
HIGH-ORDER NUMERICAL METHODS FOR

TIME-DEPENDENT PROBLEMS WITH APPLICATIONS

A Dissertation

Presented to

the Faculty of the Department of Mathematics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Pei Yang

August 2015



HIGH-ORDER NUMERICAL METHODS FOR

TIME-DEPENDENT PROBLEMS WITH APPLICATIONS

Pei Yang

APPROVED:

Dr. Jingmei Qiu, Chairman
Department of Mathematics, University of Houston

Dr. Tsorng-Whay Pan,
Department of Mathematics, University of Houston

Dr. Jiwen He,
Department of Mathematics, University of Houston

Dr. Guoning Chen,
Department of Computer Science,
University of Houston

Dean, College of Natural Sciences and Mathematics

ii



HIGH-ORDER NUMERICAL METHODS FOR

TIME-DEPENDENT PROBLEMS WITH APPLICATIONS

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Mathematics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Pei Yang

August 2015

iii



Abstract

In this dissertation, several high-order numerical methods for solving time depen-

dent problems are studied.

In the first part, a maximum principle preserving (MPP) finite-volume (FV)

weighted essentially non-oscillatory (WENO) Runge Kutta (RK) scheme is proposed

for convection-dominated problems. Such problems possess the maximum principle

at the theoretical level, hence it is hoped that the numerical solution preserves the

maximum principle. However, normal high-order FV WENO RK scheme doesn’t

satisfy such property. We propose a modified high-order FV WENO scheme by

adding locally-parametrized flux limiters to maintain the maximum principle. In

this work, for the first time under the finite-volume framework, such flux limiters are

proved to maintain the high-order accuracy of the original WENO scheme for linear

advection problems without any additional time-step restriction. And for general

nonlinear convection-dominated problems, the flux limiters are proved to introduce

up to O(∆x3 + ∆t3) modification to the high-order temporal integrated flux in the

original WENO scheme without extra time-step constraint. The MPP property of

the proposed scheme is validated by several numerical tests.

In the second part, an integral deferred correction (InDC) method with adap-

tive non-polynomial basis is presented to solve stiff time dependent problems whose

solutions contain initial or internal layers. Several non-polynomial bases with expo-

nential functions are proposed, in the hope that the stiff layers in the solution can be

better resolved by the exponentials than by polynomials. The stability and accuracy

iv



properties of the non-polynomial InDC schemes are comparable to those of the poly-

nomial InDC schemes. Finally, numerical test shows that the newly proposed InDC

scheme outperforms the traditional polynomial-based scheme when it is applied to

solve initial value problems with layers, in the sense that the former scheme takes

fewer time steps than the latter one given the same error tolerance.
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CHAPTER 1

Introduction

1.1 Background

Many problems in computational fluid dynamics and other areas can be formulated

in the form of time-dependent partial differential equations (PDEs). An example is

the convection-diffusion problem, which mathematically takes the form

ut + f(u)x = a(u)xx. (1.1.1)

1



1.1. BACKGROUND

A tremendous amount of work has been done in designing schemes for numerically

solving time-dependent PDEs, as it is hard to get analytical solutions in most cases.

Available schemes include the finite element method, finite-difference method, finite

volume method, and spectral method, etc..

In this dissertation, we mainly focus on the finite volume (FV) scheme for solving

the convection-diffusion problem. Consider the one-dimensional problem (1.1.1) for

x ∈ [a, b]. Suppose that we have the uniform spatial grids

a = x 1
2
< x 3

2
< · · · < xN− 1

2
< xN+ 1

2
= b, ∆x =

b− a
N

, (1.1.2)

with a computational cell and the corresponding cell center defined as

Ij = [xj− 1
2
, xj+ 1

2
], xj =

1

2
(xj− 1

2
+ xj+ 1

2
), j = 1, 2, · · · , N. (1.1.3)

Let ūj denote the approximation to the cell average of u over cell Ij, i.e., ūj ≈
1

∆x

´
Ij
u(x)dx. The FV scheme is designed by integrating equation (1.1.1) over each

computational cell Ij and then dividing it by ∆x, which gives

dūj
dt

= − 1

∆x
(ĤC

j+ 1
2
− ĤC

j− 1
2
) +

1

∆x
(ĤD

j+ 1
2
− ĤD

j− 1
2
), (1.1.4)

where ĤC
j+ 1

2

and ĤD
j+ 1

2

are the numerical fluxes for convection and diffusion terms re-

spectively. ĤC
j+ 1

2

and ĤD
j+ 1

2

can be understood as approximations to f(u(x, t))|x=x
j+1

2

and (a(u(x, t))x)|x=x
j+1

2

respectively, which can be approximated via reconstructions

from neighbouring cell averages of Ij, e.g., {ūj−r, · · · , ūj+s} (which will thereafter

2



1.1. BACKGROUND

be called the reconstruction stencil) for a (r + s + 1)-th order accurate reconstruc-

tion. Among all the different reconstruction methods, the weighted essentially non-

oscillatory (WENO) (see [24]) reconstruction procedure is well known due to its

robustness in adaptively selecting appropriate reconstruction stencil for stability,

high-order accuracy, as well as a non-oscillatory resolution of shocks. One should be

aware that using information from appropriate directions plays an important role in

designing numerical fluxes for convection or convection-dominated problems. The

reader may refer to [23] for more details about reconstruction procedures, as well as

for an exhaustive study on how different numerical fluxes have been developed in

the last few decades. The procedures of reconstructing numerical fluxes used in this

dissertation will be presented in details in Chapter 2, which can also be found in

[22].

With the right hand-side of (1.1.4) properly addressed as just discussed, we dis-

cretize the time derivative on the left hand side of (1.1.4) by ODE solvers. Usually an

ODE system is obtained after spatial discretization is performed on a time-dependent

PDE problem. In general, these ODE problems can be written as

u′ = f(t,u), (1.1.5)

where f is a vector function of u = (ū1, · · · , ūM).

The total variation diminishing (TVD) Runge-Kutta (RK) ([21]) scheme is widely-

used for convection dominated problems and is given by

u(1) = un + ∆tf(tn,u
n),

3



1.1. BACKGROUND

u(2) = un + ∆t(
1

4
f(tn,u

n) +
1

4
f(tn + ∆t,u(1))), (1.1.6)

un+1 = un + ∆t(
1

6
f(tn,u

n) +
1

6
f(tn + ∆t,u(1)) +

2

3
f(tn +

1

2
∆t,u(2))).

We apply the TVD RK scheme (1.1.6) on the semi-discretized scheme (1.1.4) and

get a fully-discretized scheme

ūn+1
j = ūnj − λ(Ĥrk

j+ 1
2
− Ĥrk

j− 1
2
), j = 1, 2, · · · , N (1.1.7)

with λ = ∆t
∆x

and

Ĥrk
j+ 1

2
=

1

6
(ĤC,n

j+ 1
2

− ĤD,n

j+ 1
2

) +
1

6
(Ĥ

C,(1)

j+ 1
2

− ĤD,(1)

j+ 1
2

) +
2

3
(Ĥ

C,(2)

j+ 1
2

− ĤD,(2)

j+ 1
2

). (1.1.8)

Here Ĥ
C,(s)

j+ 1
2

, Ĥ
D,(s)

j+ 1
2

(s = 1, 2) are the numerical fluxes at the intermediate stages in

the TVD RK scheme (1.1.6).

Besides the convection-diffusion problem, there are many other physical phe-

nomena of great importance for applications described by a multi-scale system of

differential equations of the form

u′ = f(u) +
1

ε
g(u), (1.1.9)

with ε > 0 being the stiffness parameter. Systems of such form arise in various

application problems such as chemical reaction, mechanics, hyperbolic systems with

relaxation where a method of lines approach is used, etc.. In general, in order to

treat and handle problems of this form, it is important to develop suitable numerical

4



1.1. BACKGROUND

methods that work in an accurate, stable and efficient way. So far, many numerical

solvers for (1.1.9) have been developed, including forward Euler (FE), backward

Euler (BE), Runge Kutta (RK), implicit-explicit (IMEX), integral deferred correction

(InDC) ([27]), spectral deferred correction (SDC) ([29]) and so on.

Both FE and BE methods are low-order (first-order) schemes. It is easy to im-

plement FE scheme due to its explicit property, however FE scheme suffers from the

small time-step constraint because its stability region is small, and this disadvantage

renders solving stiff ODE problems almost impossible. For BE scheme, the stability

region is open in the complex plane, which makes it a good choice for solving stiff

ODEs. However BE scheme is implicit, so if the right hand side in (1.1.9) is nonlinear

with respect to u then one needs to (numerically) solve nonlinear equations to get

the numerical solution at each time-step, which might be a very costly task.

InDC method has been gaining more and more popularity ([35], [36], [27], [28])

in recent years. The derivation for InDC scheme is quite straightforward, compared

with the complicated algebraic manipulations for deriving high-order Runge Kutta

schemes, and it can effectively improve order of accuracy just by relatively simple

iterations. In this dissertation, we make use of the InDC framework to construct

a new family of time integrators. We review the InDC scheme as follows. For the

initial value problem

u′ = f(t, u), t ∈ [0, 1], u(0) = u0, (1.1.10)

5



1.1. BACKGROUND

let the discretization for the time domain [0, T ] be

0 = t1 < t2 < · · · < tn < · · · < tN = T, (1.1.11)

and let the numerical approximation to {u(tn)}n=N
n=1 be {un}n=N

n=1 . Then each interval

In = [tn−1, tn] is uniformly discretized into subintervals as

tn−1 = tn,0 < tn,1 < · · · < tn,m < · · · < tn,M = tn. (1.1.12)

We let Hn = tn − tn−1 and hn = Hn

M
. For a given interval In, the numerical

solutions on the grid points {tn,m}m=M
m=0 may be obtained with a low-order scheme

like FE, BE, or a low-order IMEX scheme. Let η[0] = (η
[0]
0 , · · · , η

[0]
M ) denote the

obtained numerical solutions. This step is call the prediction step.

The correction loop in the InDC scheme starts with considering the error function

e(k−1)(t) = u(t)− η(k−1)(t) (1.1.13)

where ηk−1(t) is the polynomial function that interpolates η[k−1], and k denotes the

k-th correction step. The error function satisfies the error equation (see, e.g., [28])

(e(k−1)(t) +

ˆ t

0

ε(k−1)(τ)dτ)′(t) = f(t, η(k−1)(t) + e(k−1)(t))− f(t, η(k−1)(t)), (1.1.14)

where ε(k−1)(t) = (η(k−1))′(t) − f(t, η(k−1)(t)) is the residual function. The error

equation may be numerically solved by a low-order scheme, with initial value 0,

over the grid points {tn,m}m=M
m=0 . Let the numerical solutions to {e(k−1)(tn,m)}Mm=0 be

6



1.1. BACKGROUND

{δm}Mm=0. For example, applying FE scheme to solve (1.1.14) gives

δ
[k]
m+1 = δ[k]

m + h(f(τm, η
[k−1]
m + δ[k]

m )− f(τm, η
[k−1]
m ))−

ˆ τm+1

τm

ε(k−1)(t) dt, m = 0, . . . ,M − 1,

(1.1.15)

with ˆ tn,m+1

tn,m

ε(k−1)(t) dt = η
[k−1]
m+1 − η[k−1]

m −
ˆ tn,m+1

tn,m

f(t, η(k−1)(t))dt

where
´ tn,m+1

tn,m
f(t, η(k−1)(t))dt can be approximated by replacing the integrand by the

polynomial function that interpolates {f(tn,m, η
(k−1)
m )}Mm=0.

After {δm}Mm=0 are obtained, η[k−1] is updated to be η[k] = η[k−1] + δ[k] with

δ[k] = (δ0, δ1, · · · , δM), and this is called a correction loop, after which one may

continue to apply the same procedure discussed above for several more times to

improve the accuracy of (η
[k]
0 , · · · , η[k]

M ) as approximations to (u(tn,0), · · · , u(tn,M)).

Finally after J correction loops, η
[J ]
M is taken to approximate u(tn), i.e., un = η

[J ]
M .

With η
[J ]
M as an initial value, one proceeds to apply the InDC scheme for the next

interval In+1. More details about the InDC scheme can be found in [27].

Another ODE solver quite similar to InDC is spectral deferred correction (SDC)

method, which is proposed in [29]. It is called SDC method because it uses spectral

points (e.g., Gauss points) rather than uniformly distributed points to divide each

time interval In into subintervals. Apart from that, SDC scheme and InDC scheme

are exactly the same.

7



1.2. MAIN TOPICS OF THE DISSERTATION

1.2 Main Topics of the Dissertation

This dissertation mainly addresses two topics related to time-dependent problems:

• In Chapter 2, a high-order maximum principle preserving (MPP) finite volume

method for convection dominated problems is proposed and tested on several

problems in fluid dynamics. Recall that at theoretical level, the convection-

diffusion problem

ut + f(u)x = a(u)xx, x ∈ [a, b], t ∈ [0, T ], u(0) = u0(x), (1.2.16)

with a′(u) > 0 satisfies the maximum principle:

if uM = max
x

u0(x), um = min
x
u0(x), then u(x, t) ∈ [um, uM ]. (1.2.17)

So it is desirable that numerical solutions should preserve the maximum prin-

ciple in the discrete form:

if uM = max
x

u0(x), um = min
x
u0(x), then ūnj ∈ [um, uM ] for any n, j,

(1.2.18)

where n is the index for temporal discretization, i.e., n corresponds to time tn

and j is for spatial discretization, i.e., j corresponds to interval In. Unfortu-

nately, the high-order FV RK scheme doesn’t have the MPP property. In the

last few years, a lot of work ([12], [14], [15], [16], etc.) has been done to modify

the existing high-order numerical schemes to maintain maximum principle. For

8



1.2. MAIN TOPICS OF THE DISSERTATION

example, in [16] an MPP finite-difference scheme was presented for hyperbolic

conservation law problems. In this dissertation, we incorporate a similar strat-

egy to modify the FV RK scheme so that it satisfies the maximum principle.

The basic idea is to replace the numerical flux (1.1.8) with a new flux

H̃rk
j+ 1

2
= θj+ 1

2
Ĥrk
j+ 1

2
+ (1− θj+ 1

2
)ĥj+ 1

2
, (1.2.19)

where ĥj+ 1
2

is a low-order flux (e.g., Lax-Friedrichs flux) satisfying maximum

principle and θj+ 1
2

is the local weight parameter, so that the modified scheme

ūn+1
j = ūnj − λ(H̃rk

j+ 1
2
− H̃rk

j− 1
2
) (1.2.20)

possesses MPP property. The strategy for determining the local parameter

θj+ 1
2

and other related issues will be addressed in Chapter 2.

• In Chapter 3, an integral deferred correction method with adaptive non-polynomial

basis for stiff ODE problems is proposed and tested. Recall that in the InDC

scheme discussed in the previous section, there is the term

ˆ tn,m+1

tn,m

ε(k−1)(t) dt = η
[k−1]
m+1 − η[k−1]

m −
ˆ tn,m+1

tn,m

f(t, η(k−1)(t))dt (1.2.21)

in which the integral
´ tn,m+1

tn,m
f(t, η(k−1)(t))dt needs to be numerically com-

puted by replacing the integrand by the polynomial function that interpo-

lates {f(tn,m, η
(k−1)
m )}Mm=0. Traditionally, polynomial basis (e.g., Lagrangian

9



1.2. MAIN TOPICS OF THE DISSERTATION

polynomials) is used to do the interpolation. In this dissertation, we inves-

tigated the possibility of using several non-polynomial basis to interpolate

{f(tn,m, η
(k−1)
m )}Mm=0. Specifically, the following bases

1.
{
y : y|In ∈ span{eλτ , τ, τ 2, · · · , τM},∀n

}
,

2.
{
y : y|In ∈ span{eλτ (1, τ, τ 2, · · · , τM)},∀n

}
,

3.
{
y : y|In ∈ span{1, τ, τ 2, · · · , τM , eλτ},∀n

}
with τ = t−(tn−1+tn)/2

Hn/2
are proposed as alternatives for polynomial basis. The

incorporation of the function eλτ is motivated by the fact that many stiff ODE

problems have structures in the form of ect with |c| very large. The scheme

is designed so that eλτ can contribute to effectively capture such structures.

Furthermore, it is proposed that the parameter λ should be adaptively chosen

according to the local structure of the solution. The idea of adopting local

parameter λn for non-polynomial basis is earlier presented in designing non-

polynomial based discontinuous Garlerkin scheme in [39], in which a simple

strategy for computing the local parameter λn was discussed and the good

performance of the strategy was verified by numerical tests. We therefore

adopt the same strategy in our work, which will be presented in Chapter 3 of

this dissertation.

In Chapter 4, the conclusions from this dissertation are presented.

10



CHAPTER 2

High-Order MPP Finite Volume Method

2.1 Introduction

Recently, there is a growing interest in designing high-order maximum principle

preserving (MPP) schemes for solving scalar convection-dominated problems [17, 16,

15, 9, 10, 12] and positivity preserving schemes for compressible Euler and Navier-

Stokes equations [8, 13, 11, 18]. The motivation of this family of work arises from the

observation that many existing high-order conservative methods break down when

they are applied to simulate fluid dynamics in extreme cases such as near-vacuum

state. To illustrate the purpose of the family of the MPP methods, we shall consider

11



2.1. INTRODUCTION

the solution to the following problem

ut + f(u)x = a(u)xx, u(x, 0) = u0(x), (2.1.1)

with a′(u) > 0. The solution to (2.1.1) satisfies the maximum principle, i.e.,

if uM = max
x

u0(x), um = min
x
u0(x), then u(x, t) ∈ [um, uM ]. (2.1.2)

Within the high-order finite volume (FV) Runge-Kutta (RK) weighted essentially

non-oscillatory (WENO) framework, we would like to maintain a discrete form of

(2.1.2):

if uM = max
x

u0(x), um = min
x
u0(x), then ūnj ∈ [um, uM ] for any n, j, (2.1.3)

where ūnj approximates the cell average of the exact solution with high-order accuracy

on a given jth spatial interval at time tn.

Efforts for designing MPP high-order schemes to solve (2.1.1) can be found in

recent work by Zhang et al. [16, 19], as a continuous research effort to design high-

order FV and discontinuous Galerkin (DG) MPP schemes based on a polynomial

rescaling limiter on the reconstructed (for FV) or representing (for DG) polynomials

[17]. This approach requires the updated cell average to be written as a convex com-

bination of some local quantities within the range [um, uM ]. For convection-diffusion

problems which do not have a finite speed of propagation, it is difficult to generalize

such approach to design MPP schemes that are higher than third-order accurate.

12



2.1. INTRODUCTION

In [9], an alternative approach via a parametrized flux limiter, developed earlier by

Xu et al. [15, 12], is proposed for the finite-difference (FD) RK WENO method in

solving convection diffusion equations. The flux limiter is applied to convection and

diffusion fluxes together to achieve (2.1.3) for the approximated point values in the

finite-difference framework. In this chapter, we try to apply the MPP flux limiters to

high-order FV RK WENO methods to maintain (2.1.3) with efficiency. Furthermore,

we provide some theoretical analysis on the preservation of high-order accuracy for

the proposed flux limiter in FV framework. Finally, we remark that our current

focus is on convection-dominated diffusion problems for which explicit temporal in-

tegration proves to be efficient. For the regime of medium to large diffusion, where

implicit temporal integration is needed for simulation efficiency, we refer to earlier

work in [5, 3, 2, 4] and references therein for the construction of the MPP schemes

with finite element framework. The generalization of the current flux limiter is not

yet available and is subject to future investigation.

The MPP methods in [17, 15, 12] are designed based on the observation that

first-order monotone schemes in general satisfy MPP property (2.1.3) with prop-

er Courant-Friedrichs-Lewy (CFL) numbers, while regular high-order conservative

schemes often fail to maintain (2.1.3). The MPP flux limiting approach is to seek

a linear combination of the first-order monotone flux with the high-order flux, in

the hope of that such combination can achieve both MPP property and high-order

accuracy under certain conditions, e.g., some mild time-step constraint. This line of

approach is proven to be successful in [12, 9] for the FD RK WENO schemes and

13



2.1. INTRODUCTION

it is later generalized to the high-order semi-Lagrangian WENO method for solv-

ing the Vlasov-Poisson system [14]. A positivity preserving flux limiting approach

is developed in [13] to ensure positivity of the computed density and pressure for

compressible Euler simulations. Technically, the generalization of such MPP flux

limiters from FD WENO [9] to FV WENO method is rather straightforward. Tak-

ing into the consideration that FV method offers a more natural framework for mass

conservation and flexibility in handling irregular computational domain, we propose

to apply the MPP flux limiters to the high-order FV RK WENO method to solve

(2.1.1). The proposed flux limiting procedure is rather easy to implement even with

the complexity of the flux forms in multi-dimensional FV computation. Moreover, a

general theoretical proof on preserving both MPP and high-order accuracy without

additional time-step constraint can be done for FV methods when solving a linear

advection equation; such result does not hold for high-order FD schemes [12].

In our work, for the first time, we establish a general proof that, there is no further

time-step restriction, besides the CFL condition under the linear stability require-

ment, to preserve high-order accuracy when the high-order flux is limited toward an

upwind first-order flux for solving linear advection problem, when the parametrized

flux limiters are applied to FV RK WENO method. In other words, both the MPP

property and high-order accuracy of the original scheme can be maintained with-

out additional time-step constraint. For a general nonlinear convection problem,

we prove that the flux limiter preserves up to third-order accuracy and the discrete

maximum principle with no further CFL restriction. This proof relies on tedious

14



2.2. MPP FV METHOD FOR ONE-DIMENSIONAL PROBLEMS

Taylor expansions, and it is difficult to generalize it to results with higher order ac-

curacy (fourth order or higher). On the other hand, such analysis can be extended

to a convection-dominated diffusion problem as done in [9]. Furthermore, numerical

results indicate that mild CFL restriction is needed for the MPP flux limiting finite

volume scheme without sacrificing accuracy.

This chapter is organized as follows. In Section 2, we provide the numerical algo-

rithm of the high-order FV RK WENO scheme with MPP flux limiters for the one-

dimensional problem and in Section 3 the scheme is generalized to two-dimensional

case. In Section 4, theoretical analysis is given for a linear advection problem and

general nonlinear problems. Numerical experiments are demonstrated in Section 5.

2.2 MPP FV Method for One-Dimensional Prob-

lems

In this section, we propose a high-order FV scheme for the one-dimensional convection-

diffusion equation. In the proposed scheme, the high-order WENO reconstruction

of flux is used for the convection term, while a high-order compact reconstruction of

flux is proposed for the diffusion term.

For simplicity, we first consider a one-dimensional (1D) case. The following uni-

form spatial discretization is used for a 1D bounded domain [a, b],

a = x 1
2
< x 3

2
< · · · < xN− 1

2
< xN+ 1

2
= b, ∆x =

b− a
N

. (2.2.1)

15



2.2. MPP FV METHOD FOR ONE-DIMENSIONAL PROBLEMS

with the computational cell and cell center defined as

Ij = [xj− 1
2
, xj+ 1

2
], xj =

1

2
(xj− 1

2
+ xj+ 1

2
), j = 1, 2, · · · , N. (2.2.2)

Let ūj denote approximation to the cell average of u over cell Ij. The FV scheme

is designed by integrating equation (2.1.1) over each computational cell Ij and then

dividing it by ∆x,

dūj
dt

= − 1

∆x
(ĤC

j+ 1
2
− ĤC

j− 1
2
) +

1

∆x
(ĤD

j+ 1
2
− ĤD

j− 1
2
), (2.2.3)

where ĤC
j+ 1

2

and ĤD
j+ 1

2

are the numerical fluxes for convection and diffusion terms

respectively.

For the convection term, one can adopt any monotone flux. For example, in our

simulations, we use the Lax-Friedrichs flux

ĤC
j+ 1

2
(u−

j+ 1
2

, u+
j+ 1

2

) =
1

2

(
f(u−

j+ 1
2

)+αu−
j+ 1

2

)
+

1

2

(
f(u+

j+ 1
2

)−αu+
j+ 1

2

)
, α = maxum≤u≤uM |f ′(u)|.

(2.2.4)

Here u−
j+ 1

2

.
= P (xj+ 1

2
), where P (x) is obtained by reconstructing a (2k + 1)th order

polynomial whose averages agree with those in a left-biased stencil {ūj−k, · · · , ūj+k},

1

∆x

ˆ
Il

P (x)dx = ūl, l = j − k, · · · , j + k.

The reconstruction procedure for u+
j+ 1

2

can be done similarly from a right-biased sten-

cil. To suppress oscillation around discontinuities and maintain high-order accuracy
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2.2. MPP FV METHOD FOR ONE-DIMENSIONAL PROBLEMS

around smooth regions of the solution, the WENO mechanism can be incorporated

in the reconstruction. Details of such procedure can be found in [1].

For the diffusion term, we propose the following compact reconstruction strategy

for approximating fluxes at cell boundaries a(u)x|x
j+1

2

. Without loss of generality,

we consider a fourth order reconstruction, while similar strategies can be extended

to schemes with arbitrary high-order. Below we let uj denote approximation to the

point values of u at xj.

1. Reconstruct {ul}j+2
l=j−1 from the cell averages {ūl}j+2

l=j−1 by constructing a cubic

polynomial P (x), such that

1

∆x

ˆ
Il

P (x)dx = ūl, l = j − 1, · · · , j + 2.

Then ul = P (xl), l = j − 1, · · · j + 2. We use R1 to denote such reconstruction

procedure,

(uj−1, uj, uj+1, uj+2) = R1(ūj−1, ūj, ūj+1, ūj+2).

As a reference, the reconstruction formulas for R1 are provided below,

uj−1 =
11

12
ūj−1 +

5

24
ūj −

1

6
ūj+1 +

1

24
ūj+2, uj = − 1

24
ūj−1 +

13

12
ūj −

1

24
ūj+1,

uj+1 = − 1

24
ūj +

13

12
ūj+1 −

1

24
ūj+2, uj+2 =

1

24
ūj−1 −

1

6
ūj +

5

24
ūj+1 +

11

12
ūj+2.

2. Construct an interplant Q(x) such that Q(xl) = a(ul), l = j − 1, · · · , j + 2.

17



2.2. MPP FV METHOD FOR ONE-DIMENSIONAL PROBLEMS

Then let ĤD
j+ 1

2

= Q′(x)|x
j+1

2

. Such procedure is denoted as

ĤD
j+ 1

2
= R2(a(uj−1), a(uj), a(uj+1), a(uj+2)).

As a reference, we provide the formula for R2 below

ĤD
j+ 1

2
=

1

24
a(uj−1)− 9

8
a(uj) +

9

8
a(uj+1)− 1

24
a(uj+2).

Remark 2.2.1. The reconstruction processes for R1 and R2 operators are designed

such that ĤD
j+ 1

2

is reconstructed from a compact stencil with a given order of accuracy.

Because of such design, for the linear diffusion term a(u) = u, R1 and R2 can be

combined and the strategy above turns out to be a classical fourth order central

difference from a five-cell stencil with

ĤD
j+ 1

2
=

1

∆x
(
1

2
ūj−1 −

15

12
ūj +

15

12
ūj+1 −

1

12
ūj+2).

If each of ul (l = j− 1, · · · j+ 2) in Step 1 is reconstructed from symmetrical stencils

(having the same number of cells from left and from right), the reconstruction of

ĤD
j+ 1

2

will depend on a much wider stencil {uj−3, · · ·uj+4}. Such non-compact way

of reconstructing numerical fluxes for diffusion terms will introduce some numerical

instabilities when approximating nonlinear diffusion terms in our numerical tests,

whereas the proposed compact strategy does not encounter such difficulty.

We use the following third-order total variation diminishing (TVD) RK method
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[6] for the time discretization of (2.2.3), which reads

u(1) = ūn + ∆tL(ūn),

u(2) = ūn + ∆t(
1

4
L(ūn) +

1

4
L(u(1))), (2.2.5)

ūn+1 = ūn + ∆t(
1

6
L(ūn) +

1

6
L(u(1)) +

2

3
L(u(2))),

where L(ūn) denotes the right hand side of equation (2.2.3). Here ūn and u(s), s = 1, 2

denote the numerical solution of u at time tn and corresponding RK stages. The fully

discretized scheme (2.2.5) can be rewritten as

ūn+1
j = ūnj − λ(Ĥrk

j+ 1
2
− Ĥrk

j− 1
2
) (2.2.6)

with λ = ∆t
∆x

and

Ĥrk
j+ 1

2
=

1

6
(ĤC,n

j+ 1
2

− ĤD,n

j+ 1
2

) +
1

6
(Ĥ

C,(1)

j+ 1
2

− ĤD,(1)

j+ 1
2

) +
2

3
(Ĥ

C,(2)

j+ 1
2

− ĤD,(2)

j+ 1
2

).

Here Ĥ
C,(s)

j+ 1
2

, Ĥ
D,(s)

j+ 1
2

(s = 1, 2) are the numerical fluxes at the intermediate stages in

the RK scheme (2.2.5).

It has been known that the numerical solutions from schemes with a first-order

monotone flux for the convection term together with a first-order flux for the diffusion

term satisfy the maximum principle, if the time-step is small enough [19]. However, if

the numerical fluxes are of high-order such as the one from the reconstruction process

proposed above, the MPP property for the numerical solutions does not necessarily

hold under the same time-step constraint. Next we apply the parametrized flux
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limiters proposed in [12] to the scheme (2.2.6) to preserve the discrete maximum

principle (2.1.3).

We modify the numerical flux Ĥrk
j+ 1

2

in equation (2.2.6) with

H̃rk
j+ 1

2
= θj+ 1

2
Ĥrk
j+ 1

2
+ (1− θj+ 1

2
)ĥj+ 1

2
, (2.2.7)

by carefully seeking local parameters θj+ 1
2
, such that the numerical solutions enjoy

the MPP property yet θj+ 1
2

is as close to 1 as possible. In other words, H̃rk
j+ 1

2

is as

close to the original high-order flux Ĥrk
j+ 1

2

as possible. Here ĥj+ 1
2

denotes the first-

order flux for convection and diffusion terms, using which in the scheme (2.2.3) with

a forward Euler time discretization guarantees the maximum principle of numerical

solutions. For example, we can take

ĥj+ 1
2

= ĥC
j+ 1

2
− ĥD

j+ 1
2

=
1

2

(
f(ūj) + αūj

)
+

1

2

(
f(ūj+1)− αūj+1

)
− a(ūj+1)− a(ūj)

∆x

with α = maxum≤u≤uM |f ′(u)|. The goal of the procedures outlined below is to ad-

just θj+ 1
2
, so that with the modified flux H̃rk

j+ 1
2

, the numerical solutions satisfy the

maximum principle,

um ≤ ūnj − λ(H̃rk
j+ 1

2
− H̃rk

j− 1
2
) ≤ uM , ∀j. (2.2.8)

Detailed procedures in decoupling the above inequalities have been intensively dis-

cussed in our previous work, e.g., [12]. Below we only briefly describe the computa-

tional algorithm for the proposed limiter.
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Let Fj+ 1
2

.
= Ĥrk

j+ 1
2

− ĥj+ 1
2

and

ΓMj
.
= uM − (ūnj − λ(ĥj+ 1

2
− ĥj− 1

2
)), Γmj

.
= um − (ūnj − λ(ĥj+ 1

2
− ĥj− 1

2
)).

The MPP property is satisfied with the modified flux (2.2.7) when the following

inequalities are hold,

λθj− 1
2
Fj− 1

2
− λθj+ 1

2
Fj+ 1

2
− ΓMj ≤ 0, (2.2.9)

λθj− 1
2
Fj− 1

2
− λθj+ 1

2
Fj+ 1

2
− Γmj ≥ 0. (2.2.10)

We first consider the inequality (2.2.9). We seek a local pair of numbers (ΛM
− 1

2
,Ij
,ΛM

+ 1
2
,Ij

)

such that (1) ΛM
± 1

2
,Ij
∈ [0, 1] and is as close to 1 as possible, (2) for any θj− 1

2
∈

[0,ΛM
− 1

2
,Ij

], θj+ 1
2
∈ [0,ΛM

+ 1
2
,Ij

], the inequality (2.2.9) holds. The inequality (2.2.9) can

be decoupled based on the following four different cases:

(a) If Fj− 1
2
≤ 0 and Fj+ 1

2
≥ 0, then (ΛM

− 1
2
,Ij
,ΛM

+ 1
2
,Ij

) = (1, 1).

(b) If Fj− 1
2
≤ 0 and Fj+ 1

2
< 0, then (ΛM

− 1
2
,Ij
,ΛM

+ 1
2
,Ij

) = (1,min(1,
ΓM
j

−λF
j+1

2

)).

(c) If Fj− 1
2
> 0 and Fj+ 1

2
≥ 0, then (ΛM

− 1
2
,Ij
,ΛM

+ 1
2
,Ij

) = (min(1,
ΓM
j

λF
j− 1

2

), 1).

(d) If Fj− 1
2
> 0 and Fj+ 1

2
< 0, then

(ΛM
− 1

2
,Ij
,ΛM

+ 1
2
,Ij

) = (min(1,
ΓMj

λFj− 1
2
− λFj+ 1

2

),min(1,
ΓMj

λFj− 1
2
− λFj+ 1

2

)).
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Similarly, we can find a local pair of numbers (Λm
− 1

2
,Ij
,Λm

+ 1
2
,Ij

) such that for any

θj− 1
2
∈ [0,Λm

− 1
2
,Ij

], θj+ 1
2
∈ [0,Λm

+ 1
2
,Ij

]

(2.2.10) holds. There are also four different cases:

(a) If Fj− 1
2
≥ 0 and Fj+ 1

2
< 0, then (Λm

− 1
2
,Ij
,Λm

+ 1
2
,Ij

) = (1, 1).

(b) If Fj− 1
2
≥ 0 and Fj+ 1

2
> 0, then (Λm

− 1
2
,Ij
,Λm

+ 1
2
,Ij

) = (1,min(1,
Γm
j

−λF
j+1

2

)).

(c) If Fj− 1
2
< 0 and Fj+ 1

2
< 0, then (Λm

− 1
2
,Ij
,Λm

+ 1
2
,Ij

) = (min(1,
Γm
j

λF
j− 1

2

), 1).

(d) If Fj− 1
2
< 0 and Fj+ 1

2
≥ 0, then

(Λm
− 1

2
,Ij
,Λm

+ 1
2
,Ij

) = (min(1,
Γmj

λFj− 1
2
− λFj+ 1

2

),min(1,
Γmj

λFj− 1
2
− λFj+ 1

2

)).

Finally, the local limiter parameter θj+ 1
2

at the cell boundary xj+ 1
2

is defined as

θj+ 1
2

= min(ΛM
+ 1

2
,Ij
,Λm

+ 1
2
,Ij
,ΛM
− 1

2
,Ij+1

,Λm
− 1

2
,Ij+1

), (2.2.11)

so that the numerical solutions ūn+1
j , ∀j, n satisfy the maximum principle.

Remark 2.2.2. The proposed generalization of the parametrized flux limiter to

convection-diffusion problems is rather straightforward. In comparison, it is much

more difficult to generalize the polynomial rescaling approach in [17] to schemes with

higher than third-order accuracy for convection diffusion problems. The approach

there relies on rewriting the updated cell average as a convex combination of some
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local quantities within the range [um, uM ]; this is more difficult to achieve with the

diffusion terms [16, 19]. Moreover, the proposed flux limiter introduces very mild

time-step constraint to preserve both MPP and high-order accuracy of the original

FV RK scheme, see Section 2.4 for more discussions.

2.3 MPP FV Method for Two-Dimensional Prob-

lems

The extension of the FV RK scheme from 1D case to two-dimensional (2D) convection-

diffusion problems is straightforward. For example, we consider a 2D problem on a

rectangular domain [a, b]× [c, d],

ut + f(u)x + g(u)y = a(u)xx + b(u)yy. (2.3.12)

Without loss of generality, we consider a set of uniform mesh

a = x 1
2
< x 3

2
< · · · < xN− 1

2
< xNx+ 1

2
= b, ∆x =

b− a
Nx

,

c = y 1
2
< y 3

2
< · · · < yN− 1

2
< yNy+ 1

2
= d, ∆y =

d− c
Ny

,

with Ii,j = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
]. A semi-discrete FV discretization of (2.3.12)

gives

d

dt
ūi,j +

1

∆x
(f̂i+ 1

2
,j − f̂i− 1

2
,j) +

1

∆y
(ĝi,j+ 1

2
− ĝi,j− 1

2
)
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=
1

∆x
((̂ax)i+ 1

2
,j − (̂ax)i− 1

2
,j) +

1

∆y
((̂by)i,j+ 1

2
− (̂by)i,j− 1

2
), (2.3.13)

where ūi,j = 1
∆x∆y

´ ´
Ii,j
udxdy and f̂i+ 1

2
,j = 1

∆y

´ y
j+1

2
y
j− 1

2

f(xi+ 1
2
, y)dy is the average of

the flux over the right boundary of cell Ii,j. ĝi,j+ 1
2
, (̂ax)i+ 1

2
,j, (̂by)i,j+ 1

2
can be defined

similarly. The flux f̂i+ 1
2
,j is evaluated by applying the Gaussian quadrature rule for

integration,

f̂i+ 1
2
,j =

1

2
Σ
ig
ωigf(ui+ 1

2
,ig

). (2.3.14)

Here Σ
ig

represents the summation over the Gaussian quadratures with ωig being

quadrature weights and ui+ 1
2
,ig

is the approximated value to u(xi+ 1
2
, yig) with yig

being the Gaussian quadrature points over [yj− 1
2
, yj+ 1

2
]. ui+ 1

2
,ig

can be reconstructed

from {ūi,j} in the following two steps. Firstly, we reconstruct 1
∆x

´ x
i+1

2
x
i− 1

2

u(x, yig)dx

from {ūi,j}. To do this, we construct a polynomial Q(y) such that

1

∆y

ˆ y
j+1

2

y
j− 1

2

Q(y)dy =
1

∆x∆y

ˆ
Ii,j

u(x, y)dxdy = ūi,j, (2.3.15)

with j belongs to a reconstruction stencil in the y-direction as in the one-dimensional

case. Then Q(yig) is a high-order approximation to 1
∆x

´ x
i+1

2
x
i− 1

2

u(x, yig)dx. We let

Ry to denote such reconstruction process in y-direction. Secondly, we construct a

polynomial P (x) such that

1

∆x

ˆ x
i+1

2

x
i− 1

2

P (x)dx =
1

∆x

ˆ x
i+1

2

x
i− 1

2

u(x, yig)dx, (2.3.16)
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with i belongs to a reconstruction stencil in the x-direction as in the one-dimensional

case. Then ui+ 1
2
,ig

= P (xi+ 1
2
). Such 1D reconstruction process is denoted asRx. The

2D reconstructing procedure can be summarized as the following flowchart

{ūi,j}
Ry−→ { 1

∆x

ˆ x
i+1

2

x
i− 1

2

u(x, yig)dx} Rx−→ {ui+ 1
2
,ig
}. (2.3.17)

Detailed information on the 2D reconstruction procedure is also available in [1].

The basic idea for deriving the MPP flux limiters is the same as for one-dimensional

problem, i.e., necessary conditions for the numerical solutions to satisfy maximum

principle will be derived, based on similar inequalities as (2.2.9) and (2.2.10).

After being discretized temporally with TVD Runge-Kutta method in the way

similar to the case for the one-dimensional problem, the scheme (2.3.13) becomes

un+1
i,j = uni,j − λx(Ĥrk

i+ 1
2
,j
− Ĥrk

i− 1
2
,j

)− λy(Ĝrk
i,j+ 1

2
− Ĝrk

i,j− 1
2
), (2.3.18)

where λx = 4t
4x and λy = 4t

4y , and

Ĥrk
i+ 1

2
,j

=
1

6
(f̂n
i+ 1

2
,j
− (̂ax)

n

i+ 1
2
,j) +

1

6
(f̂ 1
i+ 1

2
,j
− (̂ax)

1

i+ 1
2
,j) +

2

3
(f̂ 2
i+ 1

2
,j
− (̂ax)

2

i+ 1
2
,j),

(2.3.19)

Ĝrk
i,j+ 1

2
=

1

6
(ĝn
i+ 1

2
,j
− (̂bx)

n

i+ 1
2
,j) +

1

6
(ĝ1
i+ 1

2
,j
− (̂bx)

1

i+ 1
2
,j) +

2

3
(ĝ2
i+ 1

2
,j
− (̂bx)

2

i+ 1
2
,j).

(2.3.20)

Ĥrk
i+ 1

2
,j

and Ĝrk
i,j+ 1

2

can be understood as the average integral of the numerical fluxes

in the temporal direction.

25



2.3. MPP FV METHOD FOR TWO-DIMENSIONAL PROBLEMS

Similarly as for the one-dimensional case, we modify the fluxes as follows,

H̃rk
i+ 1

2
,j

= θi+ 1
2
,jĤ

rk
i+ 1

2
,j

+ (1− θi+ 1
2
,j)ĥi+ 1

2
,j, (2.3.21)

G̃rk
i,j+ 1

2
= θi,j+ 1

2
Ĝrk
i,j+ 1

2
+ (1− θi,j+ 1

2
)ĝi,j+ 1

2
, (2.3.22)

where ĥi+ 1
2
,j and ĝi,j+ 1

2
are low-order monotone flux that satisfy maximum principle,

so that

um ≤ uni,j − λx(H̃rk
i+ 1

2
,j
− H̃rk

i− 1
2
,j

)− λy(G̃rk
i,j+ 1

2
− G̃rk

i,j− 1
2
) ≤ uM , (2.3.23)

with um = min
x,y

u0(x, y) and uM = max
x,y

u0(x, y).

Introducing the notations

Fi− 1
2
,j = λx(Ĥ

rk
i− 1

2
,j
− ĥi− 1

2
,j),

Fi+ 1
2
,j = −λx(Ĥrk

i+ 1
2
,j
− ĥi+ 1

2
,j),

Fi,j− 1
2

= λy(Ĝ
rk
i,j− 1

2
− ĝi,j− 1

2
),

Fi,j+ 1
2

= −λy(Ĝrk
i,j+ 1

2
− ĝi,j+ 1

2
),

and plugging the modified fluxes (2.3.21) and (2.3.22) into (2.3.23), we have

θi+ 1
2
,jFi+ 1

2
,j + θi− 1

2
,jFi− 1

2
,j + θi,j+ 1

2
Fi,j+ 1

2
+ θi,j− 1

2
Fi,j− 1

2
≤ ΓMi,j, (2.3.24)

θi+ 1
2
,jFi+ 1

2
,j + θi− 1

2
,jFi− 1

2
,j + θi,j+ 1

2
Fi,j+ 1

2
+ θi,j− 1

2
Fi,j− 1

2
≥ Γmi,j, (2.3.25)
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where

ΓMi,j = uM − (ui,j − λx(ĥi+ 1
2
,j − ĥi− 1

2
,j)− λy(ĝi,j+ 1

2
− ĝi,j− 1

2
)) ≥ 0, (2.3.26)

Γmi,j = um − (ui,j − λx(ĥi+ 1
2
,j − ĥi− 1

2
,j)− λy(ĝi,j+ 1

2
− ĝi,j− 1

2
)) ≤ 0. (2.3.27)

Similarly as in the one-dimensional case, we need to find numbers ΛL,i,j,ΛR,i,j,ΛD,i,j,ΛU,i,j

such that if

(θi− 1
2
,j, θi+ 1

2
,j, θi,j− 1

2
, θi,j+ 1

2
) ∈ [0,ΛL,i,j]× [0,ΛR,i,j]× [0,ΛD,i,j]× [0,ΛU,i,j], (2.3.28)

then (2.3.24) and (2.3.25) hold. Both the cases for maximum-value and minimum

value should be considered, so the numbers ΛL,i,j,ΛR,i,j,ΛD,i,j,ΛU,i,j are



ΛL,i,j = min(ΛM
L,i,j,Λ

m
L,i,j),

ΛR,i,j = min(ΛM
R,i,j,Λ

m
R,i,j),

ΛD,i,j = min(ΛM
D,i,j,Λ

m
D,i,j),

ΛU,i,j = min(ΛM
U,i,j,Λ

m
U,i,j).

(2.3.29)

Finally we define the local limiter parameters as


θi+ 1

2
,j = min(ΛR,i,j,ΛL,i+1,j),

θi,j+ 1
2

= min(ΛU,i,j,ΛD,i,j+1).

(2.3.30)
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With these limiters, the numerical solution at each time-step will satisfy the maxi-

mum principle.

2.4 Theoretical Properties

In this section, we provide accuracy analysis for the MPP flux limiter applied to the

high-order FV RK scheme solving pure convection problems. Specifically, we will

prove that the proposed parametrized flux limiter as in equation (2.2.7) introduces

a high-order modification in space and time to the temporal integrated flux of the

original scheme, assuming that the solution is smooth enough. A general proof on

preservation of arbitrary high-order accuracy will be provided for linear problems.

Then by performing Taylor expansions around extrema, we prove that the modifi-

cation from the proposed flux limiter is of at least third-order, for FV RK schemes

that are third-order or higher in solving general nonlinear problems.

The entropy solution u(x, t) to a scalar convection problem

ut + f(u)x = 0, u(x, 0) = u0(x). (2.4.1)

satisfies

d

dt

ˆ x
j+1

2

x
j− 1

2

u(x, t)dx = f(u(xj+ 1
2
, t))− f(u(xj− 1

2
, t)). (2.4.2)
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Integrating (2.4.2) over the time period [tn, tn+1], we have

ūj(t
n+1) = ūj(t

n)− λ(f̌j+ 1
2
− f̌j− 1

2
), (2.4.3)

where λ = ∆t/∆x and

ūj(t) =
1

∆x

ˆ xj+1/2

xj−1/2

u(x, t)dx, f̌j−1/2 =
1

∆t

ˆ tn+1

tn
f(u(xj−1/2, t))dt. (2.4.4)

The entropy solution satisfies the maximum principle in the form of

um ≤ ūj(t
n)− λ(f̌j+ 1

2
− f̌j− 1

2
) ≤ uM . (2.4.5)

For schemes with (2k + 1)th order finite volume spatial discretization (2.2.6) and

pth order RK time discretization, we assume

|f̌j+ 1
2
− Ĥrk

j+ 1
2
| = O(∆x2k+1 + ∆tp), ∀j. (2.4.6)

Our analysis is in the sense of local truncation analysis assuming the difference

between ūj(t
n) and ūnj is of high-order (O(∆x2k+1 + ∆tp)). Under a corresponding

(2k+ 1)th order reconstruction, the difference between the point values u(xj, t
n) and

unj is also of high-order. In the following, we use them interchangeably when such

high-order difference allows.

For the MPP flux limiter, we only consider the maximum-value part as in equation

(2.2.9). The proof of equation (2.2.10) for the minimum value would be similar. We
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would like to prove that the difference between Ĥrk
j+ 1

2

and H̃rk
j+ 1

2

in (2.2.7) is of high-

order in both space and time, that is

|Ĥrk
j+ 1

2
− H̃rk

j+ 1
2
| = O(∆x2k+1 + ∆tp), ∀j. (2.4.7)

There are four cases of the maximum-value part (2.2.9) outlined in the previous

section. The estimate (2.4.7) can be easily checked for case (a) and (d) under the

assumption (2.4.6) and the fact (2.4.5), see arguments in [12]. Below we will only

discuss case (b), as the argument for case (c) would be similar.

First we give the following lemma:

Lemma 2.4.1. Consider applying the MPP flux limiter (2.2.7) for the maximum-

value part (2.2.9) with case (b), to prove (2.4.7), it suffices to have

|uM − (ūj − λ(f̌j+ 1
2
− ĥj− 1

2
))| = O(∆x2k+1 + ∆tp), (2.4.8)

if uM − (ūj − λ(Ĥrk
j+ 1

2

− ĥj− 1
2
)) < 0.

Proof. For case (b), we are considering the case when Λ+ 1
2
,Ij

=
ΓM
j

−λF
j+1

2

< 1. It is

equivalent to uM − (ūj − λ(Ĥrk
j+ 1

2

− ĥj− 1
2
)) < 0, and

H̃rk
j+ 1

2
− Ĥrk

j+ 1
2

=
ΓMj + λFj+ 1

2

−λ
=
uM − (ūj − λ(Ĥrk

j+ 1
2

− ĥj− 1
2
))

−λ
,

which indicates that it suffices to have (2.4.8) to obtain (2.4.7) with the assumption

(2.4.6).
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Theorem 2.4.2. Assuming f ′(u) > 0 and λmaxu |f ′(u)| ≤ 1, we have

ūj(t
n)− λ(f̌j+ 1

2
− f(ūj−1(tn))) ≤ uM (2.4.9)

if u(x, t) is the entropy solution to (2.4.1) subject to initial data u0(x).

Proof. Consider the problem (2.4.1) with a different initial condition at time level

tn,

ũ(x, tn) =


u(x, tn) x ≥ xj− 1

2
,

ūj−1(tn) x < xj− 1
2
,

(2.4.10)

here u(x, tn) is the exact solution of (2.4.1) at time level tn. Assuming ũ(x, t) is its

entropy solution corresponding to the initial data ũ(x, tn), instantly we have

¯̃uj(t
n) = ūj(t

n). (2.4.11)

Since f ′(u) > 0, we have

f(ũ(xj− 1
2
, t)) = f(ūj−1(tn)), (2.4.12)

for t ∈ [tn, tn+1]. Since λmaxu |f ′(u)| ≤ 1, the characteristic starting from xj− 1
2

would not hit the side xj+ 1
2
, therefore

ũ(xj+ 1
2
, t) = u(xj+ 1

2
, t) (2.4.13)
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for t ∈ [tn, tn+1]. Also since ũ satisfies the maximum principle ũ ≤ uM , we have

¯̃un+1
j = ¯̃unj − λ( ˇ̃fj+ 1

2
− ˇ̃fj− 1

2
) ≤ uM ,

where

ˇ̃fj−1/2 =
1

∆t

ˆ tn+1

tn
f(ũ(xj−1/2, t))dt. (2.4.14)

Substituting (2.4.11), (2.4.12) and (2.4.13) into the above inequality, it follows that

ūj(t
n)− λ(f̌j+ 1

2
− f(ūj−1(tn)) ≤ uM .

For the case f ′(u) < 0, we have the following

Theorem 2.4.3. Assuming f ′(u) < 0 and λmaxu |f ′(u)| ≤ 1, we have

ūj(t
n)− λ(f̌j+ 1

2
− f(ūj(t

n))) ≤ uM , (2.4.15)

if u(x, t) is the entropy solution to problem (2.4.1) subject to initial data u0(x).

Proof. The proof is similar. The only difference is that in this case, we shall consider

an auxiliary problem (2.4.1) with initial data

˜̃u(x, tn) =


u(x, tn) x ≥ xj+ 1

2
,

ūj(t
n) x < xj+ 1

2
.

(2.4.16)
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Theorem 2.4.2 and 2.4.3 implies the first main result.

Theorem 2.4.4. For the cases stated in Theorem 2.4.2 and 2.4.3: f ′(u) > 0 or

f ′(u) < 0, with λmaxu |f ′(u)| ≤ 1, the estimate

|Ĥrk
j+ 1

2
− H̃rk

j+ 1
2
| = O(∆x2k+1 + ∆tp), ∀j

holds if equation

|f̌j+ 1
2
− Ĥrk

j+ 1
2
| = O(∆x2k+1 + ∆tp), ∀j

holds, when ĥj− 1
2

is the first-order Godunov flux for the modification in (2.2.7).

Proof. The theorem can be proved by combining earlier arguments in this section,

observing that ĥj− 1
2

= f(ūnj−1) if f ′(u) > 0, otherwise ĥj− 1
2

= f(ūnj ).

The conclusion from Theorem 2.4.4 is that the MPP flux limiters for high-order

FV RK scheme does not introduce extra CFL constraint to preserve the high-order

accuracy of the original scheme. In the linear advection case, Theorem 2.4.4 simply

indicates that

Remark 2.4.5. The MPP flux limiters preserve high-order accuracy under the CFL

requirement λmaxu |f ′(u)| ≤ 1 for linear advection problems when high-order nu-

merical fluxes are limited to the first-order upwind flux. Without much difficulty, we

can generalize the results in Theorem 2.4.2, 2.4.3 to two-dimensional linear advection

problems.
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It is difficult to generalize the above approach to general convection-dominated

diffusion problems. However, we believe this is one important step toward a complete

proof. Below, by performing Taylor expansions around extrema, we provide a proof

of (2.4.7) with third-order spatial and temporal accuracy (k = 1, p = 3) for a general

nonlinear problem. We consider a first-order monotone flux ĥj− 1
2

= ĥ(ūj−1, ūj) in

the proposed parametrized flux limiting procedure (2.2.7). And we define

L1,j =
ĥ(ūj−1, ūj)− f(ūj−1)

ūj − ūj−1

, L2,j = −f(ūj)− ĥ(ūj−1, ūj)

ūj − ūj−1

, (2.4.17)

where L1,j and L2,j are two coefficients related to the monotonicity condition [7]. Let

L = maxj |L1,j + L2,j|, we have

Theorem 2.4.6. Consider a third-order (or higher) finite volume RK discretiza-

tion for a pure convection problem (2.4.1), with a first-order monotone flux ĥj− 1
2

=

ĥ(ūj−1, ūj) in (2.2.7). The estimate (2.4.7) holds with k = 1, p = 3 under the CFL

condition 1− λL ≥ 0.

Proof. Using the earlier argument, we will only prove (2.4.8), assuming uM − (ūj −

λ(Ĥrk
j+ 1

2

− ĥj− 1
2
)) < 0. We mimic the proof for the finite-difference scheme in [12].

First we use the 3-point Gauss Lobatto quadrature to approximate f̌j+ 1
2
,

f̌j+ 1
2

=
1

6
f(u(xj+ 1

2
, tn + ∆t)) +

2

3
f((xj+ 1

2
, tn +

∆t

2
)) +

1

6
f((xj+ 1

2
, tn)) +O(∆t3).

(2.4.18)
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Following the characteristics, we get

f̌j+ 1
2

=
1

6
f(u(xj+ 1

2
− λ1∆x, tn)) +

2

3
f(u(xj+ 1

2
− λ2∆x, tn)) +

1

6
f(u(xj+ 1

2
, tn)) +O(∆t3),

(2.4.19)

where λ1 and λ2 can be determined from

λ1 = λf ′(u(xj+ 1
2
− λ1∆x, tn)), λ2 =

λ

2
f ′(u(xj+ 1

2
− λ2∆x, tn)). (2.4.20)

For the finite volume method, u(x∗, tn) in (2.4.19) can be approximated by a second

order polynomial reconstruction from ūj−1, ūj and ūj+1. Denoting u1 = u(xj+ 1
2
−

λ1∆x, tn), u2 = u(xj+ 1
2
− λ2∆x, tn) and u3 = u(xj+ 1

2
, tn), we have

u1 =
1

6

(
(5 + 6λ1 − 6λ2

1)ūj + (−1 + 3λ2
1)ūj−1 + (2− 6λ1 + 3λ2

1)ūj+1

)
+O(∆x3),

(2.4.21a)

u2 =
1

6

(
(5 + 6λ2 − 6λ2

2)ūj + (−1 + 3λ2
2)ūj−1 + (2− 6λ2 + 3λ2

1)ūj+1

)
+O(∆x3),

(2.4.21b)

u3 =
1

6
(5ūj − ūj−1 + 2ūj+1) +O(∆x3). (2.4.21c)

We prove (2.4.8) case by case. We first consider the case xM ∈ Ij, with uM =

u(xM), u′M = 0 and u′′M ≤ 0. We perform Taylor expansions of {ūj−1, ūj, ūj+1}

around xM with up to third-order, denoting z = (xj − xM)/∆x, (2.4.21) can be
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rewritten as

u1 = uM + u′M∆x(
1

2
− λ1 + z) + u′′M

∆x2

2
(
1

4
− λ1 + λ2

1 + z − 2λ1z + z2) +O(∆x3),

(2.4.22a)

u2 = uM + u′M∆x(
1

2
− λ2 + z) + u′′M

∆x2

2
(
1

4
− λ2 + λ2

2 + z − 2λ2z + z2) +O(∆x3),

(2.4.22b)

u3 = uM + u′M∆x(
1

2
+ z) + u′′M

∆x2

2
(
1

4
+ z + z2) +O(∆x3). (2.4.22c)

Now denoting λ1 = λ0 + η1∆x+O(∆x2) and λ2 = λ0
2

+ η2∆x+O(∆x2), where λ0 =

λf ′(uM), based on the approximation (2.4.22) and Taylor expansions of {f ′(u1), f ′(u2)}

around f ′(uM) up to second order, η1 and η2 can be determined by substituting λ1

and λ2 into (2.4.20) and we have

λ1 = λ0 + f ′′(uM)u′Mλ(z +
1

2
− λ0)∆x+O(∆x2),

λ2 =
λ0

2
+ f ′′(uM)u′M

λ

2
(z +

1

2
− λ0

2
)∆x+O(∆x2).

For the first-order monotone flux ĥj− 1
2

= ĥ(ūj−1, ūj), it can be written as

ĥj− 1
2

= f(ūj−1) + L1,j(ūj − ūj−1), L1,j =
ĥ(ūj−1, ūj)− f(ūj−1)

ūj − ūj−1

, (2.4.23)

where f(ūj−1) = ĥ(ūj−1, ūj−1) due to consistence. L1,j is negative and bounded due

to the monotonicity and Lipschitz continuous conditions. On the other hand, ĥj− 1
2
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can also be written as

ĥj− 1
2

= f(ūj) + L2,j(ūj − ūj−1), L2,j = −f(ūj)− ĥ(ūj−1, ūj)

ūj − ūj−1

, (2.4.24)

where f(ūj) = ĥ(ūj, ūj), and L2,j is negative and bounded.

With above notations, by performing Taylor expansions of {ūj−1, ūj} around uM

and Taylor expansions of {f(ūj−1), f(ūj)} around f(uM) with up to third-order and

with the fact that u′M = 0, we now discuss the following two cases:

• If f ′(uM) ≥ 0, we have λ0 = λf ′(uM) ∈ [0, 1] since λmaxu |f ′(u)| ≤ 1. We take

ĥj− 1
2

as in (2.4.23), we have

ūj − λ
(
f̌j+ 1

2
− ĥj− 1

2

)
= uM +

u′′M
12

∆x2g(z, λ0) +O(∆x3 + ∆t3), (2.4.25)

where

g(z, λ0) = g1(z, λ0)− 6λL1,j(1− 2z), (2.4.26)

with

g1(z, λ0) =
1

2
+ (5λ0 + 3λ2

0 − 2λ3
0) + 6(−3λ0 + λ2

0)z + 6z2. (2.4.27)

λL1,j(1− 2z) ≤ 0 for z ∈ [−1
2
, 1

2
] and L1,j ≤ 0. The minimum value of function

g1 with respect to z is

(g1)min = g1(z, λ0)
∣∣∣
z=− 1

2
λ0(λ0−3)

=
1

2
+
λ0

2
(λ0−2)(λ0−1)(5−3λ0) ≥ 0, (2.4.28)
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so that g(z, λ0) ≥ 0. Since u′′M ≤ 0, from (2.4.25) we obtain (2.4.8).

• If f ′(uM) < 0, we have λ0 ∈ [−1, 0]. We take ĥj− 1
2

in (2.4.24), similarly we

have (2.4.25) and

g(z, λ0) = g2(z, λ0)− 6λL2,j(1− 2z), (2.4.29)

with

g2(z, λ0) =
1

2
+ (−λ0 + 3λ2

0 − 2λ3
0) + 6(−λ0 + λ2

0)z + 6z2. (2.4.30)

λL2,j(1− 2z) ≤ 0 for z ∈ [−1
2
, 1

2
] and L2,j ≤ 0. The minimum value of g2 with

respect to z is

(g2)min = g2(z, λ0)
∣∣∣
z=− 1

2
λ0(λ0−1)

=
1

2
+
λ0

2
(λ0+1)(λ0−1)(2−3λ0) ≥ 0, (2.4.31)

that is g(z, λ0) ≥ 0. Since u′′M ≤ 0, from (2.4.25) we also obtain (2.4.8).

Now if xM /∈ Ij, however there is a local maximum point xlocM inside the cell

of Ij, the above analysis still holds. We then consider that u(x) reaches its local

maximum ulocM over Ij at xlocM = xj− 1
2
, we have u′

j− 1
2

< 0. We take ĥj− 1
2

as an average

of (2.4.23) and (2.4.24). Following the same Taylor-expansion procedure as above,

with z = (xj − xlocM )/∆x = (xj − xj− 1
2
)/∆x = 1/2, we have

ūj − λ
(
f̌j+ 1

2
− ĥj− 1

2

)
= uj− 1

2
+ u′

j− 1
2
∆xs1 + (u′

j− 1
2
)2∆x2s2 + u′′

j− 1
2

∆x2

2
s3 +O(∆x3 + ∆t3),

(2.4.32)
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where

s1 =
1

2
(−2λ0 + λ2

0) +
1

2
(1 + λ(L1,j + L2,j)),

s2 = −f ′′(uj− 1
2
)
λ

8
(3− 4λ0 + 4λ2

0), s3 =
1

3
(1− 2λ0 + 3λ2

0 − λ3
0).

(2.4.32) can be rewritten as

ūj − λ
(
f̌j+ 1

2
− ĥj− 1

2

)
=u(xj− 1

2
−
√
s3∆x) + u′

j− 1
2
∆x
(1

2
(−2λ0 + λ2

0) +
√
s3

+
1

2
(1 + λ(L1,j + L2,j))

)
+ (u′

j− 1
2
)2∆x2s2 +O(∆x3 + ∆t3).

(2.4.33)

It is easy to check that s3 > 0 and 1
2
(−2λ0 + λ2

0) +
√
s3 > 0 for λ0 = λf ′(uM) ∈

[−1, 1]. From the CFL condition 1 + λ(L1,j + L2,j) ≥ 1 − λL ≥ 0, we obtain

u′
j− 1

2

∆x
(

1
2
(−2λ0 + λ2

0) +
√
s3 + 1

2
(1 + λ(L1,j + L2,j))

)
≤ 0 since u′

j− 1
2

< 0.

Now to prove (2.4.8), it is sufficient to show u(xj− 1
2
−√s3∆x) + ∆x2(u′

j− 1
2

)2s2 ≤

uM or u′
j− 1

2

= O(∆x). If [xj− 1
2
− √s3∆x − ∆x, xj− 1

2
− √s3∆x] is not a monotone

region, there is a point x#,1 in this region, such that u′(x#,1) = 0. Similarly, if [xj− 1
2
−

√
s3∆x−∆x, xj− 1

2
−√s3∆x] is a monotone increasing region, since u′

j− 1
2

< 0, there is

one point x#,2 in [xj− 1
2
−√s3∆x, xj− 1

2
], such that u′(x#,2) = 0. For these two cases,

u′
j− 1

2

= O(∆x). We then focus on the case when [xj− 1
2
−√s3∆x−∆x, xj− 1

2
−√s3∆x]

is a monotone decreasing region. We assume

u(xj− 1
2
−
√
s3∆x) + c∆x2 > uM
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where c = |(u′
j− 1

2

)2s2|. Since

u(xj− 1
2
−
√
s3∆x) = u(xj− 1

2
−
√
s3∆x−∆x) + u′(x#,3)∆x,

where u′(x#,3) < 0, we have

u′(x#,3)∆x+ c∆x2 > 0,

which implies |u′(x#,3)| ≤ c∆x, therefore, u′
j− 1

2

= O(∆x).

xlocM = xj+ 1
2

with u′
j+ 1

2

≥ 0 can be proved similarly. Combining the above discus-

sion, (2.4.8) is proved.

Therefore, for the general nonlinear convection problem, the MPP flux limiters

preserve the third-order accuracy of the original FV RK scheme without extra CFL

constraint.

Remark 2.4.7. The above proof relies on characteristic tracing. It is difficult to

directly generalize such approach to the convection-diffusion problem. On the other

hand, similar strategy as that used in [9] by using a Lax-Wendroff strategy, i.e.,

transforming temporal derivatives into spatial derivatives by repeating using PDEs

and its differentiation versions, can be directly applied here. A similar conclusion

can be obtained that the MPP flux limiters preserve the third-order accuracy of

the original FV RK scheme for the convection dominated diffusion equation without

extra CFL constraint. To save some space, we will not repeat the algebraically

tedious details here.
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Remark 2.4.8. It is technically difficult to generalize the proof in Theorem 2.4.6

to higher than third-order, especially with the use of general monotone fluxes, for

example, global Lax-Friedrich flux

ĥj− 1
2

= ĥ(ūj−1, ūj) =
1

2

(
f(ūj)+f(ūj−1)−α(ūj− ūj−1)

)
, α = max

u
|f ′(u)|. (2.4.34)

On the other hand, the use of the global Lax-Friedrich flux with an extra large α is

not unusual; yet it is quite involved to theoretically or numerically investigate such

issue in a nonlinear system. Instead, we use a monotone but over-diffusive flux with

ĥj+ 1
2

=
1

2

(
(1 + α)ūj + (1− α)ūj+1

)
, α > max

u
|f ′(u)| = 1, (2.4.35)

for a linear advection equation ut + ux = 0 with a set of carefully chosen initial

conditions. Such scenario is set up to mimic the use of global Lax-Friedrich flux with

an extra large α for general nonlinear systems. In Table 2.4.1-2.4.3 below, we present

the accuracy test for using the parametrized flux limiter with an over-diffusive first-

order monotone flux (2.4.35) with α = 1.2 on a linear 5th, 7th and 9th order FV

RK schemes, which denoted to be “FVRK5”, “FVRK7”, “FVRK9” respectively. A

mild CFL constraint around 0.7 with time-step ∆t = CFL∆x/α is observed to be

sufficient to maintain the high-order accuracy of the underlying scheme with the

MPP flux limiter.
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CFL mesh L1 error order L∞ error order Umin Umax

0.9

Non-

20 1.29E-02 – 2.00E-02 – -0.013805229 0.960012218

MPP

40 5.62E-04 4.52 9.27E-04 4.43 -0.000670411 0.988524452
80 1.87E-05 4.91 3.13E-05 4.89 -0.000025527 0.998060523
160 5.96E-07 4.97 9.94E-07 4.98 -0.000000471 0.999076363
320 1.87E-08 4.99 3.12E-08 4.99 -0.000000025 0.999931894
640 5.85E-10 5.00 9.76E-10 5.00 -0.000000001 0.999980112
1280 1.83E-11 5.00 3.05E-11 5.00 0.000000000 0.999992161

MPP

20 9.97E-03 – 1.82E-02 – 0.000000000 0.960132209
40 5.52E-04 4.18 1.31E-03 3.80 0.000000000 0.988525623
80 1.89E-05 4.87 4.62E-05 4.83 0.000000000 0.998060523
160 6.04E-07 4.96 2.01E-06 4.52 0.000000325 0.999076363
320 1.91E-08 4.98 7.25E-08 4.79 0.000000010 0.999931894
640 6.04E-10 4.99 2.95E-09 4.62 0.000000001 0.999980112
1280 1.90E-11 4.99 1.33E-10 4.47 0.000000000 0.999992161

0.7

Non-

20 1.30E-02 – 2.01E-02 – -0.014015296 0.959761206

MPP

40 5.66E-04 4.52 9.35E-04 4.43 -0.000680048 0.988513480
80 1.89E-05 4.90 3.17E-05 4.88 -0.000025848 0.998060157
160 6.03E-07 4.97 1.01E-06 4.98 -0.000000482 0.999076351
320 1.89E-08 4.99 3.16E-08 4.99 -0.000000026 0.999931893
640 5.92E-10 5.00 9.87E-10 5.00 -0.000000001 0.999980112
1280 1.85E-11 5.00 3.09E-11 5.00 0.000000000 0.999992161

MPP

20 9.95E-03 – 1.81E-02 – 0.000000000 0.959688278
40 5.55E-04 4.16 1.40E-03 3.70 0.000000000 0.988514505
80 1.91E-05 4.86 4.90E-05 4.84 0.000000000 0.998060157
160 6.09E-07 4.97 1.86E-06 4.72 0.000000000 0.999076351
320 1.91E-08 5.00 6.03E-08 4.94 0.000000002 0.999931893
640 5.95E-10 5.00 1.91E-09 4.98 0.000000000 0.999980112
1280 1.85E-11 5.00 5.61E-11 5.09 0.000000000 0.999992161

Table 2.4.1: L1 and L∞ errors and orders for ut + ux = 0 with initial condition
u(x, 0) = sin4(x). T = 1. The over-diffusive global Lax-Friedrichs flux (2.4.35) is
used with α = 1.2. FVRK5.

2.5 Numerical Tests

In this section, we present numerical tests of the proposed MPP high-order FV RK

WENO method for convection diffusion problems. Schemes with and without MPP

limiters are compared. In these tests, the time-step size for the RK method is chosen
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CFL mesh L1 error order L∞ error order Umin Umax

0.9

Non-

20 4.13E-03 – 6.38E-03 – -0.004489835 0.972363581

MPP

40 4.69E-05 6.46 7.37E-05 6.44 -0.000005603 0.989301523
80 3.99E-07 6.88 6.38E-07 6.85 0.000001412 0.998091183
160 3.20E-09 6.96 5.10E-09 6.97 0.000000392 0.999077344
320 2.51E-11 6.99 4.01E-11 6.99 0.000000002 0.999931925
640 1.97E-13 7.00 3.14E-13 6.99 0.000000000 0.999980113

MPP

20 3.60E-03 – 6.39E-03 – 0.000517069 0.972406897
40 4.78E-05 6.23 1.04E-04 5.94 0.000064524 0.989302277
80 6.29E-07 6.25 2.95E-06 5.15 0.000003451 0.998091182
160 1.42E-08 5.47 2.09E-07 3.82 0.000000602 0.999077344
320 4.87E-10 4.87 1.44E-08 3.86 0.000000012 0.999931925
640 1.78E-11 4.78 1.01E-09 3.83 0.000000001 0.999980113

0.7

Non-

20 4.12E-03 – 6.38E-03 – -0.004485289 0.972368315

MPP

40 4.69E-05 6.46 7.37E-05 6.44 -0.000005556 0.989301572
80 3.98E-07 6.88 6.38E-07 6.85 0.000001412 0.998091183
160 3.19E-09 6.96 5.10E-09 6.97 0.000000392 0.999077344
320 2.51E-11 6.99 4.00E-11 6.99 0.000000002 0.999931925
640 1.96E-13 7.00 3.14E-13 7.00 0.000000000 0.999980113

MPP

20 3.62E-03 – 6.59E-03 – 0.000515735 0.972263646
40 4.65E-05 6.28 8.94E-05 6.20 0.000054894 0.989301394
80 3.98E-07 6.87 6.38E-07 7.13 0.000001412 0.998091183
160 3.19E-09 6.96 5.10E-09 6.97 0.000000392 0.999077344
320 2.51E-11 6.99 4.00E-11 6.99 0.000000002 0.999931925
640 1.96E-13 7.00 3.14E-13 7.00 0.000000000 0.999980113

Table 2.4.2: L1 and L∞ errors and orders for ut + ux = 0 with initial condition
u(x, 0) = sin4(x). T = 1. The over-diffusive global Lax-Friedrichs flux (2.4.35) is
used with α = 1.2. FVRK7.

such that

∆t = min
( CFLC

max |f ′(u)|
∆x,

CFLD

max |a′(u)|
∆x2

)
, (2.5.1)

for one-dimensional problems and

∆t = min
( CFLC

max |f ′(u)|/∆x+ max |g′(u)|/∆y
,

CFLD

max |a′(u)|/∆x2 + max |b′(u)|/∆y2

)
,

(2.5.2)

for two-dimensional problems. Here CFLC (CFLD resp.) represents the CFL number

for the convection (diffusion resp.) term. In our tests, we will take CFLC = 0.6
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CFL mesh L1 error order L∞ error order Umin Umax

0.9

Non-

20 1.29E-03 – 2.00E-03 – -0.001216056 0.975890071

MPP

40 3.99E-06 8.34 6.19E-06 8.34 0.000053321 0.989362841
80 8.67E-09 8.85 1.37E-08 8.82 0.000002016 0.998091807
160 1.75E-11 8.95 2.76E-11 8.96 0.000000397 0.999077349
320 3.44E-14 8.99 5.51E-14 8.97 0.000000002 0.999931925

MPP

20 1.20E-03 – 2.37E-03 – 0.000393260 0.975868904
40 8.91E-06 7.08 3.54E-05 6.06 0.000092174 0.989363425
80 2.90E-07 4.94 2.72E-06 3.70 0.000003586 0.998091812
160 1.15E-08 4.65 2.02E-07 3.75 0.000000600 0.999077349
320 4.32E-10 4.74 1.30E-08 3.96 0.000000013 0.999931925

0.7

Non-

20 1.29E-03 – 2.00E-03 – -0.001216106 0.975890020

MPP

40 3.99E-06 8.34 6.19E-06 8.34 0.000053321 0.989362841
80 8.67E-09 8.85 1.37E-08 8.82 0.000002016 0.998091807
160 1.75E-11 8.95 2.76E-11 8.96 0.000000397 0.999077349
320 3.44E-14 8.99 5.60E-14 8.94 0.000000002 0.999931925

MPP

20 1.20E-03 – 2.47E-03 – 0.000419926 0.975868183
40 3.99E-06 8.23 6.19E-06 8.64 0.000053321 0.989362841
80 8.67E-09 8.85 1.37E-08 8.82 0.000002016 0.998091807
160 1.75E-11 8.95 2.76E-11 8.96 0.000000397 0.999077349
320 3.44E-14 8.99 5.59E-14 8.95 0.000000002 0.999931925

Table 2.4.3: L1 and L∞ errors and orders for ut + ux = 0 with initial condition
u(x, 0) = sin4(x). T = 1. The over-diffusive global Lax-Friedrichs flux (2.4.35) is
used with α = 1.2. FVRK9.

for convection-dominated problems and CFLD = 0.8 for pure diffusion problems.

Herein we let “MPP” and “NonMPP” denote the scheme with and without the

MPP limiter, and Umax (Umin resp.) denote the maximum (minimum resp.) value

among the numerical cell averages ūj. To better illustrate the effectiveness of the

MPP limiters, we use linear weights instead of WENO weights in the reconstruction

procedure for the convection term.
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2.5.1 Basic Tests

Example 2.5.1. (1D Linear Problem)

ut + ux = εuxx, x ∈ [0, 2π], ε = 0.00001. (2.5.3)

We test the proposed scheme on the problem (2.5.3) with initial condition u(x, 0) =

sin4(x) and periodic boundary condition. The exact solution is

u(x, t) =
3

8
− 1

2
exp(−4εt) cos(2(x− t)) +

1

8
exp(−16εt) cos(4(x− t)). (2.5.4)

The L1 and L∞ errors and orders of convergence for the scheme with and without

MPP limiters are shown in Table 2.5.1. It is observed that the MPP limiter avoids

overshooting and undershooting of the numerical solution while preserve high-order

accuracy.

mesh L1 error order L∞ error order Umax Umin

Non-

50 1.68E-04 — 2.76E-04 — 0.996998594480 -0.000182938402

MPP

100 5.47E-06 4.94 9.11E-06 4.92 0.997933416789 -0.000005718342
200 1.72E-07 4.99 2.87E-07 4.99 0.999579130130 -0.000000153518
400 5.38E-09 5.00 9.00E-09 5.00 0.999905929907 -0.000000002134
800 1.68E-10 5.00 2.81E-10 5.00 0.999945898951 0.000000001890

MPP

50 1.71E-04 — 2.87E-04 — 0.996998296191 0.000000000000
100 5.46E-06 4.93 1.34E-05 4.42 0.997933416819 0.000000016274
200 1.72E-07 5.00 4.91E-07 4.77 0.999579130130 0.000000013987
400 5.38E-09 5.03 1.25E-08 5.29 0.999905929907 0.000000001048
800 1.68E-10 5.01 2.81E-10 5.48 0.999945898951 0.000000001890

Table 2.5.1: Accuracy tests for 1D linear equation (2.5.3) with exact solution (2.5.4)
at time T = 1.0.
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We then test problem (2.5.3) with the initial condition having rich solution struc-

tures

u0(x) =



1
6
(G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z)), −0.8 ≤ x ≤ −0.6;

1, −0.4 ≤ x ≤ −0.2;

1− |10(x− 0.1)|, 0 ≤ x ≤ 0.2;

1
6
(F (x, γ, a− δ) + F (x, γ, a+ δ) + 4F (x, γ, a)), 0.4 ≤ x ≤ 0.6;

0, otherwise.

(2.5.5)

where G(x, β, z) = e−β(x−z)2 and F (x, γ, a) =
√

max(1− γ2(x− a)2, 0). The con-

stants involved are a = 0.5, z = −0.7, δ = 0.005, γ = 10 and β = log 2/(36δ2) and

the boundary condition is periodic. The maximum and minimum cell averages are

listed in Table 2.5.2. In Figure 2.5.1, the effectiveness of the MPP limiters in con-

trolling the numerical solution within theoretical bounds can be clearly observed.

NonMPP MPP
mesh Umax Umin Umax Umin
50 1.106238399422 -0.114766938420 1.000000000000 0.000000000000
100 1.056114534445 -0.067351423479 1.000000000000 0.000000000000
200 1.054864483784 -0.054928012204 1.000000000000 0.000000000000
400 1.048250067722 -0.048250171364 1.000000000000 0.000000000000
800 1.031246517796 -0.031246517794 1.000000000000 0.000000000000

Table 2.5.2: The maximum and minimum values of the numerical cell averages for
problem (2.5.3) with initial conditions (2.5.5) at time T = 1.0.

Example 2.5.2. (1D Nonlinear Equation) We test the FV RK scheme with and
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Figure 2.5.1: Left: Comparison of the FV RK scheme with and without MPP limiters
for 1d linear problem (2.5.3) with initial condition (2.5.5) at T = 1.0. Right: Zoom-in
around the overshooting.

without MPP limiters on Burgers’ equation

ut + (
u2

2
)x = εuxx, x ∈ [−1, 1], ε = 0.0001, (2.5.6)

with initial condition

u(x, 0) =


2, |x| < 0.5;

0, otherwise,

and periodic boundary conditions. The results in Table 2.5.3 shows that the numer-

ical solution goes beyond the theoretical bounds if no limiters are applied and stays

within the theoretical range if MPP limiters are applied.
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NonMPP MPP
mesh Umax Umin Umax Umin
50 2.349929038912 -0.063536142936 1.818784698878 0.000000000000
100 2.438970633433 -0.135799476071 1.879377697365 0.000000000000
200 2.217068598684 -0.095548979222 1.913720603302 0.000000000000
400 2.216719764740 -0.095114086983 1.938439146468 0.000000000000
800 2.210614277385 -0.092745597929 1.959770865698 0.000000000000

Table 2.5.3: The maximum and minimum values of the numerical cell averages for
Burgers’ equation (2.5.6) at time T = 0.05.

Example 2.5.3. (2D Linear Problem)

ut + ux + uy = ε(uxx + uyy), (x, y) ∈ [0, 2π]2, ε = 0.001. (2.5.7)

We first consider the problem with initial condition u(x, y, 0) = sin4(x + y) and

periodic boundary condition. The exact solution to the problem is

u(x, y, t) =
3

8
− 1

2
exp(−8εt) cos(2(x+ y − 2t)) +

1

8
exp(−32εt) cos(4(x+ y − 2t)).

(2.5.8)

The L1 and L∞ errors and orders of convergence for the FV RK scheme with and

without MPP limiters are shown in Table 2.5.4. High-order accuracy is preserved

when the MPP limiters are applied to control the numerical solution within the

theoretical bounds.

We then consider problem (2.5.7) with initial condition

u(x, 0) =


1, (x, y) ∈ [π

2
, 3π

2
]× [π

2
, 3π

2
];

0, otherwise on [0, 2π]× [0, 2π],

(2.5.9)
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mesh L1 error order L∞ error order Umax Umin

NonMPP

16× 16 4.86E-03 — 9.30E-03 — 0.919696089900 0.000159282060
32× 32 2.85E-04 4.29 4.49E-04 4.37 0.986054820018 -0.000283832731
64× 64 9.82E-06 4.84 1.62E-05 4.79 0.995960434630 -0.000004482350
128× 128 3.12E-07 4.96 5.22E-07 4.95 0.998407179488 0.000001288422
256× 256 9.73E-09 5.00 1.63E-08 5.01 0.998990497491 0.000000740680

MPP

16× 16 4.86E-03 — 9.30E-03 — 0.919696089900 0.000159282060
32× 32 2.87E-04 4.27 4.49E-04 4.37 0.986054818813 0.000000000000
64× 64 9.82E-06 4.85 1.64E-05 4.77 0.995960434630 0.000000000000
128× 128 3.12E-07 4.97 5.22E-07 4.97 0.998407179488 0.000001288422
256× 256 9.73E-09 5.00 1.63E-08 5.01 0.998990497491 0.000000740680

Table 2.5.4: Accuracy tests for 2D linear equation (2.5.7) with exact solution (2.5.8)
at time T = 1.0.

and periodic boundary condition. The results are shown in Table 2.5.5, which indi-

cates the effectiveness of the MPP limiter.

NonMPP MPP
mesh Umax Umin Umax Umin
16× 16 1.196476571354 -0.102486638966 1.000000000000 0.000000000000
32× 32 1.317444117818 -0.169214623680 1.000000000000 0.000000000000
64× 64 1.341696522446 -0.182902057169 1.000000000000 0.000000000000

128× 128 1.225931525834 -0.116989442889 1.000000000000 0.000000000000
256× 256 1.108731559448 -0.055808238605 1.000000000000 0.000000000000

Table 2.5.5: Maximum and minimum cell averages in the 2D linear problem (2.5.7)
with initial condition (2.5.9) at time T = 0.1.

Example 2.5.4. (1D Buckley-Leverett Equation) Consider the problem

ut + f(u)x = ε(ν(u)ux)x, ε = 0.01, (2.5.10)

where

ν(u) =


4u(1− u), 0 ≤ u ≤ 1;

0, otherwise,

and f(u) =
u2

u2 + (1− u)2
.
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The initial condition is

u(x, 0) =


1− 3x, 0 ≤ x < 1

3
;

0, 1
3
≤ x ≤ 1,

and the boundary conditions are u(0, t) = 1 and u(1, t) = 0. The numerical results

are shown in Table 2.5.6. The numerical solution goes below 0 if MPP limiters are not

applied, and stays within the theoretical bounds [0, 1] when MPP limiters are applied.

Figure 2.5.2 illustrates the effectiveness of MPP limiters near the undershooting of

the numerical solution.

NonMPP MPP
mesh Umax Umin Umax Umin
50 1.000000000000000 -0.002643266424381 1.000000000000000 0.000000000000000
100 1.000000000000000 -0.001813338703220 1.000000000000000 0.000000000000000
200 1.000000000000000 -0.000942402907667 1.000000000000000 0.000000000000000
400 1.000000000000000 -0.000491323673758 1.000000000000000 0.000000000000000
800 1.000000000000000 -0.000247268741213 1.000000000000000 0.000000000000000

Table 2.5.6: The maximum and minimum values for 1D Buckley-Leverett problem
(2.5.10) at time T = 0.2.

Example 2.5.5. (2D Buckley-Leverett Equation) Consider

ut + f(u)x + g(u)y = ε(uxx + uyy), (x, y) ∈ [−1.5, 1.5]2, ε = 0.01 (2.5.11)

where

f(u) =
u2

u2 + (1− u)2
, g(u) = f(u)(1− 5(1− u)2),
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Figure 2.5.2: Left: Solutions for 1D Buckley-Leverett equation (2.5.10) at T = 0.2.
Right: Zoom-in around the undershooting.

with initial condition

u(x, y, 0) =


1, x2 + y2 < 0.5;

0, otherwise on [−1.5, 1.5]2,

and periodic boundary conditions. The numerical results in Table 2.5.7 show that

the MPP limiters effectively control the numerical solution within the theoretical

range [0, 1].

NonMPP MPP
mesh Umax Umin Umax Umin
16× 16 1.190542402917 -0.142603740886 1.000000000000 0.000000000000
32× 32 1.183357844800 -0.174592560044 1.000000000000 0.000000000000
64× 64 1.148424330885 -0.167227853261 1.000000000000 0.000000000000

128× 128 1.084563025034 -0.083883559766 1.000000000000 0.000000000000
256× 256 0.998736899089 -0.018463025969 0.998566263416 0.000000000000

Table 2.5.7: Maximum and minimum cell averages for 2D Buckley-Leverett problem
(2.5.11) at time T = 0.5.
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Example 2.5.6. (1D Porous Medium Equation) Consider

ut = (um)xx, m > 1, x ∈ [−2π, 2π] (2.5.12)

whose solution is the Barenblatt solution in the following form

Bm(x, t) = t−k
[
(1− k(m− 1)

2m

|x|2

t2k
)+

] 1
m+1

, (2.5.13)

with k = 1
m+1

and u+ = max(u, 0). The boundary conditions are assumed to be

zero at both ends. Starting from time T0 = 1, we compute the numerical solution

of the problem up to time T = 2 by the FV RK scheme and the results are shown

in Table 2.5.8. Obviously, there are undershoots when regular FV RK scheme are

applied. And the MPP limiters can effectively eliminate the overshoots in the nu-

merical solution. Also the plot in Figure 2.5.3 shows the effectiveness of the MPP

limiters.

N = 100 NonMPP MPP
m Umax Umin Umax Umin
2 0.793283780606 -0.000338472445 0.793283375962 0.000000000000
3 0.840666629482 -0.001792679096 0.840663542409 0.000000000000
5 0.890829374423 -0.005693908465 0.890821177490 0.000000000000
8 0.925837535365 -0.003841778007 0.925826127818 0.000000000000

Table 2.5.8: Maximum and minimum cell average values for 1D porous medium
problem (2.5.12) with m = 2, 3, 5, 8 at time T = 2.

Example 2.5.7. (2D Porous Medium Equation) Consider

ut = (um)xx + (um)yy, m = 2, (x, y) ∈ [−1, 1]2 (2.5.14)
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Figure 2.5.3: Left: Plot for 1D porous medium problem (2.5.12) with N=100 at
T = 2. Top is for m=3 and bottom is for m=8. Right: Zoom-in around the
undershooting.
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with initial condition

u(x, y, 0) =


1, (x, y) ∈ [−1

2
, 1

2
]2;

0, otherwise on [−1
2
, 1

2
]2,

and periodic boundary conditions. We produce the numerical results at time T =

0.005, as shown in Table 2.5.9. The results show that the MPP limiters perform

effectively at avoiding overshooting and undershooting of the numerical solution.

NonMPP MPP
mesh Umax Umin Umax Umin
16× 16 1.000485743751 -0.000349298087 0.999827816078 0.000000000000
32× 32 0.999625786453 -0.001200636807 0.999573139639 0.000000000000
64× 64 0.999537081790 -0.000855830629 0.999533087178 0.000000000000

128× 128 0.999527411822 -0.000474775257 0.999526635569 0.000000000000
256× 256 0.999525567240 -0.000261471521 0.999525309113 0.000000000000

Table 2.5.9: Maximum and minimum cell average values for 2D porous medium
problem (2.5.14) at time T = 0.005.

2.5.2 Incompressible-Flow Problems

In this subsection, we test the proposed scheme on incompressible-flow problems in

the form

ωt + (uω)x + (vω)y =
1

Re
(ωxx + ωyy), (2.5.15)

where 〈u, v〉 is the divergence-free velocity field and Re is the Reynold number.

The theoretical solution satisfies the maximum principle due to the divergence-free

property of the velocity field. For the numerical solution to satisfy the maximum
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principle, discretized divergence-free condition needs to be considered, hence special

treatment needs to be taken when low-order flux for the convection term is designed.

For details, see [12], according to which we design the low-order monotone flux for

the following incompressible problems.

Example 2.5.8. (Rotation with Viscosity)

ut + (−yu)x + (xu)y =
1

Re
(uxx + uyy), (x, y) ∈ [−π, π]2. (2.5.16)

The initial condition is shown in Figure 2.5.4 and the boundary condition is assumed

to be periodic. The numerical solution at time T = 0.1 is shown in Table 2.5.10,

which indicates that there are overshooting and undershooting in the numerical so-

lution by regular FV RK scheme and they can be avoided by applying the MPP

limiter. The solutions with and without MPP limiter are also compared in Figure

2.5.5. From Table 2.5.10 and Figure 2.5.5, the effectiveness of the MPP limiter can

be better illustrated when Renold number is larger. This is because the overshoot-

ing and undershooting are more apparent when Reynold number is larger, which

corresponds to less diffusion.

Example 2.5.9. (Swirling Deformation with Viscosity)

ut + (− cos2(
x

2
) sin(y)g(t)u)x + (sin(x) cos2(

y

2
)t(t))u)y =

1

Re
(uxx + uyy), (2.5.17)

where (x, y) ∈ [−π, π]2 and g(t) = cos(πt/T )π. The initial condition is the same

as in Example 4.8 and the boundary conditions are also periodic. Similarly, we

also compare the results for different Reynold numbers Re=100 and Re=10000. As
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Figure 2.5.4: Initial condition for Example 3.8 and Example 3.9.

shown in Table 2.5.11, the MPP limiter plays the role of eliminating overshooting and

undershooting in the numerical solution, especially for problems with larger Reynold

number. This can also be observed in Figure 2.5.6.

Example 2.5.10. (Vortex Patch) Consider the problem

ωt + (uω)x + (vω)y =
1

Re
(ωxx + ωyy), (2.5.18)

∆ψ = ω, 〈u, v〉 = 〈−ψy, ψx〉, (2.5.19)

with the following initial condition

ω(x, y, 0) =



−1, π
2
≤ x ≤ 3π

2
, π

4
≤ 3π

4
,

1, π
2
≤ x ≤ 3π

2
, 5π

4
≤ 7π

4
,

0, otherwise,

(2.5.20)
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Figure 2.5.5: Left: Cutting plots for rotation problem (2.5.16) for Re=10000 at
T = 0.1. Right: Zoom-in around the undershooting. Top: cutting along y = 5∆y
for Ny = 128; Bottom: cutting along x = 0.
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Figure 2.5.6: Left: Cutting plots for swirling deformation problem (2.5.17) for
Re=10000 at T=0.1. Right: Zoom-in around the undershooting. Top: cutting
along y = 5∆y for Ny = 128; Bottom: cutting along x = 0.
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Re=100 NonMPP MPP
mesh Umax Umin Umax Umin
16× 16 0.947915608973 -0.041388485669 0.947719795318 0.000000000000
32× 32 0.999789765557 -0.048836983632 0.996173203589 0.000000000000
64× 64 1.008171330748 -0.039241271474 0.999999999928 0.000000000000

128× 128 1.002125190412 -0.027962451582 0.999999999920 0.000000000000
256× 256 1.000099518450 -0.012262487330 0.999999999983 0.000000000000

Re=10000 NonMPP MPP
mesh Umax Umin Umax Umin
16× 16 0.949247968412 -0.042285048496 0.949049295419 0.000000000000
32× 32 1.002247494119 -0.053653247391 0.996943318800 0.000000000000
64× 64 1.012845607701 -0.049914946698 0.999999462216 0.000000000000

128× 128 1.009050027036 -0.050526262050 0.999999999977 0.000000000000
256× 256 1.007608558521 -0.058482843302 0.999999999995 0.000000000000

Table 2.5.10: The maximum and minimum cell averages for rotation problem (2.5.16)
with two different Reynold numbers at T = 0.1.

and periodic-boundary condition. The maximum and minimum cell averages of the

numerical solution with two Reynold numbers Re=100 and Re=10000, obtained by

regular FV RK scheme and the scheme with the MPP limiter are compared in Table

2.5.12, from which we can observe the effectiveness of the MPP limiter in controlling

overshooting and undershooting in the numerical solution. The contour plot of the

solution is presented in Figure 2.5.7, which shows that the solution obtained by FV

RK scheme with the MPP limiter is comparable to that obtained by regular FV RK

scheme.
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,

,

Figure 2.5.7: Contours of the numerical solution for vortex patch problem (2.5.18)
with Re=100 (top) and Re=10000 (bottom) at time T = 5. The contours on the
left are for the NonMPP scheme and those on the right are for the MPP scheme.
For both Re=100 and Re=10000, 30 equally spaced contour lines within the range
[−1.1, 1.1] are plotted.
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Re=100 NonMPP MPP
mesh Umax Umin Umax Umin
16× 16 0.873440241699 -0.010737472197 0.842184825192 0.000000000000
32× 32 0.971822334038 -0.011947680561 0.942384582101 0.000000000000
64× 64 0.997563271155 -0.005935366467 0.986960253479 0.000000000000

128× 128 1.000886437426 -0.001258903421 0.998925498573 0.000000000000
256× 256 1.000040508119 -0.000036182185 0.999992956155 0.000000000000

Re=10000 NonMPP MPP
mesh Umax Umin Umax Umin
16× 16 0.874953790056 -0.011212471543 0.846813512747 0.000000000000
32× 32 0.973964125865 -0.014299538733 0.942368749644 0.000000000000
64× 64 1.000873875979 -0.006640227946 0.988604733672 0.000000000000

128× 128 1.002350640870 -0.002755842119 0.999375840770 0.000000000000
256× 256 1.000734372263 -0.000563730690 0.999998986667 0.000000000000

Table 2.5.11: The maximum and minimum cell averages for swirling deformation
problem (2.5.17) with two different Reynold numbers at T=0.1.

Re=100 NonMPP MPP
mesh Umax Umin Umax Umin
16× 16 1.035853749815 -1.035699868274 1.000000000000 -1.000000000000
32× 32 1.054573231517 -1.054663726026 1.000000000000 -1.000000000000
64× 64 1.044017351861 -1.044000125346 1.000000000000 -1.000000000000
128× 128 1.010637311054 -1.010641150928 1.000000000000 -1.000000000000
256× 256 1.000000232315 -1.000000231632 1.000000000000 -1.000000000000

Re=10000 NonMPP MPP
mesh Umax Umin Umax Umin
16× 16 1.036117022938 -1.035951331163 1.000000000000 -1.000000000000
32× 32 1.060652217270 -1.060764279809 1.000000000000 -1.000000000000
64× 64 1.086490500643 -1.086296444198 1.000000000000 -1.000000000000
128× 128 1.127323843780 -1.127407543973 1.000000000000 -1.000000000000
256× 256 1.129384376147 -1.129395445889 1.000000000000 -1.000000000000

Table 2.5.12: The maximum and minimum cell averages for vortex patch problem
(2.5.18) at time T=0.1 with Re=100 and Re=10000.
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CHAPTER 3

Integral Deferred Correction Method with Adaptive

Non-Polynomial Basis

3.1 Introduction

In this chapter, we consider a new class of integral deferred correction (InDC) meth-

ods using adaptive non-polynomial basis for stiff time dependent problems to bet-

ter capture sharp solution structures such as initial or internal layers. We will first

briefly review the literature on classical time integrators for stiff and multi-scale ODE

problems, the InDC framework and its development. After that, we will introduce

62
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features about the proposed InDC methods with adaptive basis.

Developing efficient and effective time integrators for ODE systems has been a

classical subject discussed in many books [30, 31]. Various types of time integrators

(e.g., explicit multi-step method, multi-stage method, Taylor-series method or the

so-called ”Cauchy-Kowalewski procedure”) with different features and advantages,

have been shown to be very efficient in solving non-stiff ODEs. When the prob-

lem becomes stiff, implicit methods, integration factor (IF) method, and exponential

time differencing method have been shown to be effective in resolving the stiffness by

allowing large numerical time steps (independent of the stiffness parameter). How-

ever, some of these methods are well known for their restrictions. For example, the

fully-implicit method for nonlinear ODE systems may require a nonlinear solver for

large systems that could be computationally expensive. The integration factor and

exponential time differencing methods are known to be effective for problems with

only linear stiff terms. When the stiff terms become nonlinear (for example for the

stiff Van der Pol system), the partitioned or additive implicit-explicit (IMEX) Runge-

Kutta (RK) methods could be more computationally effective. Error estimates on

the IMEX RK methods for a singular perturbation problem (SPP) are available in

recent work [26], explaining the appearance of the order reduction phenomena. An-

other open challenge for stiff problems is to develop effective and efficient numerical

integrators to resolve sharp layers such as initial layers and internal layers. To the

best of the authors’ knowledge, most of the numerical integrators nowadays assume

that these layers are well resolved with very small mesh size, until the stage of smooth

solution structure is reached. There is a recent attempt in resolving the initial layers
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analytically as proposed in [40]. However, the proposed strategy there is restricted

to the case where the stiff term is linear.

InDC method [27, 28], along with the deferred correction (DC) [25, 38] and spec-

tral deferred correction (SDC) [29, 37, 36, 34, 35, 32] methods, is an automatic

procedure of building up very high-order numerical integrators based on lower order

ones for ODEs. The InDC procedure consists of one prediction step and several iter-

ation steps for correction. The high-order accuracy is accomplished by using a lower

order numerical method to solve a series of error equations in each correction step.

In each correction iteration, an integration matrix, based on numerical quadratures

derived from polynomial approximation, is built to approximate the residuals. Com-

pared with the classical DC method, the recently developed SDC and InDC methods

are based on Picard integral equation and a deferred correction procedure is applied

to an integral formulation of the error equation in DC methods. It has been shown

that SDC and InDC outperform DC in many problems with better stability and

accuracy properties [29, 28]. The main difference between SDC and InDC is the

distribution of quadrature nodes: the SDC method uses Gaussian/Lobatto/Radau

points for better stability and accuracy properties, while InDC method uses uniform

quadrature points to guarantee high-order accuracy increasing when high-order RK

methods are applied in correction steps [28]. In [32], the authors pointed out that

the SDC/InDC correction iterations converge to a collocation discretization of ODE

problems. When the problem becomes stiff, the SDC and InDC methods require

small time steps, which increases the cost of the computation. In [41], a scheme that

combines exponential time differencing (ETD) method and SDC/InDC method was
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proposed for effectively resolving the stiffness of stiff problems without refining the

time-step size. However the scheme only works for linear stiff problems.

Traditional ODE integrators use approximation space with polynomial functions

to construct high-order methods, e.g., the collocation methods at various collocation

quadrature points [30, 31], RK methods, etc. In this work, we consider to augment

the polynomial basis with some non-polynomial elementary functions such as an ex-

ponential function. The exponential function has an adaptive parameter which can

be constructed via local solution structure. The new augmented basis leads to a new

class of InDC methods that are able to better capture sharp solution structures such

as initial layers and internal layers. Specifically, in the prediction step of the InDC

framework, the exponential function eλt with the stiffness parameter λ is adaptively

selected to better capture the dynamic solution structure. The new adaptive basis is

then used to derive numerical quadratures for approximating residuals in correction

iterations. When the InDC solutions converge with correction iterations, it would

converge to a new class of collocation solution with the adaptive non-polynomial

basis. For details, see discussions on the traditional polynomial basis in [32]. Note

that the adaptive non-polynomial basis has been successfully developed in [39] in the

discontinuous Galerkin framework for solving hyperbolic, parabolic problems with

specific solution structures. We also comment that there are some recent develop-

ment on using exponentials for solution approximations for stiff ODEs in the SDC

framework [33]. Their idea of adaptively selecting proper exponential basis functions

is via skeletonization, and the construction of basis functions is different from the

proposed augmented polynomial basis in our work.
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InDC scheme with adaptive non-polynomial basis has advantages over InDC

scheme with polynomial basis, due to the fact that adaptive non-polynomial basis

can approximate a function better than traditional polynomial basis. To be specific,

smooth functions can be approximated by the non-polynomial basis as well as by

polynomial basis because in this case the local adaptive parameter λ is very close to

0, while functions that have sharp structures such as initial and internal layers can

be approximated better by the adaptive non-polynomial basis than by polynomial

basis because the former has the adaptive parameter λ to automatically capture the

sharp structure. At the same time, when the adaptive non-polynomial basis is in-

corporated into the InDC framework, the stability and accuracy regions turn out to

be almost the same as those for polynomial InDC scheme, as is shown in Section

3.4 of this chapter. And it can be observed from numerical tests that the adaptive

non-polynomial InDC scheme is comparable to polynomial InDC scheme if the ODE

problem is not stiff or the initial condition is well-prepared (in this case the solution

doesn’t have sharp structures), while for ODE problems that have sharp solution

structures, the adaptive non-polynomial InDC outperforms polynomial InDC, in the

sense that the former with coarser meshes obtains the same error level as the latter

with refined meshes does.

This chapter is organized as follows. In Section 3.2 we test and compare the

performances of different bases in approximating functions that are smooth and

functions that have layers. In Section 3.3, the InDC scheme with non-polynomial

basis is presented and the stability and accuracy are studied in Section 3.4. Moreover,

the adaptive step-size control technique is presented in Section 3.5. Then in Section
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3.6 the adaptive non-polynomial InDC scheme is tested on several ODE examples.

3.2 Function Approximation with Adaptive Non-

Polynomial Basis

In this section, we first introduce examples of approximation spaces as in [39]. We

investigate and compare the performance of different approximation spaces in ap-

proximating functions of different shapes. Since our focus is the time integrator, we

consider approximation in one-dimensional domain [0, T ] discretized as
⋃
n

[tn−1, tn].

On each interval In = [tn−1, tn], we let the rescaled variable τ = 2
t−t

n− 1
2

hn
∈ [−1, 1]

with tn− 1
2

and hn being the mid-point and the length of the interval. Various ap-

proximation spaces we consider include the following.

1. The regular piecewise polynomial space:

BM
1 =

{
y : y|In ∈ span{1, τ, τ 2, · · · , τM},∀n

}
.

2. The exponential space I:

BM
2 (λ) =

{
y : y|In ∈ span{eλτ , τ, τ 2, · · · , τM},∀n

}
.

3. The exponential space II:

BM
3 (λ) =

{
y : y|In ∈ span{eλτ (1, τ, τ 2, · · · , τM)}, ∀n

}
.
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4. The exponential space III:

BM
4 (λ) =

{
y : y|In ∈ span{1, τ, τ 2, · · · , τM , eλτ},∀n

}
.

There are several remarks we would like to make in terms of finding the best function

approximating a given function f(t) using the approximation spaces specified above.

Remark 3.2.1. There is a parameter λ in the exponential spaces. Below, we will

consider the case when λ is fixed (non-adaptive) and the case when λ is adaptively

selected according to the local function structures as in [39]. For the adaptive basis,

we find a local parameter λn for each cell In such that the following quantity

ˆ
In

[log|f(t)| − log(ceλnτ )]2dt, c > 0, (3.2.1)

is minimized. Taking the derivative of (3.2.1) with respect to λn and setting the

derivative to be zero, one gets

−
ˆ
In

2[log|f(t)| − log|c| − λnτ ]τdt = 0 (3.2.2)

which gives

λn =
6

h2
n

ˆ
In

(t− tn− 1
2
)log|f(t)|dt. (3.2.3)

The effectiveness of the above approach in identifying the adaptive parameter λn

has been extensively tested in [39]. Note that if the function f(t) changes sign

over interval In, then we propose to replace log|f(t)| with log(f(t) − mint∈In f(t))

in eq. (3.2.1). When the function being approximated undergoes mild changes, then
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the adaptive λ would be chosen to close to 0, then the exponential basis BM
2 (λ) and

BM
3 (λ) is very close to the regular polynomial basis.

Remark 3.2.2. The function in the approximation space is chosen as the L2 projec-

tion of the original function f into a approximation space with basisB = {φ1, · · · , φM},

denoted as Phf . In order to perform the L2 projection, one needs to perform in-

tegration for the mass matrix MM×M = (mij) with mij =
´
In
φiφjdt as well as a

column vector ~bM×1 with bj =
´
In
f(t)φjdt. Usually, the integrations are performed

via numerical quadrature rules. However, when the parameter |λn| is large, corre-

sponding to fast decay or growth of the solution over a small interval, then a more

careful integration (either exact integration or numerical integration with a smaller

resolution scale) needs to be performed. The L2 projection of the function f can be

expressed as

Phf = (φ1, · · · , φM)(M−1~b) ≈ f(t), on In.

Remark 3.2.3. For the exponential space III B4, the mass matrix M will be ill-

conditioned if |λ| is too small, as the two bases eλτ and 1 become very close to

each other (linearly dependent). A threshold value λthreshold is set to prevent the

ill-conditioning of the mass matrix M . Specifically, when |λ| < λthreshold, we set

λ = sign(λ)λthreshold. In our numerical tests, we let λthreshold = 1
2
.

Remark 3.2.4. In [39], it is proved that if each of the basis functions φi, i = 1, · · · k

can be well-approximated by polynomials, then the L2 projection of the function

onto the approximation space Ph(f) is a high-order approximation to the original

function f , see Proposition 3.2 in [39].
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In tables 3.2.1—3.2.4, we present the function approximation via the L2 projec-

tion onto the approximation space B1, B2, B3 and B4 and compare their perfor-

mances. We consider the exponential space using a fixed parameter λ = Chn where

C = −1 and with adaptive selection of parameter according to Remark 3.2.1. The

functions being approximated include a smooth one f(t) = sin(t), as well as functions

with sharp layers f(t) = e−50t, f(t) = te−50t and f(t) = 1/(1+exp(−100t))+cos(πt).

In general, an adaptive exponential basis performs better than the same space with

a fixed parameter λ. Expected k+1-th order accuracy is observed for B1, B2 and B3

approximation space, and k + 2-th order accuracy is observed for the B4 basis when

the function being approximated is smooth and well resolved, e.g. f(t) = sin(t).

When the functions being approximated have sharp layers, we compare the order of

magnitudes of errors for different approximation spaces. Again, the adaptive non-

polynomial space performs better than the non-adaptive one. It is also observed

that, in general the adaptive exponential bases perform better (smaller error in mag-

nitude) than the regular polynomial basis, especially when the mesh resolution is

coarse.
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Bk
1

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 2.01e-003 — 6.32e-005 — 1.17e-006 —
40 5.02e-004 2.00 7.89e-006 3.00 7.28e-008 4.00
80 1.25e-004 2.00 9.85e-007 3.00 4.55e-009 4.00
160 3.14e-005 2.00 1.23e-007 3.00 2.84e-010 4.00

Bk
2

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 9.46e-003 — 5.14e-004 — 1.73e-005 —
40 2.44e-003 1.95 6.40e-005 3.01 1.08e-006 4.00
80 6.19e-004 1.98 7.96e-006 3.01 6.79e-008 4.00
160 1.56e-004 1.99 9.94e-007 3.00 4.25e-009 4.00

Adaptive Bk
2

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 2.12e-003 — 6.43e-005 — 1.16e-006 —
40 5.28e-004 2.00 8.01e-006 3.00 7.24e-008 4.00
80 1.32e-004 2.00 1.00e-006 3.00 4.52e-009 4.00
160 3.30e-005 2.00 1.25e-007 3.00 2.83e-010 4.00

Bk
3

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 7.56e-003 — 7.94e-004 — 2.56e-005 —
40 2.21e-003 1.77 9.48e-005 3.07 1.68e-006 3.93
80 5.91e-004 1.90 1.15e-005 3.05 1.09e-007 3.94
160 1.52e-004 1.96 1.40e-006 3.03 6.97e-009 3.97

Adaptive Bk
3

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 3.21e-003 — 5.93e-006 — 2.11e-006 —
40 8.05e-004 2.00 6.93e-007 3.10 1.32e-007 4.00
80 2.01e-004 2.00 8.39e-008 3.05 8.26e-009 4.00
160 5.03e-005 2.00 1.04e-008 3.02 5.16e-010 4.00

Bk
4

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 2.27e-004 — 3.66e-006 — 8.93e-008 —
40 5.48e-005 2.05 4.41e-007 3.05 5.38e-009 4.05
80 1.36e-005 2.01 5.46e-008 3.01 3.33e-010 4.01
160 3.38e-006 2.00 6.80e-009 3.00 2.07e-011 4.01

Adaptive Bk
4

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 1.56e-004 — 4.86e-006 — 6.76e-008 —
40 4.31e-005 1.85 5.34e-007 3.19 4.67e-009 3.85
80 1.15e-005 1.90 6.21e-008 3.10 3.12e-010 3.90
160 2.99e-006 1.95 7.48e-009 3.05 2.02e-011 3.95

Table 3.2.1: Comparison of different bases for approximating sin(t), t ∈ [0, 2π].
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Bk
1

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 4.29e-003 — 8.16e-004 — 1.32e-004 —
40 1.08e-003 1.99 1.17e-004 2.80 9.07e-006 3.87
80 2.62e-004 2.04 1.53e-005 2.94 5.76e-007 3.98
160 6.42e-005 2.03 1.93e-006 2.98 3.60e-008 4.00

Bk
2

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 4.29e-003 — 8.16e-004 — 1.32e-004 —
40 1.08e-003 1.99 1.17e-004 2.80 9.07e-006 3.87
80 2.62e-004 2.04 1.53e-005 2.94 5.76e-007 3.98
160 6.41e-005 2.03 1.93e-006 2.98 3.60e-008 4.00

Adaptive Bk
2

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 4.22e-003 — 8.15e-004 — 1.32e-004 —
40 1.04e-003 2.02 1.16e-004 2.81 9.06e-006 3.87
80 2.52e-004 2.05 1.51e-005 2.94 5.75e-007 3.98
160 6.14e-005 2.04 1.91e-006 2.98 3.59e-008 4.00

Bk
3

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 4.53e-003 — 9.45e-004 — 1.52e-004 —
40 1.15e-003 1.98 1.34e-004 2.82 1.05e-005 3.85
80 2.82e-004 2.03 1.73e-005 2.95 6.70e-007 3.97
160 6.91e-005 2.03 2.18e-006 2.99 4.20e-008 4.00

Adaptive Bk
3

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 3.50e-003 — 4.90e-004 — 8.15e-005 —
40 7.91e-004 2.15 6.47e-005 2.92 4.68e-006 4.12
80 1.83e-004 2.11 8.36e-006 2.95 2.80e-007 4.06
160 4.36e-005 2.06 1.06e-006 2.97 1.71e-008 4.03

Bk
4

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 1.24e-003 — 1.75e-004 — 3.21e-005 —
40 2.28e-004 2.45 1.54e-005 3.51 1.46e-006 4.46
80 4.29e-005 2.41 1.41e-006 3.45 6.77e-008 4.43
160 8.76e-006 2.29 1.42e-007 3.31 3.43e-009 4.30

Adaptive Bk
4

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 4.36e-004 — 8.29e-005 — 1.41e-005 —
40 2.10e-005 4.38 1.90e-006 5.45 1.67e-007 6.41
80 8.23e-006 1.35 3.63e-007 2.39 1.61e-008 3.37
160 3.83e-006 1.10 8.31e-008 2.12 1.85e-009 3.12

Table 3.2.2: Comparison of different bases for exp(−50t), t ∈ [0, 1].
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Bk
1

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 1.01e-004 — 2.94e-005 — 7.35e-006 —
40 2.75e-005 1.88 4.68e-006 2.65 5.41e-007 3.76
80 6.80e-006 2.02 6.32e-007 2.89 3.49e-008 3.95
160 1.65e-006 2.04 8.08e-008 2.97 2.19e-009 4.00

Bk
2

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 1.01e-004 — 2.94e-005 — 7.35e-006 —
40 2.75e-005 1.88 4.68e-006 2.65 5.41e-007 3.76
80 6.80e-006 2.02 6.32e-007 2.89 3.49e-008 3.95
160 1.65e-006 2.04 8.08e-008 2.97 2.19e-009 4.00

Adaptive Bk
2

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 1.01e-004 — 2.94e-005 — 7.35e-006 —
40 2.75e-005 1.88 4.68e-006 2.65 5.41e-007 3.76
80 6.80e-006 2.02 6.32e-007 2.89 3.49e-008 3.95
160 1.65e-006 2.04 8.08e-008 2.97 2.19e-009 4.00

Bk
3

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 1.02e-004 — 3.23e-005 — 7.97e-006 —
40 2.79e-005 1.86 5.08e-006 2.67 5.96e-007 3.74
80 7.00e-006 1.99 6.79e-007 2.90 3.87e-008 3.95
160 1.70e-006 2.04 8.67e-008 2.97 2.43e-009 3.99

Adaptive Bk
3

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 1.01e-004 — 2.94e-005 — 7.35e-006 —
40 2.75e-005 1.88 4.70e-006 2.65 5.44e-007 3.76
80 6.81e-006 2.01 6.36e-007 2.88 3.52e-008 3.95
160 1.66e-006 2.04 8.14e-008 2.97 2.21e-009 3.99

Bk
4

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 3.91e-005 — 8.78e-006 — 2.19e-006 —
40 7.44e-006 2.39 7.89e-007 3.48 1.02e-007 4.43
80 1.32e-006 2.49 6.90e-008 3.52 4.59e-009 4.47
160 2.53e-007 2.39 6.60e-009 3.39 2.24e-010 4.36

Adaptive Bk
4

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 3.71e-005 — 8.82e-006 — 2.17e-006 —
40 6.94e-006 2.42 7.22e-007 3.61 8.91e-008 4.61
80 1.23e-006 2.50 5.99e-008 3.59 3.80e-009 4.55
160 2.16e-007 2.51 5.58e-009 3.42 1.86e-010 4.36

Table 3.2.3: Comparison of different bases for texp(−50t), t ∈ [0, 1].
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Bk
1

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 7.40e-003 — 3.59e-003 — 1.02e-003 —
40 2.81e-003 1.40 5.25e-004 2.77 1.04e-004 3.29
80 6.66e-004 2.08 5.09e-005 3.37 2.00e-005 2.38
160 1.55e-004 2.10 1.27e-005 2.01 1.02e-006 4.29

Bk
2

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 8.16e-003 — 3.58e-003 — 1.02e-003 —
40 3.01e-003 1.44 5.23e-004 2.77 1.04e-004 3.29
80 7.14e-004 2.08 5.07e-005 3.37 2.00e-005 2.38
160 1.67e-004 2.09 1.26e-005 2.01 1.02e-006 4.29

Adaptive Bk
2

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 7.47e-003 — 3.59e-003 — 1.02e-003 —
40 2.83e-003 1.40 5.25e-004 2.77 1.04e-004 3.29
80 6.71e-004 2.08 5.11e-005 3.36 2.00e-005 2.38
160 1.56e-004 2.10 1.27e-005 2.01 1.02e-006 4.29

Bk
3

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 8.54e-003 — 3.80e-003 — 1.05e-003 —
40 3.09e-003 1.47 5.44e-004 2.80 1.06e-004 3.30
80 7.44e-004 2.05 5.30e-005 3.36 1.99e-005 2.42
160 1.76e-004 2.08 1.28e-005 2.05 1.02e-006 4.29

Adaptive Bk
3

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 8.08e-003 — 3.60e-003 — 1.02e-003 —
40 2.91e-003 1.47 5.29e-004 2.77 1.08e-004 3.24
80 6.93e-004 2.07 5.65e-005 3.23 1.95e-005 2.47
160 1.63e-004 2.09 1.25e-005 2.17 9.99e-007 4.29

Bk
4

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 3.99e-003 — 1.04e-003 — 4.07e-004 —
40 6.12e-004 2.71 1.16e-004 3.17 9.66e-005 2.08
80 9.37e-005 2.71 1.94e-005 2.57 2.81e-006 5.10
160 1.94e-005 2.27 1.03e-006 4.24 1.17e-007 4.58

Adaptive Bk
4

k=1 k=2 k=3
N L1 error order L1 error order L1 error order
20 3.94e-003 — 1.04e-003 — 4.07e-004 —
40 5.94e-004 2.73 1.15e-004 3.18 9.63e-005 2.08
80 8.97e-005 2.73 1.93e-005 2.57 2.78e-006 5.11
160 1.86e-005 2.27 1.00e-006 4.26 1.15e-007 4.59

Table 3.2.4: Comparison of different bases for 1/(1 + exp(−100t)) + cos(πt), t ∈
[−1, 1].
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3.3 InDC Method with Adaptive Non-Polynomial

Basis

3.3.1 Review of the Traditional SDC/InDC Methods

We review the SDC/InDC methods for a standard initial-value problem

y′ = f(t, y), t ∈ [0, T ], with the initial data y(0) = y0. (3.3.1)

The time domain [0, T ] is discretized into intervals

0 = t1 < t2 < · · · < tn < · · · < tN = T,

and each interval In = [tn−1, tn] is further discretized into M sub-intervals

tn−1 = tn,0 = tn,1 < · · · < tn,m < · · · < tn,M = tn. (3.3.2)

We let τm := tn,m, ∀m = 0, · · ·M in (3.3.2), and refer to them as quadrature nodes.

When these quadrature points are Gaussian points, the method is called the SDC

method [29]; when the quadrature points are equally spaced, then the method is

called the InDC method [28]. For each time interval In, let H
.
= tn − tn−1 and

h = H/M , then the InDC method on In is described below.

• (prediction step) Use a low-order numerical integrator to obtain a numerical

solution, ~η[0] = (η
[0]
0 , . . . , η

[0]
M ), which is a low-order approximation to the exact
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solution at quadrature points τm. For example, applying a first-order forward

Euler method to (3.3.1) gives η
[0]
m+1 = η

[0]
m + hf(τm, η

[0]
m ), m = 0, . . . ,M − 1.

• (correction loop) Use the error function to improve the accuracy of the scheme

at each iteration. For k = 1, . . . , K (K is number of correction steps),

1. Denote the error function from the previous step as

e(k−1)(t) = y(t)− η(k−1)(t), (3.3.3)

where y(t) is the exact solution and η(k−1)(t) is an M th degree polyno-

mial interpolating ~η[k−1]. Note that the error function, e(k−1)(t), is not a

polynomial in general.

2. Let the residual function be ε(k−1)(t) = (η(k−1))′(t)− f(t, η(k−1)(t)).

3. Compute the numerical error vector, ~δ[k] = (δ
[k]
0 , . . . , δ

[k]
m , . . . , δ

[k]
M ), using

a low-order numerical method to discretize the integral form of the error

equation,

(
e(k−1) +

ˆ t

0

ε(k−1)(τ) dτ

)′
(t) = f(t, η(k−1)(t) + e(k−1)(t))− f(t, η(k−1)(t)).

(3.3.4)

Let δ
[k]
m be the corresponding numerical approximation to the exact error

function at τm. For example, applying a first-order forward Euler method

to (3.3.4) gives,

δ
[k]
m+1 = δ[k]

m + h(f(τm, η
[k−1]
m + δ[k]

m )− f(τm, η
[k−1]
m ))−

ˆ τm+1

τm

ε(k−1)(t) dt,
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m = 0, . . . ,M − 1,

(3.3.5)

where the integral term
´ τm+1

τm
in the above equation is approximated by

ˆ τm+1

τm

ε(k−1)(t) dt = η
[k−1]
m+1 − η[k−1]

m −
∑
j

Sm,jf(tj, η
[k−1]
j )

with the Lagrangian polynomial integration coefficients

Sm,j =
1

h

ˆ τm+1

τm

αj(s)ds, for m = 0, · · · ,M − 1, j = 1, · · ·M,

where αj(s) =
∏

i
s−τi
τj−τi is the Lagrangian polynomial basis function based

on the node τj, j = 1, · · ·M . Let

Sm(~f) =
M∑
j=1

Sm,jf(tj, yj), (3.3.6)

then

hSm(~f)−
ˆ τm+1

τm

f(s, y(s))ds = O(hM+1),

for any smooth function f . In other words, the quadrature formula given

by hSm(~f) approximates the exact integration with (M + 1)th order of

accuracy locally.

4. Update the numerical solution ~η[k] = ~η[k−1] + ~δ[k].

Notationally, superscripts with a round bracket, e.g., (k), denote a function, while

superscripts with a square bracket, e.g., [k], denote a vector at the kth correction step.
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English letters are reserved for functions or vectors in the exact solution space, e.g.,

an exact solution y(t) and an exact error function e(t), while Greek letters denote

functions or vectors in the numerical solution space, e.g., a numerical solution η(t),

and a numerical error function δ(t).

Remark 3.3.1. It was pointed out in [32] that if the SDC/InDC correction iter-

ation converges, it converges to the collocation solution with given quadrature n-

odes (τ1, · · · , τM). Specifically, let ~η = limk→∞ ~η
[k−1]

, then ~η = η01 + S~η, where

1 = (1, · · · , 1)′ is of size M × 1 and S is the integration matrix of size M ×M .

3.3.2 InDC Methods with Adaptive Non-Polynomial Basis

When the ODE problem (3.3.1) becomes stiff or multi-scale, many numerical chal-

lenges need to be addressed. For example, one may apply implicit or exponential

time differencing methods to ensure stability and accuracy of time integrators with

large time-step size. For layer structures, very-fine resolution is usually needed to re-

solve the layer. Observing the fast growth and decay of the solution structure around

layers, we propose to use an adaptive exponential basis as discussed in Section 3.2,

rather than the standard polynomial basis in constructing numerical integrators in

the InDC framework. Specifically, we propose the following modification to the stan-

dard InDC algorithm. We take the exponential space BM
2 (λ) with adaptive choice of

λ as an example to illustrate the idea, while the algorithm can be readily generalized

to other adaptive non-polynomial spaces.

• (prediction step) The prediction step remains the same as the standard InDC
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algorithm. When the problem becomes stiff or multi-scale, an implicit, implicit-

explicit or exponential time differencing method may be used.

• (correction loop) In the modified scheme, we first need to find an appropriate

parameter λ in exponential basis eλτ by fitting the solution from prediction

or the previous correction iteration. The fitting procedure would be the same

as that outlined in Remark 3.2.1, where the function values are available as

approximations at quadrature points. The numerical solution and integration

of residual are then approximated by using the exponential basis space, rather

than the standard polynomials. Specifically, the modified procedure for the

correction iteration is outlined below. For k = 1, . . . , K (K is number of

correction steps),

1. Find an adaptive parameter λ in a time-step evolution via

λ =
6

H2

ˆ tn

tn−1

(t− tn− 1
2
)log|η(k−1)(t)|dt, (3.3.7)

where the integration is numerically approximated by a regular quadrature

rule based on uniform nodes. Note that since log scale is taken, the regular

quadrature rule based on polynomial approximation is appropriate.

2. Denote the error function from the previous step as

e(k−1)(t) = y(t)− η(k−1)(t), (3.3.8)

where y(t) is the exact solution and η(k−1)(t) ∈ BM
2 (λ) interpolates ~η[k−1].
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3. Let the residual function be ε(k−1)(t) = (η(k−1))′(t)− f(t, η(k−1)(t)).

4. Compute the numerical error vector, ~δ[k] = (δ
[k]
0 , . . . , δ

[k]
m , . . . , δ

[k]
M ), using

a low-order numerical method to discretize the integral form of the error

equation,

(
e(k−1) +

ˆ t

0

ε(k−1)(τ) dτ

)′
(t) = f(t, η(k−1)(t) + e(k−1)(t))− f(t, η(k−1)(t)).

(3.3.9)

Let δ
[k]
m be the corresponding numerical approximation to the exact error

function at τm. For example, applying a first-order forward Euler method

to (3.3.9) gives,

δ
[k]
m+1 = δ[k]

m + h(f(τm, η
[k−1]
m + δ[k]

m )− f(τm, η
[k−1]
m ))−

ˆ τm+1

τm

ε(k−1)(t) dt,

m = 0, . . . ,M − 1,

(3.3.10)

where integral term
´ τm+1

τm
for the residual in the above equation is ap-

proximated by

ˆ τm+1

τm

ε(k−1)(t) dt = η
[k−1]
m+1 − η[k−1]

m −
∑
j

Sλm,jf(tj, η
[k−1]
j )
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where the integration coefficients Sλm,j are obtained from integrating func-

tions in BM
2 (λ) interpolating ~η(k−1). Specifically,

Sλm,j =
1

h

ˆ τm+1

τm

αλj (s)ds, for m = 0, · · · ,M − 1, j = 1, · · ·M,

(3.3.11)

where αλj (s) ∈ BM
2 (λ) is the Lagrangian basis function based on the node

τj satisfying αλj (τi) = δij. Similar to the polynomial basis, the quadrature

formula based on exponential basis approximates the exact integration

with (M + 1)th order of accuracy locally.

5. Update the numerical solution ~η[k] = ~η[k−1] + ~δ[k].

Remark 3.3.2. We remark that, for smooth solutions with well resolved time-step

resolution, the numerical solution changes mildly over the time interval. The adaptive

λ could be close to 0. In this case, the exponential basis BM
2 (λ) behaves in a very

similar way to the regular polynomial basis. On the other hand, when the solution

undergoes rapid change over a time-step, the adaptive λ could be away from zero to

better capture sharp transition of the solution.

Remark 3.3.3. If the InDC correction iterations converge, using similar argument

as those in [32], the InDC solution converges to the exponential basis collocation

solution with given quadrature nodes (τ1, · · · , τM). Specifically, let ~η = limk→∞ ~η
[k−1]

,

then ~η = η01 + Sλ~η, where 1 = (1, · · · , 1)′ is of size M × 1 and Sλ is the integration

matrix of size M ×M constructed based on an exponential basis parameterized by

λ.
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3.4 Stability and Accuracy Properties

In this section, we investigate the stability and accuracy properties of the InDC

methods using adaptive exponential bases via standard linear analysis. Below, we

first introduce the concepts of stability and accuracy regions ([28]), which are widely

used as a measurement to compare performance of different numerical integrators.

Definition 3.4.1. The amplification factor for a numerical method, Am(λ), can be

interpreted as the numerical solution to

y′(t) = λy(t), y(0) = 1, (3.4.1)

after one time-step of size 1 for λ ∈ C, i.e., Am(λ) = y(1).

Definition 3.4.2. The stability region, S, for a numerical method, is the subset of

the complex plane C, consisting of all λ such that Am(λ) ≤ 1,

S = {λ : Am(λ) ≤ 1} .

Definition 3.4.3. Let e(λ) be the error at T = 1, obtained using a numerical method

to solve IVP (3.4.1), λ ∈ C, with a fixed number of function evaluations (i.e., dt

is chosen so that the total number of function evaluations for the method can be

controlled). Then, the accuracy plot for that numerical method is defined to be a

contour plot of the error, e(λ).

We study the stability and accuracy properties of the InDC schemes with different

lower-order schemes in the prediction and correction steps. For example, if forward
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Euler scheme is used at the prediction and correction steps, then the scheme is

denoted as FEInDC. So if backward Euler or implicit-explicit (IMEX) schemes

are used, we have BEInDC or IMEXInDC schemes respectively. Suppose the

dimension of the approximation space is M , and the number of correction steps is

J , then the corresponding InDC scheme can be denoted as FEInDCJ
M , BEInDCJ

M ,

and IMEXInDCJ
M respectively. For example, if the quadrature nodes for In are

tn−1 + (0, 1/4, 2/4, 3/4, 1)h with h = (tn− tn−1)/4, then M = 5 and J takes values

of 0, 1, 2, 3, 4 and if the quadrature nodes for In are tn−1 + (1/4, 2/4, 3/4, 1)h

with h = (tn − tn−1)/4, then M = 4 and J takes values of 0, 1, 2, 3.

The stability regions for various InDC schemes with different approximation bases

are presented in figures (3.4.1)—(3.4.6), from which the following observations can

be made.

1. For FEInDC schemes, the stability regions are the domains enclosed by the

closed curves in figures (3.4.1) and (3.4.2). For FEInDC with a given basis,

the stability region shrinks as J (the number of correction steps) increases.

And in general, the stability regions for FEInDC with adaptive B2, adaptive

B2 and adaptive B3 are comparable to that for FEInDC with polynomial

basis B1.

2. For BEInCD schemes, the stability regions are the open domain outside the

closed curves in figures (3.4.1) and (3.4.2). Similarly, the stability region shrinks

as J increases and overall the stability regions corresponding to adaptive B2,
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adaptive B2 and adaptive B3 are similar to that for B1. However, the sta-

bility regions for M = 4 and M = 5 are quite different, since the plots in-

dicate that the stability region for M = 5 is smaller than that for M = 4

for a given J . From this point of view, BEInDC schemes with sub-intervals

(1/4, 2/4, 3/4, 1)h that exclude the left-most quadrature point are better

than those with sub-intervals (0, 1/4, 2/4, 3/4, 1)h including the left-most

quadrature point.

3. For IMEXInDC schemes, the stability regions are the left parts of two pieces

of the complex plane divided by the open curves in figure (3.4.5) and (3.4.6).

The same as the previous observations, the stability region shrinks as J in-

creases and all the stability regions for B1, adaptive B2, adaptive B3, adaptive

B4 are similar.

The accuracy regions with time-step 4t = 0.2 for various InDC schemes are p-

resented in figures (3.4.7)—(3.4.12). It can be observed that for given M and J ,

the accuracy regions for a scheme (FEInDC, BEInDC and IMEXInDC) with

different approximation bases are almost the same. Moreover, for a scheme with

given M and a given basis, the accuracy region for a given tolerance ε increases as J

increases, which is consistent with that the order of accuracy of the scheme increases

as J increases.

So overall, the stability and accuracy regions for the schemes FEInDC, BEInDC

and IMEXInDC with adaptive non-polynomial bases are comparable to those for

the corresponding scheme with traditional polynomial basis B1, hence replacing B1
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by an adaptive non-polynomial basis doesn’t hurt the stability and accuracy prop-

erties of the traditional InDC schemes.

3.5 Adaptive Step Size Control

As is well known, for problems with solution that have both smooth structures and

sharp structures (e.g., the solution to the Van de Pol system), it is more efficient,

or even exclusively the only choice in some cases, to implement an ODE solver with

adaptive step sizes. To adaptively select the step size hn, we need a proper error

estimate that serves as a criterion to determine whether or not hn has to be refined,

and if so, how it should be refined.

For the InDC scheme, recall that after k iterations we obtain

η[k]
m , m = 0, 1, 2, · · · ,M, (3.5.1)

the numerical solutions for y(t) at the quadrature nodes tn = τ0 < τ1 < · · · < τM =

tn+1 on the interval [tn, tn+1]. We propose the following error estimate

eM = |y∗n+1 − y∗∗n+1| (3.5.2)

where

y∗n+1 = yn +

ˆ tn+1

tn

P
BM

i
M (f(y, t))dt (3.5.3)
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and

y∗∗n+1 = yn +

ˆ tn+1

tn

P
BM

i
M−1(f(y, t))dt. (3.5.4)

Here P
BM

i
M (f(y, t)) is the function in the space BM

i that interpolates {f(η
[k]
m , τm)}m=M

m=0

and P
BM

i
M−1(f(y, t)) is the function in the space BM

i that interpolates {f(η
[k]
m , τm)}m=M

m=1 .

Note that the only difference between P
BM

i
M (f(y, t)) and P

BM
i

M−1(f(y, t)) is that the

former includes the left-most point τ0 while the latter doesn’t. When BM
i = BM

1

(the case of the polynomial InDC scheme), P
BM

1
M (f(y, t)) and P

BM−1
1

M (f(y, t)) are just

interpolating polynomials.

With the error estimate eM and a given error tolerance etol, we adopt the step

size prediction formula

hnewn = hn ·min( 6, max( 0.2, 0.9(
etol
eM

)
1
p ) ), (3.5.5)

with p = 1, as is suggested in [31] (Equation (7.28) on page 112), in chapter IV.8 of

which a thorough study for step size selection can be found.

Remark 3.5.1. For our newly designed adaptive non-polynomial InDC scheme, it

is expected that for a given etol, the step size hnewn should be larger than that for

traditional polynomial InDC scheme, especially in the region where the initial or

internal layers reside, thanks to the robustness of the adaptive basis element eλnt in

capturing the sharp structures of the layers.
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3.6 Numerical Tests

In this section, we test the InDC schemes with different adaptive non-polynomial

bases on several ODE problems. The solution to each of these problems has initial

or internal layers. For example, the solution to the scaler ODE problem

y′ = −2πsin(2πt)− 1

ε
(y − cos(2πt)), y(0) = 1 + α (3.6.1)

is

y(t) = αe−t/ε + cos(2πt). (3.6.2)

αe−t/ε is the part that depends on the stiffness parameter ε and cos(2πt) is the

smooth part that is independent of ε. When ε is very small, e.g. ε = 1.0 × 10−6,

αe−t/ε has a sharp shape, which is called initial layer because it exists mostly at the

initial part of the whole solution.

One may notice that solution to problem (3.6.1) is independent of the stiffness

parameter ε when the initial data y(0) = 1, i.e., α = 0. In this case, the solution only

has the smooth part, hence an implicit InDC scheme with regular polynomial basis

can accurately solve the problem without the need to take extremely small time-step

size. For general initial data, the adaptive step size selection technique is needed since

for the initial layer, small time steps should be used to get accurate enough solution,

while for the region after the initial layer, normal step size should be used due to

the consideration of computational efficiency. This motivates us to combine the non-

polynomial InDC scheme with polynomial InDC scheme: in the stiff region, we use
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the non-polynomial basis while in the smooth region we use the regular polynomial

basis. To determine whether or not an time interval In is in smooth region, we

compute the local stiffness parameter λn based on the predicted solution obtained

by the prediction step in the InDC scheme, and if |λn/(0.5Hn)| is larger than a critical

value λc, adaptive non-polynomial bases will be used to solve the problem over In,

otherwise polynomial basis will be used. In the following tests, we use InDCJ
M(B1)

to denote the regular polynomial InDC scheme, and InDCJ
M(B1, Bn), n = 2, 3, 4 to

denote the mixed InDC scheme that adopts B1 in smooth regions and adopts Bn (the

non-polynomial basis) in stiff regions. To test if the proposed non-polynomial InDC

schemes outperform traditional polynomial InDC schemes, we compare the number

of time steps that are needed to obtain a given error tolerance when the schemes are

applied to solve the ODE problems.

Example 3.6.1. (Cosine problem with an initial layer)

y′ = −2πsin(2πt)− 1

ε
(y − cos(2πt)), y(0) = 1 + α. (3.6.3)

We consider the case with α = 1.0 and ε = 1.0 × 10−6, in which the solution has a

very-sharp initial layer. We solve the problem with schemes BEInDC1
4 , BEInDC2

4 ,

BEInDC1
5 , and BEInDC2

5 with different bases. In our test λc is set to be 104.

And in the adaptive step size selection procedure the error tolerance etol is set to be

1.0× 10−5.

The results are shown in figures 3.6.1—3.6.4, in which NOS is the abbreviation

for number of steps. Take the scheme BEInDC2
4 as an example, we can observe the
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following properties.

1. For final time T = ε, 10ε, 105ε, BEInDC2
4 with mixed bases costs fewer time

steps than BEInDC2
4 with B1 (polynomial basis), given the same error toler-

ance measured in the L1 norm. For example, at time T = ε, BEInDC2
4(B1)

costs 9 steps while BEInDC2
4(B1, B4) costs 7 steps.

2. If the final time T is in the stiff region, i.e., T = ε, then the non-polynomial

basis takes all the time steps. For example, for BEInDC2
4(B1, B4), B4 is used

in all the 7 steps, and B1 is not used.

3. If the final time T = 10ε, then both the non-polynomial basis and polynomial

basis are used for some time steps. For example, for BEInDC2
4(B1, B4), B4

costs 12 steps and B1 costs 4 steps.

4. If the final time T = 105ε, then the NOS for B4 is still the same as that for

time T = 10ε. This can be explained by that after time T = 10ε, the solution

is in the smooth region, hence the problem is solely solved by B1 and B4 is not

used anymore.

5. Overall, the performance of BEInDC2
4(B1, B4) is the best.

Similar properties for InDC1
4 , InDC1

5 and InDC2
5 can be observed. And we found

that schemes with M = 5 take more time steps than schemes with M = 4 for

T = 100000ε. So overall, BEInDCJ
4 (B1, B4) is a better choice for improving com-

putational efficiency when one solves stiff problems with sharp initial layers.
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Example 3.6.2. (Van der Pol system)

Consider the Van der Pol system

 y′1 = y2,

εy′2 = (1− y2
1)y2 − y1,

(3.6.4)

with ε = 0.01. The initial condition is y1(0) = 2,

y2(0) = −0.66.
(3.6.5)

We solve the problem with scheme InDC3
4 with different bases. And in the adaptive

step size selection procedure etol is set to be 1.0× 10−2.

The results are shown in figures 3.6.5 and 3.6.6. Both the solutions to y1 and y2

have internal layers. It can be observed that InDC3
4(B1, B4) takes 12 fewer steps

than InDC3
4(B1) if the final time is T = 1 for which the solution has one internal

layer, and takes 29 fewer steps if the final time is T = 2 for which the solution

has two internal layers. So InDC3
4(B1, B4) improves the computational efficiency by

saving time steps, and the more layers the solution has, the more time steps it saves.

However, InDC3
4(B1, B2) and InDC3

4(B1, B3) do not have such advantage.
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Figure 3.4.1: Stability regions for forward Euler (FE) InDC schemes. Top-left:
FEInDC4 with B1; Top-right: FEInDC5 with B1; Bottom-left: FEInDC4 with
adaptive B2; Bottom-right: FEInDC5 with adaptive B2. k is the number of correc-
tion steps.
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Figure 3.4.2: Stability regions for forward Euler (FE) InDC schemes. Top-left:
FEInDC4 with adaptive B3; Top-right: FEInDC5 with adaptive B3; Bottom-
left: FEInDC4 with adaptive adaptive B4; Bottom-right: FEInDC5 with adaptive
adaptive B4. k is the number of correction steps.
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Figure 3.4.3: Stability regions for backward Euler (BE) InDC schemes. Top-left:
BEInDC4 with B1; Top-right: BEInDC5 with B1; Bottom-left: BEInDC4 with
adaptive adaptive B2; Bottom-right: BEInDC5 with adaptive adaptive B2. k is the
number of correction steps.
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Figure 3.4.4: Stability regions for backward Euler (BE) InDC schemes. Top-left:
BEInDC4 with adaptive B3; Top-right: BEInDC5 with adaptive B3; Bottom-
left: BEInDC4 with adaptive adaptive B4; Bottom-right: BEInDC5 with adaptive
adaptive B4. k is the number of correction steps.
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Figure 3.4.5: Stability regions for implicit-explicit (IMEX) InDC schemes. Top-
left: IMEXInDC4 with B1; Top-right: IMEXInDC5 with B1; Bottom-left:
IMEXInDC4 with adaptive adaptive B2; Bottom-right: IMEXInDC5 with adap-
tive adaptive B2. k is the number of correction steps.
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Figure 3.4.6: Stability regions for implicit-explicit (IMEX) InDC schemes. Top-
left: IMEXInDC4 with adaptive B3; Top-right: IMEXInDC5 with adap-
tive B3; Bottom-left: IMEXInDC4 with adaptive adaptive B4; Bottom-right:
IMEXInDC5 with adaptive adaptive B4. k is the number of correction steps.

96



3.6. NUMERICAL TESTS

Figure 3.4.7: (Accuracy regions) Top-left: FEInDC4 with B1; Top-right: FEInDC5

with B1; Bottom-left: FEInDC4 with adaptive B2; Bottom-right: FEInDC5 with
adaptive B2. For each of the figures for InDC4, the top-left, top-right, bottom-
left, bottom-right sub-figures are for InDC0

4 , InDC
1
4 , InDC

2
4 , InDC

3
4 respectively

and for each of the figures for InDC5, the top-left, top-right, middle-left, middle-
right, bottom-left sub-figures are for InDC0

5 , InDC
1
5 , InDC

2
5 , InDC

3
5 , InDC

4
5

respectively.
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Figure 3.4.8: (Accuracy regions) Top-left: FEInDC4 with adaptive B3; Top-right:
FEInDC5 with adaptive B3; Bottom-left: FEInDC4 with adaptive B4; Bottom-
right: FEInDC5 with adaptive B4.
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Figure 3.4.9: (Accuracy regions) Top-left: BEInDC4 with B1; Top-right: BEInDC5

with B1; Bottom-left: BEInDC4 with adaptive B2; Bottom-right: BEInDC5 with
adaptive B2.
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Figure 3.4.10: (Accuracy regions) Top-left: BEInDC4 with adaptive B3; Top-right:
BEInDC5 with adaptive B3; Bottom-left: BEInDC4 with adaptive B4; Bottom-
right: BEInDC5 with adaptive B4.
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Figure 3.4.11: (Accuracy regions) Top-left: IMEXInDC4 with B1; Top-right:
IMEXInDC5 with B1; Bottom-left: IMEXInDC4 with adaptive B2; Bottom-
right: IMEXInDC5 with adaptive B2.
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Figure 3.4.12: (Accuracy regions) Top-left: IMEXInDC4 with adaptive B3; Top-
right: IMEXInDC5 with adaptive B3; Bottom-left: IMEXInDC4 with adaptive
B4; Bottom-right: IMEXInDC5 with adaptive B4.
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Figure 3.6.1: (Example 3.6.1) NOS (number of steps) for InDC1
4 schemes with dif-

ferent bases. Top: T = ε; Middle: T = 10ε; Bottom: T = 105ε.
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Figure 3.6.2: (Example 3.6.1) NOS for InDC1
5 schemes with different bases. Top:

T = ε; Middle: T = 10ε; Bottom: T = 105ε.
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Figure 3.6.3: (Example 3.6.1) NOS for InDC2
4 schemes with different bases. Top:

T = ε; Middle: T = 10ε; Bottom: T = 105ε.
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Figure 3.6.4: (Example 3.6.1) NOS for InDC2
5 schemes with different bases. Top:

T = ε; Middle: T = 10ε; Bottom: T = 105ε.
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Figure 3.6.5: (Example 3.6.2) NOS for InDC3
4 schemes with different bases. (T=1)
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Figure 3.6.6: (Example 3.6.2) NOS for InDC3
4 schemes with different bases. (T=2)
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CHAPTER 4

Conclusions

The conclusions from the work in this dissertation are summarized as follows.

In the first part, the locally-parametrized flux limiters were successfully incor-

porated to modify the high-order numerical flux in the original finite volume (FV)

weighted essentially non-oscillatory (WENO) Runge Kutta (RK) scheme toward a

lower-order monotone flux that is maximum principle preserving (MPP), so that the

new scheme satisfies the maximum principle while at the same time maintains the

high-order accuracy. For linear advection problems, if the convection term f(u) sat-

isfies f ′(u) > 0 for all u or f ′(u) < 0 for all u, it was proved that the high-order

accuracy is maintained if the lower order flux is of Godnov type. And for a general
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setting, by Taylor-expansion around extrema it was proved that the FV RK WENO

scheme preserves up to third-order accuracy without extra Courant-Friedrichs-Lewy

(CFL) restriction. Extensive numerical tests were performed to verify the MPP

property of numerical solutions as well as preservation of high-order accuracy.

In the second part, the traditional integral deferred correction (InDC) scheme

based on polynomial basis was modified by replacing the polynomial basis with sev-

eral non-polynomial bases that contain exponential functions. Specifically, three

new bases B2, B3 and B4 were proposed as replacements for the polynomial basis

in the original scheme. Numerical investigations in the dissertation showed that all

these three new bases approximate functions with sharp layers slightly better than

polynomial, and among them B4 performs the best. We investigate the stability

and accuracy properties of the non-polynomial InDC scheme coupled with backward

Euler (BE), forward Euler (FE), and implicit-explicit (IMEX) schemes. Specifically,

the stability and accuracy regions of the InDC method with adaptive non-polynomial

basis are comparable to those of the traditional polynomial-based InDC scheme. The

newly proposed InDC scheme is applied to various stiff problems and it is observed

that in the presence of layers, the scheme with adaptive non-polynomial basis B4

uses less computational time steps than the scheme with regular polynomial basis,

given the same error tolerance. This fact indicates better computational efficiency

of the new scheme.
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