
c©Copyright by Anandi Banerjee, 2016

ALL RIGHTS RESERVED



ESSAYS ON LIQUIDITY RISK AND ASSET PRICING

A Dissertation

Presented to

The Faculty of the C.T. Bauer College of Business

University of Houston

In Partial Fulfillment

Of the Requirements for the Degree

Doctor of Philosophy

By

Anandi Banerjee

December, 2016



ESSAYS ON LIQUIDITY RISK AND ASSET PRICING

APPROVED:

Thomas J. George, Bauer Professor of Finance
Chairperson of Committee

Kris Jacobs, Bauer Professor of Finance

Beau Page, Assistant Professor of Finance

Seshadri Tirunillai, Assistant Professor of Marketing

Latha Ramchand, Dean
C.T. Bauer College of Business



DEDICATION

To my Dad

iii



ACKNOWLEDGEMENTS

I am deeply indebted to my advisor, Dr. Thomas George for his fundamental role in

my doctoral work. He has mentored me since the first year of the Ph.D. program and

this dissertation would have not been possible without his guidance. He has inspired and

encouraged me during difficult times and truly has been a blessing in my life. I doubt that

I will ever be able to convey my appreciation fully, but I owe him my eternal gratitude.

I would also like to thank Dr. Beau Page who has helped me complete this disser-

tation. I am grateful to him for devoting so much time, sharing his profound knowledge

and deepening my understanding about concepts that were integral to my research. He has

supported me every step of the way, and has been a friend, philosopher and guide to me.

I am grateful to Dr. Kris Jacobs for his invaluable counsel. His insightful comments

and feedback has helped me widen my research from various perspectives. His advice on my

research as well as on my career has been priceless. I would also like to thank Dr. Hitesh

Doshi for his caring guidance and encouraging words. I am grateful to Dr. Rauli Susmel for

his valuable suggestions during my presentations. I would like to thank Dr. Darla Chisholm

for being a friend and a confidant.

I thank my family members for their unconditional love and support. I am grateful to

my father for believing in me. Special thanks to my mother for dedicating so many years

of her life to make things easier for me, to fulfill my duties, and of course, for taking care

of the light of my life, Aahnik. I am grateful to Maharajji for being a source of strength to

me during tough times. Last, but not the least, I thank my son, Aahnik Vrishank for filling

my life with unadulterated joy and optimism.

iv



ESSAYS ON LIQUIDITY RISK AND ASSET PRICING

Abstract

Anandi Banerjee

December, 2016



This dissertation consists of two essays on liquidity risk and asset pricing. In the first essay,

I diagnose the impact of error-in-variables (EIV) on inferences in asset pricing models. I test

the CAPM and the liquidity-adjusted CAPM in a manner that explicitly accounts for EIV,

without pooling stocks into portfolios. I find that the single-factor CAPM beta is not priced.

I document that the aggregate liquidity risk in the liquidity-adjusted CAPM of Acharya

and Pedersen (2005) is priced, and the portfolio-based approach is unable to capture this

relationship. The cumulant-based approach used in my paper to handle EIV enables me

to test the effects of the individual components of aggregate liquidity risk, and I find that

the risk associated with the commonality in illiquidity has a positive premium and the risk

associated with the sensitivity of a stock’s illiquidity to the value-weighted market return

has a negative premium. I also show that for microcap stocks, the risk attributable to the

covariance between stock return and market-wide liquidity has a negative relationship with

average returns. I find that the LCAPM cannot be rejected when the betas are estimated

at the stock-level, and the intercept of the model is insignificant.

In the second essay, I explore the relation between idiosyncratic volatility and the

cross-section of expected returns. I use an EGARCH model to estimate the forecasted id-

iosyncratic volatility (FIVOL) and find that this estimate is not affected by the microstruc-

ture biases embodied by bid-ask spreads and the percentage of zero returns. I document a

positive relation between FIVOL and expected returns. However, contrary to the models

in the existing literature (such as Merton (1987)), I find that the cross-sectional differences

in levels of idiosyncratic volatility are not priced. The positive relation is mainly driven by

stocks that rise in their FIVOL quintile ranking. These transitions in FIVOL ranking are a

consequence of return shocks that result in the sudden changes in FIVOL. I explore earn-

ings surprises as a potential explanation for these return shocks and find that standardized

unexpected earnings cannot completely explain the pricing ability of these transitions in

FIVOL. Even after controlling for earnings surprises, I find that the stocks that move from

a low FIVOL quintile to a higher quintile earn high returns.
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Chapter 1

Error-in-Variables and Tests of
Asset Pricing Models with
Liquidity Risk

1.1 Introduction

True security betas are unobservable. However, accurate measurement of betas is of paramount

importance for evaluating the performance of asset pricing models in explaining the cross-

section of average returns. In the traditional two-pass estimation methodology, which is

usually used to test beta-pricing models, the betas estimated from the first stage are used

as the explanatory variables in the second stage. Estimation error in the first stage leads

to error-in-variables (EIV) in the second pass.

The EIV problem is widespread in economic statistics and distorts inferences if it

is not taken into account explicitly. In a linear regression model, with one mismeasured

regressor and an intercept, measurement error biases the slope coefficient towards zero. This

is known as the attenuation effect due to EIV. This error may also have an effect in the

opposite direction on the intercept, and bias the intercept away from zero. This is a large

issue in asset pricing, where finding a significant intercept means the model is a failure.

In a model with one mismeasured regressor, EIV does not change the sign on the

coefficient estimate. This does not always hold true when more than one regressor is af-

fected by EIV. In a model with many mismeasured regressors, the slope coefficient on a
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mismeasured regressor is affected not only by its own measurement error, but also by the

measurement error in the other mismeasured regressors. The second effect, which may bias

the coefficients away from zero, is known as the contamination effect and is severe if the

measurement errors are correlated. Because of the two opposing effects, all the coefficient

estimates in a multiple regression are inconsistent, and no definite conclusion can be drawn

about the direction of the bias or whether the coefficients are significantly different from

zero.

EIV correction is of utmost importance in multivariate models plagued with mea-

surement error. In asset pricing tests assessing the role of beta in explaining expected

returns, researchers recognize this problem and are willing to trade-off power for precision.

Therefore, in most of these tests, portfolios are used instead of individual stocks to address

measurement error. It is argued that grouping stocks into portfolios diversifies away the

estimation error in the betas. However, this approach has its own drawbacks. Ang et

al.(2010) show that aggregating stocks into portfolios decreases the cross-sectional disper-

sion of betas. Thus using portfolios as test assets lowers the efficiency of the tests due to

the inherent loss of information. Liang (2000) contends that if the sorting variable used to

form portfolios is also measured with error, then this approach biases the results. Lewellen

et. al (2010) argue that the portfolios commonly used by researchers in the tests of asset

pricing models bias these tests towards accepting the model. These papers highlight the

need for a viable alternate technique to address EIV in the betas in asset pricing tests.

The primary implication of the single-factor capital asset pricing model (CAPM) of

Sharpe (1964), Lintner (1965), and Black (1972) suggests that market beta, which captures

the return covariance of an individual security with the return on the market portfolio,

should be priced. Nevertheless, prior research has suggested that market betas have limited

ability to explain asset returns. Despite its repeated failure to explain the cross-section of

expected stock returns, the popularity of the CAPM persists because of its intuitive appeal

and simplicity. Since the beta estimates in CAPM are measured with error, it is crucial

to determine whether the failure of the market beta to explain average stock returns is a

result of model misspecification or the attenuation effect of EIV.
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Liquidity is another attribute that could affect an investment’s required return. It

describes the ease of buying or selling an asset without affecting its price. It is a multi-

dimensional concept that is difficult to measure. Empirical studies have used various proxies

for liquidity. Some of the different measures of liquidity used in literature, such as bid-ask

spreads (Amihud and Mendelson, 1986), price-impact (Brennan and Subrahanyam, 1996;

Amihud, 2002), and share turnover (Brennan, Chordia and Subrahmanyam, 1998) have

been shown to affect asset returns. While each of these proxies likely captures some aspect

of the theoretical concept of “liquidity”, none of them embeds their proxy explicitly into an

asset pricing model.

In contrast, Acharya and Pedersen (2005), henceforth referred to as AP2005, propose

a liquidity-adjusted capital asset pricing model (LCAPM), which is a generalization of the

CAPM in an economy with trading frictions. In the LCAPM, the “net market risk” is

given by the sensitivity of stock returns net of its illiquidity costs to the market return

net of the market illiquidity cost. This “net market risk” can be decomposed into four

components, three of which are related to stock and market-wide liquidity. AP2005 start

with a simple theoretical model based on the CAPM and show that the overall risk in a

market with trading costs can be attributed to the beta due to the sensitivity of stock returns

to fluctuations in market return, and three liquidity betas stemming from the commonality

in liquidity, the sensitivity of stock returns to fluctuations in market-wide liquidity, and the

sensitivity of stock illiquidity to fluctuations in market return. Similar to the market beta,

these liquidity betas are unobservable. They test the LCAPM using a two-pass procedure,

where liquidity betas are estimated in the first stage from the moments of past returns and

illiquidity. These beta estimates are used in the second stage regressions. Hence, their test

of LCAPM suffers from EIV.

This paper tests the CAPM and the LCAPM in a manner that explicitly accounts for

EIV, without pooling stocks into portfolios. I employ a unique method based on cumulants

developed in Geary (1942) to deal with EIV in asset pricing tests. One of the main advan-

tages of this methodology is that it enables me to use individual stocks as test assets, and

eliminates the need to form portfolios. I use the information contained in the third and
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higher order cumulants of the joint distribution of the observable variables. This technique

has previously been used by Erickson, Jiang and Whited (2014), henceforth referred to as

EJW2014, to address EIV in areas of corporate finance. Their paper developed a convenient

two-step minimum distance estimator with a simple closed-form solution. The applications

covered in their paper dealt with a maximum of two mismeasured regressors, whereas this

paper will deal with up to five mismeasured regressors. I use simulated data to highlight

the importance of accounting for measurement error in a model with multiple mismeasured

regressors. A comparison of small sample performance of cumulant-based estimators with

OLS is also presented, which highlights the advantages of using the cumulant approach.

I estimate the CAPM with portfolio as well as stock-level betas. I find that the

relation between expected returns and portfolio beta is flat. Then I estimate the market

beta for individual stocks and use the cumulant-based approach to correct for EIV. Even

after correcting for measurement error in the market beta, I find that the CAPM is still

misspecified.

Next, I present the empirical results of tests of the LCAPM. Previous papers have

estimated the betas in the LCAPM against an equal-weighted market portfolio. But, the

CAPM states that the value-weighted portfolio of all stocks in the economy should be

the tangency portfolio. This motivates the estimation of betas in my paper based on a

value-weighted instead of an equal-weighted market portfolio. Using the more theoretically

appropriate regressor leads to results that are stronger, more intuitive and more consistent

than results found using the equal-weighted market portfolio.

First, I group stocks and estimate betas at the portfolio level, as done in previous

papers, and find that liquidity risk is not priced. But grouping stocks not only diversifies

away the estimation error, but also diversifies away information contained in individual

stock-level betas. Next, I estimate the betas for individual stocks and address the inherent

EIV in these stock-level betas using the cumulant-based approach. Using these stock-level

betas, I find that liquidity risk is priced and the LCAPM cannot be rejected. This is the

first paper to document the positive relation between aggregate liquidity risk and expected

returns after accounting for the estimation error in the stock-level betas.
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This aggregate liquidity beta can be decomposed into three separate betas arising

from different components of a stock’s exposure to systematic risk. AP2005 find that the

three liquidity betas are highly correlated with each other and a model estimated with

the individual betas suffers from severe multicollinearity. Thus the existing papers have

not been able to disentangle the effects of these betas on stock returns. However, when

I estimate the betas at the stock level, based on a value-weighted market portfolio, I find

that the correlations between the betas are quite low. Therefore, another advantage of the

technique used in my paper is that it allows me to disaggregate the liquidity beta into its

individual components. Thus the statistical identification of the separate effects of different

liquidity risks is possible using the cumulant-based approach. I find that the return premium

due to the risk associated with the commonality in illiquidity is positive and significant. I

also find that the risk due to the covariance between an asset’s illiquidity and the market

return is negatively priced. To the best of my knowledge, this is the first paper to document

the relationship between individual liquidity risks and expected returns after controlling for

measurement error explicitly.

Next, I investigate whether the pricing ability of liquidity risk is driven by microcap

stocks. Fama and French (2008) define the microcaps as stocks whose market capitalization

is below the 20th NYSE percentile. They show that though these stocks account for only 3%

of the market capitalization of the NYSE-Amex-NASDAQ universe, they account for about

60% of the stocks. Hou et al.(2015) note that the microcap stocks are highly illiquid and

have higher transaction costs. I find that the coefficient on liquidity beta is much smaller

when we exclude the microcaps from the sample. I also find evidence of a negative premium

due to the risk associated with the return sensitivity to market illiquidity.

The remainder of the paper is structured as follows. Section 1.2 reviews the existing

literature. Section 1.3 explains the classical EIV model and how it affects returns. It also

describes the EJW2014 method to handle the bias due to EIV. Section 2.2 discusses the

data and methodology employed to estimate the LCAPM. Section 1.5 uses simulations to

compare the small-sample performance of OLS and higher order cumulants. Section 2.3

describes the empirical applications and results of the tests of the CAPM and the LCAPM.
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Section 1.7 conducts robustness checks. Section 2.6 concludes.

1.2 Relevant Literature

This paper forms a nexus between two different lines of research, namely, the literature

on asset pricing models that seek to explain the relationship between risk and expected

returns of securities and the literature on measurement error and techniques adopted to get

consistent estimates in error-laden models.

The first strand of literature explores whether systematic risk is priced. It takes us

back to the seminal question in asset pricing that asks whether differences in exposure to

market-wide risk factors can explain the differences in the expected returns of assets. A

variety of asset pricing models have been proposed in the literature to understand why

different assets earn different rates of return and if it can be attributable to the difference

in their sensitivities to systematic risk. The factors used in these models to explain returns

are often different.

According to the single-factor CAPM, the return on the market portfolio is the only

source of non-diversifiable risk and an asset’s exposure to this factor determines its expected

return. However, Reinganum (1981), Lakonishok and Shapiro (1986) and Fama and French

(1992) find that a relation between expected returns and market beta does not exist in the

1963-1990 period.

Richer models have been proposed that use other economic variables as systematic

risk factors. Unanticipated changes in the term premium, default premium, the growth

rate of industrial production and inflation constitute the factors in Chen, Roll and Ross

(1986). Jagannathan and Wang (1996) extend the proxy for market return to include the

return on human capital as a factor. Firm characteristics have also been used to create

factors that affect expected returns. Fama and French (1993) show that a three-factor

model, consisting of the market factor, a factor based on the market value of equity (small-

minus-big, SMB), and a factor based on the book-to-market equity (high-minus-low, HML),
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jointly do a reasonable job at explaining the cross section of stock returns. However, post

1990s, the model’s performance deteriorates. The three-factor model fails to account for

the significant alphas generated by momentum strategies. Carhart (1997) introduces a

momentum factor, which is based on the prior returns (high prior returns-minus-low prior

returns, MOM), as an extension to the Fama-French three-factor model and he finds that

short-term persistence in equity mutual fund returns can be explained by the MOM factor.

Most of these models assume frictionless markets. But, in reality there are no truly

frictionless markets since trading is always associated with certain costs or restraints. Hence

researchers have incorporated the effect of trading frictions into factor models. Pastor

and Stambaugh (2003) measure illiquidity as the return reversal in response to volume

shocks and examine whether market-wide liquidity is a priced factor. They find that the

innovations in market illiquidity is a priced factor that is related to the average returns of

an asset. The LCAPM proposed by AP2005 provides a unified framework that encompasses

the different channels via which liquidity affects stock returns. In the LCAPM, the expected

return of a security depends on its expected illiquidity level, market risk and three liquidity

risks. But, as mentioned earlier, it is difficult to investigate the pricing ability of the

liquidity risks because they are highly correlated with each other. The results in AP2005

are not robust to various portfolio formation techniques and not consistent across different

model specifications. I find that the incongruity is a consequence of the measurement error

embedded in these liquidity-based models. The measurement error in these models stem

from the error in the liquidity estimate as well as the estimation error in beta estimates.

Thus it is crucial to address EIV in tests of the LCAPM.

The second strand of literature studies the effect of measurement error in economic

models and explores methods to overcome the EIV problem. Papers in corporate finance

often use proxy variables when the independent variables in a predicted relationship are

not observable. Traditionally, instrumental variables have been used to address the bias

due to measurement error. However, it is often difficult to find a good instrument that

is correlated with the mismeasured variable, but uncorrelated with any other determinant

of the dependent variable. Erickson and Whited (2000, 2002), henceforth referred to as
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EW2000 and EW2002 respectively, circumvent the need to find suitable instruments in

such models. They develop consistent estimators using information in third and higher

order moments of the observable variables. Nevertheless, the estimating equations used in

these papers are complicated non-linear functions of the parameters to be estimated, and

estimation is sensitive to the starting values used in the numerical optimization process, as

local optima may exist.

Geary (1942) proposes a method to derive the true relationship between variables,

when the independent variables are measured with error. He develops a system of estimating

equations using high order cumulants to determine the true underlying relation between the

variables. Building on Geary, EJW2014 propose simple linear estimating equations with a

closed-form solution using high-order cumulants, instead of moments. Furthermore, their

paper extends Geary’s results by employing minimum distance estimation to solve models

which have overidentifying cumulant equations.

In asset pricing papers that seek to estimate the price of risk in linear factor models,

the most common approach used to address EIV is to form diversified portfolios based

on common characteristics. Fama and MacBeth (1973) show that this method reduces

the estimation error in the individual beta estimates. However, the portfolio grouping

method may conceal information that exists in individual stocks. Roll (1977) proposes that

mispricing in individual assets can be diversified away in portfolios. Shanken (1992) suggests

a correction factor under the assumption of conditional homoscedasticity to account for the

estimation error in betas. Kim and Skoulakis (2015) use a regression-calibration method

to correct the betas estimated in the first pass in the two-pass cross-sectional regression

(CSR) method. A correction factor is used to calibrate the betas. These calibrated betas,

which are used in the second-pass, satisfy the orthogonality conditions necessary for N-

consistency. The authors estimate risk premia using individual stock-level data and over

short time horizons. They develop an entirely new set of asymptotic results specialized for

their regression-calibration approach.

The approach in this paper is much simpler. I use the higher order cumulants technique

introduced by Geary (1942) to tackle the bias and possible inconsistency in asset pricing tests
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due to measurement error. This method eliminates the need to form portfolios, and allows

me to use individual stock level data. It also relies on standard asymptotic distribution

theory. EJW2014 use a maximum of two mismeasured regressors in their applications. I

apply the EJW2014 methodology to asset pricing models which have greater numbers of

mismeasured regressors.

1.3 Errors in Variables and Estimated Betas

A common procedure for investigating the relation between betas and expected asset returns

is based on Fama and MacBeth (1973), henceforth referred to as FM1973. It involves two

steps. For the single-factor CAPM, risk factor betas for individual stocks are estimated in

the first step from time-series regressions given by

Ri,t = αi + βiFm,t + νi,t (1.1)

where Fm,t is the market realization for month t, and βi is the beta for stock (or portfolio) i.

The second step estimates risk premia from monthly cross-sectional regressions of returns

on the beta estimates obtained from the first step

Ri,t = ρ0t + λ1t β̂i + ui,t (1.2)

where λ1t is the market factor risk premium and β̂i is the estimated beta of each stock (or

portfolio) from the first pass. A time series of λ̂1t is obtained from monthly estimates of

Equation 2.2 and the sample mean of this distribution is used as the final estimate λ1. The

standard error of the estimate is based on the assumption that λ̂1t estimates are independent

and identically distributed. Inferences are drawn based on these values.

This method is easy to implement and has become a standard methodology in the

finance literature. The true beta, β, is unobservable and the estimated beta, β̂, from the

first pass is used as the independent variable in the second pass cross-sectional regression.

The difference between β and β̂ constitutes the measurement error in the model. Hence
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this method suffers from EIV. The next subsection describes a model with EIV and how to

get consistent estimates in such a model.

1.3.1 Classical Error-in-variables problem

Let (yi,t, xi,t, zi,t), i = 1, ..., n, t = 1, ...T, be sequences of observable variables. (ui,t, εit, χit)

are sequences of unobservable variables. The classical EIV model is described by

yi,t = zi,tρ+ χi,tλ+ ui,t (1.3)

xi,t = χi,t + εi,t (1.4)

where λ and ρ are the unknown vectors. Regressing yi,t on xi,t gives inconsistent estimates of

λ. This issue is categorically addressed in EW2000, EW2002 and EJW2014, which develop

consistent estimators for models plagued with EIV. They use estimating equations involving

higher order moments (EW2000, EW2002) and higher order cumulants (EJW2014), which

are functions of moments, in order to estimate consistently the slope parameters in Equation

2.3. The next subsection gives a brief summary of cumulants and the advantages of using

cumulant based estimators.

1.3.2 Cumulant estimators

Cumulants were first studied in 1889 by T.N.Thiele, who had termed them as semi-invariants.

They are polynomial functions of moments. Cumulants κr of a random variable X are

defined by a cumulant-generating function K(ξ), which is the natural logarithm of the

moment-generating function M(ξ). κr are the coeficients in the Taylor expansion of the

cumulant generating function about the origin, and are given by

Kx(ξ) ≡ lnM(ξ) = lnE[eXξ] =

∞∑
r=0

κrξ
r/r! (1.5)

where κ0 = 0, κ1= E[X], κ2= E[X2] − E[X]2, κ3= E[X3] − 3E[X2]E[X] + 2E[X]3.

A property of cumulants that makes them useful is additivity - the rth cumulant of
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the sum of two independent random variables equals the sum of the rth cumulant of the

individual variables. This property also makes cumulants an attractive choice in estimating

models with measurement error.

EJW2014 exploits properties of cumulants to derive two-step minimum distance esti-

mators. To apply this method, the variables in Equations 2.3 and 2.4 should satisfy the

following assumptions: (i) the elements of (ui,t, χi,t, zi,t) should have finite moments of every

order, (ii) (ui,t, εi,t) should be independent of (zi,t, χi,t), (iii) the elements of (ui,t, εi,t) should

be independent of each other, (iv) E(ui,t) = 0 and E(εi,t) = 0, (v) E[(χit, zi,t)
′(χit, zi,t)]

should be positive definite.

EJW2014 use the relations between cumulants to form an over-identified system of es-

timating equations. Using a minimum distance estimator to efficiently combine information

from the high order cumulants, they solve the equations for λ. In a model with mismeasured

and perfectly measured regressors, as described in Equations 2.3 and 2.4, the perfectly mea-

sured regressors are first partialled out and the system is expressed in terms of regression

residuals. Population linear regression of xi,t on zi,t yields the residual xi,t − zi,tµx, where

µx ≡ [E(zit
′zit)]

−1[E(zit
′xit)]. Linear regression of χi,t on zi,t yields the residual χi,t−zi,tµχ.

But since zi,t and εi,t are independent of each other,

µx ≡ [E(zit
′zit)]

−1[E(zit
′(χit + εi,t)] = [E(zit

′zit)]
−1[E(zit

′χit)] ≡ µχ (1.6)

The residual χi,t − zi,tµx is denoted by ηi,t.

Subtracting zi,tµx from both sides of Equation 2.4 yields ẋ which is defined as

ẋ ≡ xi,t − zi,tµx = χi,t − zi,tµx + εi,t = ηi,t + εi,t (1.7)

The residual of population linear regression of yi on zi is yi−ziµy, where µy ≡ [E(zit
′zit)]

−1[E(zit
′yit)].

Subtracting zi,tµy from both sides of Equation 2.3 yields ẏ which is defined as

ẏ ≡ yi,t − zi,tµy = ηi,tλ+ ui,t (1.8)
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In the two-step minimum distance estimation, the first step comprises of substituting the

least square estimates of µ̂x and µ̂y in Equations 2.7 and 2.8 respectively, as they are

consistent estimates of µx and µy. The second step estimates λ using the sample cumulants

of yi − ziµ̂y and xi − ziµ̂x. The λ estimation approach is based on the results derived in

Geary(1942). EJW2014 show that the system of cumulant based estimating equations is

identified if ηi,t is skewed. Thus the third moment, and thereby the third order cumulant

of ηi,t should be non-zero.

Consider a model with J mismeasured regressors. If κ(s0, s1, ..., sJ) is the multivariate

cumulant of order s0 in ẏ, order s1 in ẋ1 and order sJ in ẋJ , then Geary proves that

κ(s0 + 1, s1, s2, ...., sJ) = λ1κ(s0, s1 + 1, s2, ...., sJ) + .....+ λJκ(s0, s1, s2, ...., sJ + 1) (1.9)

as long as at least two elements in (s0, s1, s2, ..., sJ) are different from zero. The system of

equations based on Equation 2.9 can be represented by

Ky = Kxλ (1.10)

J independent equations can identify λ. If the number of equations in the system, M , is less

than J , then λ is indeterminate. If M > J , then the system is overidentified and EJW2014

discusses a method of estimating λ from minimum distance estimation of

λ̂ ≡ argminl(K̂y − K̂xl)
′
Ŵ (K̂y − K̂xl) (1.11)

where Ŵ is a symmetric positive definite weighting matrix.

The cumulants in Equation 1.10 can be obtained from the moments of the distribu-

tion of the observable variables. Cumulants can be expressed as the sums of products of

moments. Chapter 2 of McCullagh (1987) gives an expression for any cumulant of a dis-

tribution as a function of the moments of the distribution. An example of the relationship
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between third order cumulants and moments involving four random variables is given by:

κ(1, 1, 1, 0) ≡ E(ẏẋ1ẋ2) − E(ẏẋ1)E(ẋ2) − E(ẏẋ2)E(ẋ1) − E(ẋ2ẋ3)E(ẏ) + 2E(ẏ)E(ẋ1)E(ẋ2)

≡ E(ẏẋ1ẋ2)

(1.12)

where κ(1, 1, 1, 0) is a third order cumulant of degree 1 in ẏ, degree 1 in ẋ1, degree 1 in ẋ2

and degree 0 in ẋ3. Thus the matrices (K̂y, K̂x) can be estimated from the sample moments

of ̂̇y ≡ yi,t − zi,tµ̂y and ̂̇x ≡ xi,t − ziµ̂x.

In this paper, I consider models with one, three and five mismeasured regressors. In

a model with three mismeasured regressors, χ contains three elements. Examples of third

order cumulant estimating equations represented by Equation 1.10 are:

K(2, 1, 0, 0) = λ1K(1, 2, 0, 0) + λ2K(1, 1, 1, 0) + λ3K(1, 1, 0, 1) (1.13)

K(2, 0, 0, 1) = λ1K(1, 1, 0, 1) + λ2K(1, 0, 1, 1) + λ3K(1, 0, 0, 2) (1.14)

With three mismeasured regressors, we have 18, 66 and 159 estimating equations using

cumulants up to degree three, four and five respectively. Hence, the model is always overi-

dentified, and the minimum distance estimator of λ in Equation 1.11 can be obtained from

λ̂ = (K̂x
′
Ŵ K̂x)

′
K̂x
′
Ŵ K̂y (1.15)

I use this method to obtain consistent estimates in tests of asset pricing models with

mismeasured regressors. The cumulant based estimating equations have a closed-form solu-

tion, which eliminates the need to find suitable starting values and iterating to a numerical

minimization of the objective function given in Equation 1.11. As demonstrated in EW2012,

performance of moment estimators is highly sensitive to the selection of starting values when

numerical optimization is used. This is one of the main advantages of using cumulant over

moment based estimators.

An increase in the order of cumulants substantially increases the number of estimating
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equations. However, it does not necessarily improve the accuracy of the estimation. The

performance of different orders of cumulant estimators can be compared by comparing the

percentage of cumulants that are statistically different from zero. The next section describes

the data and beta estimation methodology used in this paper.

1.4 Data and Methodology

1.4.1 Data

I use daily return and volume data from January 1st, 1963 until December 31st, 2014 for all

common stocks listed on NYSE, AMEX and NASDAQ, available from CRSP. Accounting

information is obtained from Compustat Annual and Quarterly Fundamental Files. A firm’s

book-to-market ratio is computed by dividing its last fiscal year-end book value by its fiscal

year-end market equity. Stocks with share prices in the top 1% or bottom 1% at the end of

the previous month are excluded. Volume is measured in millions of dollars. The rate on

30-day US Treasury bill is used as the risk-free rate. I define an all-but-microcap sample as

the universe of stocks excluding the microcaps. The next subsection describes the LCAPM

proposed in AP2005, which is estimated using these data.

1.4.2 Liquidity-adjusted Capital Asset Pricing Model

The LCAPM is a CAPM in returns net of illiquidity costs. In this model, the expected net

return of a stock (stock return net of its illiquidity cost) depends on its net market beta,

which is defined as the sensitivity of the net return of the stock to the market net return

(return on market portfolio net of market illiquidity cost). In other words, it is the relation

in gross returns that must hold if the CAPM holds in net returns. A conditional version of

the LCAPM is given by

Et(Ri,t+1 − Ci,t+1) = Rf,t + λt
Covt(Ri,t+1 − Ci,t+1, Rm,t+1 − Cm,t+1)

vart(Rm,t+1 − Cm,t+1)
(1.16)
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where Ri,t+1 is an asset’s gross return, Ci,t+1 is the illiquidity cost, Rf is the risk free rate,

λt is the risk premium associated with net beta, Rm,t+1 is the market return and Cm,t+1 is

the market illiquidity cost.

Following Lesmond, Ogden and Trzcinka (1999), henceforth referred to as LOT1999,

I use the percentage of zero daily returns as a proxy of illiquidity cost. This measure of

illiquidity has also been used in Bekaert, Harvey, and Lundblad (2007) and Lee (2011).

Fong, Holden, and Trzcinka (2011) find that zero returns efficiently capture the time-series

patterns of stock market liquidity compared to effective spread-based benchmarks. The

percentage of zero returns is defined by

ZRi,t =
Ni,t

Tt
(1.17)

where Ni,t is the number of trading days of stock i in month t that experience no price

movement from the prior end-of-day price. Tt is the number of trading days in month t,

which is defined by the number of days with non-missing returns. ZRi,t is estimated using

CRSP daily stock returns. If a stock has less than ten trading days in a month, then it

is dropped from the data. I also exclude observations that have a zero-return proportion

greater than 80%. The average of the monthly percentage of zero returns over the past 12

months is denoted by ZR 12 and is used as a proxy for the illiquidity cost, C, in Equation

1.16.

The net beta in Equation 1.16 can be decomposed into four separate betas and the

gross return on a stock can be expressed as

Et(Ri,t+1) −Rf,t = Et(Ci,t+1) + λt
Covt(Ri,t+1, Rm,t+1)

vart(Rm,t+1 − Cm,t+1)
+ λt

Covt(Ci,t+1, Cm,t+1)

vart(Rm,t+1 − Cm,t+1)

−λt
Covt(Ri,t+1, Cm,t+1)

vart(Rm,t+1 − Cm,t+1)
− λt

Covt(Ci,t+1, Rm,t+1)

vart(Rm,t+1 − Cm,t+1)

(1.18)

Equation 1.18 gives a straight forward relation between the expected gross return, Et(Ri,t+1),

the expected illiquidity cost, Et(Ci,t+1), and four covariances which represent the compo-
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nents of a stock’s sensitivity to systematic risk. An unconditional LCAPM described by

E(Ri,t −Rf,t) = E(Ci,t) + λβ1i + λβ2i − λβ3i − λβ4i (1.19)

can be obtained by assuming constant λ and constant conditional covariances of innovations

in illiquidity and returns, where

β1i =
cov(Ri,t+1, Rm,t+1)

var(Rm,t+1 − [Cm,t+1 − Et(Cm,t+1)])
(1.20)

β2i =
cov(Ci,t+1 − Et(Ci,t+1), Cm,t+1 − Et(Cm,t+1))

var(Rm,t+1 − [Cm,t+1 − Et(Cm,t+1)])
(1.21)

β3i =
cov(Ri,t+1, Cm,t+1 − Et(Cm,t+1))

var(Rm,t+1 − [Cm,t+1 − Et(Cm,t+1)])
(1.22)

β4i =
cov(Ci,t+1 − Et(Ci,t+1), Rm,t+1)

var(Rm,t+1 − [Cm,t+1 − Et(Cm,t+1)])
(1.23)

β1 is proportional to the covariance of a stock’s return with the return on the market

portfolio. Hence it is similar in flavor to the market beta. β2 represents the risk due

to commonality in illiquidity. Chordia et al.(2000) and Hasbrouck and Seppi (2001) find

that variation in stock liquidity is positively correlated with variation in market liquidity.

Thus, Equation 1.21 suggests that if shocks to liquidity cannot be diversified away, then the

sensitivity of a stock to such shocks could be regarded as a component of a stock’s exposure

to systematic risk. Hence stocks with higher sensitivities to broad illiquidity shocks may

demand a higher return. β3 depends on the sensitivity of the stock return to fluctuations

in market illiquidity. A stock with high β3 has a high return when the market is illiquid,

which works as a hedge against market illiquidity. Pastor and Stambaugh (2003) document

that after controlling for exposure to other priced factors, the average return for stocks

with high covariation with market liquidity exceeds that for stocks with low covariation

with market liquidity by 7.5% annually. However, their paper does not control for the other

components of liquidity risk. β4 captures the sensitivity of a security’s illiquidity to the

market return. A stock with high β4 is illiquid when market returns are high and is liquid

in a down market. Thus an asset with high β4 works as a hedge against market downturns
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since it has low illiquidity costs during states of low market return.

In AP2005, the total effect of systematic risk is captured by the combination of the

three liquidity betas and the market beta. The authors argue that the liquidity betas are

highly correlated with each other, and including them separately in the cross-sectional re-

gression leads to a collinearity problem. Thus they aggregate the betas, and their framework

does not allow them to identify the effects of the individual liquidity risks on asset returns.

They do this by defining the net liquidity beta as

βneti ≡ β2i − β3i − β4i (1.24)

and the condensed LCAPM is given by

E(Ri,t −Rf,t) = E(Ci,t) + λ1β1i + λnetβneti (1.25)

The next subsection describes how betas in Equations 1.24 and 1.25 are estimated.

1.4.3 Beta Estimation

This paper studies how liquidity affects stock returns using test portfolios (as done in

previous papers) as well as individual stocks. Grouping stocks into portfolios is the standard

method adopted to address EIV. Black et al. (1972) show that grouping can substantially

reduce the bias due to measurement error and for large sample size, sampling error in

the estimated betas can be eliminated. Their paper suggests estimating the group risk

parameter (portfolio beta) on sample data that is not used in the ranking procedure in

order to prevent an association of the measurement error in the β estimates with the errors

in the coefficients used in ranking the portfolios. To implement this technique, β̂pre is

computed from five years of previous monthly data for each stock. Individual securities are

then assigned to groups based on their β̂pre ranking. Portfolio data from a subsequent time

period is then used to estimate portfolio β̂k.

However, Liang (2000) contends that sorting based on variables computed using a
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preceding sample does not completely eliminate the possibility of biased inferences due to

measurement error. In the portfolio formation process, estimation errors embedded in the

sorting variable can cause systematic bias in the results. He shows that grouping stocks

may aggregate these measurement errors, which results in positive or negative errors for

extreme portfolios that further biases the results. Moreover, grouping stocks into portfolios

also causes loss of information present in individual stock data.

Though the existing literature has identified problems associated with portfolio forma-

tion procedures in asset pricing tests, this method is still used to deal with measurement

error. In contrast, I use higher order cumulant based estimators to tackle the bias and

inconsistency caused by EIV. This method does away with the need to use portfolios as

test assets and I use individual stock-level data. To compare the performance of the two

approaches mentioned above, I also use portfolio betas in the tests in this paper.

To contrast the ability of portfolio betas with that of individual betas to explain

returns, betas are estimated at both the portfolio and the stock level as described below. I

compute the market return for each month t based on a value-weighted average of returns on

all stocks in the market portfolio in that month. Similarly, market illiquidity for month t is

defined as the value-weighted average of ZRi,t in that month. The first order autocorrelation

in market illiquidity is 0.99. Thus innovations in market illiquidity, Cm,t − Et−1(Cm,t) are

obtained from the first-differences in illiquidity levels. Similarly, for stock i, the change in

illiquidity is used as its innovation.

Tests using individual stock level data use individual stock-level betas, which are ob-

tained as follows. For each stock i in month t, βki,t where k = (1,2,3,4), is computed from

monthly returns and innovations in illiquidity for stock i and for the value-weighted market

portfolio, over months t−60 to t−1, using Equations 1.20-1.23. The 60-month window rolls

forward every month. Individual stock windows with less than 36 prior monthly returns or

innovations in illiquidity are dropped.

Next, I describe the portfolio formation approach used in this paper to obtain the

portfolio betas. For each stock i, the pre-ranking beta, βk,prei,t , (k = 1, 2, 3, 4) of month t
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is estimated using the time-series of monthly returns and innovations in illiquidity for the

previous 60 months. If a stock has less than 36 valid observations in the t − 60 to t − 1

monthly window, then βk,prei,t for that stock is set to missing. Thus the βk,prei,t of a stock is

the same as βki,t described earlier. Stocks are then sorted monthly into ten equal-weighted

portfolios based on βk,prei,t for month t. The post-ranking portfolio beta, βkp , is then estimated

for each of the ten portfolios over the entire sample period using Equations 1.20-1.23.

The post-ranking portfolio beta estimation procedure to obtain β1p is illustrated as

follows. First, I calculate the pre-ranking β1,prei,t for stock i in month t using Equation 1.20,

based on the time-series of previous 60 months of returns and illiquidity innovations. Then,

at the beginning of month t, stocks are sorted into ten equally weighted portfolios based

on β1,prei,t . Subsequently, the post-ranking beta for portfolio p, denoted by β1p , is estimated

over the entire sample period, using Equation 1.20. β1p is then assigned to all the individual

stocks i, which belong to portfolio p in a given month t. The same technique is repeated

to sort stocks into deciles based on βk,prei,t and calculate βkp for k=2,3,4. This βkp is assigned

to all stocks belonging to portfolio p ranked on the basis of βk,prei,t . This approach is similar

to that used in Lee (2011). But he uses an equal-weighted market portfolio instead of a

value-weighted market portfolio to estimate the betas. Additionally, the 5-year window for

βk,prei,t estimation in Lee (2011) rolls forward on a yearly basis, and the decile portfolios are

formed at the beginning of every year, instead of every month as I do here.

1.5 Simulations

In this section I use simulations in order to highlight the importance of an EIV correction.

Small sample performance of the cumulant estimators is compared with that of OLS esti-

mators. I consider two models, similar to the models estimated later in the paper using real

data. The first model has three mismeasured regressors and two perfectly measured regres-

sors. This corresponds to the condensed LCAPM. The second model has five mismeasured

regressors and two correctly measured regressors, thus corresponding to the LCAPM with

individual liquidity risks.
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1.5.1 Simulation Setup

The data generating process (DGP) should match the characteristics of the real data set

as closely as possible. Hence, I generate panel data of length 564, which is equal to the

number of months in the second stage CSR, and width 3000, which is equal to the average

number of stocks per month. For the first model, I select values for λ1, λnet, λzr12 and ρ

which are the unknown parameters in the model. The entire panel is then generated from

a system of equation as follows:

χji,t = δχj + υχ
j
i,t (1.26)

zpi,t = δzp + υz
p
i,t (1.27)

ui,t = υui,t (1.28)

εji,t = υε
j
i,t (1.29)

where (υχ
j
i,t , υz

p
i,t , υui,t, υ

εji,t) are drawn from zero-mean, unit-variance gamma distributions,

j is the number of mismeasured regressors and p is the number of perfectly measured re-

gressors in the model. Gamma distributions are used to ensure that all the assumptions

stated in Section 1.3 are satisfied. (δjχ, δ
p
z) are chosen such that the means of the simu-

lated (χji,t, z
p
i,t) equal the means of (xji,t, z

p
i,t) in the real data. The simulated (xji,t, yi,t) are

generated from the simulated (χji,t, z
p
i,t) using Equations 2.3 and 2.4.

The measurement errors (εji,t) and the regression error (ui,t) in the simulation can be

controlled by adjusting the shape parameters of the gamma distributions for (υε
j
i,t , υui,t).

The measurement quality of the proxy variable is given by the R2 of Equation 2.4. In

order to test the power of the methodology used in this paper, I simulate data with high as

well as low levels of measurement error in the mismeasured regressors. The results help us

determine if higher order estimators are effective in eliminating bias in parameter estimates

due to EIV in models with varying levels of measurement error. The following two sections

give the simulation results using three and five mismeasured regressors.
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Three mismeasured regressors

Table 1.1 presents the results from a model that is similar to the condensed LCAPM. In

this set-up, j =3 and p =2. The table reports the slope estimates (λ1, λ2, λ3), which are

the coefficients on the mismeasured regressors, the slope estimates (ρ1, ρ2), which are the

coefficients on the two correctly measured regressors and the intercept. The measurement

quality of the mismeasured regressor is given by its coefficient of determination, which

indicates the proportion of the variance in the mismeasured regressor that is explained by

the true regressor. This is set to range from 45% to 97%, with χ1 having the highest degree

of measurement error and χ3 the lowest. The values of the parameters used in the DGP

are λ1 = 0.70, λ2 = 0.80, λ3 = 0.90, ρ1 = 0.40 and ρ2 = 0.50. The intercept in the DGP is

designed to be zero.

The first row labeled Fama-MacBeth exhibits the attenuation bias due to measurement

error. The parameter estimates of the mismeasured regressors are biased downward. The

intercept ρ0 is biased upward and appears to be statistically significant when estimated

using FM. The true DGP has an intercept of zero. Thus, the FM technique rejects a

correctly specified asset pricing model due to measurement error. The results obtained

from third, fourth and fifth order cumulant estimators are denoted by CUMD3, CUMD4

and CUMD5 respectively, and are reported in the second, third and fourth rows in Table

1.1. In contrast to FM, the intercept is not significantly different from zero for CUMD3,

CUMD4 and CUMD5.

Next, I compare the estimates of λ1, λ2 and λ3 obtained from Fama-MacBeth tech-

nique with those obtained from cumulant-based estimators. I find that that λ1 and λ2 are

statistically different from zero, but biased downward (attenuation bias), when estimated

using FM. However, the λ1, λ2 and λ3 estimates obtained from CUMD3, CUMD4 and

CUMD5 are close to the true values used in the DGP and are statistically different from

zero. The results in Table 1.1 indicate that cumulant estimators perform better than FM

in addressing bias caused by EIV.
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Five mismeasured regressors

This section compares the performance of the Fama-MacBeth technique with that of esti-

mators using higher order information in a model with five mismeasured regressors and two

perfectly measured regressors. The slope estimates used in the DGP are λ1= 0.1, λ2= 0.2,

λ3= 0.3, λ4= 0.4, λ5= 0.5, ρ1= 1.0, ρ2 = 0.5 and the intercept is zero. I generate data with

low quality proxy for χ1, χ3, χ5 and high quality proxy for χ2 and χ4.

The first row in Table 1.2 highlights the contamination bias and the attenuation bias

induced by EIV. The FM estimates are biased. The estimates of λ1 and λ2 have the wrong

sign and λ2 is statistically insignificant. λ3, λ4 and λ5 estimates are biased downward.

Similar to the model with three mismeasured regressors, the intercept is biased upward and

is statistically different from zero, though in the DGP, the intercept is zero. In contrast,

the estimates from CUMD3, CUMD4 and CUMD5 are unbiased and similar to each other.

The values of λ1, λ2, λ3, λ4 and λ5 are close to the true values used in the DGP, and the

intercept is statistically insignificant.

The results from Table 1.2 show that in a model with many mismeasured regressors, the

slope parameters obtained from FM may even have the wrong sign. These results highlight

the need for EIV correction in multivariate models. The simulations give evidence of the

superior performance of higher order cumulant estimators compared to FM estimators. The

next section applies these estimators to asset pricing models.

1.6 Results

1.6.1 Summary Statistics

Descriptive statistics of the sample are reported in Table 1.3. The number of firm-month

observations is 1,303,337 for the full sample and 655,590 for the all-but-microcap sample.

Panel A1 and Panel A2 give the summary statistics of β1i , β2i , β3i and β4i estimated at the

stock-level based on a value-weighted market portfolio, using Equations 1.20-1.23. Panel

A1 reports the characteristics for all stocks and Panel A2 excludes the microcap stocks.
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The striking difference between the two panels is that the average β4i is negative for the

whole sample, but positive when we exclude the microcap stocks. This shows that the β4i

for the microcap stocks is strongly negative. The table also indicates that the average β3i is

smaller for the microcap stocks than for the larger stocks, which results in the larger value

of average β3i for the all-but-microcap sample. As expected, the illiquidity cost, ZR 12

is higher in case of the full sample than for the all-but-microcap sample. The average

market capitalization increases and the book-to-market ratio decreases when we exclude the

microcap stocks. Univariate and multivariate tests of normality are performed to ensure

that the stock-level betas are non-normal. Doornik-Hansen (2008) test of βki and ZR 12

rejects the null hypothesis of normality for all the variables.

Panels B1 and B2 give the descriptive statistics of β1p , β2p , β3p and β4p for the ten

equal-weighted portfolios for the full sample and the all-but-microcap sample respectively.

Doornik-Hansen (2008) test is used to check for univariate and multivariate normality of the

portfolio betas, and the p-values (not reported) from the test are greater than 0.10. Thus

the portfolio betas fail to reject univariate and multivariate normality. The differences

between these two panels are similar to the differences when using stock-level betas. I find

that the average β4p is more negative for the whole sample than for the all-but-microcap

sample. This shows that the β4p for microcap stocks is very negative.

Table 1.4 reports the correlations between different measures of liquidity risk. Panel

A presents the correlations between the portfolio betas, β1p , β2p , β3p and β4p for the entire

sample. Panel B reports the correlations between the stock-level betas. Similar to AP2005,

I calculate the cross-sectional pair-wise correlations between the betas for individual stocks

for each month. The averages of the time-series of these correlations give the correlations

between the beta measures for the entire sample period.

The correlations between the portfolio betas are very small, ranging from 2.5% to 7.4%.

The correlations between the stock-level betas are also very small, ranging from 2.4% to

7.9%. I find that the correlations between the portfolio betas reported in this paper are

significantly lower than those reported in AP2005, which ranged from 44.1% to 97.1%. In

AP2005, stocks are sorted into 25 illiquidity portfolios and the betas for each portfolio are
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computed as per Equations 1.20-1.23 based on an equal-weighted market portfolio, using

the entire monthly time-series from 1964 to 1999. Thus, the higher correlations in AP2005

may be driven by the greater emphasis on small stocks.

1.6.2 Pricing of market risk

This section tests the validity of the single-factor CAPM and investigates whether market

risk is priced. Market beta, βmkti,t for each firm i in month t is estimated by using the

previous 60 monthly returns. To obtain the portfolio betas, stocks are then sorted monthly

into decile portfolios based on βmkti,t , and these ten equally weighted portfolios are used as

test assets. The following model is then estimated using portfolio or stock-level data to

estimate the market risk premium

E(Ri,t −Rf,t) = α0 + λmktβ
mkt
i,t (1.30)

Panel A of Table 1.5 reports the estimated risk premium using the portfolio approach.

The Fama-MacBeth results indicate that market risk is not priced. The coefficient estimate

of market beta is insignificant and α0 is positive and highly significant.

Panel B of Table 1.5 reports the results when the CAPM is estimated using stock level

data. FM cross-sectional regression results are presented in the first row of Panel B. The

second, third and fourth rows present the results obtained by using cumulants of order three,

four and five respectively. Standard errors clustered by time are reported in parenthesis.

The Fama-MacBeth results show that the relation between expected return and market

beta is flat. The intercept is positive and highly significant. Thus the CAPM is rejected.

For the cumulant-based methodology, an important check is whether the assumptions un-

derlying high order cumulant estimators are satisfied. Geary (1942) states that in order to

use the cumulant based estimators, at least two of the cumulants should be different from

zero. The results using CUMD3 are similar to the FM results mainly because CUMD3 has

only one cumulant estimator equation, and this cumulant is not statistically different from
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zero. CUMD4 has three cumulants and only one of them is different from zero. Three out of

the six cumulants in CUMD5 are different from zero, and hence it is the only specification

that satisfies the necessary condition in Geary(1942). The results of CUMD5 show that

the coefficient estimate of market beta is negative. However, alpha is positive and highly

significant. According to this test, the CAPM is misspecified.

1.6.3 Is liquidity risk priced?

This section explores the relationship between expected asset returns and liquidity risk in

the condensed LCAPM. Subsection 1.6.3.1 examines portfolio betas, and Subsection 1.6.3.2

examines stock level liquidity betas. The results are reported in Table 1.6.

Condensed LCAPM estimated with portfolio betas

This section reports empirical results of the test of the condensed LCAPM, which seeks

to answer whether liquidity risk is priced. First, I follow the portfolio-based approach to

compute the four liquidity betas based on a value-weighted market portfolio. These portfolio

betas, βkp , are then assigned to each stock in portfolio p. This method is traditionally used

in asset pricing models to address EIV in the estimated betas.

The 12-month average illiquidity cost ZR 12, the log of market capitalization and the

log of the book-to-market ratio of each stock at the end of the previous month is also

included in the model. The 12-month average zero-return proportion for the lagged month

is used as the proxy for expected illiquidity at time t, E(ZR 12i,t). Fama and French (1992)

find that size and the book-to-market ratio can explain the cross-section of stock returns. To

control for these effects, I include the log of market capitalization and the log of the book-

to-market ratio in the regression. These two variables may be considered as refinements to

the intercept. If we find that the intercept is non-zero, then this specification allows us to

check whether the significant intercept is due to stylized deviations in the model caused by

the well-researched effects of size and book-to-market. The risk premia are estimated from
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the following model

E(Ri,t −Rf,t) = ρ0 + λ1β1i,p,t + λnetβneti,p,t + λzrE(ZR 12i,t) + ρ1ln(MV )i,t + ρ2ln(B/M)i,t

(1.31)

where βneti,p,t = β2i,p,t−β3i,p,t−β4i,p,t and β2i,p,t is defined as the β2 of portfolio p to which stock

i belongs in month t. β3i,p,t and β4i,p,t are defined similarly. Panel A of Table 1.6 reports the

means of the estimated premia. This specification separates the premium due to liquidity

risk from that due to market beta and level of illiquidity cost of an asset. The FM results

indicate that βnetp is insignificant and has a coefficient of 0.0004 with a t-statistic of 0.667.

β1p and ZR 12 are insignificant, and so is the intercept. Thus neither the liquidity risk

nor the market risk is priced and the illiquidity cost is insignificant. The log of the book-

to-market ratio is used in Equation 1.31 as a stylized deviation to the intercept. Hence,

the significance on ln(B/M) is equivalent to the model’s intercept being significant. Thus

according to this test using portfolio betas, the LCAPM is misspecified.

Panel B1 of Table 1.3 shows that the skewness and kurtosis of the portfolio liquidity

betas are low. Hence, we cannot apply the portfolio-beta method using higher order cumu-

lants to estimate risk premia in the condensed specification. However, Panel A1 of Table 1.3

shows that the stock-level liquidity betas are non-normal. Thus we can apply the cumulant

approach to the model comprising of individual betas. The next section implements this

approach.

Condensed LCAPM estimated with stock-level betas

Panel B of Table 1.6 reports the empirical results illustrating the EIV correction method

developed in Section 1.3. Betas are estimated from monthly data over the prior five years.

Individual stock-level data are used to estimate the risk premia

E(Ri,t−Rf,t) = ρ0+λ1β1i,t+λ
netβneti,t +λzrE(ZR 12i,t)+ρ1ln(MV )i,t+ρ

2ln(B/M)i,t (1.32)
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where βneti,t = β2i,t − β3i,t − β4i,t. Results from the FM cross-sectional regressions are reported

in the first row of Panel B. These results are similar to those in Panel A. The results using

third through fifth order cumulant estimators are reported in second, third and fourth rows

of Panel B. Standard errors clustered by time are reported in parenthesis.

FM produces a small coefficient on βnet and it is insignificant. In contrast, the results

from the cumulant estimators are sharply different from the FM results but nearly identical

to each other. The coefficient on βnet in CUMD3 through CUMD5 is larger in magnitude

than the coefficient in FM. This difference stems from the attenuation bias in the FM esti-

mate and it highlights the need to control for the measurement error in the betas computed

at the stock-level.

I find that βnet is positive and significant for all the specifications using the cumulant-

based approach. This draws our attention to the advantages of using stock-level betas. In

CUMD3, βnet is positive and significant, with a t-statistic of 2.21. Thus liquidity risk is

priced. The coefficient on β1 is negative and significant after controlling for EIV. This is

similar to the results in Kan, Robotti and Shanken (2013) and Shanken and Zhou (2007),

which employ alternative methods to address model misspecification in beta-pricing mod-

els. The coefficients on ZR 12, ln(MV) and ln(BM) are insignificant. Thus the model is

not rejected in explaining the cross-section of expected returns. Employing fourth order

cumulant estimators, I get similar results. βnet is positive with a t-statistic of 3.65. The

results get stronger as we move from CUMD3 to CUMD4. In CUMD5, β1, βnet, ZR 12

and ln(MV) are significant.

Using higher order cumulants, identification comes from the non-normality of the true

regressors. When all of the high order cumulants are different from zero, then all of the

cumulant equations fully contribute to identifying the parameters. In both CUMD3 and

CUMD4, 54% of the cumulants are statistically different from zero. However, in CUMD5,

only 37% of cumulants are different from zero. This may indicate that CUMD3 and CUMD4

are better specifications than CUMD5.

A striking result in Table 1.6 is that the LCAPM fails to explain expected stock returns
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when we use the portfolio-based approach, as shown in Panel A. However, as evident from

Panel B, when we use stock-level betas and use the cumulant-based approach to handle

EIV, the LCAPM performs very well. These results show that the portfolio-based approach

was unable to capture the true positive relation between liquidity risk and expected stock

returns. Overall, I find that the LCAPM is not rejected as an explanation of the cross-

section of average returns.

1.6.4 Pricing of the individual liquidity risks

As discussed earlier, Acharya and Pedersen (2005) reported a severe multi-collinearity prob-

lem when they included the three liquidity betas separately in the cross-sectional regres-

sions. This is mainly because of the high correlation coefficients between the portfolio betas

when they are estimated using the entire monthly series and based on an equal-weighted

market portfolio. Their paper states that due to this reason, statistical identification of

the separate effects of the three liquidity betas is difficult and they cannot conclude which

of these risks are empirically relevant. To answer this question, Lee (2011) estimates the

model with one liquidity beta at a time along with the market beta and cost of illiquidity.

However, his method omits two of the three theoretically relevant liquidity risks in each

model specification. Hence, the results may suffer from omitted variable bias.

Panel A of Table 1.7 reports the coefficients from FM regression of the full LCAPM with

all betas estimated at the portfolio level. It shows that β4 is negatively priced and significant

(t-statistic=3.75). However, the direction on β3 is counter-intuitive. Despite using portfolio

betas, these results seem to suffer from contamination bias due to the measurement error

in this multivariate model.

The correlations between the individual stock-level liquidity betas, as shown in Panel B

of Table 1.4, are much lower than the correlations reported in previous literature. Previous

papers did not deal with individual stock betas due to the noise introduced in the betas

when they are estimated at stock level. But I address this error in estimated betas using

the cumulant approach described in Section 1.3. Thus it is possible to empirically test the
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LCAPM with the individual liquidity risks, without the need of aggregating the betas. This

section investigates which of the liquidity risks is significant. I test the LCAPM given in

Equation 1.33 using individual stock level data

E(Ri,t−Rf,t) = ρ0+λ1β1i,t+λ
2β2i,t+λ

3β3i,t+λ
4β4i,t+λ

zrE(ZR 12i,t)+ρ
1ln(MV )i,t+ρ

2ln(B/M)i,t

(1.33)

Results are reported in Panel B of Table 1.7. The Fama-MacBeth results show that β4 is

negative and significant. However, the other liquidity betas are not significant. Moreover,

the signs on β2 and β3 are opposite to theoretical implications, which may be attributable

to the contamination bias in the model.

The second and third rows report the results obtained from CUMD3 and CUMD4

respectively. The signs on all of the liquidity betas align with theory. I find that the return

premium due to β2, which represents cov(ci, cm), is positive and significant at the 10%

level in CUMD3 and at the 1% level in CUMD4. This documents that investors demand

a premium for holding a stock that is illiquid when the overall market is illiquid. Thus

commonality in illiquidity is priced.

I find that β4, which represents cov(ci, rm), is negatively priced. It is significant at

the 5% level in CUMD3 and 1% level in CUMD4. This demonstrates that investors are

willing to pay a premium to hold a security that becomes more liquid when the market

return is low. Stocks with high values of β4 have lower illiquidity costs in states of poor

market return and hence work as a hedge against market downturns. Thus investors have a

preference for these stocks. Panel B of Table 1.7 also shows that β3 is insignificant. Thus,

in general, investors are not willing to accept a lower expected return on stocks that have a

higher return when the market as a whole is more illiquid. The coefficient on the illiquidity

cost is insignificant. A notable result in this table is that the intercept, the coefficient on

ln(MV) and the coefficient on ln(B/M) are not significant. This implies that the model is

not rejected.

Overall, I find that the risks due to cov(ci, cm) and cov(ci, rm) are the two most im-

portant sources of systematic liquidity risks that are related to expected stock returns and
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the LCAPM cannot be rejected. Moreover, the results get stronger as we move from third

order to fourth order estimators. I also find that 44 % of the cumulants in CUMD3 and

47% of the cumulants in CUMD4 are statistically different from zero. This may explain the

reason behind the stronger results in CUMD4.

1.7 Robustness Tests

To check the robustness of the results in Tables 1.6 and 1.7, I consider different specifications

and portfolios. First, I consider whether the results are robust after I exclude the microcap

stocks from the sample. The results are presented in Section 1.7.1. As a further robustness

check, I re-estimate the model with an equal-weighted market portfolio in Section 1.7.2.

1.7.1 Controlling for microcap stocks

Pricing of liquidity risk after excluding the microcap stocks

This section aims to explore if the results in Tables 1.6 and 1.7 are driven by the microcap

stocks. In my sample, I find that the microcap stocks account for around 50% of the

observations but less than 5% of the total market capitalization. These stocks have high

illiquidity and transaction costs. It is interesting to investigate whether the pricing ability

of liquidity risk holds for all stocks or is limited to these highly illiquid stocks that represent

only a small portion of market wealth.

This section presents empirical results of the test of the condensed LCAPM after ex-

cluding the microcap stocks from the sample. The results from the portfolio-based approach

are reported in Panel A of Table 1.8. I find that βnet is still insignificant. However, the

intercept on the model is positive and significant. This is in contrast to the insignificant

intercept obtained in Panel A of Table 1.6 using the full sample. The insignificant intercept

in Table 1.6 may have been caused by the contamination bias due to the mismeasured betas

in the model. This indicates that the grouping method does not completely eliminate the

measurement error in the betas for the microcap stocks.
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Panel B reports the results from the cumulant-based approach with betas estimated

at the stock level. The coefficient on βnet for the all-but-microcap sample is less than half

its magnitude for the full sample. Furthermore, this coefficient is not significant in CUMD3

and CUMD4. Thus the positive relation between βnet and expected returns is mostly driven

by the microcap stocks and the price of liquidity risk decreases substantially after excluding

these stocks. The proportion of cumulants that are different from zero is 54% in CUMD3

and 37% in CUMD4. The intercept and the coefficient on βnet are significant in CUMD5.

However, only 18% of the fifth order cumulants are different from zero, which may be the

reason behind the difference in results between CUMD5 and the lower order cumulants.

Overall, the results in Panel B are in line with the effect we would expect to see when we

exclude the tiny stocks, which are also usually the most illiquid, from the sample.

Pricing of the individual liquidity betas after excluding the microcap stocks

The effect of excluding the microcap stocks in the estimation of the LCAPM with disag-

gregated betas is shown in Table 1.9. The results from the portfolio-based approach are

reported in Panel A. I find that β4 is still negatively priced and significant at the 5% level.

However, similar to the result obtained in the previous section, I find that the intercept

on the model is positive and significant. This suggests that for the microcap stocks, the

grouping method may not be very efficient in eliminating the measurement errors in the

individual betas.

Panel B presents the results when the model is estimated with stock-level betas. The

coefficient on β2 for the all-but-microcap sample is insignificant and much smaller in mag-

nitude than the coefficient for the full sample. Thus the microcap stocks drive the risk

premium due to the commonality in liquidity. The coefficient on β3 is positive for the all-

but-micro sample but insignificant for the full sample. This implies that the coefficient on

β3 for the microcap stocks must be very large and negative in order to cause the negative

coefficient on β3 for the full sample. β4 is still negative, but the coefficient has a smaller

magnitude than that in the full sample.
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This table indicates that the effects of microcap stocks are very important when an-

alyzing the relation between liquidity risk and expected returns. The main inference that

stands out from these results is that the risk due to the covariation between a stock’s return

and the market liquidity is negatively priced for the microcap stocks. Thus investors are

willing to accept a lower return to hold these microcap stocks that have a high return when

market is illiquid.

1.7.2 LCAPM estimation with betas based on an equal-weighted market

portfolio

AP2005 and Lee (2011) use an equal-weighted market portfolio to estimate the liquidity

betas. They estimate the betas at the beginning of every year, based on the monthly

data for the last five years. However, prior literature has highlighted the shortcomings

of using an equal-weighted market portfolio. Equal-weighted market return and market

illiquidity are dominated by the microcap stocks. When I use an equal-weighted instead of

a value-weighted market portfolio to estimate the portfolio liquidity betas, the correlations

between these betas are quite substantial, ranging from 10.35% to 42.49%. Thus, it is

problematic to correctly identify the separate effects of these three liquidity betas. To

circumvent this multicollinearity problem, AP2005 estimates the LCAPM with βnet, which

is a linear combination of the three liquidity betas. Using monthly data from January 1988

to December, Lee (2011) finds that βnet is positive and significant at the 5% level.

Table 1.10 reports the results when the beta estimation is based on an equal-weighted

market portfolio. The five-year rolling window for beta estimation rolls forward every

month. I find that for the entire sample from January 1963 to December 2014, βnet is

positive but insignificant. Panel B reports the results of the test of the LCAPM with stock-

level betas. I find that the coefficient on βnet in CUMD3 and CUMD4 is positive and has a

higher magnitude than in the value-weighted results reported in Panel B of Table 1.6. This

indicates that the results using an equal-weighted market portfolio are driven to a greater

degree by the microcap stocks. The coefficients on net liquidity risk and illiquidity cost are

positive and significant with t-statistics of 3.83 and 3.16 respectively in CUMD4. These
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coefficients are insignificant in CUMD3 and CUMD5. Amongst the three specifications,

the proportion of cumulants different from zero is the highest in CUMD4, which may be

the reason behind the differences in coefficients estimated from using cumulants of different

orders.

Table 1.11 reports the results obtained when the net liquidity beta is decomposed into

its individual components. Panel A presents the coefficients from FM regression of the

LCAPM using portfolio betas. I find that β4 is negatively priced and significant. The

intercept is positive and significant. Panel B reports the results when betas are calculated

at the stock-level. I find that the risk due to the covariation between a stock’s return

and the market illiquidity, β3, is significant and negatively priced for both CUMD3 and

CUMD4. This is because these results are dominated by the microcap stocks, which have

been shown to have a negative price of risk for β3. The risk due to commonality in liquidity,

β2, is positive and insignificant. Furthermore, unlike the results obtained using CUMD3

and CUMD4 in Panel B of Table 1.7, I find that the intercept is positive and significant

when I use an equal-weighted market portfolio . Thus the LCAPM is misspecified when an

equal-weighted portfolio is cast as the market.

1.8 Conclusion

Measurement error is endemic in asset pricing models employing the standard two-pass

cross-sectional regression methodology. The sensitivities to factors are estimated in the

first stage, and used as independent variables in the second stage. Error in the estimates

may lead to inconsistent estimates of the slope coefficients and the intercept in the second

stage.

This paper implements a method that is new to the estimation of risk premia in asset

pricing models to address EIV. I propose an alternative to the cross-sectional regression step

in a Fama-MacBeth framework, and use higher order information in the data to estimate

the price of risk. This is achieved by using a system of equations that express higher order

cumulants of observable variables as a linear function of the coefficients to be estimated
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and other higher order cumulants. It does not necessitate sorting stocks into groups to test

hypotheses and hence circumvents the information loss caused due to portfolio formation.

I apply this methodology to the CAPM and LCAPM. I find that the single factor

CAPM still fails to explain the cross-section of average returns. In testing the LCAPM, I

use stock level betas and find that liquidity risk is priced. Then I decouple the net liquidity

risk into three components and empirically test the significance of these factors. Betas

estimated at the stock level are not highly correlated with each other, and hence we can

bypass the collinearity problem that was a challenge in the previous studies.

I find that the risk premium due to the commonality in liquidity is positive. I also

find that the premium due to the sensitivity of a stock’s illiquidity to the market return

is negatively related to the cross-section of expected return. This paper sheds light on

the true relationship between liquidity, liquidity risk and asset returns after controlling for

contamination and attenuation biases. I also show that β3, which measures the exposure

of a stock’s return to the market illiquidity, is negatively related to expected returns for

microcap stocks.

The scope of applications of higher-order cumulants in handling EIV is expansive.

Future research could investigate whether measurement error distorts the inferences in the

q-factor model or the Fama-French five-factor model.

34



Acharya, V.V. and Pedersen, L.H., 2005. Asset pricing with liquidity risk. Journal of
financial Economics, 77(2), pp.375-410.

Amihud, Y., 2002. Illiquidity and stock returns: cross-section and time-series effects. Jour-
nal of financial markets, 5(1), pp.31-56.

Amihud, Y. and Mendelson, H., 1986. Asset pricing and the bid-ask spread. Journal of
financial Economics, 17(2), pp.223-249.

Ang, A., Liu, J. and Schwarz, K., 2010. Using Stocks Or Portfolios in Tests of Factor
Models. Working paper, Columbia University, 2010.

Bekaert, G., Harvey, C.R. and Lundblad, C., 2007. Liquidity and expected returns: Lessons
from emerging markets. Review of Financial studies, 20(6), pp.1783-1831.

Berk, J.B., 2000. Sorting out sorts. The Journal of Finance, 55(1), pp.407-427.

Black, F., Jensen, M.C. and Scholes, M.S., 1972. The capital asset pricing model: Some
empirical tests.

Brennan, M.J., Chordia, T. and Subrahmanyam, A., 1998. Alternative factor specifications,
security characteristics, and the cross-section of expected stock returns. Journal of Financial
Economics, 49(3), pp.345-373.

Brennan, M.J. and Subrahmanyam, A., 1996. Market microstructure and asset pricing:
On the compensation for illiquidity in stock returns. Journal of financial economics, 41(3),
pp.441-464.

Brockman, P., Chung, D.Y. and Pérignon, C., 2009. Commonality in liquidity: A global
perspective. Journal of Financial and Quantitative Analysis, 44(04), pp.851-882.

Brunnermeier, M.K. and Pedersen, L.H., 2009. Market liquidity and funding liquidity.
Review of Financial studies, 22(6), pp.2201-2238.

Carhart, M.M., 1997. On persistence in mutual fund performance. The Journal of finance,
52(1), pp.57-82.

Chen, N.F., Roll, R. and Ross, S.A., 1986. Economic forces and the stock market. Journal
of business, pp.383-403.

Chordia, T., Roll, R. and Subrahmanyam, A., 2000. Commonality in liquidity. Journal of
financial economics, 56(1), pp.3-28.

Chordia, T., Roll, R. and Subrahmanyam, A., 2001. Market liquidity and trading activity.
The Journal of Finance, 56(2), pp.501-530.

Coughenour, J.F. and Saad, M.M., 2004. Common market makers and commonality in
liquidity. Journal of Financial Economics, 73(1), pp.37-69.

Cragg, J.G., 1994. Making good inferences from bad data. Canadian Journal of Economics,
pp.776-800.

Cragg, J.G., 1997. Using higher moments to estimate the simple errors-in-variables model.
Rand Journal of Economics, pp.S71-S91.

Dagenais, M.G. and Dagenais, D.L., 1997. Higher moment estimators for linear regression
models with errors in the variables. Journal of Econometrics, 76(1), pp.193-221.

35



Doornik, J.A. and Hansen, H., 2008. An omnibus test for univariate and multivariate
normality. Oxford Bulletin of Economics and Statistics, 70(s1), pp.927-939.

Erickson, T. and Whited, T.M., 2000. Measurement error and the relationship between
investment and q. Journal of political economy, 108(5), pp.1027-1057.

Erickson, T. and Whited, T.M., 2002. Two-step GMM estimation of the errors-in-variables
model using high-order moments. Econometric Theory, 18(03), pp.776-799.

Erickson, T. and Whited, T.M., 2012. Treating measurement error in Tobin’s q. Review of
Financial Studies, 25(4), pp.1286-1329.

Erickson, T., Jiang, C.H. and Whited, T.M., 2014. Minimum distance estimation of the
errors-in-variables model using linear cumulant equations. Journal of Econometrics, 183(2),
pp.211-221.

Fama, E.F. and French, K.R., 1992. The crosssection of expected stock returns. the Journal
of Finance, 47(2), pp.427-465.

Fama, E.F. and French, K.R., 2008. Dissecting anomalies. The Journal of Finance, 63(4),
pp.1653-1678.

Fama, E.F. and MacBeth, J.D., 1973. Risk, return, and equilibrium: Empirical tests. The
journal of political economy, pp.607-636.

Fong, K., Holden, C.W. and Trzcinka, C.A., 2011. Can global stock liquidity be measured.
Unpublished working paper. University of New South Wales and Indiana University.

Geary, R.C., 1942. The estimation of many parameters. Journal of the Royal Statistical
Society, 105(3), pp.213-217.

Goyenko, R.Y., Holden, C.W. and Trzcinka, C.A., 2009. Do liquidity measures measure
liquidity?. Journal of financial Economics, 92(2), pp.153-181.

Han, Y. and Lesmond, D., 2011. Liquidity biases and the pricing of cross-sectional idiosyn-
cratic volatility. Review of Financial Studies, 24(5), pp.1590-1629.

Harvey, C.R., 1991. The world price of covariance risk. The Journal of Finance, 46(1),
pp.111-157.

Hasbrouck, J. and Seppi, D.J., 2001. Common factors in prices, order flows, and liquidity.
Journal of financial Economics, 59(3), pp.383-411.

Hou, K., Xue, C. and Zhang, L., 2015. Digesting Anomalies: An Investment Approach.
Review of Financial Studies, 28(3), pp.650-705.

Huberman, G. and Halka, D., 2001. Systematic liquidity. Journal of Financial Research,
24(2), pp.161-178.

Jagannathan, R., Kim, S. and Skoulakis, G., 2010. Revisiting the Errors in Variables
Problem in Studying the Cross Section of Stock Returns. Unpublished Working Paper.
Northwestern University.

Jagannathan, R. and Wang, Z., 1996. The conditional CAPM and the crosssection of
expected returns. The Journal of finance, 51(1), pp.3-53.

Jagannathan, R. and Wang, Z., 1998. An asymptotic theory for estimating betapricing

36



models using crosssectional regression. The Journal of Finance, 53(4), pp.1285-1309.

Kamara, A., Lou, X. and Sadka, R., 2008. The divergence of liquidity commonality in the
cross-section of stocks. Journal of Financial Economics, 89(3), pp.444-466.

Kan, R., Robotti, C. and Shanken, J., 2013. Pricing Model Performance and the TwoPass
CrossSectional Regression Methodology. The Journal of Finance, 68(6), pp.2617-2649.

Karolyi, G.A., Lee, K.H. and Van Dijk, M.A., 2012. Understanding commonality in liquidity
around the world. Journal of Financial Economics, 105(1), pp.82-112.

Kim, D., 1995. The errors in the variables problem in the crosssection of expected stock
returns. The Journal of Finance, 50(5), pp.1605-1634.

Kim, S. and Skoulakis, G., 2015. Ex-post Risk Premia: Estimation and Inference using
Large Cross Sections. Unpublished Working Paper.

Korajczyk, R.A. and Sadka, R., 2008. Pricing the commonality across alternative measures
of liquidity. Journal of Financial Economics, 87(1), pp.45-72.

Lintner, J., 1965. Security prices, risk, and maximal gains from diversification. The Journal
of Finance, 20(4), pp.587-615.

Lee, K.H., 2011. The world price of liquidity risk. Journal of Financial Economics, 99(1),
pp.136-161.

Lesmond, D.A., 2005. Liquidity of emerging markets. Journal of Financial Economics,
77(2), pp.411-452.

Lesmond, D.A., Ogden, J.P. and Trzcinka, C.A., 1999. A new estimate of transaction costs.
Review of Financial Studies, 12(5), pp.1113-1141.

Lewbel, A., 1997. Constructing instruments for regressions with measurement error when
no additional data are available, with an application to patents and R&D. Econometrica,
65(5), pp.1201-1213.

Lewbel, A., 2012. Using heteroscedasticity to identify and estimate mismeasured and en-
dogenous regressor models. Journal of Business & Economic Statistics 30, 67-80.

Lewellen, J., Nagel, S. and Shanken, J., 2010. A skeptical appraisal of asset pricing tests.
Journal of Financial economics, 96(2), pp.175-194.

Liang, B., 2000. Portfolio formation, measurement errors, and beta shifts: A random
sampling approach. Journal of Financial Research, 23(3), pp.261-284.

Liu, W., 2006. A liquidity-augmented capital asset pricing model. Journal of financial
Economics, 82(3), pp.631-671.

Lo, A.W. and MacKinlay, A.C., 1990. Data-snooping biases in tests of financial asset pricing
models. Review of financial studies, 3(3), pp.431-467.

Madansky, A., 1959. The fitting of straight lines when both variables are subject to error.
Journal of the American Statistical Association 54, 173-205.

Martin, I.W., 2013. Consumption-based asset pricing with higher cumulants. The Review
of Economic Studies, 80(2), pp.745-773.

37



McCullagh, P., 1987. Tensor Methods in Statistics. Chapman and Hall, New York.

Newey, W.K. and West, K.D., 1994. Automatic lag selection in covariance matrix estima-
tion. The Review of Economic Studies, 61(4), pp.631-653.

Pakes, A., 1982. On the asymptotic bias of Wald-type estimators of a straight line when
both variables are subject to error. International Economic Review, 23(2), pp.491-497.

Pal, M., 1980. Consistent moment estimators of regression coefficients in the presence of
errors in variables. Journal of Econometrics, 14(3), pp.349-364.

Pastor, L. and Stambaugh, R.F., 2001. Liquidity risk and expected stock returns (No.
w8462). National Bureau of Economic Research.

Pukthuanthong, K., Roll, R. and Wang, J.L., 2014. Resolving the errors-in-variables bias
in risk premium estimation. Working Paper,UCLA.

Richardson, M. and Smith, T., 1993. A test for multivariate normality in stock returns.
Journal of Business, pp.295-321.

Roll, R., 1977. A critique of the asset pricing theory’s tests Part I: On past and potential
testability of the theory. Journal of financial economics, 4(2), pp.129-176.

Sadka, R., 2006. Momentum and post-earnings-announcement drift anomalies: The role of
liquidity risk. Journal of Financial Economics, 80(2), pp.309-349.

Sargan, J.D., 1958. The estimation of economic relationships using instrumental variables.
Econometrica: Journal of the Econometric Society, pp.393-415.

Shanken, J., 1985. Multivariate tests of the zero-beta CAPM. Journal of financial eco-
nomics, 14(3), pp.327-348.

Shanken, J., 1992. On the estimation of beta-pricing models. Review of Financial studies,
5(1), pp.1-33.

Shanken, J. and Zhou, G., 2007. Estimating and testing beta pricing models: Alternative
methods and their performance in simulations. Journal of Financial Economics, 84(1),
pp.40-86.

Sharpe, W.F., 1964. Capital asset prices: A theory of market equilibrium under conditions
of risk. The journal of finance, 19(3), pp.425-442.

Spiegelman, C., 1979. On estimating the slope of a straight line when both variables are
subject to error. The Annals of Statistics, pp.201-206.

Van Montfort, K., Mooijaart, A. and Leeuw, J.D., 1987. Regression with errors in variables:
estimators based on third order moments. Statistica Neerlandica, 41(4), pp.223-238.

Van Montfort, K., Mooijaart, A. and De Leeuw, J., 1989. Estimation of regression coeffi-
cients with the help of characteristic functions. Journal of Econometrics, 41(2), pp.267-278.

Wansbeek, T.J. and Meijer,E., 2000. Measurement error and latent variables in economet-
rics. Elsevier, Amsterdam.

Watanabe, A. and Watanabe, M., 2008. Time-varying liquidity risk and the cross section
of stock returns. Review of Financial Studies, 21(6), pp.2449-2486.

38



Table 1.1 Simulation Results: Three mismeasured regressors

The data are simulated by the following model:

yi,t = 0.7χ1
i,t + 0.8χ2

i,t + 0.9χ3
i,t + 0.4z1i,t + 0.5z2i,t

The estimated model is

yi,t = λ1χ
1
i,t + λ2χ

2
i,t + λ3χ

3
i,t + ρ0 + ρ1z

1
i,t + ρ2z

2
i,t

The total number of time periods is 564, and each time period has 3000 observations. This table reports

the estimates obtained by applying the Fama-MacBeth methodology and higher order cumulant estimators.

The standard errors are reported in parenthesis. ** and *** denote significance at the 5% and 1% level

respectively.

Three mismeasured regressors

λ1 λ2 λ3 ρ0 ρ1 ρ2

Fama-MacBeth
0.3198***

(0.0008)

0.6159***

(0.0007)

0.8737***

(0.0003)

0.3653***

(0.0017)

0.4002***

(0.0006)

0.4999***

(0.0003)

CUMD3
0.6989***

(0.0032)

0.8006***

(0.0017)

0.8993***

(0.0009)

0.0020

(0.0035)

0.3999***

(0.0007)

0.4997***

(0.0003)

CUMD4
0.6950***

(0.0027)

0.8008***

(0.0014)

0.8992***

(0.0007)

0.0056

(0.0031)

0.3999***

(0.0007)

0.4998***

(0.0003)

CUMD5
0.6969***

(0.0023)

0.8010***

(0.0012)

0.8993***

(0.0007)

0.0038

(0.0028)

0.3999***

(0.0007)

0.4998***

(0.0003)
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Table 1.2 Simulation Results: Five Mismeasured regressors

The data are simulated by the following model:

yi,t = 0.1χ1
i,t + 0.2χ2

i,t + 0.3χ3
i,t + 0.4χ4

i,t + 0.5χ5
i,t + 0.4z1i,t + 0.5z2i,t

The estimated model is

yi,t = λ1χ
1
i,t + λ2χ

2
i,t + λ3χ

3
i,t + λ4χ

4
i,t + λ5χ

5
i,t + ρ0 + ρ1z

1
i,t + ρ2z

2
i,t

The total number of time periods is 564, and each time period has 3000 observations. I report the estimates

obtained by applying the Fama-MacBeth methodology and higher order cumulant estimators.The standard

errors are reported in parenthesis. ** and *** denote significance at the 5% and 1% level respectively.

Five mismeasured regressors

λ1 λ2 λ3 λ4 λ5 ρ0 ρ1 ρ2

Fama-MacBeth
-0.0476***

(0.0148)

-0.0219

(0.0178)

0.1483***

(0.0119)

0.3619***

(0.0111)

0.3979***

(0.0118)

1.1090***

(0.1244)

1.0001***

(0.0164)

0.5002***

(0.0253)

CUMD3
0.1005***

(0.0032)

0.1989***

(0.0033)

0.2945***

(0.0041)

0.4019***

(0.0034)

0.4971***

(0.0031)

-0.0035

(0.0193)

1.0000***

(0.0007)

0.5005***

(0.0011)

CUMD4
0.1011***

(0.0026)

0.2011***

(0.0026)

0.2938***

(0.0035)

0.4035***

(0.0028)

0.4968***

(0.0023)

-0.0109

(0.0153)

1.0000***

(0.0007)

0.5005***

(0.0011)
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Table 1.3 Summary Statistics: Stock-level betas

This table gives the descriptive statistics of the data. Panels A1 and A2 report the mean, standard deviation,

skewness and kurtosis of the stock-level betas in the LCAPM estimated from January 1963 to December 2014

for all and the all-but-microcap stocks respectively. For each stock i in month t, βk
i,t where k = (1,2,3,4), is

estimated from monthly returns and innovations in illiquidity for stock i and for the value-weighted market

portfolio, over months t− 60 to t− 1, using Equations 1.20-1.23. The innovations in illiquidity are obtained

from the first differences in illiquidity over the 60-month window. This window rolls forward every month.

Individual stock windows with less than 36 prior monthly returns or innovations in illiquidity are dropped.

ZR 12 is the average zero-return proportion. Ln(MV) is the log of the market capitalization and ln(B/M)

is the log of the book-to-market ratio.

Panel A1: All stocks

Variable Mean Std Dev Skewness Kurtosis

β1i 1.1181 0.7006 1.1115 4.6298

β2i 0.0581 0.1509 0.6012 4.7382

β3i 0.0169 0.1422 0.3248 18.5410

β4i -0.0099 0.3667 -0.1060 2.4426

ZR 12 0.1729 0.1479 0.9632 0.6384

ln(MV) 4.9541 2.1104 0.3374 -0.2008

ln(B/M) -0.4251 0.8929 -0.5936 2.1015

Panel A2: Excluding microcap stocks

Variable Mean Std Dev Skewness Kurtosis

β1i 1.1087 0.6274 1.3814 5.0206

β2i 0.0610 0.1302 1.0014 4.5511

β3i 0.0197 0.1023 0.3787 9.9942

β4i 0.0035 0.3065 -0.0178 2.8852

ZR 12 0.1118 0.1079 1.4589 3.5614

ln(MV) 6.6272 1.6393 0.4499 0.2057

ln(B/M) -0.6232 0.8048 -0.6386 1.8132
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Table 1.3 Summary Statistics: Portfolio betas

This table gives the descriptive statistics of the data. Panels B1 and B2 report the mean, standard deviation,

skewness and kurtosis of portfolio betas in the LCAPM estimated from January 1963 to December 2014 for all

and the all-but-microcap stocks respectively. For each stock i, the pre-ranking beta, βk,pre
i,t , (k = 1, 2, 3, 4) of

month t is estimated using the time-series of monthly returns and innovations in illiquidity for the previous

60 months with respect to either the value-weighted market return or the innovations in value-weighted

market illiquidity. The innovations in illiquidity are obtained from the first differences in illiquidity over the

60-month window. This window rolls forward every month. If a stock has less than 36 valid observations

in the t − 60 to t − 1 monthly window, then βk,pre
i,t for that stock is set to missing. Stocks are then sorted

into ten equal-weighted portfolios based on βk,pre
i,t for month t. The post-ranking portfolio beta, βk

p , is then

estimated for each of the ten portfolios over the entire sample period using Equations 1.20-1.23.

Panel B1: All stocks

Mean Std Dev Skewness Kurtosis

β1p 1.0969 0.5958 0.4025 -0.2503

β2p 0.0549 0.0824 0.0199 -0.3740

β3p 0.0061 0.0859 -0.2119 0.3176

β4p -0.0124 0.3200 -0.0446 -0.2304

Panel B2: Excluding microcap stocks

Variable Mean Std Dev Skewness Kurtosis

β1p 1.0876 0.5476 0.5056 0.0868

β2p 0.0560 0.0708 0.0644 0.0789

β3p 0.0098 0.0692 -0.1554 1.3495

β4p -0.0014 0.2666 -0.0708 0.3918
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Table 1.4 Correlation between the betas

This table reports the correlations between the different beta measures. The correlations are computed

monthly for all eligible stocks and then averaged over the sample period. Panel A presents the correlations

of β1
p , β2

p , β3
p and β4

p for the portfolio betas formed each month using data from January 1963 to December

2014. For each stock i, the pre-ranking beta, βk,pre
i,t , (k = 1, 2, 3, 4) of month t is estimated using the time-

series of monthly returns and innovations in illiquidity for the previous 60 months with respect to either the

value-weighted market return or the innovations in value-weighted market illiquidity. Stocks are then sorted

into ten portfolios based on βk,pre
i,t for month t. The post-ranking portfolio beta, βk

p , is then estimated for

each of the ten equal-weighted portfolios over the entire sample period using Equations 1.20-1.23. Panel B

reports the correlations of β1
i , β2

i , β3
i and β4

i estimated at the stock-level. For each stock i in month t, βk
i,t

where k = (1,2,3,4), is computed from monthly returns and innovations in illiquidity for stock i and for the

value-weighted market portfolio, over months t− 60 to t− 1, using Equations 1.20-1.23.

Panel A :

Beta correlations for portfolios

β1p β2p β3p β4p

β1p 1.000 0.025 0.058 -0.067

β2p 1.000 -0.074 0.059

β3p 1.000 0.026

β4p 1.000

Panel B:

Beta correlations for individual stocks

β1i β2i β3i β4i

β1i 1.000 0.026 0.058 -0.073

β2i 1.000 -0.079 0.061

β3i 1.000 0.024

β4i 1.000
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Table 1.5 Pricing of market risk

This table presents the estimated coefficients of the single-factor CAPM. I consider the following model

E(Rp
t −Rf,t) = α0 + λmktβ

mkt

I report the estimates obtained using Fama-MacBeth methodology and correcting for EIV using third through

fifth order cumulants. The standard errors are reported in parenthesis. Panel A reports the estimated

coefficients from Fama-MacBeth cross-sectional regressions of the CAPM based on portfolio beta. Market

beta, βmkt
i,t for each firm i in month t is estimated by using the previous 60 monthly returns. To obtain the

portfolio betas, stocks are then sorted into deciles portfolios based on βmkt
i,t , and these ten equally weighted

portfolios are used as test assets. Panel B reports the estimates from estimating market beta at the stock

level and then controlling for EIV explicitly using third through fifth order cumulants. ** and *** denote

significance at the 5% and 1% level respectively.

Panel A : CAPM estimated with portfolio beta

βmktp α0

Fama-MacBeth
0.0023

(0.0019)

0.0095***

(0.0009)

Panel B: CAPM estimated with stock level beta

βmkti α0

Fama-MacBeth
-0.0001

(0.0011)

0.0091***

(0.0013)

CUMD3
-4.609

(4.474)

4.915***

(0.0020)

CUMD4
-0.5225***

(0.1727)

0.5689***

(0.0002)

CUMD5
-0.4444***

(0.0658)

0.4858***

(0.0002)
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Table 1.6 Estimation of the Condensed LCAPM

This table presents the estimated coefficients of the LCAPM using data on all stocks from January 1963 to
December 2014. I consider the following model

E(Ri,t −Rf,t) = ρ0 + λ1β1
i,t + λnetβnet

i,t + λzrE(ZR 12i,t) + ρ1ln(MVi,t) + ρ2ln(B/Mi,t)

I report the estimates obtained using Fama-MacBeth methodology and correcting for EIV using third and

fourth order cumulant estimators. The standard errors are reported in parenthesis. Panel A reports the

coefficients obtained from estimating the LCAPM using portfolio betas, βk
p . For each stock i, the pre-ranking

beta, βk,pre
i,t , (k = 1, 2, 3, 4) of month t is estimated using the time-series of monthly returns and innovations

in illiquidity for the previous 60 months with respect to either the value-weighted market return or the

innovations in value-weighted market illiquidity. Stocks are then sorted into ten portfolios based on βk,pre
i,t

for month t. The post-ranking portfolio beta, βk
p , is then estimated for each of the ten equally weighted

portfolios over the entire sample period using Equations 1.20-1.23. This βk
p is assigned to all stocks belonging

to portfolio p ranked on the basis of βk,pre
i,t . βnet

p = β2
p - β3

p - β4
p . Panel B reports the coefficients obtained

from estimating the LCAPM using stock-level betas and then controlling for EIV explicitly using third and

fourth order cumulant estimators. For each stock i in month t, βk
i,t where k = (1,2,3,4), is computed from

monthly returns and innovations in illiquidity for stock i and for the value-weighted market portfolio, over

months t − 60 to t − 1, using Equations 1.20-1.23. βnet
i = β2

i - β3
i - β4

i . ZR 12 is the previous month’s

average zero-return proportion. Ln(MV) is the log of the market capitalization and ln(B/M) is the log of

the book-to-market ratio at the end of the previous year. ** and *** denote significance at the 5% and 1%

level respectively.

Panel A : Condensed LCAPM estimated with portfolio betas

β1p βnetp ZR 12 Intercept ln(MV) ln(B/M)

Fama-MacBeth
0.0019

(0.0020)

0.0004

(0.0006)

0.0075

(0.0079)

0.0030

(0.0026)

0.0001

(0.0004)

0.0010**

(0.0005)

Panel B: Condensed LCAPM estimated with stock-level betas

β1 βnet ZR 12 Intercept ln(MV) ln(B/M)

Fama-MacBeth
0.0016

(0.0018)

0.0002

(0.0008)

0.0140

(0.0076)

0.0012

(0.0027)

0.0001

(0.0004)

0.0009

(0.0005)

CUMD3
-0.0237***

(0.0053)

0.0062**

(0.0028)

0.0928

(0.1283)

-0.0039

(0.0510)

0.0044

(0.0056)

0.0001

(0.0025)

CUMD4
-0.0173***

(0.0025)

0.0073***

(0.0020)

0.0163

(0.0377)

0.0190

(0.0167)

0.0012

(0.0019)

0.0019

(0.0013)

CUMD5
-0.0038**

(0.0017)

0.0125***

(0.0016)

0.0648***

(0.0223)

-0.0161

(0.0102)

0.0035***

(0.0012)

0.0025

(0.0014)
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Table 1.7 Pricing of the individual liquidity betas

This table presents the estimated coefficients of the LCAPM using data on all stocks from January 1963 to
December 2014. I consider the following model

E(Ri,t −Rf,t) = ρ0 + λ1β1
i,t + λ2β2

i,t + λ3β3
i,t + λ4β4

i,t + λzrE(ZR 12i,t) + ρ1ln(MVi,t) + ρ2ln(B/Mi,t)

I report the estimates obtained using Fama-MacBeth methodology and correcting for EIV using third and

fourth order cumulant estimators. The standard errors are reported in parenthesis. Panel A reports the

coefficients obtained from estimating the LCAPM using portfolio betas, βk
p . For each stock i, the pre-ranking

beta, βk,pre
i,t , (k = 1, 2, 3, 4) of month t is estimated using the time-series of monthly returns and innovations

in illiquidity for the previous 60 months with respect to either the value-weighted market return or the

innovations in value-weighted market illiquidity. Stocks are then sorted into ten portfolios based on βk,pre
i,t

for month t. The post-ranking portfolio beta, βk
p , is then estimated for each of the ten equally weighted

portfolios over the entire sample period using Equations 1.20-1.23. This βk
p is assigned to all stocks belonging

to portfolio p ranked on the basis of βk,pre
i,t . Panel B reports the coefficients obtained from estimating the

LCAPM using stock-level betas and then controlling for EIV explicitly using third and fourth order cumulant

estimators. For each stock i in month t, βk
i,t where k = (1,2,3,4), is computed from monthly returns and

innovations in illiquidity for stock i and for the value-weighted market portfolio, over months t− 60 to t− 1,

using Equations 1.20-1.23. ZR 12 is the previous month’s average zero-return proportion. Ln(MV) is the

log of the market capitalization and ln(B/M) is the log of the book-to-market ratio at the end of the previous

year. ** and *** denote significance at the 5% and 1% level respectively.

Panel A: LCAPM estimated with portfolio betas

β1p β2p β3p β4p ZR 12 Intercept ln(MV) ln(B/M)

Fama-MacBeth
0.0018

(0.0020)

0.0020

(0.0017)

0.0143

(0.0081)

-0.0015***

(0.0004)

0.0081

(0.0079)

0.0027

(0.0026)

0.0001

(0.0004)

0.0010**

(0.0005)

Panel B: LCAPM estimated with stock-level betas

β1 β2 β3 β4 ZR 12 Intercept ln(MV) ln(B/M)

Fama-MacBeth
0.0020

(0.0020)

-0.0033

(0.0056)

0.0165

(0.0147)

-0.0015**

(0.0006)

0.0152**

(0.0076)

0.0005

(0.0027)

0.0002

(0.0004)

0.0009

(0.0005)

CUMD3
-0.0102***

(0.0035)

0.0076

(0.0045)

-0.0119

(0.0146)

-0.0043**

(0.0022)

0.0127

(0.0414)

0.0126

(0.0180)

0.0011

(0.0019)

0.0027

(0.0015)

CUMD4
-0.0151***

(0.0016)

0.0092***

(0.0021)

-0.0059

(0.0047)

-0.0052***

(0.0012)

0.0188

(0.0186)

0.0155

(0.0087)

0.0013

(0.0010)

0.0021

(0.0014)
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Table 1.8 Robustness Check: Estimation of the LCAPM excluding microcap stocks

This table presents the estimated coefficients of the LCAPM using data from January 1963 to December
2014, excluding microcap stocks. I consider the following model

E(Ri,t −Rf,t) = ρ0 + λ1β1
i,t + λnetβnet

i,t + λzrE(ZR 12i,t) + ρ1ln(MVi,t) + ρ2ln(B/Mi,t)

I report the estimates obtained using Fama-MacBeth methodology and correcting for EIV using third through

fifth order cumulant estimators. The standard errors are reported in parenthesis. Panel A reports the

coefficients obtained from estimating the LCAPM using portfolio betas, βk
p . For each stock i, the pre-

ranking beta, βk,pre
i,t , (k = 1, 2, 3, 4) of month t is estimated using the time-series of monthly returns and

innovations in illiquidity for the previous 60 months with respect to either the value-weighted market return

or the innovations in value-weighted market illiquidity. Stocks are then sorted into ten portfolios based on

βk,pre
i,t for month t. The post-ranking portfolio beta, βk

p , is then estimated for each of the ten equal-weighted

portfolios over the entire sample period using Equations 1.20-1.23. This βk
p is assigned to all stocks belonging

to portfolio p ranked on the basis of βk,pre
i,t . βnet

p = β2
p - β3

p - β4
p . Panel B reports the coefficients obtained

from estimating the LCAPM using stock-level betas and then controlling for EIV explicitly using third

through fifth order cumulant estimators. For each stock i in month t, βk
i,t where k = (1,2,3,4), is computed

from monthly returns and innovations in illiquidity for stock i and for the value-weighted market portfolio,

over months t− 60 to t− 1, using Equations 1.20-1.23. βnet
i = β2

i - β3
i - β4

i . ZR 12 is the previous month’s

average zero-return proportion. Ln(MV) is the log of the market capitalization and ln(B/M) is the log of

the book-to-market ratio at the end of the previous year. ** and *** denote significance at the 5% and 1%

level respectively.

Panel A: Condensed LCAPM estimated with portfolio betas

β1p βnetp ZR 12 Intercept ln(MV) ln(B/M)

Fama-MacBeth
0.0009

(0.0020)

0.0006

(0.0007)

0.0449**

(0.0221)

0.0237***

(.0031)

-0.0025***

(0.0031)

-0.0005

(0.0006)

Panel B: Condensed LCAPM estimated with stock-level betas

β1 βnet ZR 12 Intercept ln(MV) ln(B/M)

Fama-MacBeth
0.0008

(0.0021)

0.0009

(0.0013)

0.0417

(0.0209)

0.0236***

(0.0032)

-0.0025***

(0.0004)

-0.0006

(0.0006)

CUMD3
-0.0066

(0.0052)

0.0032

(0.0034)

0.0018

(0.052)

0.0269

(0.0204)

-0.0014

(0.0021)

0.0004

(0.002)

CUMD4
-0.0151***

(0.0027)

0.0029

(0.0018)

0.0573***

(0.0179)

0.0182

(0.0104)

0.0002

(0.0012)

-0.0019

(0.0019)

CUMD5
-0.0122***

(0.0019)

0.0062***

(0.0014)

0.0182

(0.0118)

0.0278***

(0.0083)

-0.001

(0.001)

-0.0007

(0.0018)
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Table 1.9 Robustness Check: Pricing of the individual liquidity betas excluding the mi-
crocap stocks

This table presents the estimated coefficients of the LCAPM using data from January 1963 to December
2014, excluding microcap stocks. I consider the following model

E(Ri,t −Rf,t) = ρ0 + λ1β1
i,t + λ2β2

i,t + λ3β3
i,t + λ4β4

i,t + λzrE(ZR 12i,t) + ρ1ln(MVi,t) + ρ2ln(B/Mi,t)

I report the estimates obtained using Fama-MacBeth methodology and correcting for EIV using third and

fourth order cumulant estimators. The standard errors are reported in parenthesis. Panel A reports the

coefficients obtained from estimating the LCAPM using portfolio betas, βk
p . For each stock i, the pre-

ranking beta, βk,pre
i,t , (k = 1, 2, 3, 4) of month t is estimated using the time-series of monthly returns and

innovations in illiquidity for the previous 60 months with respect to either the value-weighted market return

or the innovations in value-weighted market illiquidity. Stocks are then sorted into ten portfolios based on

βk,pre
i,t for month t. The post-ranking portfolio beta, βk

p , is then estimated for each of the ten equal-weighted

portfolios over the entire sample period using Equations 1.20-1.23. This βk
p is assigned to all stocks belonging

to portfolio p ranked on the basis of βk,pre
i,t . Panel B reports the coefficients obtained from estimating the

LCAPM using stock-level betas and then controlling for EIV explicitly using third and fourth order cumulant

estimators. For each stock i in month t, βk
i,t where k = (1,2,3,4), is computed from monthly returns and

innovations in illiquidity for stock i and for the value-weighted market portfolio, over months t− 60 to t− 1,

using Equations 1.20-1.23. ZR 12 is the previous month’s average zero-return proportion. Ln(MV) is the

log of the market capitalization and ln(B/M) is the log of the book-to-market ratio at the end of the previous

year. ** and *** denote significance at the 5% and 1% level respectively.

Panel A: LCAPM estimated with portfolio betas

β1p β2p β3p β4p ZR 12 Intercept ln(MV) ln(B/M)

Fama-MacBeth
0.0008

(0.0020)

0.0024

(0.0020)

0.0081

(0.0077)

-0.0013**

(0.0006)

0.0438

(0.0222)

0.0233***

(0.0031)

-0.0025***

(0.0004)

-0.0005

(0.0006)

Panel B: LCAPM estimated with stock-level betas

β1 β2 β3 β4 ZR 12 Intercept ln(MV) ln(B/M)

Fama-MacBeth
0.0008

(0.0021)

0.0008

(0.0074)

0.004

(0.0153)

-0.0015

(0.0008)

0.0398

(0.0206)

0.0229***

(0.0032)

-0.0025***

(0.0004)

-0.0006

(0.0006)

CUMD3
-0.0054

(0.0039)

-0.0118

(0.006)

0.0072

(0.019)

-0.0025

(0.0017)

0.0256

(0.0238)

0.0189

(0.0131)

-0.0007

(0.0014)

0.0001

(0.0017)

CUMD4
-0.0116***

(0.0019)

0.0015

(0.0022)

0.0553***

(0.0074)

-0.0027***

(0.0010)

0.0220**

(0.0098)

0.0258***

(0.0079)

-0.0009

(0.001)

0.0000

(0.0018)
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Table 1.10 Condensed LCAPM estimated with an equal-weighted market portfolio

This table presents the estimated coefficients of the LCAPM using data from January 1963 to December
2014 with the beta estimation based on an equal-weighted market portfolio. I consider the following model

E(Ri,t −Rf,t) = ρ0 + λ1β1
i,t + λnetβnet

i,t + λzrE(ZR 12i,t) + ρ1ln(MVi,t) + ρ2ln(B/Mi,t)

I report the estimates obtained using Fama-MacBeth methodology and correcting for EIV using third through

fifth order cumulant estimators. The standard errors are reported in parenthesis. Panel A reports the

coefficients obtained from estimating the LCAPM using portfolio betas, βk
p . For each stock i, the pre-

ranking beta, βk,pre
i,t , (k = 1, 2, 3, 4) of month t is estimated using the time-series of monthly returns and

innovations in illiquidity for the previous 60 months with respect to either the equal-weighted market return

or the innovations in equal-weighted market illiquidity. Stocks are then sorted into ten portfolios based on

βk,pre
i,t for month t. The post-ranking portfolio beta, βk

p , is then estimated for each of the ten equal-weighted

portfolios over the entire sample period using Equations 1.20-1.23. This βk
p is assigned to all stocks belonging

to portfolio p ranked on the basis of βk,pre
i,t . βnet

p = β2
p - β3

p - β4
p . Panel B reports the coefficients obtained

from estimating the LCAPM using stock-level betas and then controlling for EIV explicitly using third

through fifth order cumulant estimators. For each stock i in month t, βk
i,t where k = (1,2,3,4), is computed

from monthly returns and innovations in illiquidity for stock i and for the equal-weighted market portfolio,

over months t− 60 to t− 1, using Equations 1.20-1.23. βnet
i = β2

i - β3
i - β4

i . ZR 12 is the previous month’s

average zero-return proportion. Ln(MV) is the log of the market capitalization and ln(B/M) is the log of

the book-to-market ratio at the end of the previous year. ** and *** denote significance at the 5% and 1%

level respectively.

Panel A: Condensed LCAPM estimated with portfolio betas

β1p βnetp ZR 12 intercept ln(MV) ln(B/M)

Fama-MacBeth
0.0009

(0.0028)

0.0011

(0.0009)

0.0041

(0.0079)

0.0048**

(0.0023)

0.00004

(0.0003)

0.0006

(0.0004)

Panel B: Condensed LCAPM estimated with stock-level betas

β1 βnet ZR 12 Intercept ln(MV) ln(B/M)

Fama-MacBeth
-0.0005

(0.0024)

0.0007

(.0012)

0.0045

(0.0087)

0.0042

(0.0023)

0.0003

(0.0003)

0.0008**

(0.0004)

CUMD3
-0.0595***

(0.0219)

0.0204

(0.0294)

0.7897

(0.4954)

-0.2419***

(0.0081)

0.0321***

(0.0072)

-0.0159***

(0.0073)

CUMD4
-0.0441***

(0.0034)

0.0181***

(0.0047)

0.1171***

(0.0371)

0.0072

(0.0049)

0.0036

(0.0031)

-0.0034

(0.0033)

CUMD5
-0.0079***

(0.0022)

-0.0051

(0.0036)

0.0371

(0.0267)

0.0020

(0.0039)

0.0016**

(0.0008)

0.0024

(0.0015)
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Table 1.11 Pricing of the individual liquidity betas with an equal-weighted market portfolio

This table presents the estimated coefficients of the LCAPM using data from January 1963 to December
2014 with the beta estimation based on an equal-weighted market portfolio. I consider the following model

E(Ri,t −Rf,t) = ρ0 + λ1β1
i,t + λ2β2

i,t + λ3β3
i,t + λ4β4

i,t + λzrE(ZR 12i,t) + ρ1ln(MVi,t) + ρ2ln(B/Mi,t)

I report the estimates obtained using Fama-MacBeth methodology and correcting for EIV using third and

fourth order cumulant estimators. The standard errors are reported in parenthesis. Panel A reports the

coefficients obtained from estimating the LCAPM using portfolio betas, βk
p . For each stock i, the pre-

ranking beta, βk,pre
i,t , (k = 1, 2, 3, 4) of month t is estimated using the time-series of monthly returns and

innovations in illiquidity for the previous 60 months with respect to either the equal-weighted market return

or the innovations in equal-weighted market illiquidity. Stocks are then sorted into ten portfolios based on

βk,pre
i,t for month t. The post-ranking portfolio beta, βk

p , is then estimated for each of the ten equal-weighted

portfolios over the entire sample period using Equations 1.20-1.23. This βk
p is assigned to all stocks belonging

to portfolio p ranked on the basis of βk,pre
i,t . Panel B reports the coefficients obtained from estimating the

LCAPM using stock-level betas and then controlling for EIV explicitly using third and fourth order cumulant

estimators. For each stock i in month t, βk
i,t where k = (1,2,3,4), is computed from monthly returns and

innovations in illiquidity for stock i and for the equal-weighted market portfolio, over months t− 60 to t− 1,

using Equations 1.20-1.23. ZR 12 is the previous month’s average zero-return proportion. Ln(MV) is the

log of the market capitalization and ln(B/M) is the log of the book-to-market ratio at the end of the previous

year. ** and *** denote significance at the 5% and 1% level respectively.

Panel A: LCAPM estimated with portfolio betas

β1p β2p β3p β4p ZR 12 intercept ln(MV) ln(BM)

Fama-MacBeth
0.0016

(0.0029)

0.0022

(0.0029)

0.0241

(0.0134)

-0.0026***

(0.0006)

0.0061

(0.0079)

0.0049**

(0.0023)

-0.0000

(0.0003)

0.0006

(0.0004)

Panel B: LCAPM estimated with stock-level betas

β1 β2 β3 β4 ZR 12 Intercept ln(MV) ln(B/M)

Fama-MacBeth
0.0006

(0.0029)

-0.0041

(0.0100)

0.0239

(0.0217)

-0.0026***

(0.0008)

0.0062

(0.0084)

0.0039

(0.0022)

0.0002

(0.0002)

0.0007

(0.0004)

CUMD3
-0.0126***

(0.0051)

0.0188

(0.0109)

-0.0402***

(0.0163)

-0.0077***

(0.0031)

-0.0437

(0.0398)

0.0336***

(0.0039)

-0.0015

(0.0021)

0.0033***

(0.0014)

CUMD4
-0.0209***

(0.0021)

0.0015

(0.0043)

-0.0272***

(0.0079)

0.0001

(0.0017)

-0.0059

(0.0147)

0.0310***

(0.0039)

-0.0006

(0.0007)

0.0015

(0.0014)
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Chapter 2

Pricing of Idiosyncratic Volatility:
Levels and Differences

2.1 Introduction

The trade-off between risk and return has always been fundamental to asset pricing. The

capital asset pricing model of Sharpe (1964) and Lintner (1965) captures only the systematic

risk as the priced element. It assumes frictionless markets and is based on the supposition

that all investors hold the market portfolio in equilibrium. However, complete diversification

may not be the case in reality. Extensive literature has shown that since investors hold

undiversified portfolios, firm-specific risk is an important factor that affects investor returns.

Nevertheless, the relationship between idiosyncratic risk and average returns is controversial.

Merton (1987) and Malkiel and Xu (2004) relaxed the complete diversification assump-

tion, and developed models that predict that idiosyncratic risk is positively related to the

cross-section of expected returns. They assert that investors require a premium for bearing

idiosyncratic risk in the less diversified portfolios, which results in the pricing ability of

idiosyncratic volatility.

Contrary to these theoretical models, there is a second line of literature, which doc-

uments a negative relation between idiosyncratic volatility (IVOL) and the cross-section

of average returns. Ang et al. (2006), henceforth referred to as AHXZ (2006), show that

stocks with high idiosyncratic volatility earn low expected returns (henceforth referred to as

the AHXZ result). They report that the difference between the average returns earned by
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the highest and the lowest idiosyncratic volatility quintile portfolios is -1.06% per month.

Ang et al. (2009) provide evidence that this phenomenon holds true across 23 developed

international markets.

Han and Lesmond (2011) approach the “puzzle” posed by AHXZ (2006) from a different

perspective. They propose that microstructure influences on the estimation of idiosyncratic

volatility lead to the AHXZ result. They show that the bid-ask spread and the percentage

of zero returns biases the IVOL estimate in AHXZ (2006). After controlling for these biases,

they find that the pricing ability of idiosyncratic volatility is reduced to insignificance.

George and Hwang (2012), henceforth referred to as GH2012, investigate the weak-

nesses of the AHXZ result reported by other studies (Bali and Cakici (2008), Huang et al.

(2010), and Bali, Cakici and Whitelaw (2011)). They find that the weaknesses are mainly

due to the effect of January returns and the influence of penny stocks. After controlling for

these effects, the negative relation between high IVOL stocks and average returns holds true

over return horizons up to two years after portfolio formation. They propose that the high

IVOL stocks have low returns because disagreement among traders following news shocks

results in optimistic mispricing, which is later corrected.

On the other hand, Fu (2009) questions the construction of lagged idiosyncratic volatil-

ity used in AHXZ (2006). He asserts that idiosyncratic volatility is time-varying and the

one-month lagged (i.e., realized) value is not a good proxy for the expected value. So this

measure should not be used to study the relation between expected returns and idiosyn-

cratic risk. Fu (2009) employs forecasts of idiosyncratic volatility based on an exponential

generalized autoregressive conditional heteroskedasticity (EGARCH) model and finds that

the forecasted idiosyncratic volatility is positively related to the cross-section of expected

returns. He documents that a zero investment portfolio that is long in the 10% of the highest

and short in the 10% of the lowest forecasted idiosyncratic volatilities earns a significantly

high positive return of 1.75% per month. However he does not verify whether these results

hold true after controlling for the microstructure effects highlighted in Han and Lesmond

(2011).
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Liquidity may affect stock returns in several ways. It may directly affect returns via

the return equation, or it may indirectly affect returns by influencing the estimate of id-

iosyncratic volatility. This paper elucidates whether idiosyncratic volatility can explain the

cross-section of expected returns even after accounting for the liquidity biases embedded in

its estimate. In my work, I use the Fu (2009) measure of forecasted idiosyncratic volatility

(FIVOL) to explain expected returns. Univariate tests indicate that stock returns are pos-

itively related to idiosyncratic volatility. The relationship between idiosyncratic volatility

and bid-ask spread is shown to be positive and so is the relationship between idiosyn-

cratic volatility and the percentage of zero returns. The high correlation between spread

and idiosyncratic volatility leads us to question whether the relation between returns and

idiosyncratic volatility is driven by the bid-ask spreads. A Fama-MacBeth regression of

realized idiosyncratic volatility on the microstructure variables indicates that 38.99% of the

cross-sectional variation in realized idiosyncratic volatility can be explained by the spreads

and the zero returns. As opposed to this, the influence of the microstructure variables

on FIVOL is less pronounced and I find that these variables explain only 9.28% of the

cross-sectional variation in the FIVOL estimate.

I also study whether the bid-ask spreads and the percentage of zero returns directly

affect returns via the return equation. Fama-MacBeth cross-sectional regressions that ex-

amine the relationship between average returns and firm size, book-to-market ratio, idiosyn-

cratic volatility and the liquidity variables are employed. The results indicate that FIVOL

plays an important role in explaining returns, even after I account for the microstructure

variables. However these variables do not have significant explanatory power when used in

conjunction with FIVOL. The results are robust to sub-period analysis. The explanatory

power of FIVOL decreases when I exclude the penny stocks and the January returns from

the sample, but it is still positive and significant. This positive relation is robust to ac-

counting for the Pastor and Stambaugh (2003) systematic liquidity factor and the Carhart

momentum factor.

Interestingly, I find that the positive relation between FIVOL and expected returns

does not hold true for a longer return horizon. I decompose FIVOL at t, FIV OLt, into the
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forecasted IVOL at t− 1 and the “innovation”, and I study how these two measures affect

average returns. I find that the forecasted IVOL estimate at t − 1, FIV OLt−1, does not

have a significant relationship with expected returns. The “innovation”, Innov, which is a

manifestation of the return shock between t− 2 and t− 1, drives the positive relation.

To highlight the importance of these return shocks, I study the impact of changes in

FIVOL on the cross-section of expected returns. I find that a portfolio composed of stocks

that move from a low FIVOL quintile at t − 1 to the highest FIVOL quintile at t, earns a

very high return in month t. In contrast to this, a portfolio composed of stocks that fall

from a higher FIVOL quintile to the lowest FIVOL quintile earns a negative return. Hence,

the transitions in FIVOL quintile ranking are an extremely important factor in explaining

the relation between FIVOL and expected returns. Models in the existing literature, such

as Levy (1978) and Merton (1987), propose that the cross-sectional differences in levels

of idiosyncratic volatility are priced. However, contrary to these models, I find that the

transitions in idiosyncratic volatility drive the differences in the cross-section of expected

returns.

I find that FIVOL and lagged realized IVOL cannot be regarded as substitutes and

when used in conjunction, FIVOL increases the significance of the negative relation between

lagged IVOL and expected returns. This implies that these two measures of idiosyncratic

volatility convey different information. Experiments using a dummy variable to indicate a

negative or no transition in FIVOL quintile ranking show that the results in Fu (2009) are

mainly driven by the stocks that move from a lower FIVOL quintile to a higher one. A

dummy variable that indicates a negative transition in IVOL quintile ranking shows that

the result in AHXZ (2006) is driven by the stocks that move from a higher to a lower IVOL

quintile.

I then investigate the reason behind these return shocks that cause the sudden changes

in FIVOL and explore whether earnings surprises drive the pricing ability of idiosyncratic

volatility. I use dummy variables that indicate extreme standardized unexpected earnings

and find that the relation between FIVOL and expected returns is stronger for stocks

with large positive earnings surprises and weaker (or less positive) for stocks with negative
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earnings surprises. Furthermore, I find that FIVOL is positively related to expected returns

even after excluding the stocks that have extreme positive, negative or no earnings surprises.

These results show that though earnings surprises contribute to the positive relation between

FIVOL and the cross-section of expected returns, standardized unexpected earnings (SUE)

cannot completely explain this relation.

This paper also explores the relation between transitions in FIVOL ranking and ex-

pected returns for the stocks in the most positive and the most negative SUE quintile. After

controlling for the level of SUE, I find that these transitions still matter. The results show

that the pricing of the transitions in FIVOL ranking is not driven by earnings surprises.

The rest of the paper is organized as follows: Section 2.2 discusses the data and the em-

pirical methodology, and then estimates the one-month-ahead FIVOL using an EGARCH

model. In section 2.3, I explore the relationship between idiosyncratic volatility and the

microstructure variables. This section also investigates the relationship between idiosyn-

cratic volatility, liquidity and future returns. The effect of controlling for January returns

and penny stocks is also examined. Section 2.4 studies the transitions in FIVOL quintile

ranking and its effect on expected returns in the cross-section. Section 2.5 investigates the

role of standardized unexpected earnings in the relation between idiosyncratic volatility and

the cross-section of expected returns. Section 2.6 concludes.

2.2 Data and methodology

2.2.1 Data

The data consist of daily and monthly prices, returns and other firm characteristics of the

NYSE, Amex and NASDAQ companies covered by CRSP from January 1983 to December

2006. Price, return and volume data are obtained from CRSP. Financial information is

obtained from Compustat. The daily factor data for the Fama-French three factor model

are obtained from Kenneth French’s website.

The Trades and Quotes (TAQ), the Institute for the Study of Security Markets (ISSM),
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and the CRSP databases are used to estimate the proportional spreads. The ISSM database

is used for the trades and quotes data for all NYSE and Amex firms from January 1983 to

December 1992. I utilize the CRSP and the TAQ databases for NYSE, Amex and NASDAQ

firms from January 1993 to December 2006 to complete the sample.

Following Han and Lesmond (2011), henceforth referred to as HL2011, I define the

proportional spread as the ask quote minus the bid quote divided by the quote midpoint.

For each firm i, I average the daily proportional spread over each month to calculate the

monthly spread. The percentage of zero returns for each month t is also obtained from

CRSP. It is given by the number of zero return days in a month divided by the total

number of trading days in the same month.

2.2.2 Estimating Fama-French based idiosyncratic volatility

Idiosyncratic risk is defined as the risk that is endemic to a particular asset. It is independent

of the common movement of the market. Following AHXZ (2006), the idiosyncratic volatility

of each stock is estimated relative to the Fama-French three-factor model:

Rdit −Rdft = αit + βmkt,it(R
d
mkt,t −Rdft) + βsmb,itR

d
smb,t + βhml,itR

d
hml,t + εdit (2.1)

εdit ∼ N(0, ς2it)

where Rdit is the daily return for firm i on day d of month t, Rdmkt,t is the excess daily return

on a broad market portfolio, Rdsmb,t is the daily average return on the three small portfolios

minus the average return on the three big portfolios, Rdhml,t is the daily average return on

the two value portfolios minus the average return on the two growth portfolios, and Rdft

is the daily risk-free rate. For each stock i, I perform the time-series regression given by

Equation 2.1 within each month. The realized idiosyncratic volatility is then defined as the

standard deviation of the regression residuals or as
√

((V ar(εit))), and is denoted by IVOL.

AHXZ (2006) compute IV OLt from Equation (2.1) over a one month period from t−1

to t. At t, they construct value-weighted portfolios based on these idiosyncratic volatilities

and hold these portfolios for the next one month. They find that the difference in average
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raw returns between the highest and the lowest IVOL quintile portfolios in month t + 1 is

-1.06%. In their paper, they use the estimate of the one-month lagged realized idiosyncratic

volatility to find the relationship between idiosyncratic risk and expected returns. Fu (2009)

suggests that investors should be compensated for bearing risk in the same period. In

other words, if a stock has high idiosyncratic risk during month t + 1 (i.e., IV OL(t,t+1)

is high), then as a premium for bearing this risk, the returns earned by investors during

month t+ 1 (i.e., R(t,t+1)) should be high. He indicates that the research design in AHXZ

(2006) is flawed since IVOL computed over t − 1 to t (i.e., IV OL(t−1,t)), may not be a

good estimate of IV OL(t,t+1) and should not be used to draw an inference on the relation

between idiosyncratic risk and expected returns. He emphasizes the need to find a better

estimate for future idiosyncratic risk. The next section describes such a model that has

been used in the literature to forecast idiosyncratic volatility.

2.2.3 Forecasting idiosyncratic volatility

Researchers have often used various autoregressive conditional heteroskedasticity (ARCH)

models to estimate volatility. These autoregressive models capture the time-varying prop-

erty of idiosyncratic volatility and may be used to forecast out-of-sample idiosyncratic

volatility. Following Fu (2009) and Spiegel and Wang (2005), I use an EGARCH model

which is estimated as follows.

Idiosyncratic risk is estimated using the three Fama-French factors as proxies for sys-

tematic risk in monthly returns:

Rit −Rft = αi + βmkt,i(Rmkt,t −Rft) + βsmb,iRsmb,t + βhml,iRhml,t + εit (2.2)

where Rit is the return on stock i in month t and Rft is the monthly risk free rate. Rmkt,t,

Rsmb,t and Rhml,t are the excess monthly market return, the size premium and the value

premium, respectively. The idiosyncratic return, εit, is assumed to be drawn from a normal

distribution defined by εit ∼ (0, σ2it), where the conditional variance is described by the
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following EGARCH(p,q) process

ln σ2it = ai +

p∑
l=1

bi,l ln σ
2
i,t−l +

q∑
k=1

ci,k

{
Θ

(
εi,t−k
σi,t−k

)
+ γ

[∣∣∣∣ εi,t−kσi,t−k

∣∣∣∣−
√(

2

π

)]}
(2.3)

Investors incorporate the newly revealed surprises in returns into their estimates of the mean

and the variance of returns in the next period. This behavior of investors can be modeled

in the EGARCH and these models are well suited to accommodate any asymmetric effect

in the evolution of the volatility process. Thus, for γ, b > 0, large price changes are still

followed by large price changes, but with Θ < 0, this effect is accentuated for negative

price changes, a stylized feature of equity returns often referred to as the “leverage effect”.

Moreover unlike the GARCH models, no restrictions are imposed on the parameter values in

an EGARCH model to ensure positive values of variance. I use different EGARCH models

with values of p = 1, 2, 3 and q = 1, 2, 3 and the estimate generated by the model with the

maximum log-likelihood is chosen. Firms with less than 30 monthly returns are excluded

from the sample.

The conditional idiosyncratic volatility estimated from the EGARCH model is called

the forecasted idiosyncratic volatility and is denoted by FIV OL. It has a mean of 13.95%

and a standard deviation of 7.74%. The correlation between IV OL and FIV OL is 0.51

and statistically significant at the 1% level.

2.2.4 Systematic risk factors

Fama and French (1992) document that firm size and the ratio of the book value of equity

to the market value of equity are important characteristics that are related to expected

returns. I calculate the beta, the size and the book-to-market ratio of each firm based on

Fama and French (1992). To ensure that accounting variables are known before they are

used to explain the cross-section of stock returns, these characteristics are calculated in

June of each year, and used from July of that year until June of the following year.

In June of each year, I form 10 size portfolios based on the market capitalization of

all stocks traded on the NYSE. Then for each firm-month observation, the preceding 60
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months of returns is used to estimate the pre-ranking β based on the market model. Stocks

in each size decile are then assigned to 10 portfolios based on their pre-ranking β. The equal-

weighted monthly returns for the next 12 months of these 100 portfolios, which are formed

on the basis of size and pre-ranking β, are calculated. BETA is estimated as the sum of

the slopes in the time-series regression of the portfolio return on the contemporaneous and

the prior month’s value-weighted market returns. Each stock in a specific size-β portfolio

is assigned the BETA of that portfolio.

The market value of equity (ME), which is given by the product of the monthly closing

price of a stock and the number of shares outstanding, is used to define firm size. Book-to-

market equity (BE/ME) is defined as the ratio of the book value of equity in the month of

June to the market value of equity in the month of December. Since ME and BE/ME have

substantial skewness, they are transformed to their natural logarithm in the cross-sectional

tests.

2.2.5 Summary Statistics

Table 2.1 reports the summary statistics for the variables used in this paper. The numbers

reported are time-series averages of the cross sectional mean, standard deviation, median,

lower quartile, upper quartile and skewness of each variable. It is evident from the table

that firm size and book-to-market ratio display considerable skewness.

Table 2.2 reports time-series averages of the cross-sectional correlations between the

variables used in this paper. Correlation coefficients that are significant at the 1% level are

marked with ***. The correlation between monthly returns and the forecasted idiosyncratic

volatility, FIV OL, is 13% and is statistically significant at the 1% level. The correlation be-

tween monthly returns and the contemporaneous idiosyncratic volatility, IV OL, is 14% and

is also significant at the 1% level. The high correlation of 30% between spread and IV OL

implies that the contemporaneous idiosyncratic volatility may have an embedded compo-

nent of spread in its estimate. However, the correlation between the forecasted idiosyncratic

volatility and spread is much lower (8%, but still significant).
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The results in Table 2.2 also indicate that spread is inversely proportional to firm

size. In accordance with Fama and French (1992), I find that the book-to-market ratio is

positively correlated with returns, whereas the size of the firm is negatively correlated with

returns.

The results from these univariate tests suggest that the relation between FIV OLt and

Rt is positive. Furthermore, the relation between realized idiosyncratic volatility at time t,

IV OLt and Rt is also positive. The next section studies the relation between idiosyncratic

risk and expected returns after accounting for the various control variables.

2.3 Results

2.3.1 Relation between returns and idiosyncratic volatility

This section employs the Fama and MacBeth (1973) methodology to explore the relation be-

tween returns and idiosyncratic volatility. I estimate a model that is nested in the following

cross-sectional regression.

Ri,t = α0t + β1t BETAi,t−1 + β2t ln(ME)i,t−1 + β3t ln(BE/ME)i,t−1 + β4t FIV OLi,t

(2.4)

+ β5t IV OLi,t + β6t IV OLi,t−1 + ei,t

where i = 1, 2, ..., Nt and t = 1, 2, 3, ..., T . The time-series means and the Newey-West

(1987) t-statistics of the parameter estimates are reported in Table 2.3. Model 1 replicates

the main findings in Fama and French (1992) for this sample and indicates that firm size

and book-to-market ratio are important determinants of cross-sectional returns. Consistent

with the prior literature, the results find a flat relation between expected returns and beta,

a negative relation between returns and size and a positive relation between returns and

the book-to-market ratio.

Models 2 and 3 indicate that the forecasted idiosyncratic volatility as well as the
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contemporaneous idiosyncratic volatility is positively related to average returns in the cross-

section. Model 5, which includes the Fama-French explanatory variables and FIV OL, shows

that FIV OL is still positively priced and this model has a higher R2 (4.17%) than model

1. In model 6, I replace FIV OL with the lagged idiosyncratic volatility, IV OLt−1, and

find that the relationship between lagged idiosyncratic volatility and returns is negative and

has a low t-statistic. Model 7 indicates that the contemporaneous idiosyncratic volatility,

IV OLt, is positively related to returns and the coefficient is highly significant.

These results indicate that the relationship between contemporaneous idiosyncratic risk

and returns is positive. Han and Lesmond (2011) propose that the microstructure variables,

embodied by the incidence of zero returns and the proportional spread, bias the AHXZ

(2006) estimate of idiosyncratic volatility. They show that the negative relation between

IV OLt−1 and expected returns is driven by these liquidity biases. In the next section,

I explore the mechanism through which these variables affect the different idiosyncratic

volatility estimates used in this paper.

2.3.2 Relation between different measures of idiosyncratic volatility, bid-

ask spread and zero returns

Preliminary evidence from the correlation analysis indicates that there is a strong positive

correlation between contemporaneous idiosyncratic volatility and the liquidity components.

This section takes a more rigorous look at the issue. Panel A of Table 2.4 reports the coef-

ficients from a Fama-MacBeth based regression test of the contemporaneous idiosyncratic

volatility on the proportional spread and the percentage of zero returns. I estimate a model

that is nested in the following cross-sectional regression.

IV OLi,t = α0t+α1t %Zerosi,t+α2t Spreadi,t+α3t Spread
2
i,t+α4t %Zerosi,t∗Spreadi,t+υi,t

(2.5)

The coefficients reported in Table 2.4 are the mean coefficients estimated from the above

regression. From the results in this table it is evident that spread alone explains a very

significant portion (24%) of the cross-sectional variation in idiosyncratic volatility. The
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squared spread and the percentage of zero returns are also highly significant. Model 1,

which accounts for the spread, the squared spread, the percentage of zero returns and the

term representing the interaction of spread and zero returns explains 38.99% of the cross-

sectional variation in idiosyncratic volatility.

The initial results from Table 2.2 suggest that the correlations between the forecasted

idiosyncratic volatility and these microstructure variables are weaker than the correlations

between realized idiosyncratic volatility and these variables. To explore the relationship

between FIV OL and liquidity further, I carry out a Fama-MacBeth based regression test

of FIV OL on the liquidity components.

Here I consider two possibilities. FIV OLit is the forecasted idiosyncratic volatility for

stock i in month t, conditional on the information set available till month t−1. So we might

expect FIV OLit to be related to the bid-ask spread and the percentage of zero returns in

t− 1. I estimate the following cross-sectional regression,

FIV OLi,t = α0t + α1t%Zerosi,t−1 + α2tSpreadi,t−1 + α3tSpread
2
i,t−1

+α4t%Zerosi,t−1 ∗ Spreadi,t−1 + υi,t

(2.6)

The results in Panel B of Table 2.4 indicate that the lagged spread and lagged percentage

of zero returns do not explain a significant portion of the cross-sectional variation in the

estimate of forecasted idiosyncratic volatility (R2=9.28%).

The results in Panel A show that the microstructure variables explain a significant por-

tion of the cross-sectional variation in contemporaneous IVOL. But we know that contem-

poraneous IVOL is highly correlated with FIVOL. So we might expect that the forecasted

IVOL estimate in month t is related to the spread and the percentage of zero returns in t.

However, similar regressions of FIV OLt on the microstructure variables at t have an even

lower value of R2. These results indicate that FIV OL is a cleaner measure of idiosyncratic

volatility than the AHXZ (2006) measure.
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2.3.3 Relation between returns, idiosyncratic volatility and the liquidity

components

The previous results indicate that the forecasted idiosyncratic volatility is an important

factor in explaining returns. Moreover, Table 2.4 indicates that the proportional spread

and the percentage of zero returns explain a substantial portion of the realized idiosyncratic

volatility, but not of the forecasted volatility. Nonetheless, to have a better knowledge of

the interaction between idiosyncratic volatility and the microstructure variables, a model

that includes the liquidity components in the return equation is considered.

Jegadeesh (1990) documents that the first-order autocorrelation in monthly stock re-

turns for individual firms is negative and highly significant. Huang et al.(2009) show that

the AHXZ (2006) result is driven by an omitted variable bias because the authors do not

explicitly control for the return reversals. They report that the relationship between Rt

and IV OLt−1 is no longer significant after accounting for return reversals. Hence, I include

the previous month’s return to investigate whether the positive relation between FIVOL

and expected returns holds true after controlling for return reversals. I estimate different

specification models nested in the following cross-sectional regression

Ri,t = α0t + β2t ln(ME)i,t−1 + β3t ln(BE/ME)i,t−1 + β4t FIV OLi,t + β5t IV OLi,t−1

+ α1t %Zerosi,t + α2t Spreadi,t + α3t Ri,t−1 + ei,t

(2.7)

Table 2.5 reports the time-series averages of the slopes in these regressions. A comparison

of models 3 and 7 elucidates that the inclusion of Spread and %Zeros strengthens the

explanatory power of the lagged idiosyncratic volatility (the AHXZ measure). The t-statistic

for the coefficient on IV OLt−1 increases from -1.58 in model 3 to -2.55 in model 7. This

shows that the negative relation between lagged IV OL and returns is not caused by an

omitted variable bias due to the exclusion of these microstructure variables. I also find that

the percentage of zero returns is not significant in explaining returns in any of these models.

Next, I study the relation between FIV OLt and expected returns after controlling
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for Spread and %Zeros. Model 5 shows that the forecasted idiosyncratic volatility is still

positively related to the cross-section of average returns. The relationship between spread

and expected returns is not significant in this model. I find that the microstructure variables

lose their explanatory power when FIVOL is included in the regression 1.

To check the robustness of these results, I divide the sample into two sub-periods,

from January 1983 to December 1994 and from January 1995 to December 2006. HL2011

report a decline in the percentage of zero returns since the change in tick size in 1997 and a

marked decline in bid-ask spreads after decimalization in 2001. If microstructure variables

are related to expected returns, we would expect to find a significant difference between

the results during the two sub-periods. However, I find that the results (not reported) are

similar across these two sub-periods.

Models 5 and 7 show that both realized IV OL and FIV OL have a significant relation

with expected returns in the cross-section. Models 12 and 13 include both of these measures

of idiosyncratic risk simultaneously. Fama-MacBeth regressions of the expected returns on

IV OLt−1 and FIV OLt along with the other control variables show that both of these mea-

sures are statistically significant. However their effects on returns act in opposite directions.

The parameter estimates on IV OLt−1 and FIV OLt are bigger when they are included in

the same regression. The parameter estimate on FIVOL increases from 0 .14 (t=8.05) in

model 1 to 0.17(t=10.98) in model 12. Thus an increase in FIVOL results in an increase

in expected returns. The coefficient on lagged IVOL changes from -0.02 (t=-1.58) in model

3 to -0.06(t=-7.00). The results show that the significance of lagged IVOL increases con-

siderably when it is used in conjunction with FIVOL. Thus both FIVOL and lagged IVOL

1Pastor and Stambaugh (2003) find that a stock’s liquidity beta, which represents the sensitivity of stock
returns to innovations in aggregate liquidity, plays an important role in predicting returns. Stocks with
higher sensitivity to aggregate liquidity shocks, have higher expected returns. To examine whether the high
expected returns earned by high FIVOL stocks can be attributed to the premium demanded by low liquidity
betas, I estimate idiosyncratic risk based on a five-factor model that includes the momentum factor and the
Pastor and Stambaugh (2003) aggregate liquidity factor. The estimated conditional idiosyncratic volatility
from this model is denoted by FIV OL 5factor. The post-ranking alphas of value-weighted portfolios formed
on the basis of FIV OL 5factor are reported in Table A1 which shows that the positive return on the
high minus low FIVOL portfolio is not a result of the pricing of systematic liquidity risk. Fama-MacBeth
methodology is also employed to study the role of FIV OL 5factor in explaining returns. The results are
reported in Table A2. The parameter estimate on FIV OL 5factor is positive and significant. Overall,
the evidence strongly rejects the hypothesis that the pricing ability of forecasted idiosyncratic volatility is
attributable to the aggregate liquidity risk premium.
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have significant pricing ability. Previous literature has treated the AHXZ (2006) and the

Fu (2009) methodology of computing idiosyncratic volatility as two competing methods.

However, this test shows that IVOL and FIVOL are two distinct measures that convey

different information and affect expected returns in different ways.

GH2012 show that after controlling for penny stocks and January returns, the negative

relation in AHXZ (2006) holds true over return horizons up to two years. Thus it would be

interesting to explore whether the positive relation between FIV OL and returns is valid

for a longer horizon. Models 2, 6 and 10 in Table 2.5 indicate that FIV OLt−1 does not

play a significant role in explaining the expected returns in month t. This indicates that

the unexpected change in FIV OL is positively related to the next month’s returns and this

change is driving the strong positive relation between FIV OLt and returns. These results

imply that the main factor that causes the pricing ability of FIV OLt is the contribution

of the return shocks between t − 2 and t − 1 to the conditional variance estimate in the

EGARCH model.

To substantiate the premise that the new information between t− 2 and t− 1 causes

the positive relation between forecasted idiosyncratic volatility and returns, I decompose

FIV OLt into FIV OLt−1 (which is dependent on information till t−2) and the innovation,

Innov, which embodies the return shocks between t − 2 and t − 1. I find that Innov is

positively related to returns. This shows that though IV OLt−1 and Innovt are based on

the same time period, i.e., t− 2 to t− 1, they have opposite effects on the cross-section of

expected returns. This implies that the estimates of IV OL and FIV OL do not capture

the same information. The AHXZ measure of idiosyncratic volatility used in this paper is

calculated over daily data and is based on the volatility of daily returns over the past one

month. On the other hand, the forecasted idiosyncratic volatility, FIV OL, is calculated over

monthly returns and is dominated by the innovation, Innov, which is a squared monthly

return shock. I find that the risk premium associated with Innov induces the strong positive

relation in the Fu (2009) results.
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2.3.4 Controlling for January and penny stocks

Tax-loss selling in the month of December causes a drop in prices that results in high returns

in the month of January. GH2012 show that these high January returns conceal the true

relationship between IV OL and the cross-section of expected returns. They report that an

equally weighted portfolio consisting of stocks that belong to the highest IV OL quintile

earns a negative return when the January returns are excluded. It would be interesting to

investigate whether the positive relation between FIV OL or Innov and expected returns is

driven by the January effect. Table A3 reports the results of the Fama-Macbeth regression

given in Equation 2.7. I find that the positive relation is robust to controlling for January

returns. I find that the exclusion of January weakens the explanatory power of the mi-

crostructure variables. The explanatory power of FIV OLt attenuates once we control for

January, but it still remains highly significant.

GH2012 highlight the role of penny stocks in concealing the true relation between

idiosyncratic volatility and returns. They propose that the high illiquidity of these stocks

adds noise and biases the IVOL rankings and measured returns. Following their method, I

exclude stocks whose prices are less than $5 at the end of the portfolio formation month.

I also exclude the January returns and notice a substantial change in the results. These

results are shown in Table 2.6.

I find that in Model 1, the parameter estimate on FIV OLt drastically reduces from

0.14 in Table 2.5 to 0.04 and the t-statistic reduces to 2.61. The coefficient on FIV OLt−1

becomes more negative and highly significant (t-statistic=-2.84). Following the exclusion

of January and penny stocks, the parameter estimate on spread becomes negative, but

still remains insignificant. However, the striking result in this table is that the coefficient

estimate on Innov still remains positive and highly significant. The drastic changes in the

coefficient estimates that is observed for FIV OLt and IV OLt−1 is not observed for Innov.

This shows that the pricing ability of Innov is not driven by a subset of stocks that has

special characteristics or by the returns in a specific month.
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2.4 Changes in idiosyncratic volatility and its effect on re-

turns

The results in Tables 2.5 and 2.6 suggest that Innov, which is the contribution of the

information available between t − 2 and t − 1 to the FIV OLt estimate, plays a crucial

role in driving the positive relation between forecasted idiosyncratic volatility and expected

returns. Innovt represents the difference between FIV OLt−1 and FIV OLt and hence

it denotes the change in FIV OL between the two successive months. Thus it would be

interesting to study whether the change in a firm’s FIVOL quintile ranking explains the

high returns earned by stocks in high FIVOL portfolios.

Saryal (2009) shows that the change in a firm’s realized idiosyncratic volatility ranking

can explain AHXZ’s puzzling result. She finds that the firms that move from a low IVOL

quintile to a higher IVOL quintile earn very high positive returns. The firms that move

from a high IVOL quintile to a lower IVOL quintile earn negative returns. For stocks that

have a highly persistent level of IVOL and remain in the same IVOL quintile, a positive

relation exists between IVOL and future returns. However, she uses the realized IVOL in

her paper and the changes in IVOL quintile ranking are only available ex-post.

In this section, I study the changes in a firm’s FIVOL quintile ranking between two

successive periods. For each month t, I sort stocks on the basis of their FIV OLt. I define a

variable called Migrate which indicates the movement of stocks from one FIVOL quintile

to another, and Migrate(t) equals a firm’s FIVOL quintile rank at t minus its FIVOL

quintile rank at t − 1. Accordingly, Migrate=4 indicates that the firm was in the lowest

FIVOL quintile in month t− 1 and is in the highest FIVOL quintile in month t. Similarly,

Migrate=-4 indicates a jump from the highest FIVOL quintile to the lowest FIVOL quintile.

Migrate=0 indicates that the firm is in the same FIVOL quintile in month t− 1 and t.

Table 2.7 shows the distribution of the Migrate variable. We see that 82.8% of all

Quintile 1 firms stay in the same quintile, whereas 71.8% of all Quintile 5 firms stay in

the same quintile. On an average across all quintiles, 68.7% of stocks remain in the same

FIVOL quintile between successive time periods.
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I form 25 equal-weighted portfolios based on the FIVOL quintile in month t− 1 and t.

Next, I study the firms that are in the highest quintile portfolio in month t. Table 2.7 shows

that only 28.2% of the firms in the highest FIVOL quintile in month t have moved from

lower quintile portfolios. However, these stocks earn significant positive returns. Unadjusted

monthly returns vary across the Migrate portfolios. The Migrate=4 portfolio earns an

average monthly return of 6.66%, whereas the Migrate=0 portfolio, which is composed of

firms that are persistently in the highest FIVOL quintile, earns an average return of 1.64%.

The positive CAPM and FF-3 factor alphas of the stocks in the highest FIVOL quintile

are an outcome of the high alphas earned by the stocks that move from the lower FIVOL

quintiles to Quintile 5. The Migrate=4 portfolio earns a CAPM alpha of 5.62% (t=6.76)

and a FF-3 factor alpha of 5.39% (t=6.67). The CAPM alpha of the Migrate=0 portfolio

is 0.67% and is insignificant, and the FF-3 factor alpha of this portfolio is 0.82%. This

shows that the positive returns for stocks in the highest FIVOL quintile are driven by the

high positive returns earned by stocks that have moved from a lower FIVOL quintile to this

quintile.

The results are different when we consider the firms that are in the lowest quintile

portfolio in month t. A transition from a higher FIVOL quintile to the lowest FIVOL

quintile indicates a decrease in uncertainty about the firm. Table 2.7 shows that only 17.2%

of the firms in the lowest FIVOL quintile in month t have moved from a higher quintile.

The stocks in the lowest FIVOL quintile have a greater tendency to remain in the same

quintile in the successive period than the stocks in the highest FIVOL quintile. In other

words, persistent FIVOL quintile ranking is more common in the stocks in the lowest FIVOL

quintile than in the stocks in the higher FIVOL quintiles. Table 2.9 reports the returns

earned by the portfolios of stocks that are in the lowest FIVOL quintile in month t. The

Migrate=-4 portfolio, which consists of firms that have moved from the highest FIVOL

quintile in month t − 1 to the lowest FIVOL quintile in month t, earns a return of -1.98%

in month t. The CAPM alpha of this portfolio is -2.64% (t=-9.14) and the FF-3 factor

alpha is -2.71% (t=-10.66 ). On the contrary, Migrate=0 portfolio, which is composed of

stocks that are in the lowest FIVOL quintile in month t − 1 and t, earns an insignificant
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FF-3 factor alpha. Table 2.9 shows that the overall negative returns earned by stocks in

the lowest FIVOL quintile is a consequence of the significant negative returns earned by the

stocks that move from a higher FIVOL quintile to this quintile.

In general, the results in this section document that the pricing ability of forecasted

idiosyncratic volatility is driven by stocks that have a transition in their FIVOL quintile

ranking between month t− 1 and t.

2.4.1 Changes in IVOL ranking and expected returns

In this section, I study the relationship between changes in IVOL ranking and expected

returns. In each month t, I sort stocks into quintiles based on IV OLt. I define a variable

called Migrate IV OL which indicates the movement of a firm from one IVOL quintile to

another, and Migrate IV OL(t) equals the firm’s IVOL quintile rank at t minus its IVOL

quintile rank at t− 1. Similar to the previous section, I form 25 portfolios based on IVOL

ranking in month t− 1 and t. Table 2.10 reports the returns for stocks that have migrated

from the highest IVOL quintile to lower quintiles. The Migrate IV OL=-4 portfolio consists

of stocks that belong to Quintile 5 in month t − 1 and Quintile 1 in month t. These firms

earn a negative return of -0.33% (t=-2.68) and a FF-3 factor alpha of -0.55% (t=-4.78). I

find that all portfolios with negative Migrate IV OL earn significant negative returns. Thus

the stocks that fall from the highest IVOL quintile in month t− 1 to lower IVOL quintiles

in month t earn significant negative returns. The Migrate IV OL=0 portfolio, composed

of stocks that consistently belong to the highest IVOL quintile, earns a positive return of

2.62%.

Table 2.11 reports the returns for the portfolios of stocks that have migrated from the

lowest IVOL quintile to higher IVOL quintiles. I find that the Migrate IV OL=4 portfolio

earns a positive FF-3 factor alpha of 4.79% (t=5.55). Thus the stocks that move from the

lowest IVOL quintile to the highest IVOL quintile earn very high returns. On the other

hand, the stocks that consistently remain in the lowest IVOL quintile earn insignificant

returns. These tables show that the pricing of the negative transitions in IVOL quintile
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ranking give rise to the overall negative relation between IV OLt−1 and the cross-section of

expected returns.

2.4.2 Explanatory power of migration dummy variables

The previous section shows that the lagged realized IVOL and the forecasted IVOL are

driven by different components. Saryal (2009) shows that the movement of stocks from a

low IVOL quintile to a high IVOL quintile is often accompanied by a large positive return.

So when we relate the large positive returns to the IVOL of the preceding month (the

lagged realized IVOL in AHXZ) , the low IVOL stocks seem to earn high returns in the

cross-section.

When stocks are ranked by FIVOL, the stocks that have a jump in FIVOL and move

from the lower FIVOL quintiles to the highest quintile earn high positive returns. A shock

to the idiosyncratic return may cause a jump in FIVOL, which results in this positive

return. It is this change in FIVOL that results in the overall positive relationship in the

Fama-MacBeth based tests reported in Table 2.3. To study whether the results are driven

solely by the stocks that move from the lower FIVOL quintiles to the higher quintiles, I

employ cross-sectional regressions with dummy variables that indicate changes in FIVOL

and IVOL rankings. The cross-sectional regression is described by

Ri,t = α0t + β2t ln(ME)i,t−1 + β3t ln(BE/ME)i,t−1 + β4t MIG FIV OLi,t ∗ FIV OLi,t

+ β5t FIV OLi,t + β6t MIG IV OLi,t ∗ IV OLi,t−1 + β7t IV OLi,t−1 + β8t Ri,t−1 + ei,t

(2.8)

where Ri,t is the return to stock i in month t, MIG FIV OL is the FIVOL migration

dummy that takes a value of 1 if the stock moves from a high FIVOL quintile to a low

FIVOL quintile or remains in the same FIVOL quintile between month t−1 and t, and zero

otherwise. MIG IV OL is the IVOL migration dummy that takes a value of 1 if the stock

moves from a high IVOL quintile at t− 1 to a low IVOL quintile at t,and 0 otherwise. The

results are shown in Table 2.12.
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The specific contribution of stocks, which have a fall or no change in their FIVOL

quintile ranking, to the overall relationship between FIVOL and expected returns can be

identified by the coefficient estimates on the interaction term MIG FIV OL∗FIV OL. The

coefficient on FIV OLt gives the relation between FIVOL and expected returns for the other

subset of stocks, which have MIG FIV OL=0 . A coefficient of 0.19 (t=11.61) shows that

for these stocks that move from a low FIVOL quintile at t − 1 to a high FIVOL quintile

at t, FIVOL is positively related to the cross-section of expected returns. A coefficient of

-0.06 (t=-7.19) on MIG FIV OL ∗FIV OL shows that for stocks which have a high to low

FIVOL transition or no transition, the relationship between FIVOL and expected returns

is less positive than the other stocks.

Similarly, the contribution of the stocks, which have a fall in their IVOL quintile

ranking, to the overall relationship between IVOL and expected returns can be identified

by the coefficient estimates on MIG IV OL∗IV OL. The coefficient of -0.01 (t=0.73) shows

that for stocks that have a rise or no change IVOL ranking, there is no relationship between

IVOL and expected returns. The negative and highly significant coefficient of -0.13 on

MIG IV OL∗ IV OL indicates that the negative relation between realized IVOL and future

returns is completely driven by the high to low transition in IVOL quintile ranking.

The results in Table 2.12 show that the transitions in idiosyncratic volatility ranking

play a pivotal role in the relationship between idiosyncratic risk and expected returns.

2.5 Information Content of idiosyncratic Volatility

The results in Tables 2.8, 2.9 and 2.12 show that the positive relation between FIVOL and

future stock returns is a result of the changes in FIVOL quintile ranking from one month to

another. Section 2.3.3 shows that the idiosyncratic return shocks in the most recent month

drive this relation. This section seeks to throw light on the underlying reason behind these

return shocks. I investigate whether earnings surprises can explain the relation between

FIVOL and expected returns.
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Earnings are an important element of capital markets and may drive the changes

in idiosyncratic volatility. It has been shown that stock prices respond to unanticipated

changes in earnings, and there is a significant correlation between earnings surprises and

future stock returns. In an efficient market, the information from a firm’s current earnings

should be quickly incorporated into its stock price. However, Ball and Brown (1968), Foster

et al. (1984) and Bernard and Thomas (1989) show that stock prices continue to drift in

the direction of an earnings surprise for three quarters. This concept of post-earnings-

announcement-drift (PEAD) is consistent with the behavioral models in which prices react

slowly to public news. The exisiting literature has shown that stock prices for individual

firms react positively to earnings news but require several quarters to fully reflect the

information contained in the earnings.

The stocks with highest unexpected earnings outperform the stocks with the lowest

unexpected earnings, with the abnormal returns concentrated around earnings announce-

ments. Frazzini and Lamont (2007) show that stocks earn higher returns during months

when earnings are announced than during non-announcement months. Barber, George,

Lehavy and Trueman (2013) document that there is a spike in IVOL during the announce-

ment window that may be caused by the firm-specific information disclosed through earn-

ings. They contend that the uncertainty over the nature of information to be revealed

drives the higher returns in the earnings announcement months. Thus I also include an

announcement dummy, which accounts for the returns due to earnings announcement in a

certain month.

Standardized unexpected earnings measure the information content of quarterly earn-

ings. Unexpected earnings for a company in quarter q is the difference between the most

recently announced earnings and expected earnings which is given by the earnings in the

same quarter of the previous year. The standardized unexpected earnings (SUE) for a stock

is given by the unexpected earnings divided by the standard deviation of the quarterly un-

expected earnings over the last two years.

It is interesting to study whether the relation between FIVOL and expected returns is

driven by earnings surprises. I seek to answer this question using two approaches. First, I
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use Fama-MacBeth cross-sectional regressions to study the effect of positive and negative

earnings surprises on the relation between FIVOL and expected returns. Next, I examine

the relation between the transitions in FIVOL ranking and expected returns after controlling

for SUE.

2.5.1 Fama-MacBeth regressions with dummy variables

In this section, I study the relation between FIVOL and average returns specifically for the

stocks with extreme SUE and use dummy variables to account for positive, negative and

negligible earnings surprises. The main cross-sectional regression specification I work with

is given by

Ri,t = α0t + β2t ln(ME)i,t−1 + β3t ln(BE/ME)i,t−1 + β4t FIV OLi,t

+ β7t HIGH SUEi,t−1 ∗ FIV OLi,t + β8t LOW SUEi,t−1 ∗ FIV OLi,t

+ β9t POS SUEi,t−1 ∗ FIV OLi,t + β10t NEG SUEi,t−1 ∗ FIV OLi,t

+ β11t ANNOUNi,t−1 + ei,t

(2.9)

where Ri,t is the return to stock i in month t, HIGH SUEi,t−1(LOW SUEi,t−1) is a dummy

variable that equals one if the stock i is among the top (bottom) 20% of stocks in month

t − 1 when ranked by the absolute value of standardized unexpected earnings. Similarly,

POS SUEi,t−1 (NEG SUEi,t−1) equals one if the stock i is among the top (bottom) 20% of

stocks in month t−1 when ranked by the actual value of standardized unexpected earnings.

ANNONi,t−1 equals one if there is an earnings announcement in month t− 1.

Positive as well as negative earnings surprises can be interpreted as information shocks,

which may drive the relation between expected returns and FIVOL. To control for both

positive and negative news, I use the absolute value of SUE in Model 1 in Table 2.13.

The relation between FIVOL and expected returns for the stocks belonging to the highest

quintile based on the absolute value of SUE is given by (β4 + β7) and the relation between

FIVOL and expected returns for the stocks belonging to the three middle quintiles based

on absolute(SUE) is given by β4. Thus the positive coefficient of 0.05 (t-statistic=4.8) on
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the interaction term shows that for stocks with high absolute SUE, the positive relation

between FIVOL and expected returns is stronger.

On the other hand, for stocks belonging to the lowest absolute SUE quintile, the

negative coefficient on LOW SUE ∗ FIV OL indicates that the relation between FIVOL

and returns is weaker or less positive than for the other firms. The coefficient on this

interaction term highlights the effect of no news and hence no information shocks on the

relation between FIVOL and expected returns. The difference between the coefficients on

these two interaction terms shows that extreme earnings surprises drive a part of the positive

relation between FIVOL and returns. The coefficient of 0.09 (t=7.59) on FIV OL shows

that the relationship between FIVOL and returns is significant even after we exclude the

stocks with extreme earnings surprises and no earnings surprises. These results show that

though standardized unexpected earnings drive a part of the relation between FIVOL and

expected returns, they do not completely explain the positive relationship.

In Model 2, I separate the effects of negative and positive earnings surprises and

use dummies NEG SUEi,t−1 and POS SUEi,t−1 to determine the effect of negative and

positive news on the pricing ability of FIVOL. I also include the ANNOUN dummy

to account for an earnings announcement in the previous month. The interaction term,

POS SUE ∗ FIV OL has a coefficient of 0.15 (t=14.41), which shows that stocks belong-

ing to the highest SUE quintile have a stronger positive relation between FIVOL and ex-

pected returns. This may be attributable to the PEAD phenomenon, which results in

positive returns following positive earnings surprises. On the other hand, the coefficient

on NEG SUE ∗ FIV OL suggests that stocks belonging to the lowest SUE quintile have a

more negative relation between FIVOL and expected returns than the other stocks. I also

find that stocks that belong to the lowest absolute(SUE) quintile, which represents stocks

that have little or no earnings surprises, have a more negative relation between FIVOL and

returns than other stocks. The coefficient of 0.11 (t=8.38) on FIV OL in Model 2 high-

lights that FIVOL is positively related to expected returns even after excluding the effects

of stocks that have extreme positive, extreme negative and no earnings surprises. This

shows that the pricing ability of FIVOL is not completely induced by stocks with extreme
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earnings surprises.

2.5.2 Standardized Earnings Surprises and Migration

The results from Table 2.13 with POS SUE and NEG SUE dummies show that the stocks

in the highest SUE quintile have a stronger positive relation between FIVOL and expected

returns and stocks in the lowest SUE quintile have a less positive relation between FIVOL

and expected returns, in the cross-section. It has been shown in Section 2.4 that the

transitions in FIVOL quintile ranking, represented by the Migrate variable, are the main

reason behind the positive relationship between FIVOL and the cross-section of expected

returns. In this section, I focus on the stocks that belong to the highest and the lowest SUE

quintiles.

Panel A of Table 2.14 gives the distribution of the average raw returns, the CAPM

alphas and the FF-3 factor alphas with respect to Migrate for stocks belonging to the

highest SUE quintile. A FF-3 factor alpha of 7.30% is earned by a portfolio composed of

stocks that belong to the highest SUE quintile at t − 1 and move from the lowest FIVOL

quintile at t − 1 to the highest FIVOL quintile at t. This is greater than the FF-3 factor

alpha of 5.39% that is earned by the portfolio of all stocks that move from the lowest FIVOL

quintile to the highest FIVOL quintile. The FF-3 factor alpha for stocks in the highest SUE

quintile that move from the highest FIVOL quintile to the lowest FIVOL quintile is -1.46%

. This is again higher than the FF-3 factor alpha for all stocks with Migrate=-4 given in

Table 2.9. These differences in abnormal returns are attributable to the positive relation

between positive earnings surprises and future returns. However, this table shows that even

after controlling for the level of SUE, the transitions in FIVOL quintile ranking are still

priced.

Panel B of Table 2.14 gives the returns for stocks in the lowest SUE quintile. I find

that the abnormal return for the portfolio of stocks that move from the highest FIVOL

quintile to the lowest FIVOL quintile is -2.38%. Thus the negative return earned by the

portfolio of stocks that have a decrease in FIVOL ranking is lower for stocks with negative
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earnings surprises than for stocks with positive earnings surprises. Similarly, the positive

return earned by the portfolio of stocks with Migrate=4 is higher for stocks with positive

earnings surprises than for stocks with negative earnings surprises.

However, the relation between Migrate and expected returns is similar to that in

Tables 2.8 and 2.9. The results in Table 2.14 show that even after controlling for the

level of standardized unexpected earnings, the transitions in FIVOL ranking still drive the

relation between idiosyncratic volatility and the cross-section of expected returns.

Table 2.15 gives the returns for stocks in the lowest quintile ranked by the absolute

value of SUE. These stocks have lower information shocks related to earnings surprises and

if the relation between FIVOL and returns was completely driven by earnings surprises,

then we would expect to find no relation between Migrate and expected returns for stocks

in this quintile. However, I find that the FF-3 factor alpha earned by the Migrate=4

portfolio is 4.64% and significant at the 5% level. This is smaller than the FF-3 factor

alpha of 7.30% that was earned by this Migrate portfolio for stocks in the highest positive

SUE quintile. This shows that earnings surprises explain a part of the returns earned by the

portfolio of stocks that have extreme transitions in FIVOL ranking. However, these results

document that even for the subset of stocks that have minimal or no earnings surprises, there

are substantial differences between the returns earned by the different Migrate portfolios.

Therefore, even in the absence of unexpected earnings, transitions in FIVOL ranking still

result in the pricing ability of FIVOL.

2.6 Conclusion

In this paper, I study the relation between idiosyncratic volatility and expected returns.

I document that the pricing ability of forecasted idiosyncratic volatility is not dependent

on the embedded liquidity costs. Moreover, the microstructure variables, embodied by the

bid-ask spread and the percentage of zero returns, lose their explanatory power when used

in conjunction with FIVOL.
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Earlier papers have regarded the AHXZ (2006) and the Fu (2009) measures of idiosyn-

cratic volatility as substitutes or as competing measures. However, I find that the inclusion

of FIVOL increases the significance of the relation between lagged IVOL and expected

returns. This indicates that the two measures do not convey the same information.

I show that the positive relation between FIVOL and the cross-section of expected

returns does not hold for return horizons longer than one month. I also find that the

high positive returns earned by stocks that move from a low FIVOL quintile to a higher

FIVOL quintile drive the positive relation between FIVOL and expected returns. Cross-

sectional regressions using dummy variables for transitions in FIVOL quintiles demonstrate

the importance of these low to high transitions in FIVOL.

I also study the effect of earnings surprises on the relation between FIVOL and expected

returns. I find that even after controlling for the level of standardized unexpected earnings,

the low to high transitions in FIVOL ranking still drive the positive relation between FIVOL

and expected returns.

Theoretical models in the existing literature, such as Levy (1978) and Merton (1987),

assert that the cross-sectional differences in levels of idiosyncratic volatility are priced.

However, in this paper, I show that the transitions drive the differences in expected returns.
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Table 2.1 Summary statistics

This table presents the summary statistics. Return is the monthly raw return reported as a percentage.

BETA, ME and BE/ME are estimated as in Fama and French (1992). BETA is the portfolio beta

estimated from the full period using 100 size and pre-ranking beta portfolios. The market value of equity,

ME, is the product of the monthly closing price and the number of shares outstanding in June. The book-

to-market equity, BE/ME is defined by the ratio of the book value of equity in the month of June to the

market value of equity in the month of December. For estimating the idiosyncratic volatility, IV OL, the

excess daily returns of each individual stock are regressed on the Fama-French three factors: Rm−Rf , SMB,

and HML on a monthly basis. The monthly idiosyncratic volatility of the stock is defined as the standard

deviation of the regression residuals. FIV OL is the one-month ahead forecasted idiosyncratic volatility,

estimated by an EGARCH model. The daily proportional spread is measured by the ask quote minus the

bid quote divided by the quote midpoint. Spread is the average of the daily proportional spread over each

month. The percentage of zero returns, %Zeros is the fraction of trading days in a month that experience

no price movement from the prior-end-of-day price estimated using CRSP daily stock returns.

Variables Mean Std. dev. Median Q1 Q3 Skew

Return(%) 1.44 19.09 0 -7.1 7.76 5.56

IV OL 14.55 14.36 9.78 5.82 16.98 8.22

FIV OL 13.95 7.74 10.05 6.32 15.92 10.44

BETA 1.32 0.34 1.26 1.06 1.56 0.2

ME 1177.71 8299.05 70.92 17.33 367.83 25.67

BE/ME 3.073 52.39 0.71 0.38 1.27 65.06

Ln(ME) 4.75 2.15 4.57 3.17 6.2 0.29

Ln(BE/ME) -0.45 1.11 -0.45 -1.04 0.08 0.98

Spread 0.04 0.14 0.02 0.01 0.04 179.84

%Zeros 0.16 0.15 0.13 0.05 0.24 1.23
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Table 2.2 Cross-sectional correlations

This table presents the time-series averages of the cross-sectional Pearson correlation coefficients. LIV OL

is the lagged IVOL. The other variables are defined in Table I. The correlation coefficients followed by ***

are significant at the 1% level based on their time-series standard error.

Returns IV OL FIV OL LIV OL ln(ME) ln(BE/ME) Spread % Zeros

Returns 1.00*** 0.14*** 0.13*** 0.02*** -0.02*** 0.02*** 0.02*** 0.01***

IV OL 1.00*** 0.51*** 0.67*** -0.42*** -0.02*** 0.30*** 0.15***

FIV OL 1.00*** 0.50*** -0.30*** -0.09*** 0.08*** 0.02***

LIV OL 1.00*** -0.39*** -0.02*** 0.27*** 0.20***

ln(ME) 1.00*** -0.30*** -0.25*** -0.46***

ln(BE/ME) 1.00*** 0.06*** 0.13***

Spread 1.00*** 0.18***
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Table 2.3 Fama-MacBeth regressions of stock returns on idiosyncratic volatility and other
firm characteristics

The table shows the time-series means of the slopes in cross-sectional regressions using the Fama and Mac-
Beth(1973) methodology. For each month t, cross-sectional regressions of the following form are estimated

Ri,t = α0 + β1t BETAi,t−1 + β2t ln(ME)i,t−1 + β3t ln(BE/ME)i,t−1 + β4t FIV OLi,t

+ β5t IV OLi,t + β6t IV OLi,t−1 + ei,t

The dependent variable (Ri,t) is the percentage monthly return between t − 1 and t. FIV OLt is the one-

month-ahead expected idiosyncratic volatility estimated by an EGARCH model. IV OLt−1 is the one-month

lagged idiosyncratic volatility. BETA, ME, and BE/ME are estimated as in Fama and French (1992) .The

last column reports the average R2 of the cross-sectional regressions. Newey and West t-statistics are

indicated in parentheses. *, ** and *** denote significance at the 10%, 5% and 1% level respectively.

Model BETA ln(ME) ln(BE/ME) FIV OLt IV OLt−1 IV OLt R2

1 -0.08 -0.14** 0.15* 3.04%
(-0.25) (-2.42) (2.09)

2 0.12*** 2.83%
(7.01)

3 0.18*** 5.30%
(8.86)

4 -0.01 1.70%
(-0.71)

5 0.18*** 0.41*** 0.14*** 4.17%
(4.14) (6.07) (8.05)

6 -0.13** 0.14 -0.02 2.94%
(-2.55) (1.84) (-1.58)

7 0.43*** 0.41*** 0.23*** 7.66%
(9.21) (7.36) (11.43)
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Table 2.4 Idiosyncratic volatility and liquidity regressions

This table reports the Fama-MacBeth regression results of idiosyncratic volatility on the influences of mi-

crostructure variables, embodied by the proportional bid-ask spread and the percentage of zero returns.

To evaluate the relation of each microstructure variable with idiosyncratic volatility, a number of separate

regression specifications are used. To account for the first- and the second-order influence of spreads on the

IVOL estimate, I include the spread and the squared spread in the model. Since the percentage of zero re-

turns may be a proxy for spreads, an interaction term which accounts for the joint effect of spreads and zeros

returns is included. In Panel A, the idiosyncratic volatility estimate is IV OLit, the standard deviation of

residuals from a time-series regression of stock returns on the Fama-French three factors. The microstructure

variables and the IV OLit estimate are contemporaneous. In panel B, the idiosyncratic volatility estimate is

FIV OLit, the one-month ahead forecasted idiosyncratic volatility estimated by an EGARCH model. These

results document the relation between FIV OLit and liquidity variables at t − 1. Newey and West(1987)

t-statistics are indicated in parentheses. ** and *** denote significance at the 5% and 1% level respectively.

Panel A: Relation between IV OLit and liquidity variables at t

Model Intercept Spread %Zeros Squared Spread %Zeros ∗ Spread R2 (%)

1 7.84*** 221.06*** -10.21*** -266.12*** -34.76*** 38.99
(41.68) (28.07) (-15.51) (-8.07) (-3.32)

2
8.74*** 151.23*** -6.03*** -42.55***

32.2
(47.45) (17.79) (-10.84) (-3.04)

3
8.39*** 213.63*** -13.05*** -289.3***

36.64
(45.76) (30.51) (-14.87) (-9.56)

4
9.33*** 131.64*** -7.12***

26.9
(45.88) (21.74) (-7.47)

5
7.2*** 188.2*** -239.5***

33.37
(42.3) (31.02) (-9.4)

6 8.92*** 120.23*** 24.07
(53.41) (22.12)

Panel B: Relation between FIV OLit and liquidity variables at t− 1

Model Intercept Spread %Zeros Squaredspread %Zeros ∗ spread R2

1 9.32*** 141.95*** -2.45 -312.85*** 24.42 9.28
(18.29) (7.6) (-1.15) (-8.11) (0.82)

2 9.78*** 135.94*** -3.33 -289.19*** 8.78
(22.1) (8.96) (-1.10) (-8.34)

3 9.26*** 128.84*** -276.97*** 7.9
(27.79) (7.87) (-8.09)
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Table 2.5 Fama-MacBeth regressions of stock returns on idiosyncratic volatility, liquidity and other control variables

This table documents the time-series means of the slopes in cross-sectional regressions using the Fama and MacBeth (1973) methodology. The dependent variable,

R(t−1,t) is the percentage monthly return. Innov is the contribution of the information between time t − 2 and t − 1 to FIV OLt. R(t−2,t−1) is the previous

month’s returns which controls for the return reversals. The other variables are defined in earlier tables. Newey and West t-statistics are indicated in parentheses.

** and *** denote significance at the 5% and 1% level respectively.

Model ln(ME) ln(BE/ME) FIV OLt FIV OLt−1 IV OLt−1 Innov Spread %Zeros R(t−2,t−1) R2(%)

1 0.18*** 0.41*** 0.14*** 4.17

(4.14) (6.07) (8.05)

2 -0.13** 0.16** -0.01 2.6

(-2.54) (2.11) (-0.75)

3 -0.13** 0.14 -0.02 2.94

(-2.55) (1.84) (-1.58)

4 -0.12 0.16 0.04*** 2.38

(-1.7) (1.86) (4.53)

5 0.19*** 0.39*** 0.15*** 2.79 -0.02 4.82

(4.01) (5.54) (8.39) (1.14) (-0.05)

6 -0.07 0.15** -0.01 6.67** -0.54 3.22

(-1.49) (2.06) (-0.9) (2.79) (-1.15)

7 -0.12** 0.11 -0.03** 7.49*** -0.62 3.58

(-2.33) (1.37) (-2.55) (2.89) (-1.28)

8 -0.06 0.16 0.04*** 6.18** -0.5 3.05

(-0.93) (1.87) (4.47) (2.5) (-0.98)

9 0.17*** 0.41*** 0.14*** -0.04*** 5.16

(3.7) (6.05) (7.57) (-8.39)

10 -0.11** 0.17** -0.01 -0.04*** 3.36

(-2.23) (2.23) (-0.36) (-7.98)

11 -0.11 0.16 0.04*** -0.04*** 3.16

(-1.61) (1.94) (4.53) (-7.24)

12 0.09** 0.37*** 0.17*** -0.06*** 5.05

(2.00) (5.49) (10.98) (-7.00)

13 0.11** 0.36*** 0.17*** -0.07*** 7.98*** -0.99** -0.03*** 6.16

(2.02) (5.98) (11.05) (-7.21) (2.98) (-2.00) (-6.74)
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Table 2.6 Fama-MacBeth regressions of stock returns on idiosyncratic volatility, liquidity and other control variables (Excluding January
returns and penny stocks)

This table documents the time-series means of the slopes in cross-sectional regressions using the Fama and MacBeth (1973) methodology.January returns and

penny stocks (price less than $5) are excluded from the sample. The dependent variable, R(t−1,t) is the percentage monthly return. Innov is the contribution of

the information between time t− 2 and t− 1 to FIV OLt. R(t−2,t−1) is the previous month’s returns which controls for the return reversals. The other variables

are defined in earlier tables. Newey and West t-statistics are indicated in parentheses. ** and *** denote significance at the 5% and 1% level respectively.

Model ln(ME) ln(BE/ME) FIV OLt FIV OLt−1 IV OLt−1 Innov Spreads %Zeros R(t−2,t−1) R2(%)

1 0.09** 0.22*** 0.04** -0.01** 3.88

(2.43) (3.29) (2.61) (-2.66)

2 -0.01 0.12 -0.04** -0.01** 3.39

(-0.26) (1.62) (-2.84) (-2.17)

3 -0.03 0.1 -0.06*** -0.01 3.45

(-0.83) (1.3) (-4.25) (-1.02)

4 0.04 0.16 0.03*** -0.01 2.95

(0.86) (1.94) (5.07) (-1.82)

5 0.05 0.22*** 0.04** -6.13 -0.21 -0.01** 4.46

(1.21) (3.44) (2.58) (-1.78) (-0.44) (-2.55)

6 -0.06 0.12 -0.04*** -6.42 -0.75 -0.01** 3.99

(-1.40) (1.76) (-3.20) (-1.83) (-1.43) (-2.04)

7 -0.08 0.11 -0.06*** -3.72 -1.18** -0.01 4.08

(-1.83) (1.47) (-4.60) (-0.90) (-2.54) (-0.92)

8 -0.01 0.17** 0.03*** -6.6 -0.52 -0.01 3.65

(-0.18) (2.16) (4.94) (-1.74) (-0.89) (-1.79)
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Table 2.7 Distribution of FIVOL Migration

For each month t, all firms are sorted into quintiles based on FIV OLt. Migratet for a stock is defined by

its FIVOL quintile rank at t − FIVOL quintile rank at t− 1. Migrate=4 for a stock that was in Quintile 1

at t− 1 and is in Quintile 5 at t. This table reports the percentage of stocks that are in Quintile i at t− 1

(based on FIV OLt−1) and in Quintile j at t (based on FIV OLt)

FIV OL Quintile at t

F
I
V
O
L

q
u

in
ti

le
at
t
−

1 1 2 3 4 5

1 82.8 12.36 2.45 1.09 1.2

2 12.71 68.37 13.93 3.11 1.93

3 2.24 14.95 61.35 16.08 5.43

4 1.03 2.61 17.64 59.09 19.63

5 1.14 1.71 4.63 20.62 71.8
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Table 2.8 Alphas of stocks in the highest FIVOL quintile

Quintile portfolios are formed for each month t based on FIV OLt. Migrate is defined by quintile rank at t

− quintile rank at t−1. This table shows the simple unadjusted returns of the various Migrate portfolios for

stocks which belong to the highest FIVOL quintile at t. Migrate=4 indicates a stock that was in Quintile 1

at t−1 and is in Quintile 5 at t. The CAPM alpha and the Fama-French 3 factor alphas are also documented.

Newey-West t-statistics are indicated in parenthesis. ** and *** denote significance at the 5% and 1% level

respectively.

Migrate 0 1 2 3 4

Average ret 1.64** 2.63*** 4.05*** 5.76*** 6.66***

(2.48) (4.31) (5.7) (6.84) (6.67)

CAPM Alpha 0.67 1.70*** 3.18*** 4.85*** 5.62***

(1.43) (3.78) (5.23) (6.37) (6.76)

FF3 Alpha 0.82** 1.80*** 3.16*** 4.83*** 5.39***

(2.3) (5.34) (7.04) (7.46) (6.67)
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Table 2.9 Alphas of stocks in the lowest FIVOL quintile

Quintile portfolios are formed for each month t based on FIV OLt. Migrate is defined by quintile rank at t−
quintile rank at t− 1. This table shows the simple unadjusted returns of the various Migrate portfolios for

stocks which belong to the lowest FIVOL quintile at t. Migrate=-4 indicates a stock that was in Quintile 5

at t−1 and is in Quintile 1 at t. The CAPM alpha and the Fama French 3 factor alphas are also documented.

Newey-West t-statistics are indicated in parenthesis. ** and *** denote significance at the 5% and 1% level

respectively.

Migrate -4 -3 -2 -1 0

Average ret -1.98*** -0.52* 0.06 0.58*** 0.65***

(-4.63) (-1.82) (0.24) (2.69) (3.86)

CAPM Alpha -2.64*** -1.05*** -0.42** 0.15 0.32**

(-9.14) (-5.34) (-2.56) (0.94) (2.54)

FF3 Alpha -2.71*** -1.20*** -0.66*** -0.16 0.07

(-10.66) (-7.57) (-5.22) (-1.52) (0.76)
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Table 2.10 Alphas of stocks that have migrated from the highest IVOL quintile to lower
quintiles

Quintile portfolios are formed every month t based on IVOLt. Migrate IV OL is defined by quintile rank

at t − quintile rank at t− 1. This table shows the simple unadjusted returns of the various Migrate IV OL

portfolios that have migrated from the highest IVOL quintile to lower IVOL quintiles. Migrate IV OL=-4

indicates that the stock was in Quintile 5 at t− 1 and is in Quintile 1 at t.Migrate IV OL=0 indicates that

the stock was in Quintile 5 at t− 1 and is still in Quintile 5 at t.The CAPM alpha and the Fama French 3

factor alphas are also documented. Newey-West t-statistics are indicated in parenthesis. ** and *** denote

significance at the 5% and 1% level respectively.

Migrate IV OL -4 -3 -2 -1 0

Average ret -0.33*** -1.97*** -2.59*** -2.08*** 2.62***

(-2.68) (-7.34) (-8.16) (-5.21) (3.29)

CAPM Alpha -0.46*** -2.32*** -3.14*** -2.80*** 1.62***

(-3.63) (-9.34) (-13.58) (-11.18) (2.7)

FF3 Alpha -0.55*** -2.50*** -3.16*** -2.73*** 1.72***

(-4.78) (-11.38) (-15.81) (-15.58) (3.73)
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Table 2.11 Alphas of stocks that have migrated from the lowest IVOL quintile to higher
quintiles

Quintile portfolios are formed every month t based on IVOLt. Migrate IV OL is defined by quintile rank

at t − quintile rank at t− 1. This table shows the simple unadjusted returns of the various Migrate IV OL

portfolios that have migrated from the lowest IVOL quintile to higher IVOL quintiles. Migrate IV OL=4

indicates that the stock was in Quintile 1 at t−1 and is in Quintile 5 at t. Migrate IV OL=0 indicates that

the stock was in Quintile 1 at t− 1 and is still in Quintile 1 at t.The CAPM alpha and the Fama French 3

factor alphas are also documented. Newey-West t-statistics are indicated in parenthesis. ** and *** denote

significance at the 5% and 1% level respectively.

Migrate IV OL 0 1 2 3 4

Average ret 0.35*** 0.91*** 1.44*** 1.42*** 6.41***

(2.62) (3.77) (4.11) (2.72) (5.31)

CAPM Alpha 0.1 0.44** 0.89*** 0.86* 5.73***

(0.85) (2.43) (3.24) (1.84) (5.02)

FF3 Alpha -0.1 0.08 0.45** 0.25 4.79***

(-1.18) (0.71) (2.41) (0.73) (5.55)
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Table 2.12 Explanatory power of Migration Dummy Variables

This table documents the time-series means of the slopes in cross-sectional regressions using the Fama-MacBeth methodology. Quintile portfolios are formed
every month t, based on IV OLt and FIV OLt. Then for each month t, cross-sectional regressions of the following forms are estimated.

Ri,t = α0t + β2t ln(ME)i,t−1 + β3t ln(BE/ME)i,t−1 + β4t MIG FIV OLi,t ∗ FIV OLi,t + β5t FIV OLi,t + β6t MIG IV OLi,t ∗ IV OLi,t−1

+β7t IV OLi,t−1 + β8t Ri,t−1 + ei,t

where Ri,t is the return to stock i in month t, MIG FIV OLi,t is the FIVOL migration dummy that takes a value of 1 if the stock moves from a high FIVOL

quintile at t − 1 to a low FIVOL quintile at t or remains in the same FIVOL quintile, and zero otherwise. MIG IV OLi,t is the IVOL migration dummy that

takes a value of 1 if the stock moves from a high IVOL quintile at t − 1 to a low IVOL quintile at t, and 0 otherwise. Newey-West t-statistics are indicated in

parenthesis. ** and *** denote significance at the 5% and 1% level respectively.

Model ln(ME) ln(BE/ME) MIG FIV OL*FIV OLt FIV OLt
MIG IV OL*

IV OLt Rt−1
IVOL

1 0.11** 0.41*** -0.06*** 0.19 *** -0.13*** -0.01 -0.04***

(2.62) (7.46) (-7.19) (11.61) (-14.07) (-0.73) (-9.36)
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Table 2.13 Fama-MacBeth regressions of stock returns on idiosyncratic volatility and dummies for standardized unexpected earnings

This table documents the time-series means of the slopes in cross-sectional regressions using the Fama-MacBeth methodology. Quintile portfolios are formed
every month t based on FIVOLt. Then for each month, cross-sectional regressions of the following forms are estimated.

Ri,t = α0t + β2t ln(ME)i,t−1 + β3t ln(BE/ME)i,t−1 + β4t FIV OLi,t + β7t HIGH SUEi,t−1 ∗ FIV OLi,t

+ β8t LOW SUEi,t−1 ∗ FIV OLi,t + β9t POS SUEi,t−1 ∗ FIV OLi,t + β10t NEG SUEi,t−1 ∗ FIV OLi,t + β11t ANNOUNi,t−1 + ei,t
(2.10)

where Ri,t is the return to stock i in month t, HIGH SUEi,t−1(LOW SUEi,t−1) is a dummy variable that takes the value of 1 if the absolute value of standardized

unexpected earnings for stock i is ranked in the top (bottom) 20% of stocks in month t − 1, and zero otherwise. Similarly, POS SUEi,t−1 (NEG SUEi,t−1) is

a dummy variable that takes the value of 1 if the standardized unexpected earnings for stock i is ranked in the top (bottom) 20% of stocks in month t− 1, and

zero otherwise. ANNOUNi,t−1 is the announcement dummy that takes a value of 1 if there is an earnings announcement in month t − 1, and zero otherwise.

Newey-West t-statistics are indicated in parenthesis. ** and *** denote significance at the 5% and 1% level respectively.

Model ln(ME) ln(BE/ME) FIV OL HIGH SUE* FIV OL LOW SUE* FIV OL
POS SUE* NEG SUE*

ANNOUN R2(%)
FIVOL FIVOL

1 0.01 0.13** 0.09*** 0.05*** -0.04*** 3.37

(0.94) (2.64) (7.59) (4.8) (-4.2)

2 0.02 0.14** 0.11*** 0.08*** -0.07*** 0.15*** -0.07*** 0.04*** 6.67

(1.84) (2.42) (8.38) (3.46) (-4.01) (14.41) (-6.08) (7.33)
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Table 2.14 Pricing ability of transitions in FIVOL quintile ranking after controlling for the level of standardized unexpected earnings

This table shows the returns of the various Migrate portfolios for the stocks which belong to the top (or bottom) SUE quintile . Quintile portfolios are formed

every month t based on FIV OLt for all stocks in the sample. Migrate is defined by FIVOL Quintile rank at t − FIVOL Quintile rank at t − 1. Migrate=-4

indicates that the stock was in Quintile 5 at t − 1 and is in Quintile 1 at t. Migrate=0 indicates that the stock remains in the same quintile in t − 1 and

t. Migrate=4 indicates that the stock was in Quintile 1 at t − 1 and is in Quintile 5 at t. Panel A reports the results for stocks that belong to the highest

SUE quintile. Panel B reports the results for stocks that belong to the lowest SUE quintile. The CAPM alpha and the Fama French 3 factor alphas are also

documented. Newey-West t-statistics are indicated in parenthesis. ** and *** denote significance at the 5% and 1% level respectively.

Panel A: Stocks belonging to the highest SUE quintile

Migrate -4 -3 -2 -1 0 1 2 3 4

Average ret -0.85 -0.34 -0.06 0.63* 1.77*** 2.38*** 3.90*** 5.64*** 9.06***
(-1.60) (-0.99) (-0.21) (1.97) (5.15) (6.3) (8.00) (6.89) (5.74)

CAPM Alpha -1.49*** -0.95*** -0.68*** -0.05 1.09*** 1.66*** 3.17*** 4.88*** 8.08***
(-3.42) (-3.72) (-3.82) (-0.26) (5.12) (6.39) (8.46) (6.14) (5.45)

FF3 Alpha -1.46*** -1.06*** -0.79*** -0.19* 0.95*** 1.52*** 2.92*** 4.61*** 7.30***
(-3.40) (-4.76) (-6.55) (-1.86) (8.06) (9.52) (10.24) (6.41) (4.81)

Panel B: Stocks belonging to lowest SUE quintile

Migrate -4 -3 -2 -1 0 1 2 3 4

Average ret -1.46*** -1.65*** -1.38*** -0.73** 0.48 0.73* 1.50*** 3.51*** 7.04***
(-2.77) (-4.39) (-4.05) (-2.13) (1.32) (1.91) (2.68) (4.2) (3.63)

CAPM Alpha -2.25*** -2.26*** -1.98*** -1.38*** -0.23 0.02 0.79* 2.87*** 6.08***
(-5.47) (-7.98) (-8.87) (-7.11) (-1.03) (0.1) (1.86) (3.63) (3.37)

FF3 Alpha -2.38*** -2.32*** -2.09*** -1.53*** -0.35** -0.15 0.58 2.87*** 5.95***
(-6.55) (-9.60) (-12.74) (-12.47) (-2.28) (-0.91) (1.51) (3.61) (3.25)
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Table 2.15 Pricing ability of transitions in FIVOL quintile ranking for stocks with no earnings surprises

This table shows the returns of the various Migrate portfolios for the stocks which belong to the lowest absolute (SUE) quintile. Quintile portfolios are formed

every month t based on FIV OLt for all stocks in the sample. Migrate is defined by FIVOL Quintile rank at t − FIVOL Quintile rank at t − 1. Migrate=-4

indicates that the stock was in Quintile 5 at t − 1 and is in Quintile 1 at t. Migrate=0 indicates that the stock remains in the same quintile in t − 1 and t.

Migrate=4 indicates that the stock was in Quintile 1 at t−1 and is in Quintile 5 at t. The CAPM alpha and the Fama French 3 factor alphas are also documented.

Newey-West t-statistics are indicated in parenthesis. ** and *** denote significance at the 5% and 1% level respectively.

Migrate -4 -3 -2 -1 0 1 2 3 4

Average ret -1.61*** -1.18*** -0.58* -0.18 1.14*** 1.51*** 2.19*** 4.80*** 6.17***
(-3.12) (-3.72) (-1.90) (-0.61) (3.35) (4.57) (5.23) (5.84) (3.63)

CAPM Alpha -2.14*** -1.68*** -1.15*** -0.79*** 0.51** 0.89*** 1.53*** 4.12*** 5.50***
(-4.69) (-7.80) (-5.52) (-4.29) (2.32) (3.95) (4.78) (5.79) (3.11)

FF3 Alpha -2.28*** -1.79*** -1.37*** -1.01*** 0.32** 0.66*** 1.29*** 4.09*** 4.64**
(-5.30) (-8.74) (-9.49) (-9.71) (2.32) (4.38) (5.59) (5.63) (2.53)
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Table A1 Returns of portfolios sorted by FIVOL based on a five-factor model

I estimate idiosyncratic risk based on a five-factor model that includes the momentum and the aggregate

liquidity factor along with the three Fama-French factors. The forecasted idiosyncratic volatility from

an EGARCH model, based on this five-factor model, is the FIV OL 5factor. This table documents the

simple unadjusted returns, the CAPM alphas and the Fama French 3 factor alphas when stocks are sorted

into quintiles based on their FIV OL 5factor. Quintile 5 stocks have the highest FIV OL 5factor whereas

Quintile 1 stocks have the lowest FIV OL 5factor. Newey and West t-statistics are indicated in parentheses.

** and *** denote significance at the 5% and 1% level respectively.

Quintile 1 2 3 4 5

Average ret 0.46*** 0.69*** 0.57* 0.29 2.30***

(2.61) (2.77) (1.81) (0.73) (3.5)

CAPM Alpha 0.09 0.16 -0.08 -0.48** 1.33***

(0.76) (0.99) (-0.46) (-2.08) (2.8)

FF3 Alpha -0.14 -0.14 -0.33*** -0.59*** 1.44***

(-1.41) (-1.30) (-3.38) (-5.03) (4.13)

Table A2 Fama-Macbeth regressions of stock returns on forecasted idiosyncratic volatility
based on a five-factor model

This table documents the time-series means of the slopes in cross-sectional regressions using the Fama and

MacBeth(1973) methodology. FIV OL 5factor is the FIVOL based on the model including the Fama-French

factors, the momentum factor and the Pastor Stambaugh liquidity factor. The other variables are defined

in earlier tables. Newey and West t-statistics are indicated in parentheses. ** and *** denote significance

at the 5% and 1% level respectively.

Model ln(ME) ln(BE/ME) FIV OL 5factor Spreads %Zeros

1 0.17*** 0.38*** 0.16***

(3.39) (5.54) (7.35)

2 0.19*** 0.38*** 0.16*** 2.98 -0.27

(3.65) (5.68) (7.5) (1.47) (-0.58)
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Table A3 Fama-MacBeth regressions of stock returns on idiosyncratic volatility, liquidity and other control variables (Controlling for
January)

This table documents the time-series means of the slopes in cross-sectional regressions using the Fama and MacBeth(1973) methodology. January returns are

excluded from this sample. The dependent variable, Rt−1,t is the percentage monthly return. Newey and West t-statistics are indicated in parentheses. ** and

*** denote significance at the 5% and 1% level respectively.

Model ln(ME) ln(BE/ME) FIV OLt FIV OLt−1 IV OLt−1 Innov Spread %Zeros R(t−2,t−1) R2(%)

1 0.26*** 0.42*** 0.12*** -0.03*** 4.19

(5.72) (5.69) (6.96) (-6.56)

2 -0.02 0.19** -0.02 -0.03*** 2.98

(-0.37) (2.4) (-1.85) (-6.28)

3 -0.03 0.18** -0.03** -0.03*** 3.21

(-0.68) (2.16) (-2.47) (-5.93)

4 0.02 0.22** 0.04*** -0.03*** 2.84

(0.31) (2.34) (4.43) (-5.45)

5 0.24*** 0.42*** 0.12*** 0.85 -0.77 -0.03*** 4.8

(5.53) (5.83) (7.14) (0.33) (-1.69) (-6.50)

6 -0.02 0.2** -0.02 4.28 -1.22** -0.03*** 3.57

(-0.33) (2.48) (-1.93) (1.73) (-2.52) (-6.26)

7 -0.05 0.17** -0.04*** 5.38 -1.33** -0.03*** 3.74

(-1.05) (2.18) (-3.16) (1.96) (-2.74) (-5.57)

8 0.02 0.22** 0.04*** 3.75 -1.14** -0.03*** 3.45

(0.32) (2.43) (4.34) (1.45) (-2.21) (-5.57)
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