19. Again, this gives us an 

understanding of how correlations are affected if firing rates are the only factor used to 

look for rewarding signals. To accomplish this, the units from the population who did not 

significantly change their firing rates were passed through the noise correlation  analysis. 

The results of which are shown in Fig. 22 and 23. 
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NHP S Noise Correlation of Non-significant Units 

(a) Manual (b) Observational 

  

Fig. 22     Noise correlation distribution of non-significantly modulating units from NHP 

S. Red is for rewarding trials and blue for nonrewarding. (a) is the manual task and (b) is 

observational task. 

 

NHP S Noise Correlation of Non-significant Units 

(a) Manual (b) Observational 

  

Fig. 23     Noise correlation distribution of Non-significantly modulating units from NHP 

P. Red is for rewarding trials and blue for nonrewarding. (a) is the manual task and (b) 

is observational task. 
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3.5 Noise correlations are not easily explained by changes in firing rates.  

 To show that the noise correlations are stimulus dependent while being independent 

of changes in firing rates, the distributions of GMR are matched. This is accomplished by 

plotting the two distributions on top of one another, showing how different they can be. 

Then the larger distribution is subsampled to match that of the smaller distribution, 

resulting in a new marginal distribution. This is illustrated in Fig. 24 through 27. Their (a) 

represents the actual firing rate distributions and (b) the mean matched ones. As in previous 

sections, the number of asterisks represents the level of difference among the two 

distributions. The significance was tested with the Wilcoxon rank sum test. This was 

chosen because the no assumptions were made of the GMR distributions, and the same unit 

pairs were not guaranteed to be present in the mean matched distributions. The unit pairs 

that are present in the new distributions were matched to their noise correlation and the 

noise correlation distribution was recorded in Fig. 28 and 29. The same trends seen 

previous are present here as well. That being 
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NHP S Manual – Mean Matching of Firing Rate Distribution 

 

(a) Raw Firing Rate Distribution (b) Mean Matched Firing Rate 

Distribution 

Fig. 24     Pooled raw and mean matched firing rate distributions for NHP S manual 

sessions. Red for rewarding trials distribution, blue for nonrewarding trials distribution. 

NHP S Observational – Mean Matching of Firing Rate Distribution 

 

(a) Raw Firing Rate Distribution (b) Mean Matched Firing Rate 

Distribution 

Fig. 25     Pooled raw and mean matched firing rate distributions for NHP S 

observational sessions. Red for rewarding trials distribution, blue for nonrewarding 

trials distribution. 
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NHP P Manual – Mean Matching of Firing Rate Distribution 

 

(a) Raw Firing Rate Distribution (b) Mean Matched Firing Rate 

Distribution 

Fig. 26     Pooled raw and mean matched firing rate distributions for NHP P manual 

sessions. Red for rewarding trials distribution, blue for nonrewarding trials distribution. 

NHP P Observational – Mean Matching of Firing Rate Distribution 

 

(a) Raw Firing Rate Distribution (b) Mean Matched Firing Rate 

Distribution 

Fig. 27     Pooled raw and mean matched firing rate distributions for NHP P 

observational sessions. Red for rewarding trials distribution, blue for nonrewarding 

trials distribution. 
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NHP S – Mean Matched Noise Correlation 

(a) Manual (b) Observational 

  

Fig. 28     Average noise correlation from the pooled mean matched unit pairs for NHP S. 

(a) Manual sessions. (b) Observational sessions. 

NHP P – Mean Matched Noise Correlation 

(a) Manual (b) Observational 

  

Fig. 29     Average noise correlation from the pooled mean matched unit pairs for NHP 

P. (a) Manual sessions. (b) Observational sessions. 
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Chapter 4 Discussion 

 In this work, we showed that raw noise correlations in NHPs performing a grip 

force task are generally higher in rewarding trials than that of nonrewarding when 

presented with a reward cue. This was consistent in both manual and observational tasks 

and was seen to be as a general case with subpopulation analysis. Our results are also not 

easily explained by the dissimilarities in firing rates. This suggest that cortical neurons in 

M1 can discriminate between rewarding and nonrewarding stimuli by changing the 

correlation structures.  

The results are interesting as there is a large body of work that suggests that 

correlations decrease with the presentation of a stimulus or attention. Previous correlation 

analyses have been primarily focused on the visual cortex of the brain, where eliciting 

specific responses of a neuron is better understood. It was seen that a presented stimulus, 

generally in the preference of the neurons, was observed to decrease the correlation of the 

population for anesthetized and awake, behaving subjects (Zohary et al., 1994; Kohn and 

Smith., 2005; Huang and Lisberger, 2009). Some experiments vary in the window of 

measurement and state of the subject, which has been shown to change estimates of 

correlation (Bair et al., 2001; Reich et al., 2001; Mitchell et al., 2009;).  

Previous work found that during center out reaching task (COT), rewarding trials 

showed a lower noise correlation for rewarding trials when compared to nonrewarding. 

The behavioral task of the study had NHP subjects either make a lateral movement towards 

one target to the right with visual endpoint feedback or passively observe the endpoint 

move towards the target. The trials started with a center hold of the endpoint along with a 

color cue describing what type the trial was, red for rewarding and blue for nonrewarding. 
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In the current study, movement was not restricted before trial starts, i.e. center hold. One 

possible explanation of the contrasting results is that the NHPs in this experiment were free 

to move their arm throughout the experiment. They were also allowed to grasp the force 

transducer at any given time during reset, cue, reach, release, and success scenes and would 

still be able to complete the trials successfully if they correctly grasped during grasp and 

transport scenes. This permission of freedom leads to behavioral differences in the NHPs 

under study and is seen in some the force profiles from the task data. NHP P periodically 

grabs the force transducer throughout the experiment, seeming to want to obtain the reward 

as soon as possible. NHP S on the other hand generally waits until the appropriate time. 

Their respective force outputs during rewarding trials are depicted in Fig. 30 and 31. 

Force outputs of NHP S for Successful Trials 

 

Fig. 30     Grip force output examples from NHP S. Time 0s is the reset scene and the 

start of the trial. The dashed lines are the difference scenes during the task. 
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Force outputs of NHP P for Successful Trials 

 

Fig. 31.     Grip force output examples from NHP P. Time 0s is the reset scene and the 

start of the trial. The dashed lines are the difference scenes during the task. 

Sometimes, NHP P does not let go before grasping scene and fails the trial, as evident in 

the percentage of failed trials (average 20% over all sessions). On the other hand, NHP S 

generally waits through the scenes until application of force will lead to the successful 

completion of the trial. This results in NHP S having a much lower failure rate (about 8% 

overall) This kind of behavior difference may explain the differing noise correlation results 

in the post-reward periods as well. NHP P seems fixated on getting reward, while NHP S 

seems to focus on completing the trials correctly to maximize reward delivered. Another 

difference between the COT and the GFT is that there is no cue present for nonrewarding 

trials in the GFT. Marsh et al. showed in 2015 that expectations of reward modulates the 

activity in M1. It is reasonable to imagine that reward expectations are different between a 

case where the subject is told explicitly that reward will not be delivered for a successful 

trial and the case where they must infer the same outcome implicitly through a lack of cue. 

It was previously thought that if the stimulus was attended by a subject, then the 

shared variability would always decrease (Gutnisky and Dragoi, 2008; Cohen and 

Maunsell, 2009; Mitchell et al., 2009; Gu et al., 2011; Herrero et al., 2013). This theory 

has since been further developed with the observation that an increase or decrease in 
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correlation values depends on a neuron and what role they play in the task (Ruff and Cohen, 

2014). Correlated variability was also previously thought to be detrimental to population 

statistics and that a decrease in neural correlations lead to more accurate decoding (Zohary 

et al., 1994). Though this assumption holds true for a population of homogeneous neurons, 

meaning they all share common inputs, it rarely is the case as neurons in cortical regions 

can have diverse responses (Monier et al., 2003; Truccolo et al., 2008; Ecker et al. 2011). 

Reduction of correlations do not necessarily mean better information transfer between the 

neurons. A population of diversely tuned neurons can lead to a more efficient encoding of 

the stimuli and more information can be carried through the correlations. (Shamir and 

Sompolinsky, 2006; Ecker et al., 2011; Goris et al., 2015). Some studies have shown that 

an increase in correlations can improve encoding accuracy for models as well, while others 

have shown that correlations can be stimulus dependent (Josic et al., 2009; Ecker et al., 

2011).  

It has been suggested that correlations increase with firing rates (de la Rocha et al, 

2007). As this is a simplistic assumption for neuronal correlations, some studies have tried 

to control firing rates by mean matching the GMR of unit pairs (Kohn and Smith, 2005; 

Banyai et al 2018). Using the arithmetic mean could have been useful as well as it can help 

determine the differences in Fano factor using matched rates (Churchland et al., 2010), but 

the GMR has been shown to better predict noise correlations (Schulz et al., 2015). With 

the GMR matched between rewarding and nonrewarding trials, the results of section 3.5 

showed that the same correlation trends were still observed as those of raw correlations. 

This indicates that the correlations are stimulus dependent and are less likely to be the cause 

of changes in rates.  



38 
 

Chapter 5 Conclusion and future work 

The results from this experiment attempts to further the understanding of how 

stimuli are modulated in a population of M1 neurons. The higher noise correlation for 

rewarding trials during post-cue period are shown to be stimuli dependent and consistent 

with manual and observational tasks. The differences in post-reward period between 

subjects could result from a difference in behavior. Previous work showed that a different 

task resulted in an opposite effect, suggesting that noise correlations are task dependent as 

well. This nature of correlations could be helpful in developing a reinforcement learning 

BMI.  

One possible way to extend this work is to observe noise correlations at: different 

periods of the trial, failed trials, multiple levels of reward, and higher levels of correlations 

such as triplets, quadruplets, etc. Lastly, design of an experiment that reduces the effects 

of external factors would solidify the results here. This could include restrictions of when 

the force can be outputted by the subjects.  
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Appendix  

A. Other Figs from the NHPs 

The zero time in Fig. A.1 to A.4 are centered at the previously described cue 

presentation and reward delivery. In Fig. A.3 top left, the session shows that for the peri-

cue period, firing rates for nonrewarding trials were higher than that of rewarding ones. 

This goes against convention as desirable stimuli is thought to elicit a stronger response. 

This could be explained by the way the subject behaves during some trials as it seems to 

be more driven by getting reward than by completing the trials to get maximum reward.  

  

  

a b 

Fig. A.1     Average population firing rates for NHP S manual sessions not shown 

previously. (a) Manual sessions. (b) Observational sessions 
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a b 

Fig. A.2     Average population firing rates for NHP S observational sessions not shown 

previously. (a) Manual sessions. (b) Observational sessions 
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a b 

Fig. A.3     Average population firing rates for NHP P manual sessions not shown 

previously. (a) Manual sessions. (b) Observational sessions 
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a b 

Fig. A.4     Average population firing rates for NHP P observational sessions not shown 

previously. (a) Manual sessions. (b) Observational sessions 
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B. Validation of code 

 To validate that the codes were not giving random results, spike trains of differing 

correlations were generated and tested. The method for generating these spike trains are 

detailed in Macke et al., 2009. In summary, the generation uses a dichotomized gaussian 

distribution model. The firing rates will be normally distributed, and the occurrence of a 

spike in time will result in possible simultaneous spike times in other simulated neurons.  

 

Fig. B.1     Macke et al., 2009. Illustration of how spike times can be correlated. 

Correlations are modulated through generating a covariance matrix of size N x N, 

where N is the number of simulated neurons. This method does not allow for direct control 

of actual correlations, but for validation, the covariance was set to high and low values for 

simulated “rewarding” and “nonrewarding”.  
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Fig. B.2     Example of simulated raster. 

This model does not consider the absolute or relative refractory periods, so the model is 

not physiologically realistic. The resulting firing rate distribution and average noise 

correlation are displayed in Fig. 

 

 

a b 

  

Fig. B.3     Analysis of the simulated population where “rewarding trials” had higher 

correlations.  (a) Actual and mean matched FR distribution of simulated population. (b) 

Mean noise correlation of simulated population. 
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The correlation trends are as expected. To further inspect if the code is not biased for 

rewarding trials, toy data was generated with it known that nonrewarding would have 

higher correlation values.  

 

 

a b 

Fig. B.4      Sanity check with simulated “nonrewarding trials.” Results still showed 

which would be result in higher mean noise correlations. (a) Actual and mean matched 

FR distribution of simulated population. (b) Mean noise correlation of simulated 

population 

 



1 
 

 


