CONTROL SYSTEM ANALYSIS

VIA

FAST FOURIER TRANSFORM

A Thesis

Presented to

the Faculty of the Department of Electrical Engineering The University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science in Electreical Engineering

> bỳ Ran-Fun Chiu Kay, 1969

ACKNOWLEDGMENT

I wish to espress my sincere gratitude to my advisor, Professor C. F. Chen, for his advice and guidance. I would like to express my grateful thanks to Professor W. P. Schnider and Professor G. F. Paskuze for their valuable comments, corrections, and discussions. Loving and heartfelt thanks due my wife, Lucy, who not only provided me with continuous encouragment, but also typed this thesis. CONTROL SYSTEM ANALYSIS

VIA ·

FAST FOURIER TRANSFORM

An Abstract

Fresented to

the Faculty of the Department of Electrical Engineering The University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering

> by Ran-Fun Chiu May, 1969

ABSTRACT'

The Fast Fourier Transform has demonstrated its power in the fields of communication, optics etc. It has never been applied to control system analysis.

This thesis presents the fundamentals of the Fast Fourier Transform first; then develops several related theorems for Laplace transforms. It is believed that this is the first time to use the Fast Fourier Transform to perform the inverse Laplace transform of irrational transfer functions and transcendental transfer functions. Sixteen computer programs are included.

TABLE OF CONTENTS

SECTION	PAGE
v I.	FUNDAMENTAL OF FOURIER TRANSFORM
II.	DISCRETE FOURIER TRANSFORM
UIII.	INVERSE DISCRETE FOURIER TRANSFORM
·IV.	FAST FOURIER TRANSFORM- DECIMATION IN TIME 24
۲.	FAST FOURIER TRANSFORM- DECIMATION IN FREQUENCY45
VI.	FOURIER SERIES EVALUATION
VII.	CONVOLUTION, CROSS-CORRELATION AND AUTO-CORRELATION74
VIII.	INVERSE LAPLACE TRANSFORM OF RATIONAL TRANSFER
	FUNCTIONS
IX.	INVERSE LAPLACE TRANSFORM OF IRRATIONAL TRANSFER
	FUNCTIONS
X.	INVERSE LAPLACE TRANSFORM OF TRANSCENDENTAL TRANSFER
	FUNCTIONS
REFEREI	NCES

.-

I. Fundamentals of Fourier Transform

1. Fourier Transform Formula

Given a function, X(t), the integral

$$X_{1}(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
 (1)

is called the Fourier integral of Fourier Transform of x(t)The inversion formula of (1) is

$$\mathbf{x}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(\omega) e^{jt\omega} d\omega$$
(2)

Substituting the basic relation,

 $\omega=2\pi f$

into (1) and (2) respectively, we obtain

$$X_{i}(2\pi f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt \qquad (1a)$$

$$x(t) = \int_{-\omega}^{\infty} X_1(2\pi f) e^{-df} df \qquad (2a)$$

Let

$$X_{1}(2\pi f)=X(f);$$
 (3)

we have finally:

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j z \pi f t} dt$$
(1b)

$$x(t) = \int_{-\infty}^{\infty} \chi(f) e^{jt/2\pi f} df$$
 (2b)

Equations (1b) and (2b) are our two basic relations representing the Fourier Transform.

2.Exponential Function

Let us take an exponential function as an example to show

how to use the transform.

First, we substitute the function $x(t)=e^{-\alpha t}u(t)$ shown in Fig. 1, into (1b)

$$X(f) = \int_{-\infty}^{\infty} e^{-at} u(t) e^{-j2\pi ft} dt = \int_{-\infty}^{\infty} e^{-at} u(t) = \frac{1}{a+j2\pi f}$$
^(l_1)

The symbol " \mathcal{J} " corresponds the transformation:

$$\mathcal{J}(*) = \int_{-\infty}^{\infty} (*) e^{-j2\pi ft} dt$$

It means "taking the Fourier Transform of (*)." or we can write into the following table form

$$\frac{x(t)}{e^{-ot}u(t)} \frac{\chi(f)}{\frac{1}{a+j2\pi f}}$$

Substitution yields

$$x(t) = \int_{-\infty}^{\infty} \frac{e^{jt2\pi f}}{a+j2\pi f} df$$

Rearrangement gives

$$= \int_{-\infty}^{\infty} \frac{e^{jt 2\pi f}}{2\pi j(f-j\frac{\alpha}{2\eta})} df:$$

$$= \frac{1}{2\pi j} \int_{-\infty}^{\infty} \frac{e^{jt 2\pi f}}{f-j\frac{\alpha}{2\eta}} df \qquad (50)$$

For evaluating (5a), we usually apply the contour integration of

$$\frac{1}{2\pi j} \oint \frac{e^{jt2\pi f}}{f - j\frac{\alpha}{2\pi}} df$$
(6)

For t>0, we take $T_1 \sim T_2'$ contour for the integration.

Function (6) can be easily determined by the fundamental residue theorem.

$$\frac{1}{2\pi j} \oint_{\pi \tau_2} \frac{e^{jt2\pi f}}{f - j\frac{\alpha}{2\pi}} df \qquad (7)$$
$$= -\frac{i}{2\pi j} (2\pi j \sum Res.)$$
$$= e^{-at} \qquad (7a)$$

However, (7) can be decomposed into two parts:

$$\frac{1}{2\pi j} \int_{\Gamma} \frac{e^{jt2\pi f}}{f - j\frac{\alpha}{2\pi}} df^{\dagger} \frac{1}{2\pi j} \int_{\Gamma_2} \frac{e^{jt2\pi f}}{f - j\frac{\alpha}{2\pi}} df \qquad (8)$$

1.

The first term is equal to zero^{*}while the second term is identical to (5)

Then, we obtain

$$\frac{1}{2\pi j} \int_{-\infty}^{\infty} \frac{e^{jt2\pi f}}{f - j\frac{\alpha}{2\pi}} df = e^{-at}$$

* see section VIII Jordan's Lemma

3

(9)

On the other hand, for t<0, we take the contour of integration, $T_2 T_2$ as shown in Fig.3.

It is obvious that the result is equal to zero. Therefore, we proved Pair (4a).

3. Symmetrical exponential function Verify the following transform pair:

The time function is shown in Fig. 4

Its Fourier transform can be evaluated by direct substitution.

$$X(f) = \int_{-\infty}^{\infty} e^{-a|t|} e^{-j2\pi ft} dt$$

=
$$\int_{-\infty}^{0} e^{at} e^{-j2\pi ft} dt + \int_{0}^{\infty} e^{-at} e^{-j2\pi ft} dt$$

=
$$\frac{2a}{a^{2} + \frac{1}{2}\pi^{2}f^{2}}.$$
 (11)

The inverse Fourier Transform of the frequency function is relatively involved. We write:

$$x(t) = \int_{-\infty}^{\infty} \frac{2ae^{jt}2\pi f}{a^2 + \frac{1}{2}\pi^2 f^2} df$$
$$= \frac{a}{2\pi^2} \int_{-\infty}^{\infty} \frac{e^{jt}2\pi f}{(f + \frac{j}{2\pi})(f - j\frac{a}{2\pi})} df$$
(12)

Again we use contour integration.

•

For t>0, applying the same reasoning used in the last • example shown in Fig. 2, we obtain:

$$x(t) = \frac{a}{2\pi^2} \left[2\pi j \frac{e^{jt} 2\pi \cdot \frac{\alpha}{2\pi}}{j\frac{\alpha}{2\pi} \cdot 2} \right]$$
(13)
= $e^{-\alpha t}$

~

For t40, if we take the contour as shown in Fig.5,

wo have

.n. }

$$\oint \chi(f) e^{2\pi f t} df$$

$$= \frac{a}{2\pi^2} \left(2\pi j \frac{e^{(jt2\pi)(-j\frac{\partial}{2\pi})}}{-j\frac{\alpha}{2\pi} \cdot 2} \right) = -e^{at} \qquad (14)$$

The same integration can also be evaluated as follows

$$\oint X(f) e^{2\pi f t} df$$
$$= \int_{T_2} X(f) e^{jt2\pi f} df + \int_{T_3} X(f) e^{jt2\pi f} df$$

Considering the second term being zero, we obtain

$$= \int_{\infty}^{\infty} X(f) e^{jt2\pi f} df$$

=
$$-\int_{-\infty}^{\infty} X(f) e^{jt2\pi f} df$$

=
$$-x(t).$$
 (15)

Comparing (14) and (15), the following relation is established, $x(t)=e^{at}$ (16)

Eased on the results shown in (13) and (16), Pair (10) is proved.

k. Derive the pair for a unit impulse

.

$$\frac{x(t)}{\delta(t-a)} = \frac{\chi(f)}{e^{-j2\pi f a}}$$
(17)

When $\delta(t-a)$ is defined as follows:

$$\delta(t-a): \begin{cases} =0, t \neq a \\ \int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a) \\ -\infty \end{cases}$$
(18)

The Fourier Transform is obtained as

$$X(f) = \int_{-\infty}^{\infty} \delta(t-a) e^{-j2\pi ft} dt$$

=e^{-j2mfa}

It is seen that Fair (17) is almost verified by definition.

5. A Train of Unit Impulses

A very useful pair which is for an infinite rulse train is given below:

$$\frac{x(t)}{\sum_{n=\infty}^{n=\infty}\delta(t-n\Delta t)} \sum_{n=-\infty}^{n=\infty} e^{-j2\pi f \underline{n} \Delta t}$$
(19)

Repeatedly using (12), we can easily prove the pair.

6. Weighted impulse train

The Fourier Transform of a weighted pulse train plays an important role in signal analysis. The pair is as follow:

$$\frac{x(t)}{\sum_{\substack{n=-\infty\\ =q(t)}}^{\infty} \delta(t-n\Delta t)} \sum_{\substack{n=-\infty\\ =Q(f)}}^{\infty} \delta(f-\frac{n}{\Delta t})$$
(20)

The proof of this pair is not very straightforward but can be shown rigorously:

Starting with the left hand side of (20),

$$\int \Delta t \sum_{n=-\infty}^{\infty} \delta(t-n\Delta t) = \int_{-\infty}^{\infty} \Delta t \sum_{n=-\infty}^{\infty} \delta(t-n\Delta t) e^{-j2\pi f t} dt$$

$$= \Delta t \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(t-n\Delta t) e^{-j2\pi f t} dt$$
$$= \Delta t \sum_{n=-\infty}^{\infty} e^{-j2\pi n\Delta t f}$$
(21)

by using (17),

...

Then we consider the right hand side of (20);

$$\sum_{n=-\infty}^{\infty} \delta(f - \frac{n}{\Delta t})$$

It is noted that the function is periodic with the period, $\frac{1}{\Delta t}$, as shown in Fig. 6, $\delta(f) \quad \delta(f - \frac{1}{\Delta t})$ $\cdot \frac{1}{\Delta t} - \frac{1}$

Eccause the periodic nature, we can naturally represent it as a Fourier series, or

$$\varepsilon\left(\frac{n}{f-\frac{n}{\Delta t}}\right) = \sum_{n=-\infty}^{N=\infty} C_n e^{-j2n\pi\Delta t f}$$
(22)

where

$$\frac{1}{\Delta t} \int_{0}^{\Delta t} \delta(f) e^{j2\pi n\Delta t f} df$$
 (23)

using (18),

C_n=

$$= \Delta t \cdot e^{j2 \pi n \Delta t \cdot 0}$$

= $\Delta t (1)$
= Δt (2^{*l*})

therefore,

$$\sum_{n=-\infty}^{n=\infty} \delta(f - \frac{n}{\Delta t}) = \sum_{n=-\infty}^{n=\infty} \Delta t e^{-j2n\pi \Delta t f}$$
(22a)

The right hand sides of (21) and (22a) are identical. Their left hand sides must be equal to each other, then we have

$$\int \Delta t \sum_{n=-\infty}^{n=\infty} \varepsilon (t-n\Delta t) = \sum_{n=-\infty}^{n=\infty} \varepsilon (f-\frac{n}{\Delta t})$$
(20)

So pair (20) is proved.

7. Weighted sampling function

The product of an arbitrary function, x(t), and the weighted impulse train function, $q(t)^2$, is particularly useful in our later derivations of the Fourier method. We would investigate the nature of the product in detail.

Let

$$x(t) \cdot q(t) = y(t)$$
 (23)

where y(t) can be called a weighted sampling function. Substituting q(t) gives

$$x(t) \cdot \sum_{n=-\infty}^{n=\infty} \Delta t h(t-n\Delta t) = y(t)$$
(23a)

Fourier transforming (23a), we have

$$X(f) * Q(f) = Y(f)$$
(24)

where "*" denotes Fourier convolution. Substitution (20) into (24) yields

$$X(f) * \sum_{n=-\infty}^{n=\infty} \delta(f - \frac{n}{\Delta t}) = Y(f)$$
(25)

If X(f) is known as shown in Fig.8.

Fig. 8.

and we know that Q(f) is expressed by Fig.6, Y(f) can be obtained by the convolution of the curves shown in Fig. 8 and Fig. 6. The result, Y(f),

would look like the curve shown in Fig. 9. If Δt decreases, the period of the wave will increase accordingly. When $\frac{1}{\Delta t}$ of Fig. 6 is greater than 2a of Fig. 8, function Y(f) becomes separate pulses as shown in Fig. 10.

Fig. 10.

Then the relationship between X(f) and Y(f) would be as follows

$$\begin{cases} X(f)=Y(f), & \frac{1}{2\Delta t} \leq f \leq \frac{1}{2\Delta t} \\ X(f)=0, & \text{otherwise} \end{cases}$$
(26)

In other words, Y(f) is a periodic function, while X(f) is an aperiodic one. However, in the interval $\frac{1}{2\Delta t} \leq f \leq \frac{1}{2\Delta t}$, X(f) and Y(f) are identical. In the Fourier transform method, we take the advantage of this relation. Instead of finding X(f) directly, we evaluate Y(f) and take one period of Y(f) as the answer, X(f).

II. Discrete Fourier Transform

1. Derivation of Discrete Formula

We rewrite equation (23) of section I,

$$y(t) = x(t) \cdot \sum_{\eta = -\infty}^{\eta = -\infty} \Delta t \delta(t - n \Delta t)$$
(1)

$$= \sum_{n=-\infty}^{n=-\infty} x(t) \Delta t \delta(t-n \Delta t)$$
 (1a)

Since

$$x(t)\delta(t-n\Delta t) = x(n\Delta t)\delta(t-n\Delta t)$$

$$y(t) = \sum_{n=-62}^{n=\infty} x(n\Delta t)\Delta t\delta(t-n\Delta t)$$
(2)

If x(t) belongs to a special class which has the following properties:

$$x(t)=0, t \leq 0$$

$$x(t)=negligible, t \geq T, where T is a constant,$$
and
$$x(t)=finite values, 0 \leq t \leq T$$

$$(3)$$

Graphically, this class looks like the curve shown in Fig. 11. x(t)

Equation (2) can be approximated by

$$y(t) = \sum_{n=0}^{N-1} x(n\Delta t) \Delta t \delta(t-n\Delta t)$$
(4)
$$H = \frac{T}{\Delta t}$$
(5)

where

Fourier transforming (4), we obtain

$$Y(f) = \int_{-\infty}^{\infty} \sum_{n=0}^{N-1} x(n\Delta t) \Delta t_{0}(t-n\Delta t) e^{-j2\pi f t} dt$$

or

$$Y(f) = \sum_{n=0}^{N-1} x(n\Delta t) \Delta t e^{-j2\pi f n\Delta t}$$
(6)

As we mentioned before, Y(f) is a periodic function, with period $\frac{1}{\Delta t}$, when Y(f) is determined, one period of Y(f) is the same as the aperiodic function, X(f).

If we only ask the numerical X(f), equation (6) then can be used in the following way:

: Let

 $f = \frac{k}{T}$ and k=0 first and substitute them into (6). The value Y(0) is found:

$$Y(0) = \sum_{n=0}^{N-1} x(n4t) \Delta t e^{0}$$
 (7)

then lat k=1, repeating the process yields

$$Y(\frac{1}{T}) = \sum_{n=0}^{N-1} x(n\Delta t)\Delta t e^{-j2\pi \frac{1}{T} \cdot n\Delta t}$$
(8)

In general

$$Y(\frac{k}{T}) = \sum_{n=0}^{N-1} x(n\Delta t) \Delta t e^{-j2\pi \frac{k}{T} n\Delta t}$$
(9)
$$t \Delta t = \frac{T}{M}$$

noting that $\Delta t = \frac{1}{N}$

Equation (7)—(9) can also be written as

$$Y(\frac{k}{T}) = \sum_{n=0}^{N-1} x(n\Delta t) \Delta t e^{-j2\pi \frac{k}{2} - n \frac{2}{N}} = k = 0, 1, \dots, N-1.$$
(10)

Equation (17) is called the Discrete Fourier Transform.

2. Discrete Formula in Matrix Form

For example, taking N=3, the expansion of (10) should be as follows:

$$Y(\frac{0}{T}-)=x(0\Delta t)\Delta te^{-j2\pi\cdot0\cdot0\cdot\frac{1}{3}} + x(1\Delta t)\Delta te^{-j2\pi\cdot0\cdot1\cdot\frac{1}{3}} + x(2\Delta t)\Delta te^{-j2\pi\cdot0\cdot2\cdot\frac{1}{3}}$$
$$Y(\frac{1}{T}-)=x(0\Delta t)\Delta te^{-j2\pi\cdot1\cdot0\cdot\frac{1}{3}} + x(1\Delta t)\Delta te^{-j2\pi\cdot1\cdot1\cdot\frac{1}{3}} + x(2\Delta t)\Delta te^{-j2\pi\cdot1\cdot2\cdot\frac{1}{3}}$$
$$Y(\frac{2}{T}-)=x(0\Delta t)\Delta te^{-j2\pi\cdot2\cdot0\cdot\frac{1}{3}} + x(1\Delta t)\Delta te^{-j2\pi\cdot2\cdot1\cdot\frac{1}{3}} + x(2\Delta t)\Delta te^{-j2\pi\cdot2\cdot2\cdot\frac{1}{3}}$$

A corresponding matrix form is $\begin{pmatrix}
\mathbf{Y}\left(\frac{0}{1^{*}}\right) \\
\mathbf{Y}\left(\frac{1}{1^{*}}\right) \\
\mathbf{Y}\left(\frac{1}{1^{*}}\right) \\
\mathbf{Y}\left(\frac{2}{1^{*}}\right)
\end{pmatrix} = \begin{pmatrix}
\mathbf{e}^{-j2\pi\cdot0\cdot0\cdot\frac{1}{3}} & \mathbf{e}^{-j2\pi\cdot0\cdot1\cdot\frac{1}{3}} & \mathbf{e}^{-j2\pi\cdot0\cdot2\cdot\frac{1}{3}} \\
\mathbf{e}^{-j2\pi\cdot1\cdot0\cdot\frac{1}{3}} & \mathbf{e}^{-j2\pi\cdot1\cdot1\cdot\frac{1}{3}} & \mathbf{e}^{-j2\pi\cdot1\cdot2\cdot\frac{1}{3}} \\
\mathbf{e}^{-j2\pi\cdot2\cdot0\cdot\frac{1}{3}} & \mathbf{e}^{-j2\pi\cdot2\cdot1\cdot\frac{1}{3}} & \mathbf{e}^{-j2\pi\cdot2\cdot2\cdot\frac{1}{3}}
\end{pmatrix}
\begin{pmatrix}
\mathbf{x}(0\mathbf{At})\mathbf{\Delta t} \\
\mathbf{x}(1\mathbf{At})\mathbf{\Delta t} \\
\mathbf{x}(2\mathbf{At})\mathbf{\Delta t}
\end{pmatrix}$ (12)

For clarity, we change (10) to the following notations

$$\begin{vmatrix} S_{0} \\ S_{1} \\ S_{2} \end{vmatrix} = \begin{pmatrix} \underline{0 \alpha} & \underline{0 \alpha} & \underline{0 \alpha} \\ \underline{0 \alpha} & \underline{1 \alpha} & \underline{2 \alpha} \\ \underline{0 \alpha} & \underline{1 \alpha} & \underline{2 \alpha} \\ \underline{0 \alpha} & \underline{2 \alpha} & \underline{1 \alpha} \\ \underline{0 \alpha} & \underline{2 \alpha} & \underline{1 \alpha} \\ \underline{0 \alpha} & \underline{2 \alpha} & \underline{1 \alpha} \\ \underline{0 \alpha} & \underline{2 \alpha} & \underline{1 \alpha} \\ \underline{0 \alpha} & \underline{2 \alpha} & \underline{1 \alpha} \\ \underline{0 \alpha} & \underline{0 \alpha}$$

where

$$S_{k} = Y(\frac{k}{T})$$

 $\alpha = -\frac{2\pi}{N}$ or $\underline{\alpha} = e^{-i\frac{2\pi}{N}}$ (13)

$$A_{k} = x(k \Delta t) \Delta t$$

We can write a general formula of (12a)

$$\begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ \vdots \\ S_{n-1} \end{bmatrix} = \begin{bmatrix} \underline{2\alpha} & \underline{2\alpha}$$

or the compact form as follows:

$$S_{k}^{=} \sum_{n=0}^{N-1} A_{n} e^{-i\frac{2\pi}{N} nk}$$
 (14a)

$$=\sum_{n=0}^{N-1} A_n / \underline{n k \alpha}$$
(14b)

3. Illustrative Example

Find the Fourier spectrum of the time curve shown in Fig.12. The numerical data is tabulated below. The curve is generated from the function $x(t)=10(e^{-t}-e^{-2t})$.

First of all, we should find ${\rm A}_{\rm n},$

$$A_{n} = \Delta t x(n\Delta t)$$
 (13)

we use t=0.5, and N=8, T=4, substituting the given data into (14), we have

$$\begin{bmatrix} s_{0} \\ s_{1} \\ 1 \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5} \\ s_{6} \\ s_{7} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -\frac{2\pi}{8} & -\frac{4\pi}{8} & -\frac{6\pi}{8} & -\frac{8\pi}{8} & -\frac{10\pi}{8} & -\frac{12\pi}{8} & -\frac{14\pi}{8} \\ 1 & -\frac{4\pi}{8} & -\frac{8\pi}{8} & -\frac{12\pi}{8} & -\frac{16\pi}{8} & -\frac{12\pi}{8} & -\frac{14\pi}{8} \\ 1 & -\frac{6\pi}{8} & -\frac{12\pi}{8} & -\frac{16\pi}{8} & -\frac{16\pi}{8} & -\frac{16\pi}{8} & 0.867 \\ 1 & -\frac{6\pi}{8} & -\frac{12\pi}{8} & -\frac{18\pi}{8} & -\frac{16\pi}{8} & 0.867 \\ 1 & -\frac{8\pi}{8} & -\frac{12\pi}{8} & -\frac{18\pi}{8} & -\frac{16\pi}{8} & 0.867 \\ 1 & -\frac{10\pi}{8} & -\frac{10\pi}{8} & -\frac{12\pi}{8} & 0.377 \\ 0.286 \\ 0.146 \end{bmatrix}$$
(15)

 or

$$S_{k} = \sum_{n=0}^{7} A_{n} \underline{/n! \alpha} \qquad k=0,1,\ldots,7. \text{ where}$$

$$\alpha = -\frac{2\pi}{8}$$

The first equation of (15) reads:

 $S_0=0+1.199+1.163+0.867+0.585+0.377+0.286+0.146=4.62$ which is the ma mitude of the frequency spectrum when f=0. Theoretically, it should be found as

$$\frac{10}{j2\pi f+1} - \frac{10}{j2\pi f+2} = 5.$$
f=0. (16)

 S_1, S_2, \dots and S_7 can be evaluated similarly.

4. Vector Diagram Interpretation

Equation (14) in general, or equation (15) in particular can be geometrically interpreted as follows:

We rewrite the equation of $(1^{l_{1}}a)$ in its expansion form, for example,

$$S_{1} = A_{0}e^{-j\frac{2\pi}{N} \cdot 0 \cdot 1} + A_{1}e^{-j\frac{2\pi}{N} \cdot 1 \cdot 1} \dots + A_{7}e^{-j\frac{2\pi}{N} \cdot 1 \cdot 7}$$
$$= A_{0} \frac{10 \alpha}{N} + A_{1} \frac{11 \alpha}{N} + \dots + A_{7} \frac{17 \alpha}{N}$$

If each term is considered as a vector as shown in Fig. 13a, S, becomes a surmation of many vectors or the resultant vector.

If S_2 is desired, we simply double the angle of each ... vector and then take the summation. The geometrical correspondence is shown in Fig.13b.

Therefore, from the geometrical viewpoint, equation (l^k) can be stated as follows:

The frequency spectrum matrix, $\{S_k\}$, is equal to the angular" matrix $(\underline{nk\alpha})$ times the magnitude matrix $\{A_n\}$. Each term of the square matrix is a pure angle while each term of the last column matrix is a pure scalar. However, each term of the spectrum matrix is a 'complex number in general.

5. Computer Program for Discrete Fourier Transform

Based on equation (14), a computer program is written and an example is tested. In the first run, we use N=8, the answer coincides with that obtained from the graphical method. In the second run, we use N=1024. The comparison of the results is shown in table 1.

.

(a)

Fig. 13

m-1.7 -	-
Table	
	_

F	Absolute Val	lue
,	N=8	N=1024
-1.00000	0.59835	0.238267
-0.75 000	0,67242	0.405277
-0,50000	0.98687	0.813938
-0.25000	2.07848	2.110291
0,000000	4.56685	4.996576
0.25000	2.07848	2.110291
0.50000	0.98688	0.405279
0.75000	0.67243	0.405279

Fig. 14 is the frequency spectrum of the example problem.

Comparing this spectrum with that shown in Fig. 10, we know that the second half starting S_4 to S_7 of Fig. 14, should be moved ahead of S_0 , or be shown as in Fig. 15. This means that we obtain X(f) from Y(f).


```
С
      PROGRAM #1
С
      DISCRETE FOURIER TRANSFORM
      IF ND EQUAL O FOR FUNCTION, OTHERWISE FOR INPUT DATA
С
C
      T IS THE TOTAL TIME, 2**M IS THE TOTAL POINTS
С
      FUNCTION
      FUN(T)=10+*(EXP(=T)=EXP(=P+*T))
      MAIN PROGRAM
C
      COMPLEX SIDES
      DIMENSION A(5000)
      READ(5,400) M.T.ND
  400 FORMAT(110,F15+5,15)
      N=2*+M
      DET=T/N
      IF(ND)10,19,10
   10 READ(5:402) (A(I):I=1:N)
  402 FORMAT(5F16+6)
      68 TS 29
   19 CONTINUE
      00 20 1-1.N
  20 A(I)=FUN((I=1)*DET)
  29 WRITE(6,403)
 403 FORMAT(15X, FREGUENCY', 8X, REAL PART', 6X, IMAGINERY PART', 5X, TABSE
     1LUTE VALUE!)
      WN=N/2
      D0 30 1=1.MN
      S=(0.,0.)
      D0 40 J=1,N
  40 S=S+DET*CMPLX(A(J)=0+)*CEXP((0+==1+)*2+*3+1416*(MN+1+1)*(J=1)/N)
      F=(=MN+I=1)/T
      ABL=CABS(S)
  30 WRITE (S: 404) FISIABL
 404 FORMAT(8X:4F16:6)
      D8 50 1=1,HN
      S=(0++0+)
     D8 60 J=1,N
  60 S=S+DET*CMPLX(A(J),0+)*CEXP((0+,-1+)*2+*3+1416*(1-1)*(J-1)/N)
     F=(I+1)/1
     ABL=CABS(3)
  50 NRITE (6,404) FISIABL
     STOP
     END
```

III. Inverse Discrete Fourier Transform

1. The Inverse Formula and its Proof

•

.

We rewrite the discrete Fourier formula,

$$S_{k} = \sum_{n=0}^{N-1} A_{n} e^{-j\frac{2\pi nk}{N}} \qquad k=0,1,2,\dots,N-1.$$
 (1)

and we would like to claim that the inverse discrete Fourier formula is as follows:

$$A_{n} = \frac{1}{N} \sum_{k=0}^{N-1} S_{k} e^{j\frac{2\pi nk}{N}} n=0,1,2,\dots,N-1.$$
(2)

. A proof of equation (2) is offered below: Starting from the right hand side of (2)

$$\frac{1}{N} - \sum_{k=0}^{N-1} s_k e^{j\frac{2\pi nk}{N}}$$
(3)

we substitute $S_k \circ f$ (1) into it.

$$= \frac{1}{N} - \sum_{k=0}^{N-1} \left[\sum_{m=0}^{N-1} A_{m} e^{-j\frac{2\pi mk}{N}} \right] e^{j\frac{2\pi mk}{N}}.$$

noting that we changed the subscript n into m, then interchange the summations

$$= \frac{1}{N} - \sum_{m=0}^{N-1} A_{m} \sum_{k=0}^{N-1} e^{-j\frac{2\pi mk}{N}} e^{j\frac{2\pi mk}{N}}$$
$$= \frac{1}{N} - \sum_{m=0}^{N-1} A_{m} \sum_{k=0}^{N-1} e^{-j\frac{12\pi (m-n)k}{N}}$$
(1)

$$=\frac{1}{N} - \frac{NA}{n}$$
(5)

$$=$$
 $\stackrel{A}{n}$. (6)

21

ł

From (4) to (5), we used the following relation:

$$\sum_{k=0}^{N-1} e^{-j\frac{2\pi(m-n)k}{N}} = 0, \text{ if } m \neq n$$

$$= N ; \text{ if } m = n$$
(7)

Therefore, equation (2) is proved.

2. The matrix form of (2) is written as follows

$$\begin{pmatrix} A_{0} \\ A_{1} \\ A_{2} \\ A_{2} \\ A_{N-1} \end{pmatrix} = \begin{pmatrix} \underline{/-0 \cdot \alpha} & \underline{/-0 \cdot \alpha} & \underline{/-0 \cdot \alpha} & \underline{/-0 \cdot \alpha} \\ \underline{/-0 \cdot \alpha} & \underline{/-1 \cdot \alpha} & \underline{/-2 \cdot \alpha} \dots & \underline{/-(N-1) \cdot \alpha} \\ \underline{/-0 \cdot \alpha} & \underline{/-2 \cdot \alpha} \dots & \underline{/-(N-1) \cdot \alpha} \\ \underline{/-0 \cdot \alpha} & \underline{/-2 \cdot \alpha} \dots & \underline{/-(N-1) \cdot \alpha} \\ \underline{/-0 \cdot \alpha} & \underline{/-(N-1) \cdot \alpha} \dots & \underline{/-(N-1) \cdot \alpha} \\ \underline{/-0 \cdot \alpha} & \underline{/-(N-1) \cdot \alpha} \dots & \underline{/-(N-1) \cdot \alpha} \\ \underline{/-0 \cdot \alpha} & \underline{/-(N-1) \cdot \alpha} \dots & \underline{/-(N-1) \cdot \alpha} \\ \end{bmatrix} \begin{pmatrix} S_{0} / N \\ S_{1} / N \\ S_{2} / N \\ S_{N-1} / N \end{pmatrix}$$
(8)

The square matrix of (8) is similar to that of (2); but each term is with a negative sign.

We also can use vectors to express the operation involved in (8); however, because S_k is a complex number, the picture is not as simple as before.

3. Computer Program for Inverse Discrete Fourier Transform

С		PROGRAM #2
С		INVERSE DISCRETE FOURIER TRANSFORM
С		IF ND EQUAL O FORFUNCTION, OTHERWISE FOR INPUT DATA
С		T IS THE TOTAL TIME, 2**M IS THE TOTAL SAMPLE POINT
С		NAIN PROGRAM
		COMPLEX S, DES, A, CFUN, SL
		DIMENSION S(5000)
		READ(5,400) M,T,ND
	400	FORMAT(110,F15.5,15)
		DET=T/N
		DES=(0*1*)*2*3*1416/T
		$\frac{11}{10} \frac{10}{10} \frac{19}{10} \frac{10}{10} 10$
	10	$\frac{REAU(5)402}{(5(1))}$
	401	TOPMAT/15/401)
	-4 C) 1	HETTERS HOUS RELEASED
	402	EBRMAT/8E10.5V
	402	GA TA 29
		GA TA 29
	19	MN = N/2
		DB 2C I=1.MN
		S(I)=CFUN((I+1)*DFS)
	20	S(MN+I)=CFUN((-MN+I-1)*DES)
	59	WRITE(6:403)
	403	F ^{ermat} (15x, TIME), 10x, TX(T))
		D0 30 I=1,N
		$A = (0 \cdot * 0 \cdot)$
		D8 40 J=1,N
	4 C	A=A+S(J)*CEXP((0.,1.)*2*3.1416*(I-1)*(J-1)/N)
		IN=(I-1)+DET
	20	AFEREAL(A)/T
	50	ANTIE (61404) INJAR
	щÇт	CTAD
С		FUNCTION CURPOLITING
		COMPLEX FUNCTION CEUNICAL
		CAMPLEY SI
		CEUN=(10*10*)/((3)+(1*0*))*(2*10) = 0
		RETURN
		END
		0,00000 0,000416
		1.000000 2.200001
		1.500000 1.772028
		2.000000 1.206113
		2.50000 0.746917
		3.00000 0.523303
		3+500000 0+209283

ŧ ..

-

.

IV. Fast Fourier Transform - Decimation in Time

1. Basic Algorithm

The Fast Fourier Transform is an algorithm that makes possible the computation of the Discrete Fourier Transform of a time series more rapidly than other algorithms available. The two basic 4,5,6,7,8 (1) Decimation in time and (2) Decimation in frequency. We will explain the first technique as follows:

Consider (14a) of section II again:

$$S_{k} = \sum_{n=0}^{N-1} A_{n} e^{-j\frac{2\pi}{N} \cdot nk}$$
(1)

For convenience, let N be even. Expanding yields

$$S_{k} = A_{0}e^{-j\frac{2\pi \cdot 0 \cdot k}{N}} + A_{1}e^{-j\frac{2\pi \cdot 1 \cdot k}{N}} + A_{2}e^{-j\frac{2\pi \cdot 2 \cdot k}{N}} + \dots + A_{N-2}e^{-j\frac{2\pi (N-1)k}{N}} + \dots + A_{N-1}e^{-j\frac{2\pi (N-1)k}{N}}$$
(1a)

Regrouping gives

$$S_{k} = \left(\Lambda_{0} e^{-j\frac{2\pi \cdot 0 \cdot k}{N}} + \Lambda_{2} e^{-j\frac{2\pi \cdot 2 \cdot k}{N}} + \dots \right)$$

$$+ \left(A_{1} e^{-j\frac{2\pi \cdot 1 \cdot k}{N}} + A_{3} e^{-j\frac{2\pi \cdot 3 \cdot k}{N}} + \dots \right)$$

$$= \sum_{r=0}^{N/2-1} A_{2r} e^{-j\frac{2\pi 2r \cdot k}{N}} + \sum_{r=0}^{N/2-1} A_{2r+1} e^{-j\frac{2\pi (2r+1)k}{N}}$$

$$= \sum_{r=0}^{N/2-1} A_{2r} e^{-j\frac{2\pi r \cdot k}{2}} + e^{-j\frac{2\pi k}{N}} \sum_{r=0}^{N/2-1} A_{2r+1} e^{-j\frac{2\pi r \cdot k}{2}}$$

or

1

Note that the first term is with the standard Discrete Fourier Transform form while the second term is a factor $e^{-\frac{j2\pi k}{L}}$ times (2)

that standard form. Therefore, when we let:

$$P_{k} = \sum_{r=0}^{N/2-1} A_{2r} e^{-j\frac{2\pi rk}{N}}$$
(3)

and

$$Q_{k} = \sum_{r=0}^{N_{2}-1} A_{2r+1} e^{-j\frac{2\pi rk}{N}}$$
(4)

Equation (2) becomes

$$S_{k} = P_{k} + e^{-j\frac{2\pi k}{L}} Q_{k}$$
, k=0,1,...N-1. (5)

The periodic nature of \boldsymbol{P}_k and \boldsymbol{Q}_k should be observed.

$$P_{k} = P_{k} + \frac{N}{2}$$
 (6a)

$$Q_{k} = Q_{k} + \frac{N}{2}$$
(6b)

These two relations (6a) and (6b) are easily proved by substitution.

By using (6a) and (6b), we have the following reasoning:

$$S_{k} = P_{k} + e^{-j\frac{2\pi k}{1!}}Q_{k}$$
, (7a)

When

let

$$k = -\frac{N}{2} + k'$$

$$S_{\frac{N}{2} + k'} = P_{\frac{N}{2} + k'} + e^{-j\frac{2\pi (\frac{N}{2} + k')}{N}} Q_{\frac{N}{2} + k'}$$
(7b)

when

.

 $0 \leq k < \frac{N}{2}$

$$\sum_{\mathbf{N}+\mathbf{h}'} = P_{\mathbf{k}'} - e^{-j\frac{2\pi \mathbf{k}'}{\mathbf{N}}} Q_{\mathbf{k}'}$$

Therefore, equation (5) can be written as two equations.

$$S_{k} = P_{k} + e^{-j \cdot \frac{2\pi k}{N}} Q_{k} \qquad (6)$$

$$S_{\underline{N}} = P_{k} - e^{-j \cdot \frac{2\pi k}{N}} Q_{k} , \qquad k=0,1,\ldots,\frac{N}{2} - 1.$$

Equation (8) is the Fast Fourier Transform algorithm.

The computation of the Discrete Fourier transform of N samples can be reduced to computing the Discrete Fourier Transforms of two sequences of $\frac{N}{2}$ samples each; the computation of $P_k(\text{or }Q_k)$ can be reduced to computation of sequences of $\frac{N}{4}$ samples. If we let $N=2^M$, these reductions can be carried out continuously.

2. Signal Flow Graph Illustration

Suppose N=8, Equation(8) becomes

$$\begin{cases} S_{k} = P_{k} + e^{-\frac{2\pi k}{6}} Q_{k} \\ S_{4+k} = P_{k} - e^{-\frac{j}{8}} Q_{k} \\ S_{5+k} = P_{$$

Equation (9) can be illustrated as a signal flow graph shown in Fig. 16.

Fig. 16.

Referring to the basic definitions in (3) and (4), we can consider (P_k) and (Q_k) to be generated from the samples A_0 , A_2 , A_4 , A_6 , and the samples A_1 , A_3 , A_5 , A_7 , respectively.

Fig. 17.

Graphically, we express the generation process in Fig. 17.

3. Vector-Diagram Interpretation of FFT

We have used vectors to interprete DFT in the last section. A question naturally arises : What is the vector picture which corresponds FF1?

Let us repeat Fig. 12. and reshow it as Fig. 18. We have explained that the resultant of Fig (18a) is S_1 . Now, decompose the set of vectors into two sets: namely, A_0 , A_2 , A_4 , and A_6 as a group and A_1, A_3 , A_5 , and A_7 as another group. Then equation (9) can be regarded as the combination of the two graphs: vectors shown in Fig. (18b) are superimposed by the vectors shown in (18d).

4. Matrix Explanation

Assuming N=8, eauation (14) of section II becomes:

$$\begin{bmatrix} S_{0} \\ S_{1} \\ S_{2} \\ S_{3} \\ S_{4} \\ S_{5} \\ S_{6} \\ S_{7} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \underline{/\alpha} & \underline{/2\alpha} & \underline{/2\alpha} & \underline{/4\alpha} & \underline{/5\alpha} & \underline{/6\alpha} & \underline{/7\alpha} \\ 1 & \underline{/\alpha} & \underline{/2\alpha} & \underline{/4\alpha} & \underline{/6\alpha} & \underline{/8\alpha} & \underline{/10\alpha} & \underline{/12\alpha} & \underline{/14\alpha} \\ 1 & \underline{/2\alpha} & \underline{/4\alpha} & \underline{/6\alpha} & \underline{/8\alpha} & \underline{/10\alpha} & \underline{/12\alpha} & \underline{/14\alpha} \\ 1 & \underline{/3\alpha} & \underline{/6\alpha} & \underline{/9\alpha} & \underline{/12\alpha} & \underline{/15\alpha} & \underline{/16\alpha} & \underline{/21\alpha} \\ 1 & \underline{/3\alpha} & \underline{/6\alpha} & \underline{/9\alpha} & \underline{/12\alpha} & \underline{/15\alpha} & \underline{/16\alpha} & \underline{/21\alpha} \\ 1 & \underline{/5\alpha} & \underline{/12\alpha} & \underline{/16\alpha} & \underline{/20\alpha} & \underline{/24\alpha} & \underline{/26\alpha} \\ 1 & \underline{/5\alpha} & \underline{/12\alpha} & \underline{/15\alpha} & \underline{/20\alpha} & \underline{/35\alpha} & \underline{/35\alpha} \\ 1 & \underline{/6\alpha} & \underline{/12\alpha} & \underline{/16\alpha} & \underline{/21\alpha} & \underline{/35\alpha} & \underline{/42\alpha} & \underline{/49\alpha} \\ 1 & \underline{/7\alpha} & \underline{/14\alpha} & \underline{/21\alpha} & \underline{/26\alpha} & \underline{/35\alpha} & \underline{/42\alpha} & \underline{/49\alpha} \\ \end{bmatrix}$$
 (10)

The corresponding simultaneous equations are:

$$\begin{split} S_{0} = A_{0} + A_{1} + A_{2} + A_{3} + A_{l_{1}} + A_{5} + A_{6} + A_{7} \\ S_{1} = A_{0} + A_{1} \underline{/\alpha} + A_{2} \underline{/\alpha} + A_{3} \underline{/\alpha} + A_{l_{4}} \underline{/\alpha} + A_{5} \underline{/5\alpha} + A_{6} \underline{/5\alpha} + A_{7} \underline{/7\alpha} \\ S_{2} = A_{0} + A_{1} \underline{/2\alpha} + A_{2} \underline{/^{\prime}\alpha} + A_{3} \underline{/5\alpha} + A_{l_{4}} \underline{/\alpha} + A_{5} \underline{/10\alpha} + A_{6} \underline{/12\alpha} + A_{7} \underline{/14\alpha} \\ S_{3} = A_{0} + A_{1} \underline{/3\alpha} + A_{2} \underline{/5\alpha} + A_{3} \underline{/3\alpha} + A_{l_{4}} \underline{/2\alpha} + A_{5} \underline{/15\alpha} + A_{6} \underline{/17\alpha} + A_{7} \underline{/21\alpha} \\ S_{l_{4}} = A_{0} + A_{1} \underline{/^{\prime}\alpha} + A_{2} \underline{/3\alpha} + A_{3} \underline{/12\alpha} + A_{l_{4}} \underline{/16\alpha} + A_{5} \underline{/20\alpha} + A_{6} \underline{/21^{\prime}\alpha} + A_{7} \underline{/22\alpha} \\ S_{5} = A_{0} + A_{1} \underline{/^{\prime}\alpha} + A_{2} \underline{/10\alpha} + A_{3} \underline{/15\alpha} + A_{l_{4}} \underline{/16\alpha} + A_{5} \underline{/20\alpha} + A_{6} \underline{/21^{\prime}\alpha} + A_{7} \underline{/23\alpha} \\ S_{6} = A_{0} + A_{1} \underline{/^{\prime}\alpha} + A_{2} \underline{/10\alpha} + A_{3} \underline{/15\alpha} + A_{l_{4}} \underline{/20\alpha} + A_{5} \underline{/30\alpha} + A_{6} \underline{/30\alpha} + A_{7} \underline{/35\alpha} \\ S_{6} = A_{0} + A_{1} \underline{/^{\prime}\alpha} + A_{2} \underline{/12\alpha} + A_{3} \underline{/12\alpha} + A_{l_{4}} \underline{/21\alpha} + A_{5} \underline{/30\alpha} + A_{6} \underline{/36\alpha} + A_{7} \underline{/12\alpha} \\ S_{7} = A_{0} + A_{1} \underline{/^{\prime}\alpha} + A_{2} \underline{/12\alpha} + A_{3} \underline{/12\alpha} + A_{l_{4}} \underline{/21\alpha} + A_{5} \underline{/35\alpha} + A_{6} \underline{/12\alpha} + A_{7} \underline{/12\alpha} \\ S_{7} = A_{0} + A_{1} \underline{/^{\prime}\alpha} + A_{2} \underline{/12\alpha} + A_{3} \underline{/21\alpha} + A_{l_{4}} \underline{/21\alpha} + A_{5} \underline{/35\alpha} + A_{6} \underline{/12\alpha} + A_{7} \underline{/12\alpha} \\ S_{7} = A_{0} + A_{1} \underline{/7\alpha} + A_{2} \underline{/11^{\prime}\alpha} + A_{3} \underline{/21\alpha} + A_{l_{4}} \underline{/28\alpha} + A_{5} \underline{/35\alpha} + A_{6} \underline{/12\alpha} + A_{7} \underline{/12\alpha} \\ S_{7} = A_{0} + A_{1} \underline{/7\alpha} + A_{2} \underline{/11^{\prime}\alpha} + A_{3} \underline{/21\alpha} + A_{l_{4}} \underline{/28\alpha} + A_{5} \underline{/35\alpha} + A_{6} \underline{/12\alpha} + A_{7} \underline{/12\alpha} \\ S_{7} = A_{0} + A_{1} \underline{/7\alpha} + A_{2} \underline{/11^{\prime}\alpha} + A_{3} \underline{/21\alpha} + A_{14} \underline{/28\alpha} + A_{5} \underline{/35\alpha} + A_{6} \underline{/12\alpha} + A_{7} \underline{/12\alpha} \\ S_{7} = A_{0} + A_{1} \underline{/7\alpha} + A_{2} \underline{/11^{\prime}\alpha} + A_{3} \underline{/21\alpha} + A_{14} \underline{/28\alpha} + A_{5} \underline{/35\alpha} + A_{6} \underline{/12\alpha} + A_{7} \underline{/12\alpha} \\ S_{7} = A_{0} + A_{1} \underline{/7\alpha} + A_{2} \underline{/11^{\prime}\alpha} + A_{3} \underline{/21\alpha} + A_{14} \underline{/28\alpha} + A_{5} \underline{/35\alpha} + A_{6} \underline{/12\alpha} + A_{7} \underline{/12\alpha} \\ S_{7} = A_{0} + A_{1} \underline{/12\alpha} + A_{1} \underline{/1$$

We re-group these equations by combining the even terms and the odd terms respectively.

$$\begin{split} & S_{0} = A_{0} + A_{2} + A_{44} + A_{6} + A_{1} + A_{3} + A_{5} + A_{7} \\ & S_{1} = A_{0} + A_{2} \underline{/2\alpha} + A_{44} \underline{/1\alpha} + A_{5} \underline{/5\alpha} + A_{1} \underline{/\alpha} + A_{3} \underline{/3\alpha} + A_{5} \underline{/5\alpha} + A_{7} \underline{/7\alpha} \\ & S_{2} = A_{0} + A_{2} \underline{/1\alpha} + A_{44} \underline{/3\alpha} + A_{6} \underline{/12\alpha} + A_{1} \underline{/2\alpha} + A_{3} \underline{/6\alpha} + A_{5} \underline{/10\alpha} + A_{7} \underline{/14\alpha} \\ & S_{3} = A_{0} + A_{2} \underline{/6\alpha} + A_{44} \underline{/12\alpha} + A_{6} \underline{/12\alpha} + A_{1} \underline{/3\alpha} + A_{3} \underline{/9x} + A_{5} \underline{/15x} + A_{7} \underline{/21\alpha} \\ & S_{44} = A_{0} + A_{2} \underline{/6\alpha} + A_{44} \underline{/16\alpha} + A_{6} \underline{/24\alpha} + A_{1} \underline{/14\alpha} + A_{3} \underline{/12\alpha} + A_{5} \underline{/20\alpha} + A_{7} \underline{/23\alpha} \\ & S_{5} = A_{0} + A_{2} \underline{/10\alpha} + A_{44} \underline{/20\alpha} + A_{6} \underline{/25\alpha} + A_{1} \underline{/5x} + A_{3} \underline{/12\alpha} + A_{5} \underline{/25\alpha} + A_{7} \underline{/23\alpha} \\ & S_{5} = A_{0} + A_{2} \underline{/10\alpha} + A_{44} \underline{/20\alpha} + A_{6} \underline{/25\alpha} + A_{1} \underline{/5\alpha} + A_{3} \underline{/15\alpha} + A_{5} \underline{/30\alpha} + A_{7} \underline{/135\alpha} \\ & S_{6} = A_{0} + A_{2} \underline{/12\alpha} + A_{44} \underline{/21\alpha} + A_{6} \underline{/25\alpha} + A_{1} \underline{/5\alpha} + A_{3} \underline{/12\alpha} + A_{5} \underline{/30\alpha} + A_{7} \underline{/142\alpha} \\ & S_{7} = A_{0} + A_{2} \underline{/14\alpha} + A_{44} \underline{/25\alpha} + A_{6} \underline{/12\alpha} + A_{1} \underline{/7\alpha} + A_{3} \underline{/21\alpha} + A_{5} \underline{/35\alpha} + A_{7} \underline{/19\alpha} \\ & S_{7} = A_{0} + A_{2} \underline{/14\alpha} + A_{44} \underline{/25\alpha} + A_{6} \underline{/12\alpha} + A_{1} \underline{/7\alpha} + A_{3} \underline{/21\alpha} + A_{5} \underline{/35\alpha} + A_{7} \underline{/19\alpha} \\ & S_{7} = A_{0} + A_{2} \underline{/14\alpha} + A_{44} \underline{/25\alpha} + A_{6} \underline{/12\alpha} + A_{1} \underline{/7\alpha} + A_{3} \underline{/21\alpha} + A_{5} \underline{/35\alpha} + A_{7} \underline{/19\alpha} \\ & S_{7} = A_{0} + A_{2} \underline{/14\alpha} + A_{44} \underline{/25\alpha} + A_{6} \underline{/12\alpha} + A_{1} \underline{/7\alpha} + A_{3} \underline{/21\alpha} + A_{5} \underline{/35\alpha} + A_{7} \underline{/19\alpha} \\ & S_{7} = A_{0} + A_{2} \underline{/14\alpha} + A_{44} \underline{/25\alpha} + A_{6} \underline{/12\alpha} + A_{1} \underline{/7\alpha} + A_{3} \underline{/21\alpha} + A_{5} \underline{/35\alpha} + A_{7} \underline{/19\alpha} \\ & S_{7} = A_{0} + A_{2} \underline{/14\alpha} + A_{44} \underline{/25\alpha} + A_{6} \underline{/12\alpha} + A_{1} \underline{/7\alpha} + A_{3} \underline{/21\alpha} + A_{5} \underline{/35\alpha} + A_{7} \underline{/19\alpha} \\ & S_{7} = A_{0} + A_{2} \underline{/14\alpha} + A_{14} \underline{/25\alpha} + A_{6} \underline{/12\alpha} + A_{1} \underline{/7\alpha} + A_{3} \underline{/21\alpha} + A_{5} \underline{/35\alpha} + A_{7} \underline{/14\alpha} \\ & S_{7} = A_{7} \underline{/14\alpha} + A_{14} \underline{/25\alpha} + A_{14} \underline{/12\alpha} + A_{14} \underline{/12\alpha} + A_{14} \underline{/12\alpha} + A_{14} \underline{/12\alpha} \\ & S_{7} = A_{7} \underline{/14\alpha} + A_{14} \underline{/12\alpha} + A_$$

Or in compact notation: $(S) = (N) (A_I)$ (13a)

It is noted that the frequency vector $(S_0, \ldots, S_7)^T$ is in the natural order while the magnitude vector in the time domain $(A_0, A_2, A_4, \ldots, A_7)^T$ is not in the natural order. We call this scrabbled pattern DECILATION IN TIME.

The square matrix in (13) can be factored into two square matrices as follows

or

Į

•

$$(\mathbf{W}) = (\mathbf{U}_{\mathbf{I}})(\mathbf{V}_{\mathbf{I}}) \tag{14a}$$

Substituting (14a) into (13) and putting(V)(A) together, we obtain

$$\begin{pmatrix} V_{2} \\ V_{3} \\ V_{3} \end{pmatrix} \begin{bmatrix} P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{4} \\ Q_{1} \\ Q_{2} \\ Q_{3} \\ Q_{4} \end{bmatrix}$$
 (15)

Rewrite (13) with the new notations so far developed:

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} W \end{bmatrix} \begin{bmatrix} A_T \end{bmatrix}$$
$$= \begin{bmatrix} U_T \end{bmatrix} \begin{bmatrix} V_T \end{bmatrix} \begin{bmatrix} A_T \end{bmatrix}$$

31

.
$$= \begin{bmatrix} V_{2} \\ P_{2} \\ P_{3} \\ P_{4} \\ Q_{1} \\ Q_{2} \\ Q_{3} \\ Q_{4} \end{bmatrix}$$
(16)

Equation (16) is the matrix explanation of the signal flow graph shown in Fig. 17.

5. Repeating Use of the Algorithm

One of the advantages of the Fast Fourier Transform is that its basic algorithm can be used again and again in all stages.

Consider

.

•

$$\begin{bmatrix} \mathbf{V}_{\mathbf{I}} \\ \mathbf{V}_{\mathbf{I}} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{\mathbf{I}} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_{\mathbf{0}} \\ \mathbf{P}_{\mathbf{1}} \\ \mathbf{P}_{\mathbf{2}} \\ \mathbf{P}_{\mathbf{3}} \\ \mathbf{Q}_{\mathbf{0}} \\ \mathbf{Q}_{\mathbf{1}} \\ \mathbf{Q}_{\mathbf{2}} \\ \mathbf{Q}_{\mathbf{3}} \end{bmatrix}$$

•

(16a)

for this N=8 example, it means:

,

	,											
ĺ	1	l	1	1	0	0	0	0	(A ₀		P ₀	
	l	<u> 2a</u>	[4a	<u> 6a</u>	0	0	0	0	A2		P ₁	
	1	<u> 4a</u>	<u> 82</u>	<u> 12a</u>	0	0	0	• 0	A ₄		P2	
	1	<u> 6a</u>	<u> 12a</u>	<u> 18a</u>	0	0	0	0	A ₆		Р ₃	
	0	0	0	0	l	1	1	1	Al	-	QO	
	0	0	0	0	l	<u> 2a</u>	<u>l'ia</u>	<u>16a</u>	A.3		Q ₁	
	0	0	0	0	1	<u> 4a</u>	<u> 8a</u>	<u> 12a</u>	A 5		Q ₂	
	0	0	0	0 0	1	<u> 6a</u>	<u> 12a</u>	<u>[18a</u>	А ₇		Q ₃	
											• /	

(17)

Without changing the results, we can write the left hand side into an alternative form.

			ſ	1]	1 1	-	1 0)	0	0	0		A		P ₀)	•	
				1 <u>4</u> 0	<u>n 2a</u>	<u> </u>	<u>a</u> C)	0	0	0		A ₄		P ₁			
				1 <u>/8</u> 2	<u>r /2a</u>	<u>/12</u>	<u>a</u> 0)	0	0	0		^A 2		P2			
				1 <u>/120</u>	<u>n /6a</u>	<u>h8</u>	<u>a</u> C)	0	0	0		A ₆		P3		I	
				0 (o c)	0 1		1	1	l		Al	Ħ	QO		(17)	a)
				0 (o c),	נ 0	-	Aa	<u>/2a</u>	<u>/6a</u>		A ₅		Q ₁			-
				0 (o c)	נ 0	•	<u>/8a</u>	<u>[4a</u>	<u>/12a</u>		A ₃		Q2			
			l	0	0 0)	נ 0	- L	<u>12a</u>	<u>/6a</u>	<u>/18a</u>		A.7		Q ₃			
		Aga	in,	facto	ring t	the s	quare	ma	trix	c of (17a)	int	o two	o ma	tric	es:		
(.		4-	_	_		_	. \	ť.		1-							• >	(.)
1	0.	<u>/0a</u>	0	0	0	0	0		L /	<u>loa</u>	Q	Q	0		0.	0	0	A _O
0	l	0	<u>/2a</u>	0	0	0	0		1 -	<u>-10a</u>	0	0	0		0	0	0	A4
1	0	- <u>Ю</u> а	0	0	0	0	0		0	0	1	<u>10a</u>	0		0	0	0	A ₂
0	l	0-	- <u>/2a</u>	0	0	0	0		0	0	1 -	<u>10a</u>	0		0	0	0	AG
0	0	0	0	1	0	<u>/0a</u>	0		0	0	0	0	l	10	<u>a</u>	0	0	A
0	0	0	0	0	1	0	<u> 2a</u>		0	0	0	0	1	-70	à	0	0	A5
0	0	• 0	0	ŀ	0	- <u>ba</u>	0		0	0	0	0	0		0	1	<u>/0a</u>	A3
٥	0	0	0	0	1	0	- <u>/2a</u>		0	0	0	0	0		0	1-	<u>/0a</u>	A7
								`										

34

: or

$\left(\mathtt{U}_{\mathtt{I}\mathtt{I}} \right) \left(\mathtt{U}_{\mathtt{I}\mathtt{I}} \right) \left(\mathtt{A}_{\mathtt{I}\mathtt{I}} \right)$

Therefore, we can write the complete equation as follows:

$$(S) = (U_{I})(U_{II})(U_{III})(A_{II})$$
 (19)

The corresponding signal flow graphs is shown in Fig. 19

Fig. 19

6. Computer Program for Decimation in Time Fast Fourier Transform

Two computer program for the Fast Fourier Transform are written as shown in Program #3 and program #4.

Program #3 is using the analytic time function as an input while program #4 uses numerical information as input.

We still apply the example shown in section II-(3) in testing these two new programs

7. Inverse Fast Fourier Transform

If the frequency spectrum is given and the time domain function is required, in the discrete Fourier Transform, we use the formula

$$A_{n} = \frac{1}{N} \sum_{k=0}^{N-1} S_{k} e^{j\frac{2\pi nk}{N}} \qquad n=0,1, \cdot \cdot N-1.$$
 (21)

as we mentioned before (Section III -1-(2))

Putting N behind the summation sign gives

$$A_{n} = \sum_{k=0}^{\frac{N-1}{N}} \frac{S_{k}}{N} e^{j\frac{2\pi nk}{N}}$$
(22)

Expanding and regrouping yield,

$$A_{n} = \sum_{r=0}^{N-1} \frac{S_{2r}}{N} e^{j\frac{2\pi n^{2}r}{N}} + \sum_{r=0}^{N-1} \frac{S_{2r+1}}{N} e^{j\frac{2\pi n(2r+1)}{N}}$$
$$= \sum_{r=0}^{N/2-1} \frac{S_{2r}}{N} e^{j\frac{2\pi nr}{N}} + e^{j\frac{2\pi n}{N}} \sum_{r=0}^{N/2-1} \frac{S_{2r+1}}{N} e^{j\frac{2\pi nr}{N}}$$

(23)

Let

$$B_{n} = \sum_{\substack{Y=0\\Y=0}}^{N/2-1} \frac{S_{2r}}{N} e^{j\frac{2\pi nr}{N}} \text{ and}$$

$$C_{n} = \sum_{\substack{Y=0\\Y=0}}^{N/2-1} \frac{S_{2r+1}}{N} e^{j\frac{2\pi nr}{N}}$$
(24)

C FRHGRAM #3 ē FAST FOURIER TRANSFORM -DECIMATION IN TIME 2**M IS THE TOTAL NUMBER OF SAMPLE PUINTS, T IS THE TOTAL TIME C С FOR INPUT FUNCTION ONLY C FUNCTION F(X) = 10 * (EXP(=X) = EXP(=2 * X))COMPLEX A(2500), T1 READ(5,1) MIT 1 FORMAT(110,F15.5) 1v=2++M DES=1+/T DETETI NH=N/2 入日2日1日+1 BIT REVERSAL С D8 20 1=1/N 1.A=1=1 NN=0 00 30 J=1/M 11N=N .*2 NB=NA=NA/2+2 NAHNA/2 30 NN=NN+13 20 A(N+1)=F((I=1)*DET)*DET FAST FOURIER TRANSFORM С D8 100 1=1,M 1A=2**(1+1) L=2**(I-1) 08 200 J=1.1A D8 200 K=1%1 11=A(2×(J=1)*L+L+K)*CEXP(((0+2=1+)*2+*3+1416*(K=1)/(2**I)) A(2*(J=1)*L+L+K)=A(2*(J=1)*L+K)=T1 200 A(2*(J=1)*L+K)=A(2*(J=1)*L+K)+T1 100 CONTINUE «RITE(6,2) 2 FORMAT(15X, F', 15X, FREAL PARTI, 10X, FIMAGINERY PARTI, 10X, FABSOLUTE IVALUE!) 08 300 I=NH1/N FN=-(N-1+1)*DES ARAREAL(A(I)) AI=AIMAG(A(I)) ATECARS(A(I)) 300 WRITE(5,3) ENDARDAIDAT 3 FORMAT(10X;4F15.5) D0 400 I=1,NH FN=(I=1)*DES AR=REAL(A(I)) AI = AIMAG(A(I)) AT=CABS(A(1)) 400 PRITE(6,3) FN/AR/AI/AT STUP END

FAST FOURIER TRANSFORM -DECIMATION IN TIME

```
2**M IS THE TOTAL NUMBER OF SAMPLE POINTS, T IS THE TOTAL TIME
      FOR INPUT DATA ONLY
      COMPLEX A, T1
      DIMENSION A(1100), B(1100)
      READ(5,1) M,T
                                                              . .
    1 FORMAT(110, F15.5)
                                          . .
      N=2**M
      DES=1./T
      DET=T/N
      NH=N/2
      NH1 = NH+1
      READ(5,5) = (B(I), I=1,N)
      D8 10 I=1.N
   10 B(I)=B(I)*DET
    5 F8RMAT(8F10.5)
С
      BIT REVERSAL
      D0 20 I=1/N
      NA = I - 1
      NN=0
      D9 30 J=1,M
      NN=NN+2
      NB=NA=NA/2*2
      NA=NA/2
   30 NN=NN+NB
   20 A(I)=CMPLX(B(NN+1)+0+)
С
      FAST FOURIER TRANSFORM
      DC 100 I=1.M
       IA=2**(M=I)
      L=2**(1-1)
      D8 200 J=1, IA
      D6 200 K=1.L
       T1=A(2*(J=1)*L+L+K)*CEXP((0*=1*)*2**3*1416*(K=1)/(2**I))
       A(2*(J=1)*L+L+K)=A(2*(J=1)*L+K)=T1
  200 A(2*(J=1)*L+K)=A(2*(J=1)*L+K)+T1
  100 CONTINUE
       WRITE(6,2)
    2 FORMAT(15X, IFI, 15X, IREAL PARTI, 10X, IMAGINERY PARTI, 10X, IABSOLUTE
      1VALUE!)
       D8 300 I=NH1, N
       F==(N=I+1)*DES
       AR=REAL(A(I))
       AI=AIMAG(A(I))
       AT=CABS(A(I))
  300 WRITE(6,3) FJAR, AIJAT.
     3 FGRMAT(10X,4F15,5)
```

D8 400 I=1,NH

. PROGRAM #4

F=(I-1)*DES AR=REAL(A(I)) AI=AIMAG(A(I)) AT=CABS(A(I)) 400 WRITE(6,3) F,AR,AI,AT STOP END

.

#4.***	REAL PART	IMAGINER	Y PART	ABSOLUTE V	/ALU
*0•75000	■0•59835 ■0•65295	0•0000 0•16064	0•59835 0•67242		
-0.25000	=0•81425 =0•51703	0•55760 2•01314	0+98687 2+07848		
0.25000	4 • 56885 • 0 • 51705	0•00000 -2•01314	4•56685 2•07848		
0•75000	=0•81425 =0•65296	-0•55760 -0•16064	0•98688 0•67243		

.

.

.

Then (23) becomes

$$A_n = B_n + e^{\frac{j2\pi n}{N}} C_n$$
 n=0,1,....N-1. (25)

Again, B_n and C_n have the following periodic nature:

$$B_{n}^{B} = B \left(n + \frac{N}{2}\right)$$

$$C_{n}^{E} C \left(n + \frac{N}{2}\right)$$
(26)

Equation (25) can be written into two equations:

$$A_{n} = B_{n} + e^{j\frac{2\pi n}{N}} C_{n}, \text{ when } 0 \leqslant n < \frac{N}{2}; \quad (25a)$$
Let $n = \frac{N}{2} + n!$

$$A_{\frac{N}{2} + n'} = B_{\frac{N}{2} + n'} + e^{j\frac{2\pi (\frac{N}{2} + n')}{N}} C_{\frac{N}{2} + n'}$$

$$= B_{n'} - e^{j\frac{2\pi n'}{N}} C_{n'} \quad (25b)$$

Therefore, we obtain the basic algorithm of the inverse Fast Fourier Transform as follows:

$$A_{n} = B_{n} + e^{j\frac{2\pi n}{N}} C_{n}$$

$$A_{\frac{N}{2}+n} = B_{n} - e^{j\frac{2\pi n}{N}} C_{n} \qquad n=0,1,\dots,\frac{N}{2}-1$$
(26)

The corresponding signal flow graph of (26) is shown in Fig. 20. (n=8, for example)

Fig. 20.

where $\beta = -\frac{T}{4}$

It should be noted that while we used $\alpha = -\frac{\pi}{4}$, or negative $\frac{\pi}{4}$, for the Fast Fourier Transform; we now use $\beta = \frac{\pi}{4}$, or positive $\frac{\pi}{4}$, for the inverse Fast Fourier Transform. Structurally, Fig. 20 and Fig 16 are the same if we use the following proper notation changes:

8. Computer Programs for Inverse Fast Fourier Transform

```
С
      PR:/3-A.1 45
С
      INVENSE FFT
      2*** IS TETAL SAMPLE POINTERT IS TOTAL TIME
C
С
      FOR FUNCTION ONLY
      CUIPLEX ANTINEESICEUNNE
      LI'E SID', A(2200)
      KE/D(5,1) N.T
    1 FORMAT(11), F15+5)
      (長172(ら)行)
    & FGATAT(20X, TTPE1, 10X, IX(T)))
      N=2xxM
      114=11/2
      (ET=1/)
      DES=(0.,1.)*2+*3+1410/T
      06 1.0 I=1.N
      1. A=1-1
      11=0
      02 200 JalaM
      11/1=1 12
      い日本パイキバヤへらそら
      WA=1-12
  200 11-1 + 3
      1F(1-14) 250+260+260
  251 A(1.X+1)=CFUM((I-1)+DES)
      69 T - 100
 26' A( 1+1)=UFUN((=>, +1+1)*DES)
  100 CONTINUE
      08 3.0 I=1,M
      IA=2**( (n1)
      L=Z+*(1-1)
      02 4.0 0=1/IA
      08 400 K=1.L
      11=A(2+(J=1)*L+L+K)*CEXP((C+* 1+)*2**3*1416*(K=1)/(2**1))
      2 (2)*(J+1)*L+L+K)=A(2*(J+1)*L+K)+T1
 400 A(2*(J+1)*(+K)=A(2*(J+1)*(+K)+F1
 BDY CENTINUE
     12 5/0 1=1,NH
      TN=2.*(I=1)*DET
      A) = QEAL (4(2*J=1))/T
 200 (RITE(6,501) Th, AN
 511 F5. MAT(10X/2F16.6)
     STHO
     £ \.
     CPUPLEX FUNCTION OFUS(S)
     CO, PLEX S
     LF(\=(10+*0+)/((S+(1+*0+))*(S+(2**0+)))
     SETUR
```

```
END
```

с	PROGRAM #6
С	INVERSE FFT
C	2**M IS TOTAL SAMPLE POINTS,T IS TOTAL TIME
С	FOR INPUT DATA ONLY .
	COMPLEX A, T1, SI
	DIMENSION A(8200), SI(4)
1	KEAD(S)I) MJT Formation Fig. Fi
T	N-3**W LORWVI(II011262)
	DFT=T/N
	N8=N/8
	De 10 I=1,N8
	READ(5,3) (SI(IA), IA=1,4)
3	FORMAT(8F10+5)
	$D\theta$ 50 IB=1,4
	$NA \neq NH + 4 \times (I = 1) + IB = 1$
	NB#NA#NA/2*2
	NA=NA/2
90	NN=NN+NB
50	A(NN+1)=SI(IB)
10	CONTINUE
	D5 100 I=1,N8
	$READ(5_23) (SI(IA)_2IA_{\pm}1_24)$
	NN=0
	Da 200 J=1+M
	NN=NN*2
	NB=NA=NA/2*2
	NA=NA/2
200	NN=NN+NB
150	A(NN+1) = SI(IB)
100	
2	FARMAT(20Y, 1TTME1, 10Y, 1Y/T)
4	$D\theta 300 T=1 M$
	IA=2**(M=I)
	L=2**(I-1)
	D0 400 J=1,IA
	D8 400 K=1,L
	$\frac{11}{4} = A(C*(J^{-1})*L+L+K)*CEXP((0*) 1*)*2**3*1416*(K^{-1})/(2**I))$
. 400	ハ(に*(J=1)*L+L+K)=A(C*(J=1)*L+K)=T1 A(つ*(J=1)*L+K)=A(つ*(J=1)*L+K)=T1
300	CANTINIF

.

·

12 510 I=1+N T)=(1-1)*DFT A)=00AL(A(I))/T 200 RITE(3,001) TN,AN 201 F9AMAT(11X,2F16+6) STUP FNG

 T10e
 X(T)

 0:00000
 0:000000

 0:00000
 1:350725

 1:00000
 1:350725

 1:00000
 1:901199

 1:50000
 1:754748

 2:00000
 1:169979

 2:50000
 0:732273

 3:00000
 0:835800

 3:500000
 0:388251

,

1. Basic Algorithm

Again, we starting with the formula of the discrete Fourier Transform (Section II-14 (a))

.

$$S_{k} = \sum_{n=0}^{N-1} A_{n} e^{\frac{j2\pi nk}{N}}$$
, $k=0,1,2,...N-1.$ (1)

We regroup it in the following new way:

. .

$$S_{k} = \sum_{n=0}^{\frac{N}{2}-1} A_{n} e^{-\frac{j2\pi nk}{N}} + \sum_{\frac{1}{1}-1}^{\frac{11}{2}} A_{n} e^{-\frac{j2\pi nk}{N}}$$
(2)

The second term of the right handside starts with $n=\frac{N}{2}$ which is not convenient for later formulation. We can write an equivalent form, consequently, we have

$$S_{k} = \sum_{h=0}^{\frac{N}{2}-1} A_{n} e^{-j\frac{2\pi nk}{N}} + \sum_{n=0}^{\frac{N}{2}-1} A_{n} e^{-j\frac{2\pi (\frac{N}{2}+n)k}{N}} e^{-j\frac{2\pi (\frac{N}{2}+n)k}{N}}$$
$$= \sum_{n=0}^{\frac{N}{2}-1} A_{n} e^{-j\frac{2\pi nk}{N}} + \sum_{n=0}^{\frac{N}{2}-1} A_{\frac{N}{2}+n} e^{-jk\pi} e^{-j\frac{2\pi nk}{N}} e^{-j\frac{2\pi nk}{N}}$$
$$= \sum_{n=0}^{\frac{N}{2}-1} (A_{n} + A_{\frac{N}{2}+n} e^{-jk\pi}) e^{-j\frac{2\pi nk}{N}}$$
$$= \sum_{n=0}^{\frac{N}{2}-1} (A_{n} + A_{\frac{N}{2}+n} e^{-jk\pi}) e^{-j\frac{2\pi nk}{N}}$$
(3)

When k is even, letting k=2r,

$$S_{2r} = \sum_{n=0}^{N-1} (A_{n} + A_{n}) e^{-j\frac{2\pi n 2r}{N}}$$

= $\sum_{n=0}^{N-1} (A_{n} + A_{n}) e^{-j\frac{2\pi n r}{N}}$
= $\sum_{n=0}^{N-1} (A_{n} + A_{n}) e^{-j\frac{2\pi n r}{N}}$
r=0,1,..., $\frac{N}{2}$ -1. (4)

when k is odd, letting k=2r+1

$$S_{2r+1} = \sum_{n=0}^{N/2-1} (A_n - A_{N-1}) e^{-j\frac{2\pi n(2r+1)}{N}}$$
$$= \sum_{n=0}^{N/2-1} (A_n - A_{N-1}) e^{-j\frac{2\pi n}{N}} e^{-j\frac{2\pi nr}{N}}$$
$$r=0,1,\dots,\frac{N}{2}-1. \quad (5)$$

Equations (4) and (5) are the basic algorithm of Fast Fourier Transform — Decimation in Frequency.

2. Vector Diagram Interpretation

Decimation in frequency, for our n=8 example, means that we find S_0 , S_2 , S_4 , and S_6 by using (4); and calculate S_1 , S_3 , S_5 , and S_7 by using (5), keeping A_0 , A_1 ,..., A_7 in the natural order.

The given data are shown in the table below

A ₀	0
A	1:199
A ₂	1.663
A ₃	0.867
A ₄	0.585
A ₅	0.377
A ₆	0.286
A.7	0.146

٠,

(6)

Find the corresponding frequency spectrum by the method of decimation in frequency.

When we substitute the data (6) into (4) and (5) respectively,

$$S_{2r} = \sum_{n=0}^{3} (A_n + A_{4+n}) e^{-j\frac{\pi n^2 r}{4}} r=0,1,2,3.$$
(7)

and

•

$$S_{2r+1} = \sum_{n=0}^{3} (A_n - A_{4+n}) e^{-j\frac{\pi}{4} - n} e^{-j\frac{\pi}{4} - n \cdot 2r} r^{-j\frac{\pi}{4} - n \cdot 2r}$$
(8)

Their expanded forms are

$$S_{0} = (A_{0} + A_{4}) \underbrace{10\alpha}_{A_{1}} (A_{1} + A_{5}) \underbrace{10\alpha}_{A_{2}} (A_{2} + A_{6}) \underbrace{10\alpha}_{A_{3}} (A_{3} + A_{7}) \underbrace{10\alpha}_{A_{3}} \\S_{2} = (A_{0} + A_{4}) \underbrace{10\alpha}_{A_{4}} (A_{1} + A_{5}) \underbrace{12\alpha}_{A_{2}} (A_{2} + A_{6}) \underbrace{12\alpha}_{A_{3}} (A_{3} + A_{7}) \underbrace{12\alpha}_{A_{3}} \\S_{4} = (A_{0} + A_{4}) \underbrace{10\alpha}_{A_{4}} (A_{1} + A_{5}) \underbrace{14\alpha}_{A_{4}} (A_{2} + A_{6}) \underbrace{12\alpha}_{A_{3}} (A_{3} + A_{7}) \underbrace{12\alpha}_{A_{3}} \\S_{6} = (A_{0} + A_{4}) \underbrace{10\alpha}_{A_{4}} (A_{1} + A_{5}) \underbrace{16\alpha}_{A_{4}} (A_{2} + A_{6}) \underbrace{12\alpha}_{A_{3}} (A_{3} + A_{7}) \underbrace{12\alpha}_{A_{3}} (7a) \\S_{6} = (A_{0} + A_{4}) \underbrace{10\alpha}_{A_{4}} (A_{1} + A_{5}) \underbrace{16\alpha}_{A_{4}} (A_{2} + A_{6}) \underbrace{12\alpha}_{A_{3}} (A_{3} + A_{7}) \underbrace{12\alpha}_{A_{3}} (7a) \\S_{6} = (A_{0} + A_{4}) \underbrace{10\alpha}_{A_{4}} (A_{1} + A_{5}) \underbrace{16\alpha}_{A_{4}} (A_{2} + A_{6}) \underbrace{12\alpha}_{A_{3}} (A_{3} + A_{7}) \underbrace{12\alpha}_{A_{3}} (7a) \\S_{6} = (A_{0} + A_{4}) \underbrace{10\alpha}_{A_{4}} (A_{1} + A_{5}) \underbrace{16\alpha}_{A_{4}} (A_{2} + A_{6}) \underbrace{12\alpha}_{A_{3}} (A_{3} + A_{7}) \underbrace{12\alpha}_{A_{3}} (7a) \\S_{6} = (A_{0} + A_{4}) \underbrace{10\alpha}_{A_{4}} (A_{1} + A_{5}) \underbrace{16\alpha}_{A_{4}} (A_{2} + A_{6}) \underbrace{12\alpha}_{A_{3}} (A_{3} + A_{7}) \underbrace{12\alpha}_{A_{3}} (7a) \\S_{6} = (A_{0} + A_{4}) \underbrace{10\alpha}_{A_{4}} (A_{1} + A_{5}) \underbrace{16\alpha}_{A_{4}} (A_{2} + A_{6}) \underbrace{12\alpha}_{A_{3}} (A_{3} + A_{7}) \underbrace{12\alpha}_{A_{3}} (A_{7} + A_{7}) \underbrace{12\alpha}_{A_{7}} (A_{7} + A_{7} + A_{7}) \underbrace{12\alpha}_{A_{7}} (A_{7} + A_{7} + A_{7} + A_{7}) \underbrace{12\alpha}_{A_{7}} (A_{7} + A_{7} + A$$

and

$$S_{1} = \left((A_{0} - A_{4}) / 0\alpha \right) / 0\alpha + \left((A_{1} - A_{5}) / 1\alpha \right) / 0\alpha + \left((A_{2} - A_{6}) / 2\alpha \right) / 0\alpha + \left((A_{3} - A_{7}) / 3\alpha \right) / 0\alpha \\ S_{3} = \left((A_{0} - A_{4}) / 0\alpha \right) / 0\alpha + \left((A_{1} - A_{5}) / 1\alpha \right) / 2\alpha + \left((A_{2} - A_{6}) / 2\alpha \right) / 4\alpha + \left((A_{3} - A_{7}) / 3\alpha \right) / 12\alpha \\ S_{5} = \left((A_{0} - A_{4}) / 0\alpha \right) / 0\alpha + \left((A_{1} - A_{5}) / 1\alpha \right) / 4\alpha + \left((A_{2} - A_{6}) / 2\alpha \right) / 2\alpha + \left((A_{3} - A_{7}) / 3\alpha \right) / 12\alpha \\ S_{7} = \left((A_{0} - A_{4}) / 0\alpha \right) / 0\alpha + \left((A_{1} - A_{5}) / 1\alpha \right) / 1\alpha + \left((A_{2} - A_{6}) / 2\alpha \right) / 12\alpha + \left((A_{3} - A_{7}) / 3\alpha \right) / 12\alpha \\ S_{7} = \left((A_{0} - A_{4}) / 0\alpha \right) / 0\alpha + \left((A_{1} - A_{5}) / 1\alpha \right) / 1\alpha + \left((A_{2} - A_{6}) / 2\alpha \right) / 12\alpha + \left((A_{3} - A_{7}) / 3\alpha \right) / 12\alpha \\ (8a)$$

Each equation can be interpreted as summation of a set of vectors. However, the additional or substractional orders are different from the orders we used before. For finding S_1 , we show two diagrams: (a), is for discrete Fourier Transform and (b) is illustrating how to find S_1 , through the method of decimation in frequency. Of course, the two answers should be the same.

Fig. 22 shows a graphical interpretation for finding S₂.

3. Matrix Explanation

The matrix expression of the algorithm has been mentioned in II-(14), we rewrite here:

s _o `		1	1	1	1	1	1	1	1A]		
s		1	<u>/α</u>	<u>Þa</u>	Ba	<u>/lia</u>	<u>/5a</u>	<u>/6a</u>	<u>/7a</u>		A ₁	
s ₂		1	<u>/2a</u>	<u>/4a</u>	<u>/6a</u>	<u>/8a</u>	<u>/10a</u>	<u>/12a</u>	<u>14a</u>		A ₂	
s ₃		l	<u>/3a</u>	<u>/6a</u>	<u>19a</u>	<u>/12a</u>	<u>/15a</u>	<u>/18a</u>	<u> 21a</u>		A ₃	
s ₄	-	1	<u>14a</u>	<u>/8x</u>	<u>/1.2a</u>	<u>/16a</u>	<u>20a</u>	<u>124a</u>	<u>128a</u>		A ₄	(9)
s ₅		1	<u>[5a</u>	<u>/10x</u>	<u>[15a</u>	<u>120a</u>	<u> 25a</u>	<u>130a</u>	<u>135a</u>		A ₅	
s ₆		l	<u>16a</u>	<u>[12a</u>	<u>/18a</u>	<u>[24a</u>	BOa	<u>136a</u>	<u>142a</u>		A ₆	
s ₇		lı	<u>[7a</u>	<u>/14a</u>	<u>/21a</u>	<u> 28a</u>	<u>352</u>	<u>/42a</u>	<u>[49a</u>]	A ₇	

Expanding the above matrix equation into eight simultaneous equations and then put the second, fourth, sixth and eighth equations as the first group, and put the first, third, fifth and seventh as the second group. Then rewrite the adjusted equations into a matrix equation again.

A,L2d

52

(b) Decimation in Frequency

(A1+A5) 22a

Fig. 22. Evaluating S2

/ .											-	
s ₀		1	.1	. 1	1	1	l	1	l]	A ₀	
s ₂		l	<u>/2a</u>	<u>/4a</u>	<u>/6a</u>	<u>/8a</u>	<u>/10a</u>	<u>/12a</u>	<u>/14a</u>		Al	
S _L		1	<u>14a</u>	<u>/8a</u> ,	<u>/12a</u>	<u>/16a</u>	<u>/20a</u>	<u>124a</u>	<u>/28a</u> ,		A ₂	
⁵ 6		l	<u>16a</u>	<u>/12a</u>	<u>/18a</u>	<u>124a</u>	<u>130a</u>	<u>136a</u>	<u>/42a</u>		^A 3	
s _l	=	1	<u>/1α</u>	<u>/2a</u> ,	<u>/3a</u>	<u>/4a</u>	<u>15a</u>	<u>16a</u> ,	<u>/ 7a</u>		A ₄	(10)
^S 3		1	<u>13a</u>	<u>16a</u>	<u>19a</u>	<u>/12a</u>	<u>/15a</u>	<u>/1.8a</u>	<u>/21a</u>		A ₅	
s ₅		1	<u>[50</u>	<u>/10a</u>	<u>/15a</u>	<u>/20a</u>	<u>25a</u>	<u>β00</u>	<u>B5a</u>		^A 6	
s ₇		1	<u>170,</u>	<u>/14a</u>	<u>/21a</u>	<u>/28a</u>	<u> 35a</u>	<u>/42a</u>	<u>149a</u>		A7	
or		-	۱ <i>۲</i> -	37)								
		[s		2][A]								(10a)

Factoring the square matrix:

ĺ	s _o		1	1	1	1	0	0	0	õ	[1	0	0	0	1	0	0	0	
	s ₂		lı	<u>/2a</u>	<u>/4a</u>	<u>/60,</u>	0	0	0	0	0.	1	0	0	0	1	0	0	A ₁
	s ₄		1	<u>/4a</u>	<u>/8a</u>	<u>/12a</u>	0	0	0	0	0	0	1	0	0	0	l	0	A ₂
	s ₆	-	1	<u>[2a</u>	<u>/16a</u>	<u>24a</u>	0	0	0	0	0	0	0	1	0	0	0	l	A3
	s ₁	-	0	0	0	0	1	1	1	ı	Da	0	0	0	- <u>/0a</u>	0	0	0	A ₄
	s ₃		0	0	0	0	1	<u>12a</u>	<u>14a,</u>	<u>16a</u>	0	<u>ha</u>	0	.0	0	- <u>/1a</u>	0	0	A ₅
	s ₅		0	0	0	0	1	<u> 4a</u>	<u>18a</u>	<u>/12a</u>	0	0	<u> 2a</u>	0	0	0	- <u>/2a</u>	0	A ₆
Į	.s ₇ ,		lo	0	0	0	1	<u> 8a</u>	<u>16a</u>	<u>24a</u>	lo	0	0	Ba	0	0	0	- <u>Ba</u>	A7
																			• • •

(11)

or simply write

..

$$(S_{I}) = \left[\oint I \right] \left[\downarrow I \right] \left[A \right]$$
 (11a)

Combining the last square matrix and the last vector, we have

$$\begin{pmatrix} S_{0} \\ S_{2} \\ S_{4} \\ S_{6} \\ S_{1} \\ S_{3} \\ S_{5} \\ S_{7} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & \underline{/2\alpha} & \underline{/4\alpha} & \underline{/6\alpha} & 0 & 0 & 0 & 0 \\ 1 & \underline{/2\alpha} & \underline{/4\alpha} & \underline{/6\alpha} & 0 & 0 & 0 & 0 \\ 1 & \underline{/8\alpha} & \underline{/16\alpha} & \underline{/24\alpha} & 0 & 0 & 0 & 0 \\ 1 & \underline{/8\alpha} & \underline{/16\alpha} & \underline{/24\alpha} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & \underline{/2\alpha} & \underline{/4\alpha} & \underline{/6\alpha} \\ 0 & 0 & 0 & 0 & 1 & \underline{/2\alpha} & \underline{/4\alpha} & \underline{/6\alpha} \\ 0 & 0 & 0 & 0 & 1 & \underline{/2\alpha} & \underline{/4\alpha} & \underline{/6\alpha} \\ 0 & 0 & 0 & 0 & 1 & \underline{/8\alpha} & \underline{/12\alpha} \\ 0 & 0 & 0 & 0 & 1 & \underline{/8\alpha} & \underline{/12\alpha} \\ 0 & 0 & 0 & 0 & 1 & \underline{/8\alpha} & \underline{/12\alpha} \\ (A_{2} - A_{6}) & \underline{/2\alpha} \\ (A_{3} - A_{7}) & \underline{/3\alpha} \end{pmatrix}$$
 (12)

Partitioning (12) and expanding yield

$$\begin{cases} s_{0} \\ s_{2} \\ s_{4} \\ s_{6} \end{cases} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \underline{/2\alpha} & \underline{/4\alpha} & \underline{/6\alpha} \\ 1 & \underline{/4\alpha} & \underline{/8\alpha} & \underline{/12\alpha} \\ 1 & \underline{/8\alpha} & \underline{/16\alpha} & \underline{/24\alpha} \end{bmatrix} \begin{pmatrix} A_{0} + A_{44} \\ A_{1} + A_{5} \\ A_{2} + A_{6} \\ A_{44} + A_{7} \end{pmatrix}$$
(13)

and

.

.

$$\begin{bmatrix} S_{1} \\ S_{3} \\ S_{5} \\ S_{7} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \underline{2\alpha} & \underline{4\alpha} & \underline{6\alpha} \\ 1 & \underline{4\alpha} & \underline{8\alpha} & \underline{12\alpha} \\ 1 & \underline{4\alpha} & \underline{8\alpha} & \underline{12\alpha} \\ 1 & \underline{8\alpha} & \underline{16\alpha} & \underline{24\alpha} \end{bmatrix} \begin{bmatrix} A_{0} - A_{4} & \underline{6\alpha} \\ A_{1} - A_{5} & \underline{1\alpha} \\ A_{2} - A_{6} & \underline{2\alpha} \\ A_{3} - A_{7} & \underline{3\alpha} \end{bmatrix}$$
(14)

Equations (13) and (14) are (7a) and (8a) respectively.

•

·

4. Signal Flow Graph Representation

A corresponding signal flow graph is easily drawn as shown in the Fig. 23b

Fig. 236,

The natural order of (A) and the disturbed order of (S) are clearly indicated in Fig. 23.

5. Repeating Use of the Algorithm

Rewrite (lla)

$$\left[S_{\mathbf{j}} \right] = \left[\Phi_{\mathbf{j}} \right] \left[\Psi_{\mathbf{j}} \right] \left[A \right]$$
 (11a)

		s ₀		1	1	1	l	0	0	0	0					
		⁵ 2		1	<u> 2a</u>	<u> 4</u> 4,	<u> 60</u>	0	0	0	0					
		s ₄		1	<u>[4a</u>	<u>[8a</u>	<u>/12a</u>	0	0	0	0					
		s ₆		l	<u> 8a</u>	<u>/16a</u>	<u> 24a</u>	0	0	0	0	 61)	(28)	
		s ₁	=	0	0	0	0	1	1	1	1	[]	- 1) (^A	ļ	(15)	
		s ₃		0	0	0	0	1	<u>þa</u>	<u> 4a</u>	<u>16a</u>					
		⁸ 5		0	0	0	0	1	<u>/4a</u>	<u>/8a</u>	<u>/12a</u>					
		s ₇		0	0	0	0	1	<u>/8a</u>	<u>/16a</u>	<u> 21:a</u>)				
	Wit	hout	ch	ang	ing t	he re	esult.	we r	earra	ange t	he ro	WS:				
		× 、		,			·······									
		s _o		1	l	1	l	0	0	0	0					
		s ₄		1	<u>[4a</u>	<u>18a</u>	<u> 12a</u>	0	0	0	0					
		s ₂		1	<u> 2a</u>	<u>[4a</u> ,	<u> 6a</u>	0	0	0	0					
		s ₆	_	1	<u> 8a</u>	<u>þ6a</u>	<u>124a</u>	0	0	0	0	(J)T	۲۲۰)	(16)	
		sl		0	0	0	0	1	l	l	1	ĮΨ	' I] [^A ,	J	(10)	
		s ₅		0	0	0	0	l	<u> 4a</u>	<u> 8a</u>	<u>/12a</u>					
		^s 3		0	0	0	0	l	<u> 2a</u>	<u>4</u> a	<u>16a</u>					
	l	s ₇	Į	0	0	0	0	1	<u> 8a</u>	<u>12a</u>	<u>124a</u>					
	The	n fac	to:	ring	g the	main	sq ua	re ma	trix	of (1	.6).					
1] 1	0		0	0	0	0	0]	[1	0	l	0	0	0	0	0
1	<u>/4a</u>	0		0	0	0	0	0	0	.1	0	l	0	0	0	0
0	0	1		l	0	0	0	0	<u>10a</u> ,	0 -	Da	0	0	0	0	0
0	0	l	Ľ	<u>4a</u>	0	0	0	0	0	<u>2a</u>	·0 -	<u> 2a</u>	0	0	0	0
0	0	0		0	1	1	0	0	0	0	0	0	l	0	1	0
0	0	0		0	1	<u> 4a,</u>	0	0	0	0	0	0	0	1	0	l
0	0	0		0	0	0	1	l	0	0	0	0	<u>10a</u>	0	- <u>lo</u> a	0
0	0	0		0	0	0	1	Ľα	lo	0	0	Ō	: 0 .	<u> 2a</u>	0	- <u>12a</u>

 $\begin{bmatrix} s_0 \\ s_4 \\ s_2 \\ s_6 \\ s_1 \\ s_5 \end{bmatrix}$

^S3 ^S7

.

۱

.

=

ţ

53

[1]

(17

$$\left[S_{II} = \left[\bigoplus_{II} \left$$

A summary of the decomposition processes and the signal flow graphs are shown in Fig. 23 which is self explainary.

Fig. 23 (b)

or

 $\left[\mathbf{S}_{\mathtt{I}} \right] = \left[\left[\left[\mathbf{T}_{\mathtt{I}} \right] \right] \left[\mathbf{Y}_{\mathtt{I}} \right] \left[\mathbf{T}_{\mathtt{I}} \right] \right] \left[\mathbf{A} \right]$

Fig. 23(c)

Fig. 23(d)

6. Computer Program for the Fast Fourier Transform Decimation in Frequency

Computer Program #8 and #7 are for the Fast Fourier Transform--decimation in frequency. The former is using an analytic function as input while the input of the latter is numerical.

```
С
С
С
      PRHGRAM #7
      PET DECIMATION IN FREQUENCY
      T IS THE TOTAL TIME, 2**M IS THE TOTAL SAMPLE POINTS
C
      FOR INPUT DATA ONLY
      COMPLEX ALT1
      DIMENSION A(1100) B(1100)
      READ(5,1) M.T.
    1 FORMAT(110, F15.5)
      N=2**M
      NH=N/2
      DET=T/V
      NH1 = NH+1
      READ(5,7) (B(I), I=1,N)
    7 FORMAT(8F10.5)
      D8 10 1=1,N
   10 A(I) = CMPLX(B(I), 0 .) + DET
С
      FFT
      D8 100 1=1,M
      IA=2**(I=1)
      L = 2 * * (Y = I)
      09 200 J=1, IA
      00 200 K=1.L
      T1=A(2*(J=1)*L+K)
      A(2*(J=1)*L+K)=T1+A(2*(J=1)*L+L+K)
  200 A(2*(J=1)*L+L+K)=(T1=A(2*(J=1)*L+L+K))*CEXP((0***1*)*2*3*1416*(K-1
     1)/(2+L))
  100 CONTINUE
      WRITE (6,3)
    3 FORMAT(20X, FREQ. 1, 10X, REAL PARTI, 10X, IMAGINERY PARTI)
      D9 300 J=NH1/N
      NA=1=1
      NN=0
      D8 400 J=1.M
      NN=N (*2
      VB=NA=VAVS*5
      NA=NA/2
  400 NN=NA+18
      FN = = (N = I + 1) / T
      AR=REAL(A(NN+1))
      AI=AIMAG(A(NN+1))
      AT = CABS(A(NN+1))
  300 PRITE(6:4) ENRAR, ALLAT
    4 FORMAT(10X:4F16:6)
      D8 500 I=1,NH
      NA=I=1
      NN=0
      DA 600 J=1,M
      1(N=1/1+2)
```

600	NB=NA=VA/2*2 NA#NA/2 NN=NN+NB FN={(1=1)/T AR=PEAL(A(NN+1))
500	AI=AIMAG(A(NN+1)) AI=CABS(A(NN+1)) AT=CABS(A(NN+1)) ARITE(6,4)FN&AR&AI&AT STUP END

`.

.

.

.

-	FREG.	REAL PART	IMAGINERY	PART AES, VALUE
=1 =	000000	-0.598351	0,000000	0:598351
_ = Ç •	750000	•J•652950	0.160541	0.672421
=Q.+	500000	■0 + 814243	0.557600	0:986872
- 0.+	250000	-0.517035	2:013143	2+078476
• 0•	000000	4.566848	0.000000	4:566848
. 0.	250000	-0.517055	-2 +013139	2:078478
Q.	500000	+0.814251	-0.557600	0:986875
0.	750000	•0•652958	■ 0 : 160645	0,672429

· .

-

•

.

```
С
      PROGRAM #8
С
      FFT DECIMATION IN FREQUENCY
С
      T IS THE TOTAL TIME, 2**M IS THE TOTAL SAMPLE POINTS
С
      FOR FUNCTION ONLY
      FUN(X) = 10 * (EXP(-X) - EXP(-2 * X))
      COMPLEX A.T1
      DIMENSION A(1100)
      READ(5,1) MAT
    1 FERMAT(110,F15,5)
      N=2**M
      NH=N/2
      DET=T/N
      NH1 = NH+1
      D8 10 I=1,N
   10 A(I)=(1...0.)*FUN((I-1)*DET)*DET
С
      FFT
      De 100 I=1,M
      IA = 2 * * (I = 1)
      L=2**(M=I)
      D8 200 J=1,IA
D8 200 K=1,L
      T1=A(2*(J=1)*L+K)
      A(2*(J-1)*L+K)=T1+A(2*(J-1)*L+L+K)
  200 A(2*(J=1)*L+L+K)=(T1=A(2*(J=1)*L+L+K))*CEXP((0*J=1*)*2*3*1416*(K=
     1)/(2*L))
  100 CONTINUE
      WRITE(6,3)
    3 FORMAT(20X) FREQ. 1/10X, REAL PART 1/10X, IMAGINERY PART 1)
      D0 300 I=NH1,N
      NA=I-1
      N=0
      D9 400 J=1,M
      NN=NN+2
      NB=NA=NA/2*2
      NA=NA/2
  400 NN=NN+NB
      FN = = (N = I + 1) / T
      AR=REAL(A(NN+1))
      AI=AIMAG(A(NN+1))
      AT = CABS(A(NN+1))
  300 WRITE(6,4)FN, AR, AI, AT
    4 FORMAT(10X:4F16+6)
      D0 500 I=1,NH
      NA=1-1
      NN=0
      De 600 J=1,M
  ..
      NN=NN+2
      NB=NA-NA/2*2
```

	NA=NA/2
600	NN=NN+NB
	FN=(I-1)/T
	AR=REAL(A(NN+1))
	AI = AIMAG(A(NN+1))
	AT=CABS(A(NN+1))
500	WRITE(6,4)FN, AR, AI, AT
	STOP
	END

••

1

•

. .

.

7. Inverse Fast Fourier Transform

The basic discrete Fourier Transform:

$$A_{n} = \frac{1}{N} \sum_{k=0}^{N-1} S_{k} e^{\frac{j2\pi kn}{N}}$$
 n=0,1,....N-1. (18)

is divided into two groups as follows:

$$A_{n} = \sum_{\substack{n=0 \ \frac{M}{2} - 1 \\ \frac{M}{2} = 0}} \left(\frac{S_{k}}{N} \right) e^{j\frac{2\pi \ln n}{N}} + \sum_{\substack{k=0 \ \frac{M}{2} = 0}}^{\frac{M}{2} - 1} \left(\frac{S_{k}}{N} \right) e^{j\frac{2\pi \ln n}{N}} + \sum_{\substack{k=0 \ \frac{M}{2} - 1 \\ \frac{M}{2} = 0}}^{\frac{M}{2} - 1} \left(\frac{S_{k}}{N} \right) e^{j\frac{2\pi \ln n}{N}} + \sum_{\substack{k=0 \ \frac{M}{2} - 1 \\ \frac{M}{2} = 0}}^{\frac{M}{2} - 1} \left(\frac{S_{k}}{N} + \frac{S_{\frac{M}{2} + k}}{N} e^{jn\pi} \right) e^{j\frac{2\pi \ln n}{N}} e^{j\frac{2\pi \ln n}{N}}$$
(19)
$$n = 0, 1, \dots N - 1.$$

when n is even, letting n=2r, we have

$$A_{2r} = \sum_{k=0}^{\frac{M}{2}-1} \left(\frac{S_{k}}{N} + \frac{S_{\frac{M}{2}+k}}{N} \right) e^{j\frac{2\pi kr}{N}} r^{2n} (20)$$

when n is odd, letting n=2r+1, we have

$$A_{2r+1} = \sum_{k=0}^{M-1} \left(\frac{S_k}{N} - \frac{S_{M+k}}{N} \right) e^{j\frac{2\pi k}{N}} e^{j\frac{2\pi k r}{N}} r^{-0,1,\dots,\frac{N}{2}-1}.$$
(21)

Equations (20) and (21) are the another pair of the basic algorithm for the inverse Fast Fourier Transform. For n=8, the complete signal flow graph is shown in Fig. 24.

Fig. 24

)

.

8. Computer Program for Inverse Fast Fourier Transform

```
C
      PREGRAM4 9
Ĉ
      IFFT
      T IS THE TOTAL TIME, 2**M IS THE TOTAL SAMPLE POINTS
C
С
      FAR FUNCTION ONLY
      COMPLEX A , T1, DES, S, CFUN
      DIMENSION A(1500)
      READ(5,1) M.T
   1 FORMAT(110)F15+5)
      N=2**M
      NH=N/2
      DET=T/N
      DES=(0+,1+)*2+*3+1416/T
      00 10 I=1,NH
      A(I) = CFUN((I=1) \times DES)
   10 A(NH+I)=CFUN(-(NH+I+1)*DES)
C
      INVERSE FAST FOURIER TRANSFORM
      09 100 I=1,M
      IA = 2 * * (I = 1)
      1 =2**(M=I)
      D8 200 J=1,1A
      D8 200 K#1+L
      T1 = A(2 \times (J-1) \times L + K)
      A(3*(1-1)*L+K)=T1+A(3*(1-1)*L+L+K)
  200 A(2*(J=1)+L+L+K)=(T1=A(2*(J=1)*L+L+K))*CEXP((C=+1e)*2*3*1416*(K=
     1)/(2*L))
  100 CONTINUE
      WRITE(6,3)
    3 FORMAT(20X, 'TIME', 10X, 1X(T)))
      09 300 1=1,N
    NA=I=1
      NN=0
      D8 400 J=1,M.
      NN=N',*2
      NB=NA=NA/2*2
      NA=NA/2
  400 NN=N1+18
      AREREAL (A(NN+1))/T
      TN=(I=1)*DET
  300 SRITE (6,4) THAR
    4 FORMAT(10X,2F16.6)
      STUP
      END
     COMPLEX FUNCTION CFUN(S)
     COMPLEX S
     CFUN=(10**0*)/((S+(1**0*))*(S+(2**0*)))
     REIJAN
     END
```

C PROGRAM#10 С IFFT T IS THE TOTAL TIME, 2**M IS THE TOTAL SAMPLE POINTS C C FOR INPUT DATA ONLY CEMPLEX A, T1, DES DIMENSION A(1500) READ(5,1) M,T 1 FORMAT(110+F15+5) N=2**M NH=N/2 DE T=T/N NH1=NH+1 DES=(0+1+)+2++3+1416/T READ(5,2) (A(I), I=NH1,N) READ(5,2) (A(I), I=1, NH) 2 FERMAT(8F10.5) C. INVERSE FAST FOURIER TRANSFORM D8 100 I=1,M IA = 2 * * (I - 1)L=2**(M=I) D9 200 J=1, IA DB 200 K=1.L T1=A(2*(J=1)*L+K) $\begin{array}{c} A(2*(J-1)*L+K) = T1 + A(2*(J-1)*L+L+K) \\ 200 \quad A(2*(J-1)*L+L+K) = (T1 - A(2*(J-1)*L+L+K)) * CE_{X}P((0 \bullet \bullet 1 \bullet) * 2 \bullet * 3 \bullet 1416*(K)) \\ \end{array}$ 1)/(2*L))100 CENTINUE WRITE(6:3) 3 FORMAT(20x, 'TIME', 10x, 'x(T)') D8 300 I=1,N NA=1-1 NN=0 De 400 J=1,M NN=NN+2 NB=NA=NA/2*2 NA=NA/2 400 NN=NN+NB AR=REAL(A(NN+1))/T TN=(I-1)*DET 300 WRITE(6+4) TN; AR 4 FORMAT(10X,2F16.6) STOP END TIN'E X(T) 0.000000 0.000050 0.500000. 1.850727 1.000000 1•961193 1.500000 1.754748 2.000000 1.169979 2.500000 0.732273 3.000000 0.835800 3.500000 0.828251

1. Coefficients of the Exponential Form

Originally the algorithm was developed by Tukey and Cooley⁴ for Fourier series Coefficients evaluation. Later, their work has been expanded into Fast Fourier Transform. We rather based on the FFT algorithm to derive a method for Fourier series Coefficients evaluation.

Consider that there is a periodic function f(t) with period T and its Fourier Coefficients are required.

We write, by definition, the expansion from

$$f(t) = \sum_{n=-\infty}^{n=\infty} c_n e^{j\frac{2n\pi t}{T}}$$
(1)

where

$$C_{n} = \frac{1}{T} \int_{\sigma}^{T} f(t) e^{-j\frac{2n\pi t}{T}} dt$$
 (2)

Because T is a constant, we can write

$$C_{n} = \int_{0}^{T} \frac{1}{T} f(t) e^{-j\frac{2n\pi t}{T}} dt$$
(3)

letting

$$\frac{f(t)}{T} = g(t),$$

we have

$$C_{n} = \int_{0}^{\tau} g(t) e^{-j\frac{2n\pi t}{T}} dt$$
 (4)

Now assume that there is a new function h(t) such that

$$h(t) \begin{cases} =g(t), & 0 \leq t \leq T \\ =0 & \text{otherwise} \end{cases}$$
(5)

The corresponding Fourier Transform H(f) is found as

$$H(f) = \int_{-\infty}^{\infty} h(t) e^{-j2\pi} ft dt = \int_{0}^{\tau} g(t) e^{-j2\pi} ft dt \qquad (6)$$

Therefore

$$H(\frac{n}{T}) = \int_{0}^{T} g(t)e^{-j\frac{2\pi nt}{T}} dt$$
(7)

Comparing (7) and (4), we can easily see that $C_n = H(\frac{n}{T})$. Of course, based on the previous sections, we can evaluate $H(\frac{n}{T})$ immediately by using a method of FFT.

2. Computer Program for Finding Coefficients C_n

Essentially, this program is similar to program #3; a slight modification is added.

3. Fourier Coefficients of Common Wave Forms

By using the computer program, two examples are evaluated. The summary is shown in the following table:


```
C
C
C
C
C
       PREGRAM #11
      FIND THE FOURIER COEFFICIENTS BY FFT METHOD
      IF NO EQUAL O FOR INPUT FUNCTION OTHERWISE FOR DATA
      2**M TOTAL SAMPLE POINTS, T IS THE PERIOD
Ċ
      FUNCTION
      FUN(X)=X
С
      MAIN PROGRAM
      CONPLEX A.TI
      DIFENSION A(1100), B(1100)
      READ(5,101) "1, T.ND
      N=2++M
      CET=T/Y
      VH=N15
      NH1=NH+1
  101 FORMAT(110,F15+5+15)
      IF (NE) 5,9,5
    5 READ(5,102) (B(I),I=1,N)
  102 FORMAT (2F10.5)
      00 6 1=1.N
   _6 B(I)=B(I)/N
      60 TH 19
  9 COLTINUE
      00 10 1=1,N
   10 B(I)=FUN((I-1)*DET)/N
   19 CONTINUE
C
    LEIT REVERSAL
      D0 20 1=1.N
      NA=I=1
      NN=0
      00 30 J=1.M
      INN=NN×2
      NB=N4=NA/2*2
      NA=NA/2
   30 NN#N1+132
   20 A(I)=CMPEX(B(NN+1),0.)
      09 100 1=1,M
      IA=2**(M=I)
      L=2**(I-1)
      13 200 J=1, IA
      20,200 K=1/L
      T1=A(2*(J=1)*L+L+K)*CEXP((0+1=1+)*2+*3+1416*(K=1)/(2**1))
      A(2*(J=1)*L+L+K)=A(2*(J=1)*L+K)-T1
 200 A(P*(U+1)*L+K)=A(2*(U+1)*L+K)+T1
 100 CONTINUE
      WRITE(6,103)
 103 FORMAT(15X, 191, 10X, IREAL PART 1, 8X, 11MAGINERY PART 1)
      D9 300 I=NH12N
     NCC = \sim (N-1+1)
```

67
CR=REAL(A(I)) CI=AIMAG(A(I)) 30C *RITE(6,104) *CC+CR+CI 104 F5RMAT(10X+I10+2F16+6) D5 400 I=1+NH NCC=I+1 CR=REAL(A(I)) CI=AIMAG(A(I)) 400 *RITE(6,104) *CC+CR+CI STUP END

...

68

4. Fourier Coefficients of the Trigonometrical Form

Sometimes the Trigonometrical form is more useful than the exponential form. We usually write the form as follows.

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{2n\pi t}{T} + \sum_{n=1}^{\infty} b_n \sin \frac{2n\pi t}{T}$$
(8)

where

$$a_0 = \frac{2}{T} \int_{b}^{T} f(t) dt$$
(9)

$$a_{n} = \frac{2}{T} \int_{0}^{T} f(t) \cos \frac{2n\pi t}{T} dt$$
 (10)

$$b_{n} = \frac{2}{T} \int_{0}^{T} f(t) \sin \frac{2n \pi t}{T} dt$$
(11)

Comparing with the exponential form we see that

$$a_{n} = \frac{2}{T} \int_{0}^{T} f(t) \cos \frac{2n \pi t}{T} dt$$

$$= \frac{2}{T} \int_{0}^{T} f(t) \frac{i 2n \pi t}{e - T} + e^{-i 2n \pi t}}{2} dt$$

$$= \frac{1}{T} \int_{0}^{T} f(t) \frac{i 2n \pi t}{T} dt + \frac{1}{T} \int_{0}^{T} f(t) e^{-i 2n \pi t} dt$$

$$= C_{-n} + C_{n}$$

$$b_{n} = \frac{2}{T} \int_{0}^{T} f(t) \sin \frac{2n \pi t}{T} dt$$

$$= \frac{2}{T} \int_{0}^{T} f(t) \frac{e^{-i 2n \pi t}}{2j} dt$$

$$= -j \left(\frac{1}{T} \int_{0}^{T} f(t) e^{-i 2n \pi t} dt - \frac{1}{T} \int_{0}^{T} f(t) e^{-i 2n \pi t} dt \right)$$

$$= -j \left(C_{-n} - C_{n} \right)$$

$$= j(C_{n} - C_{-n})$$
(13)

When f(t) is a real function, we have

$$C_n^* = \frac{1}{T} \int_0^T f(t) e^{\frac{j2n\pi t}{T}} dt$$
$$= C_{-n}, \text{ that is}$$

when $C_n = x + jy$ (where x, y are real numbers) then $C_{-n} = x - jy$

therefore

$$a_n = C_n + C_{-n} = x + jy + x - jy = 2x = 2 real (C_n)$$
 (14)

and

$$b_n = j(C_n - C_n) = j(x+jy-x+jy) = -2y = -2 \text{ imaginary (C_n)}$$
(15)

Based on (14) and (15), we write the following computer program for evaluating the coefficients of a_n and b_n

5. Computers Program to Evaluate Fourier Coefficients of Trigo-

6. Fourier Coefficients of Common Wave Forms

By using the computer program, two examples are evaluated. The summary is shown in the following table:

Ν

Ces	SIN
1+273232	0.000000
-0•424419	0+000001
- 0•084887	0.000001
-0.036384	0+000000
-0+020214	0.000000
™C+012366	0•00000
-0+008908	0•00000
-0.006535	0+000000
-0+004997	0+000000
- 0•003946	0+00000
-0.003195	0+000000
-0+002641	0•00000
-0.002218	0•00000
-0.001391	0•00000
-0.001630	0.00000
-0.001421	0+000000
-0+001249	0,000000
-0.001107	0.00000
TO + 000987	0.000000
	0+000000
-0.000800	0+000000
-0:000726	0+000000

 N
 CSS

 1
 -0+90

 1
 -0+90

 2
 -0+00

 3
 -0+00

 4
 -0+00

 5
 -0+00

 6
 -0+00

 7
 -0+00

 9
 -0+00

 10
 -0+00

 11
 -0+00

 12
 -0+00

 13
 -0+00

 14
 -0+00

 15
 -0+00

 16
 -0+00

 17
 -0+00

 12
 -0+00

 15
 -0+00

 16
 -0+00

 17
 -0+00

 12
 -0+00

 13
 -0+00

 14
 -0+00

 15
 -0+00

 16
 -0+00

 17
 -0+00

 19
 -0+00

Cas	SIN	
0+998047		0+000000
+0+001952		-0.318305
=0:001953		-0.159146
=0+001952		-0.106090
-0:001953		NO:079561
-0.001953		=0+063642
-0:001953		-0.053027
+0+001953		-0+045444
-0:001953		-0:039757
•0.001953		-0-035337
-0.001753		-0:031791
•0.001953		-0+028893
+0+001953		+0+026478
+0+001953		-0+024433
-0.001953		-0.022650
·0·001953	-	-0.021150
+0,001953		-0.019830
+0+001953		-0:018656
•0+001953		-0:017618
≈0·00 <u>1</u> 953		-0.016677
•0+001953		-0.013835
=0:001953		-0:015074

Ç PRUGRAM#12 С FIND THE FOURIER COEFFICIENTS BY FFT METHOD С IF NO EQUAL O FOR INPUT FUNCTION OTHERWISE FOR DATA С 2*** TOTAL SAMPLE POINTS, T IS THE PERIOD С FUNCTION FUN(X)=X С MAIN PROGRAM COMPLEX A.TI DIMENSION A(1100), B(1100) READ(5,101) M,T,ND N=2 x x11 DE1=1/N 14=112 101 FORMAT(110, F15+5, 15) IF(ND) 5,9,5 5 READ(5,102) (B(1),1=1,N) 102 FORMAT(SF10.5) 00 6 I=1.N 6 6(I)=B(I)/N G8 T5 19 9 CONTINUE D0 10 1±1,N 10 8(I)≈FUN((I=1)*DET)/N 19 CONTINUE С 6IT REVERSAL 09 20 I=1/N $A \approx I = 1$ NN=0 00 3.) J=1,N NN=N *2 NB=1A=NA/2*2 NA=NA/2 30 NN=N+YB 20 A(I) = CMPLX(B(NN+1), 0)С FAST FOURIER TRANSFORM D8 100 I=1,M IA=2**(14-1) L=2**(1-1) D0 200 J=1, IA DH 200 K=11L T1=A(2*(J-1)*L+L+K)*CEXP((C**=1*)*2**3*1416*(K=1)/(2**I)) A(S*(J+1)*L+L+K)=A(S*(J-1)*L+K)=11200 A(2*(J=1)*L+K)=A(2*(J=1)*L+K)+T1 100 CONTINUE WRITE (5,103) 103 FORMAT(15X, IN', 10X, ICOS', 10X, ISINI) 03 300 1=1,NH NA3=1=1

..

AN=2:*REAL(A(1)) EN==2:*AIMAG(A(1)) 300 #RITL(6:104) NAB:AN:BN 104 FORMAT(16X:I10:2F16:6) STUP END VII. Convolution, Cross-correlation and Auto-correlation 1. Convolution Integral

An important appli- cation of the Fast Fourier Transform is to evaluate the convolution integral.^{9,12}

$$f(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau = \int_{-\infty}^{\infty} f_2'(\tau) f_1(t-\tau) d\tau$$
(1)

where $f_1(t)$ and $f_2(t)$ are two time functions.

A natural approach to this problem is working in the fre-_ quency domain, because

$$F(f) = F_1(f)F_2(f)$$
 (2)

where F(f), $F_1(f)$ and $F_2(f)$ are the Fourier Transforms of f(t), $f_1(t)$ and $f_2(t)$ respectively. It is seen that both the Fourier Transform and the inverse Fourier Transform are needed.

A simple derivation of (2) is given as follows: Fourier transforming f(t) by definition yields

$$F(f) = \int_{-\infty}^{\infty} f(t) e^{-j2\pi ft} dt \qquad (3)$$

Substituting (1) into (3)

$$F(f) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d\tau \right) e^{-j2\pi f t} dt$$
$$= \int_{-\infty}^{\infty} f_{1}(\tau) \left(\int_{-\infty}^{\infty} f_{2}(t-\tau) e^{-j2\pi f t} dt \right) d\tau$$
(4)

Letting t-7=t', then t=t'+7 and dt=dt'Consider the integral

$$\int_{\infty}^{\infty} f_2(t-7)e^{-j2\pi ft} dt$$
$$= \int_{-\infty}^{\infty} f_2(t')e^{-j2\pi f(t'+7)} dt'$$

$$=e^{-j2\pi f\tau} \int_{-\infty}^{\infty} f_{2}(t')e^{-j2\pi ft'} dt'$$
$$=e^{-j2\pi f\tau} F_{2}(f)$$
(5)

Substituting (5) into (4), we obtain

$$F(f) = \int_{\infty}^{\infty} f_{1}(7) e^{-j2\pi f^{7}} F_{2}(f) d7$$
$$= F_{1}(f) F_{2}(f)$$

2. Finding the Response Function

If an input time function $f_1(t)$ is excited to a system which has a weighting function $f_2(t)$ and the response function is required, we use the Fast Fourier Transform to obtain $F_1(f)$ and $F_2(f)$ respectively; Multiply them in the frequency domain to get F(f), the inverse Fast Fourier Transform is then applied. Finally the answer, f(t) is obtained.

The process is illustrated as follows

Fig. 25(a)

3. Computer Program for Convolution Integral Evaluation

A computer program which consists the Fast Fourier Transform and the Inverse Fast Fourier Transform is written. We use $f_1(t)=e^{-t}$ and $f_2(t)=e^{-2t}$. as a test example; the result is quite satisfactory.

```
С
      PROGRAM #13
С
      EVALUATION OF CONVOLUTION BY FFT METHOD
С
      2**M IS THE TOTAL NUMBER OF SAMPLE POINTS, T IS THE TOTAL TIME
С
      INPUT DATA FROM F1 TO F2
С
      IF ND IS EQUAL TO O FOR INPUT FUNCTION OTHERWISE FOR DATA
С
      FUNCTION
С
      F1(X) = 10 \cdot *EXP(-X)
      F2(X) = 10 \cdot *EXP(-2 \cdot *X)
С
      COMPLEX A, B, T1
      DIMENSION A(1500), B(1500), AN(10), BN(10)
      READ(5,1) M,T,ND
    1 FORMAT(110, F15, 5, 15)
      N=2**M
      DET=T/N
      NH=N/2
      IF( ND •NE• 0) G0 T0 19
      D0 10 I=1,N
      A(I)=(1+,0+)*F1((I=1)*DET)*DET
   10 B(I)=(1.,0.)*F2((I=1)*DET)*DET
      GO TO 99
   19 N8=N/8
      D8 20 I=1,N8
      READ(5,3) (AN(J), J=1,8)
      D8 25 IJ=1,8
   25 A(3*(I-1)+IJ)=(1.,0.)*AN(IJ)
   20 CONTINUE
      D0 30 I=1,N8
      READ(5,3) (BN(J), J=1,8)
    3 FORMAT(8F10.5)
      D8 35 IJ=1,8
   35 B(8*(I=1)+IJ)=(1.,0.)*BN(IJ)
   30 CONTINUE
   99 CONTINUE
С
      FAST FOURIER TRANSFORM
      28 100 I=1.M
      IA=2**(I-1)
      L=2**(M=I)
      D8 200 J=1, IA
      D0 200 K=1.L
      T1 = A(2*(J=1)*L+K)
      A(2*(J=1)*L+K)=T1+A(2*(J=1)*L+L+K)
      A(2*(J=1)*L+L+K)=(T1=A(2*(J=1)*L+L+K))*CEXP((0•)=1•)*2•*3•1416*(K•
     11)/(2*L))
      T1=B(2*(J=1)*L+K)
      B(2*(J=1)*L+K)=T1+B(2*(J=1)*L+L+K)
 200 B(2*(J=1)*L+L+K)=(T1=B(2*(J=1)*L+L+K))*CEXP((0·/=1·)*2·*3·1416*(K·
```

```
11)/(2*L))
  100 CONTINUE
     D0 300 I=1,N
 300 A(I)=A(I)*B(I)
С
      INVERSE FAST FOURIER TRANSFORM
     D3 400 I=1.M
     IA=2**(M-I)
     L=2**(I=1)
     De 500 J=1.1A
     D8 500 K=1.L
     T1=A(2*(J=1)*L+L+K)*CEXP((0*,1*)*2**3*1416*(K=1)/(2**I))
     A(2*(J=1)*L+L+K)=A(2*(J=1)*L+K)=T1
 500 A(2*(J=1)*L+K)=A(2*(J=1)*L+K)+T1
 400 CONTINUE
     WRITE(6:2)
   2 FORMAT(20X, 'TIME', 15X, 'F(T)')
     D8 600 I=1.N
     TA=(I=1)*DET
     AR=REAL(A(I))/T
 600 WRITE (6,4) TA, AR
   4 FORMAT(10X,2F16.6)
     STOP
```

END

..

Fig. 25(b)

4. Cross-correlation

13.14 The definition of Cross-correlation is

$$f(t) = \int_{-\infty}^{\infty} f_2(\tau) f_1(t+\tau) d\tau$$
 (6)

The difference between (6) and (1) is only a sign, although their physical interpretations are quite different. Cross-correlation plays an increasingly important role in communication and statistical control analysis.

Mathematically, however, the evaluation of (6) is not more complicated than that of (1).

For evaluating (6)

$$F(f) = \int_{-\infty}^{\infty} f(t) e^{-j2\pi f} dt$$
(7)
=
$$\int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f_2(7) f_1(t+7) d\tau \right] e^{-j2\pi f t} dt$$
(7)
=
$$\int_{-\infty}^{\infty} f_2(7) \left[\int_{-\infty}^{\infty} f_1(t+7) e^{-j2\pi f t} dt$$
(8)

We change the independent variable,

 $t + 7 = t^{1}$

and have

$$\int_{-\infty}^{\infty} f_{1}(t+7)e^{-j2\pi f_{dt}^{2}} dt$$

$$= \int_{-\infty}^{\infty} f_{1}(t')e^{-j2\pi f(t'-7)} dt'$$

$$= e^{j2\pi f^{2}}F_{i}(f)$$
(9)

Substituting (9) into (8), we obtain

$$F(f) = \int_{-c9}^{\infty} f_2(\tau) e^{j2\pi} f_{F_i}^{\tau}(f) d\tau$$

$$=F_{1}(f) \int_{-\infty}^{\infty} f_{2}(z) e^{j2\pi f z} dz$$

=F_{1}(f) F_{2}^{*}(f) (10)

Noting that the relation

$$F_{2}^{*}(f) = \int_{-\infty}^{\infty} f_{2}(\tau) e^{j2\pi} f\tau_{d\tau}$$
(11)

has been used.

The following diagram illustrates how to use the Fast Fourier Transform to obtain the cross-correlation function.

5. Computer Program for Cross-correlation

Program #13 is for finding the cross-correlation function by using FFT.

6. Autocorrelation

If $f_2(t)=f_1(t)$ in equation (6), we have

$$f(t) = \int_{-\infty}^{\infty} f_{1}(7) f_{1}(7+t) d$$
 (12)

Both cross-correlation and autocorrelation functions are extremely useful in studing statistical theory of communication and control.

7. Computer Program and Example

A computer program for the auto-correlation function is shown in program #15.

```
C
      PREGRAM #14
      2**M IS THE TOTAL NUMBER OF SAMPLE POINTS, T IS THE TOTAL TIME
С
С
С
С
      INPUT DATA FROM F1 TO F2
      IF ND IS EQUAL TO O FOR INPUT FUNCTION, OTHERWISE FOR DATA
      FUNCTION
С
      F1(X)=10**EXP(=X)
      F2(X)=10,*EXP(-2.*X)
Ċ
      COMPLEX A, B, T1
      DIMENSION A(1500), B(1500), AN(10), BN(10)
      READ(5,1) MATAND
    1 FORMAT(110,F15+5,15)
      N=2**M
      DET =T/V
      NH=N/2
      IF( ND .NE. 0) G8 T8 19
      [08 10 1=1,N
      A(I)=(1+20+)*F1((I=1)*DET)*DET
   10 B(I)=(1+,0+)*F2((I+1)*DET)*DET
      G8 T0 99
   19 N8=N/8
      L8 20 1=1,N8
      READ(5,3) (AN(J), J=1,8)
    3 FORMAT(8F10.5)
      00 25 IJ=1+8
   25 A(8*(I=1)+IJ)=(10,00)*AN(IJ)
   20 CONTINUE
      CO 30 1=1,N8
      READ(5:3) (BN(J):J=1:8)
      D0 35 10=1/8
   35 B(8*(I=1)+IJ)=(1*/0*)*BN(IJ)
   30 CONTINUE
   99 CONTINUE
С
      FAST FOURIER TRANSFORM
      D0 100 I=1,M
      IA=2**(I=1)
      L=2**(M=I)
      DB 200 J=1, IA
      D0 200 K=1.L
      T1 = A(2 + (J = 1) + L + K)
      A(2*(J=1)*L+K)=T1+A(2*(J=1)*L+L+K)
      A(2*(J=1)*L+L+K)=(T1=A(2*(J=1)*L+L+K))*CEXP((0+==1+)*2+*3+1416*(K=
     11)/(2*L))
      11=B(2*(J-1)*L+K)
      B(2*(J=1)*L+K)=T1+B(2*(J=1)*L+L+K)
 200 B(2*(J=1)*L+L+K)=(T1=B(2*(J=1)*L+L+K))*CEXP((0**=1*)*2**3*1416*(K=
     11)/(2*L))
```

```
100 CONTINUE
      09 300 I=1,N
  300 A(I)=A(I)*CONJG(B(I))
С
      INVERSE FAST FOURIER TRANSFORM
      D8 400 1=1,M
      IA=2**(M=I)
      L=2**(I+1)
      DA 500 Ja1, IA
      D8 500 K=1.L
      T1=A(2*(J-1)*L+L+K)*CEXP((0++1+)*2+*3+1416*(K=1)/(2**1))
      A(2*(J-1)*L+L+K)=A(2*(J-1)*L+K)=T1
 500 A(2*(J=1)*L+K)=A(2*(J=1)*L+K)+T1
  400 CONTINUE
      WRITE (612)
   2 FORMAT(20X, 'TIME', 15x, (F(T)))
     D9 600 1=1,N
     TA=(1=1) + DET
      AR=REAL(A(I))/T
 600 WRITE(6,4) TAJAR
   4 FORMAT(10X:2F16.6)
     STUP
     END
```

```
С
      PROGRAM #15
С
      EVALUATION AUTOCORRELATION BY FFT METHOD
С
      2**M IS THE TOTAL NUMBER OF SAMPLE POINTS, T IS THE TOTAL TIME
С
      IF ND IS EQUAL TO O FOR INPUT FUNCTION, OTHERWISE FOR DATA
C
      FUNCTION
С
      F1(X) = 10 + EXP(-X)
С
      CEMPLEX A, B, T1
      DIMENSION A(1500), AN(10)
      READ(5,1) M,T,ND
    1 FORMAT(110, F15.5, 15)
      N=2**M
      DET=T/N
      NH=N/2
      IF( ND .NE. 0) G0 T0 19
      DB 10 I=1,N
   10 A(I)=(1.,0.)*F1((I=1)*DET)*DET
      Ge Te 99
   19 N8=N/8
      D8 20 I=1,N8
      READ(5,3) (AN(J), J=1,8)
    3 FORMAT(8F10.5)
      De 25 IJ=1.8
   25 A(8*(I=1)+IJ)=(1**0*)*AN(IJ)
   20 CONTINUE
   99 CONTINUE
С
      FAST FOURIER TRANSFORM
      D8 100 I=1.M
      IA=2**(I-1)
      L=2**(M=1)
      D0 200 J=1, IA
      D0 200 K=1.L
      T1 = A(2 + (J = 1) + L + K)
      A(2*(J=1)*L+K)=T1+A(2*(J=1)*L+L+K)
  200 A(2*(J=1)*L+L+K)=(T1=A(2*(J=1)*L+L+K))*CEXP((0•J=1•)*2•*3•1416*(K
     11)/(2*L))
  100 CONTINUE
      D0 300 I=1.N
  300 A(I) = A(I) * CONJG(A(I))
С
      INVERSE FAST FOURIER TRANSFORM
      D9 400 I=1,M
      IA=2**(M~I)
      L=2**(I=1)
      D8 500 J=1, IA
      D8 500 K=1.L
      T1=A(2*(J=1)*L+L+K)*CEXP((0*,1*)*2**3*1416*(K=1)/(2**I))
      A(2*(J=1)*L+L+K)=A(5*(J=1)*L+K)=11
```

```
500 A(2*(J-1)*L+K)=A(2*(J-1)*L+K)+T1
400 CONTINUE
WRITE(6,2)
2 FORMAT(20X,'TIME',15X,'F(T)')
D0 600 I=1,N
TA=(I-1)*DET
AR=REAL(A(I))/T
600 WRITE(6,4)TA,AR
4 FORMAT(10X,2F16.6)
```

•

.

```
STOP
End
```

-

•

VIII. Inverse Laplace Transform of Rational Transfer Functions

1. Jordans's Lemma

Can we perform the inverse Laplace transform by using Fourier transform? The answer is afirmative ; It is also a common practice in the engineering field. The justification of doing this is based on the Jordan Lemma.¹⁶

Suppose Q(s) is a function of a complex variable s. It has the following properties:

- (a) In the upper half plane, it has finite number of singularities.
- (b) When $0 \angle \underline{s} \angle \pi$ and $|s| \rightarrow \infty$, Q(s) uniformly approaches zero.

and

(c) m is postive.

Then

$$\lim_{R \to \infty} \int_{C} e^{jms} Q(s) ds = 0$$
 (1)

where C is the semicircle shown in Fig. 30.

Equation (1) is usually referred as the Jordan Lemma.

Laplace transform can be considered as an application of this lemma.

2. From Laplace Transform to Fourier Transform

Consider the Laplace transform pair;

$$F(s) = \int_{0}^{\infty} f(t) e^{-st} dt$$
 (2)

$$f(t) = \frac{1}{2\pi j} \int_{c-j=0}^{c+j=0} F(s) e^{st} ds$$
(3)

To perform the inverse Laplace transform by using (3), we usually take the contour integral

$$\oint_{\mathcal{T}} F(s) e^{st} ds$$

$$= \int_{c-j'\infty}^{c+j\infty} F(s) ds + \int_{\mathcal{T}'_{i}} e^{st} F(s) ds \qquad (4)$$

The constand c is large enough such that all the sigularities are enclosed in the left of the line $c-j \infty$ to $c+j \infty$. This is shown in Fig. 31.

By using the Jordan Lemma, if the second term of (4) is equal to zero. Then we have

$$2\pi jf(t) = \int_{c-j}^{c+j} e^{st}F(s) ds$$

$$= \oint F(s) e^{st} ds$$

=2mj (\geq Res. inside the contour) (5)

Let
$$s=c + jw$$
, (0)
then $ds= jdw$ (6a)

Substituting (6) into (5), we have

$$f(t) = \frac{1}{2\pi j} \int_{-\infty}^{\infty} F(c+j\omega) e^{(c+j\omega)t} jd\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} F(c+j\omega) e^{(c+j\omega)t} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ct} F(c+j\omega) e^{j\omega t} d\omega$$

$$= e^{ct} \frac{1}{2\pi} \int_{-\infty}^{\infty} F(c+j\omega) e^{j\omega t} d\omega$$

$$= e^{ct} \frac{1}{2\pi} \int_{-\infty}^{\infty} F(c+j\omega) e^{j\omega t} d\omega$$

$$(7)$$

For control engineers, only asympotically stable systems are interested. In those systems, all singularities are in the left half plane. Therefore, we can choose c=0. Equation (8) then becomes

$$f(t) = \mathcal{J}_{\tau}^{-1} F(j\omega)$$
(9)

Using the Fast Fourier Transform to perform the inverse Laplace transform is thus justified.

3. A Special Case

If a transfer function, say, $M(s) = \frac{G(s)}{s}$, has a pole in the origin of the s plane, Fast Fourier Transform can not be directly applied. We can easily overcome this difficulty by removing the pole first, or taking the inverse Fourier transform of G(s).

After finding the time function g(t), then a numerical integration is performed in order to find m(t).

4. Computer Program for Inverse Laplace Transforming $\frac{G(s)}{s}$

Program #16 is for inverse Laplace transform of the special case shown in the last section.

In the next section, we will use this program many times to inverse transform the irrational transfer function.

5. Illustrative Examples

For the general case, however, we simply chang s to j_{00} and do the Fast Fourier Transform. These examples are tested by using program #5 and #9.

Example 1.

$$L^{-1} \frac{1}{s+1}$$

Example 2.

$$L^{-1} \frac{10}{(s+1)(s+2)}$$

Example 3.

$$L^{-1} \frac{10}{(s+1)^2(s+2)}$$

The results are shown in Fig. 32. It is noted that the repeated root case does not give us particular difficulties of complication.

```
T IS THE TOTAL SAMPLE TIME, AND 2**N IS TOTAL NUMBER OF SAMPLE POINTS
      A COMPUTER PROGRAM FOR COMPUTING THE INVERSE LAPLASE TRANSFORM
С
      COMPLEX A, T1, DES, CEUD, EA, EB, S
      114ENSI95 A(2200)
      5 EAD (5,1) M.T.
    1 FORMAT(110,F15.5)
      "PITE(4,2)
    2 FORMAT(10%, TIME, 10%, ISORT(T), 10%, X(T))
      1=2**1
      CETST/N
      DER=(0+,1+)*2++3+1416/T
      11=1/2
      18 100 I=1,1
      2.4=I⊷1
      : := )
      10 200 JaliM
      たんキャンネクト
      NP=LA-NA/P*P
      114=14/2
 200 : 5=5.5,45B
      JF(I+'H) 250,250,260
 550 A(2041) #CFUM((I+1) *DES)
      CH 10 100
 260 /(...+1)=CFUN((+) +I-1)*DES)
 100 CHATTAUE
      19 310 I=1/M
      14=2**(M-I)
      L=2**(1-1)
      20 400 J#1/IA
     10 400 K=1/L
      T1=A(Px(J+1)*L+L+K)*CFXP((0++ 1+)*2+*3+1416*(K=1)/(2+*I))
      ハ(?*(J+1)×L+L+K)=ハ(?*(J+1)×L+K)=71
 #00 :(2*(J-1)*L+K)=A(2*(J-1)*L+K)+T1
 SOD CONTINUE
     · ···=(:-1)/2
     °AL≠0
     LO NOO IELANDE
     TY #2XXI*DET
     TRAS (MT (TM)
     イビジAL + (PLAL ( A ( P+1+1 ) ) + 4 + * REAL ( A ( P+1 ) ) + REAL ( A ( P+1+1 ) ) )/(3 + * N )
510
     NETTE (Argol) TERTEL
 501 FS 2047 (15X+3516+6)
     SIJE
     £ 1:D
      COMPLEX FUNCTION CFUM(S)
      CAMPLEX SYEAFEB
      Fa=(0+,1+)*2+*3+1416/360+*70+
      F ? = E /
      CFUN=CSORT(S)/((CSOPT(S)-CEXP(EA))*(CSORT(S)-CEXP(EB)))
      PETURN
      E1:D
```

С

С

PROGRAM #16

Fig. 32

IX. Inverse Laplace Transform of Irrational Transfer Functions

1. Difficulties in Analytical Approach

A large number of control systems have distributed paramei0,11 ters. The mathematical models of those systems contain the operator s under the radical sign. To find the inverse Laplace transforms of those irrational transfer functions is extremely difficult.

Among the availabel methods, the most notable one is developed by Kilomeitseva and Netushil. We summarize their theory first and then examine the difficulties involved.

An irrational transfer function is usually given as follows:

$$W(s) = \frac{\alpha_0 s^m + \alpha_1 s^{m-1} + \dots + \alpha_m}{\beta_0 \sqrt{s} (2n+1) + \beta_1 \sqrt{s} (2n) + \beta_2 \sqrt{s} (2n-1) + \dots + \beta_{2n+1}}$$
(1)

Let $\sqrt{s} = z$; equation (1) becomes a rational transfer function of z. or

$$W(z) = \frac{\alpha_0 z^{2m} + \alpha_1 z^{2(m-1)} + \dots + \alpha_m}{\beta_0 z^{2n+1} + \beta_1 z^{2n} + \beta_2 z^{2n-1} + \dots + \beta_{2n+1}}$$
(2)

or simply
$$\sum_{i=0}^{m} \alpha_{i} z^{2(m-i)}$$

$$= \frac{\sum_{i=0}^{m-1} \beta_{i} z^{2n+1-i}}{\sum_{i=0}^{2n+1} \beta_{i} z^{2n+1-i}}$$
(3)

This rational fraction may be factored into a sum of elementary fractions

$$W(z) = \sum_{i=1}^{2n+1} \frac{A_i}{z - z_i}$$
(4)

if there is no repeated root in the characteristic equation Of (2).

The inverse Laplace transform of the typical term of (4) with a unit step as input can be performed by using the following Laplace transform pair:

$$\frac{f(t)}{e^{a^2t} (b-a \operatorname{erf}(a/\overline{t})) - be^{b^2t} \operatorname{erfc}(b/\overline{t})} \frac{F(s)}{(s-a^2) (b+\sqrt{s})}$$

or let

a=0, for special case:

b - be^{b²t} erfc(b/t)
$$\frac{b^2}{s(\sqrt{s+b})}$$
 (5)

By using (5), we have the inverse Laplace transform of a typical term of (4), as follows:

$$L^{-1} \quad \frac{A}{s(\sqrt{s+a})} = \frac{A}{a} \left(1 - e^{a^2 t} \operatorname{erfc}(a/t) \right)$$
(6)

If complex roots are involved, pair (5) can not be directly applied, Kilomeitsiva and Netushil's approach is to reform the pair into a new function. For example, assume the complex conjugate roots are z_k and z_{k+1} .

Consider

$$W_{1}(z) = \frac{A_{k}}{z-z_{k}} + \frac{A_{k+1}}{z-z_{k+1}} = \frac{E}{(z-z_{k})(z-z_{k+1})} + \frac{Dz}{(z-z_{k})(z-z_{k+1})}$$
(7)

The inverse Laplace transform will be

$$L^{-1} \frac{W_{1}(z)}{S} = E(\frac{1}{P} m_{0}(P/\overline{t}, \theta) + D(\frac{1}{P^{2}} m_{1}(P/\overline{t}, \theta))$$
(8)

2

3

PJE

4

0.5

Ö

 $\sum_{k=1}^{m_{0}=\frac{1}{z_{k}+z_{k+1}}} \left\{ e^{z_{k}^{2}t} \operatorname{erfc}(-z_{k}\sqrt{t}) - e^{z_{k+1}^{2}t} \operatorname{erfc}(-z_{k+1}\sqrt{t}) \right\}$

where β and β are defined by $z_k = \beta e^{j\theta}$, and m_0 and m_1 functions are given by graphical forms as shown in Fig. 33.

The difficulties involved in their approach are as follows.

In the first place, if there is a repeated root in the transfer function, they don't have a corresponding formula for the inverse Laplace transformation.

Secondly, this is not a complete analytic method, because they have to use tables or auxiliary figures in Fig. 33 to evaluate the curves.

To remedy the shortcomings of this method is by no means easy task. However, if we look at the problem from a different angle and attack it from a numerical viewpoint in the very beginning, we would appreciate the power and simplicity of the Fast Fourier Transform method.

2. Fast Fourier Transform Approach

We use a simple problem which involves function element to explain the procedure.

Consider the feedback system shown in Fig.34.

Fig. 34

Find the response function c(t), if a unit step is applied.

First, find the close loop transfer function as follows.

$$M(s) = \frac{C(s)}{R(s)} = \frac{100}{(s+1)(0.63\sqrt{s}+1) + 100}$$
(8)

Program #16 will give the answer c(t).

The sub-step involves in the program can be summarized as follows.

(1) Substituting s by jow to evalute M(jor)

(2) Inverse Fast Fourier Transform to obtain m(t)

(3) Numerical integration to get c(t)

The input of this program should be written as subroutine. For this example it reads

COMPLEX FUNCTION CFUN(S) COMPLEX S,EA,EB CFUN=(100+,0+)/((S+(1+,0+))*(0+63*CSQRT(S)+(1+,0+))+(100+,0+)) RETURN END

The output curve c(t) is plotted as shown in Fig. 35.

3. Special Case involving Repeated Root

While there is no available analytical method for evaluating an irrational transfer function with repeated roots, we use an example to demonstrate that there is no difficulties in the Fast Fourier Transform method.

Solve for the response of the following system with a unit step as input

Fig. 36

.

Fig.35

Again, we use program #16, with the following subroutine as computer input

```
COMPLEX FUNCTION CFUN(S)

COMPLEX SJEAJEB

EA=(Q+J1+)*2+*3+1416/36Q+*55+

EB=EA

CFUN=CSQRT(S)/((CSQRT(S)*CEXP(EA))*(CSQRT(S)*CEXP(EB)))

RETURN

END
```

The computer output y(t) is plotted as shown in Fig. 37.

4. Verification of m_0

The curves shown in Fig. 33 were given by Kiloneitseva and Netushil, We would use the Fast Fourier Transform method to verify their results. Thus we have m_0 calculated and plotted as shown in Fig. 38. There is no recognizable difference between their results with ours.

Fig. 37.

99

Fig. 38

X. Inverse Laplace Transform of Transcendental Transfer Function

1. Time Delay Functions

If a control system involves a time delay element, its transfer function would involve an element of e^{-s} which makes the analysis of the system very difficult.

One of the approaches to the problem is to replace the exponentical function of s by a ratio of two polynomials. The method is known as Fade's approximation. In fact, the appro-

When we have the powerful tool- Fast Fourier Transform, the solution of the problem becomes routine.

2. Delay Function in the Over All Transfer Function

We first use the following simple example: Find the weighting function of the system:

$$W_1(s) = \frac{e^{-s}}{s+1}$$
 (1)

By using Program # 5 and write the subroutine as follows

COMPLEX FUNCTION CFUN(S) COMPLEX S CFUN=CEXP(-S)/(S+(1.,0.)) RETURN END

The output curve w(t) is shown in Fig. 39. Inspecting this curve, we note that our result is so accurate that it is much | better than that obtained by Pade's formula.

Fig. 39

·101

3. Delay Function in the Loop

If the delay element is either in the feedforward path (Fig. 40a) or in the feedback link of a feedback system (Fig. 41a), the problem becomes complicated. However, with our approach , the solution is still a routine. After using program #16, we find the step responses of the system of Fig.40(a) and 41(a) are the curves shown in Fig. 40(b) and 41(b) respectively.

4. Two Delay Functions

When two delay functions are applied in a feedback system as shown in Fig. 42, the solution problem is more complicated . Again, we solve it by using program #16 and find the step response as shown in Fig. 43.

5. General Transcendental Transfer Functions

If a system consists a general transcendental function, which could be both of s and $e^{\sin(s)}$ etc. There is no any particular difficulty if we use the Fast Fourier Transform method to solve it.

11

0.9

0

1

વક

г

3

(Ъ)

G

(م)

. 4. 6

١ ව 7

XI. Conclusion

The Fast Fourier Transform has demonstrated its power in the field of communication, optics etc. It has never been applied to control system analysis. This research first, states the difficulties of performing the inverse Fourier Transform by complex variable approach; in the meantime, we establish several useful transform pairs. Secondly, a new interpretation of Fast Fourier Transform is presented. Third, Decimation in time and Decimation in frequency are explained and derived. Fourth, the inverse Fourier Transform formulas have been established. Fifth, application to Fourier series evaluation is demonstrated. Sixth, applications to convolution, autocorrelation and crosscorrelation are explained. Seventh, this powerful tool, when applied to irrational transfer functions, and transcendental transfer functions, the inverse Laplace transform become routine.

Sixteen detailed computer programs are included. All of them are tested at the Sigma 7 digital computer.

It is belived that this research is the first one to use Fast Fourier Transform to perform the inverse Laplace Transformation of irrational transfer functions and transcendental transfer functions in literature.

REFERENCES

- 1. Athanasios Papoulis, "The Fourier Integral and its Application", MaGraw-Hill Book Company, New York, 1962.
- 2. J. T. Ton, "Digital and Sampled Data Control System", Mc-Graw-Hill Book Company, New York, 1959.
- 3. C. F. Chen and I. J. Haas, "Elements of Control System Analysis", Prentice Hall, 1968, pp. 170-179.
- J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Calculation of Complex Fourier Series", <u>Math of Comput.</u>, Vol. 19, pp. 297-301, April, 1965.
- 5. E. O. Brigham and R. E. Morrow, "The Fast Fourier Transform", IEEE Spectrum, Vol. 4, pp. 63-70, Dec., 1967.
- 6. W. T. Cochran, et al, "What is the Fast Fourier Transform?", <u>IEEE Proc</u>., Vol. 55, p. 1667, Oct., 1967.
- W. M. Gentleman and G. Sande, "Fast Fourier Transforms-for Fun and Profit", 1966 Fall Joint Computer Conf. AFIPS Proc. Vol. 29, Washington, D. C. Spartan, 1966, pp. 563-578.
- W. T. Cochran, J. J. Downing, D. L. Lang, and D. W. Nelson, "Burst Measurements in the Frequency Domain", Proc. IEEE, Vol. 54, pp. 830-841, June, 1966.
- 9. T. G. Stockham, "High Speed Convolution and Correlation", <u>1966 Spring Joint Computer Conference</u>, AFIPS Proc., Vol. 28, Washington, D. C. : Sparten, 1966, pp. 229-233.
- J. L. Stewart, "Generalized Pade Approximation", <u>Proceedings</u> of IRE, Dec. 1960, pp. 2003-2008.
- 11. M. B. Kilomeitseva, and A. V. Netushil, "Transients in Automatic Control Systems with Irrational Transfer Functions", <u>English Translation of Automatika i Telemedhanika, Vol. 26,</u> NO. 2, Feb. 1965, pp. 335-342.

- 12. V. V. Solodovnikov, <u>Statistical Dynamics of Linear Automatic</u> <u>Control System</u>, New York: D. Van Nostrqnd Company, second edition, 1965, pp. 335-342.
- Y. W. Lee "Statistical Theory of Communication", John Wiley & Sons Inc. 1960.
- 14. Athanasios Papoulis "Probability, Random Variables, and Stochastic Processed", McGraw-Hill Book Company.
- 15. R. H. Macmillan "Progress in Control Engineering", Vol. 1, London Heywood & Company. 1962.
- 16. Pipe, "Applied Mathematics for Engineers and Physicist", McGraw-Hill Book Company, New York, 1958.