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ABSTRACT 

Weight change is explained by energy imbalance between energy intake 

(EI) and energy expenditure (EE). Because changes in EI and EE affect each other in a 

dynamic way, energy deficit that is produced by changes of physical activity energy 

expenditure (PAEE) or EI are often smaller than predicted. However, there are sources of 

error in estimating energy deficit such as measures of PAEE and EI (both objective and 

subjective methods) as well as confounding factors that affect inconsistent estimates of EB. 

Subjective self-reported data have been used to collect data in large populations due to the 

advantages of requiring few resources and the data require little processing, but they 

have low reliability and validity compared to objectively measured methods. Thus, it 

is necessary to find and develop methods to improve the accuracy of self-reported EI and EE 

measurement with accounting for possible confounding factors such as initial body 

composition, PA history, energy balance status, and racial differences. We hypothesized that 

the accuracy of weight change estimation would be improved by accounting for the 

variability attributable to these factors at the individual level.  

Therefore, this dissertation sought to identify methods to improve accuracy of 

estimating energy balance using self-reported EE and EI data by evaluating how various self-

reported measures account for the possible confounding factors. This dissertation 1) tested 

accuracy for a range of predicted weight change estimation after a prescribed exercise 

intervention using measured and self-reported data and comparing to the observed weight 

changes, 2) examined how initial energy balance before participating in the 

exercise intervention affects the accuracy of energy balance estimates, and 3) examined the 
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association of racial differences with accuracy of estimation for weight changes to the 

intervention. 

This dissertation found the predicted weight change estimations among the variety of 

self-reported PAEE methods were fairly consistent, with the predicted weight change by 

PAEE estimation using RPE being the most accurate self-reported method for estimation of 

PAEE used to predict weight changes after the prescribed intervention, followed by the 

combination of objectively measured HR and self-reported RPE. In addition, individuals 

showed considerable variability of estimated EB status before participating in the 

intervention and a small amount of positive EB before participating in the prescribed activity 

on average. The accuracy of predicted weight changes was improved by accounting for 

individual variability such as initial body composition, PA level, and especially baseline EB 

status. Finally, this dissertation observed racial differences of body size and composition at 

baseline, but race did not affect prediction of weight changes after accounting for these 

differences in predicting change in body weight.  

The findings of this dissertation indicate that accuracy of self-reported measures can 

be improved to be more feasible for use and analysis in large population research settings, 

primarily reducing bias and improving precision by accounting for individual variability in 

baseline characteristics and using a validated prediction model. Investigators need to consider 

including individual variability at baseline to improve estimation of expected energy deficit 

and the development of effective weight management intervention programs. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 BACKGROUND AND RATIONALE 

Obesity has been considered as a growing problem in the United States (US). About 

two third of adults are classified as overweight or obese, which is defined as having body 

mass index (BMI) greater than 25 kg/m2 and 30 kg/m2, respectively [1]. US adults are 

gaining 0.5 to 1 kilogram per year on average [2].  

Weight gain is explained by energy imbalance, consistently excess energy intake (EI) 

over energy expenditure (EE), which is called positive energy balance (EB). In order to lose 

weight, therefore, it is necessary to produce negative EB, in which EE exceeds EI [3]. For 

losing weight, intervention programs aim to increase physical activity energy expenditure 

(PAEE), decrease EI, or achieve a combination of both. Since changes in EI and EE affect 

each other in a dynamic way, production of energy deficit by changes of PAEE or EI are 

often smaller than predicted [4-6], and may ultimately result in failure of weight loss goal 

achievement in individuals. Why does not predicted weight loss with increase of PAEE in 

particular seem to match with the actual weight loss? What are the possible confounding 

factors that result in inconsistent estimates of EB and predicted weight loss for PAEE 

interventions? 

First, there are errors for estimating energy deficit (difference between EI and EE) for 

weight management depending on the measures of EE and EI used. Several objective and 

self-reported measurement methods have been validated and used to estimate EI and EE [7]. 

Objectively measured PAEE methods such as doubly labeled water (DLW), accelerometers, 

and pedometers are more likely to provide accurate measures of PA but also are challenging 
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to distribute among large numbers of free-living individuals and expensive in terms of 

personnel, equipment, and processing costs [8]. Self-reported dietary intake via recall or food 

frequency questionnaires for EI and physical activity (PA) logs and categorical physical 

activity level (PAL) ratings for PAEE have been used to collect data in large populations, 

because they have the advantages of requiring few resources (e.g., staff and equipment), and 

the data require little processing and are thus immediately available [9, 10]. However, they 

may also have poor reliability and validity [11]. Especially, using a categorical general rating 

of PAL would have limitations due to different fitness levels among individuals. The rating 

of perceived exertion (RPE) scales is a valid method of rating intensity and can be feasibly 

collected on a large population to estimate heart rate, and thus it may help improve 

estimation of PAEE by using mode and duration of activities with RPE. With the growing 

number of epidemiology studies among free-living large populations, self-reported data is 

more feasible to collect and analyze. Thus, it is desirable to find and develop methods to 

improve the bias (systematic error) and precision (random error) of self-reported 

measurement to estimate EE and EI. 

In addition to the measurement challenges, individual variability in EI and EE 

behaviors before participating in weight loss intervention should be considered as 

confounding factors when the effects of weight loss intervention are examined. Most studies 

have examined weight changes after an intervention that increases PAEE, decreases dietary 

intake, or does a combination of both to achieve a negative EB. Successful intervention 

programs are considered as those producing more weight reduction. However, initial body 

composition and specific changes in energy stores (fat mass [FM] and fat free mass [FFM]) 

also affect the rate and amount of weight changes and EB in individuals. In particular, weight 
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loss induced by increasing PAEE to increase total daily energy expenditure (TDEE) would 

vary in individuals depending on initial FM and FFM [12]. At the same caloric intervention-

induced negative EB, a person with higher initial FM would lose more weight eventually but 

take longer to reach a new EB state, compared to a person with lower initial FM [13, 14].  

Initial energy balance status and PA history before entering a weight loss intervention 

program would also affect weight changes. Most studies of intervention programs for weight 

management assume, explicitly or implicitly, that participants are in EB (i.e., weight stable) 

and have the same PA level at baseline (i.e., sedentary or inactive). However, there could be 

considerable variability based on lifestyle among participants. For example, a person who is 

in positive EB at the start of intervention may lose less weight than would be expected by the 

caloric value of the intended negative EB of the intervention. For this person, the intervention 

program needs to produce a larger energy deficit by adding more PA or reducing caloric 

intake to offset the initial positive EB to achieve the intended negative EB for weight loss. 

Moreover, a sedentary person may replace sedentary behaviors with the intervention 

PA, which results in a net increase in PAEE and TDEE. This person would lose weight if EI 

remains unchanged. An active person, however, may replace some or all of their habitual 

exercise EE with the intervention PA, which would result in a much smaller net increase in 

PAEE and TDEE than expected. Even if the active person adds the intervention PA without 

reducing their other exercise activities, there seems to be an upper limit on PA’s contribution 

to increasing TDEE. This limit is due to compensatory reduction of other activity (non-

exercise PAEE) and metabolic adaptations, such that at increasing amounts of PAEE and 

TDEE does not increase proportionately and may eventually reach a plateau at which adding 

more PAEE has no effect on TDEE [5, 15]. There is also compensatory increasing in EI in 
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response to increase in PAEE [16]. Therefore, the information about the initial FM, EB, and 

PA status of individuals would be helpful to design an intervention of appropriate magnitude 

to achieve their weight loss goals.  

Racial differences should also be considered as a potential source of individual 

variability when predicting EB. Racial disparities in prevalence of obesity [17, 18] and racial 

differences of body composition [19, 20], chronic diseases [21, 22], and behaviors [23] have 

been observed by many studies. These racially distributed physiological and behavioral 

differences would affect energy balance and its influence on energy stores, and ultimately 

results in different weight gain, loss, or maintenance among racial groups. Indeed, the effects 

of increased PAEE on weight and body composition changes vary considerably across 

different racial groups [24]. This result may be explained partly by various genetic factors 

among different racial groups that may be associated with exercise adoption and adherence 

[25] or physiological differences in response to prescribed exercise types and dose 

independent of effects of race-associated differences in body composition, energy balance 

(i.e., average rate of weight change), and PA, which also vary by race. Thus, to examine the 

racial differences response to intervention, it is necessary to control for each individual’s 

initial (habitual) activity level and baseline energy balance and body composition.  

The purposes of this dissertation were to 1) examine the accuracy and reliability of 

EB prediction using self-reported EE and EI data and identify potential factors related to 

systematic and random error (bias and precision), 2) investigate the effects of energy balance 

status at baseline on body weight changes after a 15-week prescribed exercise intervention, 

and 3) explore racial differences of weight changes response to the intervention. 
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1.2 RESEARCH AIMS 

The primary goal of this study was to seek accurate and reliable way to predict energy 

imbalance in individuals, as indicated by weight changes, using self-reported EE and EI data 

and quantifying change in total PAEE during a prescribed exercise intervention while 

accounting for possible confounding factors that influence EB estimation (e.g., baseline body 

composition and energy balance). To achieve this goal, three studies were separately 

conducted. Figure 1 shows rationale, aim, and approach of each study to achieve the overall 

goal.
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Figure 1. Overview of the proposed study 

PAEE: physical activity energy expenditure; EE: energy expenditure; EB: energy balance; EI: energy intake; NIDDK: the National Institute of Diabetes and 
Digestive and Kidney Diseases; HRPAS: heart rate physical activity score; RPE: rating of perceived exertion; PA: physical activity
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In study 1, the research aim was to predict energy imbalance as indicated by change 

in body weight in sedentary individuals by estimating TDEE including resting EE (REE; 

calculated by an equation), PAEE (daily non-exercise and exercise), and other components 

(thermic effects of food [TEF; 10% of TDEE] and adaptive thermogenesis [AT; 14% of 

TDEE]) at baseline. The change in PAEE after participating in a prescribed exercise program 

was quantified using a variety of self-reported data and collected HR data during a 15-week 

exercise intervention and used to predict weight change. In addition, the accuracy (bias and 

precision) of using the various methods of self-report to estimate PAEE and the available 

self-reported EI data to estimate weight changes associated with the PA intervention were 

evaluated.  

Hypothesis 1: Self-reported PAEE with rating of perceived exertion (RPE) would be 

the most accurate self-report method (lowest bias and best precision) in predicting 

weight change following the intervention. 

In study 2, the research aim was to investigate the effects of different baseline energy 

balance status on body weight change following a prescribed exercise program, thus 

improving the accuracy of the methods identified in Study 1. 

Hypothesis 1: Including energy balance status at baseline would decrease bias and 

increase the precision of predicted weight changes after the prescribed exercise intervention. 

In study 3, the research aim was to examine the effects of race on weight change 

response to the prescribed exercise program, thus improving the accuracy of the methods in 

Studies 1 and 2. 
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Hypothesis 1: Changes in weight after 15-week of exercise program would differ among 

racial groups after controlling for initial body composition, changes in EI, and baseline 

energy balance.  

 

1.3 OUTLINE 

Chapter 1 is the Introduction of the dissertation. In this chapter, a brief background 

and the rationale of the study, overall aims and aims of each study, and the research questions 

and hypotheses are included. 

Chapter 2 is the Literature Review, including explanation of current research on 

energy balance theory and weight changes in individuals, how energy balance is estimated 

and interpreted, Hall’s model for estimation of weight changes in response to changes in 

energy balance, intervention programs for weight management based on energy balance 

theory, and factors potentially related to individual variability in energy balance and weight 

changes. 

Chapter 3 is the Methodology. In this chapter, study design and methodology of each 

study are explained.  

Chapter 4 is the Manuscript 1 that describes research regarding Study 1. 

Chapter 5 is the Manuscript 2 that describes research regarding Study 2. 

Chapter 6 is the Manuscript 3 that describes research regarding Study 3. 

Chapter 7 is the Conclusion that summarizes findings of the dissertation and 

describes strengths, limitations, and future directions for research. 
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1.4 IMPORTANT TERMS AND ABBREVIATIONS 

%HRR: percent of heart rate reserve 

%VO2max: percent of the maximum rate of oxygen consumption during exercise 

BMI: body mass index (kg/m2) 

BMR: basal metabolic rate (kcal/kg/day) 

DLW: doubly labeled water 

DXA: dual-energy x-ray absorptiometry  

EB: energy balance 

EE: energy expenditure 

EI: energy intake  

FFM: fat free mass (kg) 

FFQ: food frequency questionnaire 

FM: fat mass (kg) 

HR: heart rate 

HRmax: age-predicted maximum heart rate  

HRex: average heart rate during exercise 

HRPAS: heart rate physical activity scores 

IPAQ: international physical activity questionnaire 

MET: metabolic equivalent 

MVPA: moderate to vigorous physical activity 

NIDDK: National Institutes of Digestive and Diabetes and Kidney Diseases 

PA: physical activity 

PAEE: physical activity energy expenditure (kcal/day) 
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PAL: physical activity level 

PAR: physical activity rating 

REE: resting energy expenditure (kcal/day) 

RMR: resting metabolic rate (kcal/kg/day) 

RPE: rating of perceived exertion 

TDEE: total daily energy expenditure (kcal/day) 

TEF: Thermic effect of food 

TIGER: Training Intervention and Genetics of Exercise Response 

VO2max: maximum rate of oxygen consumption 

VO2ex: rate of oxygen consumption during exercise 
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1 ENERGY BALANCE THEORY AND WEIGHT CHANGES 

Energy balance (EB) refers to the theory of maintaining the balance between the 

amount of energy intake (EI) and energy expenditure (EE). When one is consistently more 

than the other, it becomes energy imbalance, and then weight gain or loss will occur. More 

simply, positive energy balance, when EI exceeds EE, will result in weight gain (increase in 

energy stores in the form of body mass), whereas negative EB, when EE exceeds EI, will 

result in weight loss.  

The original concept of EB was expressed in static terms. As attributed to 

Wishnofsky, based on his interpretation of the published results of a study of 13 subjects with 

obesity who were placed on a monitored diet [26], a cumulative negative EB of 3,500 kcal is 

needed to lose one pound of body weight, and the negative EB may be attained by decreasing 

EI or increasing EE or a combination of both [27]. For example, if a person wants to lose ten 

pounds of his weight, equivalent to 35,000 kcal in static EB terms, it could be achieved by 

daily 350 kcal reduction of EI for 100 days. Use of Wishnofsky’s estimate in this manner 

assumes that a change in one component (EE or EI) does not change or affect the other 

component [28].  

The static concept of EB and Wishnofsky’s estimate have been under criticisms for 

issues of inaccuracy and overestimation of predicted weight loss [29], leading to modeling of 

EB as a dynamic process. The dynamic concept of EB explains how changes in factors on 

one component (i.e., EI) influence factors on the other component (i.e., EE), acknowledging 

that numerous biological and behavioral factors regulate both sides [28]. In other words, EB 
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is dynamic with non-linear relationships and responses between EI and EE, meaning that 

sustained changes in one component cause changes in the other. In the example above, the 

person with an initial 350 kcal/day negative EB would actually lose less than expected 

amount of weight for the period, or it would take longer than 100 days. Table 1 shows the 

factors that regulate and influence EE and EI in dynamic ways (adapted from [30-32]).  

 

Table 1. The factors that regulate and influence EE and EI. 

Energy Intake (EI) Examples Energy Expenditure (EE) Examples 

• MVPA alters EI and food selection 

• Bigger body size (body mass) increases EI 

• Ghrelin (hormone) increases appetite 

• Increases of PA increases EI 

• RMR increases with FFM 

• REE increases with total body weight 

• TEF is increased by high EI 

• High intensity PA increases sedentary time 

• Low EI decreases EE 

MVPA: moderate to vigorous physical activity; EI: energy intake; PA: physical activity; RMR: resting 
metabolic rate; FFM: fat free mass; REE: resting energy expenditure; TEF: thermic effect of foods  
 

In the dynamic concept of EB, one component change for weight change will affect 

the other component with biological and behavioral compensation. Restricted caloric intake 

without changing activity results in rapid weight loss at the beginning with negative EB by 

decreasing body mass stores of carbohydrate, protein, and fat and water with those 

components [16]. By losing body mass through caloric restriction alone, however, both FFM 

and FM decrease, which affect, resting metabolic rate (RMR) and resting energy expenditure 

(REE) (and thus total daily energy expenditure). In addition, the thermic effect of food (TEF) 

also decreases due to lower food consumption. Decreases in these components, RMR/REE 
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and TEF, decreases total daily energy expenditure (TDEE) [28]. Decreased EI also may lead 

to a behavioral decrease in PAEE as a EE response to lack of energy for activities [33]. 

Combining all of these effects, particularly the decrease in TDEE, the energy deficit will be 

smaller than expected from the caloric value of the EI restriction. This decrease in energy 

deficit results in slower than expected weight loss as time increases; the weight loss is 

nonlinear for a fixed decrease in EI. As these compensations continue, at some point the 

negative energy deficit will disappear and EB will be reached at a new stable body mass.  

Substantially increased EE (i.e., high intensity exercise) results in behavioral 

compensatory changes in EE, such as decrease of other moderate to vigorous physical 

activity (MVPA) or increase of sedentary time due to fatigue [34-36]. Consequently, the net 

increase in kcal/day from EE will be smaller than the value of the additional exercise [4], and 

these compensatory effects increase with the total amount of added PAEE. In addition, 

increased TDEE may alter energy demand and stimulate appetite hormones (i.e., ghrelin) and 

daily food intake, resulting in an increase of EI [37-39]. These adaptations and responses 

may elicit a smaller energy deficit than the value of the added PAEE, which ultimately 

results in failure to obtain the expected weight loss. 

Changes in body composition (i.e., relative amounts of FM and FFM) by exercise 

lead to changes in EI and EE. In general, a 1 kg-for-1 kg increase in FFM and decrease in 

FM will increase RMR, which would increase TDEE [40, 41]. Because metabolically 1 kg 

change of FFM requires more energy than a 1 kg change of FM [42], whereas the energy 

density is much higher in FM than in FFM, the change in FM is more than the change FFM. 

More simply, it is more efficient to build or catabolize FM than FFM when either storing 

energy or using body mass as energy stores. Thus, exercise interventions for increasing FFM 
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and RMR have been utilized to lose weight while maintaining or increasing FFM [43]. 

However, a recent review study suggested that increased FFM by exercise ultimately 

increase EI at EB, negative EB, and positive EB status [44]. For example, FFM while body 

weight maintaining stimulates increased appetite due to its higher energy demands, which is 

balanced to some extent by leptin inhibition from FM signaling. Therefore, the association of 

FFM with EI is mediated by RMR [44]. Increased FFM while losing body weight may 

increase EI due to disproportionally decreased FM and thus, energy demand and drive to eat 

to preserve and restore FFM. Finally, increased FFM while gaining body weight may 

increase appetite and an increase in FM, which could lead to development of insulin and 

leptin resistance. Thus appetite increases by increased tonic stimulation with decreased 

inhibitory system, which results in increased ghrelin hormone with decreased leptin that 

works for decrease appetite [44]. Again, the increased EI by changes in body composition 

may bring out smaller energy deficit than intended. Even though the created negative EB is 

smaller, however, maintaining FFM during weight loss has several benefits such as 

maintaining REE and decreasing proportion of FM, which is more likely to be successful for 

long-term weight loss and prevention of weight regain due to required less energy deficit 

[45]. 

 

2.2 ENERGY BALANCE COMPONENTS, ESTIMATION, AND 

INTERPRETATION 

To determine EE and EI for estimation of EB and prediction of weight changes, 

several methods and analytical procedures are available. Each method of measurement for 
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EE and EI components are described in Figure 2 (adapted from Fernandez-Verdejo, 2019 

[7]).  

EI is commonly assessed using self-reports such as 24-hours dietary recall, food 

record or dairy, and food frequency questionnaires. The 24-hours dietary recall, measuring 

the collection of foods consumed during the last day [46], has been used due to easy to 

administer [7]. However, this method needs trained interviewers and responders and is not 

able to measure habitual food intake using a single day of food consumption only. An 

average of three 24-h recalls or combination of randomly selected weekdays and weekend 

are recommended [47]. Food record or diary, recording the amount of all foods and beverage 

consumptions on daily basis for 3 to 14 days, is able to capture quantitative food 

consumption information by measured or weighed foods and beverage before consumption. 

However, it is hard to capture participants’ habitual food intake since food intake may be 

altered during the recording period [48]. Although the food frequency questionnaires (FFQ), 

asking frequency of food consumptions over a specific time period (i.e., a typical week, 

month, or year), is one of several validated methods of dietary assessment, this method has 

issues of quantification for not listed food items in the questionnaire and feasibility and 

accuracy for recall of many days [49]. Overall, EI using those self-reported assessments 

commonly results in under-reporting of EI. A study showed that the average rate of under-

reported EI was 28% and 15% with FFQ and 24-h recalls, respectively, among Americans 

[50], which is equivalent to 300 to 700 kcal/day for EI between 2000 and 2500 kcal/day. A 

review study also reported that self-reported 24-h recall data tended to be under-reported 

16% on average when comparing with estimated EI assessed by doubly labeled water 

(DLW), with the assumption that estimated EE by DLW is equal to EI in weight stable 
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individuals [51]. For this under-reporting problem, Goldberg’s cut-off is suggested to use for 

screening of EI data [51]; if a ratio of reported EI to basal metabolic rate (BMR) is less than 

1.55, the report is deemed infeasible since the EI would be below minimal TDEE as 

estimated using body weight [52].  
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Figure 2. Measurement of EE and EI and main issues 

 

RMR: resting metabolic rate; PAEE: physical activity energy expenditure; TEF: thermic effect of foods; DLW: doubly labeled water 
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 EE can be assessed by combination of resting energy expenditure (REE), PAEE, and 

TEF, which account for about 60%, 30%, and 10% of TDEE, respectively [53]. REE is 

estimated by measuring RMR (kcal/kg/day) using indirect calorimetry or predictive 

equations. Indirect calorimetry estimates substrate oxidation by measurement of gas changes 

between oxygen consumption (VO2) and carbon dioxide production (VCO2) to estimate EE 

using conversion equations [54]. For this method, it is suggested that individuals need to fast 

for more than 7 hours, rest for at least 30 minutes before testing [55], refrain from smoking 

(>2.5 hours before testing), refrain from caffeine/stimulants consumption (>4 hours before 

testing), and no exercise (>24 to 48 hours before testing, depending on intensity of exercise) 

to remove influence on confounding factors for estimation [7]. With such sensitive testing 

conditions being required to conduct indirect calorimetry, using predictive equations to 

calculate metabolic rate (kcal/day) is another possible error to determine individual REE or 

RMR [7]. Depending on what equations are using, the intra-individual difference can be up 

to 167 kcal/day [7], which could be critical amount of error for estimating long-term EE and 

EB.  

Predictive equations for estimating REE are easier and inexpensive as compared with 

indirect calorimetry. However, the results could be less accurate and estimation of REE 

varies by the selection of the equation. There have been several equations for different 

populations, such as Italians [56, 57], Spaniards [58], North Europe athletes [59], and all 

populations [60], Central Americans [61], etc. Therefore, the equation should be selected for 

the respective population, but there will be prediction error regardless of what equation is 

used. In this study, the predictive equation from Mifflin et al., (1990) was used to estimate 

REE in individuals. This equation was tested among normal weight and obese subjects by 
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comparing with indirect calorimetry data [62]. Mifflin’s equation has been validated [63] and 

used [14] by researchers for estimation of REE. The equation of Mifflin et al. (1990) for REE 

(kcal/day) is as following [62]: 

 

!""	(%&'()) = 10 × /(01ℎ3	(41) + 6.25 × ℎ(01ℎ3	(:')	– 5 × <1(	(=>)	– 161			(Eq.	1)	

!""	(A()) = 10 × /(01ℎ3	(41) + 6.25 × ℎ(01ℎ3	(:')	– 5 × <1(	(=>)	– 5		 							(Eq.	2)	

 

PAEE can be measured by doubly labeled water (DLW), self-report, accelerometer, 

and pedometer. DLW has been recognized as a golden standard to measure TDEE under 

free-living conditions [60]. DLW method is measuring the difference between the 

elimination rates of the stable isotopes, deuterium (2H) and oxygen (18O), consumed by the 

participant as water. The rate of CO2 production can be estimated by this difference and used 

to calculate EE [64]. PAEE using DLW can be estimated by subtracting REE and TEF from 

the TDEE. However, there are limitations for conducting DLW such as length of observation 

interval, cost, and sample collection analysis procedure [65]. The TDEE to REE ratio is an 

index of PA, which represents the energy requirements of physical activity as multiples of 

REE and is known as Physical Activity Level (PAL, Table 2) [60].  

 

Table 2. PAL categorization [66] 

Level of Activity PAL 

Sedentary or Light Activity 1.40-1.69 

Active or Moderately active 1.70-1.99 

Vigorous or Vigorously active 2.00-2.40 
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 Self-report methods for PA such as International Physical Activity Questionnaire 

(IPAQ), self-reported PA level, and physical activity rating (PAR) are commonly used to 

estimate PAEE. Using IPAQ, metabolic equivalent (MET) of the reported activities are 

estimated basking about occupational, transport, household, and leisure activities and 

sedentary behaviors for the past 7 days. The MET, the ratio between the rate of activity EE to 

the rate of EE at rest [60, 67, 68], with rest being 1 kcal/kg/hour and 3.5 ml of oxygen per 

kilogram per minute, which is approximately equivalent to the energy cost of sitting quietly. 

Therefore, PAEE can be estimated using MET, time of each activity, and body weight [69].  

Self-reported PA level category as described by Hall et al. [14] is used to estimate 

PAEE by individuals reporting their activity levels from 1.4 to 2.3 (Table 3). Hall’s self-

reported categorical PAL consists of two parts: work/school activity (very light, light, 

moderate, and heavy; 0 to 3) and leisure time activity (very light, light, moderate, active, and 

very active; 0 to 4).  

 

Table 3. Hall’s self-reported PAL categories 

 Leisure time physical activity 

Work/School 

physical 

activity 

 0 1 2 3 4 

0 1.4 1.5 1.6 1.7 1.9 

1* 1.5 1.6 1.7 1.8 2.0 

2 1.6 1.7 1.8 1.9 2.2 

3 1.7 1.8 1.9 2.1 2.3 

*Participants of this study were sedentary college students, and thus “1; Light” for Work/School physical 
activity is expected (bolded). 
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One version of the PAR has seven-point scales of activity levels to categorize 

individual’s level of PA, originally developed for use in regression equations for estimating 

aerobic capacity without exercise testing [70]. PAR 7-point scale ranges from 0 to 7;  

0 = None (Avoids walking or exercise) 

1 = Minimal activity (Walks for pleasure, routinely uses stairs, occasionally exercises 

sufficiently to cause heavy breathing or perspiration) 

2 = Moderate activity (Participation in recreation or work requiring modest PA for 10-60 

minutes per week) 

3 = Moderate activity (Participation in recreation or work requiring modest PA over 1 

hour per week) 

4 = Vigorous activity (Runs less than 1 mile per week or spends less than 30 minutes per 

week in comparable PA) 

5 = Vigorous activity (Runs 1-5 miles per week or spends 30-60 minutes per week in 

comparable PA) 

6 = Vigorous activity (Runs 5-10 miles per week or spends 1-3 hours per week in 

comparable PA) 

7 = Vigorous activity (Runs more than 10 miles per week or spends more than 3 hours 

per week comparable PA) [70].  

Although these self-reported PAEE or TDEE data are inexpensive to use and easily 

distributed to large populations, self-reported data for PA also have issues with accuracy, 

especially over-reported PA, leading to biased estimates of EE [7, 11]. 

In this study, PAR was converted to self-reported PA level categories for estimation 

of EE using the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) 
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online calculator described by Hall et al. [14]. Since the inclusion criteria require participants 

of this study to be sedentary university students, lifestyle PAEE would be ranging from 1.5 to 

1.6 of PAL at baseline, assuming “Light” for work/school activity and “Very Light” or 

“Light” for leisure time activity. The PAEE of the exercise intervention was added to the 

leisure time activity component, with an assumption that work/school activity is unchanged 

(Table 4).  

 

Table 4. PAR, Hall’s self-reported PAL, and associated PAL categories 

PAR Hall’s self-reported  
leisure time PAL category 

PAL ratio 
(TDEE/RMR)^ 

0 Very Light 1.5 

1, 2 Light 1.6 

3, 4 Moderate 1.7 

5 Active 1.8 

6, 7 Very Active 2.0 

PAR: physical activity rating; PAL: physical activity level; TDEE: total daily energy expenditure; RMR: resting 
metabolic rate 
^In the current study, PAL ratio is estimated by “Light” for Work/School activities with Leisure time activities 
from “Very Light” to “Very Active”. 

 

However, because individuals have different fitness levels, using a categorical rating 

of overall PA has limitations. For example, if two people who rated their activities as a “very 

active” have different fitness levels, the person who has lower fitness (i.e., lower aerobic 

capacity, perhaps walks regularly) likely would do relatively lower intensity, frequency, or 

duration of activity, resulting in a lower PAEE, compared to a person who has higher fitness 

(i.e., higher aerobic capacity, perhaps runs regularly). The rating of perceived exertion (RPE) 



23 
 

scales have been used for quantitative measured of perceived exertion during PA. RPE is a 

valid method of rating intensity that is highly correlated with heart rate and VO2, and can be 

feasibly collected on a large population [71, 72]. Thus, RPE may help improve estimation of 

PAEE by using RPE with each self-reported activity and duration in combination with each 

person’s estimated aerobic capacity to provide a caloric estimate of the activity. Borg’s RPE 

[72] was used as self-reported intensity of exercise in this study. The Borg’s RPE scale 

ranges from 6 (no exertion at all) to 20 (maximal exertion), as described in Table 5.  
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Table 5. Borg’s Rating of Perceived Exertion 

Rating Perceived Exertion 

6 No exertion 

7 
Extremely light 

8 

9 
Very light 

10 

11 
Light 

12 

13 
Somewhat light 

14 

15 
Hard 

16 

17 
Very Hard 

18 

19 Extremely hard 

20 Maximal exertion 

 

Accelerometers and pedometers are commonly used to assess EE objectively. 

Accelerometers count accelerations in three orthogonal axes over a fixed time interval. 

Pedometers count movements of device sensors resulting from steps (e.g., walking or 

running). These are small devices, and thus easy to carry and wear for assessment of free-

living activity. Although accelerometers have been validated by comparing to DLW 
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estimates and have been used for many studies, count cut-points for indicating intensity of 

different activities can differ by the various calculation algorithms; children require different 

cut points than adolescents and adults, for example. Accelerometry is less reliable for the 

quantification of some activities such as cycling and swimming, since most of the algorithms 

were developed while participants were walking and running – the acceleration parameters 

differ greatly for non-gait activities. Finally, the accelerometer counts can possibly be 

manipulated (intentionally or unintentionally) by participants to produce activity counts in 

the absence of meaningful body movement [7].  

Finally, TEF, the energy required for ingestion and digestion of foods, can be directly 

measured by indirect calorimetry. Like RMR, using indirect calorimetry has issues of 

sensitivity to conditions for assessment, long duration of measurement (up to 6 hours after 

consumption), and variable accuracy of caloric calculation when using different calibration 

equations [7]. TEF is the smallest component of TDEE, only accounting for about 10% [40, 

53]. This study will also use a fixed value of 10% for TEF when calculating EE. Although 

this may not accurately reflect inter-person differences (i.e., a person who consumes more 

protein has higher TEF than a person who consumes more carbohydrates [73]), its bias in 

TDEE estimation would be negligible since it is a constant proportion of the sum of the REE 

estimate and a PAEE estimate using any of several methods. 

 

2.3 PREDICTION OF ENERGY IMBALANCE AND WEIGHT CHANGES USING 

HALL’S MODEL 

Weight changes can be predicted by an imbalance between EE and EI over time. 

There are several mathematical models for prediction of weight changes following changes 
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of EE and EI. The simplest is the previously described Wishnofsky estimate based on the 

static concept of an energy deficit of 3,500 kcal to lose one pound of body weight [29]; this 

estimate is now widely acknowledged as being inaccurate. Acknowledging that weight 

changes always include changes in both FM and FFM, Forbes evaluated the cross-sectional 

interrelationship between in FM and FFM and reported that FFM varies as a function of FM 

in a consistent and predictable way, such that the magnitude of the FFM changes is inversely 

related to the initial FM [74]. This association can be used to predict the proportions of total 

weight change attributable to FM and FFM, which can be converted into caloric equivalents 

for each type of mass change, thus representing energy balance during the period observed.  

These models, however, do not account for dynamic physiological adaptations to 

accurately predict weight changes over time, which produces a nonlinear change in weight 

for an intervention of fixed caloric value. Thomas et al. (2011) developed a mathematical 

model using a system of differential equations to predict weight changes as interrelated, 

dynamic FFM and FM changes [75]. However, her model was concerned with EI changes 

and did not include EE changes [76]. Finally, in a series of articles Hall developed a system 

of differential equations representing dynamic associations among metabolic processing of 

macronutrients (carbohydrate, fat, and protein) and predicting body composition and mass 

changes [77-79]. Hall and his colleagues also provides a web-based dynamic simulation 

using this weight change model for individual adults that predicts weight changes over time 

in response to behavioral changes such as increased PA or decreased caloric intake [14]. In 

the model, changes of body composition along with weight changes were considered 

following Forbes equation, which included the inter-relationship between FFM and FM 

updated for large changes in weight [80]. 
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In this study, predicted body mass changes after the exercise intervention were 

estimated using the equations from the NIDDK Body Weight Planner program by Hall et al. 

[14]. This program calculates expected weight changes with changes in EI and/or PAEE by 

entering information such as height, body weight, fat mass or percentage, age, sex, and 

physical activity level. Since the current study included an exercise intervention, using Hall’s 

model to predict how changes of PAEE affects weight changes and FFM and FM changes. 

Therefore, Hall’s equations below for estimation of PAEE changes (Eq. 3), expected body 

weight changes until reach a new EB by exercise intervention (Eq. 4), and final body weight 

changes (Eq. 5) considering body composition changes (Eq. 6) are mainly used for the three 

studies: 

 

BC""	(4D/41/F<=) = [(1 − IJKL) × BCM − 1]!""/O%   (Eq.	3)	

 

DBW = (STU)∆KWT(XYZ×∆[\KK)

[\KKZ]∆[\KK]^__`Ta(^__`T^_`)
    (Eq.	4)	

 

∆O%c = DO% − 	DO%(Tc/d       (Eq.	5)	

 

t	= e_`]f_`]g(e__`]f__`)

^_`][\KKh]g(^__`][\KKh)
     (Eq.	6)		

 

Equation 3 is estimating total PAEE, including both spontaneous PAEE and exercise 

EE. The predictors are TEF (IJKL	= 0.1 representing 10% of TDEE), BCM (amount of work 
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or school activity, i.e., all non-spontaneous PA, plus exercise activity), !"" (resting EE 

estimated from equations in Mifflin et al. [62]), and body weight (O%). BC"" is represented 

as a multiple of REE, divided by body weight and removing TEF (PAL scaled by 1–IJKL) 

and REE (by subtracting 1 from PAL). The unit is kcal//kg/day, and thus it is in a metric 

comparable among persons of different body weights, conceptually similar to metabolic 

equivalents (METs) to describe exercise intensity (kcal/kg/hr). A PAL = 1.0 represents REE 

(excluding all EE related to movement), and a sedentary person with no non-spontaneous PA 

(e.g., desk job, avoids exercise) would have ~1.5 PAL.  

Equation 4 estimates expected total body weight change when a new energy balance 

(stable weight) is attained following changes of EI or PAEE. The predictors are I (proportion 

of TDEE attributable to both TEF, 0.10, and adaptive thermogenesis (AT), 0.14, so I	= 

0.24), changes of EI (kcal/day) and PAEE (kcal/kg/day), initial body weight (kg) and PAEE 

(kcal//kg/day), contribution of FFM and FM to REE (iLLj	= 92 kJ/kg/day and iLj  = 13 

kJ/kg/day, respectively), and k	representing the change in FM divided by change in body 

weight (k	 = 	lmA/lO%). This equation includes changes in EI and PAEE, effects of TEF 

and AT, and body composition changes. Because k increases with initial FM and the iLLj  > 

iLj , the difference in the right side of the denominator becomes smaller with larger FM, so 

the expected final lO% is larger for larger FM.   

Equation 5 is estimating amount of body weight change after a specific time period (t 

in days) using an exponential decay model. The components are total lO% from Equation 4, 

time (~105 days for the TIGER study), and n	(timescale constant). The characteristic 

timescale of weight change, n, is defined by Equation 6 and depends on the cost of fat and 

protein synthesis (oLLj  = 960 kJ/kg and oLj = 750 kJ/kg, respectively), metabolizable 
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energy density of mass change (pLLj  = 7,600 kJ/kg and pLj  = 39,500 kJ/kg, respectively), 

contribution of FFM and FM to REE (iLLj  = 92 kJ/kg/day and iLj  = 13 kJ/kg/day, 

respectively), PAEE of the intervention, and body composition change (q = r/mA; where 

Forbes parameter, r	= 10.4, divided by initial FM). The time constant (tau: n) decreases 

when PAEE increases, meaning both the amount and rate of weight change increases.  

 

2.4 INTERVENTION FOR WEIGHT MANAGEMENT USING ENERGY 

BALANCE 

 Restricted calorie intake (EI), increased PA (EE), or a combination of both have been 

implemented for weight management. Decreasing EI and increasing EE are not only 

modifiable behaviors to control weight at the individual level [81], but are also consistent 

with EB theory, particularly the producing of negative EB to induce weight loss [82, 83]. 

Diet (i.e., low fat and carbohydrates diet, daily calorie intake reduction) has been recognized 

as more effective for weight loss compared to PA alone intervention [84]. However, the 

weight loss by diet alone intervention decreases FFM, RMR, and TEF, which results in a 

substantial decline of TDEE [28, 85]. In terms of weight loss intervention that produces a 

large energy deficit, a PA only intervention would be less effective than diet only 

intervention, but PA helps individuals maintain FFM during weight loss [86]. In particular, 

PA has been recognized as a fundamental strategy for significant maintenance of health [84] 

and less weight gain [87], since weight gain in US adults has been associated with the decline 

of PA and incline of sedentary time in individuals over the past century [88]. Indeed, 

multiple studies have investigated that increased level of PA is associated with less weight 

gain compared to lower PA level [87, 89-91]. Because an accompanying loss in FFM can 
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frequently be observed while weight loss, it is important that maintaining FFM or at least 

attenuating its decrease with PA. Similarly, diet with PA interventions compared to diet only 

could facilitate maintenance of weight loss by maintaining TDEE [92] with minimizing loss 

of FFM and thus maintain higher RMR [28, 43]. The Figure 3 presents these dynamic 

changes of REE and body composition with weight loss by diet alone and diet with PA 

interventions.  
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Figure 3. Weight loss by diet alone and diet with PA 

(a) 

(c)

 

(b) 

 

 

The figure 3 shows a simulated comparison of the same caloric negative 
EB for diet alone vs. diet + PA in changes of REE (a), percent of body fat 
(b), and fat free mass (c) by weight loss. The simulation assumes that 
75% of weight change is FM during diet alone and 95% during diet + PA. 
Compared with diet alone, diet + PA preserves FFM and results in higher 
REE (a), lower percent of body fat (b), and maintaining fat free mass (c) 
for the same amount of weight loss. 
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 However, interventions of increased PA and decreased calorie intake for weight 

control are not always successful. For example, individuals may lose less weight, maintain, 

or even gain weight or regain the lost weight after the intervention. In addition, the effects of 

weight management intervention are varied among individuals even if they all participate in 

the same intervention.  

Some reasons that expected weight loss may be less than predicted are behavioral 

compensation and physiological adaptation in both daily EE and EI when behaviors are 

changed [93]. As previously mentioned, in a dynamic concept of EB, a high intensity of PA 

causes compensatory increases in EI due to energy needs for the PA, changes in body 

composition (e.g., increase in FFM), and increases sedentary behaviors due to fatigue [94]. 

Also, restricted food consumption results in compensatory decreases in EE [95] and increases 

in appetite [96], which may result in failure to maintain the decrease in EI (i.e., non-

adherence to diet protocol). Weight loss can be achieved by behavioral changes, but weight 

loss is difficult to maintain because of the interdependent relationships between EE and EI, 

which may reduce the net energy gap over time. The energy gap eventually reaches 0 and 

plateaus at a new energy balance and body weight (i.e., weight loss no longer occurs). These 

mechanisms may result in failure of intended weight loss or weight regain or both. Therefore, 

to achieve a specific amount of weight loss and maintain the new weight, permanent changes 

and modifications of both calorie intake and PA are recommended [97]. 

 Small incremental changes of each behavior have been recommended for successful 

long-term weight control in individuals [98]. Sudden, large changes of behavior may lead to 

compensatory behaviors and metabolic adaptations to maintain energy balance [97]. Also, 

small incremental changes are more sustainable than large lifestyle changes, so the desired 
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health behaviors are more likely to be maintained [99]. The prescribed exercise intervention 

program in this study is aligned with this recommendation. Considering the participants of 

this study are sedentary college students, adding vigorous PA of 30 minutes per day for 3 

days per week for 15 weeks (equivalent to 100 to 150 kcal/day) is a reasonable dose of 

prescribed exercise to expect good compliance) with minimal compensatory behaviors and 

adaptations.  

  Lastly, another potential reason for inconsistent effects of increased PA and/or 

decreased calorie intake for weight management interventions is individual variability. 

Individual variability such as physiological (i.e., FFM and FM) and behavioral (i.e., diet and 

PA) differences affect energy imbalance (weight changes), which leads to different positive 

or negative EB in individuals. For example, a person who has more initial FM would lose 

more weight compared to a person who has less initial FM by the same intervention [13, 14] 

due to a higher proportion of weight change from FM, which is equivalent to preservation of 

FFM, which has a higher metabolic rate [40]. In addition, for a person who is gaining weight 

over a long term (i.e., years), the sustained positive EB would accumulate FM, which 

increases appetite by inducing insulin and leptin resistance, while also accumulating FFM, 

which increases drive to eat by increased RMR [44], leading to sustained weight gain over 

time. Thus, because of the positive energy balance producing sustained weight gain at the 

start of an intervention, he or she would lose less weight than expected weight loss by a PA 

or diet intervention for producing negative EB. Therefore, unsuccessful weight loss programs 

could result from insufficient negative EB by not considering individual variability before 

entering the intervention program.  More detailed contents for individual variability will be 

addressed in the next section.  
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2.5 INDIVIDUAL VARIABILITY IN ENERGY BALANCE AND WEIGHT 

CHANGES 

 Along with the compensatory mechanisms to create smaller energy deficit than 

expected, individual variability in energy balance at baseline is another potential reason for 

inconclusive effects of increased PA for weight management interventions. Baseline body 

composition and mass, energy balance status (i.e., a person is gaining or losing weight or 

weight stable), and physical activity and racial differences are possible confounding factors 

that affect weight changes (change in tissue energy stores) after an intervention program. 

 Body composition such as the relative proportions of FM and FFM is one of the 

physiological differences that affects changes among individuals. Since FFM and FM are 

both highly associated with REE and RMR but FFM has a much larger contribution, different 

initial FM and FFM affects variability in REE, RMR and TDEE, and ultimately weight 

changes [42]. Given that REE is the largest component of EE, accounting for about 60% to 

70% of TDEE, for two people who have the same body weight, a person with higher 

proportion of FFM will have higher TDEE compared to a person with lower proportion of 

FFM [40, 41], because FFM has a much higher metabolic demand than FM [42].  

 Body mass and composition before participating in a weight loss program also affects 

the results. Changes in mass and body composition directly reflects changes in EB. In 

particular, if a person is at positive EB over time (i.e., gaining mass), a weight loss program 

may change the balance to be negative (i.e., losing weight) but if the intervention is 

insufficient to entirely offset the initial positive EB, the post-intervention EB may remain 

positive (i.e., continue to gain weight but at a lower rate than before intervention) or become 

flat (i.e., neither losing nor gaining weight during the intervention). If a person is at negative 
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EB before a weight loss intervention, the slope of the negative trend would be enhanced by 

the weight loss intervention, resulting in greater weight loss than expected. As evidence of 

this effect, a previous study demonstrated that participants who had lost weights immediately 

before an intervention showed greater weight loss after the intervention compared to 

participants who had not lost weight or who had gained weight before the intervention [100]. 

Considering baseline weight trajectory would be helpful to determine prescribed exercise 

dose of an intervention. For a given intervention that intends to induce a negative EB, for 

example, a person who is in positive EB at the start of the intervention will require more 

behavior change (to induce a larger caloric change) than a person who is in EB (weight 

stable) at the start. If the dose of intervention is insufficient to offset the entire positive 

energy gap, this person would not lose weight or may even continue to gain weight during 

the intervention, although at a rate lower than before the intervention. 

When providing an exercise intervention to promote weight changes, individuals’ PA 

history before the intervention should also be considered. Research investigations involving 

PA may attract persons who are already currently active (“like to exercise”), or who have 

been active in the past, introducing potential self-selection bias (i.e., few truly sedentary 

persons). To minimize selection bias, several studies have assessed the baseline PA in 

individuals using IPAQ or PAR to exclude the individuals who are already more active than 

their intervention or who are actively participating other exercise programs [101-103]. Many 

studies, however, do not include the estimate of baseline PA and PAL as a factor in their 

analyses, instead assuming that all participants have the same PAL.  

The PA history may influence the intervention effect in two ways. First, an active 

person may replace some or all of their existing exercise EE with the intervention PAEE, 
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resulting in a much smaller net increase in PAEE than expected. By contrast, a sedentary 

person is more likely to replace sedentary behaviors with the intervention activity, and thus 

have a greater net increase in PAEE as well as a greater potential change in weight. Second, 

even if the active person adds the intervention PA to their previous exercise activities, there 

may be a limit on PA’s contribution to increasing TDEE by compensation of other activity 

(changes in time spent in sedentary and light activities) [15] and metabolic processes of EI 

[3, 4, 29]. Therefore, TDEE would reach a plateau such that further increasing PAEE has 

little to no effect [5]. If the intervention that creates smaller energy deficit than a person’s 

initial activity level, moreover, this person would lose less weight than expected compared to 

sedentary person. 

Finally, racial differences may affect energy balance, which could lead to different 

weight loss, maintenance, or gain among racial groups for the same intervention. Racial 

differences in physiological factors such as body composition (relative proportions of FM 

and FFM) have been observed in many studies [19, 20, 104], which would result in different 

responses to exercise intervention, as described previously. The different response to exercise 

intervention may also be related to genetic factors that affect adherence or adaptation to the 

intervention [25]. A recent review reported that for a given intervention African Americans 

consistently do not receive the same weight loss benefit as compared to other racial groups 

[105]. However, to our knowledge, the racial differences have been demonstrated by only 

comparing racial groups for outcomes after participating in the same interventions, without 

consideration of individuals’ baseline body composition, baseline energy balance status, and 

PA history. These factors affect weight change response to PA and are known to differ 

between races. Analyzing race differences after adjusting for these factors would identify any 
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remaining racial differences in response or adaptation to PA. Once these other factors are 

identified, investigators and practitioners would be able to develop and distribute adaptable 

intervention programs that can be optimized to promote weight loss and health for diverse 

populations. 
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CHAPTER 3 

3. METHODOLOGY 

3.1 STUDY DESIGN OVERVIEW 

This dissertation involved secondary analyses of the data from the Training 

Intervention and Genetics of Exercise Response (TIGER) study [106]. The primary goal of 

the TIGER study was to identify genetic factors that influence on metabolism and adiposity 

response to the intervention in diverse college students. Between 2003 and 2015, the TIGER 

study implemented a program of regular prescribed exercise via a 1-semester, 3 days per 

week course taken for college credit. The TIGER study had one cohort each semester and 

two phases across a total of 10 years, with some updating and revision of methods in the 

second phase (i.e., adding measures, using updated versions of questionnaires, etc.). 

However, the design of the TIGER study was guided by social cognitive, self-determination, 

and self-schema theory to motivate students participating in PA and exercise [107, 108]. Data 

collection for the TIGER study has ended, but data analyses and dissemination are ongoing. 

Figure 4 depicts the timeline for the study.  

The primary goal of this dissertation was to identify the most accurate and reliable 

way to estimate energy balance in individuals using self-reported EE and EI data, while 

identifying and accounting for possible confounding factors. This dissertation consisted of 

three studies to achieve this goal: 1) determining accuracy (bias) and reliability (precision) 

for a range of estimates of energy balance as determined by body weight changes after the 

TIGER exercise intervention using observed and self-reported data, 2) examining the effects 

of energy balance status at baseline on accuracy of energy balance estimates, and 3) 



39 
 

exploring the association of race with accuracy of estimation for weight changes to the 

intervention.  



40 
 

 

Figure 4. Overall timeline of the TIGER study  

 

HR: heart rate; VO2max: maximum rate of oxygen consumption; PA: physical activity; PAR: physical activity rating; FFQ: food frequency questionnaire; 
HRPAS: heart rate physical activity score; RPE: rating of perceived exertion
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3.1.1 PARTICIPANTS AND ELIGIBILITY 

Participants of the TIGER study were 18-35 years old sedentary college students 

recruited from University of Houston (2003-2010) and University of Alabama at Birmingham 

(2011-2015). Participants were recruited via advertisements in the local and university 

newspapers, flyers, and other media. A five-minute presentation was also delivered in the several 

large lecture classes to explain the purpose, procedure, and eligibility of the study, and to 

encourage students considering enrolling in the study the following semester. The potential 

participants were sedentary students who had not exercised more than 30 minutes per week for 

the past month and who were not limiting caloric intake. Potential participants who were 

interested in this study contacted research staff who explained the study activities in detail and 

conducted eligibility screening. When the participants enrolled the study, they also enrolled in a 

3-hour college credit course that included all of the measurement sessions as well as the 

prescribed exercise sessions. 

Participants were excluded if they had difficulties in engaging in exercise, had diagnosed 

metabolic disorders, were pregnant (by self-report or pregnancy test), or were already 

participating in a regular exercise program within the past month (by self-reported physical 

activity rating). The study was approved by the Institutional Review Boards of the participating 

institutions, and all participants signed informed consent before data were collected. 

3.1.2 MEASURES  

The TIGER measures of interest for this study included demographics, anthropometry, 

fitness testing, dietary intake, prescribed and non-prescribed exercise, and weight history prior to 

enrolling in TIGER (Table 6).  
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Table 6. Measures of the study 

Measurement Variables Instruments 

Demographics Age Questionnaire 

Sex 

Race 

Anthropometry Height Stadiometer (SECA Road Rod, Hanover, MD) 

Weight Digital scale (SECA 770, Hanover, MD) 

Fat free mass DXA (Hologic, Bedford, MA) 

Fat mass 

1 mile walk or  

1.5 mile run test 

Resting & Maximum HR HR monitor (Polar Electro, Lake Success, NY) 

Duration (min) of test 

Dietary Intake Calorie intake Block Food Frequency Question (FFQ) 

Prescribed 

activity 

Heart rate (HR) HR monitor (Polar Electro, Lake Success, NY) 

RPE (Phase 2 only) Borg’s Rating of Perceived Exertion (6-20 scale) 

Other activities 

(Phase 2 only) 

Mode  Online activity log; all activity, prescribed or 
otherwise, was to be logged describing mode, 
duration, intensity (e.g., jogging pace) and RPE Duration 

Frequency 

Intensity (RPE) 

PA History PAR 0-7 point Physical Activity Rating  

Weight History Weight of 2 years ago 
(Phase 1), or  
Weight  
at the end of high school 
(Phase 2)  

Questionnaire 

DXA: dual-energy x-ray absorptiometry; HR: heart rate; PAR: physical activity rating 

 

Anthropometry  

Height was measured using a stadiometer (SECA Road Rod, Hanover, MD) and recorded 

in centimeters (cm) to the nearest 0.1 cm. Weight was measured using a digital scale (SECA 770, 
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Hanover, MD) and recorded in kilogram (kg) to the nearest 0.1 kg. Fat mass (FM) and fat free 

mass (FFM) were assessed using dual-energy x-ray absorptiometry (DXA) (Hologic, Bedford, 

MA). Height and weight were measured at two time points, before and after the 15-week 

prescribed activity intervention, but weight was measured at two interim time points during the 

intervention period (four measurements total).  

Resting heart rate and 1 mile walk and 1.5 mile run test  

The resting heart rate (HR) was measured after participants were sitting at rest for at least 

5 minutes. The resting HR was measured for 20 seconds three times and recorded as the average 

of the three measurements. Participants then performed a 1 mile walk or 1.5 mile run test. The 

maximum HR during performance (beats/min) and duration of the walk or run test (min) were 

recorded. !"#$%& (ml O2/kg/min) from maximal walk and run test was estimated using the 

equations by Kline et al. [109] and Baumgartner et al. [110] (revised from [111]), respectively.  

 

!"#$%&	()%*+) = 132.853 − (0.0769 × ):;<ℎ>) − (0.3877 × %<:) + (6.315	[;A	$%*:]) −

(3.2649 × D;$:) − (0.1565 × EF)       (Eq.	7)	

 

!"#$%&	(IJK) 	= 	3.5	 + 	483/>;$:       (Eq.	8) 

 

However, this field test with untrained sedentary participants may have limitations for 

estimating maximal oxygen consumption during the walk and run test. The estimated !"#$%& 

using the equations above (Eq. 7 and 8) may be not appropriate to use if the test was not 

representative of the true maximum effort of the participants. Therefore, the Astrand-Ryhming 

single state method of estimating !"#$%& was used [112]: 
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!"#$%& = 
VOOPQ(RSTUQVW)

RSPQVW
       (Eq.	9)	

 

where +	= 63 for men and 73 for women. EFXYZ  is age-predicted maximum HR (220 – age), and 

HRex is HR at the end of the walk or run test. The VO#[Z, oxygen consumption during the 

exercise test, as determined by the walk or run speed, can be used to estimate !"#$%& using the 

Equation 9. 

Self-reported food intake 

Dietary intake was assessed using Block Food Frequency Questionnaire (FFQ, 

NutritionQuest, Berkeley, CA) before and after the intervention [113]. Participants were asked to 

report the frequency of consumption of 102 food items. The frequency that each food item was 

consumed during a typical week was rated using nine categories, ranging from “never” to “every 

day”. Total food intake was converted to a weekly calorie intake (kcal) using the Block’s 

standard scoring service (https://nutritionquest.com/assessment/pricing-and-ordering/). 

Self-reported physical activity 

Physical activity rating (PAR) was assessed by having participants rate their activity 

levels, ranging from 0 (None; No activity) to 7 (Vigorous; Runs over 10 miles or 3 hours of 

comparable PA per week) [70]. Participants also reported all physical activities during the entire 

intervention period, including the TIGER-prescribed exercise as well as additional activity 

outside of TIGER sessions using an online activity log. The modes (i.e., running, elliptical, 

weight lifting, etc.) and duration of exercise were reported by participants as well as intensity by 

a rating of perceived exertion (RPE) ranging from 6-20 for each activity [72]. The RPE of self-

reported activity was reported only by participants in Phase 2. 
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Weight History 

Weight history was reported by participants using a questionnaire. The two different 

study phases (i.e., Phase 1: University of Houston; Phase 2: University of Houston and 

University Alabama at Birmingham) used different questions about weight history. Participants 

reported their body weights either of 2 years ago (Phase 1) or when they were at the end of high 

school (Phase 2). 

3.1.3 Prescribed Exercise Intervention 

The TIGER study implemented 15-week prescribed aerobic exercise, 3 days per week for 

30 minutes per day at a sustained 65%-85% of age and sex-specific predicted maximum heart 

rate reserve [114]. Participants had a choice of mode of aerobic exercise, including treadmill, 

stair climber, stationary bicycle, or elliptical trainer. They could choose the same or a different 

mode for each session. Exercise sessions were monitored by recording attendance and issuing a 

HR monitor for each session, but the activity was not supervised during the session, which 

resulted in variability in frequency, duration, and intensity of exercise.  

During every session of the prescribed activity, heart rate (HR) was monitored using HR 

monitors (Polar Electro, Lake Success, NY). The recorded HR data during the prescribed activity 

were downloaded for each participant after each session. Then, this recorded HR data was 

matched with participants’ attendance records. For either missing or unusable average HR data 

for each session due to a malfunction of the HR monitor, the data were imputed using the within-

participant distributions of HR and duration across other valid sessions, which requires at least 

60% of all possible exercise session for each subject [115].  
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3.2 METHODOLOGY FOR STUDY 1  

In Study 1, several methods of predicting energy balance, as indicated by predicted 

change in body mass following an exercise intervention, were compared to actual change in body 

mass. Changes in body mass represent positive (mass gain) or negative (mass loss) energy 

balance; a short-term exercise intervention that introduces new PAEE should result in a negative 

energy balance if no other behaviors change.  

Predicted body mass changes after the exercise intervention were estimated using the 

equations from the NIDDK Body Weight Planner online calculator, as described in the appendix 

of Hall et al. [14]. This program calculates expected weight changes for adults with changes in 

EI and/or PAEE by entering information such as height, body weight, fat mass or percentage, 

age, sex, and physical activity level (PAL), which is expected to be 1.5 to 1.6 at baseline for the 

sedentary TIGER participants. Using the equations by Hall (2011), participants’ expected weight 

changes after exercise intervention would be expected to increase PAL to 1.7-2.0. The equation 

for estimating PAEE [14] (Eq. 3) is: 

 

\]^^	(+_/+</`%a) = [(1 − bcde) × \]f − 1]F^^/gh   (Eq.	3)	

 

bcde  is 0.1, the thermic effect of food, approximated as 10% of TDEE. REE was 

calculated using equations by Mifflin et al.(1990) [62].  

The baseline PAEE (\]^ î) was estimated using self-reported PAR at baseline by 

converting into PAL, the metric required to use the equations of Hall et al. The PAEE during 15 

weeks (\]^ #̂) was estimated by converting into PAL using five different methods: 1) 

categorizing into PAL using Hall’s PAL categories for 15-week prescribed activity, 2) 
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categorizing into PAL using self-reported PAR after 15-week prescribed exercise, 3) calculating 

PAL as a ratio (TDEE/RMR) rather than a category by using compendium MET values of the 

prescribed and self-reported activity with body mass (kg), and duration (min) for each reported 

activity to estimate PAEE  [68, 69], 4) calculating PAL ratio using the self-reported RPE for the 

prescribed and self-reported activity the participant's estimated aerobic capacity and duration for 

each reported activity to estimate PAEE, 5) calculating PAL ratio using measured HR for 

prescribed activity plus RPE for non-prescribed activity. 

For the first method, Hall’s PAL categories were used to estimate the amount of PAEE 

including only the prescribed activity. Hall’s PAL method uses two sections that describe 

activity: PA at work or school, and PA at leisure time [14]. Because participants in this study 

were sedentary college students, “Light” activity was assumed for PA at work or school, and 

“Active” for PA at leisure time (for prescribed activity), which indicates a 1.8 PAL for all 

participants during the intervention. 

For the second method, self-reported PAR by participants after the 15 weeks of only the 

prescribed exercise was used to estimate PAEE. Using Table 3, it was expected that PAR was 

converted into a PAL ranging from 1.7 to 2.0 depending on the individual variability of self-

reported frequency and intensity of the prescribed activity. 

From the third method, the prescribed activity and activities other than the prescribed 

activity was included to estimate total amount of PAEE and PAL. Mode and duration of activity 

were used to identify the respective compendium MET value, which was then combined with 

body weight to estimate calories expended for each activity [68, 69]. For example, if an 

individual who has 70 kg of body weight does a walking activity at 3.5 mph (4.3 METs) for 30 

minutes, the caloric value is 158 kcal, using the equation:  
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j^Dk × 3.5 × lm`a	):;<ℎ>	(+<)/200 = +n%*/$;K   (Eq.	10) 

30 minutes of walking at 3.5 mph (4.3 METs): 

4.3 × 3.5 × 70 /200 = 5.26 kcal/min × 30 min = 158 kcal   

 

The calculated PAEE (kcal) was added to the estimated baseline TDEE kilocalorie value 

and divided by REE to calculated total PAL. For example, if a person who is sedentary has 1500 

kcal/day of REE, this person’s TDEE is 2400 kcal (sedentary activity is 1.6 PAL = REE*1.6 = 

1500*1.6 = 2400), or 100 kcal/hr. This person does 1 hour and 500 kcal of exercise per day, 

replacing 1 “normal” hour (100 kcal) with 1 “exercise” hour (500 kcal). The new TDEE is 2400 

– 100 + 500 = 2800 kcal. To estimate PAL, the 2800 kcal/day is divided by 1500 kcal/day, which 

is 1.87 PAL. If the 1 hour of 500 kcal exercise is done only 3 days/week, the revised TDEE = 

[2400*4 (non-exercise days) + 2800*3 (exercise days)]/7 = 18,000/7 = 2571 kcal/day, or 

2571/1500 = 1.71 PAL. This approach was also used for the fourth and fifth methods, which 

compute PAEE using RPE alone and then HR measures plus RPE, respectively, to estimate 

PAEE. 

In the fourth method, self-reported RPE for prescribed and other activities was used to 

estimate PAEE using the participant’s estimated maximum aerobic capacity from the 1-mile 

walk and 1.5-mile run test and the self-reported duration for each reported activity. The RPE was 

used to estimate the percent of heart rate reserve (%EFF) and %!"#$%& using the equation: 

 

%HRR	=	%!"#$%& =	(RPE	–	6)/14      (Eq.	11)	
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where RPE is ranged from 6 to 20, which is 0% to 100% of HRR. Then, the Astrand-Ryhming 

single stage method, which estimates !"#$%& in mlO2/kg/min using exercise !"# (!"#[Z), 

%EFF (%!"#$%&), and !"#$%& was used [112]: 

	

!"#[Z = %!"#$%& × !"#$%&      (Eq.	12)	

 

where the !"#$%& was estimated from the 1 mile walk test or 1.5 mile run test using Equation 

9. 

	 The averaged HR during activity (EF[Z) was estimated using the equation: 

 

EF[Z 	= 	%EFF	(%!"#$%&) 	× 	(EFXYZ	– 	+) 	+ 	+   (Eq.	13)	

 

where + = 63 for men and 73 for women, and EFXYZ  is the age-predicted maximum heart, 

adapted from the Equation 9 and 13. For example, if a man who has 200 bpm of maximum HR 

and reports 15 of RPE, this person’s HR during the activity (EF[Z) was: 

 

EF[Z = (F\^	– 6)/14 × (EFXYZ	– +) + +	 

          = (15 – 6)/14 × (200 – 63) + 63 = 151 bpm 

 

Then, the estimated !"#[Z  (ml/kg/min) can be converted into kcal/min: 1) multiply 

mlO2/kg/min by the individual’s body weight in kg, then divide by 1000 (mlO2/min to LO2/min), 

and 2) LO2/min multiply 5 (LO2/min to kcal/min, 5 kcal per LO2). Using the same example 
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above of the man who has 70kg of body weight and 40 ml/kg/min of !"#$%& who runs for 30 

minutes, the expended kilocalories of activity (kcal) estimated from RPE was:  

 

+n%* = 	!"2$%&×tuRPE−6v 14⁄ x×+<×$;K×5
1000 	    (Eq.	14) 

       = 40 mlO2/kg/min × [(15 – 6)/14] × 70 kg × 30 × 5 / 1000 

       = 270 kcal 

 

As showed in the example in the third method, calculated PAEE (kcal) of every activity was 

added into kilocalorie value of PAL at work or school (“Light” activity) and divided by REE to 

calculated total PAL, as well as TDEE (kcal/day).  

To estimate PAEE with the fifth method, measured HR for prescribed activity and RPE 

for non-prescribed activities were used to estimate PAEE. The averaged measured HR and total 

duration (min) for prescribed activity were used to estimate %!"#$%&, and expended 

kilocalorie (kcal) for the prescribed exercise across the entire intervention period using the 

equation: 

 

kcal	=	
VOOTUQ×(}~[�YÄ[Å	RS[ZVW)×WÄ×XÇÉ×Ñ

(##ÖVYÄ[VW)×iÖÖÖ
		 	 	 (Eq.	15)	

	

For example, if a man who is 20 years old and has 70kg of body weight and 40 ml/kg/min of 

VO2max participated in the prescribed exercise with an average HR and total minutes of exercise 

of 160 bpm and 2,500 minutes, respectively:  
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+n%*	 =	
40×(iÜÖVÜá)×àÖ×#ÑÖÖ×Ñ

(##ÖV#ÖVÜá)×iÖÖÖ
	= 24,781	+n%*	

	

Therefore, the expended prescribed EE (kcal/day) was divided by the total number of days of 

prescribed exercise, 24,781/	70	days	=	354	kcal/day.	The estimation of PA other than 

prescribed TIGER exercise was estimated using self-reported RPE for each activity that was 

calculated as kcal using individual’s !"#$%&, %!"#$%&, duration of activity, same as the 

fourth method.	

Using Hall’s equation (Eq. 4) below, expected total weight change was estimated if the 

same exercise dose continues over an indefinite period of time until reaching a new stable body 

weight (i.e., energy balance = 0), first without an estimate of change in EI (ç^é =0) and then 

with an estimate from the TIGER data. The estimate without ΔEI assumes diet was unaffected, 

such that all changes in body weight are attributable to the exercise intervention. Although the 

TIGER study intended to increase PA by prescribed activity while maintaining dietary intake, it 

is possible that EI changed due to dynamic inter-relationships between EE and EI after 

increasing PAEE. Previous research has observed dietary changes following a prescribed 

exercise intervention [116]. Thus, including ç^é may increase the accuracy of the estimate, if EI 

changed during the intervention. Failing to account for ç^é may be a substantial source of error 

when evaluating effects of PA interventions on body weight. The ç^é was computed as the 

difference between baseline and 15-week EI estimates from the Block FFQ. 

 

DBW = (iVë)∆dìV(îïñ×∆ó}dd)

ó}ddñò∆ó}ddòôööõVú(ôööõVôöõ)
    (Eq.	4) 
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Then, body weight changes after 15 weeks of TIGER intervention (i.e., the portion of the 

total change in Eq. 4 expected to occur in the initial 15 weeks) were estimated using the 

equations below, which represent the exponential decay function predicting gh at time = t and 

the characteristic time constant (ù) for the predicted nonlinear rate of weight loss given the initial 

body weight and body composition, and the change in PAEE. Each parameter of the equations is 

described in the Table 7. 

 

∆ghû = Dgh − 	Dgh:Vû/ü       (Eq.	5)	

 

t	= †öõò°öõò¢(†ööõò°ööõ)

ôöõòó}ddOò¢(ôööõòó}ddO)
     (Eq.	6)	 
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Table 7. Definition and description of each parameter of the equations (Eq. 4, 5, and 6) 

Parameters Definition and Description 

£ b = b}c + bcde  (b}c  = 0.14, bcde  = 0.1, and thus, b = 0.24), b}c  is 0.14, the 

proportion of TDEE attributable to adaptive thermogenesis  

§•¶	 The difference of EI between at baseline (^éi) and 15-weeks (^é#)	

§ß®••	 The difference of PAEE between at baseline (\]^ î) and 15-week (\]^ #̂)	

§©™	 Expected change in gh (kg) until reach a new weight stable by the same 

exercise dose	

´	 Composition of body weight change = ç¨j/çgh = ¨ji/(≠ + ¨ji), where 

¨ji is initial FM, ≠ = 10.4 is the Forbes parameter [14, 74]	

∆©™Æ	 ∆ghû represents body weight at time= > (days after the baseline) 

t t is the time, a number of days (e.g., t = 105 days for 15 weeks) 

τ ù is time constant of weight change (Eq.	6) 

Ø∞± ≤e≥ is 750 kJ/kg, representing cost of fat synthesis 

Ø∞∞±  ≤ee≥  is 960 kJ/kg, representing cost of protein synthesis 

¥∞± µe≥  is 39,500 kJ/kg, representing energy density of 1-kg change in FM  

¥∞∞±  µee≥  is 7600 kJ/kg, representing energy density of 1-kg change in FFM 

∂ ∑ is ≠/¨j (Forbes parameter, ≠ = 10.4) divided by initial FM, representing 

the association of ç¨¨j to ç¨j 

∏∞∞±  πee≥  is 92kJ/kg/day, representing the contribution of FFM to REE 

∏∞± πe≥   is 13kJ/kg/day, representing the contribution of FM to REE 
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Statistical analysis 

Descriptive statistics were conducted to quantify participants’ demographics (i.e., age and 

sex), anthropometry (i.e., height, weight, FFM, and FM), and PAR at baseline, as well as 

changes of weight, FFM, FM, and PAR between before and after the 15-week prescribed activity 

intervention. Paired t-tests were utilized to test the accuracy of the frequency, duration, and 

intensity of self-reported methods (3 and 4) for the TIGER prescribed activity by comparing with 

the observed frequency, duration, and intensity. All values were presented as mean and standard 

deviation (SD).    

 The observed weight changes during 15 weeks were estimated using the simple 

difference (kgfinal – kgbaseline) as well as a fixed effects regression model. Each participant (i = 1 

to N) has 4 body weight measurements during the intervention period, and thus we can estimate 

the rate of weight change (i.e., kg/day) over that same period. The intercept (representing 

expected body weight at baseline) and slope (representing kg/day body weight change) of a 

regression line describing weight change were included as fixed effects parameters in the fixed 

effects model. The actual days from baseline for each participant’s body weight measurements 

were used as the day (t = 0 [baseline day] to D [last measurement day for participant i]) scale.  

 

h:;<ℎ>Çû = éK>:In:∫>Ç + (ª*m∫:Ç ∗ `%aû) + :Çû    (Eq.	16)	

 

The residuals, eit, represents the deviations of each participant from their individual regression 

line at time t.  

This model provides a participant-specific slope (rate of weight change, kg/day) estimate 

as well as the participant-specific standard error (SE) of that rate, both of which will be saved to 
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the data file. The slope estimates were used to estimate expected weight change during the 

intervention period as slope (kg/day) × days between first and last measurement. 

The fixed effects regression method estimates average (linear) rate of weight change and 

removes random, day-to-day fluctuations in body weight (the eit), thus minimizing measurement 

error (a potentially substantial source of error when using the simple post-pre difference), and is 

consistent with the concept of dynamic weight change in energy balance theory. Specifically, 

weight is a function of average energy balance over an extended period of time (weeks to 

months) rather than energy balances on an given specific days, so weight change is best 

represented as a rate (kg/day) and not a simple difference between two points in time. The 

average difference of the slope-predicted body weight change and the simple post-pre estimate 

represents bias (systematic error) of the simple post-pre estimate, and the SD of the differences 

represents imprecision (random error) of the simple post-pre estimate. All analyses were 

conducted using STATA (STATA 15, Stata Corp., College Station, TX).  

The optimal estimate had the lowest bias and lowest SD of differences (i.e., high 

precision), which were evaluated by descriptively comparing the relative magnitudes of bias and 

SD among the 5 estimates. Among the five methods for estimating PAL, the 5th method, using 

the self-reported data with measured HR, was expected to be the most accurate (i.e., lowest bias 

and best precision). Therefore, the method with the most accurate predicted weight change 

among other four methods that are using only self-reported data was used with the fifth method 

in Study 2 and 3. 
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3.3 METHODOLOGY FOR STUDY 2  

Study 2 examined how baseline EB affects weight changes after the TIGER exercise 

intervention. In particular, participants who are in positive energy balance at baseline (i.e., a 

weight gain trajectory, consistent with the general US population) may experience less weight 

change than expected for the caloric value of the intervention. The intervention may only partly 

offset the amount of baseline positive energy balance. Expected weight changes from the TIGER 

prescribed activity and self-reported PA during the intervention period were estimated by the 

most accurate self-report method determined in Study 1. The fifth method, using observed HR, 

was also used as it is the only method using an objective measure of the prescribed exercise. The 

steps for estimation of PAEE, PAL, and associated expected weight changes with the addition of 

baseline EB were the same as Study 1.  

The additional step for Study 2 was estimating baseline EB using each participant’s 

weight history. The baseline EB satus before participating in exercise intervention was calculated 

by using the adapted equations of Hall et al. (2011) [14]. Baseline EB is a function of weight 

change, and more specifically the change in body composition, the relative changes in FM and 

FFM, since FM has a much higher energy density than FFM. Consequently, a defensible, valid 

estimate of change in FM (D¨j) and FFM (D¨¨j) is required.  

Using Hall et al.’s (2007) notion and equation for history of changes of body weight 

before intervention (DghΩ): 

 

	DghΩ = D¨¨jΩ + D¨jΩ		 	 	 	 	 	 (Eq.	17)	

	

where D¨¨jΩ and D¨jΩ	are history of changes of FFM and FM at baseline, respectively. And,   
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D¨jΩ = ¨j#	– ¨ji	 	 	 	 	 	 	 	 (Eq.	18)	

	

where ¨ji and ¨j# are the historical and baseline FM, repectively.  

Forbes’s equation can provide an estimate of the relative change in FFM and FM, 

although it describes the cross-sectional relationship between FFM and FM across differences in 

body weight and as such represents change in body composition for infinitesimal differences in 

weight. Because baseline EB status in individuals is represented by relatively large, longitudinal 

changes of body mass and composition, using Forbes’s original equation is not applicable. 

Therefore, Hall expanded upon the concept of Forbes’s original equation to predict body 

composition change for a given change of body weight (DghΩ, by weight history prior to 

baseline; i.e., from weight of 2 years ago or at the end of high school to baseline) and current FM 

(¨j#) using the Lambert W function, h, to solve a transcendental equation predicting historical 

FM (¨ji) [117]. 

 

¨ji = 10.4h æ
1

10.4
× :&∫ ø

∆ghΩ

10.4
¿ × ¨j# × :&∫ ø

¨j#

10.4
¿¡																								(Eq. 19) 

 

Using the respective energy densities associated with mass changes (µee≥	and µe≥), 

baseline EB in kilocalorie (kcal) was estimated as [(7,600 × ç¨¨j	+ 39,500 × ç¨j) × 

0.239]/(365 × 2 years). Finally, using the equation below, the total expected body weight 

changes with inclusion of initial EB status (^g) in the numerator was estimated. Description of 

other parameters of the equations are the same with the Table 7. 
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DBW = (iVë)(∆dì)V(îïñ×∆ó}dd)òdî

ó}ddñò∆ó}ddòôööõVú(ôööõVôöõ)
    (Eq.	20)	

 

Then, the Equations 5 and 6 were used to predict weight changes after 15-week 

prescribed exercise intervention. The process for estimating weight change during the TIGER 

prescribed intervention was the same as in Study 1, but the modified çgh value from Equation 

20 was used. 

Comparison of weight change using Equation 5 with observed weight change after 15-

week prescribed exercise intervention was utilized to examine whether considering initial EB 

status individuals is more accurate for estimation of body weight changes. Same as with Study 1, 

the fixed effects regression method was used to estimate rate of weight change after the 

prescribed exercise intervention, which was used with the simple post-pre difference as the 

criteria for evaluating bias and SD.  

 

3.4 METHODOLOGY FOR STUDY 3  

Study 3 examined whether racial differences explains any remaining variability in weight 

changes associated with exercise intervention, after accounting for body composition, changes in 

EI, and baseline EB status, by using the estimates from Study 1 and Study 2. To compare racial 

differences, participants were categorized into five racial groups: 1) Non-Hispanic White 

(NHW), 2) Non-Hispanic Black (NHB), 3) Hispanic, 4) Asian, and 5) Asian Indian. Asian Indian 

was separated from Asian, since unique anthropometric differences have been observed [118]. 

Participants were excluded if they indicated their race as Multiracial or Others due to non-

homogeneity and uncertainty of race and racial influences in those groups.  
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The Study 1 and Study 2 estimates of PAEE and associated predicted weight changes 

after the intervention were used. Then, analysis of variance (ANOVA) tests were used to 

compare racial groups on bias, defined as the differences of the observed body weight change 

(Both the rate estimated by the fixed effects model and the simple post-pre weight difference) 

and the predicted body weight changes after 15-week prescribed exercise intervention.  

If the race variable is significant, then race accounts for systematic variance in observed 

weight change that is unexplained by differences in body composition, effects of the exercise 

intervention, changes in EI, and baseline EB.  
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CHAPTER 4 

4. MANUSCRIPT 1: PREDICTING WEIGHT CHANGES USING SELF-REPORTED 

ACTIVITY DATA DURING EXERCISE INTERVENTION 

4.1 INTRODUCTION 

About two third of adults in the United States (US) are classified as overweight or obese 

by body mass index (BMI) [1]. Weight gain occurs when energy intake consistently exceeds 

energy expenditure according to the energy balance theory. In this theory, producing negative 

energy balance (EB), in which energy expenditure exceeds energy intake, is needed to result in 

weight loss in individuals [3].  

Almost one-half (49.1%) of adults in the US have tried to lose weight within the last 12 

months [119]. Interventions for increasing physical activity energy expenditure (PAEE), 

reducing energy intake (EI), or combination of both, have been considered for weight loss. 

However, individuals have failed to achieve weight loss goals, in part because changes of PAEE 

or EI results in adaptations that produce a smaller than expected energy deficit [4-6]. In 

particular, weight change with change in PAEE does not seem to match the caloric value of the 

physical activity (PA) to the extent seen in weight change after reducing EI by the same amount 

calories [5]. In addition, there are sources of errors in estimating energy deficit for weight control 

that depend on the measure of PAEE and EI used [7]. Specifically, self-reported measures have 

come under recent criticism over concerns of poor reliability and validity.  

Self-reported questionnaires have been used to collect data in large populations because it 

is less expensive and resource-dependent, and data are immediately available for analyses [9, 10, 

120]. However, self-reported EI tends to be under-reported, whereas self-reported PAEE tends to 

be over-reported [11]. These reporting errors lead to an estimate of negative energy balance 
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considerably larger than the actual deficit, which can explain why the associated weight loss 

does not occur as expected.  

Objectively measured PA such as accelerometry, pedometers, and doubly labeled water 

(DLW) also have limitations. Accelerometers and pedometers have different intensity cut-points 

for different activities and age groups, can possibly be manipulated by participants to produce 

activity counts in the absence of meaningful body movement, and are less reliable for the 

quantification of some activities (i.e., cycling, swimming, etc.) [121]. In addition, these devices 

are challenging to distribute among large numbers of free-living individuals and expensive in 

terms of personnel, equipment, and processing costs [8]. In the situation that assessment of large 

populations is required (e.g., population surveillance), subjective self-reported data is more 

feasible to collect, and thus researchers should try to develop and administrate more accurate and 

reliable ways to acquire information. Finding feasible and reliable ways to estimate energy 

deficit by PAEE and EI also would help individuals set their weight loss or maintenance goals 

and adjust amount of PAEE and EI to achieve the goals successfully.  

Several methods of self-reporting PA exist. Most self-reported PA uses levels of activity 

(e.g., 0 to 7 scale) or reporting of specific activities with duration (minutes) with investigators 

using a compendium to estimate intensity of the activities [69]. The National Institute of 

Diabetes and Digestive and Kidney Diseases (NIDDK) Body Weight Planner calculator includes 

a categorical general rating of physical activity level (PAL, a multiple of estimated basal 

metabolic rate) to estimate total daily caloric expenditure [14]. Due to different fitness levels in 

individuals, however, using categorical rating of overall PA would have limitations. For 

example, if two people who rated their activities as a “Very active” have different fitness levels, 

the person who has lower aerobic capacity (i.e., VO2max) likely would do relatively lower 
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intensity, frequency, or duration of activity, resulting in a lower PAEE, compared to a person 

who has higher aerobic capacity. The rating of perceived exertion (RPE) scales is a valid method 

of rating intensity and can be feasibly collected on a large population to estimate heart rate [72], 

and thus it may help improve estimation of PAEE by using activity (mode), RPE, and duration.  

The purpose of this study was to predict energy imbalance, as estimated by body mass 

changes, in sedentary individuals who participated in an exercise intervention. Baseline total 

daily energy expenditure (TDEE) was computed using estimates of resting EE and daily non-

exercise and exercise PAEE. TDEE during the intervention period was quantified using a variety 

of methods for self-reporting PA as well as objectively measured heart rate data collected during 

the prescribed exercise. In addition, the accuracy (bias and precision) of the various self-reported 

PA methods were computed by comparing body mass change predicted by each method to 

observed body mass change, while also incorporating the available self-reported EI data in the 

predictions. We hypothesized that self-reported PA with RPE would be the most accurate self-

reported method in predicting body mass change following the exercise intervention. 

 

4.2 METHODS 

This study used the data from the Training Intervention and Genetics of Exercise 

Response (TIGER) study between 2003 and 2015. The TIGER study was designed to investigate 

genetic factors that influence on metabolism and adiposity response to a 15-week prescribed 

exercise intervention in diverse young adults. Details of the TIGER study are described 

elsewhere [106]. 
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Participants 

Participants in this study were 18-35 years old men and women (n=3,769) who were 

students enrolled at University of Houston (2003-2008) or University of Alabama at Birmingham 

(2010-2015). Participants were asked to complete questionnaires about demographics, medical 

history, diet, and PA at baseline, before initiating the prescribed exercise protocol. Participants 

were excluded if they had difficulties with engaging in exercise, had diagnosed metabolic 

disorders, were pregnant, or were already participating in a regular exercise program within the 

past month. The study was approved by the Institutional Review Boards of the participating 

institutions, and all participants signed informed consent before data were collected.  

Anthropometry measures 

Height was measured using a stadiometer (SECA Road Rod; SECA, Hanover, MD) and 

weight was measured with a digital scale (SECA 770; SECA, Hanover, MD). Height and weight 

recorded in centimeters (cm) to the nearest 0.1 cm and kilogram (kg) to the nearest 0.1 kg, 

respectively. Fat mass (FM) and fat free mass (FFM) were estimated by dual-energy x-ray 

absorptiometry (DXA) (Hologic, Bedford, MA). Height and weight were measured before and 

after the 15-week prescribed activity intervention, and weight was also measured at two interim 

time points during the intervention period (four measurements total). 

VO2max estimation 

The resting heart rate (HR) was measured for 20 seconds three times and recorded as the 

average of the three measurements, in which participants were sitting at rest for at least 5 

minutes prior to measurement. Then, participants were asked to perform 1-mile walk or 1.5-mile 

run test (i.e., walking or running at a steady pace), and exercise HR during performance 

(beat/min), and duration of test (minutes) were recorded during the test using HR monitors. 
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VO2max (mlO2/kg/min) from maximal walk and run test were estimated using the equations by 

Kline et al. [109] and Baumgartner et al. [110] (revised from [111]), respectively. However, this 

field test with untrained sedentary participants may have limitations for estimating maximal 

oxygen consumption during the walk and run test. Therefore, the Astrand-Ryhming single state 

method of estimating VO2max using HR was also used [112].  

Self-reported food intake and exercise 

Dietary intake was assessed using Block Food Frequency Questionnaire (FFQ, NutritionQuest, 

Berkeley, CA) [113]. Participants were asked to report how often each item of foods was 

consumed during a typical week using nine categories, ranging from “never” to “every day”, and 

each food intake was converted to a weekly calorie intake (kcal) or averaged daily calorie intake 

(kcal/day) using the Block’s standard scoring service 

(https://nutritionquest.com/assessment/pricing_and_ordering/), validated from the previous 

studies [122, 123]. Using Goldberg’s cut-off, we flagged the value of less than 1.55 for a ratio of 

reported EI to basal metabolic rate (BMR), which is suggested for infeasible and implausible 

values of reported EI data [52].    

Physical activity rating (PAR) was assessed by having participants rate their activity 

levels, ranging from 0 (None; No activity) to 7 (Vigorous; Runs over 10 miles or 3 hours of 

comparable PA per week) [70]. Self-reported PAEE was assessed using an activity log in which 

participants reported physical activities other than the TIGER-prescribed exercise during the 

entire 15 weeks. The modes (e.g., running, elliptical, weight lifting) and duration of exercise 

were reported by participants as well as their RPE using the 6-20 Borg scale [71].  
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Exercise intervention and HR monitoring 

Participants voluntarily participated in 15 weeks of aerobic exercise training, which was 

prescribed as 3 days per week for 30 minutes per day at a sustained 65-85% of age and sex-

specific predicted maximum heart rate reserve [114]. Participants were permitted to select 

treadmill, stair stepper, stationary bike, or elliptical trainer as the activities, and they could select 

different activities for different sessions. Heart rate (HR) monitors (Polar Electro, Lake Success, 

NY) were used to monitor the participants’ HR during the prescribed activity. Exercise sessions 

were monitored but the exercise was not individually supervised, which resulted in variation of 

frequency, duration, and intensity of exercise from the prescribed amounts. The recorded HR 

data during the prescribed activity were downloaded for each participant after each session. 

Then, this recorded HR data was matched with participants’ attendance records, and we 

identified some missing or unusable data due to a malfunction of the HR monitor. For either 

missing or unusable average HR data for each session, the data were imputed using the within-

participant distributions of HR and duration across other valid sessions, which required including 

only those subjects who had at least 60% of all possible exercise session for each subject to 

provide reasonable imputed values [115].  

Estimation of predicted and actual energy balance  

Predicted changes of energy intake and expenditure, which may result in energy balance 

(maintain body mass) or energy imbalance (loss or gain of body mass) after the 15-week of 

exercise intervention, were estimated using the equations from the NIDDK Body Weight Planner 

program [14]. This program allows users to plan caloric intake and expenditure to reach their 

weight goals by entering basic information such as height, weight, age, sex, and physical activity 

level (PAL). Because exercise intervention was included, the equations in Hall’s model (2011) 
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were used to estimate PAEE changes (Eq. 3), expected eventual body mass changes when a new 

EB is attained through exercise intervention (Eq. 4), and final body mass change (Eq. 4) with 

body composition changes (Eq. 6) [14]: 

First, predicted PAEE was calculated using: 

 

\]^^	(+_/+</`%a) = [(1 − bcde) × \]f − 1]F^^/gh		 	 (Eq. 3)	

 

The bcde , which is the thermic effect of food was set at a fixed 0.1 (representing 10% of 

TDEE) for all participants, and F^^ was estimated using the equations of Mifflin et al. (1990) 

[62], consistent with Hall’s method [14] and current recommendations [63]. The baseline PAEE 

(\]^ î) was estimated using self-reported PAR at baseline, converted into a \]f value. The 

estimated PAEE during the 15-week intervention (\]^ #̂) was estimated by converting into 

PAL using five different methods: 1) categorizing into expected PAL for 15-week after adding 

the prescribed activity (1.8 PAL for all participants), 2) categorizing into PAL using self-

reported PAR for the 15 week period (1.7-2.0 PAL), 3) calculating PAL as ratio (TDEE/REE) 

using body mass, duration of activities, and the compendium MET values of the prescribed and 

self-reported non-prescribed activity, 4) calculating PAL ratio using the self-reported RPE for 

the prescribed and non-prescribed activity with the participant’s estimated maximum aerobic 

capacity and duration of activities, and 5) calculating PAL ratio using measured HR for 

prescribed activity and RPE (Method 4) for self-reported non-prescribed activity (Appendix 1). 

Predicted body mass change was estimated in two stages. First, expected total body mass 

change that would occur over an indefinite period of time with permanent changes in EI or 

PAEE or both was calculated using Hall’s Eq. 4: 
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Dgh	 =	 u1−bv∆^é−(gh1×∆\]^^)
\]^^1+∆\]^^+π¨¨j−¬(π¨¨j−π¨j)

	   (Eq. 4) 

 

The b	is 0.24, according to the b = b}c + bcde  , where b}c   is a constant value of 0.14 

representing the proportion of PAEE attributable to adaptive thermogenesis [14]. ç^é	(kJ/day) is 

the difference of EI between at baseline and 15-weeks. ç\]^^ (kJ/kg/day) is the difference of 

PAEE between at baseline (\]^ î) and 15-week (\]^ #̂). ghi (kg) is body weight at baseline, 

and \]^ î is PAR at baseline.	πee≥  and πe≥	are 92 kJ/kg/day and 13 kJ/kg/day, respectively, 

which are the constants for FFM and FM contributions to REE. The ¬ is estimated composition 

of body weight change, ¨ji/(≠ + ¨ji), where ¨ji is initial FM, which was the DXA-

measured FM at baseline, and ≠ is 10.4, the Forbes parameter [74]. According to the equation, 

higher initial body fat results in more weight changes, since ¬ is increased by higher initial body 

fat and πee≥	is larger than πe≥ , which results in a smaller denominator of the equation. This 

indicates that higher initial FM brings out more loss of FM for weight loss compared to higher 

initial FFM because FM has lower contribution to REE compared to FFM. Thus, the TDEE 

remains higher than if a higher proportion of the weight loss is FFM. 

Second, body mass changes after the 15 weeks of TIGER intervention were estimated. 

Equation 3 represents the exponential decay function predicting Dghû at a specific time t (in this 

study, t = 15 weeks = 105 days), which is only the initial part of the predicted Dgh from 

Equation 2. The characteristic time constant (tau;t) for the predicted nonlinear rate of weight loss 

accounting for changes in both body mass and composition following behavior change (i.e., ΔEI 

and ΔPAEE) computed using Equation 6. 
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∆ghû = Dgh − 	Dgh:Vû/ü      (Eq. 5) 

t	= †öõò°öõò¢(†ööõò°ööõ)

ôöõòó}ddOò¢(ôööõòó}ddO)
    (Eq. 6)  

 

where ≤e≥ is 750 kJ/kg and ≤ee≥ is 960 kJ/kg, representing the cost of fat and protein synthesis, 

respectively. The µe≥  is 39,500 kJ/kg and µee≥  is 7,600 kJ/kg, representing metabolizable 

energy density of mass change. \]^ #̂ is PAEE of the intervention, which was estimated using 

the five methods described above. The ∑ is ≠/¨j; where the Forbes parameter, ≠	= 10.4, is 

divided by initial FM. Thus, the t decreases when \]^ #̂ increases, indicating both the amount 

and rate of weight change increases. 

Statistical analysis 

All analyses were conducted using STATA (STATA 15, Stata Corp., College Station, 

TX). Descriptive statistics were conducted to quantify participants’ demographics, 

anthropometry, and PAR at baseline as well as changes of body mass, FFM, FM, and PAR 

before and after the 15-week prescribed activity intervention. Paired t-test were utilized to test 

the accuracy of the frequency, duration, and intensity of self-reported methods for the prescribed 

activity in average by comparing with the observed data. 

The observed body mass changes during 15 weeks was estimated for each participant 

using the simple difference (kgfinal – kgbaseline) as well as a fixed effects regression model. Since 

each participant (i = 1 to N) has four body weight measurements during the intervention period, 

the rate of weight change (kg/day) can be estimated. The fixed effects model estimates body 

weight change (kg/day) as the slope of a regression line describing body mass change. 
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h:;<ℎ>Çû = éK>:In:∫>Ç + (ª*m∫:Ç ∗ `%aû) + :Çû    (Eq. 16) 

 

For each participant, the actual days from baseline for each of the body weight 

measurements were used as the final day (t) from baseline (t = 0) that weight was measured: 

expected final weight on day t = slope * t (days). For example, if slope is 0.01 kg/day, then the 

expected weight change on day 105 would be 0.01 * 105 = 1.05 kg. The residuals, eit, represent 

the deviations of each participant from their individual regression line at time (t). The fixed 

effects regression slope provides averate rate of weight change and removes random, day-to-day 

fluctiations in body weight, and is consistent with the concept of dynamic weight change of the 

EB theory compared to using the simple difference between pre-post weights, which confounds 

true change and day-to-day fluctuations.  

The average difference of the predicted and observed body mass changes represents bias 

(systematic error) of the predicted value, and the SD of the differences represents its imprecision 

(random error). 

 

4.3 RESULTS 

Total participants were 1,565 (men=515; women=1,050). Among 3,769 participants, this 

study excluded 269 participants outside the age criteria (18-35 yrs), 231 who did not have weight 

pre-post measurement, 1028 who did not perform 1-mile walk or 1.5-mile run test to obtain 

VO2max because the test was not included for two study cohorts, and 93 who had an estimated 

VO2max higher than 65 mlO2/kg/min (very unlikely for sedentary person) or measurement errors 

(i.e., HR monitor malfunction). An additional 538 participants were excluded based on missing 

data on one or more variables.   



70 
 

Descriptive results 

The baseline characteristics of participants were described in Table 8. Of 1,565 

participants, 515 (33%) were men and 1,050 (67%) were women. All participants reported their 

physical activity rating (PAR) at baseline: 68.7% of participants were reported 0-4 of PAR 

scores, which indicates less than 1-mile run or less than 30 minutes of comparable PA per week 

(i.e., sedentary). Reported 0-4 of PAR scores at baseline in men and women were 55.8% and 

75.0%, respectively.  

Mean weight change after the 15-week prescribed exercise was -0.37 kg (SD=2.63). Self-

reported PAR scores were increased after 15-week exercise intervention, with 78.7% of 

participants reporting 5-7, which indicates more than 1-5 miles of run or 30-60 minutes of 

comparable PA per week. 
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Table 8. Characteristics of participants at baseline (Mean±SD, or %) 

 All (n=1,565) Men (n=515) Women (n=1,050) 

Age (yr) 21.2±2.8 21.4±2.7 21.1±2.8 

Height (cm) 166.8±9.1 175.3±7.1 162.5±6.6 

Weight (kg) 73.2±19.4 83.6±19.3 68.1±17.2 

FFM (kg) 49.9±12.6 63.2±10.5 43.4±7.2 

FM (kg) 23.3±12.0 20.4±12.3 24.7±11.6 

PAR (score)    

0 3.4% 1.0% 4.5% 

1 26.1% 15.4% 31.3% 

2 12.5% 9.3% 14.1% 

3 18.3% 20.9% 17.0% 

4 8.5% 9.3% 8.1% 

5 15.9% 19.5% 14.2% 

6 8.6% 13.4% 6.3% 

7 6.7% 11.2% 4.5% 

FFM: fat free mass; FM: fat mass; PAR: physical activity rating score 

 

Comparison of measured and self-reported activity 

The averaged frequency, duration, and intensity of exercise between measured activity 

data (HR monitors) and self-reported activity data (Activity Logs) were compared using paired t-

tests (Table 9). For this comparison, only participants who completed activity logs were included 
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(i.e., only Phase 2), and the dates of prescribed (HR measured) and reported activities were 

matched.   

 

Table 9. Measured vs. self-reported activity data (Mean±SD), (n=1,012) 

 HR data Activity 

Log 

Frequency (activities) 36.3±9.28 56.0±26.3 

Duration (minutes) 37.8±4.4 33.1±6.8 

Intensity (HR, bpm) 156.1±8.0 142.8±13.7 

bpm: beat per minute 

 

The results showed that the averaged frequency of activity was higher in the self-reported 

activity logs (diff=19.7, p<.001) compared to the HR data, since participants reported more than 

two activities in one session. Averaged duration per session were 4 minutes longer in the HR 

data compare to the activity logs (p<.001). For intensity, self-reported RPE in the activity logs 

were used to calculate HR (beat/min, bpm) using Astrand-Ryhming single stage method [112] 

(Appendix 1, the 4th method) to compare with the collected HR monitor data. Averaged HR 

during the activity in the self-reported activity logs were 13.3 bpm lower compared to measured 

HR data (p<.001), but had more variability (SD=13.7 in the activity log vs. SD=8.0 in the HR 

data).   

Comparison of observed, expected, and predicted weight changes 

The observed weight changes after 15-week prescribed exercise were estimated using 

two criterion measures: 1) simple difference of weights before and after the intervention and 2) 
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the rate of weight change (kg/day) over the intervention period. The simple difference weight 

change (Simple DWT) was calculated using measured weights at baseline and after the 

intervention (kgfinal – kgbaseline). The expected weight change, based on the rate of weight change 

(Rate of DWT), was estimated using the slope from the fixed effects regression approach for 

each participant. Then, the rate (kg/day) was multiplied by the number of days between baseline 

and final weight measurement to estimate the total weight change.  

The predicted weight changes after 15-week prescribed exercise were estimated using the 

five methods of PAEE estimations: 1) Categorized PAL of prescribed activity (1.8 PAL for all 

participants), 2) Categorized PAL using PAR reported by participants, 3) PAL ratio 

(TDEE/REE) calculation using activity logs and compendium MET values for the reported 

activities, 4) PAL ratio calculation using RPE from activity logs, and 5) PAL ratio calculation 

using measured HR for prescribed exercise sessions and RPE from the activity log for non-

prescribed activities (Appendix 1). 

Average simple pre-post measured weight change was -0.23 kg (SD=2.55), and average 

expected weight change from the rate of change method was 0.29 kg (SD=2.81). The predicted 

weight changes for Method 1 to 5 were -3.82kg (SD=8.17), -5.44 kg (SD=8.29), -3.53 kg 

(SD=8.12), -3.43 kg (SD=8.12), and -2.77 kg (SD=8.23), respectively. Therefore, the self-

reported methods to predict weight changes showed more weight loss than the observed weight 

changes. 
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Table 10. Comparisons of bias and precision in predicting weight change among PAEE 

estimation methods (n=581) 

 Simple DWT Rate of DWT 

 Mean  SD Mean  SD 

Observed DWT -0.23 2.55 0.29 2.81 

Bias  Precision Bias Precision 

   Method 1  3.59 8.54 4.11 8.81 

   Method 2  5.20 8.58 5.73 8.95 

   Method 3  3.29 8.56 3.82 8.71 

   Method 4  3.20 8.57 3.73 8.72 

   Method 5  2.54 8.69 3.07 8.80 

DWT: weight change; Bias: mean differences between observed DWT and predicted DWT by each method; 
Imprecision: SD differences between observed DWT and predicted DWT by each method; Method 1: categorized 
PAL of prescribed activity; Method 2: categorized PAL using PAR reported by participants; Method 3: PAL ratio 
(TDEE/REE) calculation using compendium MET values from activity logs; Method 4: PAL ratio calculation using 
RPE from activity logs; and Method 5: PAL ratio calculation using measured HR and RPE of activities 
 

The comparisons of bias and imprecision among the five different PAEE estimation 

methods with observed weight changes are presented in Table 10. According to the results, 

Method 5, calculating PAL ratio using the objectively measured HR with the self-reported 

activity logs, was the lowest bias (lowest difference between observed and predicted weight 

changes) among the five different PAEE estimation methods. Method 4, calculating PAL ratio 

using the self-reported activity with RPE, was the lowest bias and SD (imprecision) among the 

entirely self-reported methods. 

However, for calculation of predicted body weight changes using Equation 4, many 

values for the self-reported EI data using Block FFQ were noted to be implausible (i.e., under-
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reported by Goldberg’s cut-off: ratio of reported EI to BMR < 1.55 [52]). Thus, the analyses 

were repeated with the ΔEI set to 0 in Equation 4, which indicates the assumption that EI did not 

change during the intervention period. Given that only a prescribed exercise intervention without 

dietary intervention was provided to participants, PAEE would be expected to change, but EI 

may not have changed. Without EI, the bias of the predicted weight changes for Method 5 was 

the lowest among all PAEE estimation methods, and Method 4 had the lowest bias among the 

entirely self-reported methods (Table 11), consistent with the results in Table 10. Compared to 

the results that included the reported ΔEI, all bias and imprecision estimates improved when the 

ΔEI measures were excluded (i.e., Rate of DWT: bias and precision of the 4th method were 

changed from 3.73 to 1.15 and 8.72 to 3.82, respectively).  
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Table 11. Comparisons of bias and precision in predicting weight change among PAEE 

estimation methods, without EI (n=581) 

 Simple DWT Rate of DWT 

 Mean  SD Mean  SD 

Observed DWT -0.23 2.55 0.29 2.81 

Bias  Precision Bias Precision 

   Method 1  2.07 3.82 1.55 3.86 

   Method 2  3.71 4.45 3.18 4.26 

   Method 3  1.77 3.57 1.25 3.88 

   Method 4  1.68 3.49 1.15 3.82 

   Method 5  1.01 3.52 0.48 3.92 

DWT: weight change; Bias: mean differences between observed DWT and predicted DWT by each method; 
Imprecision: SD differences between observed DWT and predicted DWT by each method; Method 1: categorized 
PAL of prescribed activity; Method 2: categorized PAL using PAR reported by participants; Method 3: PAL ratio 
(TDEE/REE) calculation using compendium MET values from activity logs; Method 4: PAL ratio calculation using 
RPE from activity logs; and Method 5: PAL ratio calculation using measured HR and RPE of activities 
 

 

4.4 DISCUSSION 

In this study, PAEE during the intervention was quantified using four different methods 

of self-reporting activity and an objective measure of HR during the 15-week prescribed exercise 

intervention. Then, the revised TDEE calculation from the increased PAEE and the available 

self-reported EI data was used to predict body mass changes by each method. Finally, the 

predicted body mass changes from each method after the intervention were compared to the 

observed body mass changes to examine the accuracy of self-reported data.  
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This study found that the average duration and intensity of the measured HR data was 

higher than self-reported data, although higher frequency (more activities) were also reported in 

the self-reported activity logs. Most previous studies indicated that self-reported PA tends to be 

over-reported compared to objectively measured PA [124]. One explanation of our inconsistent 

results with previous studies would be due to converting self-reported RPE to %HRR and 

average HR during activity using Astrand-Ryhming method [112], which could be misleading at 

lower intensity activity. For example, according to this method, an RPE of 6 would convert to 

0% of HRR, which results in an activity HR estimate approximately equal to resting HR. In the 

self-reported activity logs, some participants reported an RPE of 6 for their warm-up sessions 

such as jogging, stretching, walking, etc. It is possible that a reported RPE of 6 (%HRR=0) does 

not represent the actual and measured HR during these activities, which would be expected to 

result in HR elevation above resting HR. Another explanation is that participants may have 

underreported their total durations of activities if they did two or more activities in one session. 

For the HR monitored sessions, total durations of activity were recorded in one data stream 

regardless of transitions of activities (i.e., 5 minutes of walking to 30 minutes of elliptical 

training, and to 10 minutes of stretching) during that one session, and thus, more than 45 minutes 

of activity duration should be recorded including the time between activity transitions or rests. 

On the other hand, only the activity minutes were recorded in the self-reported activity, and some 

warming up activities (i.e., 5 minutes of running track or 5 minutes of stair-steps before every 

session) were not reported. 

This study found that the predicted body mass changes using a combination of measured 

HR data and self-reported activity logs with RPE showed the lowest bias and best precision. 

Method 4, PAL calculation using RPEs of intensity, was the most accurate entirely self-reported 
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method to predict weight changes. Measured HR is known to be an accurate method of 

predicting individual’s relative exercise intensity during the activity [125, 126], so Method 5 

may be considered an objectively measured and accurate estimate of ΔPAEE due to the 

intervention. For the entirely self-reported methods, estimates of PAEE using %HRR 

and %VO2max from RPE and individuals’ estimated maximum aerobic capacity (Method 4) 

were close to the predictions of Method 5, and thus can be considered to be reasonably accurate 

(unbiased). Comparing the five different methods of PAEE estimation, Method 2, using 

categorical PAL from participants’ reported PAR, was least accurate and resulted in a predicted 

weight change about 5 kg below the observed weight changes. The other 3 self-report methods of 

PAEE estimation showed relatively consistent predicted weight changes.  

The validity of converting RPE to an approximate HR during activity has strong 

theoretical and empirical support [72]. If HR and aerobic capacity are known within reasonable 

accuracy, then an estimate of PAEE can be derived. Collecting RPE might be more feasible than 

instrumentation (e.g., HR monitors, accelerometers) in large interventions or population 

surveillance studies but still provide reasonably accurate estimates of PAEE and predicted 

weight change in response to PA intervention.  

The RPEs could be useful for estimation of PAEE compared to calculation using 

compendium MET values of each activity. To calculate PAEE using compendium METs, 

participants have to report categorized intensity (i.e., light, moderate, vigorous) or specific 

performance information (i.e., pace (mph) for walking and running) [68, 69]. However, the pace 

data was not reported in the logs and many participants were missing running or walking 

distance, which could be combined with duration to estimate pace. Therefore, we used RPEs as 

categories of activity intensity (i.e., light=6 METs: running with RPE <12; 11.5 METs: running 
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with RPE=14; 15 METs: running with RPE=18) for our compendium METs calculations. In 

practice, without the reported RPE values the compendium estimates (Method 3) would likely 

have greater inaccuracy than observed in the current study. In addition, continuous RPE values 

allow more granular variability than using only three categories of intensity (light, moderate, and 

vigorous) as described in the Compendium for many activities. There were also infeasible 

reported intensity values, such as having only a single intensity for elliptical training (i.e., = 5 

METs), despite a wide range of other possible intensities for that activity. There were also 

unavailable categories in the compendium for some specific activities (i.e., Zumba, pole 

dancing). In these cases, and other situations, RPE with duration of activity can be used to 

calculate PAEE for the session, regardless of activity modes, which is an advantage over the 

compendium method. Recent studies also concluded that compendium METs values of activity 

can be accurately obtained using %HRR by measured HR [127]. Thus, RPE can be used instead 

of measured HR since properly reported RPE has been demonstrated to be highly consistent with 

prediction of HR and VO2 [71, 128].  

Using RPE and duration of activities to estimate PAEE was the most accurate entirely 

self-reported method for estimation of PAEE used to predict body mass changes after the 

prescribed intervention. Feasibility of RPE or other intensive self-reporting methods, however, 

can be a challenge. Understanding the advantages and limitations of each assessment 

method would allow investigators and practitioners to select methods appropriate for the 

purposes of their work, recognize the assumptions and limitations, and make appropriate 

conclusions and recommendations.



80 
 

 

Table 12. Summary of PAEE estimation methods 

 Assumptions Advantages Limitations 
Method 1 -Participants are 100% compliant and 

have the exact same exercise dose 
throughout the intervention period 

-Easy to calculate PAL -Does not capture variability within 
participants (e.g., day-to-day or week-
to-week) 
-Does not capture variability among 
participants 

Method 2 -Reported PA level reflects average 
activity 
-Participants’ PA was consistent 
during the entire intervention period 

-More categories for PA level 
description compared to Method 1 
-Captures variability among participants 

-Does not capture variability within 
participants (e.g., day-to-day or week-
to-week) 
 

Method 3 -All reported PA is accurate in terms 
of mode and duration 
 

-Easy to quantify caloric expenditure 
value using METs 
-Reflecting variability in intensity and 
duration  
-Captures variability within participants  
-Captures variability among participants 

-Participants must report all PA 
sessions 
-Lack of intensity categories of mode, 
and thus lack of MET values, for some 
activities  

Method 4 -All reported PA are accurate in terms 
of intensity (RPE) and duration 
 

-Captures variability within participants  
-Captures variability among participants  
-No need to report mode of activity 

-Participants must report all PA 
sessions 
-Need to train participants for accurate 
RPE rating  

Method 5 -HR is accurately measured during 
the prescribed activity 
-All non-prescribed PA is accurately 
reported with respect to intensity 
(RPE) and duration 

-Objectively measured activity (in part 
or entirely)  
-Captures variability within participants  
-Captures variability among participants  
-No need to report mode of activity 

-Participants must wear HR monitor or 
self-report all PA sessions 
-Possible equipment errors (i.e., HR 
monitor malfunction) 
-Need to train participants for accurate 
RPE rating  

Method 1: categorized PAL of prescribed activity; Method 2: categorized PAL using PAR reported by participants; Method 3: PAL ratio (TDEE/REE) 
calculation using compendium MET values from activity logs; Method 4: PAL ratio calculation using RPE from activity logs; and Method 5: PAL ratio 
calculation using measured HR and RPE of activities
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 The findings of this study should be interpreted considering certain limitations. The 

two different phases of this study collected some different measures (i.e., HR data, Fitness 

test, Activity logs, etc.) such that not all subjects could be included in all estimates, although 

a fairly large sample size was maintained. Duration reports in the self-reported activity logs 

were categorized (i.e., … 15, 20, 25, 30…., and more than 60 min), whereas the measured 

HR data provided exact durations to the minute, which introduced variability by reporting 

method. Self-reported EI data using Block FFQ had many implausible values leading to 

inflated bias and imprecision for body mass change estimation in our data; specifically, 

substantial under-reporting of EI led to large underestimating of change in body weight. 

After setting EI change to 0 in the equations and using only the PAEE estimates, the 

predicted body mass changes became more accurate. Unlike PAEE estimation, there was 

only one method to estimate EI in this study, so we were unable to compare accuracy of 

methods and sources of self-reported EI errors. 

This study also has strengths and meaningful findings. First, this study included 

various self-reported methods for PAEE estimation and included objectively measured HR 

data for every prescribed exercise session, and we were able to compare each method to 

estimate predicted weight changes with the observed weight changes. From the first to fifth 

methods, more information was added, which led to better estimates, with Method 4 and 5 

being the most accurate self-reported and self-reported + measured methods, respectively. 

Collecting a variety of information to quantify PAEE may reduce missing data and sources of 

error for self-reported data. For example, collecting and using RPE can be useful if mode of 

activity is missing when using the compendium MET values to rate activity. Second, this 

study used Hall’s validated dynamic mathematical models that incorporate body weight, 
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body composition, and behavior changes (PA, EI) to predict weight changes after the 

prescribed exercise intervention. Finally, the use of RPE for self-reported activity logs 

provided estimates with the lowest bias for caloric values of PAEE, as confirmed by a more 

accurate estimate of body mass changes. 

This study compared the four different self-reported PA methods to estimate body 

mass changes after the prescribed exercise intervention. Except for self-reported PA category 

by PAR, we found that the predicted weight change estimations among the variety of self-

reported PAEE methods were fairly consistent, and using more refined self-report measures 

produced increasingly more accurate predictions of body weight change. Although the self-

reported measures have been considered to be substantially less accurate than objective 

measures, self-reported measures can be more feasible to use and analyze in large population 

research. Our results show that there are ways to reduce bias and errors and improve 

precision by using more detailed self-reported methods such as RPE or perhaps self-reported 

HR during activity, both of which are relatively easy to teach to participants, and recording 

of specific duration minutes and all activity sessions.  
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CHAPTER 5 

5. MANUSCRIPT 2: THE EFFECTS OF INITIAL ENERGY BALANCE STATUS 

ON BODY WEIGHT CHANGES IN INDIVIDUALS AFTER EXERCISE 

INTERVENTION 

5.1 INTRODUCTION 

Lifestyle weight loss programs such as restricted calorie intake, increased physical 

activity (PA) and total daily energy expenditure (TDEE), or a combination of both have been 

implemented to lower obesity rate and improve individual health [84]. These weight loss 

programs create an energy deficit, when energy expenditure (EE) exceeds energy intake (EI), 

which is called as negative energy balance (EB) [82, 83]. However, the effects of weight loss 

programs that increase TDEE vary due to individual variability in body composition, PA 

history, and EB status (i.e., a person is gaining or losing weight or weight stable when the 

intervention begins). 

First, different body composition such as fat mass (FM) and fat free mass (FFM) 

affects weight changes among individuals [12]. Because FM has a lower metabolic cost 

(contribution to resting energy expenditure (REE)) compared to FFM [40], higher initial FM 

at a given total body mass means that the REE is relatively lower. This differential results in 

higher proportion of FM loss during weight loss for a given energy gap (relative preservation 

of FFM), which also results in more total weight loss when reaching a new stable weight. 

With higher proportion of FM loss, however, the amount of FM (kg) has higher energy 

stored than FFM, which means it requires more energy to lose a kg of FM and total mass – 

the energy required to lose 1 kg of mass is higher than persons with lower FM. Thus, for a 

given energy gap, the rate of body mass change is lower, particularly after the initial few 
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months of weight change. Therefore, for a sustained change in behavior, a person with higher 

initial FM will lose ultimately more weight before reaching a new EB state but would also 

need more time to reach the new plateau [13, 14].  

Second, PA history may influence amount of exercise needed to achieve weight loss 

goals. PA history is often determined using categorical physical activity rating (PAR) [70] or 

the international physical activity questionnaire (iPAQ) [129]. A person with regular higher 

amount of pre-intervention PA than a new, prescribed exercise program (assuming they do 

only the prescribed activity during the intervention period and EI does not change) would not 

achieve their weight loss goal because their PAEE, and thus TDEE, would actually decrease. 

If this person was weight stable at baseline (i.e., in energy balance), he or she may even gain 

weight due to producing a positive EB from the intervention exercise program having less EE 

than their pre-intervention PA.  

Finally, initial EB status before participating in the weight loss programs, as 

represented by weight change history, would be expected to affect subsequent weight change. 

A previous study showed that the relationship between baseline EB status and weight 

changes in the same direction and magnitude after the intervention [100]. For example, if an 

individual who is gaining weight (sustained positive EB) does not change their weight after 

the intervention because the activity of intervention equals the individual’s positive EB 

before the intervention, a net state of EB (weight stable) will result. Or, if individuals were 

losing weight (sustained negative EB), they may lose more weight than expected because 

energy deficit that the intervention created would be added to individuals’ the existing 

negative EB. However, to our knowledge, most previous studies of weight loss interventions 

assumed that participants were in EB (weight stable) or excluded persons who reported 
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substantial recent weight change, although there could be considerable variability based on 

lifestyle among participants. For individuals with positive EB, in addition, it would be 

beneficial to account for initial EB status to adjust intervention dose for effective weight loss 

and to set appropriate expectations. 

The purpose of this study was to examine how EB status at baseline is associated with 

body weight changes after the prescribed exercise intervention, controlling for initial body 

composition and PA history in individuals. We hypothesized that accounting for baseline EB 

status to estimate weight changes would more accurately predict actual weight changes 

following a prescribed exercise program in individuals. 

 

5.2 METHODS 

This study was a secondary analysis of data from the Training Intervention and 

Genetics of Exercise Response (TIGER) study. Between 2003 and 2015, the TIGER study 

implemented a longitudinal study to provide regular prescribed exercise and identify genes 

that influence physiological response in college-age individuals. Detailed study information 

have been described elsewhere [106]. 

Participants 

Participants of this study were college men and women aged 18-35 years old and 

recruited from University of Houston (2003-2008) and University of Alabama at 

Birmingham (2010-2015). Participants were excluded if they were pregnant, had diagnosed 

metabolic disorders, or had difficulties in engaging in exercise intervention. The study was 

approved by the Institutional Review Boards of the universities, and informed consent was 

signed by participants before data collection.  



86 
 

Anthropometric measures 

Height was measured before and after the 15-week exercise intervention using a 

stadiometer (SECA Road Rod, Hanover, MD) and recorded to the nearest 0.1 centimeter 

(cm). Weight was measured at four timepoints, baseline, two interim timepoints during the 

intervention, and after the intervention, using a digital scale (SECA 770, Hanover, MD) and 

recorded to the nearest 0.1 kilogram (kg). Fat mass (FM) and fat free mass (FFM) were 

assessed at baseline using dual-energy x-ray absorptiometry (DXA) (Hologic, Bedford, MA).  

Dietary intake 

Dietary intake was measured using Block Food Frequency Questionnaire (FFQ, 

NutritionQuest, Berkeley, CA) [113]. Using the Block’s standard scoring method and 

service, habitual frequency of intake of 102 food items consumed during a typical week were 

obtained by participants (https://nutritionquest.com/assessment/pricing_and_ordering/), 

validated from the previous studies [122, 123]. The frequency of each food intake was 

converted to a weekly calorie intake (kcal/wk) and averaged daily calorie intake (kcal/day). 

For under-reported EI problems, we used Goldberg’s cut-off, less than 1.55 for a ratio of 

reported EI to basal metabolic rate (BMR) is considered as implausible values of reported EI 

data [52].    

Physical activity rating (PAR)  

Participants rated their regular physical activity using the PAR scale, ranging from 0 

(None; No activity) to 7 (Vigorous; Run over 10 miles of 3 hours of comparable PA per 

week) [70] at baseline and 15-week exercise intervention. PAR was converted to Hall’s five 

categories of physical activity level (PAL) ranging from “Very Light” to “Very Active” [14]. 
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PAL is defined as a ratio that individual’s total daily energy expenditure (TDEE) in a day, 

divided by individual’s resting metabolic rate (RMR) [130].  

Activity Logs 

Participants also reported all physical activities during the entire intervention period, 

including the TIGER-prescribed exercise as well as additional activity outside of TIGER 

sessions, using an online activity log. The modes (i.e., weight lifting, elliptical, running, etc.), 

duration (minutes), and intensity (rating of perceived exertion, RPE, ranging from 6 to 20 

[72]) for each session were reported by participants. 

Weight history  

Weight history was self-reported by participants on a questionnaire at baseline. The 

two different study phases used different questions about weight history. Participants 

reported their body weight in the previous 2 years (Phase 1: University of Houston) or at the 

end of high school (Phase 2: University of Houston and University of Alabama at 

Birmingham). The historical change in weight was estimated as the difference between the 

measured baseline weight and this reported prior weight.  

VO2max estimation 

Participants performed a 1-mile walk or 1.5-mile run test and the exercise HR during 

the test and duration of test were recorded. To estimate VO2max (mlO2/kg/min), the 

equations by Kline et al. [109] and Baumgartner et al. [110] were used for 1-mile walk and 

1.5-mile run test, respectively. However, the Astrand-Ryhming method [112] was finally 

used to estimate VO2max due to limitations for estimating maximal oxygen consumption 

during the test by untrained sedentary participants. 
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TIGER-prescribed exercise intervention  

Participants participated in the 15-week of aerobic exercise intervention at a 

prescribed 65-85% of age and sex-specific predicted maximum HR reserve [114], 30 minutes 

or more per day, and 3 days per week. Different activities (i.e., treadmill, elliptical trainer, 

stair stepper, or stationary bike) were allowed to select for different sessions. During each 

session, participants wore a heart rate (HR) monitor (Polar Electro, Lake Success, NY), and 

the HR data were recorded and downloaded to compute averaged HR during the sessions for 

every participant. Invalid data such as the missing or unusable data due to HR monitor 

malfunction were imputed by using other valid sessions of the within-participant 

distributions of HR and duration [115]. 

Physical activity energy expenditure (PAEE) estimation 

The PAEE at baseline (!"##$) and during the 15-week intervention (!"##%) were 

estimated using the equation by Hall et al. [14] (Eq. 3).  

 

!"##	(()/(+/,-.) = [(1 − 4567) × !"9 − 1];##/<=  (Eq. 3) 

 

where 4567 is 0.1, representing the thermic effect of food, estimated as 10% of TDEE. !"9 is 

ratio of TDEE, which includes the amount of work or school activity such as all non-

spontaneous PA and exercise activity, divided by REE. The PAL of !"##$ was calculated 

using participant’s PAR at baseline by converting into PAL. The PAL of !"##% was 

calculated using participant’s measured HR during the TIGER-prescribed activity and self-

reported activity logs including mode, duration and RPE of each activity for non-prescribed 
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activity (Appendix 1 of Study 1, the 4th and 5th methods). ;##	(kJ/day) is resting EE, 

estimated from equations in Mifflin et al. [62], and <=	(kg) is body weight at baseline.  

EB status at baseline calculation 

EB status before participating in the prescribed exercise intervention was calculated 

by using each participant’s weight history and the equations of Hall et al. (2007) below 

(Equation 2) [80], which incorporates Forbes’s parameter [74]. The baseline EB (D<=>) is a 

function of weight change, and more specifically the change in body composition, the 

relative changes in FM and FFM, since FM has a much higher energy density than FFM 

(D<=>	=	D??@>+	D?@>, where D??@> and D?@>are history of FFM and FM change). 

Consequently, a reasonable estimate of change in FM (D?@) and FFM (D??@) using only 

reported change in BW and current FM (via DXA) was required (i.e., +	D?@>=	?@%	–	?@$, 

where ?@$ and ?@% are the historical and baseline FM, respectively.).  

 

?@$ = 10.4= F
1

10.4
× GHI J

∆<=>

10.4
L × ?@% × GHI J

?@%

10.4
LM																	(Eq. 19) 

 

Because baseline EB status in individuals is represented by relatively large, 

longitudinal changes of body mass and composition, Hall expended upon the concept of 

Forbes’s original equation of cross-sectional association between FFM and FM to predict 

body composition change for a given change of body weight (∆<=>) and current FM (?@%) 

using the Lambert = function to solve a transcendental equation predicting historical FM 

(?@$) [117]. 
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Estimation of predicted body weight changes 

Predicted body mass changes after the TIGER-prescribed exercise intervention were 

estimated using the equations from the NIDDK Body Weight Planner program by Hall et al. 

[14]. Hall and his colleagues demonstrated a web-based dynamic simulation program and 

equations to estimate weight changes over time in response to changes of calorie intake and 

PA. According to his program and equations, initial body composition (FM and FFM) and 

physical activity level (PAL, TDEE divided by REE) were accounted for estimating weight 

changes (see Equation 4).  

 

DBW	= 
($ST)∆6US(VWX×∆YZ66)

YZ66X[∆YZ66[\]]^S_(\]]^S\]^)
      (Eq. 4) 

 

The predictors of Equation 3 are 4 (proportion of TDEE attributable to both TEF, 

0.10, and adaptive thermogenesis (AT), 0.14, so 4 = 0.24), changes of EI (D#`, kJ/day) and 

PAEE (D!"##, kJ/kg/day), baseline body weight (<=$, kg) and PAEE (!"##$, kJ//kg/day), 

contribution of FFM and FM to REE (a77b= 92 kJ/kg/day and a7b= 13 kJ/kg/day, 

respectively), and c representing composition of body weight change, ?@/(d + ?@), where 

?@ is baseline FM which was measured FM at baseline and d	is 10.4, the Forbes parameter. 

Because c increases with initial FM and the a77b	>	a7b , the difference in the right side of 

the denominator becomes smaller with larger FM, so the expected final f<= is larger for 

larger FM. 

However, EB status was not included to consider in this model, since Hall’s Body 

Weight Planner program has been developed to estimate adjustment of caloric values or days 

for achieving weight goals in individuals. Therefore, the EB status before participating in 
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prescribed exercise intervention program in each individual using Equation 19 was added 

(Eq. 20). 

DBW	= 
($ST)∆6US(VWX×∆YZ66)[6V

YZ66X[∆YZ66[\]]^S_(\]]^S\]^)
      (Eq. 20) 

The expected total body weight change when a new energy balance (stable weight) 

was estimated using the adapted version of Hall’s equation, Equation 4. Using Equation 19 

and the respective energy densities associated with mass changes (g77b  = 7,600 kJ/kg and 

g7b  = 39,500 kJ/kg), #< (kJ/day) was estimated as (7,600 × f??@ + 39,500 × f?@)/(365 × 

2 years, or the number of days from the at the end of high school to baseline date). 

Then, the amount of body weight change after the TIGER-prescribed exercise 

intervention was estimated using an exponential decay model (Eq. 5) with the characteristic 

timescale of weight change (t) (Eq. 6). 

 

∆<=h = D<= − 	D<=GSh/i          (Eq. 5) 

 

t	= 
j]^[k]^[l(j]]^[k]]^)

\]^[YZ66m[l(\]]^[YZ66m)
        (Eq. 6) 

 

The t was obtained by the cost of fat and protein synthesis (n77b  = 960 kJ/kg and 

n7b	= 750 kJ/kg, respectively), metabolizable energy density of mass change (g77b  = 7,600 

kJ/kg and g7b  = 39,500 kJ/kg, respectively), contribution of FFM and FM to REE (a77b  = 

92 kJ/kg/day and a7b  = 13 kJ/kg/day, respectively), PAEE of the intervention, and body 

composition change (o = d/?@; where Forbes parameter, d = 10.4, divided by FM at 
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baseline [74]). The t is decreased by increases of PAEE, meaning both the amount and rate 

of weight change increases. 

Statistical analysis 

Descriptive statistics for participants’ baseline characteristics such as demographics 

(i.e., age and sex), anthropometry (i.e., height, weight, FFM, and FM), and PAR at baseline 

were conducted and presented as mean and standard deviation (SD).    

The actual weight changes during the TIGER-prescribed exercise intervention was 

estimated using the simple difference (kgfinal – kgbaseline). The fixed effects regression model 

was also used to estimate the rate of weight change over the intervention period (kg/day) 

using four body weight measurements during the intervention period in each participant (i). 

The intercept represents the expected body weight at baseline, slope represents the rate of 

body weight change (kg/day), day represents the actual days from baseline for each 

participant’s body weight measurement in the fixed effects model. The residuals, eit, indicates 

the deviations of each participant from individual regression line at time t.  

 

=Gp+ℎrsh = `trGuvGIrs + (wxyIGs ∗ ,-.h) + Gsh  (Eq. 16) 

 

The participant-specific slopes were estimated by computation that correlation 

between weights and days of each measurement muliplied by the values from the SD of 

weights devided by the SD of days. The rate of weight change (kg/day) was then calculated 

by using muliplied by the number of days between pre- and post- weight measurement for 

the total weight change estimation. By comparing the actual weight changes with the rate of 

weight changes estimation using both Equation 4 and 20, we examined whether considering 
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EB status individuals would be more accurate for estimation of body weight changes. If the 

mean difference and the SD of individual weight change rate are smaller for Equation 20 

compared to Equation 4, it was considered to be more accurate method.  

All analyses were conducted using STATA (STATA 15, Stata Corp., College Station, 

TX).  

 

5.3 RESULTS 

Among the full sample (n=3,769), 269 participants who were not meet age criteria 

(18-35 years), 231 who did not have weight pre-post measurements, 1,028 who did not have 

VO2max data due to missing the 1-mile walk or 1.5-mile run test in two study cohorts, 93 

who had estimated VO2max > 65 mlO2/kg/min or measurement errors such as HR monitor 

malfunction, 559 who had missing data on demographics, DXA, Block FFQ, weight history, 

etc. were excluded. Therefore, total 1,544 of participants (men=509; women=1,035) were 

included in this study.   

Descriptive results 

The characteristics of participants at baseline are presented in Table 13. Self-reported 

physical activity rating (PAR) at baseline among all participants showed that 68.8% of 

participants reported 0-4 PAR scores, meaning they are sedentary, less than 1-mile run or less 

than 30 minutes of comparable PA per week. PAR scores reporting by men and women were 

different: reported 0-4 of PAR scores were at baseline in men and women were 56.0% and 

75.1%, respectively, and thus women were more sedentary at baseline.  
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Table 13. Characteristics of participants (Mean±SD, or %) 

 All (n=1,544) Men (n=515) Women (n=1,050) 

Age (yr) 21.2±2.8 21.4±2.7 21.0±2.8 

Height (cm) 166.8±9.0 175.3±7.1 162.6±6.6 

Weight (kg) 73.2±19.4 83.6±19.4 68.0±17.2 

FFM (kg) 49.9±12.6 63.2±10.6 43.4±7.2 

FM (kg) 23.3±12.0 20.4±12.3 24.7±11.5 

PAR (score)    

0 3.4% 1.0% 4.6% 

1 26.1% 15.4% 31.4% 

2 12.5% 9.3% 14.0% 

3 18.2% 21.1% 16.9% 

4 8.6% 9.3% 8.2% 

5 15.9% 19.7% 14.0% 

6 8.6% 13.1% 6.3% 

7 6.7% 11.1% 4.6% 

FFM: fat free mass; FM: fat mass; PAR: physical activity rating score 
 

Predicted weight changes with EB status at baseline 

Average weight changes at baseline among participants was 4.16 kg (SD=8.57) and 

averaged EB among participants were 155.04 kJ/day (SD=415.71), which indicates 

participants were in a small amount of positive EB at baseline, on average.  
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The predicted weight changes without baseline EB (using Equation 3) was -3.10 kg 

(SD=8.72), but it became -2.66 kg (SD=8.72) after including baseline EB status (using 

Equation 20) (Table 14).  

Comparison of observed weight changes and predicted weight changes 

Averaged simple DWT of pre-post measured weights was -0.24 kg (SD=2.55) and 

averaged rate of DWT among 4 timepoints measured weights was 0.28 kg (SD=2.81). The 

predicted weight changes without including EB status using RPE only and RPE with HR 

were -3.35 kg (SD=8.14) and -2.80 kg (SD=8.25), respectively. Predicted weight change 

with EB status using RPE only and RPE with HR were -2.96 kg (SD=8.09) and -2.30 kg 

(SD=8.19), respectively. 
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Table 14. Comparisons of the bias and precision between without vs. with EB status at 

baseline (n=577) 

 Simple DWT Rate of DWT 

Observed change 

without EB status 

Mean  SD Mean  SD 

-0.24 2.55 0.28 2.81 

Bias  Precision Bias Precision 

   RPE only  3.22 8.59 3.74 8.74 

   RPE + HR  2.56 8.71 3.08 8.83 

 Simple DWT Rate of DWT 

Observed change 

with EB status 

Mean  SD Mean  SD 

-0.24 2.55 0.28 2.81 

 Bias  Precision Bias Precision 

   RPE only  2.73 8.54 3.25 8.70 

   RPE + HR  2.07 8.66 2.59 8.78 

DWT: weight change; Bias: mean differences between observed DWT and predicted DWT by each method; 
Imprecision: SD differences between observed DWT and predicted DWT by each method  
 

The bias and precision of predicted weight changes (Predicted DWT with or without 

Baseline EB status, RPE only or RPE + HR) compared to observed weight changes (Simple 

DWT and rate of DWT) after 15-week prescribed exercise intervention are compared in Table 

14. The results showed that using RPE with HR for PAEE estimation was more accurate 

(lower bias) compared to RPE only, and including baseline EB status lower bias (systematic 

error) and imprecision (random error) compared to without EB status. 
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Table 15. Comparisons of the bias and precision between without vs. with EB status at 

baseline without EI data (n=577) 

 Simple DWT Rate of DWT 

Observed change 

without EB status 

Mean  SD Mean  SD 

-0.24 2.55 0.28 2.81 

Bias  Precision Bias Precision 

   RPE only  1.69 3.49 1.17 3.82 

   RPE + HR  1.02 3.52 0.51 3.93 

 Simple DWT Rate of DWT 

Observed change 

without EB status 

Mean  SD Mean  SD 

-0.24 2.55 0.28 2.81 

Bias  Precision Bias Precision 

   RPE ONLY  2.18 3.80 1.67 4.12 

   RPE + HR  1.52 3.83 1.00 4.22 

DWT: weight change; Bias: mean differences between observed DWT and predicted DWT by each method; 
Imprecision: SD differences between observed DWT and predicted DWT by each method 

 

Due to infeasible data of self-reported EI data using Block FFQ (i.e., under-reported 

problems such as less than 1.55 of EI to BMR ratio by Goldberg’s cut-off [52]), we repeated 

the analyses with removed DEI from the Equation 4. Under this scenario, EI was assumed not 

to change (DEI=0) during the prescribed exercise intervention period. After removing EI, the 

bias (means differences between observed and predicted weight changes) and imprecision 

(SD differences) were lowered in both with and without baseline EB status inclusion. In 

contrast to the results when ΔEI was included, the models without baseline EB showed lower 
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bias and SDs in both using RPE and RPE with HR for PAEE estimation, compared to 

modeling including EB status (Table 15).  

 

5.4 DISCUSSION 

This study examined whether predicted weight changes following a 15-week PA 

intervention are more accurately estimated by accounting for body composition, PA level, 

and baseline EB status. For this study aim, we used Hall’s equations to predict weight 

changes with PAEE estimation using self-reported RPE and measured HR data, which 

account for baseline body composition and PA level. We also used an adapted equation using 

Forbes’s principle of relative longitudinal changes in FFM and FM [74] and Hall’s expanded 

dynamic changes of body mass and composition [80] to estimate EB status at baseline. 

Using self-reported weight history of each participant, the amount of weight change 

from historical weight to current weight was estimated, and respective energy densities 

associated with predicted changes of FM and FFM (ρFM and ρFFM) were used to calculate the 

baseline EB in kJ/day. In this study, participants were in positive EB at baseline, which is 

consistent with a previous study reporting that on average adults are gaining weight (0.5 to 1 

kg per year, on average) [2]. 

In our data, when individual’s baseline EB was added, the predicted weight changes 

were closer to the observed weight changes (both simple difference of pre-post weights  and 

predictions from rate of weight change estimates), which indicates that bias (systematic 

error) was lower after accounting for individual’s baseline EB status. This study also found 

that PAEE estimation using both self-reported RPE and measured HR data had lower bias 

compared to using self-reported RPE only. This can be explained by the measured HR being 
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an objective method, so it could be a more accurate indicator of intensity and duration of 

activity in individuals than a subjective method [7, 11].  

To our knowledge, this is the first study to examine the effects of baseline EB status 

on weight changes after the intervention. Most weight loss intervention studies ask potential 

participants about recent weight changes and exclude those who report having had substantial 

recent weight changes [131, 132]. Thus, the included participants are assumed to be weight 

stable in most studies. However, in reality, there could be variability of EB status based on 

lifestyle among participants (i.e., gaining weight gradually over the college years, losing 

weight during the school year but gaining weights during the summer, trying to lose weight 

in a short period (i.e., “crash dieting” for a month or two) but regaining weight over time 

(i.e., the span of a year or more), etc.), and thus, most potential participants are unlikely to be 

weight stable. As our data showed, TIGER participants were mostly in positive EB, but 

considerable variability of estimated EB status before participating in the intervention was 

observed. These results indicate the prescribed actvity in this study resulted in inconsistent 

weight changes across the participants who had different estimated EB at baseline. Therefore, 

it may be inappropriate to provide the same intervention dose for all if a consistent response 

is desired (e.g., losing 3% BW). In particular, an intervention of a fixed magnitude for all 

participants may not be sufficient to create and energy deficit and achieve a weight loss goal 

among people who are in positive EB (weight gain trajectory). Considering baseline EB 

status using the information to estimate weight trajectory could be useful for optimizing 

effective interventions for weight management in large intervention studies.  

This study also has limitations. There are possible errors to estimate weight changes 

and baseline BE from the self-reported methods of EI, PAEE, and weight history. EI data 
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appeared to have many implausible values that adversely affected the estimates of body 

weight changes, as evidence by improved accuracy and precision of weight change 

prediction when removing EI change from the estimation process. PAEE estimation using 

self-reported RPE and measure HR also has limitations to accuracy such as missing activities 

to report, over- or under-reported durations of activity due to reporting duration in 5-min 

categories (15 min, 20 min, etc.) rather than actual minutes, HR monitor malfunctions, etc. 

Also, weight history was measured by asking for body weight 2 years ago or at the end of 

high school, which are subject to recall bias and thus it may add error to the predicted weight 

changes. A single time point of weight history may not be able to capture accurate the rate of 

weight change between the historical and current weight measurement. Future studies should 

consider including multiple, more recent timepoints of historical weight status such as 3-

month, 6-month, and 12-month ago, which may reduce recall bias (recent periods are recalled 

more accurately than distant periods) and may provide better baseline EB estimation.   

This study confirmed that accuracy and precision of predicted weight changes in 

individuals were improved by accounting for individual variability such as initial body 

composition, PA level, and especially EB status. Moreover, participants had variability of EB 

status at baseline, which affected the weight changes after the prescribed activity 

intervention. Our findings suggest that it is necessary to consider and account for possible EB 

status at baseline in individuals and evaluate variation in response to an intervention across 

different states of EB, rather than excluding participants who are not weight stable. This may 

help to develop effective weight management intervention programs for populations 

including persons in positive EB and realistic expectations for weight management. 
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CHAPTER 6 

6. MANUSCRIPT 3: ESTIMATION OF WEIGHT CHANGES AMONG DIFFERENT 

RACIAL GROUPS: IS RACE A CONFOUNDING FACTOR TO PREDICT 

WEIGHT CHANGE AFTER PRESCRIBED EXERCISE PROGRAM?  

6.1 INTRODUCTION 

Health disparities have been recognized as a tremendous public health concern, 

particularly since racial minority populations are rapidly increasing in the United States 

[133]. Prevalence of obesity and its associated chronic diseases such as cardiovascular 

diseases and metabolic disorder varies across diverse populations due to genetic, 

environmental, and behavioral differences contributing to the development of obesity [17, 

18].  

Indeed, racial differences of body composition, chronic diseases, and behaviors have 

been observed. For example, for a given body size, on average African American (AA) men 

have more fat free mass (FFM) [20] and less fat mass (FM) [19] compared to Caucasian men, 

and Hispanic and AA women have higher body mass index (BMI) [104] and more FM [19] 

than Caucasian women. In addition, AAs tend to have higher risk of cardiovascular diseases 

[21, 22], lower cardiorespiratory fitness [45, 134], and higher prevalence of physical 

inactivity compared to Caucasians [23]. These racially distributed physiological and 

behavioral differences would affect energy balance (EB), which is associated with energy 

stores (body mass and composition) and ultimately results in different weight gain, loss, or 

maintenance among racial groups.  

Increasing physical activity energy expenditure (PAEE) improves individual health 

with or without weight loss. However, the effects of increased PAEE on weight loss and 
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body composition improvement (i.e., increased FFM decreased FM) are inconclusive due to 

individual variability across different racial groups [24]. Several studies showed racial 

differences in weight changes and body fat reduction after intervention [135-137], while 

other studies did not observe racial differences [20, 134, 138] . A recent study also reported 

that a particular racial group did not benefit from behavioral lifestyle intervention for weight 

loss [105]. This result may be explained by various genetic and epigenetic [139] factors 

among different racial groups that may be associated with exercise adoption and adherence 

[25] or physiological differences in response to prescribed exercise types and dose. In other 

words, the different outcomes of intervention programs would be expected when considering 

the racial differences of physiological and behavioral factors.  

In addition, each individual has different activity levels and EB status (i.e., negative 

EB: weight loss; positive EB: weight gain; or EB: weight maintenance) before entering 

intervention programs, which affects response to new, added activity. Thus, using the same 

absolute exercise dose (duration and intensity of exercise) may not result in the same weight 

changes across racial groups. Controlling for each individual’s initial (habitual) activity level 

and EB status along with body composition are key to examining the effects of exercise on 

weight changes across different racial groups. Understanding racial differences in response to 

changes in PA would help investigators and practitioners develop adaptable intervention 

programs for prevention and treatment of obesity in diverse populations, and ultimately to 

reduce racial disparities in obesity. 

The purpose of this study is to examine the effects of race on estimation of weight 

changes response to 15-week of prescribed exercise intervention after accounting for initial 

body composition, PA history, and EB status. We hypothesized changes in weight after the 
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prescribed exercise intervention would differ among racial groups, after controlling for initial 

body composition, energy balance, and PA level.  

 

6.2 METHODS 

Study design and participants 

This study used data collected between 2003 and 2015 in the Training Intervention 

and Genetics of Exercise Response (TIGER) study [106]. Participants were ethnically diverse 

men and women aged 18-35 who enrolled in the study at University of Houston and 

University of Alabama at Birmingham. Eligible participants were sedentary students who 

were not limiting caloric intake and currently not participating in a regular exercise program 

within the past month. Participants were excluded from participating in TIGER study if they 

were pregnant, had metabolic disorders, difficulties engaging in prescribed exercise 

intervention. Participants self-identified as one of five categories of racial groups: 1) Non-

Hispanic White (NHW), 2) Non-Hispanic Black (NHB), 3) Hispanic, 4) Asian, and 5) Asian 

Indian. Asian Indian was separated from Asian, since their anthropometric differences have 

been observed [118]. Participants were excluded from the current investigation if they 

indicated their race as Multiracial or Others due to difficulty in identifying specific 

association of race with responses to the intervention in this study. Informed consent was 

signed by participants before the data collection. The study was approved by the Institutional 

Review Boards of all involved institutions. 

Measures 

Height (cm) was measured at pre- and post-prescribed exercise intervention using a 

stadiometer (SECA Road Rod, Hanover, MD). Weight (kg) was also measured at pre- and 
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post-prescribed exercise intervention, and additionally two interim timepoints during the 

intervention period using a digital scale (SECA 770, Hanover, MD). Body composition, fat 

mass (FM) and fat free mas (FFM), was assessed at baseline using Dual-energy x-ray 

absorptiometry (DXA) (Hologic, Bedford, MA).  

1-mile walk or 1.5-mile run test was performed at baseline to estimate VO2max (ml 

O2/kg/min) of each participant. VO2max was estimated using the recorded HR (beat/min) and 

duration (min) of the test with the equations by Kline et al. [109] for walk test and 

Baumgartner et al. [110] for run test. Because there is potential limitation to estimate 

maximal oxygen consumption by untrained sedentary participants during the field test, the 

equation underlying the method originally described  by Astrand-Ryhming [112] was used to 

estimate the final VO2max.  

Dietary intake was assessed at pre- and post-prescribed exercise intervention using 

Block Food Frequency Questionnaire (FFQ, NutritionQuest, Berkeley, CA) [113]. 

Participants reported the frequency of consumption of 102 food items during a typical week 

using nine categories, ranging from “never” to “every day”. These values were converted to 

averaged daily calorie intake (kcal) using the Block’s standard scoring service 

(https://nutritionquest.com/assessment/pricing_and_ordering/), validated from previous 

studies [122, 123].  

Weight history was assessed by participants using a questionnaire at baseline. The 

two different study phases (i.e., Phase 1: University of Houston; Phase 2: University of 

Houston & University of Alabama at Birmingham) used different questions about weight 

history. Participants reported their body weights either of 2 years ago (Phase 1) or when they 

were at the end of high school (Phase 2).  



105 
 

Self-reported physical activity rating (PAR) was assessed at pre- and post-prescribed 

exercise intervention by participants rating their activity level, ranging from 0 to 7 (None = 

no activity, to Vigorous = Run over 10 miles or 3 hours of comparable PA per week) [70]. 

The PAR was used to calculate physical activity energy expenditure (PAEE) at baseline by 

converting to physical activity level (PAL) of Hall and this colleagues’ PAEE estimation 

methods [14].  

Exercise Intervention and other activities 

The TIGER prescribed exercise intervention consisted of 15-week of aerobic exercise 

for 30 minutes or more per day at 65%-85% of age- and sex-specific predicted maximum 

heart rate reserve, 3 times per week [114]. Participants selected activities among options 

including treadmill, elliptical trainer, stair stepper, or stationary bike for different sessions. 

During each session, heart rate (HR) was recorded using HR monitors (Polar Electro, Lake 

Success, NY), and participants were instructed on how to self-monitor HR during exercise to 

maintain their target HR (i.e., intensity). Then, average HR and duration of each session were 

used to estimate exercise dose. Possible missing or unusable HR data (i.e., HR monitor 

malfunction) were imputed using the valid within-participant distributions of HR and 

duration data. [115]. 

Participants were also allowed to participate in other physical activities in addition to 

the prescribed exercise and reported the additional activities using their activity logs. The 

types of activities as well as the duration and Borg’s rating of perceived exertion (RPE) 

ranging from 6-20 were reported for each activity in the logs. PAEE was estimated by using 

RPE and predicted maximum HR to estimate the participant's percent of heart rate reserve 

[112] , which could be expressed as percent of VO2max, with self-reported duration for each 
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activity. The recorded average HR and total duration (min) during the prescribed activity 

were combined to estimate total PAEE during the entire intervention period.  

Estimation of predicted body weight change  

Predicted body weight changes after the 15-week prescribed exercise intervention in 

individuals were estimated using the National Institutes of Diabetes and Digestive and 

Kidney Diseases (NIDDK) Body Weight Planner program and equations by Hall and 

colleagues [14]. There are several steps for predicted body weight changes estimation: 1) 

PAEE estimation, 2) body weight change for a new steady state, and 3) body weight change 

estimation expected to occur during the intervention period only. 

1) PAEE estimation 

Using the equation below [14], the PAEE at baseline (!"##$) and during the 

prescribed exercise intervention (!"##%) were estimated. 

 

!"##	(()/(+/,-.) = [(1 − 4567) × !"9 − 1];##/<=  (Eq. 3) 

 

4567  indicates a constant value of 0.1, representing the thermic effect of food, 

estimated for all participants as 10% of TDEE. !"9 represents the physical activity level 

ratio of TDEE divided by REE. For !"##$	 estimation, participant’s PAR at baseline was 

converted into !"9. For !"##% estimation, participant’s measured HR and duration during 

the prescribed activity and self-reported non-prescribed activity were used. Detailed process 

of PAEE estimation was described elsewhere (Appendix 1 of Study 1, the 4th and 5th 

method). ;## (kJ/day) was estimated by using the equations in Mifflin et al. [62], and <= 

(kg) represents body weight at baseline.  
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2) Body weight change estimation for a new EB state  

The expected total body weight change for a new EB state was estimated using the 

adapted version of Hall’s equation (Eq. 20). This adapted version was created using Hall’s 

equation [14] to account for EB status at baseline for body weight change estimation. The 

detailed concepts and processes of adapted version of the equation were described in 

Appendix 2.  

 

DBW	= 
($ST)∆6US(VWX×∆YZ66)[6V

YZ66X[∆YZ66[\]]^S_(\]]^S\]^)
      (Eq. 20) 

 

4 is 0.24, which are sum of the proportion of TDEE attributable to both TEF (0.10) 

and the adaptive thermogenesis (0.14). ∆#`	(kJ/day) and ∆!"##	(kJ/kg/day) represent the 

changes of EI and PAEE between baseline and after the intervention, respectively. #<	

(kJ/day) represents baseline EB status, estimated using the respective energy densities 

associated with mass changes (g77b  = 7,600 kJ/kg and g7b= 39,500 kJ/kg) divided by days 

from historical weight to current weight. <=$(kg) is the baseline body weight and 

!"##$(kJ//kg/day) is the baseline PAEE. a77b  and a7b  are 92 kJ/kg/day and 13 kJ/kg/day, 

representing metabolic cost of FFM and FM to REE, respectively. c represents composition 

of body weight change, ?@/d(d + ?@), where ?@ is baseline FM and d is 10.4, the Forbes 

parameter.  

3) Final body weight change estimation after the intervention 

The final body weight change after the prescribed exercise intervention (i.e., the portion 

of the total change in Equation 2 expected to occur in the initial 15 weeks) was estimated 
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using the Equation 5, which represent the exponential decay function predicting D<= at time 

= t. Conceptually, the total time to achieve final BW change is a function of the energy 

density of the mass change and the rate of weight change relative to TDEE [14, 140]. Using 

this concept, Equation 6 was derived as the characteristic time constant ({) for the predicted 

nonlinear rate of weight loss given the initial body weight and body composition and !"##%. 

 

∆<=h = D<= − 	D<=GSh/i          (Eq. 5) 

		 	{	= 
j]^[k]^[l(j]]^[k]]^)

\]^[YZ66m[l(\]]^[YZ66m)
         (Eq. 6) 

 

n77b  and n7b represent the cost of fat and protein synthesis, which are 960 kJ/kg and 

750 kJ/kg, respectively. g77b  and g7b  represent metabolizable energy density of mass 

change, which are 7,600 kJ/kg and 39,500 kJ/kg, respectively. a77b  and a7b  represent 

contribution of FFM and FM to REE, which are 92 kJ/kg/day and 13 kJ/kg/day, respectively. 

The o is d/?@ and d  is Forbes parameter, 10.4, divided by FM at baseline [74]). When 

!"##% increases, the { decreases, which means the rate of weight change increases such that 

the total weight change is achieved more quickly. 

Statistical analyses 

For all statistical analyses, Stata (Stata 15, Stata Corp., College Station, TX) was used. 

Descriptive statistics such as participants’ demographics (i.e., age, sex, and race), 

anthropometry (i.e., height, weight, FFM and FM), and PAR at baseline were conducted, 

representing as mean and standard deviation (SD). 
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The observed weight changes after the prescribed exercise intervention was estimated 

by the simple difference between final weight (kg) and baseline weight (kg). In addition, the 

fixed effects regression model was used to estimate the rate of weight change during the 

intervention (kg/day) from four time points of weight measurement in each participant (i).  

 

=Gp+ℎrsh = `trGuvGIrs + (wxyIGs ∗ ,-.h) + Gsh    (Eq. 16) 

 

The actual days from baseline for each body weight measurements were used as the 

day (t) from baseline (t = 0) using weight on day = slope * days for each participant (i). The 

slopes of each participant were estimated by correlation of weights with days between each 

measurement as well as the SDs of weights and days. For the rate of weight change after the 

15-week intervention, the numbers of days between baseline and final weight measurement 

was multiplied. For instance, if slope is 0.01 kg/day and 15-week is 105 days, the race is 0.01 

* 105 =1.05 kg. The eit is residual, representing the deviations of each participant from their 

individual regression line at time (t).   

Then, analysis of variance (ANOVA) tests were used to compare racial groups on 

bias, defined as the differences of the observed body weight change (Both the rate estimated 

by the fixed effects model and the simple post-pre weight difference) and the predicted body 

weight changes after 15-week prescribed exercise intervention.  

 

6.3 RESULTS 

In this study, 459 of men and 958 of women, total 1,417 participants, were included. 

Among participants who enrolled in the TIGER study (n=3,769), we excluded 269 
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participants who were not between 18-35 years of age, 231 who had missing on both pre and 

post weight measurements, 1,028 who did not have VO2max data due to missing the 1-mile 

walk or 1.5-mile run test in the two study cohorts, 93 who had VO2max > 65 or 

measurement errors such as HR monitor malfunction, and 559 who had missing data on 

demographics, DXA, Block FFQ, weight history, etc. Two-hundred fifty-two participants 

were further excluded for missing data on race or self-classifying of race as Multi-racial or 

others.  

Descriptive results 

Table 16 and 17 described the characteristics of participants at baseline. Average age, 

height, weight, fat free mass (FFM), fat mass (FM) of all participants were 21.2 years 

(SD=2.7), 166.8 cm (SD=9.0), 73.2 kg (SD=19.4), 49.9 kg (SD=12.6), and 23.3 kg 

(SD=12.0), respectively. Because there are sex and race differences in body size and 

composition, men and women with different races were described separately (Table 2). 

Average height of Non-Hispanic White (NHW) was significantly higher than Hispanic White 

(HW) (men: p=.001; women: p<.001), Asian Indian (AI) (men: p=.002; women: p=.001), and 

Asian (men: p=.001; women: p<.001) in both men and women. Average weight of NHW was 

significantly lower than NHB (p<.001) but higher than Asian (p<.001) in women; while 

average weight of NHW was not significantly different from other racial groups in men. In 

both men and women, average FFM of NHW was significantly lower than NHB (men: 

p=.001; women: p<.001), but higher than AI (men: p=.009; women: p=.001) and Asian (men: 

p=.022; women: p<.001). NHW men had significantly higher FM than NHB men (p=.029); 

while NHW women had significantly lower FM than NHB women (p=.001).  
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Table 16. Characteristics of participants (Mean±SD, or %) 

 All (n=1,417) Men (n=459) Women (n=958) 

Age (yr) 21.2±2.7 21.4±2.8 21.1±2.7 

Height (cm) 166.8±8.9 175.3±7.0 162.7±6.6 

Weight (kg) 73.6±19.6 84.1±19.4 68.5±17.4 

FFM (kg) 50.0±12.6 63.4±10.7 43.6±7.3 

FM (kg) 23.6±12.2 20.6±12.6 25.0±11.7 

Race    

   Non-Hispanic White (NHW) 43.0% 47.4% 40.8% 

   Hispanic White (HW) 16.0% 19.0% 14.5% 

   Non-Hispanic Black (NHB) 31.3% 21.8% 35.8% 

   Asian Indian (AI) 2.8% 3.5% 2.5% 

   Asian  7.0% 8.3% 6.4% 

FFM: fat free mass; FM: fat mass; PAR: physical activity rating score 

 

For baseline self-reported PA (PAR), NHB and Asian women significantly more 

reported 0-4 scores of PAR (sedentary to less active categories) than NHW women (p<.001, 

data not shown). Asian men had significantly higher baseline EB in kJ/day compared to 

NHW men (p=.019), and NHB women had significantly higher EB at baseline (kJ/day) 

compared to NHW women (p=.001) (data not shown).  
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Table 17. Characteristics of participants by sex and race 

 

 

Non-Hispanic 

White (NHW) 

(n=609) 

Hispanic 

White (HW) 

(n=226) 

Non-Hispanic 

Black (NHB) 

(n=443) 

Asian Indian 

(AI) 

(n=40) 

Asian 

 

(n=99) 

Men (n=459) n=218 n=87 n=100 n=16 n=38 

   Age (yr) 21.8±3.1 21.5±2.5 20.6±2.4 21.6±3.1 21.0±1.7 

   Height (cm) 176.6±6.7 173.4±7.0* 176.1±6.7 171.2±6.2* 171.8±7.2* 

   Weight (kg) 84.7±19.7 83.1±19.5 86.0±18.6 82.1±21.2 78.1±22.6 

   FFM (kg) 62.9±9.7 63.4±11.2 67.6±10.2* 56.2±10.4* 58.8±12.1* 

   FM (kg) 21.8±13.4 19.7±10.6 18.4±12.1* 25.9±12.0 19.3±12.7 

Women (n=958)  n=391 n=139 n=343 n=24 n=61 

   Age (yr) 21.1±2.9 21.3±2.7 20.9±2.7 21.5±1.6 20.8±1.9 

   Height (cm) 164.4±6.3 159.1±5.9* 163.5±6.2 159.0±5.9* 158.2±6.4* 

   Weight (kg) 66.6±14.4 67.8±16.6 73.4±20.1* 57.3±11.5 62.9±9.7* 

   FFM (kg) 42.8±6.1 42.3±6.8 46.3±7.8* 38.6±6.9* 37.9±5.9* 

   FM (kg) 23.8±10.2 25.5±10.8 27.1±13.8* 24.3±9.2 19.4±7.2* 

FFM: fat free mass; FM: fat mass; PAR: physical activity rating score; NHW (non-Hispanic White) is 

reference. *p<.05 

 

PAEE estimation 

The PAEE during the 15-week prescribed exercise intervention period was estimated 

using two methods: 1) the self-reported activity logs with RPE (RPE only) and 2) the 

measured HR data during the intervention and self-reported activity logs with RPE for other 
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than prescribed activity (RPE + HR) using Equation 3. Averaged PAL (ratio of TDEE/REE) 

of RPE only and RPE+ HR were 1.67 (SD=0.06) and 1.64 (SD=0.04), respectively. 

Averaged PAEEs of RPE only and RPE + HR were 62.06 kJ/kg/day (SD=9.17) and 60.04 

kJ/kg/day (SD=7.82), respectively (data not shown).  

Observed and Predicted weight changes estimation  

The observed weight changes between before and after the intervention (Simple 

DBW) was are -0.18 kg (SD=2.56) and the rate of weight change over the intervention period 

(Rate of DBW) was 0.32 kg/day (SD=2.81). 

Predicted weight changes were estimated using Equation 5, 6, and 20 after estimating 

EB status at baseline using weight history data. According to the estimation of EB status 

before participating in the TIGER study, participants were gaining 4.31 kg (SD=8.43) in 

average from 2 years ago or the end of high school to baseline, and they had 154.81 kJ/day 

(SD=357.00) of positive energy balance in average. After inclusion of baseline EB status, 

estimation of predicted weight change using RPE only and RPE + HR were -2.95 kg 

(SD=8.07) and -2.29 kg (SD=8.18), respectively. 

The differences of race and bias among observed and predicted weight changes 

Table 18 shows the racial differences of observed weight changes (both Simple DBW 

and Rate of DBW) with predicted weight change (predicted DBW, using RPE only or RPE + 

HR).  
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Table 18. Racial differences of observed and predicted weight changes (n=550) 

 

 

Non-Hispanic 

White (NHW) 

(n=314) 

Hispanic 

White (HW) 

(n=18) 

Non-Hispanic 

Black (NHB) 

(n=175) 

Asian Indian 

(AI) 

(n=13) 

Asian 

 

(n=30) 

Observed DBW      

   Simple DBW -0.27±2.5 0.44±1.9 -0.06±2.8 -0.57±2.1 -0.20±2.4 

   Rate of DBW 0.58±2.7 0.78±1.9 -0.11±3.1 0.26±2.3 -0.18±2.7 

Predicted DBW      

   RPE only -2.70±6.5 -3.16±6.0 -3.46±9.7 -4.02±7.0 -2.04±13.2 

   RPE + HR -1.97±6.5 -2.71±6.0 -2.86±9.9 -3.49±7.0 -1.58±13.4 

DBW: Body weight change 

 

Table 19 presents bias of predicted weight changes compared to observed weight 

changes by racial groups. The PAEE estimation using RPE with HR showed lower bias 

compared to RPE only for both Simple DBW and Rate of DBW among five racial groups. 

The racial differences of bias were tested using ANOVA, but there were no significant racial 

differences of bias. 
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Table 19. Bias among by racial groups (n=550)  

 

 

 

 

Mean 

NHW 

(n=314) 

HW 

(n=18) 

NHB 

(n=175) 

AI 

(n=13) 

Asian 

(n=30) 

Simple DBW -0.18      

   RPE only 2.77 2.43 3.59 3.39 3.45 1.84 

   RPE + HR 2.11 1.70 3.14 2.79 2.92 1.38 

Rate of DBW 0.32      

   RPE only 3.27 3.28 3.93 3.35 4.28 1.86 

   RPE + HR 2.61 2.55 3.48 2.75 3.75 1.40 

DBW: Body weight change; NHW: non-Hispanic white; HW: Hispanic white; NHB: non-Hispanic black; AI: 
Asian 

 

Since implausible EI data (i.e., Goldberg’s cut-off: EI/BMR < 1.55) were found in 

this study, DEI was removed to improve estimation of predicted weight changes by PAEE 

changes (Equation 2). The analyses were repeated with the ΔEI set to 0 in Equation 4, which 

indicates the assumption that EI did not change during the intervention period. Given that 

only a prescribed exercise intervention without dietary intervention was provided to 

participants, PAEE would be expected to change, but EI may not have changed. The racial 

differences of bias without EI estimation were tested using ANOVA and presents in Table 

20. According to the result, the bias of rate of DBW were significantly different between 

NHW and NHB for both RPE only and RPE + HR (p<.001).  
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Table 20. Bias among by racial groups, with ΔEI=0 (n=550) 

ΔEI: Change in energy intake; DBW: Body weight change; NHW: non-Hispanic white; HW: Hispanic white; 
NHB: non-Hispanic black; AI: Asian; NHW (non-Hispanic White) is reference. *p<.05 

 

 

6.4 DISCUSSION 

The current study examined whether racial differences explain any remaining 

variability to predict weight changes following a 15-week of exercise intervention, after 

accounting for initial body composition, PA level, and EB status. The five different racial 

groups, non-Hispanic white, Hispanic white, non-Hispanic black, Asian Indian, and Asian, 

were included to predict observed weight changes with predicted body weight changes by 

quantifying PAEE using self-reported RPE and measured HR data.   

This study observed racial differences of body size (i.e., height and weight) and 

composition (i.e., FFM and FM) at baseline in both men and women. Our findings were 

consistent with previous studies of racial differences in anthropometric measures [19, 20, 

104]. In our assumption, these racial differences would affect weight changes response to 

 

 

 

 

Mean 

NHW 

(n=314) 

HW 

(n=18) 

NHB 

(n=175) 

AI 

(n=13) 

Asian 

(n=30) 

Simple DBW -0.18      

   RPE only 2.19 1.94 1.68 2.67 1.63 2.59 

   RPE + HR 1.53 1.20 1.22 2.08 1.08 2.14 

Rate of DBW 0.32      

   RPE only 1.69 1.10 1.34 2.72* 0.79 2.57 

   RPE + HR 1.03 0.36 0.88 2.08* 0.24 2.11 
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PAEE changes, which results in bias or imprecision to predict weight changes. However, 

there were no significant racial differences in bias of predicted weight changes using PAEE 

estimation of self-reported RPE and measured HR. The observed racial differences of body 

composition and weight at baseline in this study represents individual variability regardless 

of race or sex. Hall’s equations account for the individual variation in initial body 

composition and PA level in prediction of weight changes following EI and/or PAEE 

changes [14] and do not include sex or race as factors. If race introduced substantial variation 

into the prediction, the bias should vary by race, but that did not occur. Therefore, weight 

changes can be explained by individual variability in physical and behavioral factors rather 

than race. 

Because race may be associated with biological factors rather than physiological and 

behavioral factors that were accounted for weight change prediction in the Hall’s equations 

[14], we hypothesized that race could be an additional potential factor explaining variability 

in response. That hypothesis was not supported. There were still differences (bias) between 

observed and predicted weight changes after accounting for the physiological factors, and 

thus, future studies are needed to investigate the errors of current prediction methods (i.e., 

PAEE estimation using a variety of self-reported and objective methods). In addition, the 

findings of baseline racial differences of body composition and size in this study can be 

considered as individual variability, so these individual-level factors could be used to 

develop and adapt dose of intervention for individuals regardless of race.  

There were limitations of this study. First, categorizing into racial groups using self-

report may not be accurate to represent biological differences among the racial groups, and 

small numbers of Asian Indian and Asian groups in this study limit comparisons with other 
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racial groups. Second, measurement errors of self-reported EI, PAEE, and EB status (history 

of weight change) measures may affect accuracy of predicting weight changes following an 

intervention. Specifically, self-reported EI data using Block FFQ were found to be 

implausible for many participants in this study. When it was removed from the predicted 

weight change estimation, the racial differences of predicted weight changes were 

statistically significant, but it cannot be concluded that racial differences may affect weight 

changes in this study since EI reporting errors may be confounded with race. If EI had 

changed equally across the racial groups and then racial differences of weight changes 

appeared, it could be interpreted as being unexplained differences in effects of intervention 

among racial groups.  Unfortunately, due to the implausibility (inaccuracy) for a large 

proportion of the EI data, race differences in ΔEI could not be tested with confidence. Future 

studies with two or more different methods to estimate EI changes to compare bias of EI 

methods to apply the least biased method to test racial differences.  

Despite these limitations, this study included valid and reliable self-reported methods 

to estimate EI [50] and PAEE [72, 125] changes as well as well-developed and validated 

dynamic mathematical models to predict weight changes [14]. Our findings suggest that 

weight changes can be reasonably accurately predicted by considering initial body 

composition, PA level, and EB status alone, such that race does not appear to be a substantial 

factor in response.  
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CHAPTER 7 

7. CONCLUSION 

7.1 SUMMARY 

Weight change is explained by changes of energy imbalance between energy intake 

(EI) and energy expenditure (EE). Increased physical activity energy expenditure (PAEE), 

restricted EI, or combination of both produce negative EB, and ultimately weight loss. 

Predicting weight changes can be estimated by quantifying the amount of energy deficit that 

is produced by PAEE and EI. However, there are sources of error in estimating energy deficit 

such as measures of PAEE and EI (both objective and subjective methods) as well as 

confounding factors that affect inconsistent estimates of EB. Self-reported data have been 

used to collect data in large populations based on the advantages of requiring few resources 

and feasibility, but also have reliability and validity issues. Thus, it is valuable and important 

to seek accurate and reliable way to predict weight changes using self-reported EE and EI 

data while accounting for possible confounding factors that influence EB estimation. 

This dissertation project fulfilled three research aims: 1) improving estimation of 

predicted weight changes after participating in a prescribed exercise program using variety of 

self-reported physical activity (PA) data and examining the accuracy (bias and imprecision) 

of the PAEE estimation methods; 2) investigating the effects of different baseline energy 

balance (EB) status on weight change following a prescribed activity to improve the accuracy 

of the weight change estimation; and 3) examining the effects of race on weight change 

response to the prescribed activity to improve the accuracy of the weight change estimation. 

For the first research aim, weight changes after 15-week prescribed exercise were 

predicted by using the five methods of PAEE estimations: 1) categorized PAL of prescribed 
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activity (1.8 PAL for all participants), 2) categorized PAL using PAR reported by 

participants, 3) PAL ratio (TDEE/REE) calculation using activity logs and compendium 

MET values for the reported activities, 4) PAL ratio calculation using RPE from activity 

logs, and 5) PAL ratio calculation using measured HR for all prescribed exercise sessions 

and RPE from the activity log for non-prescribed activities. The findings of this dissertation 

indicate that the predicted weight change estimations among the variety of self-reported 

PAEE methods were fairly consistent, except for the substantially worse prediction using 

self-reported PA category by PAR (the second method). The predicted weight change by 

PAEE estimation using the fifth method, combination of measured HR and self-reported 

RPE, was the closest to observed weight changes, indicating lowest bias, as expected when 

incorporating an objective measure. Using RPEs during the activities was the most accurate 

self-reported method for estimation of PAEE used to predict body mass changes after the 

prescribed intervention. These observations suggest that self-reported RPE measures can be 

feasible to use and analyze in the large population research setting with training people for 

accurate reporting. 

To examine the second research aim, the baseline EB status was estimated using self-

reported weight history data and added to the equation that estimates the predicted weight 

changes. Our findings showed participants had a small amount of positive EB before 

participating in the prescribed activity on average but considerable variability of estimated 

EB status before participating in the intervention was observed. In addition, this dissertation 

confirmed that bias and precision of predicted weight changes in individuals were improved 

by accounting for initial EB status. These results suggest that it may be inappropriate to 

provide the same intervention dose for all participants if a consistent response is desired (e.g., 
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losing 3% BW). Therefore, investigators need to consider individual variability in 

characteristics at baseline and incorporate that information to account and adjust for it in the 

development of effective weight management intervention programs. 

Finally, for the third research aim, this dissertation examined whether racial 

differences explain any remaining variability to predict weight changes following a 15-week 

of exercise intervention, after accounting for initial body composition, PA level, and EB 

status. The five different racial groups, non-Hispanic white, Hispanic white, non-Hispanic 

black, Asian Indian, and Asian, were included to predict observed weight changes with 

predicted body weight changes by quantifying PAEE using self-reported RPE and measured 

HR data. This dissertation observed racial differences of body size (i.e., height and weight) 

and composition (i.e., FFM and FM) at baseline in both men and women. However, after 

accounting for body size and composition, race did not affect prediction of weight changes, 

either simple difference of before and after intervention or the rate of weight changes over 

the intervention period. These results indicate that weight changes can be explained by 

individual variability in initial body composition and PA level, without the need to include 

race as a factor. Therefore, weight changes can be reasonably accurately predicted by 

considering initial body composition, PA level, and EB status alone, such that race does not 

appear to be a substantial factor.  

 

7.2 STRENGTHS AND LIMITATIONS 

 This dissertation project contributes novel findings to the investigation of feasible and 

reliable self-reported data use to predict weight change by changes of PAEE. A variety of 

valid and reliable self-reported methods and measured data were included and PAEE 
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estimations to predict weight changes were compared to evaluate accuracy. For the accurate 

weight change prediction after a prescribed activity, possible confounding factors that affect 

weight change estimation were accounted for using well-developed and validated dynamic 

mathematical models. Then, the predicted weight changes were compared to the observed 

weight changes, such that bias and imprecision could be compared.  

This dissertation was the first known study to examine the effects of baseline EB 

status on weight changes following the intervention. By assessing and accounting for the 

variability of EB status at baseline in individuals with initial body composition and PA level, 

the bias and precision of predicted weight change estimation were improved. Thus, 

considering baseline EB status using the information to estimate weight trajectory could be 

useful for effective interventions for weight management in individuals. 

Among the study limitations, the most important was that the EI data appeared to 

have many implausible values that adversely affected the estimates of body weight changes, 

as evidence by improved accuracy and precision of weight change prediction when removing 

EI change from the estimation process. PAEE estimation using self-reported RPE and 

measure HR also has limitations to accuracy such as missing activities to report, HR monitor 

malfunctions, etc. The self-reported weight history was measured by asking for body weight 

2 years ago or at the end of high school, which are subject to recall bias. Finally, categorizing 

into racial groups using self-report may not be accurate to represent biological differences 

among the racial groups, and there were small numbers of Asian Indian and Asian groups in 

this study limit racial group comparisons. 
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7.3 IMPLICATIONS AND FUTURE DIRECTIONS 

This dissertation project includes important implications for research and practice. 

There are ways to reduce sources of error to estimate EE and EI and associated weight 

changes that may be adjusted to provide more accurate estimation. Indeed, adding more 

detailed self-reported information and accounting for more potential confounding factors 

(i.e., individual variability) resulted in improvement of accuracy for estimating PAEE. 

Investigators or practitioners should consider evaluating and incorporating baseline 

individual variability to develop exercise intervention programs and adapt exercise doses for 

effective weight management. In this dissertation project, EI data using the Block FFQ had 

many implausible values to predict weight changes. Only one method to self-report EI was 

available while there were various PAEE self-reported methods, so we were unable to 

compare accuracy of methods and sources of EI self-report errors. Future studies that include 

more self-report EI and EE methods will allow for comprehensive evaluation and 

identification of strategies for more feasible and reliable self-report methods to provide 

predictions with lower bias and imprecision.  

Feasible and accurate (low bias, high precision) self-reported methods that can be 

easily applied in future epidemiology studies of the free-living large population would be of 

great value. Self-reported RPE is recommended as the most accurate self-reported method to 

quantify PAEE and estimate predicted weight change. Measured HR appeared to lower bias 

and imprecision, probably due to removing systematic errors of measurement due to self-

report (i.e., over- or under-reported intensity and duration) and missing self-report of 

intensity or duration. However, there still could be possible errors for HR measures such as 

HR monitor malfunction during an activity. Therefore, for intervention studies in particular, 
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it may be important to use multiple methods (including HR measurement or other objective 

measure), which can be helpful to reduce missing or unreliable data. Finally, reliable and 

accurate self-reported measures require training participants to report accurately and limit 

missing data when reporting. 
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APPENDIX 1 

The PAEE during 15-week (PAEE2) was estimated by converting into PAL using five 

methods.  

1) PAL categorization using Hall’s PAL categories for 15-week prescribed activity 

Hall’s PAL categories were used to estimate the amount of PAEE including only the 

value of the prescribed activity, assuming all participants did exactly what was 

prescribed [14]. Hall’s PAL method uses two sections that described activity: PA at 

work or school, and PA at leisure time. Because participants in this study were 

sedentary college students, “Light” activity will be assumed for PA at work or school, 

and “Active” for PA at leisure time for prescribed activity, which indicates a 1.8 PAL 

for all participants during the intervention.  

 

2) PAL categorization using self-reported PAR after the prescribed activity 

Self-reported PAR by participants after the 15 weeks of only the prescribed exercise 

was used to estimate PAEE. Using the table below (Table 4), PAR was converted into 

a PAL ranging from 1.7 to 2.0 depending on the individual variability of self-reported 

frequency and intensity of the prescribed activity. 
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Table 4. PAR, Hall’s self-reported PAL, and associated PAL categories 

PAR Hall’s self-reported  

leisure time PAL category 

PAL ratio 

(TDEE/RMR)^ 

0 Very Light 1.5 

1, 2 Light 1.6 

3, 4 Moderate 1.7 

5 Active 1.8 

6, 7 Very Active 2.0 

PAR: physical activity rating; PAL: physical activity level; TDEE: total daily energy expenditure; RMR: resting 
metabolic rate 
^In the current study, PAL ratio is estimated by “Light” for Work/School activities with Leisure time activities 
from “Very Light” to “Very Active”. 

 

3) PAL calculation as a ratio (TDEE/REE) using compendium MET values of the 

prescribed and non-prescribed activity 

From the third method, the prescribed activity and activities other than the prescribed 

activity were included to estimate total amount of PAEE and PAL. Mode and 

duration of activity were used to identify the respective compendium MET value, 

which will then be combined with body weight to estimate calories expended for each 

activity ([68, 69]. For example, if an individual who has 70 kg of body weight does a 

walking activity at 3.5 mph (4.3 METs) for 30 minutes, the caloric value is 158 kcal, 

using the equation: 

METs	×	3.5	×	body	weight	(kg)	/200	=	kcal/min		 	 (Eq. 10)	

Therefore, 30 minutes of walking at 3.5 mph (4.3 METs) is  

4.3 × 3.5 × 70 /200 = 5.26 kcal/min × 30 min = 158 kcal.  
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4) PAL calculation as a ratio (TDEE/REE) using the self-reported RPE as intensity 

of the prescribed and non-prescribed activity 

Self-reported RPE for prescribed and other activities was used to estimate PAEE 

using the participant’s estimated maximum aerobic capacity from the 1-mile walk and 

1.5-mile run test and the self-reported duration for each reported activity. The RPE 

was used to estimate the percent of heart rate reserve (%HRR) and %VO2max using 

the equation:  

%HRR	=	%VO2max	=	(RPE	–	6)/14	 	 	 	 	 (Eq. 11)	

where RPE is ranged from 6 to 20, which is 0% to 100% of HRR. Then, the Astrand-

Ryhming single stage method, which estimates VO2max in mlO2/kg/min using 

exercise VO2 (VO2ex), %HRR (%VO2max), and VO2max [112] was used: 

VO2ex	=	%VO2max	×	VO2max		 	 	 	 	 (Eq. 12)	

where the VO2max was estimated from the 1 mile walk test or 1.5 mile run test using 

Kline et al. [109] and Baumgartner et al. [110], respectively. The averaged HR during 

activity (HRex) was estimated using the equation: 

HRex	=	%HRR	(%VO2max)	×	(HRmax	–	k)	+	k	 	 	 	(Eq. 13)	

where k = 63 for men and 73 for women, and HRmax is the age-predicted maximum 

heart, adapted from the equations by the Astrand-Ryhming single stage method [112]. 

For example, if a man who has 200 bpm of maximum HR and reports 15 of RPE, this 

person’s HR during the activity (HRex) will be: 

	HRex	=	(RPE	–	6)/14	×	(HRmax	–	k)	+	k			 	 	 	

= (15 – 6)/14 × (200 – 63) + 63 = 151 bpm 
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Then, the estimated VO2ex (ml/kg/min) was converted into kcal/min: 1) multiply 

mlO2/kg/min by the individual’s body weight in kg, then divide by 1000 (mlO2/min to 

LO2/min), and 2) LO2/min multiply 5 (LO2/min to kcal/min, 5 kcal per LO2).  

kcal	= 
VOmöõú×[(RPESù) $û⁄ ]×†°×¢s£×§

$•••
             (Eq. 14) 

Using the same example above of the man who has 70kg of body weight and 40 

ml/kg/min of VO2max who runs for 30 minutes, the expended kilocalories of activity 

(kcal) estimated from RPE were  

40 mlO2/kg/min × [(15 – 6)/14] × 70 kg × 30 × 5 / 1000 = 270 kcal 

 

5) PAL calculation as a ratio (TDEE/REE) using measured HR data for prescribed 

activity and RPE for non-prescribed activity 

To estimate PAEE with the fifth method, both measured HR for prescribed activity 

and RPE for non-prescribed activities were used to estimate PAEE. The averaged 

measured HR and total duration (min) for prescribed activity was used to 

estimate %VO2max, and expended kilocalorie (kcal) for the prescribed exercise 

across the entire intervention period using the equation: 

kcal	= 
VOmöõú×(Z¶ß®©°ß™	´¨ß≠S†)×†°×¢s£×§

(%%•S©°ßS†)×$•••
   (Eq. 15) 

For example, if a man who is 20 years old and has 70kg of body weight and 40 

ml/kg/min of VO2max participated in the prescribed exercise with an average HR and 

total minutes of exercise of 160 bpm and 2,500 minutes, respectively:  

kcal	=	
40×($ù•SùÆ)×Ø•×%§••×§

(%%•S%•SùÆ)×$•••
	=24,781	kcal 
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Therefore, the expended prescribed EE (kcal/day) was divided by the total number of 

days of prescribed exercise, 24,781/ 70 days = 354 kcal/day. The estimation of PA 

other than prescribed TIGER exercise was estimated using self-reported RPE for each 

activity that was calculated as kcal using individual’s VO2max, %VO2max, duration 

of activity, same as the fourth method. 

For the third, fourth, and fifth methods, the calculated PAEE (kcal) was added to the 

estimated baseline TDEE kilocalorie value and divided by REE to calculated total 

PAL. For example, if a person who is sedentary has 1500 kcal/day of REE, this 

person’s TDEE is 2400 kcal (sedentary activity is 1.6 PAL = REE*1.6 = 1500*1.6 = 

2400), or 100 kcal/hr. This person does 1 hour and 500 kcal of exercise per day, 

replacing 1 “normal” hour (100 kcal) with 1 “exercise” hour (500 kcal). The new 

TDEE is 2400 – 100 + 500 = 2800 kcal. To estimate PAL, the 2800 kcal/day is 

divided by 1500 kcal/day, which is 1.87 PAL. If the 1 hour of 500 kcal exercise is 

done only 3 days/week, the revised TDEE = [2400*4 (non-exercise days) + 2800*3 

(exercise days)]/7 = 18,000/7 = 2571 kcal/day, or 2571/1500 = 1.71 PAL.  
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APPENDIX 2 

The baseline EB satus before participating in exercise intervention was calculated by 

using the adapted equations of Hall et al. (2011) [14]. Baseline EB is a function of weight 

change, and more specifically the change in body composition, the relative changes in FM 

and FFM, since FM has a much higher energy density than FFM. Consequently, a defensible, 

valid estimate of change in FM (D?@) and FFM (D??@) is required.  

Using Hall et al.’s (2007) [80] notion and equation for history of changes of body weight 

before intervention (D<=>): 

D<=> 	= 	D??@> 	+	D?@>       (Eq. 17) 

where D??@> and D?@> are history of changes of FFM and FM at baseline, respectively. 

And,   

D?@> 	= 	?@%	–	?@$       (Eq. 18) 

where ?@$ and ?@% are the historical and baseline FM, repectively.  

Forbes’s equation can provide an estimate of the relative change in FFM and FM, although it 

describes the cross-sectional relationship between FFM and FM across differences in body 

weight and as such represents change in body composition for infinitesimal differences in 

weight. Because baseline EB status in individuals is represented by relatively large, 

longitudinal changes of body mass and composition, using Forbes’s original equation is not 

directly applicable. Therefore, Hall expanded upon the concept of Forbes’s original equation 

to predict body composition change for a given change of body weight (D<=>, by weight 

history prior to baseline; i.e., from weight of 2 years ago or at the end of high school to 

baseline) and current FM (?@%	) using the Lambert W function, =, to solve a transcendental 

equation predicting historical FM (?@$) [117]. 
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?@$ = 10.4= F
1

10.4
× GHI J

∆<=>

10.4
L × ?@% × GHI J

?@%

10.4
LM																					(Eq. 19) 

 

Using the respective energy densities associated with mass changes (ρFFM and ρFM), baseline 

#< (kJ/day) can be estimated as [(7,600 × f??@ + 39,500 × f??@) × 0.239]/(days from the 

reported historical and baseline weights). Finally, the total expected body weight changes 

with inclusion of initial EB status (#<) in the numerator can be estimated (Equation 20 in the 

main text).  

 

D<= = 
($ST)(∆6U)S(VWX×∆YZ66)[6V

YZ66X[∆YZ66[\]]^S_(\]]^S\]^)
   (Eq. 20) 

 


