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CHAPTER I

INTRODUCTION

The increasing cost of controlling emissions from industrial sources
has magnified the need to develop accurate mathematical models which can
relate emission rate to air quality. In order to adequately describe
the relationship between emissions and air quality, a model must be able
to describe the variable (time and space) meteorological parameters and
the chemical or physical processes which remove pollutants from the
atmosphere,

During the past years, several models have been presented in the
literature [8], ranging from very simple ones like the box model to more
general cases solved by finite-difference techniques. The Eulerian formula-
tion [8] has been the most common approach due to the availability of
numerical techniques with which the equations can be solved.

A general model, one which includes temporal and spatial variations
of meteorological parameters, should provide a good description of
atmospheric diffusion processes. A dispersion model based on the
K-theory and solved using orthogonal collocation was presented by Fleischer
[8]. The atmospheric processes were described by the 3-dimensional,
unsteady-state diffusion equation including chemical reactions, The
work was validated with existing experimental data and shown to have
several significant advantages over other available methods,

Understanding of the cause-effect relationship of pollutant emission

and dispersion on the air quality may be difficult through a complex



general air pollution model. In addition, analytical solutions are
available only for simplified diffusion equations, The disadvantages of
solving simple cases using the same complex general method gave rise to
the present work.

Dispersion models based on the K-theory and solved by improved
mathematical techniques using spline orthogonal collocation are presented.
All types of steady-state air pollution problems are simulated., These
models extend from the simple ground level line source case to the complex
3-dimensional elevated point source model including the Coriolis effect,
Spline orthogonal collocation, a weighted residual method, reduces the
partial differential equation governing the mean concentration of
pollutant species, within the plume generated by the source, to first-
order ordinary differential equations. This system of equations is solved
in a digital computer,

The present work was evaluated by comparing the results to avail-
able analytical solutions, e.g., two or three-dimensional cases with
constant turbulent diffusivities and mean wind velocity, and no reaction,
Mathematical parameters, inherent of the techniques developed, are
determined through parametric studies., In addition, several hypothetical
cases are simulated to explore the present method response to variations

in atmospheric conditions.,



CHAPTER II

FORMULATION OF MODELS AND THEIR SOLUTION TECHNIQUES

The basic mathematical statement for description of the temporal
and spatial distribution of chemical species by the Eulerian approach is
the mass balance or continuity equation. This equation, applied to a

single species in the atmosphere, based on the K-theory is:

aC aC aC aC _ 9 aC d aC
T A A Pl r G T Bl tr O B
3 aC
H(KZ—B—Z).i.R (2.1)

The main objective of the present work is to predict the concen-
tration distribution with respect to time and space for various
atmospheric dispersion cases. The diffusion equation (2.1) is the basis
for all the models presented here. A description of these models and
their methods of solution is given next, starting with the simplest one,

the two dimensional continuous ground level line source.

Two Dimensional-Continuous Ground Level Line Source

A widely studied situation is the case of an infinite line source
in the y-direction at ground level emitting at a constant rate. At

steady state, equation (2.1) is simplified as
oC _
52 =0 ' (2,2)

In addition, for an infinite crosswind (y) line source,

) 3C, _
5y ) =0 (2.3)

K —
(yay



Upon assuming that the mean flow is along the x-axis, i.e.,
v=w=20 (2.4)
and that the diffusion in the x-direction is negligible compared to the
transport by the mean flow, i.e.,

] aC aC
a_X—(KX E) << u ‘é‘)—(‘ (2.5)

equation (2.1) for the case when no chemical reactions are included,
i.e., R=0 reduces to

3C _ 2 5C
u —3?(- = E( 7 KZ) (2.6)

with boundary conditions

C-»>20 as X,Z + (2.7a)

C~> o at x=2z2=0 (2.7b)

k €59 as 20, x>0 (2.7¢)
zZ 3z g ’

The last boundary condition implies zero flux at the surface, i.e.,
the pollutant is completely reflected.,

For the lower atmosphere, in adiabatic conditions, it has been seen
that the wind velocity varies with the logarithm of the height. However,
such a functional relationship proves intractable if an analytical solution
of equation (2.6) is desired. When a power-law form is adopted for both

the mean wind and turbulent diffusivity profiles, i.e.,

u = u (%)m K, = Kl(-zzT)“ (2.8)

the analytical solution [2], valid for r = m-n+2 >0, is



T
u S u,z
Clx,2) = ulgzs)[ 1 exp(- 5—) (2.9)

T le T le

where s = E%l and Zy is taken to be unity,

Continuity should be satisfied at any position in the x(downwind)

direction:

J u C(x,z)dz = Q for all x>0 (2.10)
o
where Q is the constant emission rate per unit crosswind length,

The case which is solved in the present work considers m=n=0, i.e.,
the diffusion is Fickian. Equation (2.6) becomes

3C _
u—ﬁ—- K — (2.11)

32C
A 822

and the analytical solution is reduced to

_2Q u %
C(x,z) = “:;:—[ <) “exp[- (2.12)

uz ]
X 4K x
uvm zZ Z
The boundary condition C+0 as z+« is too restrictive because it

cannot be applied to a case with an inversion layer at a certain height.

This situation can be represented by

3C _ _
Kz 3y = 0 at Z =2 (2.13)

Therefore, equation (2.13) is used as the second boundary condition in
the vertical direction. If a comparison with the analytical solution is

desired, Z ax 30 be given a sufficiently large value such that the

ax

pollutant never reaches the inversion layer. In addition, a solution



is usually needed up to a definite position in the x-direction. Equation
(2.11) is solved numerically for

ax ; Oszsz o (2.14)

0 <x<x
m
A transformation of the spatial coordinates to yield limits of 0 to
1 is performed by using

. z = =% (2.15)

X
max max

To complete the problem, a boundary condition in the x-direction must
be specified, and the constant emission rate taken into account,
The model by Fleischer [8] defined the location of the source
through a boundary condition in the x-~direction as
C0 at x=0
C = (2.16)
0 elsewhere
where CO is an equivalent source concentration to be calculated from
the emission rate using quadrature weights, Orthogonal collocation was
the numerical technique used for solving the partial differential
equation (2.1). One of the reasons as to why this was done is the
attractive feature of being able to position the point source exactly as
a collocation point with concentration Co and the rest of the collocation
points at x=0 with zero concentration. However, this procedure gives rise
to several problems:
1) Global collocation must be used, i.e., collocate points to

reduce the partial differential equation to a system of ordinary differ-

ential equations throughout the entire region of interest. Since the



solution to a dispersion model should have approximately the shape of a
conical plume, only a few points would be within this region. This means
that at several positions in the x-direction, especially close to the
source, only some points would have a certain concentration value and the
rest would contain zero concentration. Accurate interpolation from such
a concentration distribution is impossible;

2) One of the collocation points must match the location of the
source; and

3) A ground level source cannot be placed at z=0, but at the position
of the first collocation point, since only interior collocation points
are used in the solution,

In spite of all these restrictions, which will be removed in the
present work, it was proven that orthogonal collocation has better pro-
perties than other numerical techniques, and therefore will be used here
again,

A point source, which usually represents a stack, can be considered
as a very small area normal to u with a concentration C, equivalent to
the constant emission rate, as shown in Figure 2.1.

The present model then will have a discontinuous initial value
profile expressed as

C at §&=0

7%
0

-
o
A

1A
™

ct = (2.17)
0 at =0 2% > B

where C, can be calculated using equation (2,10):
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FIGURE 2.1 VERTICAL CONCENTRATION DISTRIBUTION
AT x=0 - GROUND LEVEL LINE SOURCE

B
Q= J uC z___dz*
o

0 max

Solving for CO;

- Q
CoTuEz (2.18)
max

Determination of the concentration distribution as a function of the
spatial variables x and z requires then the solution of equation (2,11)
with boundary conditions given by (2.7c¢) and (2,13), and the initial

condition given by (2.17). The way this model is formulated overcomes



the restrictions, 2) and 3), previously discussed,

A suitable approach to this problem is immediately suggested by
using spline orthogonal collocation in the vertical direction, A small
interval [B—Gl, B+62] is considered and equation (2.11) is only solved

in this interval. The required variable transformation is:

* = -
z" = (61 + 62); + B 61 (2.19)
where 0 < ¢ < 1. Equation (2.11) remains then as,
2
aC 2 C
R. =—== R, —— (2.20)
1 9¢ 5 3;2
where
u Kz
R1 = X ; R5 = zz - )2 (2.21)
max 1 "2

Global orthogonal collocation is applied to the z domain such that a
system of first order ordinary differential equations with respect to &

is left to be solved. The zeros of the Jacobi polynomials PN (0,0)

serve as collocation points. i

The concentration distribution is obtained only within the
[8—61, B+62] interval in the z* domain, where the concentration is known
to have a significant value, not just zero. Therefore, restriction 1)
is eliminated from the method of solution. As x increases the pene-
tration zone is broadened by choosing larger 61 and 62. This implies
that the technique considers moving boundary conditions in the vertical

direction, and the edge of the plume is known at any position along the

mean wind direction.
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The calculational procedure is as follows; at any integration step,
the concentrations at =0 and ¢=1 are compared with Co and zero, respec-
tively. If the comparisons agree, as it is shown in Figure 2,2 the values
for 61 and 62 are assumed correct and the integration continues to the
next step.

Since the concentrations should approach Co and 0 at z=0 and ¢=1,
respectively, the use of the following boundary conditions is valid:

aC _
o

0 at =0, z=1 (2.22)

If at any step, the concentration at Z=0 is considerably smaller
than CO, 61 is increased and the integration is performed for that same
x with the previous good solution as initial condition, This comparison
stops when 61 becomes 8. When the concentration at z=1 is considerably
larger than zero, the same previous procedure is applied to 82. Finally,
if an inversion layer is reached (62=1—B) global collocation is used to
continue the calculations until X=X In any problem B is usually
small so that the condition 61=B will always be obtained before 62=1-8.

This technique gives rise to the question as to how close to zero,
the "zero concentration' is. The present work assigns it as some fraction
of the centerline concentration, as it is done for the Gaussian plume
equation [18], where 10% of the centerline concentration is considered to
be zero. Solutions for different ratios are compared in Chapter III.

The procedure to obtain the collocation matrix, used to integrate in

the along wind direction, is presented next., Since orthogonal collocation

is applied to the vertical direction with Nz number of collocation
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h Y
¢l

FIGURE 2.2 CORRECT VERTICAL CONCENTRATION DISTRIBUTION
AT ANY & - GROUND LEVEL LINE SOURCE
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points, equation (2.20) remains as

dCz N +2
R1 — = R

I 5 B, .C. , for 2=2,..,,N +1 (2.23)

2i71

I~

i=1
The application of orthogonal collocation to the boundary conditions,

equation (2.22), gives the following expressions:

NZ+2
z Al,ici =0 at z=0
i=1
(2.24)
N_+2
z
EREICRUE L
i=1 z
Solving for the concentration at the boundaries C1 and CN +p @S
z
functions of the concentrations at the interior collocation points one
obtains
N +1
z
T Al(i)C.
i=2 *
Cl = - i (2.25)
1,1
N_+1
z
T A2(i)C.
i=2 *
CNZ+2 - DEN (2.26)
where
Al,NZ+2 A2(1)
Al(i) = A1,1 + DEN (2.27)
A2(3) = Al,lANZ+2,i - ANZ+2,1A1,i (2.28)
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PEN = AN r2,1M,8 v2 7 A1 0ty ez, v2 (2.29)

Finally, by substituting equations (2,25) and (2.26), equation (2,23)
in matrix notation remains as follows:

ag

dg

[[Nes}

9 (2.30)

where the elements of the matrix E are

RSBz,lAl(l) RSBli RSBQ,NZ+2A2(1)
E . = - + + (2.31)

21 R1 1,1 R1 R1 DEN

The solution of equation (2.30) is given by:
C(E) = U exp (AE)U ™ Ch(&-2E) (2.32)

where U, A, and Q_l are the eigenvectors, eigenvalues (diagonal), and
eigenrows of the matrix E, respectively. The diagonalization of the
collocation matrix E is performed by a subroutine called EISYS [12] such
that U, A, and Q_l can be obtained. Since the collocation matrix depends
on the parameters 61 and 62, its eigenvalues, eigenvectors and eigenrows
have to be recalculated any time 61 and/or &2 change.

The determination of the initial condition Qi needed to solve
equation (2.30) when £>0 uses the solution of C for the previous integra-
tion step A§. If neither 61 nor 62 are changed, Qi(g—AE) is equated to
C(g-Ag). When the parameters 61 and/or 62 change, the initial condition
is obtained through a Lagrangian interpolation of the previous good solu-
tion and the integration is repeated. This interpolation occurs only for

the new position of the collocation points which lie within the previous

region [B—Gl, B+62]. For points to the left of (8-61) and to the right
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of (B+62) values of Co and zero are assigned to the concentrations,
respectively,

The flux at any position in the along wind direction is a useful
piece of information that can be obtained from the results and provides

a check for continuity, It can be expressed by the following equation:

max
Q = J u C(x,z)dz (2.33)
[0}

Transformation of the spatial variables gives

1
Q = [ u C(&,z%¥)z dz* (2.34)
(o]

By substituting equation (2.19) one obtains

B-G1 B+62

QX = I u Cozmaxdc + u C(g,;)zmax dz (2.35)
(o] 8-61

Finally, using Gaussian quadrature weights, equation (2,35) can be

transformed to

NZ+2
_ A1
Qx = QX + uzmax(61+62)iil WiCi (2,36)
where
u zmax(B—GI)CO for 81<B
Qi - (2.37)
0 for §.=RB
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Two Dimensional-Continuous Elevated Line Source

Treatment of the two-dimensional diffusion equation (2.11) for the
case of an elevated line source gives more generality to an air pollution
model. The only variation with respect to the previous case takes place

in the boundary condition (2.7b), which is transformed to:

C>o at x=0 and =z =H (2.38)

The analytical solution to this problem is given by

u(z—H)2 u(z+H)2

4sz ) + exp(- —o—2— (2.39)

C(x,z) = ———-Q——w; exp (- 4K x
Z

2[r u sz]2

The technique for solving this case is the same as the previous one,

but with a different representation of the concentration distribution at
x=0, as shown in Figure 2.3. This discontinuous initial value profile

is expressed as:

Co at £=0 , h-B<z¥<h+B8B
¢t = (2.40)
0 at £ =0 , -elsewhere
with
ho= o (2.41)
Znax
and
C o=l (2.42)
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FIGURE 2.3 VERTICAL CONCENTRATION DISTRIBUTION
AT x=0 - ELEVATED LINE SOURCE

In order to apply orthogonal collocation to the entire region of
interest in the z direction, and taking into account that B is very small

compared to 1, the following variable tranformation is performed:

z* = (61 + 62 + 28)z + h - (B + Gl) (2.43)

where 0 < £ < 1. The coefficients in equation (2.20) remain then as,

K
— - — Z
R, = 5 R5 = Zz 5w +23)2 (2.44)
max* 1 "2
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The concentration distribution is now obtained only within the
[h—B-Sl, h+6+62] interval in the z* domain, as shown in Figure 2.4.

The check on the parameters 61 and 62 is done with the same previous
criteria, but now the concentrations at £=0 and z=1 are both compared to
zero (= some fraction of the centerline concentration). The comparison
at £=0 stops when the plume has reached the ground, i.e., 81=h-B, and
stops at =1 when the plume reaches the inversion layer, i.e.,
62=1—(h+8).

The calculation of the collocation matrix and its diagonalization to
obtain the eigenvalues, eigenvectors and eigenrows follows the same
procedure as before, with its elements Ezi given by equation (2.31). The
solution to this problem is also determined by equation (2.32).

The initial condition Qi at any integration step is calculated in the
same way as previously discussed. Whenever an interpolation is needed
for this purpose, zero concentration is assigned to every new collocation

point that lies outside the region of interest [h-B-§ h+8+62] used for

1,
the previous step.
Equation (2.34) can be utilized to determine the flux at any position

in the x direction. Substitution of equation (2.43) into (2.34) and the

use of Gaussian quadrature weights gives the following expression:

N +2
z

Q =u zmax(26+al+52)i§1 W.C. (2.45)
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FIGURE 2.4 CORRECT VERTICAL CONCENTRATION DISTRIBUTION AT ANY & - ELEVATED
LINE SOURCE
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Two Dimensional Models with Chemical Reactions

The next step in complexity of an air pollution model is to consider
a line source case with a pollutant undergoing some kind of removal pro-
cess, usually expressed as a chemical reaction. Steady-state models for
reactive contaminants do not exist because conditions under which reactive
pollutant concentrations are not changing with time are virtually non-
existent. In spite of this, a solution to this problem is presented next
since few modifications to the previous cases are required and its study
will help to understand more complex models like the unsteady-state point
source case.

The main difference between this case and the previous models occurs
in equation (2.11). An additional term, which represents the chemical
reaction, should be incorporated in the diffusion equation as

3C 9°C

I KZ — t R (2.46)
9z

u

The technique for solving the collocation equations that arise from
equation (2.11), using the eigenvalues of the collocation matrix, is still
valid for equation (2.46) if a first-order reaction model is utilized to

represent pollutant removal from the atmosphere:

R = -k, C (2.47)

The elements of the collocation matrix would now be given by
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RB .AL(i) R.B,. RsBy N 42821
E oo 58,1 , 58, 2 R TN (2.48)
21 R1 Al,l R1 R1 DEN 1 21
where 621 is the Knonecker delta function,
1 for £ =1
Gzi = (2.49)
0 for L #1

While this is the only modification that should be incorporated in
the elevated line source model, two more changes should be considered
in the ground line source case.

The check on the parameter 61 must be performed with another
criteria, i.e., if 61<B, the calculated concentration at =0 should be
compared to Coexp(— E%EJ. The reason being the disappearance of contami-
nant due to the chemical reaction.

The other modification takes place in the calculation of the flux
at any position in the x-direction. Equation (2.35) remains then as

follows:

klg
B"Gl = —il_ B+61

Qx = J uCOe Zmade + J uC(E,;)zmaxdc (2.50)
o B-Gl

Therefore, equation (2.36) would contain,
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uzmax(s—él)coe for §.<B

Q = (2.51)
0 for 8. =B

The procedure to follow for non-linear chemical reaction models would
be to linearize the expression if the eigenvalue method is to be used.
Another possibility, simpler and more effective, is to integrate the
collocation equations with a technique that would not depend on the
expression for the removal processes, e.g., a fourth-order Runge-Kutta
method.

The concentration distribution for a continuous ground level line
source for a case with a first-order chemical reaction model is presented

in Chapter IV.

Three Dimensional-Continuous Point Source

For a source which is continuously releasing material at a fixed
point, the appropriate form of equation (2.1) (again with v and w zero,

and neglecting the diffusion in the x-direction relative to convection) is

3C _ 3 aC 3

u € 3C
9x dy “y 9y

(K, 5 + R (2.52)

At an early stage, observations of diffusion implied a dependence of
Ky on the distance of travel [14]. On the grounds that it is physically

irrational to regard Ky as a function of horizontal position, one approach
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has been to seek solutions with Ky’ as well as KZ and u, a function of

height above the ground, i.e.,

u = u(z) 3 Ky = Ky(z) 3 KZ = Kz(z) (2.53)

For this case, equation (2.52) remains as,

sc 94K, (2) ¢ »2C 3¢

u(z) T P i Ky(z) — + Kz(z) — + R (2.54)
oy 9z

Consider an interval [0, ymax] as the region of interest in the
crosswind direction y, where a concentration distribution is to be
obtained. For simplicity, the point source is located at y=0, such that
no contaminant flows across the centerline y=0. The reason being
symmetry, only the x-component of the wind velocity is taken into
account. Therefore, the same approaches previously discussed can be
used for this three-dimensional continuous point source model.

The crosswind dimension, a subset of the present case, can be con-
sidered as an analog of the two-dimensional continuous ground level line
source. In addition, the two-dimensional continuous elevated line source
can be used to represent the other subset, i.e., the vertical dimension.
The reason for different approaches for each spatial dimension is that
the concentration distribution in the crosswind direction is symmetric
with respect to the centerline (y=0), whereas the concentration distribu-
tion in the vertical direction is not symmetric with respect to the

effective emission height (z=H). The solution in the z-direction would
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be symmetric if KZ and u were constant, and moreover only up to an
x-position where the plume reaches the ground or the inversion layer.
Using the spline collocation approach, the following spatial

variables transformations must be made:

=y = (8§;,+8& In+B_ -8 (2.55)
Y nax ly "2y y 1y
Z _ * :
- =z = (612 + 622 + ZBZ)c + h - (BZ + 612) (2.56)
max

where 0 s n<1and 0 <z <1, and h is given by equation (2.41).
The dimensionless variable in the x-direction, presented in equation
(2.15), is also introduced in the problem.

For completeness of the model, the following boundary conditions

are used:
Co at point source, £=0 ; y*=0 ; z*=h
¢t = (2.57)
0 elsewhere, &=0
aC _ 3
5= 0 at n=0,1 (2.58)
g%—= 0 at =0,1 (2.59)

where the equivalent concentration at the point source can be calculated

by continuity, as will be seen later.
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This approach can be used to simulate any three-dimensional continuous
point source model, ‘eg., few modifications must be done if the point
source is located at the ground, i.e., equation (2,56) would be replaced
by another equation (2.55) for the vertical direction; any type of removal
process for the contaminant, e.g., sedimentation would be valid since
equation (2.59) means no flux at z=0,1 and not at the effective emission
height, h.

The use of spline collocation for this case again means that the
solution is obtained with moving boundary conditions in the y and z
directions. Since no changes in the technique were needed, as compared
to the previous cases, the check and modifications on 61 and 8, for each
direction at any integration step in the x-direction are performed as be-
fore.

The collocation equations for two different situations, constant u,

Ky’ and KZ, and then as functions of elevation are presented next,

Constant Mean Wind Velocity and Turbulent Diffusivities

Substituting equations (2.15), (2.55) and (2.56) into equation

dK
2.54) (with 2 = 0) one obtains
dz
2 2
9C 3 C 9°C
R, == = R, — + R, —= + R(C) (2.60)
1 3¢ S an 6 32;2
where
. u
Rl = 3 (2.61)
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K
- Y
R5 == 5. w0 )2 (2.62)
Ymax ly "2y
Kz
R6 = Zz o s a2 )2 (2.63)
max- 1z 2z A

Application of orthogonal collocation to equation (2.60), with N_ and
NZ as the number of interior collocation points in the y and z directions,

respectively, gives

N +2 N +2
R g NIRRT € I R(C, .) (2.64
1 ag - Rs E Byt Rg 2 BTl K2 -64)
i=]1 i=1
for k=1,...,N +2
y

2=1,...,N_+2
Z

where Ckz represents the mean concentration at the point (nk,gz). The
superscripts of the discretizational matrix of second derivatives B,
represent the direction and thus the way it is computed, i.e., (2) and
(3) stand for the y and z directions, respectively.

The use of orthogonal collocation to the boundary conditions in

the y-direction, equation (2.58) gives the following expressions:

Ny+2
z Affg C;p =0 at n=0
i=1
(2.65)
N +2
Yo @)

ANy+2,i Cig =0 at n=1
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Solving for the concentration at the centerline and at the edge

of the plume one

C

where

ALY (i)

A2Y (i)

DENY =

Application

the z-direction,

N +2
z

I A

i=1

N +2
I
i=1

N +2,% =
y

obtains,
N‘+1
y 3
I ALY()C,,
_ =2
(2)
A
N_+1
y -
T AY3)C,
i=2
DENY
A aov)
1,N +2
= a2, Y
1,1 DENY
_2(2),(2) _ 2@ (2)
- A1,1 +2,1 A +2,1 Al,i
y Yy
(2) A(2) - al2) A(2)
AN +2,1 "1,N +2 1,1 +2,N +2
y y y y

of orthogonal collocation to the boundary conditions i

equation (2.59) gives:

(3) _

1,i ki~ O at
(3)

42,1 ki T 0 at

4

z

0

1

2

(2.

(2.

(2.

(2.

(2.

.66)

67)

68)

69)

70)

71)
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Following the same procedure as for the y-direction, the concen-
tration at the edges of the plume in the z-domain is obtained from

equation (2.71):

NZ+1
izz AlZ(l)Cki
Cp = - NG (2.72)
1,1
N +1
yA
izz A2Z(3)C,
Ck,NZ+2 = DENZ (2.73)
where
A(3) , A2Z(i)
. (3) 1’Nz+
ALZ(i) = A7 + L (2.74)
.y = A(3),03) (3) (3)
A2Z(1) = A)Ty 2,1 7 ANZ+2,1A1,i (2.75)
_ 2 (3) (3) A (3),(3)
DENZ = ANZ+2,1A1,NZ+2 AL 2N e (2.76)

Z

Substituting equations (2.66), (2.67), (2.72), and (2.73) into

equation (2.64) one obtains,
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ac Ny+1
k2 _ _ (2) AlY(l) (2) (2) A2Y (1)
Rygz = Rs| I (B @ " P BN +2 TDENY Cap |
i=2 y
1 1
NZ+1
CR(3) A1Z(E) | L (3), o(3) A2Z(i)
Rel .2 - By 1 =@y * Bui +B2,N+2 Nz ) %Ki
i=2 A
1,1
+ R(Cy ) (2.77)
or simplifying it:
deQ, R5 Ny+1 R6 Nz+1
—====1 © AKY(k,i)C. + —=| T AKZ(2,i)C,. | +
dg R1 1=2 if R1 522 ki
R(C, )
+ (2.78)
1
for k=2,...,N_+1
Yy
2=2,...,N +1
zZ

Equation (2.78) gives a set of (Ny)(NZ) first-order ordinary
differential equations to solve for the concentration as a function of
the along wind direction at the orthogonal collocation points in the
crosswind and vertical directions. The initial condition for this

system of equations is
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C at g=0 , 0<sy < B

(2.79)

0 at £=0 , y* > By
elsewhere z*

Using continuity, the flux at the point source can be expressed as:

y 2
= * *
Q=2 Jo 1 u(h)COymaxdy Zmaxdz (2.80)

Solving for Co’ the equivalent concentration at the source one

obtains,

C

- Q
= (2.81)
° 4u(h)BzZmaxByymax

For a ground level point source, the 4 in the denominator should be
replaced by a 2.

The determination of the initial condition at any integration
step follows the same procedure as before. If the concentration at
the edges of the plume lies within the range specified by a fraction
of the centerline concentration, the solution of the current step is
used as the initial condition for the next step. For any boundary
concentration outside this comparison, the corresponding & parameter

must be changed. If this occurs, the new positions of the collocation
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points have to be calculated by equations (2.55) and/or (2.56) and
the concentration at these points determined through Lagrangian inter-
polation in two dimensions using the good solution of the previous
step. This will be then the initial condition used at the current

integration step. For simplicity, §, is equated to By such that the

ly
comparisons are performed strictly to the boundary concentrations at
n=1, =0 and z=1.

In order to apply the technique to any air pollution model, i.e.,
with any type of removal processes, the eigenvalue method for obtaining
the solution was dropped. This method has the attractive feature that
whenever the region of interest does not change, the same eigenvalues,
eigenvectors and eigenrows for the previous step can be used for the
current step. That is, the rediagonalization of the collocation matrix
must not be done at every integration step, which results in computational
time savings. But in view of generality, other integration techniques
were investigated.

A semi-implicit Runge-Kutta technique, based on the method proposed
by Caillaud and Padmanabhan [3] was developed in the present work. This
type of technique is applied to difficult stiff differential equations.

As soon as the stiff component has faded away, at certain position
from the point source, it becomes desirable to enlarge the stepsize,
A stepsize adjustment algorithm, proposed by Villadsen [19] was used
in the present work. This integration method appeared to be very
stable and the calculated concentration distribution was the same as

that determined by the eigenvalue technique. Unfortunately, the
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complexity of the present air pollution model requires a large number
of differential equations to be solved. The use of both methods
involved a large computational time.

Finally DRKGS, a double precision subroutine furnished by IBM [11]
which is a fourth-order Runge-Kutta method, was applied to the present
problem. The use of this subroutine was discussed in details by
Fleischer [8]. It was decided to keep it as the integration method
for all three-dimensional models since the results were comparable to
the ones obtained using the previous two methods, but with less than
half of their computational time.

The present work for the case of no chemical reactions was

validated by comparing the results to the Gaussian plume equation given
by

2 2
C(x,y,z) = ’ZTG‘Q‘&‘_J exp (— %(B_L) ) exp (_ %(_Z__I;I.) ) +
y z y

2

1 z+H

exp (— 5{7;—J ) (2.82)
z

and to the analytical solution of the diffusion equation with a reflecting

plane at the ground z=0, given by

2

- Q _u Joulz-t)

cirrr e (- 35 (o - 2222)
4nx(Ksz) y z

2
exp (- %) (2.83)
Z
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The flux across any plane normal to the x axis is also calculated

in the present work via

Ymax “max
Qx =2 J J u C(x,y,z)dydz (2.84)
0 0

Substituting equations (2.55) and (2.56), and using Gaussian

quadrature weights, equation (2.84) can be transformed to

Ny+2 NZ+2
(2),,(3)
§,,+28,)2 I DI g e

Q. = 2u(s +5 )Y
ly k=1 =1 X

X max( 127 kg (2.85)

Variable Mean Wind Velocity and Turbulent Diffusivities

The governing equation for this case, equation (2.54), with the
incorporation of the spatial variable transformations given by equations

(2.15), (2.55) and (2.56) can be expressed as follows:

2 2

aC 3 C 3°C
Ry (C)-—— * R (2) 57 = R (2) —5 +R((2) — + R(C) (2.86)
9L 3z 5 anz 3;2
where
- u(z)
R, () = - (2.87)
max
dKz
~——-(C)
R,(%) = (2.88)
5 max(slz+6 +28 )
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K (2)
R (2) = ———y (2.89)
ymax(61y+62y)
K, (2)
R6(c) = =3 3 (2.90)
Zmax(slz+522+zsz)

The procedure to obtain the collocation equations is exactly the
same as the one previously done, with one extra term involving

Rs(c) g%— in these equations. The final expression then is given by

ac,, R [N ) R (2) [Ny
= £ DAKZ(L,i)C,. | + T AKY(k,i)C. +
dg Rl(z) 122 A 1 Rl(z) 522 if
Ro(2) [Nz R(C, ;)
T AKZ(2,i)C,. |+ ——e (2.91)
R\ ;o) ki R, (1)
for k=2,...,N +1
y
2=2,...,N_+1
Z
where
. _,(3) AlZ(Q) (3) (3)  A2Z(i)
DAKZ(2,1) = Al,l —;ng—-+ Ali + A21N2+2 DENT (2.92)

1,1

and AKY(k,i), AKZ(R,i), AlZ(i), A2Z(i), and DENZ are the same as before.
The flux across any plane normal to the along wind direction is

calculated by an equation similar to (2.85), i.e.,
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N +2 N +2
y

Z
(2),,(3)
(8,,46,,#28 )z . T T u(W 'WC

Q = 2(8. +
X aX p=1 =1

ity (2.93)

)y

max k2

Analytical solutions for arbitrary source heights and unrestricted
functions of u, Ky and KZ with elevation have not yet been obtained.
It should be pointed out that the present technique can be applied to
any function of u, Ky and KZ with respect to any spatial variable and
meteorological parameter, as will be seen later. Few modifications
must be done to the present model for cases involving functional

relationship with respect to other spatial variables, besides elevation.

Three Dimensional Mean Wind Velocity

Let us now consider a continuous point source emitting contami-

nants to a region where the axial and lateral components of the mean
wind velocity are important. For this case, equation (2.1) is reduced to:
aC oC _ 9 oC

“ax PV ey Ty

9 aC
}’W) +-3_Z_(KZ§-Z + R (2.94)

where the diffusion in the x-direction is again neglected compared to
convection, and w is assumed to be zero. Using the same previous

functional relationships for the velocities and diffusivities, i.e.,
u=u(z); v=v(z); Ky=Ky(z); KZ=KZ(Z) (2.95)
equation (2.94) remains as

dK_(z) 2 2
aC 2z~ 3 _ 3 C 3 C
5;._ S T Ky(z) 3y2 + Kz(z) 322 + R (2.96)

u(z) %§-+ v(z)
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The previous approach used for the y-direction is not valid for
the present model since the concentration distribution in this dimension
is no longer symmetric with respect to the centerline (y=0). For an:
interval [-ymax’ ymax] as the region of interest in the y-direction,

the following variable transformations are performed:

y . 1
. _ Ymax
y* = = (2.97)
2% = - Z (2.98)
max
1
* = (8. +6. +2 + = - +6 2.99
Y ( 1y %2y By)n 5 (By 1y) ( )
z* = (612+622+ZBZ); + h - (BZ+612) (2.100)
where 0<n<1 , 0<czg<1

The initial condition for this case can then be stated as
C0 at point source, &£=0; y=0(y*=k%); z*=h

(2.101)

0 elsewhere, £=0

Substituting equations (2.97) through (2.100) and equation (2.15)

into equation (2.96) one obtains

2 2
C 3 C
— ¥ R6(g) — * R(C) (2.102)

aC aC 3C _ d
RI0) 3+ Ry®) g+ Ry(®) g = R (0) .
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|

[f
—
Y
[

where Rl(c) = (2.103)
Xmax
v(z)
R,(z) = ( (2.104)
2 zymax(61y+62y+28y)
dKZ
R, (7) ;E;— * (2.105)
L) = - :
3 zmax(61z+622+262)
K (T)
R:(2) = — 4 > (2.106)
4ymax(61y+62y+28y)
K, (%)
Ré(c) = 5 (2.107)
Zmax(alz+622+zsz)

The boundary conditions in the y and z-directions are the same
as before, given by equations (2.58) and (2.59). Therefore, application
of orthogonal collocation to this model adds only one extra term to

the right hand side of equation (2.91):

Fp &) v AVY (K, 1)C (2.108)
i 5 ,i)C. .
N WA ig
with
AVY (k,1) = - Aﬁfi i%%%il " (i) . Aﬁ?&y+2 Agg&i) (2.109)
1,1

The initial condition for this system of first-order ordinary

differential equations, equation (2.101), can be expressed as,
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= = - * < =
C0 at £=0, > Sy Syt By
cd . h -8 <z¥<h+ B
ke
(2.110)
0 at £=0, elsewhere y* and z*

The equivalent source concentration can again be obtained using

continuity:

y Z
Q- J_ J-e u(h)Cy (2, x 8y )z g, da™ (2.111)

Solving for Co,one obtains

Q
C (2.112)
° 8u(h)ymax y ZnaxPz

Finally, the flux at any position in the along wind direction can

be calculated by

Y

max - max ’
Qx = J J u(z)C(x,y,z)dydz (2.113)

Using the same procedure as before, equation (2.113) can be

reduced to:

N +2 N +2
y

+5, +28)z % 3 u(z)wéz)wgs)c

Q
MmaxX k=1 g=1

= 2(8),+8, +28 )y

ax( 1z ke

(2.114)
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It should be pointed out that the incorporation of the third
component of the mean wind velocity, w(z), into the diffusion equation
(2.94) modifies only one term. Equation (2.105) would have to be

replaced by the following expression:

dKZ
w(z) - —(%)
dz

R, (z) =
3 zmax(slz+

622+ZBZ) (2.115)

The procedure to find the edge of the plume in the lateral direction
at any integration step is also modified with respect to the previous
models. The centerline will not be at y=0, i.e,, it might be to the
right or left depending upon the direction of the horizental mean wind
velocity.

The concentration at the edges in the y-direction and at the
effective emission height, i.e., C(n=0, z*=h) and C(n=1, z*=h) are
compared to a positive or negative value. A negative concentration
means that the plume, at that downwind position, is wider than the
actual plume, and therefore the parameter 61y or 62y is decreased until
a positive concentration, at the same x position, is obtained. On the
other hand, the same procedure used for the previous models is applied
to positive concentrations at the crosswind direction boundaries. Both
concentration values are compared to the centerline concentration
multiplied by some ratio r, and if they/it are/is larger, the parameter(s)

Gly and/or 62y are/is increased until the desired accuracy is reached.
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CHAPTER III

PARAMETERS ESTIMATION

Basic parameters are estimated for the simple models through
parametric studies involving comparison of accuracy and computer time.
As the complexity of the models increases, most of these parameters
are kept, and others which are inherent of the model in question are
estimated for the first time.

Accuracy tests are performed by comparing the calculated concen-
tration values to the analytical solution. For this purpose, an error,
which is used throughout this chapter is defined as,

C -C

e = (3-6——3)100 (%) (3.1)
a

where the subscripts a and c stand for analytical and calculated,
respectively.
The calculations for the present work were done in a UNIVAC 1108

digital computer.

Mathematical Parameters

Two Dimensional-Continuous Ground Level Line Source

The first basic parameter which is estimated is the number of
orthogonal collocation points that should be used in calculating the
concentration distribution. This parametric study is shown in Figure

3.1. For this case, arbitrary values were assigned to the other
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parameters remaining, i.e., B was equated to some small value .006,
and the ratio of the concentration at the edge of the plume and the
centerline concentration was assigned a value of 1%, i.e., r = .0l.
Concentration comparisons were performed for the effective
emission height, 2z=0. The other key variable used to select the most
convenient number of collocation points, the computer time requirement

is shown for each case in Table 3.1.

Table 3.1 Computer Time Requirements for Parametric

Study on N - Ground Level Line Source Model

N Time (sec)
4 7
6 17
8 26
10 46

As it was expected, as N increases the error decreases and the
computer time increases. The differences in the computer time spent
are not very large with the exception of the last two cases, N=8 and
N=10. 1In addition, the error is greatly minimized as N increases from
4 to 8 interior points, but the difference between the last two cases
is negligible. Therefore, the number of interior orthogonal collocation

points selected is 8.
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The next parametric study done, on 8, is shown in Figure 3.2.
For this case, r was again given an arbitrary value of 0.01. Time

requirements are given in Table 3.2.

Table 3.2 Computer Time Requirements for Parametric

Study on B8 - Ground Level Line Source Model

8 Time (sec)
.003 31
.006 26
.018 32

An analysis for this case shows that as B increases, the error
increases for downwind distances close to the emission source. This
is exactly one of the objectives pursued in using spline collocation
in problems with a discontinuous initial value profile. Since the
parameters ¢ will have a comparable value to B, small values mean that
the concentration distribution is calculated only in a region where
material exists, i.e., within the plume. This region of interest is
very small close to the emission source. As the pollutant moves down-
wind the plume spreads, and therefore the region of interest is
increased by means of the parameters §.

The computer time requirements for all cases was almost identical,
so that a value of .005 was selected for B. Together with the estimation

of B, the parameters &1 and 62 must be specified. The procedure is to



_SV-

x(knn)!

1
I
GROUND LEVEL WITH

FIGURE 3.2

.05
COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT
ANALYTICAL SOLUTION - PARAMETRIC STUDY ON B



-44-

find the pair that will determine a region in space which will contain
all the material emitted. Since B is very small compared to 1 which

is the entire z* domain, the same value of 0.005 was selected for 61.

In order to estimate 62, two cases were simulated in the computer. The
first case had a mass flux at the first integration step higher than

the emission rate. The other case had Qx smaller than Q such that

a linear interpolation on both 62 gave the mass flux equal to the
emission rate. The values for an emission rate of 1 gm/m s are shown in

Table 3.3.

Table 3.3 Mass Flux vs 62 at the First Integration

Step - Ground Level Line Source Model

5, Q, (gm/m s)
.004 .9
.006 1.1
.005 1.0

Everytime the concentration at the boundary is larger than zero,
the region of interest is increased by adding .005 to the previous
value for 62. This "zero concentration' is assigned a certain fraction
of the centerline concentration, as it is done in the Gaussian plume
equation, where r = .10 (10%). This is then the last basic parameter
to be determined for this model, and the results of the parametric

study are shown in Figure 3.3 and Table 3.4.
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Table 3.4 Computer Time requirements for Parametric

Study on r - Ground Level Line Source Model

T Time (sec)
.005 31
.01 27
.1 20

As expected, the lower r the better is the description of the pro-
cess, i.e., the boundary concentration is closer to zero. But there must
be also a compromise in the computer time involved. Therefore, r is
assigned a value of 0.01 for the rest of the present work.

There is one more variable in this model that should be analyzed,
zmax’ the maximum elevation. If there is an inversion layer, 2 nax must
take on that value. On the other hand, if no inversion layer exists, any
value for Znax G2 be specified as input data as long as it does not
create an artificial inversion layer. This could happen if X ox is very
large, e.g., 10 km, and Z ax VETY small, e.g., 50 m, such that the plume
reaches the maximum elevation before X ax

An increase in the maximum elevation produces a similar effect as
increasing B. The region of interest becomes wider such that the accuracy
for downwind distances close to the emission source is aggravated. However,
every time the parameter &2 is increased, a larger Z ax implies more

separation from the ground. This results in fewer situations where the
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boundary concentration is larger than zero, and thus fewer number of
computations. In addition, the separations between interior collocation
points in the z domain are larger so that the concentration gradients
become smaller. Therefore, the computer time involved is reduced. This

analysis is shown in Figure 3.4 and Table 3.5

Table 3.5 Computer Time Requirements for Parametric

Study on Znax " Ground Level Line Source Model

zmax(m) Time (sec)
50 45
250 40
500 27
1000 16

Figure 3.4 shows incomplete curves for the cases with Z ax equal to
50 and 250 m. The reason being that at the corresponding downwind
position the plume reached the maximum elevation and a comparison to the
analytical solution is no longer valid.

The procedure to find the most convenient maximum elevation would be
to simulate first a case with a large value for Zoax’ and then by
inspecting the results locate the maximum elevation the plume reaches.

A value a little bit higher to the one obtained should be assigned to
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z if accuracy is the objective. For most cases, z = 500 m is
max max
reasonable enough, unless the problem involves a very unstable atmosphere

and/or a very tall stack,

Two Dimensional - Continuous Elevated Line Source

The structure of the technique used to solve this model is different
to the previous one in the sense that the parameter B is located to both
sides of the effective emission height. For this reason the number of
orthogonal collocation points is increased to N = 10.

There is no relation on B for this case and the ground level line source
model, so that a parametric study was performed. This is shown in

Figure 3.5 and Table 3.6.

Table 3.6 Computer Time Requirements for Parametric

Study on B - Elevated Line Source Model

B Time (sec)
.0010 84
.0012 83
.0013 83
.0014 92
. 0015 98

.0020 100
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The computer time requirements were similar for all cases, so that the
selection for B was made on grounds of accuracy, Something very peculiar
happens for this approach in the sense that the errors oscillate between
zero for the cases of B between .0010 and .0014, No explanation can be
given to this, although it is a fact that as B is increased from .0014,
the accuracy becomes worse, as it should be and was previously discussed.
The errors were computed at the effective emission height, 100 m. It
should be pointed out that it would be fortuitous if one of the interior
collocation points coincided with the effective emission height. This
is the reason why a one-dimensional Lagrangian interpolation was used to
obtain the concentration at this elevation., This type of interpolation
takes into account the concentration at all collocation points, so that
the error calculated at H, besides Qx’ shows the overall error involved
in the solution technique.

A value of 0,0012 was assigned for B in this model. The same proce-
dure as before was used to estimate the parameters Gl and &2. For an
emission rate of 1 gm/s m, Table 3.7 shows the final values for 61 and

62 obtained.

Table 3.7 Mass Flux vs 61 and 62 at the First Integration

Step - Elevated Line Source Model

8 s, Q, (gn/s)
.0030 .0030 1.0343
. 0026 . 0026 . 9358

.002861 . 002861 1.0001
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The value by which these parameters are increased whenever the
region of interest must be increased is given a similar value as 61,
i.e., .0025.

The same analysis for Z ax @S previously discussed is presented in
Figure 3.6 and Table 3.8. The conclusions are exactly the same, but since
the main objective of the present work is accuracy, z = 500 m is used

max

when possible throughout the entire research.

Table 3.8 Computer Time Requirements for Parametric Study

on z - Elevated Line Source Model
max
zmax(m) Time (sec)
500 83
2000 27

Three Dimensional Continuous Point Source

Estimation of parameters for this complex model proves that the
analysis and understanding of the previous simple cases is valuable.
Determination of a convenient set of parameters to get high accuracy
would have been difficult without knowledge of the values specified for
the previous models.

Let us first consider the case where only one component of the mean
wind velocity is taken into account. In addition to u, both turbulent

diffusivities, Ky and Kz’ are assumed constant.
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FIGURE 3.6 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT THE EFFECTIVE
EMISSION HEIGHT WITH ANALYTICAL SOLUTION - PARAMETRIC STUDY ON 2.,
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Since the problem can be considered symmetric with respect to the
centerline (y=0), the technique utilized for the ground level line source
can be used in the lateral direction. Therefore, Ny is equated to 8 and
By to .005.

In many cases air pollution is due to elevated point sources, so that
the approach used for the elevated line source model can be utilized for
the z-direction. Therefore, ten interior orthogonal collocation points
are used in the vertical dimension, i.e.,NZ = 10, and a value of 0,0012
is assigned to Bz.

The procedure to obtain the § parameters, now there are four, follows
the one previously discussed. Three of these parameters were given the
same value as before, i.e., §

=,005, 61 =622=.002861 and the fourth

ly Z

parameter was obtained by comparing the mass flux at the first integration
step with the emission rate. For this model, Q=1 kg/s, and the parametric

study is shown in Table 3.9. A value of ,01069 was assigned to 82y’

Table 3.9 Mass Flux vs &Zy at the First Integration

Step - Elevated Point Source Model

Sy Q, (kg/s)
.01 . 95607
.011 1.01981

.01069 1,00005
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The increments on these parameters, whenever the boundaries of the
plume are changed, are the same as the ones used before with the exception
of 62y which now was changed. Again a comparable value is used for this
purpose, i.e., 0.015. It should be pointed out that no matter what value
is given for Q and H, all these parameters do not have to be changed again.

The use of a different method, DRKGS, for integrating the diffusion
equation along the x direction, as compared to the eigenvalue technique
utilized before, introduces one more parameter: the upper error bound,
€, as discussed by Fleischer [8]. A parametric study was performed and

is shown in Figure 3.7 and Table 3.10.

Table 3.10 Computer Time Requirements for Parametric

Study on ¢ - Elevated Point Source Model

> Time (sec)
1x10'5 180
1x10'6 190
1x10'7 200
1x10"8 290

The cases simulated involved meteorological parameters that exist for
very unstable conditions, which will be discussed in the next section.
This was done in order to have large concentration gradients and the
possibility of a difficult problem to solve. The error was calculated

again at the effective emission height. A two-dimensional Lagrangian
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interpolation, which involves the solution at all collocation points,
was used. The-calculated error again gives an estimate of the overall
error.

An analysis of Figure 3.7 shows that the accuracy is greatly improved
by modifying the upper error bound from e = 1x107™% to € = 1x10—7,
while the computer times involved are similar. The time requirements have
increased very much compared to the two-dimensional cases because a system
of 80 first-order ordinary differential equations is being solved for the
present model.

A closer look at Figure 3.7 shows a peak in the error e at 20 m
downwind from the source. For practical purposes this does not matter
very much since the concentration distribution is usually desired from
50 to 100 m up downwind. Furthermore, this error is 4% which for these
purposes is quite low. This peak occurs because of the large integration
stepsize of 10 m at that location. A parametric study on e with a smaller
stepsize of 2.5 m was simulated next, The absolute error e was identical
for all previous e used, but not the computer time requirements which

are presented in Table 3.11.

Table 3.11 Computer Time Requirements for Small Stepsize

of Integration - Elevated Point Source Model

I Time . (sec)
1x10'5 250
1x10‘6 260
1x1077 270

8

1x10~ 310
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Since there was no dependence of € in the error for this case, a
parametric study to check r was performed again, and is shown in
Figure 3.8. It can be seen that the absolute error is indeed decreased
by using a smaller stepsize, and the peak is converted to a damped curve
at downwind distances close to the point source. As eXpected and
discussed before, as the ratio increased the error increased and the
computer time decreased to 250 seconds (g = 1x10-7). The main objective
of the present work is to develop a highly accurate method of solution,
so the small stepsize was adopted with an upper error bound of ¢ = 1x10_7.

The analysis on Zhax discussed for the previous models still holds
for the three dimensional case., It should be pointed out that an inversion
layer in the lateral dimension is meaningless. Therefore, Ynax must always
be specified by the user, and if the horizontal spread of the plume has
reached that value, the solution from that downwind distance until xmax
would be erroneous. For such a case, Y max should be increased.

Finally, the parameters for cases with two-dimensional mean wind
velocities must be specified. These cases must be treated in a different
way since the concentration distribution is not symmetric to the center-
line (y=0) anymore. The approach used for the vertical direction is then
applied to the lateral dimension with y=0 as the analog of the effective

emission height, Therefore, Ny=Nz=10’ B =BZ=.0012, all 8§ are equated to

y
.002861 and their increments to .0025,
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Meteorological Parameters

General functional relationships and the corresponding parameters
must be specified for the turbulent diffusivities and velocity profiles
for completeness of the formulation of the present models. This is

presented next.

Turbulent Diffusivities Ky’ KZ

Any work related to air pollution modeling and dispersion processes
in the atmosphere, which uses the K-theory, must include descriptions for
the turbulent diffusivities in the lateral and vertical directions, Ky
and Kz’ respectively. Unfortunately, these descriptions vary from one
work to another. Sometimes experimental data are available, but again they
usually apply for the specific case in question.

Among the best of these works, Eschenroeder and Martinez [5] relate KZ
to elevation and most importantly to stability classes, as defined by
Pasquill and Gifford [18], a parameter that is widely used and known. The
trapezoidal profile for Kz, discussed by Fleischer [8], and the values for
the maximum constant vertical diffusivities from the knee height up to
the inversion layer seem to describe fairly well Kz’ Eschenroeder and
Martinez, based on a Los Angeles tetroon data, assigned a value of 500 mz/s
for the constant horizontal diffusivity. Unfortunately, this large value,
when compared to others, is not appropriate to use as a typical measure
for Ky' Therefore, their description for KZ is used in the present work,

but with different absolute values for Kz and Ky'
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The fact that the Gaussian plume equation, which uses dispersion
parameters based on experimental data, is the most widely used method to
determine the concentration distribution helped to develop a method for
obtaining the turbulent diffusivities, Moreover, one of the most impor-
tant questions in air quality is related to the position and magnitude of
the maximum ground level concentration. Therefore, the three-dimensional
continuous elevated point source solution, with constant wind speed and
turbulent diffusivities, was matched to the Gaussian plume equation to give
the same maximum ground level concentration at the same position. The
vertical diffusivity was adjusted until the position of the maximum at
some downwind distance from the source was equal to the one predicted by
the Gaussian plume equation. Once KZ was determined, the horizontal diffu-
sivity was obtained when the spread of the plume was enough such that the
absolute value for the maximum concentration gave the same as the
Gaussian plume equation prediction. Typical values for the wind speed,
depending upon stability classes, were used. Since an analytical solution
for this model is available, the present method was validated by their
comparison.

The resulting concentration distributions are shown in Figures 3.9
through 3.14., All cases were simulated in approximately the same computa-
tional time, i.e., 270 seconds. Excellent agreement can be observed
between the concentration profiles obtained by the present technique and
the analytical solution. On the other hand, except for the maximum

ground level concentration, the results do not agree with the Gaussian
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plume equation predictions. This is due to several reasons. The
Gaussian plume equation corresponds to the solution of a simplified
continuity equation assuming Gaussian distribution for the plume spread.
It is a statistical method that makes use of Taylor's theorem [17] for
the standard deviation, a concept which is not applied to the present
technique. Furthermore the Gaussian parameters Oy and dz,made functions
of travelled downwind distance, were obtained and adjusted from the Project
Prairie Grass field data [1,2,10] which involved a small region of inter-
est. The pollutant was emitted at 50 cm above the ground, and most
samplers were placed at 1.5 m of elevation and along semicircular arcs
from 50 to 800 meters from the source. The phenomena that occur in the
lower layers of the atmosphere, such as wind shear,deposition; reflection,
removal, etc,, and the corresponding solution should be used with caution
to represent most situations. Observation of Figures 3.9 through 3.14
confirms this analysis in the sense that the more unstable the atmosphere,
the larger the difference between both methods.

It should be pointed out that the present mathematical technique is
valid for any type of relationship between the turbulent diffusivities
and meteorological and/or spatial variables. The more complicated models
are compared to the Gaussian plume equation in Chapter IV. The selection
of the present procedure to determine the turbulent diffusivities was
done in order to present meaningful comparisons besides lack of a reason-
able algorithm. The results for the constant vertical and horizontal

diffusivities obtained are presented in Table 3,12,
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Table 3.12 Constant Turbulent Diffusivities and

Wind Speed used in the Present Method

Stability Wind KZ y
Class Speed (m/s) (mz/s) (m2/s)
A 2 11 18,15
B 3 10.75 25.26
C 5 10.5 30.76
D 6 5,2 46,28
E 3 1.5 30,00
E 2 .325 22.75

Some of the results for the vertical diffusivity are in agreement
with the ones presented by Eschenroeder and Martinez [5].

The values for Ky presented in Table 3,12 are then used in the
present work. The ones obtained for Kz are utilized in the constant por-
tion of the trapezoidal profile, i.e., from the knee height up to an
arbitrary elevation of (zmax—IOO)m if zmax2300m and there exists an
inversion layer. If this is not the case, the constant value is used
from the knee height all the way to the top. Eschenroeder and Martinez
. [5] use a knee height that varies from 25 to 75 meters, As suggested by
Sutton [17], the surface boundary layer ends approximately at 50 meters,
and therefore this is the elevation at which the knee height was put in
the present work. The cbmplete description for K, as used in the present

work, when applied as a variable with elevation, is shown in Figure 3.15.
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Velocity Profile

Several forms have been used to describe the one dimensional mean wind
velocity [8]. They all relate u to elevation and roughness or stability

classes. The power-law form is used in the present work as
, M
u = ul(zza (3.2)

The parameters uss z1 and m should be supplied as input data by a user
of the present method, although the values in Table 3.13 are given as
default. Since in most cases the wind speed is known at 10 meters of
elevation, Zy is equated to this value. Furthermore, the exponent of the

power-law can be related to stability classes, as presented by

Seinfeld [16] and shown in Table 3.13,

Table 3.13 Estimates for the Parameters

in Equation (3.2)

Stg?ii;ty m ul(zl=10m)
(m/s)
A .02 2
D .14 6
F .83 2

At some elevation zg called the geostrophic elevation, which is

determined in the following two-dimensional wind velocity description,
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the mean wind velocity should become constant, Therefore, the complete

specification for the one-dimensional mean wind velocity is given by

m
= Z
u = u10(10) O<z<zG (3.3)
..ZG m
u = ulo(ﬁ) ZZZG (3'4)

The value of the velocity at the ground (z=0) is not needed in the
present work since no interior collocation point will lie in a boundary,
and the first and last Gaussian quadrature weights used to calculate the
mass flux at any downwind position are zero.

To describe a two-dimensional wind velocity, one must analyze the
phenomena that occur within the planetary boundary layer. That is, one
should include the Coriolis force caused by rotation of the earth and use
the basic equations of motion for two-dimensional steady mean flow,

referred to axes fixed in the earth [9,13,17]:

19,13 =
V-t gy Ty = O (3.5)
fu-L®,L128. _, (3.6)
p oy p 0z zy

where £ = 2w sin ¢ = 1.458x10—4 sin¢'-§%8 and is called the Coriolis
parameter, w being the angular velocity of rotation of the earth and ¢
the geographical latitude.

By assuming that the eddy stresses are
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Tx - PR, 57 (3.7
sz =p KZ g% (3.8)

equations (3.5) and (3.6) become
fv--;-%f(l+§z(1<§—‘;=o (3.9)
-fu-%-i’%+a—"’z-(1<%‘zi) = 0 (3.10)
If the x-direction is oriented parallel to the isobar;, i.e. % . 0

QL

X
and knowing that the free-stream velocity, called geostrophic wind Ug
blows along the isobars, the velocity component perpendicular to the

isobars v vanishes at the height z Therefore, from equation (3.10)

G

1 9p
£ = - == 3.11
U o By (3.11)

and equations (3.9) and (3.10) have become independent of pressure.

The Coriolis effect can usually be neglected near the surface. If
this is assumed to apply from the ground up to the knee height A,
equation (3.9) and (3.10) can be used to describe the velocity profile
in the region where Kz is constant. The solution of the equations of

motion is given by:

u = uG(l - e % cos az) (3.12)
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v = uGe‘aZsin az (3.13)
where
£ 2
a = (-Z—K—z—) (3.14)

The geostrophic elevation, also used for one-dimensional velocity
profiles as previously discussed, can be obtained by sutstituting v=0

into equation (3.13), i.e.,

=T
Zg = 3 (3.15)

For a Coriolis parameter of f=10—4sec_1, which corresponds to appro-

ximately a geographical latitude of 40° that occurs in the middle of the
U.S., and the constant values of Kz given by Table 3,12, the resulting

geostrophic elevations are presented in Table 3.14,

Table 3.14 Geostrophic Elevations used

in the Present Work

Stability zg(m)
Class

A 1475

B 1455

C 1440

D 1015

E 545

F 255
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For the surface boundary layer, between the ground and the knee
height A, the power-law form can be used for the component of the velocity
in the x-direction. Since the Coriolis effect is neglected in this por-
tion of the atmosphere, the direction of the velocity will be assumed
constant and equal to the value that occurs at A=50m, i.e., dependent on

the stability class. These values are presented in Table 3,15,

Table 3.15 Angle between Wind Velocity and
Geostrophic Direction for the

Surface Boundary Layer

St )
A 42
B 42
C 42
D 41
E 37
F 29

The results shown in Tables 3,14 and 3.15 are in agreement with the
values suggested by Sutton [17].
The complete description for the two-dimensional wind velocity can

be expressed then by the following algorithm:
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c z m
u = ug, (75
for 0O<z<A
v = (tan o)u
u = uG(l—e_aZ cos az) for z>A
-az .
v = uce sin az for A<z<zG
v=_0 for zzzG
where
c 10.™ ~50a
Ugy = uG(§6) (1-e cos 50a)

is required for a continuous velocity profile.

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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CHAPTER IV

PRESENTATION AND ANALYSIS OF RESULTS

The Eulerian approach was validated by Fleischer [8] through compari-
sons between calculated concentration distributions and the few available
experimental data. The present models have been validated by comparing
the calculated results with existing analytical solutions. Therefore, the
main objective of the present work is to obtain concentration distribu-
tions for air pollution problems that are either difficult to simulate
through conventional techniques, such as finite-differences, or which

have never been solved or presented in the literature,.

Two-Dimensional Models

The first problem that was simulated includes pollutant removal from
the atmosphere, represented by a simplified first order chemical reaction
model, and applied to the continuous ground level line source case. The
value of 1.67x10-3 per minute or 10% loss per hour was used as the reaction
rate constant. The results, obtained in 27 seconds of CPU time, are
presented in Figure 4.1. They indeed show that there is no need to
include chemical reactions to a steady state model since the concentration
values can be calculated by multiplying the analytical solution to the
factor exp(—E%fD. This factor is the result of the chemical reaction
model when solved by itself,

The other two-dimensional model simulated included an inversion layer

at 250 meters for a continuous elevated line source case, with an
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effective emission height of 200 meters. The calculated and analytical
concentration distributions are shown in Figure 4.2.

The results obtained from the present work in 117 seconds of CPU time
predict that the plume reaches the inversion layer at a downwind distance
of 300 m from the source. An inversion layer means that all the material
reaching that elevation is reflected down, It can be observed that the
inversion layer starts to affect the concentration at the effective
emission height at about 1.5 km from the source. Since the analytical
solution does not take into account the inversion layer, the calculated
results are higher than the analytical solution for downwind distances

over 1.5 km.

Three-Dimensional Models

There are an infinite number of situations that could be simulated
by the three-dimensional models, The most representative have been
selected and are presented next.

The first interesting problem is to compare the effect of having a
one-dimensional wind velocity profile as a function of elevation with
respect to a constant wind speed., This comparison, together with the
concentration distribution obtained for the case of wind velocity and
vertical turbulent diffusivity variable with elevation is shown in Figures
4.3 through 4.5. The results were obtained for the three most important
stability classes, A, D, and F in approximately 260, 240, and 220 seconds

of CPU time, respectively.
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The wind speed at 10 meters, Uy in equation (3.2), was equated to
the wind speed for the constant velocity case. This means that the
velocity below 10 m is lower than the constant wind speed, and that above

this elevation is higher than u The results, as expected, show a maxi-

1°
mum ground level concentration lower than for the constant u and Kz model,
and therefore at a larger distance downwind from the source.

The results also show the influence of the power-law exponent and the
description of the variable vertical turbulent diffusivity in the ground
level concentration distribution. A small value for m means that the
deviation of the variable mean wind velocity with respect to the constant
profile is negligible as shown by cases (a) and (b) in Figure 4.3. As
m increases, the deviation from case (a) increases such that for the extreme
case (very stable atmosphere, Figure 4.,5) where m=,83 (Table 3.13) the
concentration distribution is significantly different.

The description for the variable vertical turbulent diffusivity
involves a smaller Kz, from the ground up to the knee height, when compared
to the corresponding constant value. As the instability of the atmos-
phere increases, this constant Kz increases and the difference between
cases (b) and (c¢) in Figures 4,3 and 4.4 is magnified., An extreme case
is again a stability class F (Figure 4.5), where no difference exists
between variable and constant turbulent diffusivity, and therefore cases
(b) and (c) lie in the same curve,

The Gaussian plume equation is the most widely used model in air
pollution since the concentration can be obtained in a very simple way.

Figure 4.6, extracted from Turner [18], shows the ease with which the ground
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level concentration can be obtained for any emission rate Q, wind speed U,
effective emission height H, and stability class. Unfortunately, this
model should be used only for homogeneous and stationary conditions,

with all the restrictions discussed in Chapter III.

A graphical method, similar to the one discussed above, is developed
in the present work for estimation of ground level concentration for the
several Pasquill-Gifford stability classes. The present computed results
were obtained for a wind velocity profile which obeys equations (3.3) and
(3.4), a vertical turbulent diffusivity represented by Figure 3.15, and
Ky given by Table 3.12.

The main difference of the present model and the Gaussian plume
equation is that the position of the maximum ground level concentration
depends on the wind speed, as it should. Therefore, the variable plotted
in the abscissa is the time of flight ﬁ%—and not X.

The results, for stability class D, are shown in Figure 4.7.

The next more complex three-dimensional model which is solved in the
present work incorporates a two-dimensional wind velocity profile. 1In
order to validate the present results, a constant wind direction case
was solved first, such that an analytical solution could be available.

A continuous point source emitting 1 kg/s of material at an effective
emission height of 100 m into a neutral atmosphere (constant diffusivities)
with a constant axial velocity of 6 m/s and a lateral wind speed of 3 m/s
in the negative y-direction was simulated using the present technique.

The results are compared to the analytical solution with a constant wind

speed of the resultant velocity, i.e., 6.71 m/s. The concentration



'64 STABILITY CLASS D
Zmax=1000m.
H=50m y=0 ; z=0
\PL H=7Q__
— H=100
N
'E
g H=150
= .
z;lc H=200
10°F
1637 | 1
O.l | 10 100 I000
X/U, (min_')

FIGURE 4.7

Cul

Q

WITH TRAVEL TIME FOR VARIOUS HEIGHTS OF EMISSION - PRESENT WORK



-88-

distribution at ground level and at the effective emission height are

presented in Figure 4.8. The agreement is excellent. It should be pointed

out that again the concentration at z=100 m is obtained through two-

dimensional Lagrangian interpolation, and therefore shows the overall

error involved in the computed results. The computer time was 800 seconds.
With the present work validated for the case of a two-dimensional

wind velocity profile, the next step was to solve the problem with the

Coriolis effect. The wind velocity was represented by equations (3.16)

through (3.21) and the vertical diffusivity profile by Figure 3.15. The

constant horizontal diffusivity was given by Table 3.12. The geostrophic

velocity was taken to be the same as u, given by the power-law equation,

G
with Uy for a stability class D assumed to be equal to 6 m/s. A value of
ug = 11.45 m/s was calculated for these conditions.

Isopleths of 3 mg/m3 for the present model and the constant wind
speed and turbulent diffusivity are shown in Figure 4.9. Both cases are
quite different, as expected. The centerline for case (a) occurs at y=0
while for case (b) is skewed to the left. Furthermore, the areas are
different but the mass flux is the same, i.e., 1 kg/s. The reason being
that in general, the concentrations for the constant case are higher than
for the Coriolis model, e.g., the maximum concentrations found were
5.36 mg/m3 and 5.00 mg/ms, respectively. The peculiar form of the curve
at the left, i.e.,more voluminous is due to the effect that the isopleth
has reached the ground and the material is being reflected upwards.

Figure 4.10 shows the comparison of the Coriolis model to the

Gaussian plume equation for the ground level concentration at both
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centerlines. Cases (b) and (c) were obtained for a wind speed equal to
the resultant of the velocity for the present model at the effective
emission height, 100 m, and at an elevation of 50 meters, respectively.
The three cases were obtained for neutral stability,and the results are
quite different.

Since the wind speed used for case (b) is 4.3 m/s, it would be
more appropriate to obtain the solution using the Gaussian plume equation
for a stability class C. This concentration distribution is also shown
in Figure 4.10 as case (d), and the comparison to the present model is
closer, at least in the downwind position and the value of the maximum
ground level concentration. For the wind speed of 2.3 m/s no stability
class was found that would give a Gaussian plume equation solution closer
to the present model.

It should be noted, as has extensively been done before, that less
rigorous mathematical parameters can provide a decrease in the computa-
tional time. The Coriolis model case (a) was obtained in 880 seconds of
CPU time. A similar problem was simulated next, but the mathematical
parameter r was changed to 0.1. A comparison of the mass fluxes at

several downwind positions is shown in Table 4.1.
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Table 4.1 Mass Rates at Several

Downwind Positions - Coriolis Effect

x (m) Q, (kg/s)
r= .01 r=.1
10 1.0026 1,0031
20 1.0011 1.0108
50 1.0003 .9990
100 1.0067 .9759
200 1.0054 . 9881
500 .9976 . 9902
960 . 9992 1.0348
2000 . 9874 .9973
4000 . 9846 .9768

It can be observed that the results for the case with r = 0.1(Q=1 kg/s)
are still adequate as compared to the simulation using r = 0.01, but the

main difference lies in the computer time involved of 580 seconds.
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CHAPTER V

SUMMARY OF RESULTS, CONCLUSIONS AND RECOMMENDATIONS

Turbulent diffusion from single ground level or elevated line or
point sources in the atmosphere was successfully simulated using the
K-theory and solved by spline orthogonal collocation. Improved mathe-
matical techniques were used to describe the plume, which is generated
at the source, by means of moving boundary conditions. This implies that
the edges of the plume are known at any downwind distance from the source,
and the concentration distribution is obtained only within the region of
interest, i.e., in the plume. Although the solution was calculated at
the orthogonal collocation points, accurate two-dimensional Lagrangian
interpolation was used to obtain the concentration at other desired posi-
tions such as the effective emission height.

Several techniques for solving the resulting system of first-order
ordinary differential equations with respect to the along wind direction
were tested in the present work. An eigenvalue method was selected for
the two-dimensional models, and the three-dimensional models were solved
by a fourth-order Runge-Kutta method.

The present work was used to simulate steady state air pollution
models. Mathematical parameters, inherent of the techniques developed,
were determined through parametric studies. The values assigned for
these mathematical parameters should remain unchanged if the present work
is used for other problem specifications.

Empirical equations were used to describe the mean wind velocity
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and the turbulent diffusivities. Several meteorological parameters were
included in these equations so that many atmospheric conditions can be
simulated by the present technique. A two-dimensional wind velocity profile,
including the Coriolis effect, obtained by solving the equations of motion
analytically, was incorporated in the three-dimensional air pollution

model.,

Excellent agreement was observed between the calculated concentra-
tion distribution and the analytical solution for cases where the latter
exists. The present model had also an excellent response to variations
in atmospheric conditions. This was obtained by simulating hypothetical
cases. In addition to the concentration distribution, the flux across
any plane normal to the along wind direction was calculated. Its com-
parison to the constant emission rate (steady-state models, no removal
processes) was excellent. All the results were obtained with a very
reasonable amount of computer time. This computational time could have
been decreased by changing some mathematical parameters, but it was
decided not to do so in order to obtain very accurate results. A
graphical method for presenting computed results was developed to permit
estimation of ground level concentration for any source emission rate, wind
velocity and effective emission height for neutral stability.

Several extensions to the present technique should be investigated
and are recommended next. They cover a wide spectrum of air pollution

problems and do not involve significant changes to the present method.
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1} Solution of pollutant dispersion from multiple sources in the
atmosphere can be obtained by superposition of the effects of the
individual plumes [4]. This involves only bookkeeping of the solutions
in the computer. The present method required approximately 20 and 30K of
storage for the two and three-dimensional models, respectively, leaving
enough room for solving this type of problem. It should be pointed out
that the CPU time would be the one used in the present work multiplied
by the number of sources involved., If the number of sources is very
large it might be more convenient, timewise, to treat them as area
sources and use finite-difference as the numerical technique,

2) There is sometimes a need for solving air pollution models
involving complex terrain such as buildings, hills, etc, The idea of
a vertical moving boundary, similar to the one used in the present work,
but fixed to the description of the terrain could be used to solve this
type of problem.

3) Finally, unsteady-state models are of some interest in air
pollution modeling. Sources with emission rates as functions of time,
problems involving complex removal processes and/or meteorological
parameters variable with respect to time are typical examples of
situations that are represented by unsteady-state models,

An unsteady-state model was tried using the present technique. It
required the solution of 800 first-order ordinary differential equations
at each time-step of integration. The method was abandoned because it

involved an excessive amount of CPU time.
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Experimental data for time-changing emissions and also meteorologi-
cal conditions are usually given in time intervals of one hour or higher.
This suggests then to utilize a '"quasi-steady-state' assumption. A
solution using the present model could be obtained and applied to some
interval of time, comparable to Xmax/u‘ Each interval could be assumed
sufficiently long to permit full development of the concentration distri-
bution at all locations. This could be a poor approximation at low wind
speeds. The extreme case studied in the present work, the very stable
atmosphere, involved a time interval of approximately 2 hours for the
maximum downwind distance considered significant. The general unsteady-
state situation could then be obtained through a sequence of steady-state
intervals, In general, both the pollutant emission and the meteorological
conditions could then be varied between the consecutive time periods.

Finally, air pollution models involving complex removal processes
could be treated in a similar way. The chemical kinetic terms generally
require smaller time steps for stability when compared to advection time
steps. This suggests then to separate the solution of the removal
processes from the diffusion equation for any advection time step. The
present method could be used to obtain the concentration distribution for
a time step equivalent to Ax/u, Ax being the integration step in the
downwind direction. The chemistry would then be calculated until the
chemical time equals the advection time. The process of first calculating
advection and then incorporating the chemistry solution could be repeated
as long as desired. This splitting technique has been used by Eskridge

and Demerjian [6,7] and by Rizzi and Bailey [15].
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APPENDIX A

COMPUTER PROGRAM LISTING

Part of the computer program used for the three-dimensional -
Coriolis effect model is shown next, The main programs for the other
models and the subroutines common to all of them can be obtained from the
Chemical Engineering Department at the University of Houston. All
statements are written in Fortran IV. These programs have been executed

in IBM 360/44 and UNIVAC 1108 digital computers.
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IMPLICIT REAL*3(A-H,C=-2)

EXTERNAL FCT _

CIMENSION FAY(12),FAZ(12)FB(12),FC(12)yRTIY(12),RTZ(12)},
180Y(12412),EY(12,12),A2(12,12),B2(12,12)yWY(12),WZ(12),
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READ AND WRITD INPUT DATA

FEAD(D4122) NYZNZ,ISTR
FCRMAT(2]¢)

RCAC(5,y171) XMAX,H, YMAX, ALPHA,AK
FORMAT(ED1544)

READ(E,10€) LST,AM,LGR,QS,SEL

FURMAT(5D1%.4)

FEAD(S5,98) (DKN(I), [=1,¢)

FORMAT(EDLIrL 1)

READ(DS,39) (DUMII), I=1,F)

TEAC(5,99) (FGEC(I)f [=1,6)

FORAAT(ENLC 1)

REAND(E,104) (PRMT(I), I=1,4)
FORMAT(4CLE . 4)

PcAD(541¢2) CLlY4D2Y,RPATIC,BETAY
RZAD(Sy 1t 2C) D1Z2.DZ2Z,B7TALZ
FCRMAT(4C1E44)

FORMATI(2D1S5.4)

RCAND(E,10%) XCH 0 X,CD1Y,DRC2Y
READ(S, 10 2) DDY1Z,CC2Z,FSK, AMM
FNIMAT(4N1544)
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CALCULATICN UF URTHOGUNAL POINTS, QLADRATLRE WEIGFTS,

AND MATRICES A AND B

CALL JCOBI(1241Y31ly147eiDC3CeCDCyFAYZFByFC4RTY)
CALL CFCPR{124NY 1414143, FAY,FRyFC4RTY,HWY)
DN 457 T=1,NTY

CALL DFOPR(124NY 141431 414FAY,FRL,FC4RTY,VEC)
CO 2 K=1,NTY

AY{I,K)=VEC(K)

CALL DFOPR{124NYylyls1424FAY,FB4FC4RTY,VE()
CU 3 K=1,NTY

BY{I  K)=VEC(K}

COMTINUE

CALL JCOBI(124NZysy1y14CefDCyCaCDCLFAZ,FB,FC,RTZ)
CALL CFCPR{12sNZ41+1,143,FAZ,FRyFC,sRTZ,yWZ)
DU 45F I=1,NT2Z

CALL DFOPR{124NZ 4919141 41,FAZ4FB4FC,WRTZ4yVEC(C)
LG 222 K=14,NTZ

AZ(I4K)=VEC{XK)

CALL DFOPR({124 124919141 42yFAZFRWFC4WRTZHVF(C)
CL 323 K=1,NTZ

321 4K)Y=VEC(K)

COMTIMNUE

NS=NY*®NZ

X=X(

INITIAL CONDITION DETERMINATICN

CALL VELDIF(ZsHyUGR,UST,AMyU,V,ISTB, ALPHA,NTZ,AKYB,AKZB,DAKZB,

1STL 2 yUSyCKNyDUMNgHSKN yHGEL , M NM)
PV==UST*DEXP(-SEL*H/AM)*DSIN(SEL*H/AM)/US
CPX=CS/B4LN/US/YMAX/H/RETAY/RETALZ

DN 2€ J=1,NZ
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MAINIZLD
MAINLZ?T
MAIN1Z2C
MAIN124.
MAIN12ST
MAIMN1Z262
MAINL1ZTH
MAIN128"
MAIN1IZS?
MAIN121D
MAIN131U
MAIN132C
MAIN1IZ22N
MAINL34D
MAIN12ET
MAIN12¢€0
MALINLIZTN
MAINLI33N
MAIN13G"
MAIN14CO
MAINISGLD
MAIN1427C
MAINL4Z"
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144
145:
l4¢:
147:
14R:2
149:
160:
1¢1:
152:
153:
154:
155:
i56:
187
189:
159:
16.:
161:
1€2:
163:
1¢64:
165:
le6:
1€7:
1€8:
169:
1702
171:
172:
1L73:
174:
1752
1745:
177:
178:
179:

YOO

298

299
36

33

» (S RN)
%) S~

O
T O

0D 26 I=1,NY

JJd=T+(J=-1)%NY

PP=1,CDC

IF({D1Y+D2Y+2CNxBETAY)*PTY(I+1)=0D1Y) 29,2%2,27
P(JJ) =304 LT

Cu TN 26

FP=045C0

GaQ TOh 269

IF((NIY+DNZY+2 DUXBETAY)*RTY(I+1)-D1Y-2,Cr*BETAY) 299,298,297
P(JJ)I=0."L0C

GC TC 26

PP=CQ ED(

cu TC 299
IF((D1Z+D2Z2+42.D02*RETAZ)*RTZ(J+1)-012) 36,328,327
P(JJ)=le0LCC

CU TO 26

P(JJ)=0.5C0*%CBX

GN TC 26
IF((D1Z24D22+42.DL*BETAZI¥RTZ(J+1)-D17-2.C"*EETAZ) 354+35,34
P(JJ)Y=De01C"N

s TC 26

P(JJY=P 5CC*CBX

CL TC 26

PLJJ)=CBX*FP

CONTINUE

CALCULATICN CF EXPRESSICNS USEC IN MOCEL (CEPENDENT
NOF THS NUMBER CF CCLLCCATICN PCINTS CALY)

LENY=AY (NTY, 1 )*AY (1 yNTY)=AY(1, L)*AY(NTY,NTY)
Nt 41 T=2,N1Y
AZY(I)=AY(1y1)*AYINTY,I)=AY(NTY,1}*AY(1,I)
AIY(I)=AY (1, I)+AY(1,NTY)*A2Y(1)/DENY
CNAMTINUE
DeMZ=AZ(NTZ,yY)%AZ (L yNTZ)—=AZ(141)%AZ(NTZ,NT2Z)
M 441 I:ZQNI.Z

FaCE

MAIN1442
MATINL4GS5Z
MAINL46Y
MAIN14T.
MAINL4GZC
MAIN1492
MAINL1SCH
MAIN1E1D
MAINL1S2D
MAINLS3)
MATN154C
MAINYEEC
MAINLS AN
MAINLSBTC
MAINLEEYC
MATIN153)D
FAIN1G6CCT
MAIN1€1G
MAIN1GZT
MAIN1637
MAIN1€40Q
MATINL6R"T
MAINL66D
MAINL1ETE
MAIN1ERC
VMAINLERD
MAINLTTCT
MATN1717
MAINLT72Z
MAIN1730
MAIN1T473
MATINLTSC
MAINLT&D
MAIN1T77C
MALINLT78D
MAINL179)
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18y

181:

132 441
if3: C
184: C
185: C
1862 2r
187:

18R

189:

190

191:

162: 5 6
193:

194:

165:

166: b2
197:

153:

1639: tFP
200

2C1:

PO
o

203: C
204 C
2"5: C
2052
207:

¢« o812
cC9:
21N
211:
z12:
213:
214: N
215:

AZZ(T)=AZ(191)%AZ(NTZ, I)=AZINTZ 1)%AZ(1,1)
ATZ(T)=AZ(1, I)+AZ(1,NTZ)*A2Z(1)/DENZ
CONTINUE

LCOP FOR CHANGING THE BCUNDARY POSITIUNS

COMTINUE

VARLY=DABS{D1Y+BETAY-450C)
VARZ2Y=CABS(C2Y-1.)DN+.5DN+BETAY)
VAR1Z=DABS(C1Z+BETAZ-SEL)

VAR 272=DABS(D22-1+.DC+SEL+BFETAZ)

WRITE(6,5C¢) C1lY,L2Y,012Z,C22

FCPNAT(S(/)910X7'DIY ='9F100715X9’D2Y =',quo7QIDX1

1'D1Z2 ='4F1Ce7,5X,'D22 =',F10e7,1(/))

CO 8 I=14NTY
Y{T)=(D1Y+4C2Y+2. D %*RETAY)*RTY(I)+,5C2-BETAY-D1Y
ACTY(I)=(Z2eD7%Y(I)-1aDCYXYNMAX

CU 888 I=1,NTZ

Z(I1)=(D1Z4L2Z+2.D *BETAZ)*RTZ(I)+SEL-BCSTAZ-C1Z
ACTZA(I)=Z(1)%H
RSEL=(BFTAZ+D1Z2)/(D1Z4D2Z+2.DC*BETALZ)
PYC=(RETAY+CLY)/(ULY+C2Y+2.D¥*BETAY)
ARYZI=(24D0%345C =1 e )%YNMAX

CALCULATICN NF THE CIFFERENTIAL EQUATIONS CCEFFICIENTS

CALL VELDIF(Z, HyULbR,LETJANL,V,ISTR,ALPHANTZ,AKYEyAKZB,CAKLZE,

1SFL 2 19US»CKNyDUNyHSKN G HGEC,, AMM)

CC 2539 L=2,N1Z

RI(L)=L(L)/XNMAX

R2(L)=VIL)/2.DL/YMAX/(D1IY4D2Y+ 2., DCXBETAY)
RR(L)=CAKZE(L)/H/(C1Z+027+42.D3*%RETAZ)

PSIL)=AKYE(L) /4eD. /YMAX/YNAX/ {CLIY+L2Y 42 COXPETAY ) ¥%2
RA(L)=AKZB(L) /H/H/(D1Z+D2Z+42.D0*BFTAZ)/ (CLZ+C27Z+2.CO*BETAZ)
CUNTINUE

B0 15 K=2,N1Y

PAGE

MAINIBOD
MAIN1BLuU
MAIN1E2C
MAIN1E24G
MAIN1IR4D
MAINLESC
MAINI1REC
MAIN1BTC
MAINLERY
MAIN1IBSL
MAINLOCH
MAIN191?
MATMN1G2C
MATIN1930
MAIN194)
MAIN1GST
MAIN13ED
MAINL1OTO
MAINLGEL
MAIN1GSL
MAINZ2CHD
MAIN2N1D
MAINZ2CZC
MAINZ2C2G
MAINZ2D4)D
MAIN2CS5C
MAINZ2GED
MAINZT T
VAIN2CRT
MAINZTGT
MAINZLINN
MAINZ211D
MAINZ12C
MAINZ1ZC
MATNZ1G!
MAINZL1S5C
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Z1l6:
217:
214:
219:
22"
221:
222
2232
2Z24:
225:
2263
227:
228:
229
227
231:
232:
233:
224
235:
2362
227:
238:
239:
24"
241:
242
243
ch4
2452
246
247:

CO 15 I=24N1lY
AKY(KyI)=(=BY(Ky1)*A1Y(I)/AY(1,1)+RY (K, 1)+
1LY(KyNTY)YXA2Y(I)/DFNY)
AVY (Ko T)=(=AY (K, 1)*ALY(T)/AY(1,1)+AY(K, 1)+
IAY (K ZNTY)XA2Y(TI)/CENY)

18 CONTINUE
0L 155 L=zyN1Z
OC 157 I=2,N11Z
AKZ(L I)=(=-RBZ(L,Y)*A1Z(I)/AZ(1,1)+BZ(L,1)+
18Z(L,NTZ)*A2Z{I)}/DFNZ)
CAKZILyI)={-AZ{Lys)*ALZ(T)/AZ(1,1)+AZ(L, 1)+
IAZ{L,NTZ)*A2Z{1)/DENZ)

15 CONTINUF

CY 1n J=1,NS
DG 1. I=1,NS

0 PWlJyI)=CaCOC
LG 113 K=1,4NZ
CC 113 IJd=1,NY
JI=IJ+(K=1)=%NY
CO 112 J=1,NZ
I=TJ+(J=1)*NY

112 PwWlJJsyI)=Ph(JJ T} +AKZ(K+1,J+1)%R6(K+1)/R1(K+1)+

ICAKZ(K+1,yJ+1)*R3(K+1)/R1(K+1)
[C 14 J=1,NY
I=J+ (K=1)%NY

14 PWIJI»T)=PW{JJ,IV+AKY(TJ+1,J+1)*RS5(K+1)/RI(K+1)-

1IAVY(TIJ+1,J041)%R2(K+1)/R1(k+1)
L13 CONTINUE

INTECRATICN USING DRKGS

1 COMTINUE
SUM=( 4T
Kk=NCIM-1
un 31 I=1,KK
PY(I)=1eOC/DFLCAT{NDIWN)

FACE

MAINZ 16D
MAINZ217C
MATIM2190
MAIN219)
MAIMN22CC
MAINZ21T
MAIN22£D
MAIN2Z3T
MAT 1224C
MAIN2257
MAINZZEC
MAINZZTC
MAINZ228N
MAINZ29"
VAINZ3CT
MAINZ231YT
MAINZ32D
MAINZ232T
MAINZ24C
MAINZ2359
MAIN226T
MATN22T7S
MuINZ2389
MAINZ2390
MAINZGCC
MATHNZ2410
MAINZ2421N
MATIMNP420
MAINZ44T
MAINZ24SRN
MAINZ246LC
MAINZ4TC
MAINZ248D
MAINZ497T
MAIN25C™
MATN251C
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252:
253:
2542
255
256:
257
258:
I H
2601
261 :
Z2€2:
263:
2642
265
2€o0:
256T7:
268:
€G:
270
271:
212
Z213:
274
z15:
276:
c17:
218z
219:
802
2813
2€2:
283:
284
2ER:
2R6:
287:

C

31

(5

&1

7°

SLM=SL

M+DY(I])

CY(NDIM)=1.D0—~SUM

X" =PRM
OX"'=0DX

T(1)

PRMT(Z2)=PRMT(1)+DX

PRMT (3

CALL CRKGS(PRMT4P,DY NCIM, IHLF,FCT,AUX,PW)

X=PRMT

IF(XsCTalaeCCDM)

[F{XeCEeeGOL-0OT)
[F(XeGEeeSSD=06)
[F(XeCEeeSSD—C5)
IF(X.CE..QQE‘Qé)
IF(X.GE..GQE-CB)
IF(XOGEOOGQD—CZ)
IF(X.GE..GQE-PI)

)=CX

(1)

IF(XeGEaa499)

TRANSFORMATICN OF THE CRKCGS RESULTS INTO A C(Y,Z)

|l
[AS M o R ]
Wl

1

NY
no 12
kK=L=-(J
FK=K+1
JJd=J+1
ClKK,J
CONTIN
J=J+1

IF(JeGTaNZ)

L=L1,L2
—-1)=NY

J1i=P(L)
UE

Ll=L2+1

2=L2+
6o TIe

NY
Bl

CUNTINUE

SToP

CX=3,4,0C=-"7
NX=3.N0-u6
DX=14CD—~CH5
CX="e5D="4
DX=3.25C-“3
DX=Ces25D=02
LX=r,1C0-Cl
CX=e25LC-N1
IF{XeGToelD-C1)

[ICKY=1

GG TO #R2

FORM

PAGE

MATNZ2EZC
MOINZ2S3D
MAINZE 4D
MAIMNZESC
MAINZ256)
MAINZ2ST,
VAIN2S5EC
MAINZEGC
MAINZ2ENN
MAIN2ELT
MAINZEZD
MAIN263C
FAINZ64AN
MAINZEEC
MAINZ266T
MBINZETD
MAINZ2EERC
MATNZESC
MAINZTIN
MAINZTLC
MAINZTZC
MAINZT3N
MAINZTS)
MAINZTEC
MAIMNZ2T6C
MATNZTTD
MAIN2TEC
MAINZ7G(
NMAINZBON
MAIN2ELC
MATINZBZD
MAINZ2B2D
MAINZ2BED
MAINZESL
MAINZBEC
MAIN28BTT
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«By: C
282: (
263: C
2G1:
292:
2G3: &2
254

295:
296 #33
2673

293:
299:

372 K4
anl:
3p2:
2°3:

343 844
306:
376

3C7:

3(08:
EPRH ¢r
3102
311:
312:
313:
214:
315:
316:
217: £58
318:
319:
3z
3213
322:
323

eNaEel

[aNeNe!

CALCULATICN OF THz BNOUNDARY CUNCENTRATICNS

DD 82 I=14NT7Z

C(1,1)=0.CCC

C{NTY,1)=CenD

DO 833 J=1,NTY

ClJdy1)=0.CDUL

C(JyNTZ)=30C"

CO 84 L=2,4N17

OO 84 I=24,N1Y
Cll,L)=C(1lyL)=-ALY(I)*C(T,L)/AY(1,1)
CINTY, L)=C{NTY,L)+A2Y(I)%C(I4L)/CENY

DC 844 ¥=24N1Y

CU 844 I=z,N12Z
CIKy1)=C(Ky1)=A1Z(I)%C(KyI)/AZ(1,1)
CIKyNTZ)=CUKNTZ)+A2Z(1)*C(K,I)}/CENZ

CO 85 I=2,N1Y
C(l,y1)=C(l,1)=-A2Y(I)*C(TI,1)/AY(]1,1)
CIMNTY,Z1)=CINTY, 1) +A2Y(TI)*C(I,1)/CENY
ClLyNTZ)=Cl1aNTZ)=ALY(IIXC(I,NTZ)/AY{1,1)
CINTY G NTZ)=C{NTYyNTZ)+A2Y(I)*C{I,NTZ)/DENY

CALCULATICN OF THE EFFFCTIVE CMISSICN HEICFT CCANCENTRATICN

CALL INTRF(124,NTZ,RSFL4RTZ,FAZ,ZINTP)
DO BEE J=1,NTY

EHCO(J)=0.D0

£0 855 I=1,NTZ
eHCO(J)=EFCCOUI+ZINTP(I)*C(J, 1)

CALCULATICN OF THE CONCENTRATIONS AT Y=0
CALL INTRP{L2,NTYsRYC,RTY,FAY,YINTP)

CO 8%¢ J=1,NTZ
CFCC(J)=n4L"

PAGE

MATNI2880
MAINZ2BGO
MAINZ2GCC
MATY2910C
MAINZ2Q2)D
MAIN2G3C
MAINZS4C
MAIN295D
MAIN29ED
MAINZSTC
MAIN2GRD
MAIN299D
MAIN3CCT
VAIN3N1O
MAIN3PZ)
MAIN3C3C
MAINZ204C
MAIN3CSN
MAIN3CEC
MAINZDTD
MAIN3CEN
MAIN3 790
MAINZ21CP
MAIN311D
MAIN3122
MAIN312C
MAINZ214C
MAIN315D
MAIN31E"
MATIN317C
MAIN31BD
MAIN319"
MAIN3Z2CC
MAIN3Z2IOD
VAIN322D
MAINZ23C
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324
325:
326:
327:
328:
2293:
330
331:
322:
2323:
334:
i25:
326:
337:
338:
329G:
340:
341:
342
243:
344
345:
3462
347:
348%:
343:
350:
351:
3€2:
353:
354
3E5:
356:
357:
358
359:

I NeNe

OO

1Yo

657

47

AEG

&6

[C 856 I=1,NTY
CzCO(J)=CECC(J)+YINTP(I)*C(I,J)
CCN1=C.DC

ccue=n,Cr

CCC3=M4D2

NN 827 I=1,NTY
CCOL1=CCOL+YINTP(I)*EHCO(T)
CONTINUF

CLY=EHCO(L)

ClY=FEFCO(NTY)

CALCLLATICN CF THz MASS RATE

L=Ne"C7

DO 47 1=2,4N1Y

DO 47 J=2,N11

O=Q+WY (1) *WZ(JI*C(T,J)%L(J)

C=2 e CN¥YMAXK(LCIYH+C2Y 42 CN*BETAY ) *b* (D12 4027 +2.LC*¥BETAZ ) *(Q
(0=1C00DL/6CD0*Q

ACTX=X%kXMAX

CALCLLATICN CF THE TRUE CENTERLINE CCNCENTRATIONS

RYC=(RETAY+C1Y+PVX*ACTX/2.CC/YMAX)/(D1Y+D2Y+ 2. DC*BETAY)
DO 859 J=1,4NT1Z

CECUY(J)=(aDC

IF(RYCeGEWL1a2DC) IST=1

CALL INTRF(124NTY,RYC,RTY,FAY,YINTP)
DN 860 J=1,NTZ

CO BeC I=14NTY
CECOY(J)=CECOY(J)+YINTP(I)*C(I,J)
APYC=PV*ACTX

DU 829 I=1,NTZ
CCO2=CCO+ZINTP(II*CECO(T)
CCN3=CCCR+ZINTP(I)*CECCY(I)

CCMTINUE

PACS 15

MAIN3ZZ24D
MAINZ2ET
MAIN326C
MAIN327)D
MAINR2ET
MAIN229C
MAIN33GY
MAINZ31C
MAIN222C
MAIN333D
FAIN334D
MAIN22EQ0
MAIN3350
MAIN337S
MAIN32EC
MAINZ22SC
MAIN34OD
MAIN341C
MAIN3420
MAIN3439
FAIN344"
MAIN348C
MATN346T
MAIN34GT)
MAIN348C
MATINZ24GC
MAINRSCN
MAIN3S1.
MAIN3E23
MAINZS3D
MAIN354"
MAINZESCP
MAIN3S56"
MAIN3STY
MAIN35¢FC
MAIN2EGC

-IT1-



3¢
3€1:
362 :
3€3:
3E4:
365:
3€6:
367
3¢8:
369:
37N0:
271
372:
373:
374:
375:
376:
277:
378:
379:
360
3381:
342:
3283
3842 12
385:

386:

3287:

288:

389:

2GC:

391:

392: 1323
263:

3G94:

33952

OO0 O

C Z=CFCCY(1)
C1Z=CECOY(NTZ)
EPS=CCOU3%RATIO

TEST FOR THE PLULME SPREAD BY CCMPARISCN CF BCUNCARY
CONCENTRATIONS WITH PS (= C{TRUE CENTERLINE,EFFECTIVE
CMISSION HEIGHT)*RATIC)
- IF OKy, PRINT RESULTS ANC ACVANCE INTECRATION (12)
- IF NOT, CET NEW INITIAL CUNDITICN ANC INTEGRATE ACAIN

IFUIOKYPLECL2+AND ICKYVM,FLe2) GC TC 12

[0KY=C

I10KZ=1

IF{(C Y ) e LToEPSe ANCo (ClY)eLTLEPS) IOKY=1
IF(VARIYeLTeleCD=CHaANDs VARZ2Y4LTela0D-NR} TCKY=1
IF(VARLIY L TalelC="8sANDe(CLlY)WsLTLEPS) IQOKY=1
IF(VARZY.LT.I.QD—JBOAKC.(C\Y)OLT.EPS) I0KY=1
IF(IOKYJ.ECs1) GC 1C 13
IF(D1YelLTaleSDO-BETAY=1a(D=CB8. ANDa (CCY)aCGTeEPS)DLY=D1Y+

1CC1Y*CMULY

IF(VAR2YeGTeleD=JBeANDe (C1lY)aGTLEPS) L2Y=C2Y+CLC2Y*CMULY
I10KY=C

IF(IUKYPJECLL) I0OKYP=2

IFIICKYPseEGCe) 10KYP=1

CONTINUE

IF(ITIOKYLEQ.0Y) GO TO 1333
IF(C"YeGTeleDCeANDClYaGTo0eD?) GO TO 1332
IF((CLY)aLTelaCDOID1Y=D1Y-COLYXCMULY/24.5LC
IF((C1Y)elLTeNeCDN) D2Y=DZ2Y-DD2Y%*DMLLY/2.,°CC
ICKY=)

IF(ICKYMecCWel) ICKYM=?

IF{IOKYM.EQa() 10KYM=1

CONTINUE

IF((CTZ)eLTeFEPSeANCe(C1lZ)WoLTLEPS) ICKZ=1
IF(VARIZ.LT.l.CD—b%.AND.VARZZ.LT.l.OD—QB) ICKZ=1
IFIVARIZ«LTelalMD="R¢ANDs(CLZ)4LTLEPS) IO0OKZ=1

PAGE 11

MAIN3eCC
MAIN3ELO
MAIN3E2D
MATINIE2C
MAINZ364T
MAIN36E5D
MAINZEED
MAIN3ZETC
MAIN3GE(
MAIN36GO
MATINZTCL
MAIN3T1O
MAIN372J
MAIN372C
MAIN3T4)D
MAIN3TSN
MAINZTEL
MAINZTTIC
MAIN3TRN
MAIN37SC
MAIN3ECC
MAIN3S1D
MAIN3820C
MAIN3E3C
MATNN384)D
MAIN3BSD
MAIMN3EEL
MAINZETC
MAIN3880
MAIN3ESC
MATINZGCL
MAIN391N
MAIN3920
MAIN332C
MAIN3940
MAIN3951)
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3962
397:
3G638:
35G:
4003
4401 8

4u 22 132
4972:
414
4052
4Q0h2
477:
438
409:
4102
411:
412:
413:
414:
415:
416: C
417: C
41R: C
419:
420
421:
422:
4273: 6
4242
4253
4262
427
429%:
4293:
43N r
431:

IF(VARZ2Z 4L TeleCD=LB8sANDe (CCZ) 0 LToEPS) ICKZ=1
IF(ICKY+ECeleANDsIOKZ&EQel) GO TO 12
[F{D1ZeLTeSEL=BETAZ=1(C-UBsAIC«(C112)«GTLEPS)ID1Z=C1Z+
1ICD1Z*NDMLLZ

IFIVARZ2Z ¢CTalelD=ULEsAND(C1lZ)eGTaEPS) D2Z=C2Z+DD2Z*DNULZ
I0KZ=)

CCNTINUE

IF(IOKYatEGele ANDeIDOKZW4EQal) GC TC 12

IF(XeCEeaS9L~-N3) CMULY=2,C"

IF(X.GE..QQD—OZ) CMULY=6.0u

IF{XeGEeeSSD—~C1l) OMULY=1C.DO

IF({XeCEeeSSLC-3) DMULZ=4,C0

IF{XeGceaeSSC=-02) CMULZ=12.CO

IF{XeGEeeSGD-C1l) DMULZ=16,DC

[F(0«5CO-FETAY-C1lY.LELCD1Y*DMULY) DD1lY=(C 5 CT~PETAY-C1lY)//CMULY
TAY-D2Y)/MAING11C

[F{1eCO0=-"45D0=BETAY-C2YeLELCD2YXCMULY)DC2Y=(14D3-C45DC~RE
10MLLY
IF(SEL~BETAZ-D1Z.LE.DDYZ*DMLLZ) DD1Z=(SEL-RETAZ-D12Z)/0MNUY
IF{leCN=-SEL~RETAZ-D2Z,LE.LCLC22%CMULZ)ICD2Z=(1Dr=-SEL-BETAZ~
10MuULZ

CALCULATICN OF NFw INITIAL CONDITION

X=X(
PRMT (1)=XC

LX=DX"

MCI=1

pa 92 I=19NY

J=1+1
VIV=((D1Y+D2Y42., D' *BETAY)*RTY{(I+1)+C1OY-T1Y )/ (D1NY+C20Y+
12.D0%BETAY)
IF(VIY«LTW4le2CO) GO TO 9U
CUJyNCII=LeNC2

GO TO 62

[F{VIYeCTWCs2LCL) GU TU GE
C(J'NCI)=OQHDA

Zz
D2z)/

PAGE 12

MAIN3OKT
MAIN3GT)
MAIN3G8C
MAINZ2GGC
MAIN&O ))D
MAIN4CLZ
MAINA4CZ0
MAIN&4N3C
MAIN4NG"
MAIN4GSS
MAINGNEN
MAINGDTO
MAINGTE L
MAINGCON
MAIN41GD

MAING1ZZT
VAIN413N
NMAIN4140O
MAIN41EC
MAIN41672
MAIN417D
MAIN418C
MAING193D
MAING2JD
MAING21T
MAINGZ2.
MAIN423D
MAINGZ24T
MAIN4Z2ED
MAING 26T
MAIN&GZ2T2
MALIN4ZEC
MAING290
MAIN&G3CN
MAING317
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432:

423 Ge
4342

435:

436: 93
4272 G
438:

439:

440

441: 9tE
442: 17Aar
443:

444

445

446:

447:

448:

449: 40
4573

451:

452: 4%
4532

45842

4552 43
456 42
4572

4582

4591

46 C
461: C
462 C
4€3: 12
4¢€4:

465

4662

4¢€7:

CC TQ 92

CALL INTRF(1Z2,NTY,VIY,RTY,FAY,YINTP)

ClJyNCI)=CCUL ,NCII®YINTP{L)+CCUNTY NCI)XYINTP(NTY)
CO 92 K=1,NY
CUJyNCII=C(J4yNCI)+YINTP(K+1)*CC(K+1,NCT)

CONTINLE

NCI="CI+1

IFINCI.CT.NTZ) GO TO 9E%

GO TO 96

NCT=1

CC 42 I=14NZ

J=NCI+(I-1)*%NY
VIZ=((D1Z2+4D2Z+2.DL*BETAZ)%*RTZ(1+41)+010Z~-C12)/(D1QZ+C202Z+

12.7D0*BET2Z)

IF(VIZ.LT«1ls7CN) GO TC 4G

PlJ)=CaCNC

GO TO 42

IF(VIZoCTNOLD) GO TC 45

P(J)=C.CDC

GO TO 42

CALL INTRP(124NTZ4yVIZ4RTZ4FAZ,ZINTP)
P(J)=C(NCI+1,1)*ZINTP(1)+C(NCI+1,NTZ)*ZINTP(NTZ)
DO 42 K=1,NZ
PlJI)=PlJ)I+ZINTP{K+1)®RC(NCI+1,K+1)
CONTINUE

ACTI=NCI+1

IF(NCI.GTW.NY) GO TO 2¢€

GO TC 197C

PRINT AND STORE THE RESLLTS

CONTINUE
I0KYP=0
IOKYM=0
C17Y=D1ly
peoy=p2Y

FACE 12

MAING22N
MAIN422C
MAING434Z
MAING35™
MAIN4G36C
MAING2TC
MAIN438)
MAIN43GC
MAIN44GC
MAIN441N
VAING42)
MAIN&G43C
MAING4SD
MAIN44SD
MAING4EC
MAING4TC
MAING44GBT
MAING4SC
MAINGS(C
MAIN4S1CT
MAIN4S2D
MAIN4E3C
MAIN454N
VAIN455)
MAIN&4SEC
MAINGETC
MAIN4S8O
MAIN4S5GT
MAINGENT
MAINGE1D
MAING62)
MAIN4GEZQ
MAIN4643D
MVAIN4ESD
MAIN4E6C
MAINGETD

“vIil-



FAGF 14

P17Z=0C112 MAINGGEET
D2rz=p2¢ MAING6EID

CO 66 I=1,NTY MAIN&GTOIN
EHCO(I)=1(NNCI*EHCO(T) MAINGT10C

L0 €€ J=1,NT2Z MAINGTZC
IF{TIeFQel) CECO(J)I=CECO(I)I®1ICCraD" MAINGT3D
IF(IeFEQel) CECCY(J)=CECOY(J)*1CCCLLCO MAINGT4C
CClIJ)=C(I,J) MAINGTEC

€€ ClIyJ)=C(I,J)%1CCLLDO MAINGT6ED
CCO1=1000.L0*CCOL MAINATT
CC03=1CCT.CN*CCO3 MATMNG4TRT
WRITE(E,5CC) ACTX,Q,IHLF MAIN4T9N

SO0 FURMAT(2(/)42CXe "X =%,F1243427X3'Q =",F1lCeZ,431NX,'IHLF =',15,/) MAIN4G4ECD
WRITE(6,2C00) MAIN4ELS
cCul FORMAT(2(/)) MAINGEB2S
WRITE(64352) (ACTY(I),I=1,NTYH),ARYC MAING483)

352 FORMAT(LIX,132(%%)/1X, % L/7Y %', 10F12424 " %*1) MAIN4 R4
WRITE(b,465() MAIN4ESCT

58 CONTINUE MAIN4BEN
[=NTZ MAINGBTC

572 CONTINUE MAIM4ESC
WRTITF(693CC) ACTZ(I),(C{JyI)ysJd=1,NTYH),CECC(I) MAIN4ESG

300 FORMAT(LIX,y "%, F742,1Xy"%',10F1245," *1) VAIN49CH
I=1-1 MAIN4GIC
IF{I.EQeC) GO TO 531 MAINGG23

CO TO 5C2 VAIN493N

501 CONTINUE MAIN4S4T
WRITE(6,€65C) MAINGGSC

50 FCRMAT(1X,132('%")) VAING96N
WFITE(6,43CN) HSEL,{(EHCCI(I),I=1,NTYH),CCN1 MAIN4GTC
WRITE(6,2CC0) MAIN4G82
WRITE(6,352) (ACTY(I),I=NTYHL,NTY),ARYC MAIN4S9D
WPITE(6,4650) MAINSCCO

£of CONTINUE MAINS013
I=NTZ MAINSD2C

55012 CUNTINUE MAINSR3D

-S1t-



S5i4:
506
sCe:
507:
£08:
5¢3:
519
511:
512:
513:
514:

55801

9re

WRITE(6,3CC)
I=1~1

ACTZ(I)(C(JsI)»J=NTYHL,NTY),CECQOY(])

IF(I«EQevL} GC TG 5501

GO 10 t&rz
CONTINUE
WRITE(6,65C)
WRITE(&,3CC)
IF{IST.EQ.1)
GO TC 1
CONTINUE

END

HSELs (EHCC(I) I=NTYHL,NTY),CCC3
STOP

PACE 18

MAINSD4T
MAINS"ST
MAINECEC
MAINSCT)
FAINZI89
MAINECSC
MAINS1CO
MAINS11D
MAINE12C
MAINEL2G
MAIN®147

-911-



SUBROUTINE DRKGS(PRMT,Y,DERY,NDIM,yIHLFyFCTyAUX,PW)

C

C

C TFHIS SURRUUTINE SOLVES A SYSTEM OF FIRST ORCEZR CROUDINARY CIFFERENTIAL
C ECUATIONS WITH GIVEN INITIAL CONDITIONS

C

c

C PRMT - AN INPUT OUTPUT VECTOR WITH CIMENSION GREATER CR

C gQuat 7C 5

C PRMT (1) —~ LOWFR BCULAND CF THE INTERVAL

C PRMT (2) - UPPER BOULND OF THE INTERVAL

C PRMT(3) -~ INITIAL INCREMENT OF TrHE INCEPENDENT VARIABLE

C PRMT( 4) - LPPER ERRCR BCUND

C PRMT(5) — NO INPUT PARAMETER, IT IS C UNLESS TFHE LSER WANTS TC
C TERMINATE RKGS AT ANY OUTPUT FOINT

C DERY - IANPUT VECTCR (F ERRCR WEIGHTS. LATERCN IS TrE VECTOR
C CF DERIVATIVES

C NCIM - THE NUMBER CF EQUATIONS IN THE SYSTEWV

C IHLF - THE NUMBER CF BISECTICANS OF THE INITIAL INCREMENT

C AUX ~ AN AUXILIARY STGRAGE ARRAY (8 RCWS ANC NCIM COLUMNS)
C

C

IMPLICIT REAL*8(A-H,C-1Z)

CIMENSION Y(1),0ERY(1),AUX(8y1),A(4),B(4),C(4),PRNT(1),
LPWINCIM,NCIN)

DO 1 I=1,NDI¥
1 AUX(8,I)=CERY(TI})/15.DC

X=PRMT(1)

XEND=PRMT{2)

H=PRMT(2)

PRMT (5)=0LCC

CALL FCT{Y,NCIM,DERY,PW)

C
C FRRCR TEST
C

PACE

ERKG
DRKG
CRKG
CRKC
DRKG
CRKG
CRKC
CRKG
CRKG
CRKE
CRKG
CRKG
CRKG
CRKG
CRKG
DRKG
CRKG
CRKG
DRKG
CRKG
DRKG
CRKG
CRKGC
LRKG
CRKG
CRKG
CRKG
DRKG
CRKG
CRKG
CRKG
CRKG
CRKG
CRKG
CRKG

2C
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36: TF(H*(XENC=-X))36,37,2

37: C

38 C PREPARATIONS FOR RULNGE—=KLTTA METHCD
39: C

40z 2 All1)=.5D)

41: Al2)=.2928G6321881345248D0
42: A{3)=1,70710678118€5475DC
433 A(4)=elb66EELECOBELLREEGLEETDC
442 B{1)=2.0J

45: B(2)=14D0

463 R(3)=1.C0

47: B(4)=2,D"

432 Cl(l)=450D0C

49: C(2)=4292689321881245248DC
50 C(3)=1.72712767811865475C"
51: Cla)=4,5DC

52: C

53: € PREPARATICNS CF FIRST RUNGE=KUTTA STEP
€4: C

£5: CO 3 I=1,NDIM
56: AUX(1,I)=Y{(1)
£7: AUX(24,1)=CERY(I)
58: AUX{2,1)=CaD"
593 3 AUX{AH,I)=Ca0N
6N IREC=1

El: H=H+H

62: IHLF==1

q3: ISTEP=)

E4: 1END="

65: C
661 C STAPT (OF A RUNGE-KUTTA STEP
E7: C

€8: 4 TFU(X+H—=XEND)%*H) 7,46,5
693 5 F=XENC=X
77: A TEMND=1

71: C

PACE

DRKG
CRKG
CRKG
CRKG
CRKG
ERKG
CRKC
CRKG
CRKG
CRKC
CRKG
CRKG
CRKGC
CRKG
CRKG
CRKG
CRKC
CRKG
CRKG
CRKG
CRKG
CRKG
CRKG
CRKG
DRKG
CRKG
CRKG
CRKG
CRKG
LRKC
CRKG
CRKG
CRKG
CRKG
DRKG
CRKG

369
376
380
399
40"
410
4290
4370
440
450
467
4773
487
499
5CC
5190
520
530
40
559
56)
£7C
58C
591
6773
€13
629
€30
€47
650
€69
eE10
68)
699
7CC
71C
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72:
73:
T4
75
76
772

719:
80z
81:

OO0

e NeNe!]

eNeNe!

RFCCRCING CF INITIAL VALUES CF THIS STEP

7 CONTINUE
IFIPRMT(5))40,8,40

2 ITzST=0

9 ISTEP=ISTEP+1

START OF INNcRMCST RUNGE-KUTTA LCCP

J=1

17 Ad=A(J)
BJ=B(J)
CJ=C(J)
bC 11 I=1,NDIV
R1=H*DERY(I)
RZ=AJ¥{(R1=-BJIXAUX(45,1))
Y(I)=Y(I)+R2
R2=R2+R2+R2

11 AUX(€E,T)=ALX(E,]1)+R2-CJ%R1
IF(J-4)12,15,15

12 J=J+1
IF(J=-2)12,14,13

13 X=X+,5C0%t+

14 CALL FCT(Y,NCIM,DERY,FW)
GOTO 10

TEST OF ACCURACY

18 IF(ITEST)1€,1¢€,29

IN CASE ITEST=0 THzR:t IS NC POSSIRILITY FOR TESTING CF ACCURACY

L5 0O 17 I=1,NDIM

17 AUX(4,1)=Y(1)
17S8T=1
ISTEP=ISTEP+ISTEP-2

FAGE

DRKG
LRKC
CRKG
CKKG
CRKG
CRKG
CRKG
CRKG
CRKG
CRKG
CRKG
CRKG
CRKG
LRKG
CRKG
CRKG
CRKG
CRKG
CRKG
CRKG
CkKG
CRKC
CRKG
CRKG
CRKG
CRKG
DRKG
CRKG

72¢C
T30
740
75¢C
1€¢C
772
78¢C
76¢C
80D
81C
Bz
a3r
847
gsl
geC
872
&G
83¢
970
91n
g2~
931
949
S50
GEC
97"
33)
SG¢C

CRKE1CTD
CRKGLCLD
NRKG1N2T
CRKG1C32
CRKC174D
CRKG1LEL
CRKC1CED
CRKC1C 79

611~



1CR:
109
119:
111:
112:
113:
114:
115:
116:
117:
11R:
119:
120
121:
l1z22:
123:
1z24:
125:
126:
127:
128:
129:
130:
121:
132:
133:
134:
135:
136:
137:
1238:
139:
140
141:
142:
143

[eEeRe)

OO0

laNeNe

1A IHLF=IHLF+1
X=X~H
F=e¢507%H
00 16 I=1,NDIWV
Y{I)=AUX(1,1)
CERY(I)=ALX(2,])
1S AUX{6,1)=8LX{(3,1)
GUTO S

IN CASE ITEST=1 TESTING CF ACCURACY IS POSSIBLE

20 IMOD=ISTEP/Z
IF(ISTEP-INCD~-IMOC)21,23,21
21 CALL FCT(YSNDIMUDIRY,FW)
"CO 22 I=1,\DIM
AUX(S5,1)=Y(1)
22 AUX{T,1)=CERY(])
G070 S

CCMPUTATICN CF TEST VALUE CELT

23 CfLT=0,00
LG 24 I=1,.NCIV

24 DELT=DELT+AUX(8,1)*DABS(AUX(4,1)-Y (1))
IF(DELT-PRNMT(4))28,28,25

ERRCR IS TCC GREAT

25 TF(IHLF=1C) 26,36, 3¢
26 DO 27 I=1,NCIM
27 AUX(4,1)=ALX(5,1)
ISTEP=ISTEP+ISTEP—4
X=X=}
TEND =T
COTO 1¢&

PAGE

CRKG1787%
CRKC1299
CRKG1l1Cr
DRKG1110
CRKG112N
CRKG113)
DRKG114¢C
CRKG1150
CRKG116J
DRKG117u
CRKG11&C
CRKG1199
CrKG12CIC
CRKG1e1C
CRKG1220
DFKG123"
DRKG124C
CRKG1257
CRKGl26u
CRKG127C
CRKG1zeC
CRKC123)
CRKG133C
DRKG121¢
CRKG1329
CRKG133D
CRKG124C
CRKG1350
CRKG136N
CRKG137C
CRKG128C
CRKG1390
CRKG14CT
DRKG1410
CRKG142C
DRKG143N

-0Z1-



l44:
145
146:
147:
148:
149:
159:
151:
152:
ig3:
154:
155:
186:
157:
158
159:
1é0:
161:
lez2:
163:
164:
165:
1€6:
1€7:
168:
165:
170:
171:
172:
173:
174:
175:
17¢6:
177:
1783:
179:

C

C

RFSLLT VALUES ARE GOQUD

2F

29

31

[NCREMENT GETS DOLBLED

34
35

RETURNS TO CALLING PRUGRAM

CALL FCTUYZNDIVN,DERY ykW)

Lo 2§
AUX (1,

AUUX{2,1)Y=CLERY(I)
AUX(2,T)=ALX{6,1)

I=1,NDIM
IV=Y(1)

Y(I)=AUX{(E5,1)

DERY(I)=ALX(T7,1)
IF(PRMT(E))4C,3C,40

CO 31

[=1,NDIM

Y{I}=AUX(1,1)

DERY(TI)=ALX{2,])

IREC=TIHLF

LF(IEND)32132939

IHLF=IHLF=-1
ISTEP=ISTEP/2

F=H+H

IF(IFLF)4,33,33

IMOD=IST=ZP/2

IF(ISTEP—IMON-IMOD)4,434,4
IF(CFLT=12CN*PRMT (4} )35,35,4

IHLF=THLF~-1
ISTEP=ISTEP/2

F=H+F
GOTC 4

3¢ IHLF=11

CALL FCT(Y,NDIM,DCERY,PW)

CCTC 39
37 IHLF=12

PAGE

CRKC144D
CRKG1450
PRKG14€C
CRKG1479
CRKG148D
DRKG146GC
CRKC15CQ
CRKG1519
CRKG1F24u
CRKG153Q
CRKCG154N
CRKG1553
DRKG15¢€9
CRKG157N
DRKG1581
DRKG 1597
CRKG1610
CRKG1617D
DRKG1é¢2C
CRKG1leEZC
CRKGle4)
BRKG165C
DRKGLlEEC
CRKC1677
DRKG168N
CRKG1esSC
CRKG1730C
CRKGL71)
CRKG172¢C
CRKC1733
CRKG1747
DRKG17572
CRKG176C
CRKG17T7C
DRKG178C
CRKG17S¢
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1890:
181: 38
ly2: 3G
183:
184: 57
185: 40
186:

G4T1C 39
IHLF=13
COMNTINUE
PRMT (1)=X

FORMAT(2(/) 420X,

Re TURN
ENT

X

T 3F1he12,10Xy P IHLF =',15)

PACE )

CRKG1E8CC
CRKG181C
CRKG18295
CRKG183)
PRKG1847
CRKG1E5Q
CRKG18A)

-221-



22
3:
4

6:
7:

-
.

1C:
11:
12:
13:
14:
15:
let

OO0

1r
15

SURRCUTINE FCT(YP,M,0Y,PW)

THIS SURRLUTINE CUMPUTES THE DERIVATIVES (RIGHT HANC SIDES)
CF THE SYSTEM TC GIVEN VALUES OF YP(CONCENTRATION)

IMPLICIT REAL*3(A-H,0-2)
CIMENSIGN YP(M),DY(M) ,FW(FM,V)
DU 15 Jd=1,¥

CY(J)=0.0L0

Do lf‘ I=1 ,N
DYUJ)=DY(J)+PW(J,1)%=YP(])
CUNTINUE

RETURN

=MD

PACE

FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT

12
2
30
4)
5¢C
¢C
N
ac
SC
1200
119
120
130
140
180
1¢C

-¢Z1-



~NON WY

o}

11
11

12:

13
14
1%
16
17
18
19
Zu
21
22
23
24
25

2
<

27
28
29
37
31
32
23
24
35

s %0 s e S0 s

-
.
-
-
.
-
.
.
.
.
.

.
-
.
.
.
.
-
.
-
.
-
-
-
-
.
.
.
-
-

OO0

5

SUBRNAUTINE VELDIF(XZyHLGRyUSTsAN,UyVISTE,ALPHAJN3, 2KYy AKZ, [AKZ,

1SLy INDyUSyDKNyDUNyHSKiNyHGEOyANMM)

THIS SUBRCUTINE CALCULAT
CIFFUSIVITY VECTORS (TWD
ELEVATION AND STABILITY

IMPLICIT REAL*8{A-H,0-2)

DIMENSICN XZ(12) AKY(12),AKZ(12),CAKZ(12),CCEFK(6),CKNI(6]),

1TDFKN(6)y CUN(E€), TOFUNLE)
DATA COEFK/57N4D),555.CN
IF(INDeNESC) GC TC 5
US=UST*(1400-DFXP(—~SFL*H
PETURN
CONTINUE
TDFRKN(ISTB)=DKN(ISTB) /H
U(1)=UGR
PV=DEXP(-CKN(ISTB)/ANV)}*D
1{1.DC=DEXP(~DKN(ISTB) /AN
Ul=UST*(1.CC-CCXP(-DKNI(I
T(DKNUISTR)/BUNCISTE) ) **A
V{1)==PV%LI(1)
TOFUNCISTB)=HGECG(ISTR) /H
DO 25 L=2,A3
LIL)=LST*{(1.DG-DEXP(-XZ(
[F(XZ(L)aLETDFKN(ISTB))
IF(XZ(L)«LTLTCFUN(ISTE))
IDSINEXZ{L)®H/ANM)
IF{XZ(L)eCELTDFLN(ISTBI})
IF(XZ(L)eLTSTCFKNLISTR))
CONTINUE
IF(ISTB.GE«5) GO TO 1t

ES THE VELOCITY ANC TURBULENT
-CIMENSIONS) AS FUNCTIONS OF
CLASS

s LIL12),V(12),HGEC(E)
,‘)40.D”9 222:03100(:0 1‘7\.‘.500/

/AM)*DCOS(SEL*H/AN))

SIN(DKN(ISTR)/AM)/
)%DCCS(DKN(ISTB)/ AN))
STR)/AM)*DCOS(DKNIISTB) /AN) )/
%

L)*H/AM)*CCCSIXZ(L)*F/AM) )
LIL)=ULI*(XZ(L)*F/CUNCISTR) ) #%ANN
VIL)==USTHCEXP{=XZ(L)*H/AM)=*

V(L) =CueD"
VIL)==PV*U(L)

GU TO 2¢

FAGE

VELC
VELC
VELD
VELD
VELC
VELD
VELD
VELLC
velD
VELD
VELT
VELL
VELD
VELC
VELC
VELD
VELD
VELE
VELD
VELD
VELC
VELC
VELD
VELLC
VELC
vELD
VELC
VELD
VELD
VELD
Vell
VELD
VELD
VELC
VELC

1¢

2N

33

4C

5n

6¢C

17

80

90
1cc
112
129
132
146
153
1e€
172
187
197
zen
21cC
223
232
241
25"
2€C
2ic
297
267
2¢?
31"
320
23y
34)
351

NZ4%



DD DWW
Wio- (O OO ~NO

€23
63:
64
E5:
£6:

11

12
13

CO 4 L=24N3
AKZ(L)=COEFK(ISTR)+9C .01
DAKZ(L)=U.CY
AKY(L)=ALPFA®AKZ (L)

RETURN

CONTINUC

TDSKN=14D(-1€C.DC/H
IF{HoLESHSKN) TDSKN=1.D0

L 2 L=2,N3
IFUXZ(L)=TOFKN(ISTR)) 11,12,12
AKZ(L)=COEFK{ISTB)*XZ{L)/TDFKN(ISTB)+SN,CC
CAKZ(L)=CCEFK (ISTR)/CKN(ISTR)
GO TC 16

IF(XZ(L)—-TOSKN) 13,13,14%
AKZ(L)=COEFK{ISTR)+9C.0C
DAKZ(L)=".C0

GO TO 1%
AKZ{L)=COEFK(ISTR)*H*(14DLC~-XZ(L))/1CCeDC+SCDN
DAKZ(L)==CCEFK(ISTB)/1N2.C"
COMTINUE

AKY{L )=ALPHAX(COEFK(ISTB)+GC.DC)
CUNTINUE

3 70 5°¢

CONTINUE

£LO 3 L=2,N3
AKZ(L)=CCEFK{ISTR)+90 L)
PAKZ(L)=C4DC

AKY (L)=ALPFA#AKZ(L)

CONTINUE

RETURN

END

PAGE

VELL
VELD
VELD
VELC
VELC
VELD
VELD
VELC
vELD
VELD
VELC
VELD
VELD
VELD
VELCT
VELD
VELD
VELLC
velD
VzLC
VELC
VELD
VELD
VELC
velkd
VELD
VELD
VELC
VELD
VELD
VELC

Nl LW

D om~N>
| IR

L)

497

427
43D
440
45C
46U
479
44C
430
57N

1<
[l

\

noun
SH W
»

3O C T

[ 4

O AN
= _ O D ~d O 0
)

(@]

€290
637
€4
€52

£6)
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OO0

1n 1n 4
470" IR+00
€€7422D+C".

Flef D00
1 je"C+NN

INPUT DATA

REQGUIRED

€79470C400
222.4G0+C0

5C«CD+C0 510D+ CC
19.LC+7D

1M .NC+30

4CC0.2C+09 3.90CTN+CY

30,0C+0D 6C 0T0C+QC
5Ce CD+ZC 504 CC+Cr  5C.CR+CO
1C.UC+I" Je0OC+CC 1C.CD+CC

1473504 711454670+71143.97D+011)1e31C+U1544414C40N253.28C+400

«(D+CL
«2861C-02
«28610-12

CaCND+CL
e 2HNCLC=-02

«2661C=-"2
rolD_C(J
«250CD~r2

Ne1D-"1 NeClcD=C1
“012[:-02

Ce25D-C2 Uel50~02

15Cr.CD+CO Cel14D+(C

el

0e20

4%



A,.
1]

B..
1]

E..
1]
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APPENDIX B
NOMENCLATURE

Constant in equation (3.14)

Element of the discretizational matrix of first derivatives
Element of the discretizational matrix of second derivatives

Mean concentration, mg/m3

Mean concentration obtained by an analytical solution
Mean concentration calculated by the present work

Mean concentration at the i-th interior orthogonal collocation
point - two-dimensional models

Equivalent mean concentration at the source

Mean concentration at the interior orthogonal collocation
point (nk, :2) - three-dimensional models

Absolute error defined by equation (3.1}, %

Elements of the collocation matrix

Coriolis parameter, sec
Effective emission height, m

. . -1
Reaction rate constant, min

Turbulent diffusivity, m’/sec

Turbulent diffusivity at an elevation Z4

Exponent in power-law form for the mean wind velocity profile
Exponent in power-law form for the turbulent diffusivity profile

Number of interior orthogonal collocation points.



X
max

max
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Atmospheric pressure
Source strength, kg/sec unless otherwise specified

Mass rate through y-z plane at x=constant, gm/sec unless
otherwise specified

Parameter in equation (2.9)

Mathematical parameter that represents the ratio of boundary
to centerline concentration

Rate of generation of species
Parameter in equation (2.9)
Time, sec

Mean wind velocity in the x-direction, m/sec unless otherwise
specified

Mean wind velocity at an elevation zy

Mean wind velocity at 10 meters
Eigenvectors of matrix E

Eigenrows of matrix E

Mean wind velocity in the y-direction, m/sec unless otherwise
specified

Mean wind velocity in the z-direction, m/sec unless otherwise
specified

Quadrature weights

Cartesian coordinate in mean wind direction, m unless
otherwise specified

Maximum distance in the x-direction, m

Cartesian coordinate in lateral direction, m

Maximum distance in the y-direction, m
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yA Cartesian coordinate in vertical direction, m

zZ Maximum height above terrain (in some cases refers to the
elevation of the inversion layer), m

Reference height, m

Greek Symbols

o Angle between geostrophic velocity and surface boundary
layer velocity, °

B Mathematical parameter that represents a source dimension

r Gamma function

8 Mathematical parameter used for spatial variable transformations
61j Kronecker delta function

A Knee height for the vertical turbulent diffusivity profile, m
> Upper error bound in ''DRKGS"

z Dimensionless spatial variable in the z-direction

n Dimensionless spatial variable in the y-direction

A Eigenvalues of matrix E

£ Dimensionless spatial variable in the x-direction

p Density

o Standard deviation

T Eddy stresses

) Geostrophical latitude, °

Y Variable used in Figure 4.6, Represents ground-level concen-

tration
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Superscripts

i Initial value profile for the concentration

* Refers to dimensionless spatial variables
Subscripts

G Refers to geostrophic flow

i Index in collocation equations

k Represents the y-direction in collocation equations
2 Represents the z-direction in collocation equations
X Refers to x coordinate direction

y Refers to y coordinate direction

Z Refers to z coordinate direction

- Denotes a vector quantity

= Refers to a matrix



