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Abstract 

Prestressed carbon fiber reinforced polymer (CFRP) patches are emerging as a 

promising alternative to traditional methods to repair cracked steel structures and civil 

infrastructure. However, existing prestressing methods require the use of heavy and 

complex fixtures to apply prestressing forces, which is impractical in many applications. 

In this research a self-stressing shape memory alloy (SMA)-fiber reinforced polymer 

patch is presented that can be used to prestress civil infrastructure, with a target 

application of repairing cracked steel structures. The self-stressing patch consists of nickel 

titanium niobium (NiTiNb) SMA wires embedded in a fiber reinforced polymer (FRP). 

The self-stressing patch can be bonded to the steel member in the vicinity of a crack. The 

prestressing force is generated by restraining the shape memory effect of the embedded 

NiTiNb SMA. The self-stressing patch is thermally activated and therefore does not 

require heavy equipment, but rather only a heat source or electrical power supply during 

the activation of the wires. 

This dissertation presents the development of the self-stressing patch and the 

characterization of the static and fatigue behavior of the patch. Different SMA and epoxy 

materials were tested to identify their thermomechanical properties and to select suitable 

materials for the patch. The bond behavior between two different types of SMA wires, 

superelastic Nitinol and NiTiNb, and FRP was evaluated experimentally. Based on the 

experimental observations an empirical model is proposed to quantify the minimum 

required embedment lengths between superelastic Nitinol and CFRP. The debonding 

mechanism between the NiTiNb and FRP was examined numerically using the finite 



ix 

element method (FEM). A trilinear cohesive zone model (CZM) was established, which 

incorporates cohesive and frictional components, to predict the pull-out behavior of 

NiTiNb wires embedded in FRP. The monotonic and fatigue behavior of the self-stressing 

patch were also characterized experimentally. This dissertation presents an empirical 

model that can be used to predict the fatigue degradation of the prestressing force in the 

patch. The research findings indicate that the self-stressing patch is able to generate a 

sustained recovery stress of 390 MPa. Patches for which the maximum applied loads in a 

fatigue cycle did not cause debonding of the SMA wires from the FRP exhibited fatigue 

lives up to 2 million cycles with less than 20% degradation of the prestressing force. The 

results suggest that the patch is a promising alternative to traditional methods of repairing 

structures with prestressed FRP patches. 
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Chapter 1: Introduction  

Fatigue cracks in steel structures typically initiate at stress concentrations in 

fatigue-sensitive details. Although the magnitude of the far-field stresses due to applied 

cyclic loads is low, the localized stresses may be much higher. Under cyclic loading 

cracks initiate, propagate, and may ultimately lead to member rupture and complete 

failure of the structure. Some examples of the fatigue related failures are the catastrophic 

failure of the Alexander L. Kielland platform which killed 123 persons (Almar-Naess et 

al., 1984), the failure of the high mast poles in Colorado (Goode and Van de Lindt, 2008), 

Wisconsin (Foley et al., 2004), and Iowa (Chang et al., 2009). 

Repairing cracked steel members with fiber reinforced polymers (FRP) patches or 

overlays, is emerging as an effective means to repair cracked steel structures. Using this 

technique an FRP patch is bonded across the crack using a structural adhesive. This 

bridges the crack and reduces the stress intensity factor at the crack tip due to the change 

in the load path. The effectiveness of this repair method can be improved by prestressing 

the patches. This induces compressive stresses at the crack tip. These compressive stresses 

at the vicinity of the crack tip reduce the stress ratio, which can increase the fatigue life of 

the repaired members, and may even halt the crack completely (Bassetti et al., 2000; 

Taljsten et al., 2009). However, the current prestressing techniques require heavy 

equipment to apply the prestressing force and complex fixtures to anchor the FRP 

materials to the structure. Moreover, many systems require drilling holes into the substrate 

structure which requires permanent modification of the structure and may act as a site for 

re-initiation of cracking.  
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1.1. Research objectives and outline 

The objectives of this research are to: (a) develop a self-stressing SMA/FRP 

composite patch that can be used to repair cracked steel members or other civil 

infrastructure, (b) establish a technique to model the bond of SMA wires that are 

embedded in FRP, (c) quantify the magnitude of the prestressing force that can be 

achieved by the proposed patch, and (d) quantify the degradation of the prestressing force 

in the self-stressing patch due to fatigue loading.  

In the proposed system the prestressing force is generated by restraining the shape 

memory effect of NiTiNb wires. An FRP overlay can subsequently be applied to bridge 

the crack. This study presents the development of the self-stressing patch with an 

emphasis on repair of cracked steel members. This research presents the efforts spent to 

develop the self-stressing patch. The complexity of developing the patch comes from the 

different thermomechanical properties of the constituents.  

The prestressing force generated by the SMA wires is transferred to the composite 

through the bond interface. Effective bond between the SMA wires and the FRP 

composite is essential to ensure the stability of the prestressing force. The bond between 

SMA wires and FRP is studied with a focus on identifying the debonding mechanisms to 

prevent a premature pull-out failure of the SMA wires from the FRP composite.  

The performance of the self-stressing patches during activation and under 

monotonic tensile loading is evaluated to quantify the magnitude of the prestressing force 

that can be achieved using the proposed patches and to identify suitable methods to 

activate the patch. The fatigue behavior of the patch is studied to examine the stability of 
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the prestressing force under cyclic loading during the life of the patch which is an 

important consideration in the design of the patch. 

1.2. Scope and organization of the dissertation 

This dissertation is organized into seven chapters, including this introductory 

chapter, and three appendices. 

Chapter 2 presents a review of the relevant literature related to repair of cracked 

steel structures, structural applications of shape memory alloys, and bond between SMA 

and FRP.  

The remainder of the research effort was conducted in two phases. The first phase 

is described in three chapters, which present the experimental and analytical development 

of the self-stressing patch.  

Chapter 3 summarizes the conceptual development of the self-stressing patch and 

the details of material tests that were conducted to study the behavior of the patch 

constituents. The chapter summarizes the test results of three types of SMA wires and 

four different types of epoxy adhesives. Appendix A presents the comprehensive details 

of the experimental results for completeness.  

The bond between two types of SMA wires, namely superelastic nickel titanium 

(NiTi) and shape memory nickel titanium niobium (NiTiNb), and carbon FRP composites 

is discussed in Chapter 4. Pull-out tests were conducted to evaluate the bond strength. An 

empirical model is presented to predict the development length for the tested 

configuration of NiTi wires embedded in FRP. Appendices B and C present the 
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comprehensive set of experimental results for the pull-out tests of NiTi wires and NiTiNb 

wires, respectively, embedded in FRP. 

Chapter 5 presents the details of the finite element analysis that was conducted to 

evaluate the bond behavior between NiTiNb SMA and FRP. 

Chapter 6 summarizes the findings of the second phase of the research. The 

chapter describes the behavior of the SMA/FRP patches under monotonic loading and 

fatigue loading. The degradation of the prestress force of the SMA wires is quantified and 

an empirical model is presented to predict the degradation of the prestressing force due to 

fatigue loading. 

The conclusions of the work conducted in this dissertation are presented in 

Chapter 7 followed by recommendations for future work.  
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Chapter 2: Background 

This chapter presents a review of the relevant literature related to repair of cracked 

steel structures, SMAs and their applications in structural engineering and bond between 

SMA and FRP. The chapter concludes by outlining the research needs and presents the 

significance of this dissertation. 

2.1. Repair of cracked steel elements 

Fatigue cracks usually form in steel structures due to cyclic loads such as wind, 

traffic, or machinery vibration. Some examples of structures that are susceptible to fatigue 

loads are bridges, cranes, offshore structures, and structures supporting machinery. 

Although the magnitude of the applied cyclic loads is lower than the ultimate capacity, 

under repeated loading cracks can form at stress concentration locations and propagate if 

the stress intensity factor exceeds the threshold stress intensity factor, Kth, leading to 

member rupture. Several methods are commonly used to repair cracked metallic 

structures. One of the repair methods is to attach cover plates over both sides of the crack 

by pretensioned high strength bolts (Fisher et al., 1998). By doing so the load path is 

changed and the propagation of the crack is halted. Another alternative is to drill a crack-

stop hole at the tip of the crack and fill it with a steel pin (Domazet, 1996). This method 

provides localized compression stress at the crack tip and reduces the stress concentration 

by changing the crack tip geometry. A third alternative is to apply residual compressive 

stresses by peening (Sharp et al., 1994). Repair welding is an alternative, however, cracks 

can re-initiate at the weld location (Domazet, Z., 1996). These conventional methods 

require complex heavy equipment and experienced labor in confined areas which typically 
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have limited accessibility. Additionally in some situations, welded repairs are infeasible 

due to the risk of explosions. Thus alternative repair methods are required which can be 

easily implemented in areas with limited accessibility. 

Patching cracked steel members with fiber reinforced polymers (FRP) materials, is 

emerging as an effective means to repair cracked steel structures (Tavakolizadeh and 

Saadatmanesh, 2003; Jones and Civjan, 2003; Lam et al., 2007; Nakamura et al., 2009; 

Fam et al., 2009; Jiao et al., 2012; Wu et al., 2012; Wu et al., 2013; Wang et al., 2014; 

Colombi et al., 2015). Using this technique an FRP patch is bonded across the crack with 

a structural adhesive. This bridges the crack and reduces the stress intensity factor at the 

vicinity of the crack tip.  

The effectiveness of this repair method can be improved by prestressing the 

patches which induces compression stresses at the crack tip resulting in a further increase 

in the fatigue life (Bassetti et al., 2000; Taljsten et al., 2009; Huawen et al., 2010; 

Ghafoori et al., 2012a,b; Ghafoori and Motavalli, 2013; Koller et al., 2014; Emdad and 

Al-Mahaidi, 2015; Ghafoori et al., 2015).  

Bassetti et al. (2000) studied the application of prestressing CFRP perpendicular to 

the fatigue crack path to repair riveted bridge members. Steel plate specimens with a 

center crack with two notches were tested under fatigue loading with a stress range of 80 

MPa and a stress ratio of 0.4. It was found that the prestressed CFRP plates were able to 

reduce the crack opening displacement at the crack front, and increase the fatigue life by 

20 times compared to the unrepaired plates. Full scale testing was also performed on 

riveted cross girder with prestressed CFRP plates. The results of the full scale test 
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indicated that prestressing method was able to completely halt the crack even after 20 

million cycles of fatigue loading. 

Taljsten et al. (2009) tested 10 steel plates with a center hole repaired with 

prestressed and non-prestressed CFRP composite. The length width and thickness of each 

plate was 670 mm, 205 mm and 8 mm, respectively. The plates were repaired with four 

CFRP plates, two on each side of the hole on both faces of the steel plate. The study was 

conducted to evaluate the effectiveness of using prestressed CFRP plates system to repair 

steel plates with a center notch. The applied stress range was 97.5 MPa and the stress ratio 

was 0.086. The results indicated that the fatigue lives of the specimens repaired with non-

prestressed CFRP plates were 2.45 to 3.74 times the fatigue lives of specimens with no 

repair. However, specimens with prestressed CFRP plates did not fail even after 6 million 

cycles. 

An experimental and analytical study was carried out by Huawen et al. (2010) to 

study the fatigue behavior of steel plates repaired with prestressed CFRP plates. A 

fracture mechanics based model was presented that can predict the fatigue life of the 

specimen. The results indicated that using prestressed CFRP specimens can increase the 

fatigue life by four times compared to the unrepaired specimens. The proposed analytical 

model was in good agreement with the experimental results. 

Ghafoori et al. (2012a,b) investigated the effectiveness of a new unbonded 

prestressing repair system. The fatigue behavior of notched steel beams strengthened with 

bonded and unbonded prestressed CFRP plates were compared. A fracture mechanics 

based model was presented to calculate the minimum prestressing force required to arrest 
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the crack growth in retrofitted beams. In order to arrest the crack, the level of prestressing 

can be found by solving the following equation: 

0  K  K K M
1

CFRP
1

overall
1  ,      (2.1) 

where, CFRP
1K and M

1K , are the stress intensity factors at the vicinity of the crack due to 

the prestressing force, and the applied moment, respectively. CFRP
1K , is a negative value, 

indicating that the prestressing force tends to close the crack, while M
1K is a positive value 

indicating that the external applied moment tends to open the crack. A finite element 

analysis was conducted to verify the proposed model. The results indicated that beams 

with bonded repair system exhibited a strain concentration at the crack location while the 

unbonded repair system exhibited a uniform strain distribution along the length of the 

CFRP plate. It was noticed in the case of the unbonded repair system that the CFRP plate 

slipped at the mechanical anchor system prior to failure. The results of the proposed 

model and the finite element analyses were in good agreement. The results indicated that 

designing the beam with the proposed model resulted in a complete arrest of the fatigue 

crack even after 400,000 fatigue cycles. No change in the stiffness and strain distribution 

along the CFRP plate were observed. 

In the studies by Ghafoori et al. (2015a,b) the authors repaired a 120 year old 

metallic bridge using the unbonded prestressed system described in Ghafoori et al. 

(2012a). This method overcomes the surface preparation problems required for bonded 

methods, and is suitable for the uneven surfaces like riveted surface. In this study the 

authors presented the concept of constant fatigue life diagram which was used to 
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2.2. Shape memory alloys 

Shape memory alloys (SMA) exhibit a unique behavior in which the crystals of 

the material reorient and transform between two different phases, martensite and 

austenite, when subjected to certain conditions. Figure 2.2 shows the stress-strain curves 

of SMA at the martensitic and austenitic phases. It can be seen in the figure that the SMA 

is fully in the martensitic phase while the material is below its martensitic finish 

temperature (Mf). Below this temperature the atoms arrange in a twinned orientation as 

shown in the figure. This structure is called twinned martensite. Upon loading of the SMA 

while the temperature is less than Mf, the atoms in the twinned martensite will reorient 

and form a detwinned martensite formation. This causes the material to experience a 

permanent residual deformation. As illustrated in Figure 2.2, when the material is heated 

above the austenitic start temperature (As) the crystals start to reorient into the austenitic 

phase as shown in the figure. When the temperature of the material reaches the austenitic 

finish temperature (Af) the material is fully in the austenitic phase, and the built-in 

residual strain is relieved. Upon cooling, the material undergoes another transformation, 

from the austenitic phase to the twinned martensitic phase with no built in strain. This 

phenomenon is referred to as the shape memory effect. When SMA is loaded and 

unloaded at temperature below Mf the material exhibits a residual strain. If the SMA is 

restrained before heating it to a temperature over Af, the material will reorient and 

transform into the austenitic phase. But, since the material is restrained the transformation 

will generate a recovery force.  

Another phenomenon occurs when the SMA is deformed at temperatures above 

Af. It can be seen in the Figure 2.2 that if the material is loaded over a critical stress limit, 
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it experiences a stress induced martensitic transformation. Upon unloading the SMA 

material, the martensite becomes unstable and the material returns to the austenite phase 

and its original shape. It can be seen in the figure that the SMA material exhibits a 

hysteretic behavior during the transformation from the austenite to martensite in the 

loading part and the transformation from martensite to austenite in the unloading part. 

This phenomenon is referred as the superelasticity effect or pseudoelasticity. 

 

Figure 2.2. Stress-strain relationship for SMA in martensite and austenite 
phases (Adapted from Alam et al., 2007) 

Another property to define the SMA behavior is called the thermal hysteresis 

width. The hysteresis width is defined by Melton et al. (1989) as 
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A50 – M50,       (2.2) 

where A50 and M50 are the temperatures at which 50% of the strain change has occurred 

during the heating and cooling, respectively.  

 

Figure 2.3. The definition of the SMA thermal hysteresis width (Adapted 
from Melton et al., 1989 ) 

The complex behavior of the Nitinol has been utilized in different applications. By 

restraining the shape memory effect of the SMA, a recovery force is generated which 

allows the SMA to be used as solid state actuators. The SMA actuators can achieve high-

force-to-size ratio compared to other types of actuators. Researchers have exploited SMAs 

to create devices that could not have been possible with regular actuators. Some examples 

are: variable area exhaust nozzle (Song et al., 2007); ultra-deep water subsea blowout 

prevention system (Song et al. 2008), robotic fish (Rossi et al., 2011), mimicking a jet 

propeller inspired by the cuttlefish (Gao et al., 2014). 
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Nitinol SMA has been embedded in composites to actively tune the properties of 

FRP composites (Epps and Chandra, 1997; Baz et al., 2000; Sittner and Stalmans, 2000; 

Song et al., 2000b; Loughlan et al., 2002; Yuse and Kikushima, 2005; Sippola and 

Lindroos, 2007). SMAs have also been embedded in FRP composites to increase their 

energy dissipation capacity (Lagoudas et al., 2001; Turner 2005; Liu et al., 2007, 

Raghavan et al., 2010; Wierschem and Andrawes, 2010; Heller et al., 2012). While binary 

NiTi alloys are well established, they have relatively narrow thermal hysteresis in the 

range of 30oC to 50oC (Melton and Mercier, 1980). This limits their suitability for 

applications which require sustained recovery forces at or near room temperature. Iron 

based SMAs have been developed and used for prestressing applications (Czaderski et al., 

2005; Moser et al., 2005; Janke et al., 2005; Dong et al. 2009; Cladera et al.,2014; 

Czaderski et al, 2014). The iron based SMAs exhibit a wide thermal hysteresis with high 

activation temperature, have higher elastic modulus compared to others NiTi alloys. 

However, the corrosion behavior of the iron based SMAs is still questionable (Maji et al., 

2006; Rovere et al., 2012). 

Other alloys like the ternary NiTiNb SMA have been developed (Zhao et al., 

1989; Melton et al., 1989; Ying et al. 2011). The ternary alloy exhibits a wide hysteresis 

which allows the alloy to remain austenitic at temperatures below room temperature. The 

martensitic start temperature of the alloy is in the range of -50oC. This means that by 

utilizing the shape memory effect a recovery (presstressing) force can be maintained at 

room temperature, which is suitable for the civil applications where continuous heat of the 

wires is not economically feasible (as in the case of binary NiTi alloys). The increase in 

the thermal hysteresis is achieved by the addition of the soft deformable particles of the 
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niobium which increased the thermal hysteresis width and the activation temperatures. 

The NiTiNb SMA is well suited for applications that require sustained recovery forces at 

or near room temperature as in the case for hydraulic couplers (Melton et al., 1986) and in 

the structural engineering applications.  

2.3. Applications of NiTiNb SMAs in structural engineering 

Andrawes and Shin (2008) studied analytically the effectiveness of using SMA for 

active confinement of concrete columns. The study compared between the effectiveness 

of using active confinement and conventional passive confinement to improve the 

ductility of reinforced a concrete column subjected to an earthquake. The results of this 

study indicated that the column with active confinement exhibited a reduction in the 

maximum strain as well as in the drift compared to the column retrofitted by passive 

confinement when subjected to the same ground motion. The same authors then expanded 

their research and studied the experimentally effectiveness of using NiTiNb SMA spirals 

for active confinement of concrete (Shin and Andrawes, 2010). The study started by 

investigating the thermo-mechanical behavior of the NiTiNb wires to examine the 

maximum recovery stress that can be obtained from a single wire. Specimens wrapped 

with SMA spirals only, with GFRP only and SMA/GFRP were tested in this research to 

investigate the effectiveness of using NiTiNb wires for active confinement of concrete 

cylinders. It was shown that the individual wires provided a stable recovery stress that can 

reach 460 MPa. Research results indicated that the strength and ultimate strain of the 

concrete cylinders confined with SMA spirals increased by 21% and 24 times compared 

to the unrepaired specimens. It was found that specimen with SMA jacket with a pitch of 

13 mm and four layers of GFRP jacket exhibited an increase in the concrete strength and 
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ultimate strain by 1.2 and 10 times, respectively, compared to specimens with 8 layers of 

GFRP. 

Shin and Andrawes have gone further applying their NiTiNb/FRP system to a 

whole column (2011). In this study the authors evaluated the lateral cyclic behavior of 

reinforced concrete columns retrofitted with NiTiNb/FRP system. Four 1/3 scale columns 

were tested, the first one served as a control specimen. The second, third and fourth 

specimens were retrofitted with NiTiNb SMA spirals, GFRP jacket, and SMA/GFRP 

jacket, respectively. The three retrofitting schemes were designed to have the same 

confining pressure. It was found that the SMA and SMA/GFRP schemes increased the 

concrete strength slightly by 1.06 and 1.03, respectively, compared to the unrepaired 

column. However the flexural ductility and dissipated energy of the column repaired with 

SMA jacket was 2.85 and 4.71, respectively, compared to the unrepaired column. 

Whereas, the flexural ductility and dissipated energy of the column repaired with 

SMA/GFRP was 2.39 and 3.85, respectively, compared to the unrepaired column. It was 

found that the column repaired with GFRP jacketing only exhibited moderate 

enhancement in the ductility by 1.18 compared to the unrepaired one. It was noticed that 

the columns repaired with SMA spirals exhibited less damage than the column repaired 

with GFRP jacket only, despite the fact that the former exhibited 75% increase in the 

maximum drift compared to the later. 

Choi et al. (2010) compared between the performance of NiTi and NiTiNb SMA 

wires for active confining of concrete elements. Five concrete cylinders were tested under 

compression, while three reinforced concrete columns were tested under flexural loading. 

It was found that the concrete cylinders with either NiTiNb or NiTi SMA jackets were 
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able to increase the peak strength and the ductility of concrete cylinders compared to 

those without a jacket. However, the NiTiNb SMA jacket was more effective in 

increasing the peak strength of the concrete cylinder compared to the one with NiTi 

jacket. A significant improvement in the strength and ductility were observed in both 

systems. However, the column with NiTiNb jacket exhibited a higher maximum strength. 

Choi et al. (2011) evaluated the effect of active confinement using NiTiNb wires 

on the bond behavior between steel rebars and concrete. A total of 10 push-out specimens 

were tested in the study by pushing an embedded steel rebar out of the concrete. Five 

unconfined cylinders served as control specimens, two of them were tested under 

monotonic loading while three were tested under cyclic loading. Five cylinders were 

confined with NiTiNb SMA wires, two of them were tested under monotonic loading 

while three specimens were tested under cyclic loading. Based on the results of this study 

it was found that the active confinement was able to change the failure mode from 

splitting failure to push-out failure. The bond strength and slip increased by 42% and 

500%, respectively, for samples with active confinement compared to the unconfined 

specimens when subjected to monotonic loading. The load-slip envelopes of the confined 

specimens tested under cyclic loading matched the load-slip responses of the confined 

specimens tested under monotonic loading.  

Dommer and Andrawes (2012) investigated the long term behavior and the effect 

of the ambient temperature on the effectiveness of the NiTiNb SMA/FRP system. Tests 

on the SMA wire were conducted to evaluate the residual recovery stress variation under 

temperatures ranging from -10oC to 50oC. The results of the wire testing indicated that the 

wires were able to develop about 50% of the recovery stress at freezing temperature in the 



17 

range of -10oC. The test results showed that there was no indication of relaxation in the 

NiTiNb wires for 36 hours even when the ambient temperature increased up to 50oC. 

The wires tested under cyclic loading showed an increasing unrecoverable strain after 

unloading with increasing maximum strain values. The authors expected that this 

reduction in the recovery stress will be minimal due to the plastic deformations of the 

concrete in the transverse direction. The authors concluded that the NiTiNb SMA can 

produce stable recovery force within the normal service temperature of the structures 

which is desirable in civil applications. 

Chen et al. (2014) investigated the active confinement of non-circular columns. 

The confinement was applied using NiTiNb SMA wires. A total of 13 concrete columns 

with a square cross section were tested in this study, four of them were unconfined to 

serve as control specimens. Five of the tested specimens were passively confined with 

GFRP while four were actively confined with NiTiNb SMA wires. One column out of 

each group was tested under cyclic loading, while the rest were tested under monotonic 

loading. The variables considered in this study were the number of GFRP layers, and 

spacing and confining scheme of the SMA wires. Based on the results of this study, the 

lateral strain of the specimen repaired with active SMA confinement was 53% of the 

lateral strain for the specimen repaired with GFRP only at the same stress level. This 

indicated that the SMA repair system was able to delay the damage and dilation of 

concrete compared to the unrepaired specimens, which in turn increase the ductility of the 

columns. 
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2.4. Bond behavior between SMAs and composites 

FRP composites have been widely used as load carrying members due to their 

light weight and versatility. SMAs are embedded in FRP components to actively tune the 

properties of the composites (Epps and Chandra, 1997; Baz et al. 2000; Song et al., 

2000a; Song et al., 2000b; Icardi, 2001; Loughlan et al., 2002). Similarly, SMAs are 

embedded in FRP components to increase the energy dissipation capacity of the 

composites (Turner 2005; Liu et al., 2007, Wierschem and Andrawes, 2010; Raghavan et 

al., 2010). In both cases the effectiveness of the SMA/FRP composite relies on 

establishing an effective bond between the two materials. Several researchers have studied 

the effect of surface treatment methods on the bond behavior of SMA. Jonnalagadda et al. 

(1997) investigated the effect of the surface treatment of SMA wires embedded in an 

epoxy matrix on the bond strength using pull-out tests. Different surface treatments were 

investigated: untreated, acid-etched, hand sanded, and sandblasted. Sandblasting provided 

the highest bond strength, while acid etching and hand sanding were less effective 

methods of enhancing the bond properties. Jang and Kishi (2005) examined different 

methods of acid etching to increase the bond strength between NiTi SMA wires and 

CFRP. They found that the bond strength increased 3% to 18% compared to the untreated 

wires. Acid etching with a 3% hydrofluoric acid and 15% nitric acid solution produced 

the highest bond strength of the treatment methods studied. The increase in the interfacial 

bond strength was attributed to the surface roughness caused by the acid etching. 

Sadrnezhaad et al. (2009) evaluated the bond behavior between NiTi SMA and a silicone-

based matrix for medical applications. SMA wires with different surface treatments were 

investigated under scanning electron microscopy and pull-out tests were conducted to 
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determine the morphological and bonding interactions with the silicone matrix. Acid 

etching and oxidization increased the frictional forces at the interface which led to an 

increase in the bond strength.  

Using scanning electron microscopy Lau et al. (2002) examined the debonding 

failure mechanism of prestrained martensitic SMA wires embedded in an epoxy matrix. 

Debonding occurred at the SMA-epoxy interface for wires that were prestrained up to 8% 

when the wires were heated beyond the austenitic finish temperature, Af. Heating caused 

the surrounding epoxy to expand while the SMA wires contracted due to the shape 

memory effect. This induced large shear stresses which led to debonding of the highly 

prestrained wires. As such, it was recommended to prestrain the SMA wires to less than 

8% to reduce the interfacial shear stresses. 

Poon et al. (2005a,b) studied the interfacial bond behavior of prestrained 

martensitic SMA wires embedded in an epoxy matrix. A model was developed to predict 

the debonding behavior, initial debonding stress, and critical bond length (Poon et al., 

2005a). The maximum debonding stresses at different activation temperatures were 

predicted and compared with experimental results. The model captures the change in the 

embedment length with the increase of the activation temperature. Also, a phase-stress-

displacement diagram was developed that can be used to determine the critical pull-out 

stress of prestrained martensitic SMA wires embedded in an epoxy matrix during 

activation (Poon et al., 2005b). Wang et al. (2011) developed a closed-form solution to 

analyze the stress distribution along the SMA-epoxy interface when the shape memory 

effect of a SMA wire embedded in cylindrical epoxy matrix is activated. A finite element 

analysis was also conducted to validate the closed-form model. Both the closed-form 
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solution and the finite element analysis indicate that the maximum interfacial shear stress 

is located at the ends of the SMA wire while the maximum axial stress is at the midpoint 

of the embedded SMA wire. Both the axial stress and the interfacial shear stress increased 

with the increase of the actuation temperature. The maximum interfacial shear stresses 

were proportional to the prestrain level, while the maximum axial stress in the SMA 

increased nonlinearly. 

Payandeh et al. (2009) examined the bond behavior of martensitic NiTi wires 

embedded in a cylindrical epoxy matrix by pull-out tests. Three heat treatments were 

applied to the NiTi wires in order to achieve three martensitic transformation 

characteristics. The embedded wires were loaded in a displacement control until failure 

complete occurred. The effect of the loading rate on the debonding behavior was also 

studied. A digital camera behind a polariscope was used to observe the debonding process 

during the test. Based on the test results it was concluded that the bonded part of the wire 

cannot experience transformation since transformation induces large strains. Debonding 

occurred if the debonding load was smaller than the transformation load. In a companion 

study the effect of the martensitic transformation on the debonding initiation of 

martensitic SMA wires embedded in an epoxy matrix was investigated (Payahdeh et al., 

2010). It was found that the maximum interfacial shear stress depends on the wire’s 

elastic modulus. The interfacial shear strength for specimens with SMA wires was less 

than that of specimens with steel wires. Based on the experimental observations the 

interfacial shear strength was about 9 MPa for specimens that exhibited no phase 

transformation, and 14 MPa when martensitic transformation occurred. Payandeh et al. 

(2012) studied the effect of the martensitic transformation on the debonding initiation in 
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non-prestrained SMA wire-epoxy matrix composites at different temperatures. SMA 

wires were embedded in an epoxy coupon to achieve 6% and 12% SMA volume fractions. 

Epoxy coupons with SMA volume fractions of 6% were tested in tension at 20oC, 80oC, 

and 90oC, while specimens with SMA volume fractions of 12% were tested at 80oC and 

90oC. Increasing the test temperature increased the tensile strength of the composites 

while the tensile strength of the epoxy decreased. The martensitic transformation occurred 

in multiple locations in the embedded wires causing a bonded/debonded pattern. 

2.4.1. Anchorage of SMA wires in FRP composites 

Epps and Chandra (1997) studied experimentally and numerically the active 

tuning of composite beams with embedded SMA wires. The SMA wires inserted into 

embedded sleeves in the composite beam then clamped at both ends of the composite. 

This approach eliminated the problems associated with the adhesive softening during 

activation of the wires. It was found that one SMA wire with a diameter of 0.5 mm was 

able to increase the first frequency of the composite by 22%. Extending this study 

numerically suggested that the frequency of the composite could be increased by 276% 

when embedding 25 SMA wires with a diameter of 0.5mm. Yuse and Kikushima (2005) 

proposed the SMA-FRP system shown in Figure 2.4 which can be bonded to other 

elements for vibration control. The proposed system relies on the interlock between the 

SMA and the adhesive to transfer the recovery force. Hence, overcame the challenges 

associated with debonding while activating the wires. The authors demonstrated 

experimentally that the partial embedment of the SMA wires allowed for faster response 

during cooling compared to the systems with full embedment as the wires are exposed and 

cooled by the ambient air. 
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Chapter 3: Conceptual Development and Materials Selection 

In this chapter the conceptual development of the self-stressing patch is discussed. 

Three different SMA wires were tested as well as two structural adhesives to determine 

their thermomechanical properties. Based on the results the most suitable materials were 

selected. Based on the work conducted in this chapter a discussion is presented at the end 

of the chapter to summarize configurations of the proposed self-stressing patch. 

3.1. Conceptual development 

The self-stressing SMA/FRP composite patch consists of three main constituents: 

SMA wires to apply the prestress force, fibers to bridge the fatigue cracks, and adhesive 

to bond and protect the fibers and the SMA wires. The prestressing force is generated by 

utilizing the unique thermomechanical properties of the SMA. The concept of the self-

stressing patch is to embed prestrained SMA wires into two FRP tabs as shown in Figure 

3.1. The cured tabs can be bonded to a cracked steel element using a structural adhesive to 

anchor the SMA wires to the structure on either side of the crack. The SMA wires can 

then be activated by application of direct heat or electrical current thereby providing a 

prestressing force. An FRP overlay is subsequently bonded to the repaired member to 

bridge the crack. The self-stressing patch applies a prestressing force directly to the 

repaired element with neither heavy equipment nor fixtures. 
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Figure 3.1. A schematic drawing showing the application of the proposed self-
stressing SMA/FRP patch to a cracked steel element 

An effective prestressing force can be as small as 12 kN to 15 kN (Taljesten et al, 

2009) or as high as 165 kN (Bassetti et al., 2000). The effectiveness of the prestressed 

repair system does not depend on the prestressing level only but also depends on the 

geometry and properties of the repaired element, and the dimensions and material 

properties of the FRP material. To design a prestressing system one needs to determine 

the minimum prestressing level required to halt a fatigue crack, which allows the structure 

to have an infinite fatigue life. The prestressing level can be determined based on either a 
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fracture analysis based model as presented by Huawen et al. (2010) and Ghafoori et al. 

(2012a,b) or a constant fatigue life diagram concept (Goodman, 1899; Johnson, 1899) as 

presented by Ghafoori et al. (2015a,b). In this study it is required to demonstrate that the 

self-stressing patch is capable of generating a prestressing force in the same order of 

magnitude as other prestressing systems available in the literature which can reach an 

infinite fatigue life. 

3.2. Materials 

The complexity of developing the self-stressing patch comes from the different 

mechanical and thermomechanical properties of each of the constituents. As the SMA 

wires are heated, the surrounding adhesive may heat up, leading to possible degradation 

of its mechanical properties and debonding of the SMA wires from the FRP tabs. Thus, a 

complete loss in the recovery force could occur. The thermomechanical properties of three 

SMA wires and two structural adhesives were studied to determine the suitable materials 

for the proposed self-stressing patch.  

3.2.1. Shape Memory Alloys 

Three SMA materials were tested to evaluate their thermomechanical properties 

and to quantify the maximum recovery stress that can be achieved using each alloy. These 

include: a binary NiTi alloy that was martensitic at room temperature and exhibits the 

shape memory effect upon heating; NiTi alloy that was austenitic at room temperature and 

exhibits the superelastic effect at room temperature; and a ternary NiTiNb alloy that is 

martensitic at room temperature, with a wide thermal hysteresis. The NiTiNb SMA 

exhibits the shape memory effect upon heating. In this research the first is called shape 

memory NiTi, the second is called the superelastic NiTi, and the last is called NiTiNb. 
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exceeded 30oC, increasing the temperature resulted in a corresponding increase of the 

recovery stress until the temperature reached 75oC at which point the stress reached 415 

MPa and remained constant. Inspection of the figure suggests that the austenitic start (As) 

and finish (Af) temperatures of the wire were 30oC and 75oC, respectively. Upon 

removing the electric current the wire started to cool immediately and the recovery stress 

decreased until it reached zero stress at a temperature of 40oC. By observing the hysteretic 

behavior of the shape memory NiTi SMA wire it can be seen that removal of the heat 

sources results in a rapid loss of recovery force. This indicates that in the case of heating 

the SMA wires using an electrical current, this would require a continuous reliable power 

supply. This is not a feasible solution if the shape memory NiTi SMA wire is to be used in 

applications requiring a sustained recovery. The wire was partially cooled to simulate 

either change of the ambient temperature or intermittent loss of electric current as shown 

in Figure 3.6. The figure illustrates that partial cooling of the wire causes partial loss of 

the recovery force. 

 

Figure 3.6. Stress temperature relationship for shape memory NiTi wire 
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3.2.1.b Superelastic NiTi 

The superelastic NiTi SMA wire was supplied by NDC Inc. It is known 

commercially as alloy SE495 and was provided with grit blasted surface. The superelastic 

NiTi SMA wires have a nominal composition by weight of 55.8% nickel, oxygen ≤ 

0.05%, carbon ≤ 0.02%, titanium balance, and inclusion area fraction ≤ 2.8% 

(NDC, 2015b). The reported ultimate tensile strength and ultimate strain is ≥ 1070 MPa 

and ≥ 10%, respectively. The alloy is austenitic at room temperature and hence, it exhibits 

the superelastic effect. Three wire diameters were evaluated in this research: 0.47 mm, 

0.66 mm, and 0.89 mm. Three samples of each wire diameter were tested in tension 

according to ASTM F2516 (ASTM International, 2014). The test setup and the 

instrumentations used in this test are shown in Figure 3.8. A load cell with a capacity of 

1.1 kN (Omega Engineering, model number LC8200-625-250) was used to measure the 

force. An extensometer with an initial gage length of 13 mm (Epsilon Technology., model 

number 3442-0050-050-HT1) was used to measure the elongation of the wire. The data 

acquisition shown in Figure 3.3 was used to collect the data at a frequency of 1 Hz. 
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Figure 3.8. Stress strain curves for the superelastic NiTi SMA wires 

Table 3.1. Mechanical properties of the superelastic NiTi SMA 

Diameter 
[mm] 

Test # u 
[MPa] 

u 
[mm/mm]

UPS 
[MPa] 

LPS 
[MPa] 

0. 47 

1 1350 0.124 485 180 

2 1345 0.116 490 180 

3 1315 0.117 500 185 

0. 66 

1 1240 0.116 505 205 

2 1280 0.128 505 195 

3 1225 0.108 515 190 

0. 89 

1 1310 0.130 470 150 

2 1320 0.132 475 190 

3 1330 0.137 485 165 

Average 1300 0.123 490 180 

Standard Deviation 44 0.009 14 16 

COV1 (%) 3.4 7.6 3.0 8.8 
1 Coefficient of variation (COV) = Standard deviation/average x 100 

 

A prestressing force can be generated utilizing the superelastic effect following 
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fibers can be applied sandwiching the wires to fabricate the patch. Upon curing of the 

patch the wires can be released from the prestressing frame and the patch can be installed 

to the cracked structure. A superelastic NiTi SMA wire is expected to generate a force of 

490 MPa per wire, which is 18% higher compared to the 415 MPa recovery stress in the 

case of the shape memory NiTi wire. However, it requires a heavy prestressing frame. 

Hence, it has no advantage over the conventional FRP prestressing techniques. 

3.2.1.c NiTiNb  

The NiTiNb SMA is a ternary alloy that exhibits the shape memory effect upon 

heating from room temperature and maintains a recovery force at room temperature. 

NiTiNb SMAs are known for their wide thermal hysteresis. As per the manufacturer, the 

As, Af, Ms and Mf of the alloy is 47oC +/-5oC, 165oC, -65oC and -120oC, respectively. The 

NiTiNb SMA wires were received in a prestrained condition and with a grit blasted 

surface. The diameter of the wires after grit blasting was 0.77 mm. The wires were 

provided in 1370 mm long ± 100 mm discrete pieces. The wires were prestrained to 

0.11 mm/mm prior to delivery with a recoverable strain of 0.056 mm/mm upon heating. 

More details about the prestraining technology can be found in US Patent 4631094 

(Simpson et al., 1986). The manufacturer recommends heating the wire up to 165oC to 

ensure full transformation of the wires and to maximize the recovery force. Six samples of 

the NiTiNb wire were tested in tension to evaluate the mechanical properties of the wire. 

Three wires were tested at room temperature in as-delivered condition (with no 

activation). Three other wires were activated by heating to 165oC while unrestrained then 

cooled to room temperature and tested after cooling. The test setup and instrumentation 
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used in this test are identical to what described in section 3.2.1.b. Table 3.2 summarizes 

the test results, while Figure 3.9 shows the stress-strain relationships of the tested wires.  

Table 3.2. Mechanical properties of the prestrained NiTiNb SMA  

  u [MPa] u
*

 [mm/mm] 

Not activated 

Test #1 1160 0.317 

Test #2 1165 0.411 

Test #3 1160 0.351 

Average 1160 0.360 

Standard Deviation 2.9 0.048 

COV (%) 0.3 13.2 

Activated 

Test #1 1120 0.477 

Test #2 1155 0.481 

Test #3 1142 0.444 

Average 1140 0.467 

Standard Deviation 17.7 0.020 

COV (%) 1.6 4.4 

* The wires were received in prestrained condition with recoverable 
strain of 0.056 mm/mm 

 

 

Figure 3.9. Stress-strain curves of the NiTiNb SMA wires 
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The NiTiNb was activated by passing an initial current of 3 amps through the 

wire, and increasing the current in increments of 0.5 amps until the recovery force 

stabilized at 7.5 amps. A seating load of 8.9 N was applied prior to heating of the wire. 

Figure 3.11 shows the relationship between the SMA recovery stress and the wire 

temperature. The As temperature range is indicated on the figure as well as the 

recommended temperature for full activation of the wire. The figure shows the response 

of the NiTiNb wires and the response of a shape memory NiTi wires for comparison 

purposes. Inspection of Figure 3.11 indicates that the recovery stress in the NiTiNb wire 

increased continuously with the increase of temperature up to a temperature of 51oC (As). 

After that temperature the recovery stress increased at a higher rate until the temperature 

of the wire reached 113oC. The recovery stress remained constant at 390 MPa after this 

temperature. Upon cooling of the wire to room temperature, the wire stress remained 

essentially constant. Inspection of the figure indicates that the NiTiNb and the shape 

memory NiTi generated a prestressing stress of 390 MPa and 415 MPa, respectively. 

However, upon cooling down the NiTiNb SMA was able to maintain the recovery force 

unlike the shape memory NiTi which lost all the recovery force. This illustrates the ability 

of the NiTiNb wire to sustain significant recovery stresses at room temperature. 
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Figure 3.11. The relation between the NiTiNb recovery stress and wire 
temperature 

The stability of the recovery force during repeated extreme heating is investigated. 

The same wire used in the recovery force test was subjected to 12 thermal cycles. In each 

cycle, the wire was heated to 165oC then cooled to room temperature. The applied 

temperature profile and the corresponding recovery stresses are shown in Figure 3.12(a) 

while the degradation of the room-temperature recovery stress with the number of thermal 

cycles is presented in Figure 3.12(b). Inspection of Figure 3.12 indicates that the wire 

maintained a stable recovery stress during the first four thermal cycles with gradual 

relaxation during the fifth and sixth cycles. The test was stopped after 12 heating cycles as 

no significant reduction was observed after the 7th heating cycles. It is expected that the 

recovery stress would remain stable at 315 MPa afterwards. It can be concluded that the 

wire can maintain over 80% of the recovery force after extreme heating cycles. The 

maximum temperatures experienced by most civil structures during service are typically 
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below 40oC, and are not expected to cause any significant degradation of the recovery 

stress. 

 

Figure 3.12. (a) Thermal loading protocol with corresponding recovery stress, 
and (b) Recovery stress of NiTiNb measured after cooling to 25oC 
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prestress. Hence, evaluating the thermomechanical properties of the saturating resin is 

essential to prevent any loss in the repair system. There are standard tests available to 

determine the so called glass transition temperature (Tg) of the adhesive. The Tg is the 

temperature at which the adhesive transition from the glassy to the rubbery state. 

However, the value of the Tg varies between different test methods. The interest of this 

study is to determine the temperature at which the tensile stiffness of the adhesive is 

substantially reduced which would cause a loss in the prestressing force. In this section 

the thermomechanical properties of two structural adhesives are evaluated by plotting the 

relation between the tensile modulus of the adhesive tested at various temperatures.  

Two commercially available structural adhesives were evaluated: Tyfo S (By Fyfe 

Co.) and Araldite LY 5052 / Aradur 5052 (by Huntsman Advanced Materials). Both 

adhesives were low-viscosity, two-part components with ambient temperature cure cycles 

and optional elevated temperature post-cure treatments. Throughout the rest of this 

dissertation the first adhesive is called Tyfo S, while the second is called Araldite. A total 

of 60 cured resin coupons were tested according to ASTM D638-14 (ASTM International, 

2014) to evaluate their tensile moduli and strengths at different temperatures. Figure 3.13 

shows the details of the epoxy coupons. The epoxy coupons were prepared by mixing, by 

weight, 100 parts of component A to 34.5 parts of component B for the Tyfo S adhesive, 

and 100 parts of component A to 38 parts for component B for the Araldite adhesive. The 

mixed epoxies were then cast into a machined plastic mold shown in Figure 3.14. 
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Table 3.3. Epoxy test matrix 

 
Curing 

temperature1 
Post cure 

temperature2 
Testing temperature 

 [oC] [oC] [oC] 

Tyfo S 25 --- 25, 45 

Araldite 

25 --- 25, 45, 60 

25 45 25, 45, 60, 75, 100 

25 60 25, 45, 60, 75, 100 

25 75 25, 45, 60, 75, 100 
1 Specimens were cured for 7 days 
2 Specimens were post cured for 1 day 

 

Figure 3.15 shows the test setup of the epoxy coupons test. A 22-kN load cell 

(Tovey Engineering, model number SW10-5K-B000) was used to measure the applied 

load, while an extensometer with an initial gage length of 13 mm (Epsilon Technology., 

model number 3442-0050-050-HT1) was used to measure the elongation of the epoxy. 

The coupons were heated in a frame-mountable environmental chamber (Instron, model 

number 3111) with a maximum temperature capacity of 204oC. The chamber was set to 

the desired testing temperature and the internal temperature was allowed to achieve a 

steady state. The epoxy coupon was gripped from one end and the extensometer was 

affixed to the specimen inside the environmental chamber. The specimens along with the 

extensometer were left for 20 minutes to allow for both. Then the other end of the 

specimen was gripped and the gage length of the extensometer was reset. The specimen 

was re-soaked for another 10 minutes to overcome any drop in the temperature inside the 

chamber during the gripping process. 
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at 45oC and tested at 60oC exhibited an elastic modulus of 1820 MPa. This shows that 

post curing of the Araldite adhesive resulted in an increase in the elastic moduli of the 

adhesive at elevated temperatures. Since the post-cure temperatures were above the 

austenitic start temperature of the SMA, the curing regimens would likely cause partial 

activation of the SMA wires in the patch. As such, elevated temperature post-cure cycles 

are not recommended for the proposed application. The Araldite adhesive was selected for 

further consideration in the patch development as the Araldite adhesive retained higher 

tensile modulus at room temperature and within the austenitic start temperature range 

compared to the Tyfo S adhesive. 

 

Figure 3.16. The relation between the tensile modulus of adhesives versus 
temperature 

3.2.3. Fibers 

Throughout this research two fiber types were used: carbon fibers and glass fibers. 

Both fibers were supplied by Fyfe. The reported tensile strength, tensile modulus, 

elongation, density, and aerial weight of the dry fibers are summarized in Table 3.4  
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Table 3.4. Carbon and glass fibers properties 

 Carbon fibers Glass fibers 

Tensile strength [MPa] 3790 3240 

Tensile modulus [MPa] 230,000 72,400 

Elongation [mm/mm] 0.017 0.045 

Density [gm/cm3] 1.79 2.55 

Aerial weight [gm/m2] 644 915 

 

3.3. Wire activation and thermal transfer 

To ensure complete activation of the wires, the manufacturer recommends heating 

the wires to 165oC. This temperature is well above the softening temperatures of the two 

adhesives tested in the previous section. The testing reported in section 3.2.2 further 

indicates that the softening temperature, the temperature at which the elastic modulus 

drops to 50% of its room temperature value, of commonly used ambient-temperature cure 

structural adhesives is within the range of 45oC to 60oC. Softening of the adhesive during 

activation of the SMA wires would allow the SMA wires to slip during activation 

resulting in partial to no restraint of the transformation process and subsequently little to 

no recovery forces developed in the wires. Therefore, the activation process of the patches 

must be carefully considered to prevent the temperature in the FRP patch from exceeding 

the softening temperature of the saturating resin, thereby maximizing the recovery forces 

in the wires and the compressive stresses transferred to the substrate.  

To overcome the adhesive softening problem the self-stressing shown in Figure 

3.17 can be activated by heating only the exposed portion of the wires to generate the 

prestressing force. This eliminates the challenges associated with softening of the epoxy.  
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Figure 3.17. Proposed configurations for the self-stressing patch 

3.3.1. Localized electrical heating of NiTiNb wires 

A 255-mm long, 0.81 mm diameter NiTiNb wire was tested to study the possible 

epoxy softening in the bonded region due to heat transfer by thermal conduction through 

the SMA wire. The temperature along the wire was measured using electrically insulated 

thermocouples (Omega Engineering, model number SA1-T-120), as shown in Figure 

3.18(a). Two electrodes were attached to the wire with a spacing of 125 mm. The distance 

between the electrode and the thermocouple outside the heated area was 20 mm as shown 

in the figure. The measured temperature profiles along the length of the wire are plotted in 

Figure 3.18(b) at different heating time intervals. Inspection of the figure indicates that 

the temperature of the wire between the two electrodes reached nearly 120oC. However, 

immediately outside of the electrodes, the temperature of the wire remained constant after 

10 minutes of continuous heating. This indicates that electrically heating the central 

exposed portion of the SMA wires is a viable alternative for the proposed configuration. 
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sustained recovery force at room temperature after 12 cycles. However, cycling heating 

and cooling in the expected service temperature range for most civil infrastructure (up to 

40oC) is not expected to have any significant impact on the recovery force. 

Post curing of the Araldite adhesive resulted in an increase in the elastic moduli of 

the adhesive at elevated temperatures. However, post-cure temperatures above the 

austenitic start temperature of the NiTiNb SMA would likely to cause partial activation of 

the SMA wires in the patch. As such, elevated temperature post-cure cycles are not 

recommended for the proposed application. The Araldite adhesive was selected as it 

retained higher tensile modulus at room temperature and 45oC. The maximum 

temperatures experienced by most civil structures during service are typically below 40oC, 

and are not expected to cause any significant degradation of either the recovery stress or 

the tensile modulus of the Araldite adhesive. Activating the central exposed portion of the 

wire, 20 mm away from the patch would eliminate the possible softening of the epoxy at 

the embedded part the SMA wires in the patch configuration presented. 
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Chapter 4: Bond Behavior of Superelastic NiTi and NiTiNb 

SMA Wires Embedded in FRP Composites 

Effective bond between SMA wires and FRP materials is essential to ensure that 

composites with embedded SMA wires perform as intended. The research conducted to 

date predominantly studied the bond behavior of martensitic Nitinol wires, which exhibit 

the shape memory effect, embedded in epoxy cylinders (Lau et al, 2002; Poon et al, 

2005a,b; Payandeh et al., 2009; Wang et al., 2011 Payandeh et al., 2012). Comparably 

little is known about the bond behavior between other types of SMA wires, such as 

superelastic Nitinol or NiTiNb, embedded in thin FRP composites. The complexity of 

bond behavior between superelastic NiTi and FRP comes from the abrupt change of 

modulus caused by the stress-induced martensitic transformation, which may lead to 

debonding. Understanding the debonding behavior is essential in the design of FRP 

composite systems with embedded superelastic NiTi such as ductile FRP rebars 

(Wierschem and Andrawes, 2010) and composites with embedded SMA damping (Liu et 

al, 2007; Raghavan et al., 2010). 

The self-stressing patch proposed in this dissertation is composed of NiTiNb wires 

embedded in FRP composite. The prestressing force generated by the NiTiNb wires is 

transferred to the FRP composite through the bond interface. The stability of the 

prestressing force relies on effective bond between the NiTiNb wires and the FRP. 

Debonding between the two could lead to partial or full loss of the pretress force which 

could compromise the effectiveness of the repair.  
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This chapter outlines and presents the experimental work conducted to study the 

bond behavior between two SMA wires: superelastic NiTi and NiTiNb to FRP 

composites. A total of 60 pull-out specimens were fabricated and tested in this study. 

Table 4.1 presents the test matrix for the pull-out specimens with superelastic NiTi wires 

embedded in CFRP. The factors considered in this study were the wire diameter (0.47 

mm, 0.66 mm and 0.89 mm) and the embedment length (13 mm, 25 mm, 51 mm, 102 mm 

and 127 mm). Three repetitions of each configuration were tested. 

Table 4.1. Test matrix for the pull-out specimens with superelastic NiTi 

db Ld Number 
of 

repetitions [mm] [mm] 

0.47 

13 (28db) 

3 

25 (53 db) 

51 (109 db) 

102 (217 db) 

127 (270 db) 

0.66 

13 (20 db) 

25 (38 db) 

51(77 db) 

102(155 db) 

127(193 db) 

0.89 

13(15 db) 

25(28 db) 

51(57 db) 

102(115 db) 

127(143 db) 
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Table 4.2 summarizes the test matrix for the NiTiNb pull-out tests. The test 

parameters for the specimens with NiTiNb wires include the embedment length (25 mm, 

51 mm and 102 mm) of the SMA wires, fiber type in the FRP composite, and the number 

of wires per specimen. The pull-out specimens were divided into three groups, as 

summarized in the table. The specimens in the first group consisted of a single NiTiNb 

wire embedded in CFRP with embedment lengths of 25 mm, 51 mm and 102 mm. The 

specimens were tested to evaluate the minimum embedment length required to develop 

the maximum interface strength. The second group consisted of three NiTiNb wires 

embedded in CFRP with embedment length of 102 mm. The specimens of the second 

group were tested to examine the possible interaction between the adjacent wires. In the 

third group, the effect of the FRP type on the pull-out behavior of a single wire was 

examined. Three repetitions were tested of each configuration. 

Table 4.2. Test matrix for the pull-out specimens with NiTiNb 

 
Fiber 
type 

Adhesive 
type 

Embedment length Number of 
embedded 

wires 

Number 
of 

repetitions [mm] 

Group 1 Carbon Araldite 25 (33 db) 1 

3 

   51 (66 db)  

   102 (132 db)  

Group 2 Carbon Araldite 102 (132 db) 3 

Group 3 Glass Araldite 102 (132 db) 1 

 

4.1. Specimen details 

Figure 4.1 shows the dimensions and details of the pull-out specimens. All the 

pull-out specimens were fabricated using a hand lay-up method. The specimens with 

superelastic NiTi SMA wires were fabricated by embedding a single wire between two 
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layers of unidirectional carbon fiber fabric. Tyfo S was used as a saturating resin as the 

superelastic wire does not require activation, hence, the softening of the adhesive is not 

expected to be an issue. The specimens with NiTiNb SMA wires were fabricated using 

either glass and carbon fibers, and saturated using the Araldite resin. The properties of 

fibers, resins, and SMA wires are presented in details in Chapter 3.  

 

Figure 4.1. Pull-out specimen dimensions 

As shown in Figure 4.1, the SMA wires extended 76 mm outside the FRP to 

provide room to grip the wire and affix the instrumentation. Aluminum tabs were bonded 

to the end of the FRP patch and gripped in the load frame during testing. A clear distance 

of 25 mm was provided between the end of the embedded SMA wire and the tabs to 

prevent interference in the bonded portion of the wire. Figure 4.2(a) and (b) show the 

pull-out specimens with superelastic NiTi and NiTiNb SMA wires, respectively. The 

specimens were mounted in an electromechanical test frame and the wires were pulled out 

of the patches by applying an axial tension force in displacement control. The pull-out 

specimens with superelastic NiTi and NiTiNb SMA were tested at a rate of 

2.5 mm/minute, and 0.4 mm/minute, respectively. 

76Ld2551 [mm]

25

3 wires spaced 
at 0.89 mm

25

Aluminum tab

SMA 
wire(s)

CFRP
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4.2. Test setup and instrumentation 

Figure 4.3 shows the test setup and instrumentations used for the pull-out tests. 

Two sets of instrumentations were used: conventional instrumentation and a digital image 

correlation system (DIC). The DIC was used to help identifying the onset and propagation 

of debonding. The conventional instrumentations consisted of (a) two load cells with 

capacity of 22 kN (Tovey Engineering, model number SW10-5K-B000) and 1.1 kN 

(Omega Engineering, model number LC8200-625-250) which were used to measure the 

load; (b) two extensometers with initial gage lengths of 13 mm (Epsilon Technology., 

model number 3442-0050-050-HT1), and 51 mm (Epsilon Technology., model number 

3542-0200-050-ST) were used to measure the elongation of the wire, and the relative 

displacement between the wire and the FRP, respectively; and (c) a data acquisition 

system (Micro-Measurements, system 7000) to record the readings from the conventional 

instruments. The data acquisition system recorded at a frequency of 1 Hz. 
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cell conditioner (Omega Engineering, model number DRF-LC-115VAC-20MV-0/10) 

with an output voltage of 10 VDC for an input of 20 mV to amplify the signal which was 

subsequently connected to the data acquisition system on the DIC controller.  

 

Figure 4.5. Schematic drawing of the instrumentation used for the pull-out 
test 
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The strain contours shown in Figure 4.7 indicate the presence of a localized strain 

concentration at the location where the SMA wire exited the CFRP patch. As loading 

continued the size and intensity of the strain concentration increased until a time of 94 

seconds. At that stage a clear shift of the strain concentration away from the edge of the 

CFRP patch was observed. This indicates the initiation of observable debonding of the 

wire. The debonding propagated along the embedment length of the SMA wire as 

indicated by the shift of the location of this strain concentration.  

Inspection of the load and displacement histories shown in Figure 4.7 reveals that 

initially the applied load increased up to 79 N, at a test time of 34 seconds (indicated by  

in Figure 4.7). The corresponding stress in the wire was 456 MPa which is consistent with 

the upper plateau stress of the SMA. This suggests that the initiation of the martensitic 

transformation occurred in the wire. The DIC system indicated that the wire remained 

completely bonded to the CFRP patch up to that stage. Inspection of the wire elongation 

history (obtained by the 13 mm extensometer) indicates that the corresponding strain in 

the wire was 0.011 mm/mm which is consistent with the transformation strain of the wire. 

After this stage the displacement remained constant for 33 seconds as the transformation 

initiated and propagated outside of the extensometer gage length. At a test time of 76 

seconds (indicated by  in Figure 4.7) the strain in the wire within the gage length of the 

13 mm extensometer started to increase again. This indicates propagation of the 

transformation of the wire within the gage length of the extensometer. The wire strain 

increased up to 0.069 mm/mm which is consistent with the measured complete 

transformation strain of the wire. 
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Inspection of the displacement history (obtained by the 51 mm extensometer) 

indicates that the relative displacement between the SMA wire and the CFRP patch was 

negligible up to a test time of 54 seconds (indicated by  in Figure 4.7). At that stage the 

relative displacement increased gradually due to transformation of the unbonded SMA 

wire within the gage length of the 51 mm extensometer and very close to the edge of the 

CFRP patch. At test time of 86 seconds (indicated by  in Figure 4.7) the relative 

displacement rate increased noticeably. This increase of the displacement rate was 

attributed to the onset of debonding which is consistent with the DIC observations. Failure 

was observed as a sudden drop of the applied load at a test time of 155 seconds (indicated 

by  in Figure 4.7) which corresponded to complete debonding of the wire from the 

patch. 

For specimens with wire diameters of 0.66 mm and 0.89 mm and embedment 

lengths up to 13 mm and 25 mm, respectively, complete debonding of the wire was 

observed prior to the onset of the martensitic transformation in the SMA wire. This was 

due to the relatively large diameters of these wires and the relatively short development 

lengths. Figure 4.8 shows the debonding sequence for a specimen with a wire diameter of 

0.89 mm and an embedment length of 25 mm in a similar format to that of Figure 4.7. The 

figure shows a similar strain concentration to that shown in Figure 4.7. The shift of the 

strain concentration was observed after the load reached 252 N at a test time of 25 

seconds. This indicates that debonding initiated and propagated along the embedment 

length of the SMA wire. Complete debonding occurred at an applied load of 318 N which 

corresponds to wire stress of 512 MPa. The measured stress in the wire at failure suggests 

that the transformation of the wire was imminent. Inspection of the figure indicates that 
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51 mm and wire diameters of 0.47 mm. The coefficient of variation of the strain was less 

than 10% in most cases although it was as high as 11% and 20% in specimens with 

embedment lengths of 25 mm and 13 mm and wire diameters of 0.47 mm and 0.89 mm, 

respectively. The coefficient of variation of the slip was less than 9% in most cases 

although they were as high as 20% and 25% in specimens with embedment lengths of 13 

mm and wire diameters of 0.66 mm and 0.89 mm, respectively. 

Table 4.3. Pull-out test results of NiTi Superelastic wire with diameter 0.47 mm 

Ld Test 
# 

Failure 
mode 

Maximum 
stress 

Ultimate 
strain 

Maximum 
slip 

Median (COV4) 

[mm] [MPa] [mm/mm] [mm] Stress Strain Slip 

13 

1 
1 

475 0.069 1.45 
470 
(2%) 

0.070 
(2%) 

1.72 
(14%)

2 475 0.071 1.94 

3 460 0.069 1.78 

25 

1 
1 

530 0.059 ---3 
520 
(8%) 

0.068 
(11%) 

0.52 
(5%) 

2 475 0.070 1.84 

3 560 0.073 1.73 

51 

1 
1 

445 0.068 3.51 
500 

(10%) 
0.070 
(4%) 

3.42 
(8%) 

2 545 0.068 3.65 

3 505 0.073 3.10 

102 

1 
1 

---2 0.070 7.04 

--- 
0.072 
(3%) 

7.13 
(1%) 

2 ---2 0.070 7.16 

3 545 0.074 7.19 

127 

1 
1 

500 0.073 8.70 
505 
(2%) 

0.067 
(9%) 

8.68 
(1%) 

2 513 0.061 8.66 

3 505 0.065 8.67 
1 Debonding after complete transformation of the wire 

2 Error in the load cell signal 

3 The 51 mm extensometer slipped 

4 Coefficient of variation = standard deviation / average x 100 
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Table 4.4. Pull-out test results of NiTi Superelastic wire with diameter 0.66 mm 

Ld Test 
# 

Failure 
mode 

Maximum 
stress 

Ultimate 
strain 

Maximum 
slip 

Median (COV5) 

[mm] [MPa] [mm/mm] [mm] Stress Strain Slip 

13 

1 
1 

495 0.010 0.41 
500 
(4%) 

0.010 
(2%) 

0.32 
(25%)

2 525 0.010 0.27 

3 485 0.010 0.27 

25 

1 
2 

550 0.076 1.16 
575 
(4%) 

0.080 
(13%) 

1.29 
(9%) 

2 575 0.091 1.34 

3 600 0.072 1.37 

51 

1 
2 

545 0.076 ---4 
540 
(1%) 

0.075 
(1%) 

2.91 
(5%) 

2 545 0.075 3.01 

3 530 0.074 2.81 

102 

1 
2 

590 0.076 6.71 
585 
(2%) 

0.072 
(4%) 

6.77 
(1%) 

2 570 0.077 6.82 

3 590 0.072 ---4 

127 

1 
2 

570 ---3 ---4 
565 
(3%) 

0.076 
(1%) 

8.67 
(1%) 

2 550 0.076 8.69 

3 570 0.076 8.65 

1 Debonding prior to transformation of the wire 

2 Debonding after complete transformation of the wire 

3 The 13 mm extensometer slipped 

4 The 51 mm extensometer slipped 

5 Coefficient of variation = standard deviation / average x 100 
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Table 4.5. Pull-out test results of NiTi Superelastic wire with diameter 0.89 mm 

Ld Test 
# 

Failure 
mode 

Maximum 
stress 

Ultimate 
strain 

Maximum 
slip 

COV5 [%] 

[mm] [MPa] [mm/mm] [mm] Stress Strain Slip 

13 

1 
1 

315 0.007 ---4 
290 
(8%) 

0.006 
(20%) 

--- 2 280 0.006 0.19 

3 270 0.005 ---4 

25 

1 
1 

510 0.012 0.21 
495 
(3%) 

0.012 
(7%) 

0.19 
(18%)

2 490 0.011 0.21 

3 480 0.011 0.15 

51 

1 
2 

535 0.071 2.68 
510 
(6%) 

0.071 
(1%) 

2.46 
(13%)

2 515 0.070 ---4 

3 480 0.071 2.23 

102 

1 
2 

555 0.072 4.55 
560 
(1%) 

0.072 
(1%) 

4.86 
(6%) 

2 560 0.072 5.11 

3 560 0.072 4.93 

127 

1 
2 

535 0.068 7.14 
540 
(2%) 

0.070 
(3%) 

7.00 
(3%) 

2 540 ---3 ---4 

3 550 0.071 6.85 

1 Debonding prior to transformation of the wire 

2 Debonding after complete transformation of the wire 

3 The 13 mm extensometer slipped 

4 The 51 mm extensometer slipped 

5 Coefficient of variation = standard deviation / average x 100 

 

Figure 4.9 (a) and (b) show the maximum measured stress and strain in the wires, 

respectively, as a function of the embedment length for the three tested wire diameters. 

The figure also shows the measured upper plateau stress, UPS, the strain at the onset of 
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transformation, and the upper transformation strain of the SMA wires. Inspection of the 

figure indicates the presence of two critical embedment lengths, Ld, and Ld,, 

respectively, for each of the wire diameters. The first critical length, Ld,, is the 

embedment length required for the wire to achieve its upper plateau stress, UPS, and 

begin transformation. It can be seen in Figure 4.9(a) that Ld, for the wires with diameters 

of 0.66 mm and 0.89 mm is 13 mm and 25 mm, respectively. All the specimens with wire 

diameters of 0.47 mm failed after complete transformation of the wire. Therefore, the first 

development length, Ld, could not be identified from the tests, but should be less than 

13 mm. It can be seen in the figure that increasing the embedment length of the wires 

beyond Ld, did not increase the debonding load for the wires since, in these cases, the 

peak load was limited by the transformation stress of the wire. However, increasing the 

development length beyond Ld, did increase the maximum strain that developed in the 

wires prior to complete debonding.  

The second critical embedment length, Ld,, is the embedment required for the wire 

to achieve the complete transformation strain of the SMA. Inspection of Figure 4.9(b) 

indicates that the second development length, Ld,, for the 0.47 mm, 0.66 mm, and 0.89 

mm diameter wires is 13 mm, 25 mm, and 51 mm, respectively. Increasing the 

development length beyond these lengths did not increase the maximum strain in the wire. 

For the specimens with wire diameter of 0.47 mm and 0.89 mm diameter wires the 

measured strain at complete transformation was less than the average value that was 

obtained from the individual wire tests. However, the difference was within the 



68 

experimental scatter of the results and was attributed to inherent inter-specimen 

variability. 

 

Figure 4.9. The relation between (a) Maximum measured stress versus 
embedment length, and (b) Maximum measured strain in the 
wire versus embedment length. 

Figure 4.10 presents the minimum development lengths, Ld, and Ld, as a 

function of the square of wire diameter, db
2. Inspection of the figure indicates that the 

minimum development lengths are proportional to the square of the wire diameter, db
2. 

Based on a regression analysis, the minimum development lengths, Ld,, and Ld, was 
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2
bd,ε d64L   and  (4.1) 

2
bd,σ d32L  .  (4.2) 

 

Figure 4.10. Comparison between the proposed empirical equation to predict 
the minimum Ld, and Ld, and the experimental results 

Equation 4.2 predicts that the first development length, Ld, for the 0.47 mm 

diameter wire is 7 mm. This embedment length is likely too small to verify 

experimentally. 

4.4. Results and discussion of the pull-out specimens with NiTiNb SMA wires 

All of the tested specimens failed by complete debonding of the NiTiNb SMA 

wires from the FRP patches. The debonded part of the wire had no epoxy bonded to it 

suggesting that an adhesive failure occurred at the wire-adhesive interface. The debonding 

was characterized by a sudden drop in the load. Table 4.6 summarizes the maximum 

recorded load and slip values just before complete deboning occurred for all of the tested 
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specimens. The mean and coefficient of variation of each group are also presented in the 

table. The coefficient of variation of the debonding load was less than 7% in all cases 

except for specimens in group 1 with an embedment length of 51 mm. The coefficient of 

variation of the slip was less than 3% in all cases except for the specimens in group 1 with 

an embedment lengths of 25 mm and 51 mm.  

Table 4.6. Pull-out test results of NiTiNb wires embedded in FRP composite 

Group 

# 
# of 

wires 
FRP 
type 

Ld 

[mm]
Test 

# 
max 

[MPa]

Maximum 
slip 

[mm] 

Mean COV3 [%] 

Stress Slip Stress Slip

1 1 C1 

25 

1 555 0.38 

265 0.37 2 14 2 570 0.41 

3 577 0.31 

51 

1 890 1.48 

365 1.15 13 25 2 750 1.05 

3 695 0.92 

102 

1 675 1.80 

330 1.78 4 2 2 715 1.71 

3 735 1.84 

2 3 C1 102 

1 770 2.57 

1115 2.49 7 3 2 865 2.23 

3 765 2.68 

3 1 G2 102 

1 665 1.64 

305 1.61 5 2 2 610 1.58 

3 690 1.62 
1 CFRP 
2 GFRP 

3 Coefficient of variation= standard deviation / average x 100 

 

Figure 4.11 shows the combined test results from the DIC and conventional 

measurement systems for a specimen with a single NiTiNb SMA wire embedded 25 mm 
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was observed. This indicates the initiation of observable debonding of the wire. The 

debonding propagated along the embedment length of the SMA wire, as indicated by the 

shift of the location of this strain concentration. The load-displacement relationship 

indicates that response was linear until debonding initiated at a load of 204 N, after which 

the applied load decreased slightly as the displacement increased. This is consistent with 

the DIC observation of debonding. Loading the specimen after the onset of debonding 

resulted in an increase in the load until failure occurred at a load of 260 N and relative 

displacement of 0.38 mm. The increasing load after debonding suggested that the force 

transferred through the bond is transferred through cohesion before the initiation of 

debonding and friction after debonding. 

4.4.1. Effect of embedment length 

Figure 4.12 shows the load versus the relative displacement between the NiTiNb 

wire and the CFRP for the specimens in group 1 with embedment lengths of 25 mm, 

51 mm and 102 mm. The figure indicates that all the specimens tested in this group 

exhibited a similar behavior. The specimens initially exhibited a linear response before 

the initiation of debonding. After debonding initiated the specimens exhibited a hardening 

response during which the load continued to increase until failure occurred. The 

increasing load after the initiation of debonding suggested that the force transferred across 

the wire-adhesive interface was transferred through cohesion before the initiation of 

debonding and friction after debonding.  

It should be noted that the specimens with Ld = 51 mm had the highest scatter in 

both the load and relative displacement at complete debonding. Moreover, the failure load 

for those specimens was higher than the failure load for specimens with Ld of 102 mm. 
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This increase in the failure load may have been due to the curvature of the embedded 

portion of the wire due to fabrication errors. The curvature induced interlocking 

component to the bond strength which increased the complete failure load. This suggests 

that the fabrication method requires modification to ensure the straightness of embedded 

portion of the wire. 

 

Figure 4.12. Load versus relative displacement for all pull-out specimens 
tested in Group 1 with NiTiNb embedded in CFRP  

4.4.2. Effect of multiple NiTiNb wires 

Specimens of the second group consisted of three NiTiNb wires spaced at 

0.89 mm that were embedded in CFRP with an embedment length of 102 mm. The 

specimens in the second group were tested to examine the possible interaction between 

the adjacent wires. No special precautions were taken to grip the wires as the diameter of 

the wires were small. Figure 4.13 shows the load (per wire) versus relative displacement 

for the specimens with 3 wires. The responses of similar specimens with a single 

embedded NiTiNb wire and the same embedment length are also plotted for comparison 
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purposes. Inspection of the figure indicates that the specimens with a single NiTiNb wire 

and those with three NiTiNb wire exhibit similar responses and failure loads. This 

suggests that a wire spacing of 0.89 mm, or 1.2 times the wire diameter, is sufficient to 

prevent any adverse interactions between the wires. 

 

Figure 4.13. Comparison between load-displacement responses of pull-out 
specimens with 1 NiTiNb wire with Ld of 102 mm versus 3 
NiTiNb wires with Ld of 102 mm embedded in CFRP patch 

4.4.3. Effect of FRP Type 

In the third group of specimens a single NiTiNb wire was embedded in a GFRP 

patch to examine the effect of the FRP type on the pull-out behavior. Figure 4.14 

illustrates the effect of the FRP type on the load-displacement response of pull-out 

specimens with a single NiTiNb wire embedded in CFRP and GFRP and a 102 mm 

embedment length. It can be seen in the figure that the specimens with SMA wires 

embedded in GFRP exhibited a similar behavior to the specimens with CFRP. However, 

complete debonding for specimens with wires embedded in GFRP occurred when the load 

dropped by 4%, after the drop the load remained constant while the wire is pulled out. 
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Visual inspection of the translucent GFRP specimen confirmed that the wire was 

completely pulled out as seen in Figure 4.15. Inspection of the Figure 4.14 indicates that 

the maximum stress achieved in NiTiNb wires embedded in GFRP patches was 8% lower 

than that for NiTiNb wires embedded in CFRP patches. This is within the experimental 

scatter, hence, there no evidence that the pull-out behavior depends on the FRP type. 

 

Figure 4.14. Comparison between load-displacement responses of pull-out 
specimens with 1 NiTiNb wire with Ld of 102 mm embedded in 
GFRP versus CFRP 
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the onset of debonding does not depend on either the embedment length or the number of 

wires. However, increasing the embedment length increased the load at complete 

debonding. This suggests that the interface strength is composed of two components: 

cohesion (before the onset of debonding) and friction (after the onset of debonding). The 

cohesion component does not increase by increasing the embedded length. However, the 

frictional component depends on unbonded length. 

 

Figure 4.16. Maximum measured stress per wire versus embedment length 
for all pull-out specimens 

The pull-out behavior during activation of the exposed part of the wire is expected 

to be similar to those pulled to failure as the bonded part in both cases remain not 

activated. 
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Chapter 5: Finite Element Analysis of Pull-out Specimens with 

NiTiNb SMA Wires Embedded in CFRP 

A 3-D nonlinear finite element analysis (FEA) was conducted using the 

commercial software package ABAQUS v6.12 to investigate the debonding mechanism 

of a NiTiNb SMA wire embedded in CFRP fabricated with Araldite adhesive. The results 

obtained experimentally for pull-out specimens with Ld of 25 mm were used to quantify 

the interface parameters. The FEA results were then then validated versus the 

experimental results obtained from specimens with Ld of 51 mm and 102 mm. The same 

procedure used in this bond study can be used to model the pull-out behavior when other 

combination of SMA and adhesive are used. 

5.1. Description of the 3-D finite element model 

Figure 5.1 illustrates the geometry and boundary conditions of the finite element 

(FE) model. The model consisted of the NiTiNb SMA wire, the CFRP patch, and the 

interfacial region. Symmetry boundary conditions were applied and one quarter of the 

specimen was modeled. A displacement of 5 mm, 7 mm and 10 mm was applied at the tip 

of the SMA wire for models with embedment lengths of 25 mm, 51 mm and 102 mm, 

respectively. Both the NiTiNb wire and the CFRP were meshed using 8-node continuum 

elements (element C3D8R) with three translational degrees of freedom at each node, 

linear shape functions, reduced integration and hourglass control. The mesh size was 

chosen similar to what was presented in Dawood et al. (2015). The auto mesh feature of 

the software was used to mesh the model. The NiTiNb wire was meshed to 480, 960 and 

1440 elements along the length for the models with embedment lengths of 25 mm, 52 mm 
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material was modeled with hardening which was defined in the form of a table using the 

stress and plastic strains obtained from the experiments in section 3.2.1.c. Figure 5.2 

compares the stress-strain curve obtained from the FE model to the stress-strains obtained 

experimentally. 

 

Figure 5.2. Stress-strain curve for the NiTiNb SMA wire obtained from the 
FEM with comparison to the experimental results 

The CFRP material was modeled as a transverse isotropic, elastic material with 

five independent elastic constants: longitudinal modulus (E1) of 86.6 GPa, transverse 

moduli (E2 = E3) of 4.98 GPa, shear moduli in the transverse plane (G12 = G13) of 

1.82 GPa, and Poisson’s ratios (12 = 13, and 23) of 0.3, and 0.3, respectively. E1 was 

determined experimentally by testing a trimmed part of the pull-out specimen in uniaxial 

tension according to ASTM D3039 (ASTM international, 2014). The tensile modulus of 

the fibers Ef was obtained from the manufacturer data sheet while the tensile modulus of 

the epoxy, Em, was determined experimentally according to ASTM D638 (ASTM 

international, 2014) as described in chapter 3. Knowing E1, Ef, and Em the fiber volume 

fraction, vf, and E2 were calculated using the rule of mixtures (Jones, 1999) as 
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E1 = Ef vf + Em (1-vf) and      (5.1) 
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Assuming f = m = 12 = 0.3, the remaining parameters required to define the 

mechanical properties of the FRP were calculated as 
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Full Newton technique was used with unsymmetrical matrix storage option to 

improve the convergence rate of the equilibrium iterations (Dassault Systèmes Simulia 

Corp., 2012). An initial step size was selected corresponding to a displacement at the tip 
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of the SMA wire of 0.005 mm per step. The step size was automatically subdivided up to 

1000 times until convergence was reached in each step. Complete debonding was reached 

between 30 to 95 steps. 

The computations were conducted using the Maxwell cluster available by the 

Center for Advanced Computing and Data Systems at the University of Houston. The 

cluster has a total of 3712 cores (114 – 8 GB, 4 cores AMD 2.2 GHz; 125 – 16 GB, 8 

cores AMD 2.2 GHz; 4 – 64 GB, 32 cores AMD 2.3 GHz; 28 – 64 GB, 32 cores AMD 2.2 

GHz; 4 – 128 GB, 32 cores AMD 2.2 GHz; and 2 – 512 GB, 64 cores AMD 2.2 GHz). 

The FEM with embedment lengths of 51 mm and 102 mm were run on a desktop 

computer (4 GB, 4 core Intel i5 3.20 Ghz). The computation time on the desktop 

computer was 20 minutes and 90 minutes for the models with embedment length of 51 

mm and 102 mm, respectively. 

5.2. Cohesive Zone Model 

In this research the traction-separation behavior of the CZM was defined by a 

linear elastic behavior followed by damage initiation and evolution (Dassault Systèmes 

Simulia Corp., 2012) as 
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where  is the nominal traction stress which consisted of three components: n the normal 

traction, 1 the traction along the length of the interface and 2 the tangential traction. The 

corresponding separations are n, 1and 2. The normal and tangential tractions are not 
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coupled in this study (kij = zero, where i j). The normal and tangential separations were 

assumed to be negligible compared to the separation along the interface based on the 

nature of the applied loading and the geometry of the specimen. Hence the traction-

separation law reduced to 

1111 δkτ  .            (5.11) 

In the following discussion the subscripts in the notation have been eliminated 

unless necessary for clarity. A maximum nominal stress criterion was used in which the 

damage initiated when the tangential shear stress  exceeds a critical value max. A scalar 

damage variable, D, was introduced to represent the load induced damage of the interface. 

The value of D ranges from initially 0 for undamaged interface to 1 when the interface is 

completely damaged. Hence the traction-separation law reduced to 



 


otherwise          ,             τ

met)   is  criterion    (damageτwhen  τ          ,  τD)(1
τ

e

maxe
 (5.12) 

where e is the interfacial shear stress predicted by the elastic traction separation law 

defined as 

δk τe  .            (5.13) 

The traction-separation relationship that describes the CZM behavior used to 

model the interface in this study is shown in Figure 5.3. The CZM shown in the figure 

consists of two parts: elastic behavior when the damage criterion is not met, and bilinear 

damage evolution which otherwise. The CZM model was defined using six parameters: 

the initial interface stiffness, k, the interfacial shear strength,max. The bilinear damage 
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evolution was defined by two points (1, 1) and (2, 2) in terms of the corresponding slip, 

, and damage parameter, D, as shown in Figure 5.3. 

 

Figure 5.3. Cohesive zone model (CZM) used to model the wire-adhesive 
interface 

A bilinear damage evolution was used rather than the classical linear evolution 

model to take into account the cohesive and friction components of the post bond 

initiation behavior. It can be seen in Figure 4.11 that the pull-out specimens exhibited a 

hardening behavior after the initiation of debonding. This suggests a non-negligible 

contribution from a load transfer mechanism at the interface other than by cohesion alone. 

The proposed CZM can be conceptualized as representing a friction contribution at the 

interface along the debonded portion of the wire. In the proposed model, the friction 

component is allowed to degrade as the slip increases. This can be attributed to abrasion 

of the relatively soft composite due to pulling out of the SMA wire. 

The elastic part of the CZM was defined in ABAQUS as mechanical cohesive 

behavior with an interface stiffness of 1000 MPa/mm. Damage criterion with a maximum 

nominal stress of 15 MPa was defined in the program. Once the damage criterion was met 


[MPa]

 [mm]
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2

max


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and the evolution was defined with the damage coefficient, D, and the corresponding 

plastic displacement in a table format. Ten points were used to define each line of the 

bilinear damage evolutions. 

5.3. Quantification of the parameters of the CZM 

A sensitivity analysis was carried out to calibrate the CZM parameters of a 

specimen with Ld of 25 mm and a wire diameter of 0.77 mm. Once the parameters were 

identified, the model was verified by comparison with experimental results for pull-out 

specimens with Ld of 51 mm and 102 mm. 

The value of each of the six parameters of CZM were determined independently 

from the other five parameters; that is, interdependencies between the parameters were 

neglected. Thus, six groups of FE models, summarized in Table 5.1, were considered to 

quantify each of the six parameters of the CZM. The values given in the table were 

selected based on a series of preliminary analyses to determine the expected range of 

parameters. In group 1 the CZM was modeled as linear elastic with no damage to quantify 

the interfacial stiffness, k, of the CZM. In this group k was varied from 200 MPa/mm to 

1250 MPa/mm. In group 2, max was varied from 10 MPa to 20 MPa while k, 1 , 2 , 1 

and 2 were fixed at 1000 MPa/mm, 2.5 MPa, 1.0 MPa, 0.04 mm and 0.4 mm, 

respectively. Similarly, FEA were carried out in groups 3, 4, 5 and 6 to quantify 1 , 2 , 1 

and 2, respectively as summarized in Table 5.1. 
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Table 5.1. Ranges of values considered to quantify the CZM parameters 

Group 
k 

[MPa/mm] 
max 

[MPa] 
1 

[MPa] 
2 

[MPa] 
1 

[mm] 
2 

[mm] 

1 
200, 400, 
500, 1000, 

1250 
-- -- -- -- -- 

2 1000 
10, 12.5, 
15, 17.5, 

20 
2.5 1.0 0.04 0.4 

3 1000 15 
1, 1.5, 

2.0, 2.5, 
3.0 

1.0 0.04 0.4 

4 1000 15 2.0 
0.5, 1.0, 
1.5, 2.0 

0.04 0.4 

5 1000 15 2.0 1.0 
0.02, 0.03, 
0.04, 0.05, 

0.06 
0.4 

6 1000 15 2.0 1.0 0.04 
0.2, 0.3, 
0.4, 0.5, 

0.6 

 

Figure 5.4 shows the load-displacement relationships that were obtained from the 

FEA for different values of the CZM elastic stiffness, k. The experimental results for three 

similar specimens with 25 mm embedment lengths are also plotted for comparison 

purposes. A root square error (RSE) method was used to determine the k that best fit the 

experimental results. The RSE was calculated as 

2
FEAAVG exp, )K(KRSE  ,       (5.14) 

where Kexp,AVG is the average pull-out stiffness obtained experimentally from all the pull-

out specimens, while KFEA is the pull-out stiffness predicted by FEA.  
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Figure 5.5. The RSE of the FEA observed by varying k. 

Figure 5.6 shows the effect of varying the interfacial shear strength, max, on the 

load-displacement relationship of the pull-out specimens. The load-displacement 

relationships obtained experimentally are also shown for comparison purposes. It can be 

seen in the figure that the response was initially linear until debonding initiated after 

which the model predicted a hardening behavior until complete pull-out of the wire 

occurred. Inspection of the figure indicates that the predicted response was similar to that 

exhibited experimentally. This suggests that the CZM model with a bilinear damage 

evolution is suitable and can capture the frictional component of the pull-out behavior. 

Inspection of Figure 5.6 reveals that by increasing max the load at the initiation of 

debonding, the ultimate load and ultimate slip increased.  
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Figure 5.7. The effect of varying max on the RMSE calculated between the 
load obtained from FEA and the experimentally. 

The same approach was adopted to quantify the rest of the CZM parameters. 

Figure 5.8(a) – (d) presents the predicted load-displacement responses while Figure 5.9(a) 

– (d) plots the calculated RMSE versus the experimental results for the different values of 

1, 2, 1 and 2, respectively. It should be noted that the error calculation for the load was 

stopped at either the ultimate displacement obtained by the finite element analysis or the 

experimental results, whichever is smaller.  
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Figure 5.9. The RMSE values with varying: (a) 1, (b)2, (c)1 and (d)1 
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It can be seen in Figure 5.8(a) that increasing 1 increases the pull-out stiffness 

after the onset of debonding. A value of 1 of 1.0 MPa under predicted the ultimate load 

by 16% while a value of 3.0 MPa over predicted the ultimate load by 6%. Figure 5.9(a) 

plots the RMSE calculated for the different values of 1. Among the values considered, 

the value of 2.0 MPa for 1 resulted in the lowest average RMSE and was thus selected. 

Inspection of Figure 5.8(b) indicates that changing 2 had a smaller effect on the load-

displacement response than when varying 1. When 2 equals to 1.0 the RMSE is minimal 

according to Figure 5.9(b). Among the values considered, the value of 1.0 MPa for 2 

resulted in the lowest average RMSE and was thus selected. 

Inspection of Figure 5.8(c) indicates that increasing the value of 1 increased the 

load at which the debonding initiated. This is expected as the point (1, 1) on the traction-

separation relationship defines the interface toughness, G, at which complete damage of 

the cohesive behavior initiates and starts to propagate. Once the debonding initiated the 

load-displacement curves were parallel for the different values of 1. Figure 5.9(c) 

indicates that a value of 0.04 mm for 1 provides the best approximation of the 

experimental data among the values considered. Inspection of Figure 5.8(d) shows that 

changing the value of 2 has a negligible effect on the load at which the debonding 

initiates, while it has a slight effect on the ultimate load. Figure 5.9(d) shows that the 

predicted response was relatively insensitive to the selected value of 2. The maximum 

predicted RMSE among the different values of 2 that were considered was 1.9 N 

compared to between 8 N and 15.8 N for the other parameters. However the same 
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approach was adopted and a value of 0.4 mm was selected for 1. Table 5.2 summarizes 

selected values of the different parameters of the optimized CZM. 

Table 5.2. Calibrated CZM parameters 

Parameter Calibrated value 

k 1000 MPa/mm 

max 15 MPa 

1 2.0 MPa 

2 1.0 MPa 

1 0.04 mm 

2 0.4 mm 

 

5.4. Interfacial stresses and debonding mechanism 

The finite element model that was developed in this study provided the 

opportunity to investigate features of the SMA/CFRP debonding process that could not be 

observed experimentally. Specifically, the numerical simulations provided insight into the 

distribution of stresses at the SMA/CFRP interface. Investigation of the evolution of the 

stress distribution with increasing load sheds light on the importance of key features in the 

global load-displacement response and also the mechanisms that drive the propagation of 

debonding and the stress transfer at the SMA/CFRP interface. These features are 

discussed in this section. 

Figure 5.10(a), (b) and (c) plot the load-displacement curve obtained from the 

FEA, the interfacial shear stress along the bond length, and the interface damage 

coefficient, respectively, along the SMA/CFRP bond length. Seven key points were 

highlighted in the Figure 5.10(a). It can be seen in Figure 5.10(a) that up to point 2 the 

global load-displacement response exhibited linear, elastic behavior. Loading the wire 
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beyond point 2 resulted in a non-linearity of the global response. At point 1, which is 

representative of any point within the elastic region, the maximum shear stress occurred 

near the end of the CFRP patch where the SMA exited the CFRP and decayed rapidly 

along the interface. The maximum value of the shear stress was less than the interfacial 

shear strength. At this stage the damage parameter was equal to zero along the entire 

interface indicating a completely elastic response and no debonding. At point 2 the shape 

of the interfacial shear stress distribution was similar to that at point 1. The peak 

interfacial shear stress reached the interfacial shear strength, max, of 15 MPa. 

Correspondingly, the damage parameter at the same point obtained a maximum value of 

0.25 indicating the initiation of damage at the SMA/CFRP interface. As the applied load 

increased further to point 3, the peak shear stress shifted away from the end of the CFRP 

patch and the magnitude of the damage parameter increased. After this point the area 

under the cohesive portion of the shear stress distribution remained essentially constant. 

Beyond this stage, at points 4 and 5, the interfacial shear stress distribution exhibited 

distinct cohesive and frictional components indicating the onset and propagation of 

debonding along the interface. As the applied load increased from point 3 to point 6, the 

contribution of the cohesive component of the interfacial stress remained constant but 

propagated away from the end of the CFRP patch. Correspondingly, the area under the 

frictional component of the distribution continued to increase which resulted in the 

hardening slope of the global response. The damage parameter in Figure 5.10(c) indicates 

that in the debonded region the damage parameter remained essentially constant and equal 

to 1 and decreased to zero at the end of the cohesive region. The location where the 

damage parameter is equal to zero coincides with the elastic portion of the cohesive shear 
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stress distribution at the interface. At point 6, the remaining bonded length of the 

SMA/CFRP interface was less than the length required to develop the complete cohesive 

shear stress distribution. Consequently the global response began to exhibit a softening 

response as shown in point 7. Beyond this stage complete debonding occurred and the 

finite element model indicated full debonding failure as the wire continued to slip with no 

corresponding load in the wire.  
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Figure 5.10. (a) Load-displacement response, (b) Interfacial shear stress 
distribution along the bond length, and (c) The interface damage 
coefficient along the bond length 
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5.5. Model validation 

Once the parameters of the CZM were quantified, the response of the pull-out 

specimens with Ld of 51 mm and 102 mm were modeled. The predicted load-

displacement curves were compared with those obtained experimentally to validate the 

FEA. 

Figure 5.11 shows the predicted load-slip response compared to the experimental 

results for an NiTiNb SMA wire embedded in a CFRP patch with an embedment length of 

51 mm. The figure also presents the results of three similar tests. Inspection of the figure 

indicates that the predicted response matches very well the response obtained 

experimentally until the load reached 275 N. beyond this point, the displacement 

continued to increase without any further increase in load. The figure further indicates that 

the experimental response did not exhibit this behavior. Comparison of the experimental 

and numerical results indicates that the FEA underestimated the ultimate pull-out load and 

slip of the interface by 24% and 35%, respectively. This was attributed to the truncation 

of the frictional component of the CZM as illustrated in Figure 5.12. 
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Figure 5.11. Comparison between the predicted and measure load-
displacement for pull-out specimen with one NiTiNb SMA wire 
embedded in CFRP with Ld of 51 mm 

 

Figure 5.12. Suggested modification to the CZM 

The CZM model was refined to extend the frictional component until the residual 

stress was negligible as illustrated in the figure. The effect of this revision is illustrated in 

Figure 5.13. The extension of the frictional component of the CZM resulted in larger 

predicted loads and displacements of the pull-out specimens at failure. However, the FEA 
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Figure 5.13. Load-displacement curve after tweaking the CZM parameters 
for pull-out specimen with one NiTiNb SMA wire embedded in 
CFRP with Ld of 51 mm 

It should be noted that the specimens with Ld = 51 mm had a high scatter in 

experimental results. Moreover, the failure load and displacement for those specimens 

was higher than the failure load and displacements for specimens with Ld of 102 mm. This 

increase in the failure load may have been due to the curvature of the embedded portion of 

the wire due to fabrication errors. The curvature induced interlocking component to the 

bond strength which increased the failure load. Hence, the prediction of FEA will be 

considered as satisfactory. 

The refined CZM model was implemented in the FEA to predict the response of 

the pull-out specimens with SMA embedment lengths of 102 mm. Figure 5.14 presents 

the predicted and measured load-displacement responses. The figure shows that the 

predicted load-displacement response is in good agreement with the experimental results.  
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Figure 5.14. Comparison between the predicted and measure load-
displacement for pull-out specimen with one NiTiNb SMA wire 
embedded in CFRP with Ld of 102 mm  
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Phase II: Behavior of the Self-stressing Patch Under Monotonic 

and Fatigue Loading 
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Chapter 6: Patch Response Under Monotonic and Fatigue 

Tensile Loading 

Two self-stressing patches were fabricated and tested to evaluate: (a) the 

maximum recovery force that the patches can be generated upon activation, and (b) the 

monotonic tensile response of the activated patches. These tests provided an opportunity 

to evaluate whether or not the prestressing force that can be achieved is proportional to the 

number of wires in the patch or if there are unanticipated losses in the system. The 

method used to fabricate the self-stressing patch is also discussed in detail in this chapter. 

A total of 14 self-stressing patches were fabricated and tested to evaluate the 

stability of the prestressing force when the self-stressing patch is subjected to fatigue 

loading. The factors considered in this study are the prestress level in the NiTiNb SMA 

wires and the applied force range. A model that predicts the degradation in the prestress is 

also presented. 

6.1. Patch response under monotonic tensile loading 

6.1.1. Specimen details 

Figure 6.1 shows the details and dimensions of the self-stressing patch. The tested 

patches consisted of 10 NiTiNb SMA wires embedded into two CFRP tabs. As seen in 

Figure 6.1 each wire was 306 mm long and the clear distance between the adjacent wires 

is 0.89 mm. The wires were embedded in CFRP at both ends with embedment length of 

102 mm. The embedment length of 102 mm was selected as it exhibits the highest failure 

load among the tested pull-out specimens. The central 102 mm long portion of the wires 
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maintain straightness and uniform spacing of the NiTiNb wires. The NiTiNb wires and 

the spacer wires were cut to lengths of 306 mm and taped together as shown in Figure 6.2. 

Cotton threads were used to affix the NiTiNb wires to the carbon fabric at four locations 

as shown in the figure. After affixing the NiTiNb wires to the carbon fabric the spacer 

wires were removed. The carbon fibers along with the NiTiNb wires were saturated with 

epoxy and placed between four molds (two bottom molds and two top molds). Only the 

carbon fiber end tabs were inside the molds while the 102 mm central portion of the wires 

was exposed. This approach was adopted to prevent the low viscosity epoxy resin from 

flowing onto the central portion of the NiTiNb wires. A pressure of 690 Pa was placed on 

top of the molds to squeeze the entrapped air bubbles and excess epoxy out of the fibers to 

achieve a higher volume fraction. The specimens were left for 7 days before demolding. 

After demolding, the edges of the CFRP tabs were trimmed using a wet-cut tile saw. 

It should be noted that the specimens were fabricated with the available resources 

in the lab to produce prototype specimens. The current fabrication method is labor 

intensive and time consuming. The time for a trained person to prepare one specimen is 

around 2 hours. However, if the fabrication method is automated, the fabrication time is 

expected to be less. 
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and the second patches, respectively. During heating of the first patch the thermocouples 

debonded from the SMA wires when the temperature reached 158oC. However, the results 

indicate that the wires were fully activated at this stage. After the patches cooled down to 

room temperature, sustained recovery forces of 1710 N and 1750 N were measured. These 

correspond to recovery stresses of 367 MPa and 375 MPa for the first and second patches, 

respectively. During activation of the self-stressing patch it was noticed that the 

temperature on the surface of the CFRP increased from 26oC to 31oC. Thermomechanical 

testing of the adhesive indicated that the adhesive had a softening temperature between 

45oC and 60oC above which the elastic modulus of the adhesive droped dramatically as 

described in Chapter 3. Therefore, direct heating of the NiTiNb wires while insulating the 

CFRP tabs was a practical way to activate the SMA wires without causing significant 

softening of the CFRP tabs. This is important since softening of the CFRP tabs could 

result in relaxation of the prestressing force over time. 

 

Figure 6.4. Force measured upon heating the self-stressing SMA/FRP patch 
before loading to failure 
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After activation of the wires the patches were subsequently loaded monotonically 

in tension to failure. The measured failure loads were 3350 N and 3210 N for the first and 

second patches, respectively. These correspond to a failure stress in the wire of 720 MPa 

and 690 MPa, respectively. Both patches failed by progressive debonding of the NiTiNb 

wires from the CFRP tabs. The measured failure loads of the patches were 195% and 

180% of the measured recovery forces of the two patches respectively, indicating a 

substantial margin of safety against debonding.  

During activation the behavior of the self-stressing patch is similar to the behavior 

of a single wire described in section 3.2. The recovery stress was 370 MPa and 390 MPa 

for the self-stressing patch and a single wire, respectively. The pull-out behavior of the 

self-stressing patch is similar to the behavior of pull-out specimens with one and three 

wires. The stress that caused complete debonding was 705 MPa, 710 MPa and 800 MPa 

for the self-stressing patch, the pull-out specimen with one wire, and pull-out specimen 

with three wires, respectively. Inspection of the results suggests that no loss of prestress 

occurred during activation. The results suggest that the prestressing force was 

proportional to the number of NiTiNb wires in the patch. 

Accordingly, scaling up the patch to achieve a double-sided repair using two 

85 mm wide patches with 37 wires each would generate prestressing force of 12 kN, 

which is comparable to the configuration that has been previously used to extend the 

fatigue life of cracked steel elements by Taljsten et al. (2009). It should be noted that FRP 

overlay is still needed to increase the stiffness of the repaired member and to bridge the 

crack. 
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6.2. Patch response under fatigue tensile loading 

6.2.1. Specimen details 

Figure 6.5 presents the dimensions of the fatigue specimens. The specimens 

consisted of ten 0.77 mm NiTiNb SMA wires that were embedded into two CFRP tabs at 

each end. Each wire was 306 mm long and was embedded 102 mm into each CFRP tab 

leaving a 102 mm clear length in the center of the specimen. The clear distance between 

the wires was 0.89 mm. The CFRP consisted of a unidirectional carbon fiber fabric 

embedded in the Araldite adhesive. The properties of both materials can be found in 

section 3.2. The central 102 mm long portion of the wires was exposed to allow activation 

of the SMA wires. Steel tabs were bonded to the CFRP tabs and gripped in the testing 

frame. A clear distance of 25 mm was provided between the end of the embedded wires 

and the steel tabs to prevent any interference in the bonded portion of the wire. The self-

stressing patches tested in this research were fabricated using the same approach 

described in section 6.1. 

 

Figure 6.5. Specimen details and dimensions of the fatigue specimens 

Table 6.1 summarizes the test matrix of the fatigue specimens. The test specimens 

were divided into three groups. In the first two groups the NiTiNb wires were partially 

activated to generate a recovery stress of 250 MPa. Based on the pull-out tests that were 

102 mm102 mm102 mm 102 mm

38 m
m
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(Not to scale)
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described in chapter 4, the stress in the NiTiNb wires at the onset of debonding was 

400 MPa. The recovery stress level of 250 MPa was selected to prevent debonding of the 

NiTiNb wires during activation. In the third group the wires were fully activated up to a 

stress level of 390 MPa which induced debonding of the SMA wires from the CFRP tabs. 

Three or four similar tests were conducted for each configuration in the first group, while 

two similar tests were conducted for each configuration in the second and third groups. 

Figure 6.6 illustrates the parameters considered in the three test groups. For the coupons 

in the first group, the SMA wires were partially activated to a stress of 250 MPa and 

subjected to stress ranges of 20 MPa, 50 MPa or 80 MPa. The maximum stress in the 

wires in this group was less than the stress required to cause debonding of the SMA wires 

from the CFRP tabs. In the second group the SMA wires were partially activated to the 

same level as in Group I but the applied stress range in the SMA wires was 200 MPa. In 

this case the maximum stress in the wires during the fatigue cycling was greater than the 

stress required to cause debonding. In the third group, the SMA wires were fully activated 

to a stress level of 390 MPa in the SMA wires. At this stress level debonding of the SMA 

wires from the CFRP tabs would be initiated. The applied fatigue stress range in the wires 

was 200 MPa for this group. 

Table 6.1. Test matrix for the specimens tested under fatigue loading 

 
Target prestress level

[MPa] 
Stress range Number of 

repetitions [MPa] 

Group I 250 20 4 

  50 3 

  80 3 

Group II 250 200 2 

Group III 390 200 2 
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Figure 6.6. A schematic drawing illustrating different stress ranges and 
activation levels for the three groups considered in this research. 

 

6.2.2. Test setup and instrumentation 

Figure 6.7 shows the test setup used to test the self-stressing patches under fatigue 

loading. The specimens were tested in a 490 kN MTS servo-hydraulic testing frame 

(model number 370.50) which is equipped with a digital controller and a data acquisition 

system. The testing frame is equipped with an in-line low capacity loading system with a 

capacity of 22 kN. 

A heat gun was used to fully activate the SMA wires while a power supply was 

used to partially activate the wires through electrical conduction. The details of the power 

supply used in this research are described in section 3.2.1.c. 
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Figure 6.9 shows the loading protocol used in this test. A cyclic load was applied 

in load control mode at the target load range level for 500 cycles at a frequency of 10 Hz. 

The actuator was then repositioned to its set point (zero displacement location) in 

displacement control to measure the residual prestressing force in the self-stressing patch. 

The load was measured and recorded for 10 seconds. The cyclic loading resumed for 

another 500 cycles and the process was repeated up to 2 million loading cycles or until 

failure as shown in Figure 6.9. Failure was defined when the actuator displaced 20 mm 

from the set point indicating pull-out or rupture of the SMA wires. 

 

Figure 6.9. Loading protocol for the fatigue specimens 

6.2.4. Results and discussion 

Table 6.2 summarizes the results of the tested specimens. Each specimen was 

assigned a three part identifier. The first part indicates the target prestress level in MPa. 
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specimens. Due to unexpected power failure during testing, the test was terminated at 

680,858 cycles and 900,296 cycles for specimens 250-20-3 and 250-20-4, respectively. 

All the specimens of Group II and Group III failed by rupture of one or more of the 

NiTiNb wires followed by a pull-out of the remaining wires as shown in Figure 6.10. It 

should be noted that the wires in specimens tested under a stress range between 20 MPa 

and 80 MPa did not exhibit a rupture failure. While wire rupture was observed for the 

specimens tested under a stress range of 200 MPa. The rupture of the wires could be due 

to fatigue loading. The fatigue behavior of a single wire was not evaluated in this 

research. 

Table 6.2. Results summary of the self-stressing patch when subjected to fatigue 
loading  

 
Specimen 

ID 

Target 
Prestress 

Actual 
Prestress 

Stress 
range Cycles to 

failure 
[MPa] [MPa] [MPa] 

Group I 250-20-1 250 235 20 2,000,000a

 250-20-2 250 250 20 2,000,000a

 250-20-3 250 255 20 680,859b 

 250-20-4 250 250 20 900,297b 

 250-50-1 250 260 50 2,000,000a

 250-50-2 250 255 50 2,000,000a

 250-50-3 250 255 50 2,000,000a

 250-80-1 250 250 80 2,000,000a

 250-80-2 250 250 80 2,000,000a

 250-80-3 250 255 80 2,000,000a

Group II 250-200-1 250 250 200 117,504 

 250-200-2 250 250 200 115,189 

Group III 390-200-1 390 375 200 58,860 

 390-200-2 390 390 200 49,584 
a Specimen run out at 2 million cycles 
b The test was stopped due to unexpected power failure 
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Figure 6.11. The normalized prestress versus the number of fatigue cycles for 
Group I for specimens with stress range of: (a) 20 MPa, (b) 
50 MPa and (c) 80 MPa 
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A similar trend can be observed from Figure 6.11(b) and (c), with prestressing 

losses of 12% and 23% occurring within the first 500,000 cycles for specimens that were 

tested at 50 MPa and 80 MPa stress ranges, respectively. Subsequently the residual 

prestressing force remained constant up to 2 million cycles. For specimen 250-80-1 a 

cyclic fluctuation in the prestress force with a period of 24 hours was observed. This 

fluctuation was due to temperature fluctuations in the lab due to failure of the HVAC 

system in the lab. 

Figure 6.12 presents the results for specimens of Group II which was partially 

activated and tested at the highest load range, 200 MPa. Inspection of the figure indicates 

that after the application of the first 500 fatigue cycles the prestressing forces in the 

patches decreased to 60% of their initial values. Afterwards, the prestress force gradually 

decreased and stabilized at 60,000 cycles at 40% of the original prestress force. Rupture 

of the first SMA wire was observed after 106,000 and 109,000 cycles for specimens 1 and 

2, respectively. Rupture of the wires was accompanied by a sudden decrease of the 

residual prestressing force, initiation of debonding of the SMA wires and rupture of 

subsequent wires due to the increased demand on the intact wires. Failure, defined as 

20 mm deformation of the actuator, was observed after 117,000 and 115,000 cycles for 

specimens 1 and 2, respectively. 
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Figure 6.12. The normalized prestress versus the number of fatigue cycles for 
Group II 

Figure 6.13 presents the test results of Group III which was fully activated and 

tested at the highest load range, 200 MPa. As soon as the fatigue loading was applied 

debonding initiated and was observed and a faint cracking sound was heard. Inspection of 

Figure 8.8 indicates that after the application of the first 500 fatigue cycles the prestress 

force decreased by 60% of its initial value. The prestressing force continued to decrease 

with continued cyclic loading until it was totally lost after 24,000 and 33,000 loading 

cycles for specimens 1 and 2, respectively. Failure of the patches occurred at 58,900 and 

49,600 cycles for specimens 1 and 2, respectively. 

 

Figure 6.13. The normalized prestress versus the number of fatigue cycles for 
Group III 
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Figure 6.14 presents the normalized prestress versus the fatigue life for all the 

tested specimens. Inspection of the figure indicates that the specimens that were partially 

activated achieved a longer fatigue life compared to the fully activated specimens. In 

Group I minimal loss of prestress and no indication of failure were observed after 2 

million loading cycles. While in Groups II and III an immediate and significant loss of 

prestress occurred after the first 500 cycles. The prestress loss in the latter two cases is 

believed to be attributed to interface damage as the applied load exceeded the load 

required to initiate debonding. The debonding caused relaxation in the SMA wires and 

hence a loss in the prestress occurred. The test results indicate that in the case of Group I 

the interface remained intact for the duration of the 2 million applied fatigue cycles.  
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Figure 6.14. Relation between number of cycles to failure and: (a) normalized 
prestress force, (b) prestress force for the three groups  
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where ni is the number of cycles accumulated at stress i, and Ni is the number of cycles 

to failure at the same stress i. There is no further accumulated damage as shown in 

Figure 6.14, suggesting that the Group I specimens will exhibit an infinite fatigue life. 

The specimens in Group I, which survived 2 million load cycles, were retested at a 

stress range of 200 MPa and the fatigue lives of those specimens were compared with 

those of the specimens that were tested directly at a stress range of 200 MPa (i.e. 

specimens of Group II). Table 6.3 summarizes the fatigue lives of the retested specimens. 

Table 6.3. Results summary of fatigue specimens of Group I retested at a stress 
range of 200 MPa 

Specimen ID Stress range [MPa] Cycles to failure 

Retest 250-20-1 200 98,697 

Retest 250-20-2 200 99,899 

Retest 250-80-1 200 119,238 

Retest 250-80-2 200 142,785 

 

The specimens were retested as soon as the 2 million cycles were finished. The 

same loading protocol was used in this test. The retested specimens of Group I exhibited 

similar failure modes to those of the virgin specimens that were tested in Group II. Figure 

6.15 compares the degradation of the prestressing force of the retested samples in Group I 

to that of the virgin samples of Group II that were tested at the same stress range. 

Inspection of the figure indicates that the first 500 fatigue cycles the prestressing forces 

for the specimens that were initially tested at a stress range of 20 MPa decreased by 35% 

while the prestressing force in the specimens that were initially tested at a stress range of 

80 MPa decreased by 15%. Afterwards, the prestress force gradually decreased and 

stabilized after 50,000 cycles. Rupture of the first SMA wire was observed and 



124 

accompanied by a sudden decrease of the residual prestressing force at fatigue life ranging 

from 98,000 to 143,000 cycles. It can be seen in Figure 8.10 that the fatigue lives of the 

retested specimens were similar to those of the specimens that were tested directly at a 

stress range of 200 MPa (i.e. specimens of Group II).  

 

Figure 6.15. The normalized prestress versus the number of fatigue cycles for 
the retested specimens of Group I versus Group II 

Based on the experimental results of the fatigue study, the self-stressing patch 

should be designed such that the maximum expected stress in the wire due to the 

combined effect of activation and fatigue loading is less than the stress to initiate 

debonding. In this case the fatigue life of the patch is at least 2 million cycles. In this case, 

the expected loss of the prestressing force during the service life of the patch depends on 

the applied stress range on the SMA wires. 

6.2.5. Proposed Model to predict the degradation of the prestress stress 

Figure 6.16 presents the final prestress, pre,f, versus the maximum applied fatigue 

stress, max, for all of the tested specimens. The stress at the onset of debonding is 

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15

N
or

m
al

iz
ed

 p
re

st
re

ss
 

Number of cycles [x106]

0 = 80 MPa

0 = 20 MPa

Group II

Retested speciment of  
Group I



125 

highlighted in the figure. Inspection of the figure indicates that the final prestress is 

proportional to the maximum applied stress when the maximum stress is less than the 

stress at the onset of debonding. Whereas the prestress is completely lost when the 

maximum stress is higher than the onset of debonding stress. Using a linear regression, 

the final prestress can be expressed as 

 

Figure 6.16. Comparison between the proposed empirical equation to predict 
the loss of prestress and the experimental results 
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It should be noted that more specimens need to be tested to validate the model 

when the wires are partially activated to a stress other than 250 MPa and the applied 

maximum stress is less than the onset of debonding stress. 
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Chapter 7: Conclusions, Limitations and Future Work 

An experimental and numerical study was conducted to develop and characterize 

the behavior of a self-stressing SMA/FRP patch for repair of civil infrastructure with a 

target application of repairing cracked steel structures. This research is divided into two 

phases. In the first phase the thermomechanical response of different shape memory 

alloys and saturating resins was quantified to select suitable materials for the development 

of the self-stressing patch. The bond behavior of SMA wires to FRP patches was 

investigated experimentally and numerically. In the second phase the performance of the 

patch during activation, monotonic tensile loading, and tensile fatigue loading was 

characterized. The conclusions of each phase of this research and the recommendations 

for future work are summarized in the following sections. 

7.1. Conceptual development and material selection 

Three different SMA wires and two structural adhesives were tested to determine 

their thermomechanical properties. Based on the results the most suitable materials were 

selected. Based on the research finding the following conclusions were drawn: 

 NiTiNb SMA wires are more suitable to be used as actuators for the self-stressing 

patch over either shape memory NiTi or superelastic NiTi. Prestrained NiTiNb 

SMA wires are capable of generating recovery stresses of 390 MPa even after 

cooling the wire to room temperature. The shape memory NiTi was able to 

generate a recovery stress of 415 MPa, however, a continuous heating of the wire 

is required in applications requiring a sustained recovery at or near room 

temperature. The tested superelastic NiTi SMA wires could generate a recovery 
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stress of 490 MPa. However, the prestressing concept using these wires requires 

the use of a heavy prestressing frame. Hence, it has limited advantage over the 

conventional FRP prestressing techniques. 

 Cyclic heating and cooling of NiTiNb wires between 165oC and room temperature 

resulted in an 18% reduction of the sustained recovery force at room temperature 

after 12 cycles. However, cycling heating and cooling in the expected service 

temperature range for most civil infrastructure (up to 40oC) is not expected to have 

any significant impact on the recovery force. 

 Two saturating resins, Tyfo S and Araldite, were tested to evaluate their 

thermomechanical properties when cured and tested at different ambient 

temperatures. The softening temperature of Tyfo S adhesive when cured at 25oC 

for 7 days was between 25oC and 45oC, while for Araldite the softening 

temperature was between 45oC and 60oC. Elevated temperature post-cure cycles 

increased the softening temperature of the Araldite adhesive up to 75oC depending 

on the post-cure temperature. However, elevated temperature post-cure cycles are 

not recommended for the proposed self-stressing patch as the curing regimens 

would likely cause partial activation of the SMA wires thereby reducing the 

efficiency of the patch. Based on these results the Araldite adhesive was selected 

for further investigation since the Araldite adhesive retained a higher percentage of 

its room-temperature tensile modulus at elevated temperatures than the Tyfo S 

adhesive. 

 Activating the central exposed portion of the NiTiNb SMA wires by either 

electrical conduction or direct heating using forced air did not result in softening 
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of the epoxy in the FRP tabs. This resulted in more effective transfer of the 

recovery stresses to the anchorage region of the proposed patches and maximized 

the efficiency of the utilization of the SMA wires for prestressing. 

7.2. Bond behavior between superelastic NiTi SMA wires and FRP 

The pull-out behavior of specimens with superelastic NiTi wires embedded in FRP 

was tested. The factors considered in this study were the wire diameter (0.47 mm, 0.66 

mm and 0.89 mm) and the embedment length (13 mm, 25 mm, 51 mm, 102 mm and 127 

mm). The research findings lead to the following conclusions: 

 Two debonding mechanisms were observed for the tested superelastic NiTi wires 

embedded in CFRP patches: debonding prior to wire transformation, and complete 

debonding after transformation. Debonding after transformation was the dominant 

failure mode for smaller diameter wires with longer embedment lengths while 

debonding before transformation was the dominant failure mode for larger 

diameter wires with shorter embedment lengths. 

 Two critical embedment lengths, Ld, and Ld,, were defined for the tested NiTi 

wires embedded in CFRP patches. These are the required embedment lengths to 

achieve the upper plateau stress and the complete transformation of the tested 

wires, respectively. Ld, was found to be 12.7 mm and 25.4 mm, for wires with 

diameter of 0.66 mm and 0.89 mm, respectively, while for wires with a diameter 

of 0.47 mm, Ld, was found to be less than 12.7 mm. Ld,was found to be 

12.7 mm, 25.4 mm and 50.8 mm for specimens with wire diameter of 0.47 mm, 

0.66 mm and 0.89 mm, respectively. 
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 Both embedment lengths, Ld, and Ld, were found to be proportional to the square 

of the wire diameter, db
2 but with different constants of proportionality. 

 The digital image correlation system ARAMIS proved to be an effective tool to 

identify the initiation and propagation of debonding of SMA wires from FRP 

composites. The DIC system enabled the development of longitudinal strain 

contours on the surface of the FRP which could be used to monitor the 

propagation of strain concentrations along the SMA wires during the debonding 

process. 

7.3. Bond behavior between NiTiNb SMA wires to FRP 

Pull-out specimens with embedded NiTiNb wires were tested to investigate their 

bond behavior. The test parameters considered were the embedment length of the SMA 

wires, the fiber type in the FRP composite, and the number of wires per specimen. Based 

on the test observations the following conclusions can be drawn: 

 The load-displacement response of the pull-out specimens with NiTiNb wires was 

linear until debonding initiated. The pull-out specimens exhibited a hardening 

behavior after the initiation of debonding. This suggests a non-negligible 

contribution from a load transfer mechanism at the interface other than cohesion 

alone. 

 The average stress at the onset of debonding was 400 MPa for all of the tested 

specimens. The stress at the onset of debonding does not depend on either the 

embedment length or the number of wires. However, increasing the embedment 

length increased the load at complete debonding. This suggests that the interface 
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strength is composed of two components: cohesion (before the onset of 

debonding) and friction (after the onset of debonding). While the cohesive 

component does not increase by increasing the embedded length, the frictional 

component does. 

 The specimens with three NiTiNb wires embedded in CFRP, with a clear distance 

of 0.89 mm between the wires exhibited similar behavior to the specimens with 

one wire. This suggests that the wire spacing of 0.89 mm or 1.2 times the wire 

diameter is sufficient to prevent any adverse interactions between the wires. 

 The maximum stress achieved in NiTiNb wires embedded in GFRP patches was 

8% lower than that for NiTiNb wires embedded in CFRP patches which was 

within the experimental scatter. Accordingly, there is no evidence of a strong 

dependence of the pull-out strength on the fiber type although the effect of the 

adhesive type was not investigated in detail. 

7.4. Finite element analysis of pull-out specimens with NiTiNb SMA wires 

embedded in CFRP 

Finite element analyses were conducted to investigate the debonding mechanism 

of a NiTiNb SMA wire embedded in CFRP. A cohesive zone model was used to model 

the interface between the SMA wire and the FRP. The results obtained experimentally 

from pull-out specimens with Ld of 25 mm were used to quantify the interface parameters. 

The FEA results were then validated versus the experimental results that were obtained 

from specimens with Ld of 51 mm and 102 mm. Based on the results of the FEA the 

following conclusions were drawn: 
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 A trilinear bond-slip relationship is proposed to represent the interface between 

NiTiNb SMA and CFRP taking into account the cohesive and frictional 

components of stress transfer at the interface. 

 The debonding mechanism predicted by the FEA matches well with the 

experimental test observations using conventional instruments and the DIC 

system. 

7.5. Performance of the patch during activation and under monotonic tensile 

loading 

Two self-stressing patches were tested to evaluate: (a) the maximum recovery 

force that the patches can generate upon activation, and (b) the monotonic tensile response 

of the activated patches. These tests provided an opportunity to evaluate whether or not 

the prestressing force that can be achieved is proportional to the number of wires in the 

patch or if there are unanticipated losses in the system. 

 Targeted heating of the NiTiNb wires using electrical conduction or forced air 

direct heating was shown to be an effective means to activate the wires without 

softening the adhesive or causing debonding of the SMA wires from the CFRP 

tabs. 

 The maximum load carrying capacity of the tested patches when subjected to 

monotonic tensile loading was nearly twice the measured prestressing force. 

Failure occurred by debonding of the SMA wires from the CFRP anchorages. 

 During activation the behavior of the self-stressing patch is similar to the behavior 

of a single wire. The recovery stress was 370 MPa and 390 MPa for the self-
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stressing patch and a single wire, respectively. The stress that caused complete 

debonding was 705 MPa, 710 MPa and 800 MPa for the self-stressing patches, 

single-wire pull-out specimens, and multiple wire pull-out specimens, 

respectively. The results suggest that no loss of prestress occurred during 

activation. The results suggest that the prestressing force was proportional to the 

number of NiTiNb wires in the patch.  

 Scaling up the patch to achieve a double-sided repair using two 85 mm wide 

patches with 37 wires each would generate prestressing force of 12 kN, which is 

comparable to the configuration that has been previously used to extend the 

fatigue life of cracked steel element tested by Taljsten et al. (2009).  

7.6. Performance of the patch under fatigue loading 

In this research a self-stressing SMA/FRP patch was tested under fatigue loading 

to examine the stability of the prestressing force that was generated by activating the 

NiTiNb SMA wires. Two different prestressing levels and three force ranges were 

considered in this study. Based on these tests the following conclusions can be drawn: 

 A stable prestress can be achieved when the NiTiNb SMA wires are partially 

activated to 250 MPa such that the maximum stress during the application of 

fatigue loading is less than the stress required to initiate debonding of the wire. In 

this case a minimal loss of prestress can be expected after 2 million loading cycles.  

 A sudden loss of 40% of the prestressing occurred for the specimens which were 

partially activated to 250 MPa and tested such that the maximum applied load was 

greater than the load at the onset of debonding. The loss of prestress force 
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gradually decreased and stabilized at 60,000 cycles at 60%. Rupture of the first 

SMA wire was observed after 106,000 and 109,000 cycles for the two tested 

specimens. Rupture of one of the wires occurred accompanied by a sudden 

decrease of the residual prestressing force and rupture of subsequent wires due to 

the increased demand on the intact wires. Complete debonding was observed after 

117,000 and 115,000 cycles for the two tested specimens. 

 Specimens with full activation of the wires exhibited a sudden loss in the prestress 

as soon as the fatigue loading was applied as debonding initiated. The prestress 

was completely lost after 24,000 and 33,000 loading cycles for the two tested 

specimens. Complete failure occurred by rupture of one or more of the wires at 

58,900 and 49,600 cycles for the two tested specimens. 

 An empirical model was presented which can be used to predict the degradation of 

the prestressing force based on the stress range and the initial prestress level. The 

proposed model along with the bond study presented in this dissertation can be 

used to facilitate the design a self-stressing repair system. 

7.7. Limitations 

This dissertation presents the pilot study to develop the self-stressing patch. The 

limitations of this study are as the following: 

 In this research the recovery force was found to be proportion to the number of 

wires in the self-stressing patch. However, the maximum number of wires was 

limited to 10 wires. The scaling effect should be evaluated for larger number of 

wires. 
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 The stability of the thermomechanical properties of the NiTiNb wires and resin 

were not evaluated when subjected to cyclic sub-zero temperatures. The sub-zero 

temperature could lead to a reduction of the prestressing force in the wires and 

embrittlement of the resin which may compromise the efficiency of the proposed 

repair system. 

 The suitability of applying the self-stressing patch to a cracked steel member in 

confined areas was not evaluated. 

7.8. Recommended future work 

While the current research led to the development of the self-stressing patch 

additional research work is needed to increase the efficiency of the proposed repair system 

and to deepen the understanding of the behavior of the patch. Recommended topics for 

future research include: 

 Based on the experimental results obtained in this research the self-stressing patch 

was developed. The performance of the patch under monotonic and fatigue 

loading is satisfactory. However, the effectiveness of using the patch to increase 

the fatigue life of cracked members needs to be examined. 

 The proposed system was developed specifically with the target application of 

repairing cracked steel structures in mind. The potential to use this or a similar 

patch configuration for other similar prestressing applications should be 

investigated. 

 Different techniques to increase the bond capacity of the SMA wires to FRP 

patches, such as modifying the wire geometry in the anchorage zone or selecting 
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different adhesives, should be investigated with the objective of increasing the 

efficiency of the proposed self-stressing patch. 

 The quantification of the CZM parameters for NiTiNb wires embedded in FRP 

neglected any interdependencies between the parameters. Further investigation is 

needed to study any possible interdependencies between the parameters, which 

could lead to better predictions of the debonding behavior. 

 More specimens need to be tested to validate the loss of prestress when the applied 

load is less than the load at onset of debonding. The model was developed based 

on specimens with a partial prestress of 250 MPa only. Other initial prestressing 

level and applied stress ranges should be considered to make the predictions more 

robust. 

 A physics-based model should be developed to predict the fatigue degradation of 

the prestressing force in the NiTiNb wires. Such a model would facilitate the 

development of a more comprehensive platform for the design of the proposed 

patches. 

 The research findings indicate that the NiTiNb wire could fail by rupture under 

fatigue loading. The fatigue behavior of a single wire should be investigated to 

evaluate the fatigue lives at different stress range. 
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Appendix A: Detailed Results of the Epoxy Tensile Tests 

 

Figure A.1. Stress-strain curves for Tyfo S epoxy coupons cured and tested 
at 25oC 

Table A.1. Test results of Tyfo S epoxy specimens 

Post cure 
temperature 

[oC] 

Test 
temperature 

[oC] 

Tensile 
strength 
[MPa] 

Tensile 
modulus 
[MPa] 

Elongation 
[mm/mm] 

25 

24.4 50 2800 0.020 

24.4 48 2775 0.019 

24.3 50 3000 0.020 

44.4 5 ---1 ---1 

44.1 5 ---1 ---1 

44.2 5 ---1 ---1 

---1: The specimen was too soft to mount an extensometer 
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Figure A.2. Stress-strain curves for Araldite epoxy coupons cured at: (a) 
25oC, (b) 25oC + post cured at 45oC, (c) 25oC + post cured 
at 60oC, and (d) 25oC + post cured at 75oC; and tested at various 
temperatures 

Table A.2. Test results of Araldite epoxy specimens cured at 25oC and tested 
at different ambient temperatures 

Post cure 
temperature 

[oC] 

Test 
temperature 

[oC] 

Tensile 
strength 
[MPa] 

Tensile 
modulus 
[MPa] 

Elongation 
[mm/mm] 

25 

24.3 56 2615 0.025 

24.3 52 2720 0.021 

24.2 54 2655 0.023 

44.4 38 2330 0.042 

44.6 38 2490 0.023 

44.6 38 2260 0.035 

60.6 15 40 0.408 

60.6 15 40 0.408 

60.4 16 35 0.451 
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Table A.3. Test results of Araldite epoxy specimens post cured at 45oC and 
tested at different ambient temperatures 

Post cure 
temperature 

[oC] 

Test 
temperature 

[oC] 

Tensile 
strength 
[MPa] 

Tensile 
modulus 
[MPa] 

Elongation 
[mm/mm] 

45 

24.6 74 2555 0.039 

25.9 44 2785 0.016 

25.7 54 2830 0.020 

44.4 56 2345 0.055 

44.8 56 2320 0.053 

46.1 51 2325 0.033 

62.4 32 1720 0.333 

61.8 35 1845 0.111 

61.1 35 1900 0.025 

75.5 16 980 0.118 

75.5 17 550 0.170 

75.6 17 640 0.180 

99.4 18 510 0.167 

98.6 20 540 0.213 

99.8 17 670 0.160 
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Table A.4. Test results of Araldite epoxy specimens post cured at 60oC and 
tested at different ambient temperatures 

Post cure 
temperature 

[oC] 

Test 
temperature 

[oC] 

Tensile 
strength 
[MPa] 

Tensile 
modulus 
[MPa] 

Elongation 
[mm/mm] 

60 

24.3 64 2400 0.032 

26.3 60 2675 0.025 

26.1 72 2400 0.050 

45.7 61 2090 0.094 

45.8 58 2210 0.069 

45.7 60 2215 0.053 

61.0 47 2050 0.043 

60.5 48 2040 0.096 

60.2 48 2255 0.035 

75.8 30 1450 0.041 

75.5 28 1250 0.117 

75.5 31 1375 0.142 

97.9 19 765 0.172 

 
102.0 17 690 0.183 

98.4 18 760 0.119 
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Table A.5. Test results of Araldite epoxy specimens post cured at 75oC and 
tested at different ambient temperatures 

Post cure 
temperature 

[oC] 

Test 
temperature 

[oC] 

Tensile 
strength 
[MPa] 

Tensile 
modulus 
[MPa] 

Elongation 
[mm/mm] 

75 

26.2 71 2485 0.043 

26.3 73 2545 0.054 

25.9 72 2330 0.051 

45.4 61 2285 0.046 

45.2 62 2185 0.093 

45.3 61 2035 0.054 

60.4 50 2010 0.058 

60.3 50 2275 0.116 

60.8 28 2145 0.014 

75.3 42 1750 0.176 

75.4 40 1595 0.071 

76.2 40 1850 0.060 

98.0 18 870 0.138 

99.4 16 675 0.170 

98.7 19 720 0.210 
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Figure B.24. (a) Load and displacement histories and (b) Load-displacement 
relationship for a specimen with Ld of 51 mm and db of 0.66 mm, 
repetition# 3 
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