IMPROVED MATHEMATICAL TECHNIQUES
 FOR SOLUTION OF
 ATMOSPHERIC DISPERSION MODELS

A Dissertation
Presented to the Faculty of the Department of
Chemical Engineering
The University of Houston

```
In Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy in Chemical Engineering
```

by
Miguel T. F1eischer
March, 1978

My lovely wife, Jackie
and to
David and Ronnie

ACKNOWLEDGMENTS

The author is indebted to Dr. Frank L. Worley, Jr., who supervised this dissertation and with whom it has been an honor to work, for his invaluable guidance, continuing advice and eternal optimism.

Sincere appreciation is expressed to Dr. John Villadsen for his priceless suggestions and increasing enthusiasm.

Special thanks are also due to the Department of Chemical Engineering for their financial support.

Finally, the author wishes to extend his hearty gratitude to his parents and the family for their love and admirable wisdom.

TABLE OF CONTENTS

Chapter Page
I INTRODUCTION 1
II FORMULATION OF MODELS AND THEIR SOLUTION 3 TECHNIQUES
Two Dimensional-Continuous Ground Level 3
Line Source
Two Dimensional-Continuous Elevated 15
Line Source
Two Dimensional Models with Chemical 19 Reactions
Three Dimensional-Continuous Point Source 21
Constant Mean Wind Velocity and 24Turbulent Diffusivities
Variable Mean Wind Velocity and 32 Turbulent Diffusivities
Three Dimensional Mean Wind Velocity 34
III PARAMETERS ESTIMATION 39
Mathematical Parameters 39
Two Dimensional-Continuous Ground 39 Level Line Source
Two Dimensional-Continuous Elevated 49 Line Source
Three Dimensional-Continuous Point Source 52
Meteorological Parameters 60
Turbulent Diffusivities K_{y}, K_{z} 60
Velocity Profile 71

TABLE OF CONTENTS (Continued)

Chapter Page
IV PRESENTATION AND ANALYSIS OF RESULTS 77
Two Dimensional Models 77
Three Dimensional Models 79
V SUMMARY OF RESULTS, CONCLUSIONS AND 94 RECOMMENDATIONS
BIBLIOGRAPHY 98
APPENDICES 100
A. Computer Program Listing 101
B. Nomenclature 127

LIST OF FIGURES

Figure		Page
2.1	Vertical Concentration Distribution at $\mathrm{x}=0$ Ground Level Line Source	8
2.2	Correct Vertical Concentration Distribution at any ξ - Ground Level Line Source	11
2.3	Vertical Concentration Distribution at $\mathrm{x}=0$ Elevated Line Source	16
2.4	Correct Vertical Concentration Distribution at any ξ - Elevated Line Source	18
3.1	Comparison of Downwind Concentration Distribution at Ground Level with Analytical Solution Parametric Study on N	40
3.2	Comparison of Downwind Concentration Distribution at Ground Level with Analytical Solution Parametric Study on β	43
3.3	Comparison of Downwind Concentration Distribution at Ground Level with Analytical Solution Parametric Study on \mathbf{r}	45
3.4	Comparison of Downwind Concentration Distribution at Ground Level with Analytical Solution Parametric Study on z_{m} \qquad	48
3.5	Comparison of Downwind Concentration Distribution at the Effective Emission Height with Analytical Solution - Parametric Study on β	50
3.6	```Comparison of Downwind Concentration Distribution at the Effective Emission Height with Analytical Solution - Parametric Study on }\mp@subsup{z}{m}{m```	53
3.7	Comparison of Downwind Concentration Distribution at the Effective Emission Height with Analytical Solution - Parametric Study on ε	56
3.8	Comparison of Downwind Concentration Distribution at the Effective Emission Height with Analytical Solution - Parametric Study of r	59

LIST OF FIGURES (Continued)

Figure	Page	
3.9	Comparison of Downwind Concentration Distribution at Ground Level with Analytical Solution and Gaussian Plume Equation - Stability Class A	62
3.10	Comparison of Downwind Concentration Distribution at Ground Level with Analytical Solution and Gaussian Plume Equation - Stability Class B	63
3.11	Comparison of Downwind Concentration Distribution at Ground Level with Analytical Solution and Gaussian Plume Equation - Stability Class C	
3.12	Comparison of Downwind Concentration Distribution at Ground Level with Analytical Solution and Gaussian Plume Equation - Stability Class D	64
3.13	Comparison of Downwind Concentration Distribution at Ground Level with Analytical Solution and Gaussian Plume Equation - Stability Class E	65
3.14	Comparison of Downwind Concentration Distribution at Ground Level with Analytical Solution and Gaussian Plume Equation - Stability Class F	66
3.15	Vertical Diffusivity Profiles in the Present Work	67
4.1	Downwind Concentration Distribution at Ground Level -	-

LIST OF FIGURES (Continued)

Figure Page
4.7 $\frac{\mathrm{Cu}_{1}}{\mathrm{Q}}$ with Travel Time for Various Heights of 87 Emission - Present Work
4.8 Comparison of Downwind Concentration Distribution 89 with Analytical Solution - Two Dimensional Wind Velocity
4.9 Isopleths at a Constant x - Three Dimensional Mode1s 90
4.10 Downwind Concentration Distribution at Ground 91
Level - Coriolis Effect vs Gaussian Plume Equation

LIST OF TABLES

Table Page
3.1 Computer Time Requirements for Parametric Study 41 on N - Ground Level Line Source Model
3.2 Computer Time Requirements for Parametric Study 42 on β - Ground Level Line Source Model
3.3 Mass Flux vs δ_{2} at the First Integration Step - 44 Ground Level Line Source Model
3.4 Computer Time Requirements for Parametric Study on 46 r - Ground Level Line Source Model
3.5 Computer Time Requirements for Parametric Study 47 on $z_{\text {max }}$ - Ground Level Line Source Model
3.6 Computer Time Requirements for Parametric Study 49 on β - Elevated Line Source Model
3.7 Mass Flux vs δ_{1} and δ_{2} at the First Integration 51 Step - Elevated Line Source Model
3.8 Computer Time Requirements for Parametric Study 52 on $z_{\text {max }}$ - Elevated Line Source Model
3.9 Mass Flux vs $\delta_{2 y}$ at the First Integration Step - 54 Elevated Point Source Model
3.10 Computer Time Requirements for Parametric Study 55 on ε - Elevated Point Source Model
3.11 Computer Time Requirements for Small Stepsize of 57 Integration - Elevated Point Source Model
3.12 Constant Turbulent Diffusivities and Wind Speed 69 used in the Present Method
3.13 Estimates for the Parameters in Equation (3.2) 71
3.14 Geostrophic Elevations used in the Present Work 74
3.15 Angle between Wind Velocity and Geostrophic 75
Direction for the Surface Boundary Layer
4.1 Mass Rates at Several Downwind Positions - 93 Coriolis Effect

CHAPTER I

INTRODUCTION

The increasing cost of controlling emissions from industrial sources has magnified the need to develop accurate mathematical models which can relate emission rate to air quality. In order to adequately describe the relationship between emissions and air quality, a model must be able to describe the variable (time and space) meteorological parameters and the chemical or physical processes which remove pollutants from the atmosphere.

During the past years, several models have been presented in the literature [8], ranging from very simple ones like the box model to more general cases solved by finite-difference techniques. The Eulerian formulation [8] has been the most common approach due to the availability of numerical techniques with which the equations can be solved.

A general model, one which includes temporal and spatial variations of meteorological parameters, should provide a good description of atmospheric diffusion processes. A dispersion model based on the K-theory and solved using orthogonal collocation was presented by Fleischer [8]. The atmospheric processes were described by the 3-dimensional, unsteady-state diffusion equation including chemical reactions. The work was validated with existing experimental data and shown to have several significant advantages over other available methods.

Understanding of the cause-effect relationship of pollutant emission and dispersion on the air quality may be difficult through a complex
general air pollution model. In addition, analytical solutions are available only for simplified diffusion equations. The disadvantages of solving simple cases using the same complex general method gave rise to the present work.

Dispersion models based on the K-theory and solved by improved mathematical techniques using spline orthogonal collocation are presented. All types of steady-state air pollution problems are simulated. These models extend from the simple ground level line source case to the complex 3-dimensional elevated point source model including the Coriolis effect. Spline orthogonal collocation, a weighted residual method, reduces the partial differential equation governing the mean concentration of pollutant species, within the plume generated by the source, to firstr order ordinary differential equations. This system of equations is solved in a digital computer.

The present work was evaluated by comparing the results to available analytical solutions, e,g., two or three-dimensional cases with constant turbulent diffusivities and mean wind velocity, and no reaction, Mathematical parameters, inherent of the techniques developed, are determined through parametric studies. In addition, several hypothetical cases are simulated to explore the present method response to variations in atmospheric conditions.

CHAPTER II
FORMULATION OF MODELS AND THEIR SOLUTION TECHNIQUES

The basic mathematical statement for description of the temporal and spatial distribution of chemical species by the Eulerian approach is the mass balance or continuity equation. This equation, applied to a single species in the atmosphere, based on the K-theory is:

$$
\begin{gather*}
\frac{\partial C}{\partial t}+u \frac{\partial C}{\partial x}+v \frac{\partial C}{\partial y}+w \frac{\partial C}{\partial z}=\frac{\partial}{\partial x}\left(K_{x} \frac{\partial C}{\partial x}\right)+\frac{\partial}{\partial y}\left(K_{y} \frac{\partial C}{\partial y}\right)+ \\
\frac{\partial}{\partial z}\left(K_{z} \frac{\partial C}{\partial z}\right)+R \tag{2.1}
\end{gather*}
$$

The main objective of the present work is to predict the concentration distribution with respect to time and space for various atmospheric dispersion cases. The diffusion equation (2.1) is the basis for all the models presented here. A description of these models and their methods of solution is given next, starting with the simplest one, the two dimensional continuous ground level line source.

Two Dimensional-Continuous Ground Level Line Source
A widely studied situation is the case of an infinite line source in the y-direction at ground level emitting at a constant rate. At steady state, equation (2.1) is simplified as

$$
\begin{equation*}
\frac{\partial C}{\partial t}=0 \tag{2,2}
\end{equation*}
$$

In addition, for an infinite crosswind (y) line source,

$$
\begin{equation*}
\frac{\partial}{\partial y}\left(K_{y} \frac{\partial C}{\partial y}\right)=0 \tag{2,3}
\end{equation*}
$$

Upon assuming that the mean flow is along the x-axis, i.e.,

$$
\begin{equation*}
v=w=0 \tag{2.4}
\end{equation*}
$$

and that the diffusion in the x-direction is negligible compared to the transport by the mean flow, i.e.,

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(K_{x} \frac{\partial C}{\partial x}\right) \ll u \frac{\partial C}{\partial x} \tag{2.5}
\end{equation*}
$$

equation (2.1) for the case when no chemical reactions are included, i.e., $R=0$ reduces to

$$
\begin{equation*}
u \frac{\partial C}{\partial x}=\frac{\partial}{\partial z}\left(K_{z} \quad \frac{\partial C}{\partial z}\right) \tag{2.6}
\end{equation*}
$$

with boundary conditions

$$
\begin{array}{lll}
C \rightarrow 0 & \text { as } & x, z \rightarrow \infty \\
C \rightarrow \infty & \text { at } & x=z=0 \\
K_{z} \frac{\partial C}{\partial z} \rightarrow 0 & \text { as } & z \rightarrow 0, x>0 \tag{2.7c}
\end{array}
$$

The last boundary condition implies zero flux at the surface, i.e., the pollutant is completely reflected.

For the lower atmosphere, in adiabatic conditions, it has been seen that the wind velocity varies with the logarithm of the height. However, such a functional relationship proves intractable if an analytical solution of equation (2.6) is desired. When a power-1aw form is adopted for both the mean wind and turbulent diffusivity profiles, i.e.,

$$
\begin{equation*}
u=u_{1}\left(\frac{\mathrm{z}}{\mathrm{z}_{1}}\right)^{\mathrm{m}} \quad \mathrm{~K}_{\mathrm{z}}=\mathrm{K}_{1}\left(\frac{\mathrm{z}}{\mathrm{z}_{1}}\right)^{\mathrm{n}} \tag{2.8}
\end{equation*}
$$

the analytical solution [2], valid for $r=m-n+2>0$, is

$$
\begin{equation*}
C(x, z)=\frac{Q r}{u_{1} \Gamma(s)}\left[\frac{u_{1}}{r^{2} K_{1} x}\right] \exp \left(-\frac{u_{1} z^{r}}{r^{2} K_{1} x}\right) \tag{2.9}
\end{equation*}
$$

where $s=\frac{m+1}{r}$ and z_{1} is taken to be unity.
Continuity should be satisfied at any position in the x (downwind) direction:

$$
\begin{equation*}
\int_{0}^{\infty} u C(x, z) d z=Q \quad \text { for } \text { all } \quad x>0 \tag{2.10}
\end{equation*}
$$

where Q is the constant emission rate per unit crosswind length.
The case which is solved in the present work considers $m=n=0$, i.e., the diffusion is Fickian. Equation (2.6) becomes

$$
\begin{equation*}
u \frac{\partial C}{\partial x}=K_{z} \frac{\partial^{2} C}{\partial z^{2}} \tag{2,11}
\end{equation*}
$$

and the analytical solution is reduced to

$$
\begin{equation*}
C(x, z)=\frac{2 Q}{u \sqrt{\pi}}\left[\frac{u}{4 K_{z} x}\right]^{\frac{3}{2}} \exp \left[-\frac{u z^{2}}{4 K_{z} x}\right] \tag{2.12}
\end{equation*}
$$

The boundary condition $C \rightarrow 0$ as $z \rightarrow \infty$ is too restrictive because it cannot be applied to a case with an inversion layer at a certain height. This situation can be represented by

$$
\begin{equation*}
K_{z} \frac{\partial C}{\partial z}=0 \quad \text { at } \quad z=z_{\max } \tag{2.13}
\end{equation*}
$$

Therefore, equation (2.13) is used as the second boundary condition in the vertical direction. If a comparison with the analytical solution is desired, $z_{\text {max }}$ can be given a sufficiently large value such that the pollutant never reaches the inversion layer. In addition, a solution
is usually needed up to a definite position in the x-direction. Equation (2.11) is solved numerically for

$$
\begin{equation*}
0<x \leq x_{\max } \quad ; \quad 0 \leq z \leq z_{\max } \tag{2.14}
\end{equation*}
$$

A transformation of the spatial coordinates to yield limits of 0 to 1 is performed by using

$$
\begin{equation*}
\xi=\frac{x}{x_{\max }} \quad z^{*}=\frac{z}{z_{\max }} \tag{2.15}
\end{equation*}
$$

To complete the problem, a boundary condition in the x-direction must be specified, and the constant emission rate taken into account.

The model by Fleischer [8] defined the location of the source through a boundary condition in the x -direction as

$$
C=\left\{\begin{array}{lll}
C_{0} & \text { at } & x=0 \tag{2.16}\\
& & \\
0 & \text { elsewhere }
\end{array}\right.
$$

where C_{0} is an equivalent source concentration to be calculated from the emission rate using quadrature weights. Orthogonal collocation was the numerical technique used for solving the partial differential equation (2.1). One of the reasons as to why this was done is the attractive feature of being able to position the point source exact1y as a collocation point with concentration C_{0} and the rest of the collocation points at $\mathrm{x}=0$ with zero concentration. However, this procedure gives rise to several problems:

1) Global collocation must be used, i,e., collocate points to reduce the partial differential equation to a system of ordinary differential equations throughout the entire region of interest. Since the
solution to a dispersion model should have approximately the shape of a conical plume, only a few points would be within this region. This means that at several positions in the x-direction, especially close to the source, only some points would have a certain concentration value and the rest would contain zero concentration. Accurate interpolation from such a concentration distribution is impossible;
2) One of the collocation points must match the location of the source; and
3) A ground level source cannot be placed at $z=0$, but at the position of the first collocation point, since only interior collocation points are used in the solution.

In spite of all these restrictions, which will be removed in the present work, it was proven that orthogonal collocation has better properties than other numerical techniques, and therefore will be used here again.

A point source, which usually represents a stack, can be considered as a very small area normal to u with a concentration C_{o} equivalent to the constant emission rate, as shown in Figure 2.1.

The present model then will have a discontinuous initial value profile expressed as

$$
C^{i}=\left\{\begin{array}{lcc}
C_{0} & \text { at } \quad \xi=0, & 0 \leq z^{*} \leq \beta \tag{2,17}\\
0 & \text { at } \xi=0, & z^{*}>\beta
\end{array}\right.
$$

where C_{o} can be calculated using equation $(2,10)$:

FIGURE 2.1 VERTICAL CONCENTRATION DISTRIBUTION

$$
\begin{aligned}
& \text { AT } \mathrm{x}=0-\text { GROUND LEVEL LINE SOURCE } \\
& \mathrm{Q}=\int_{0}^{\beta} \mathrm{uC}_{\mathrm{o}} z_{\max } \mathrm{dz}^{*}
\end{aligned}
$$

Solving for C_{o} :

$$
\begin{equation*}
C_{0}=\frac{Q}{u \beta z_{\max }} \tag{2,18}
\end{equation*}
$$

Determination of the concentration distribution as a function of the spatial variables x and z requires then the solution of equation $(2,11)$ with boundary conditions given by (2.7c) and (2.13), and the initial condition given by (2.17). The way this model is formulated overcomes
the restrictions, 2) and 3), previously discussed,
A suitable approach to this problem is immediately suggested by using spline orthogonal collocation in the vertical direction, A small interval $\left[\beta-\delta_{1}, \beta+\delta_{2}\right]$ is considered and equation (2.11) is only solved in this interval. The required variable transformation is:

$$
\begin{equation*}
z^{*}=\left(\delta_{1}+\delta_{2}\right) \zeta+\beta-\delta_{1} \tag{2.19}
\end{equation*}
$$

where $0 \leq \zeta \leq 1$. Equation (2.11) remains then as,

$$
\begin{equation*}
\mathrm{R}_{1} \frac{\partial \mathrm{C}}{\partial \xi}=\mathrm{R}_{5} \frac{\partial^{2} \mathrm{C}}{\partial \zeta^{2}} \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{1}=\frac{u}{x_{\max }} \quad ; \quad R_{5}=\frac{K_{z}}{z_{\max }^{2}\left(\delta_{1}+\delta_{2}\right)^{2}} \tag{2.21}
\end{equation*}
$$

Global orthogonal collocation is applied to the ζ domain such that a system of first order ordinary differential equations with respect to ξ is left to be solved. The zeros of the Jacobi polynomials $\mathrm{P}_{\mathrm{N}_{\mathrm{z}}}(0,0)$ serve as collocation points.

The concentration distribution is obtained only within the $\left[\beta-\delta_{1}, \beta+\delta_{2}\right]$ interval in the z * domain, where the concentration is known to have a significant value, not just zero. Therefore, restriction 1) is eliminated from the method of solution. As x increases the penetration zone is broadened by choosing larger δ_{1} and δ_{2}. This implies that the technique considers moving boundary conditions in the vertical direction, and the edge of the plume is known at any position along the mean wind direction.

The calculational procedure is as follows; at any integration step, the concentrations at $\zeta=0$ and $\zeta=1$ are compared with C_{0} and zero, respectively. If the comparisons agree, as it is shown in Figure 2.2 the values for δ_{1} and δ_{2} are assumed correct and the integration continues to the next step.

Since the concentrations should approach C_{0} and 0 at $\zeta=0$ and $\zeta=1$, respectively, the use of the following boundary conditions is valid:

$$
\begin{equation*}
\frac{\partial C}{\partial \zeta}=0 \quad \text { at } \quad \zeta=0, \zeta=1 \tag{2.22}
\end{equation*}
$$

If at any step, the concentration at $\zeta=0$ is considerably smaller than C_{0}, δ_{1} is increased and the integration is performed for that same x with the previous good solution as initial condition, This comparison stops when δ_{1} becomes β. When the concentration at $\zeta=1$ is considerably larger than zero, the same previous procedure is applied to δ_{2}. Finally, if an inversion layer is reached ($\delta_{2}=1-\beta$) global collocation is used to continue the calculations until $x=x_{\text {max }}$. In any problem β is usually small so that the condition $\delta_{1}=\beta$ will always be obtained before $\delta_{2}=1-\beta$.

This technique gives rise to the question as to how close to zero, the "zero concentration" is. The present work assigns it as some fraction of the centerline concentration, as it is done for the Gaussian plume equation [18], where 10% of the centerline concentration is considered to be zero. Solutions for different ratios are compared in Chapter III.

The procedure to obtain the collocation matrix, used to integrate in the along wind direction, is presented next. Since orthogonal collocation is applied to the vertical direction with N_{z} number of collocation

FIGURE 2.2 CORRECT VERTICAL CONCENTRATION DISTRIBUTION AT ANY ξ - GROUND LEVEL LINE SOURCE
points, equation (2,20) remains as

$$
\begin{equation*}
R_{1} \frac{\mathrm{dC}_{\ell}}{\mathrm{d} \xi}=R_{5} \sum_{i=1}^{N_{z}+2} B_{\ell i} C_{i} \quad, \text { for } \quad \ell=2, \ldots, N_{z}+1 \tag{2.23}
\end{equation*}
$$

The application of orthogonal collocation to the boundary conditions, equation (2.22), gives the following expressions:

$$
\begin{array}{ll}
\sum_{z}^{N_{z}+2} \\
A_{1, i} C_{i}=0 \quad \text { at } \quad \zeta=0 \\
N_{z}+2 \tag{2.24}\\
\sum_{i=1} A_{N_{z}}+2, C_{i}=0 \quad \text { at } \quad \zeta=1
\end{array}
$$

Solving for the concentration at the boundaries C_{1} and $\mathrm{C}_{\mathrm{N}_{\mathrm{z}}+2}$ as functions of the concentrations at the interior collocation points one obtains

$$
\begin{gather*}
\mathrm{C}_{1}=-\frac{\sum_{\mathrm{i}=2}^{\mathrm{N}_{\mathrm{z}}+1} \mathrm{~A} 1(\mathrm{i}) \mathrm{C}_{\mathrm{i}}}{\mathrm{~A}_{1,1}} \tag{2.25}\\
\mathrm{C}_{\mathrm{N}_{\mathrm{z}}+2}=\frac{\sum_{\mathrm{i}=2}^{\mathrm{N}_{\mathrm{z}}+1} \mathrm{~A} 2(\mathrm{i}) \mathrm{C}_{\mathrm{i}}}{\mathrm{DEN}} \tag{2.26}
\end{gather*}
$$

where

$$
\begin{align*}
& A 1(i)=A_{1, i}+\frac{A_{1, N_{z}+2}^{A 2(i)}}{D E N} \tag{2.27}\\
& A 2(i)=A_{1,1} A_{N_{z}}+2, i-A_{N_{z}+2,1} A_{1, i} \tag{2.28}
\end{align*}
$$

$$
\begin{equation*}
D E N=A_{N_{z}}+2,1_{1} A_{z}+2-A_{1}, 1_{N_{z}}+2, N_{z}+2 \tag{2.29}
\end{equation*}
$$

Finally, by substituting equations $(2,25)$ and (2.26), equation (2.23) in matrix notation remains as follows:

$$
\begin{equation*}
\frac{\mathrm{dC}}{\mathrm{~d} \boldsymbol{\xi}}=\underline{\mathrm{E}} \underline{\underline{C}} \tag{2.30}
\end{equation*}
$$

where the elements of the matrix E are

The solution of equation (2.30) is given by:

$$
\begin{equation*}
\underline{C}(\xi)=\underline{\underline{U}} \exp (\underline{\underline{\Lambda} \xi}) \underline{\underline{U}}^{-1} \underline{C}^{\mathbf{i}}(\xi-\Delta \xi) \tag{2,32}
\end{equation*}
$$

where $\underline{\underline{U}}, \underline{\underline{\Lambda}}$, and $\underline{\underline{U}}^{-1}$ are the eigenvectors, eigenvalues (diagonal), and eigenrows of the matrix E, respectively. The diagonalization of the collocation matrix E is performed by a subroutine called EISYS [12] such that $\underset{\underline{U}}{\underline{\Lambda}} \xlongequal{\Lambda}$, and $\underline{\underline{U}}^{-1}$ can be obtained. Since the collocation matrix depends on the parameters δ_{1} and δ_{2}, its eigenvalues, eigenvectors and eigenrows have to be recalculated any time δ_{1} and/or δ_{2} change.

The determination of the initial condition C^{i} needed to solve equation (2.30) when $\xi>0$ uses the solution of \underline{C} for the previous integration step $\Delta \xi$. If neither δ_{1} nor δ_{2} are changed, $\underline{C}^{\mathbf{i}}(\xi-\Delta \xi)$ is equated to $\underline{C}(\xi-\Delta \xi)$. When the parameters δ_{1} and/or δ_{2} change, the initial condition is obtained through a Lagrangian interpolation of the previous good solution and the integration is repeated. This interpolation occurs only for the new position of the collocation points which lie within the previous region $\left[\beta-\delta_{1}, \beta+\delta_{2}\right]$. For points to the left of $\left(\beta-\delta_{1}\right)$ and to the right
of $\left(\beta+\delta_{2}\right)$ values of C_{0} and zero are assigned to the concentrations, respectively,

The flux at any position in the along wind direction is a useful piece of information that can be obtained from the results and provides a check for continuity, It can be expressed by the following equation:

$$
\begin{equation*}
Q_{x}=\int_{0}^{z} \max u C(x, z) d z \tag{2.33}
\end{equation*}
$$

Transformation of the spatial variables gives

$$
\begin{equation*}
Q_{x}=\int_{0}^{1} u C\left(\xi, z^{*}\right) z_{\max } d z^{*} \tag{2.34}
\end{equation*}
$$

By substituting equation (2.19) one obtains

$$
\begin{equation*}
Q_{x}=\int_{0}^{\beta-\delta_{1}} u C_{o} z_{\max } d \zeta+\int_{\beta-\delta_{1}}^{\beta+\delta_{2}} u C(\xi, \zeta) z_{\max } d \zeta \tag{2.35}
\end{equation*}
$$

Finally, using Gaussian quadrature weights, equation (2.35) can be transformed to

$$
\begin{equation*}
Q_{x}=Q_{x}^{1}+u z_{\max }\left(\delta_{1}+\delta_{2}\right) \sum_{i=1}^{N_{z}+2} W_{i} C_{i} \tag{2,36}
\end{equation*}
$$

where

$$
Q_{x}^{1}=\left\{\begin{array}{ccc}
u z_{\max }\left(\beta-\delta_{1}\right) C_{o} & \text { for } & \delta_{1}<\beta \tag{2,37}\\
0 & \text { for } & \delta_{1}=\beta
\end{array}\right.
$$

Treatment of the two-dimensional diffusion equation (2.11) for the case of an elevated line source gives more generality to an air pollution model. The only variation with respect to the previous case takes place in the boundary condition (2.7b), which is transformed to:

$$
\begin{equation*}
C \rightarrow \infty \quad \text { at } \quad x=0 \quad \text { and } \quad z=H \tag{2.38}
\end{equation*}
$$

The analytical solution to this problem is given by

$$
\begin{equation*}
C(x, z)=\frac{Q}{2\left[\pi u K_{z} x\right]^{\frac{3}{2}}}\left(\exp \left(-\frac{u(z-H)^{2}}{4 K_{z} x}\right)+\exp \left(-\frac{u(z+H)^{2}}{4 K_{z} x}\right)\right) \tag{2.39}
\end{equation*}
$$

The technique for solving this case is the same as the previous one, but with a different representation of the concentration distribution at $\mathrm{x}=0$, as shown in Figure 2.3. This discontinuous initial value profile is expressed as:

$$
C^{i}= \begin{cases}C_{0} & \text { at } \xi=0, h-\beta \leq z^{*} \leq h+\beta \tag{2.40}\\ 0 & \text { at } \xi=0, ~ e 1 s e w h e r e\end{cases}
$$

with

$$
\begin{equation*}
\mathrm{h}=\frac{\mathrm{H}}{\mathrm{z}_{\max }} \tag{2.41}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{o}=\frac{Q}{2 u \beta z_{\max }} \tag{2.42}
\end{equation*}
$$

FIGURE 2.3 VERTICAL CONCENTRATION DISTRIBUTION AT $x=0$ - ELEVATED LINE SOURCE

In order to apply orthogonal collocation to the entire region of interest in the z direction, and taking into account that β is very small compared to 1 , the following variable tranformation is performed:

$$
\begin{equation*}
z^{*}=\left(\delta_{1}+\delta_{2}+2 \beta\right) \zeta+h-\left(\beta+\delta_{1}\right) \tag{2,43}
\end{equation*}
$$

where $0 \leq \zeta \leq 1$. The coefficients in equation (2.20) remain then as,

$$
\begin{equation*}
\mathrm{R}_{1}=\frac{\mathrm{u}}{\mathrm{x}_{\max }} \quad ; \quad \mathrm{R}_{5}=\frac{\mathrm{K}_{\mathrm{z}}}{\mathrm{z}_{\max }^{2}\left(\delta_{1}+\delta_{2}+2 \beta\right)^{2}} \tag{2.44}
\end{equation*}
$$

The concentration distribution is now obtained only within the $\left[h-\beta-\delta_{1}, h+\beta+\delta_{2}\right]$ interval in the z^{*} domain, as shown in Figure 2.4.

The check on the parameters δ_{1} and δ_{2} is done with the same previous criteria, but now the concentrations at $\zeta=0$ and $\zeta=1$ are both compared to zero (= some fraction of the centerline concentration). The comparison at $\zeta=0$ stops when the plume has reached the ground, i.e., $\delta_{1}=h-\beta$, and stops at $\zeta=1$ when the plume reaches the inversion layer, i.e., $\delta_{2}=1-(h+\beta)$.

The calculation of the collocation matrix and its diagonalization to obtain the eigenvalues, eigenvectors and eigenrows follows the same procedure as before, with its elements $\mathrm{E}_{\ell i}$ given by equation (2.31). The solution to this problem is also determined by equation (2.32).

The initial condition $\underline{C}^{\dot{i}}$ at any integration step is calculated in the same way as previously discussed. Whenever an interpolation is needed for this purpose, zero concentration is assigned to every new collocation point that lies outside the region of interest $\left[h-\beta-\delta_{1}, h+\beta+\delta_{2}\right]$ used for the previous step.

Equation (2.34) can be utilized to determine the flux at any position in the x direction. Substitution of equation (2.43) into (2.34) and the use of Gaussian quadrature weights gives the following expression:

$$
\begin{equation*}
Q_{x}=u z_{\max }\left(2 \beta+\delta_{1}+\delta_{2}\right) \sum_{i=1}^{N_{z}+2} W_{i} C_{i} \tag{2.45}
\end{equation*}
$$

FIgure 2.4 CORRECT VERTICAL CONCENTRATION DISTRIBUTION AT ANY ξ - ELEVATED LINE SOURCE

Two Dimensional Models with Chemical Reactions

The next step in complexity of an air pollution model is to consider a line source case with a pollutant undergoing some kind of removal process, usually expressed as a chemical reaction. Steady-state models for reactive contaminants do not exist because conditions under which reactive pollutant concentrations are not changing with time are virtually nonexistent. In spite of this, a solution to this problem is presented next since few modifications to the previous cases are required and its study will help to understand more complex models like the unsteady-state point source case.

The main difference between this case and the previous models occurs in equation (2.11). An additional term, which represents the chemical reaction, should be incorporated in the diffusion equation as

$$
\begin{equation*}
u \frac{\partial C}{\partial x}=K_{z} \frac{\partial^{2} C}{\partial z^{2}}+R \tag{2.46}
\end{equation*}
$$

The technique for solving the collocation equations that arise from equation (2.11), using the eigenvalues of the collocation matrix, is still valid for equation (2.46) if a first-order reaction model is utilized to represent pollutant removal from the atmosphere:

$$
\begin{equation*}
\mathrm{R}=-\mathrm{k}_{1} \mathrm{C} \tag{2.47}
\end{equation*}
$$

The elements of the collocation matrix would now be given by

$$
\begin{equation*}
E_{\ell i}=-\frac{R_{5} B_{\ell, 1} A 1(i)}{R_{1} A_{1,1}}+\frac{R_{5} B_{\ell i}}{R_{1}}+\frac{R_{5} B_{\ell, N_{2}+2}^{A 2(i)}}{R_{1} D E N}-\frac{k_{1}}{R_{1}} \delta_{\ell i} \tag{2.48}
\end{equation*}
$$

where $\delta_{\ell i}$ is the Knonecker delta function,

$$
\delta_{\ell i}=\left\{\begin{array}{lll}
1 & \text { for } & \ell=i \tag{2.49}\\
& \text { for } & \ell \neq i
\end{array}\right.
$$

While this is the only modification that should be incorporated in the elevated line source model, two more changes should be considered in the ground line source case.

The check on the parameter δ_{1} must be performed with another criteria, i.e., if $\delta_{1}<\beta$, the calculated concentration at $\zeta=0$ should be compared to $C_{0} \exp \left(-\frac{\mathrm{k}_{1} \mathrm{x}}{\mathrm{u}}\right)$. The reason being the disappearance of contaminant due to the chemical reaction.

The other modification takes place in the calculation of the flux at any position in the x-direction. Equation (2.35) remains then as follows:

$$
\begin{equation*}
Q_{x}=\int_{0}^{\beta-\delta_{1}} u C_{o} e^{-\frac{k_{1} \xi}{R_{1}}} z_{\max } d \zeta+\int_{\beta-\delta_{1}}^{\beta+\delta_{1}} u C(\xi, \zeta) z_{\max } d \zeta \tag{2.50}
\end{equation*}
$$

Therefore, equation (2.36) would contain,

$$
Q_{x}^{1}=\left\{\begin{array}{ccc}
u z_{\max }^{\left(\beta-\delta_{1}\right) C_{0} e^{-\frac{k_{1} \xi}{R_{1}}}} & \text { for } & \delta_{1}<\beta \\
0 & \text { for } & \delta_{1}=\beta
\end{array}\right.
$$

The procedure to follow for non-1inear chemical reaction models would be to linearize the expression if the eigenvalue method is to be used. Another possibility, simpler and more effective, is to integrate the collocation equations with a technique that would not depend on the expression for the removal processes, e.g., a fourth-order Runge-Kutta method.

The concentration distribution for a continuous ground level line source for a case with a first-order chemical reaction model is presented in Chapter IV.

Three Dimensiona1-Continuous Point Source
For a source which is continuous1y releasing material at a fixed point, the appropriate form of equation (2.1) (again with v and $w z e r o$, and neglecting the diffusion in the x-direction relative to convection) is

$$
\begin{equation*}
u \frac{\partial C}{\partial x}=\frac{\partial}{\partial y}\left(K_{y} \frac{\partial C}{\partial y}\right)+\frac{\partial}{\partial z}\left(K_{z} \frac{\partial C}{\partial z}\right)+R \tag{2.52}
\end{equation*}
$$

At an early stage, observations of diffusion implied a dependence of K_{y} on the distance of travel [14]. On the grounds that it is physically irrational to regard K_{y} as a function of horizontal position, one approach
has been to seek solutions with K_{y}, as well as K_{z} and u, a function of height above the ground, i.e.,

$$
\begin{equation*}
u=u(z) \quad ; \quad K_{y}=K_{y}(z) \quad ; \quad K_{z}=K_{z}(z) \tag{2.53}
\end{equation*}
$$

For this case, equation (2.52) remains as,

$$
\begin{equation*}
u(z) \frac{\partial C}{\partial x}-\frac{d K_{z}(z)}{d z} \frac{\partial C}{\partial z}=K_{y}(z) \frac{\partial^{2} C}{\partial y^{2}}+K_{z}(z) \frac{\partial^{2} C}{\partial z^{2}}+R \tag{2.54}
\end{equation*}
$$

Consider an interval $\left[0, y_{\max }\right.$] as the region of interest in the crosswind direction y, where a concentration distribution is to be obtained. For simplicity, the point source is located at $y=0$, such that no contaminant flows across the centerline $y=0$. The reason being symmetry, only the x-component of the wind velocity is taken into account. Therefore, the same approaches previously discussed can be used for this three-dimensional continuous point source model.

The crosswind dimension, a subset of the present case, can be considered as an analog of the two-dimensional continuous ground level line source. In addition, the two-dimensional continuous elevated line source can be used to represent the other subset, i.e., the vertical dimension. The reason for different approaches for each spatial dimension is that the concentration distribution in the crosswind direction is symmetric with respect to the centerline $(y=0)$, whereas the concentration distribution in the vertical direction is not symmetric with respect to the effective emission height $(z=H)$. The solution in the z-direction would
be symmetric if K_{z} and u were constant, and moreover only up to an x-position where the plume reaches the ground or the inversion layer.

Using the spline collocation approach, the following spatial variables transformations must be made:

$$
\begin{align*}
& \frac{y}{y_{\max }}=y^{*}=\left(\delta_{1 y}+\delta_{2 y}\right) n+\beta_{y}-\delta_{1 y} \tag{2.55}\\
& \frac{z}{z_{\max }}=z^{*}=\left(\delta_{1 z}+\delta_{2 z}+2 \beta_{z}\right) \zeta+h-\left(\beta_{z}+\delta_{1 z}\right) \tag{2.56}
\end{align*}
$$

where $0 \leq n \leq 1$ and $0 \leq \zeta \leq 1$, and h is given by equation (2.41).
The dimensionless variable in the x-direction, presented in equation (2.15), is also introduced in the problem.

For completeness of the model, the following boundary conditions are used:

$$
\begin{align*}
& C^{i}= \begin{cases}C_{0} & \text { at point source, } \xi=0 ; y^{*}=0 ; z^{*}=h \\
0 & \text { elsewhere, } \xi=0\end{cases} \\
& \frac{\partial C}{\partial n}=0
\end{align*} \quad \text { at } \quad n=0,1, ~ \begin{array}{ll}
\frac{\partial C}{\partial \zeta}=0 & \text { at } \tag{2.57}
\end{array}
$$

where the equivalent concentration at the point source can be calculated by continuity, as will be seen later.

This approach can be used to simulate any three-dimensional continuous point source model, eg., few modifications must be done if the point source is located at the ground, i.e., equation (2.56) would be replaced by another equation (2.55) for the vertical direction; any type of removal process for the contaminant, e.g., sedimentation would be valid since equation (2.59) means no flux at $\zeta=0,1$ and not at the effective emission height, h.

The use of spline collocation for this case again means that the solution is obtained with moving boundary conditions in the y and z directions. Since no changes in the technique were needed, as compared to the previous cases, the check and modifications on δ_{1} and δ_{2} for each direction at any integration step in the x-direction are performed as before.

The collocation equations for two different situations, constant u, K_{y}, and K_{z}, and then as functions of elevation are presented next.

Constant Mean Wind Velocity and Turbulent Diffusivities

Substituting equations (2.15), (2.55) and (2.56) into equation (2.54) (with $\frac{\mathrm{dK}_{\mathrm{z}}}{\mathrm{dz}}=0$) one obtains

$$
\begin{equation*}
R_{1} \frac{\partial C}{\partial \xi}=R_{5} \frac{\partial^{2} C}{\partial \eta^{2}}+R_{6} \frac{\partial^{2} C}{\partial \zeta^{2}}+R(C) \tag{2.60}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{R}_{1}=\frac{\mathrm{u}}{\mathrm{x}_{\max }} \tag{2.61}
\end{equation*}
$$

$$
\begin{align*}
& R_{5}=\frac{K_{y}}{y_{\max }^{2}\left(\delta_{1 y}+\delta_{2 y}\right)^{2}} \tag{2.62}\\
& R_{6}=\frac{K_{z}}{z_{\max }^{2}\left(\delta_{1 z}+\delta_{2 z}+2 \beta_{z}\right)^{2}} \tag{2.63}
\end{align*}
$$

Application of orthogonal collocation to equation (2.60), with N_{y} and N_{z} as the number of interior collocation points in the y and z directions, respectively, gives

$$
\begin{gathered}
R_{1} \frac{d_{k \ell}}{d \xi}=R_{5} \sum_{i=1}^{N_{y}+2} B_{k i}^{(2)} C_{i \ell}+R_{6} \sum_{i=1}^{N_{z}+2} B_{\ell i}^{(3)} C_{k i}+R\left(C_{k \ell}\right) \\
\text { for } \quad k=1, \ldots, N_{y}+2 \\
\ell=1, \ldots, N_{z}+2
\end{gathered}
$$

where $C_{k \ell}$ represents the mean concentration at the point $\left(\eta_{k}, \zeta_{\ell}\right)$. The superscripts of the discretizational matrix of second derivatives B, represent the direction and thus the way it is computed, i.e., (2) and (3) stand for the y and z directions, respectively.

The use of orthogonal collocation to the boundary conditions in the y-direction, equation (2.58) gives the following expressions:

$$
\begin{align*}
& \sum_{\sum_{y}+2} A_{l, i}^{(2)} C_{i \ell}=0 \quad \text { at } \quad n=0 \tag{2.65}\\
& N_{y}+2 \\
& \sum_{i=1} A_{N_{y}}^{(2)}+2, i C_{i \ell}=0 \quad \text { at } \quad n=1
\end{align*}
$$

Solving for the concentration at the centerline and at the edge of the plume one obtains,

$$
\begin{gather*}
C_{1, \ell}=-\frac{\sum_{i=2}^{N_{y}+1} \operatorname{A1Y(i)C_{i\ell }}}{A_{1,1}^{(2)}} \tag{2.66}\\
C_{N_{y}+2, \ell}=\frac{\sum_{\sum_{y}+1}^{\sum} A 2 Y(i) C_{i \ell}}{\text { DENY }} \tag{2.67}
\end{gather*}
$$

where

$$
\begin{align*}
& \operatorname{A1Y}(i)=A_{1, i}^{(2)}+\frac{A_{1, N_{y}+2}^{(2)} A 2 Y(i)}{\operatorname{DENY}} \tag{2.68}\\
& A 2 Y(i)=A_{1,1}^{(2)} A_{N_{y}}^{(2)}+2, i-A_{N_{y}}^{(2)}+2,1 A_{1, i}^{(2)} \tag{2.69}\\
& \text { DENY }=A_{N_{y}+2,1}^{(2)} A_{1, N_{y}+2}^{(2)}-A_{1,1}^{(2)} A_{N_{y}+2, N_{y}+2}^{(2)} \tag{2.70}
\end{align*}
$$

Application of orthogonal collocation to the boundary conditions in the z-direction, equation (2.59) gives:

$$
\begin{array}{ll}
\sum_{\mathrm{z}}^{\mathrm{N}_{\mathrm{z}}+2} A_{1, i}^{(3)} C_{k i}=0 & \text { at } \quad \zeta=0 \\
\mathrm{~N}_{\mathrm{z}}+2 \tag{2.71}\\
\sum_{i=1} A_{N}^{(3)}+2, i C_{k i}=0 & \text { at } \quad \zeta=1
\end{array}
$$

Following the same procedure as for the y-direction, the concentration at the edges of the plume in the z-domain is obtained from equation (2.71):

$$
\begin{gather*}
\mathrm{C}_{\mathrm{k}, 1}=-\frac{\sum_{\mathrm{i}=2}^{\mathrm{N}} \mathrm{~A} 1 \mathrm{Z}(\mathrm{i}) \mathrm{C}_{\mathrm{ki}}}{\mathrm{~A}_{1,1}^{(3)}} \\
\mathrm{C}_{\mathrm{k}, \mathrm{~N}_{\mathrm{z}}+2}=\frac{\sum_{\mathrm{i}=2}^{\sum} \mathrm{A} 2 \mathrm{Z}(\mathrm{i}) \mathrm{C}_{\mathrm{ki}}}{\operatorname{DENZ}} \tag{2.72}
\end{gather*}
$$

where

$$
\begin{align*}
& A 1 Z(i)=A_{1, i}^{(3)}+\frac{A_{1, N_{z}+2}^{(3)} A 2 Z(i)}{D E N Z} \tag{2.74}\\
& A 2 Z(i)=A_{1,1}^{(3)} A_{N}^{(3)}+2, i \tag{2.75}\\
& \operatorname{A} \tag{2.76}\\
& \operatorname{DEN} Z=A_{N_{z}+2,1}^{(3)} A_{1, i}^{(3)} \\
& N_{z}^{(3)}+2,1 A_{1, N_{z}+2}^{(3)}-A_{1,1}^{(3)} A_{N}^{(3)}+2, N_{z}+2
\end{align*}
$$

Substituting equations (2.66), (2.67), (2.72), and (2.73) into equation (2.64) one obtains,

$$
\begin{gather*}
R_{1} \frac{d C_{k \ell}}{d \xi}=R_{5}\left(\sum_{i=2}^{N_{y}+1}\left(-B_{k, 1}^{(2)} \frac{A 1 Y(i)}{A_{1,1}^{(2)}}+B_{k i}^{(2)}+B_{k, N_{y}+2}^{(2)} \frac{A 2 Y(i)}{D E N Y}\right) C_{i \ell}\right)+ \\
R_{6}\left(\sum_{i=2}^{N_{z}+1}\left(-B_{\ell, 1}^{(3)} \frac{A 1 Z(i)}{A_{1,1}^{(3)}}+B_{\ell i}^{(3)}+B_{\ell, N_{z}+2}^{(3)} \frac{A 2 Z(i)}{D E N Z}\right) C_{k i}\right) \\
 \tag{2.77}\\
+R_{\left(C_{k \ell}\right)}
\end{gather*}
$$

or simplifying it:

$$
\begin{align*}
\frac{\mathrm{dC}_{\mathrm{k} \ell}}{\mathrm{~d} \xi}=\frac{\mathrm{R}_{5}}{\mathrm{R}_{1}}\left(\sum_{\mathrm{i}=2}^{\mathrm{N}_{\mathrm{y}}^{+1}} \mathrm{AKY}(\mathrm{k}, \mathrm{i}) \mathrm{C}_{\mathrm{i} \ell}\right) & +\frac{\mathrm{R}_{6}}{\mathrm{R}_{1}}\left(\sum_{\mathrm{i}=2}^{\mathrm{N}_{\mathrm{z}}+1} \mathrm{AKZ}(\ell, \mathrm{i}) \mathrm{C}_{\mathrm{ki}}\right)+ \\
& +\frac{\mathrm{R}\left(\mathrm{C}_{\mathrm{k} \ell}\right)}{\mathrm{R}_{1}} \tag{2.78}\\
\text { for } \quad & k=2, \ldots, N_{y}+1 \\
& \ell=2, \ldots, N_{z}+1
\end{align*}
$$

Equation (2.78) gives a set of $\left(N_{y}\right)\left(N_{z}\right)$ first-order ordinary differential equations to solve for the concentration as a function of the along wind direction at the orthogonal collocation points in the crosswind and vertical directions. The initial condition for this system of equations is

$$
C_{k \ell}^{i}=\left\{\begin{array}{ccc}
C_{o} & \text { at } \quad \xi=0, & 0 \leq y^{*} \leq \beta_{y} \tag{2.79}\\
& & \\
0-\beta_{z} \leq z^{*} \leq h+\beta_{z} \\
0 & \text { at } \quad \xi=0, & y^{*}>\beta_{y} \\
& \text { elsewhere } z^{*}
\end{array}\right.
$$

Using continuity, the flux at the point source can be expressed as:

$$
\begin{equation*}
Q=2 \int_{0}^{\beta} y \int_{-\beta_{z}}^{\beta} u(h) C_{o} y_{\max } d y^{*} z_{\max } d z^{*} \tag{2.80}
\end{equation*}
$$

Solving for C_{0}, the equivalent concentration at the source one obtains,

$$
\begin{equation*}
C_{0}=\frac{Q}{4 u(h) \beta_{z} z_{\max }^{\beta} y^{y} \max } \tag{2.81}
\end{equation*}
$$

For a ground level point source, the 4 in the denominator should be replaced by a 2 .

The determination of the initial condition at any integration step follows the same procedure as before. If the concentration at the edges of the plume lies within the range specified by a fraction of the centerline concentration, the solution of the current step is used as the initial condition for the next step. For any boundary concentration outside this comparison, the corresponding δ parameter must be changed. If this occurs, the new positions of the collocation
points have to be calculated by equations (2.55) and/or (2.56) and the concentration at these points determined through Lagrangian interpolation in two dimensions using the good solution of the previous step. This will be then the initial condition used at the current integration step. For simplicity, $\delta_{1 y}$ is equated to β_{y} such that the comparisons are performed strictly to the boundary concentrations at $\eta=1, \quad \zeta=0$ and $\zeta=1$.

In order to apply the technique to any air pollution model, i.e., with any type of removal processes, the eigenvalue method for obtaining the solution was dropped. This method has the attractive feature that whenever the region of interest does not change, the same eigenvalues, eigenvectors and eigenrows for the previous step can be used for the current step. That is, the rediagonalization of the collocation matrix must not be done at every integration step, which results in computational time savings. But in view of generality, other integration techniques were investigated.

A semi-implicit Runge-Kutta technique, based on the method proposed by Caillaud and Padmanabhan [3] was developed in the present work. This type of technique is applied to difficult stiff differential equations. As soon as the stiff component has faded away, at certain position from the point source, it becomes desirable to enlarge the stepsize. A stepsize adjustment algorithm, proposed by Villadsen [19] was used in the present work. This integration method appeared to be very stable and the calculated concentration distribution was the same as that determined by the eigenvalue technique. Unfortunately, the
complexity of the present air pollution model requires a large number of differential equations to be solved. The use of both methods involved a large computational time.

Finally DRKGS, a double precision subroutine furnished by IBM [11] which is a fourth-order Runge-Kutta method, was applied to the present problem. The use of this subroutine was discussed in details by Fleischer [8]. It was decided to keep it as the integration method for all three-dimensional models since the results were comparable to the ones obtained using the previous two methods, but with less than half of their computational time.

The present work for the case of no chemical reactions was validated by comparing the results to the Gaussian plume equation given by

$$
\begin{align*}
& C(x, y, z)=\frac{Q}{2 \pi \sigma_{y} \sigma_{z} u} \exp \left(-\frac{1}{2}\left(\frac{y}{\sigma_{y}}\right)^{2}\right)\left(\exp \left(-\frac{1}{2}\left(\frac{z-H}{\sigma_{z}}\right)^{2}\right)+\right. \\
&\left.\exp \left(-\frac{1}{2}\left(\frac{z+H}{\sigma_{z}}\right)^{2}\right)\right) \tag{2.82}
\end{align*}
$$

and to the analytical solution of the diffusion equation with a reflecting plane at the ground $z=0$, given by

$$
\begin{align*}
& C(x, y, z)=\frac{Q}{4 \pi x\left(K_{y} K_{z}\right)^{\frac{1}{2}}} \exp \left(-\frac{u y^{2}}{4 K_{y} x}\right)\left(\exp \left(-\frac{u(z-H)^{2}}{4 K_{z} x}\right)+\right. \\
&\left.\exp \left(-\frac{u(z+H)^{2}}{4 K_{z} x}\right)\right) \tag{2.83}
\end{align*}
$$

The flux across any plane normal to the x axis is also calculated in the present work via

$$
\begin{equation*}
Q_{x}=2 \int_{0}^{y} \int_{0}^{z \max } \int_{\max } u C(x, y, z) d y d z \tag{2.84}
\end{equation*}
$$

Substituting equations (2.55) and (2.56), and using Gaussian quadrature weights, equation (2.84) can be transformed to

$$
\begin{equation*}
Q_{x}=2 u\left(\delta_{1 y}+\delta_{2 y}\right) y_{\max }\left(\delta_{1 z}+\delta_{2 z}+2 \beta_{z}\right) z_{\max }^{N_{k=1} \sum_{\ell=1}^{N} \sum_{k} W_{k}^{(2)} W_{\ell}^{(3)} C_{k \ell}, 2} \tag{2.85}
\end{equation*}
$$

Variable Mean Wind Velocity and Turbulent Diffusivities

The governing equation for this case, equation (2.54), with the incorporation of the spatial variable transformations given by equations (2.15), (2.55) and (2.56) can be expressed as follows:

$$
\begin{equation*}
R_{1}(\zeta) \frac{\partial C}{\partial \xi}+R_{3}(\zeta) \frac{\partial C}{\partial \zeta}=R_{5}(\zeta) \frac{\partial^{2} C}{\partial \eta^{2}}+R_{6}(\zeta) \frac{\partial^{2} C}{\partial \zeta^{2}}+R(C) \tag{2.86}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{R}_{1}(\zeta)=\frac{u(\zeta)}{x_{\max }} \tag{2.87}\\
& \mathrm{R}_{3}(\zeta)=-\frac{\frac{\mathrm{dK}}{\mathrm{~m}}}{\mathrm{z}_{\max }\left(\delta_{1 z}+\delta_{2 z}+2 \beta_{z}\right)} \tag{2.88}
\end{align*}
$$

$$
\begin{align*}
& R_{5}(\zeta)=\frac{K_{y}(\zeta)}{y_{\max }^{2}\left(\delta_{1 y}+\delta_{2 y}\right)^{2}} \tag{2.89}\\
& R_{6}(\zeta)=\frac{K_{z}(\zeta)}{z_{\max }^{2}\left(\delta_{1 z}+\delta_{2 z}+2 \beta_{z}\right)^{2}} \tag{2.90}
\end{align*}
$$

The procedure to obtain the collocation equations is exactly the same as the one previously done, with one extra term involving $R_{3}(\zeta) \frac{\partial C}{\partial \zeta}$ in these equations. The final expression then is given by

$$
\begin{align*}
& \frac{d C_{k \ell}}{d \xi}=-\frac{R_{3}(\ell)}{R_{1}(\ell)}\left(\sum_{i=2}^{N_{z}+1} \operatorname{DAKZ}(\ell, i) C_{k i}\right)+\frac{R_{5}(\ell)}{R_{1}(\ell)}\left(\sum_{i=2}^{N_{y}+1} A K Y(k, i) C_{i \ell}\right)+ \\
& \frac{R_{6}(\ell)}{R_{1}(\ell)}\left(\sum_{i=2}^{N_{z}+1} \operatorname{AKZ}(\ell, i) C_{k i}\right)+\frac{R\left(C_{k \ell}\right)}{R_{1}(\ell)} \tag{2.91}\\
& \text { for } k=2, \ldots, N_{y}+1 \\
& \ell=2, \ldots, N_{z}+1
\end{align*}
$$

where

$$
\begin{equation*}
\operatorname{DAKZ}(\ell, i)=-A_{l, 1}^{(3)} \frac{A 1 Z(i)}{A_{1,1}^{(3)}}+A_{l i}^{(3)}+A_{l, N_{z}+2}^{(3)} \frac{A 2 Z(i)}{\operatorname{DENZ}} \tag{2.92}
\end{equation*}
$$

and $A K Y(k, i), A K Z(\ell, i), A 1 Z(i), A 2 Z(i)$, and $D E N Z$ are the same as before.
The flux across any plane normal to the along wind direction is calculated by an equation similar to (2.85), i.e.,

$$
\begin{equation*}
Q_{x}=2\left(\delta_{i y}+\delta_{2 y}\right) y_{\max }\left(\delta_{1 z}+\delta_{2 z}+2 \beta_{z}\right) z_{\max } \sum_{k=1}^{N_{y}+2} \sum_{\ell=1}^{N_{z}+2} u(\ell) W_{k}^{(2)} W_{\ell}^{(3)} C_{k \ell} \tag{2.93}
\end{equation*}
$$

Analytical solutions for arbitrary source heights and unrestricted functions of u, K_{y} and K_{z} with elevation have not yet been obtained. It should be pointed out that the present technique can be applied to any function of u, K_{y} and K_{z} with respect to any spatial variable and meteorological parameter, as will be seen later. Few modifications must be done to the present model for cases involving functional relationship with respect to other spatial variables, besides elevation.

Three Dimensional Mean Wind Velocity

Let us now consider a continuous point source emitting contaminants to a region where the axial and lateral components of the mean wind velocity are important. For this case, equation (2.1) is reduced to:

$$
\begin{equation*}
u \frac{\partial C}{\partial x}+v \frac{\partial C}{\partial y}=\frac{\partial}{\partial y}\left(K_{y} \frac{\partial C}{\partial y}\right)+\frac{\partial}{\partial z}\left(K_{z} \frac{\partial C}{\partial z}\right)+R \tag{2.94}
\end{equation*}
$$

where the diffusion in the x -direction is again neglected compared to convection, and w is assumed to be zero. Using the same previous functional relationships for the velocities and diffusivities, i.e.,

$$
\begin{equation*}
u=u(z) ; \quad v=v(z) ; \quad K_{y}=K_{y}(z) ; \quad K_{z}=K_{z}(z) \tag{2.95}
\end{equation*}
$$

equation (2.94) remains as

$$
\begin{equation*}
u(z) \frac{\partial C}{\partial x}+v(z) \frac{\partial C}{\partial y}-\frac{d K_{z}(z)}{d z} \frac{\partial C}{\partial z}=K_{y}(z) \frac{\partial^{2} C}{\partial y^{2}}+K_{z}(z) \frac{\partial^{2} C}{\partial z^{2}}+R \tag{2.96}
\end{equation*}
$$

The previous approach used for the y-direction is not valid for the present model since the concentration distribution in this dimension is no longer symmetric with respect to the centerline $(y=0)$. For an interval $\left[-y_{\max }, y_{\max }\right]$ as the region of interest in the y-direction, the following variable transformations are performed:

$$
\begin{align*}
& y^{*}=\frac{\frac{y}{y_{\max }}+1}{2} \tag{2.97}\\
& z^{*}=\frac{z}{z_{\max }} \tag{2.98}
\end{align*}
$$

$y^{*}=\left(\delta_{1 y}+\delta_{2 y}+2 \beta_{y}\right) \eta+\frac{1}{2}-\left(\beta_{y}+\delta_{1 y}\right)$

$$
\begin{equation*}
z^{*}=\left(\delta_{1 z}+\delta_{2 z}+2 \beta_{z}\right) \zeta+h-\left(\beta_{z}+\delta_{1 z}\right) \tag{2.100}
\end{equation*}
$$

where

$$
0 \leq n \leq 1 \quad, \quad 0 \leq \zeta \leq 1 .
$$

The initial condition for this case can then be stated as

$$
C^{i}= \begin{cases}C_{0} & \text { at point source, } \xi=0 ; y=0\left(y^{*}=\frac{1}{2}\right) ; z^{*}=h \tag{2.101}\\ 0 & \text { elsewhere, } \xi=0\end{cases}
$$

Substituting equations (2.97) through (2.100) and equation (2.15) into equation (2.96) one obtains

$$
\begin{equation*}
\mathrm{R}_{1}(\zeta) \frac{\partial \mathrm{C}}{\partial \xi}+\mathrm{R}_{2}(\zeta) \frac{\partial \mathrm{C}}{\partial \eta}+\mathrm{R}_{3}(\zeta) \frac{\partial \mathrm{C}}{\partial \zeta}=\mathrm{R}_{5}(\zeta) \frac{\partial^{2} \mathrm{C}}{\partial \eta^{2}}+\mathrm{R}_{6}(\zeta) \frac{\partial^{2} C}{\partial \zeta^{2}}+\mathrm{R}(\mathrm{C}) \tag{2.102}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{1}(\zeta)=\frac{u(\zeta)}{x_{\max }} \tag{2.103}\\
& R_{2}(\zeta)=\frac{v(\zeta)}{2 y_{\max }\left(\delta_{1 y}+\delta_{2 y}+2 \beta_{y}\right)} \tag{2.104}\\
& R_{3}(\zeta)=-\frac{d K_{z}}{z_{\max }\left(\delta_{1 z}+\delta_{2 z}+2 \beta_{z}\right)} \tag{2.105}\\
& R_{5}(\zeta)=\frac{K_{y}(\zeta)}{4 y_{\max }^{2}\left(\delta_{1 y}+\delta_{2 y}+2 \beta_{y}\right)^{2}} \tag{2.106}\\
& R_{6}(\zeta)=\frac{K_{z}(\zeta)}{z_{\max }^{2}\left(\delta_{1 z}+\delta_{2 z}+2 \beta_{z}\right)^{2}} \tag{2.107}
\end{align*}
$$

The boundary conditions in the y and z-directions are the same as before, given by equations (2.58) and (2.59). Therefore, application of orthogonal collocation to this model adds only one extra term to the right hand side of equation (2.91):

$$
\begin{equation*}
-\frac{R_{2}(\ell)}{R_{1}(\ell)}\left(\sum_{i=2}^{N_{y}+1} A V Y(k, i) C_{i \ell}\right) \tag{2.108}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{AVY}(k, i)=-A_{k, 1}^{(2)} \frac{\operatorname{AlY}(i)}{A_{1,1}^{(2)}}+A_{k i}^{(2)}+A_{k, N_{y}}^{(2)}+\frac{A 2 Y(i)}{D E N Y} \tag{2.109}
\end{equation*}
$$

The initial condition for this system of first-order ordinary differential equations, equation (2.101), can be expressed as,

$$
\begin{align*}
& C_{k \ell}^{i}=\left\{\begin{array}{lll}
C_{o} & \text { at } & \xi=0, \\
& & \frac{1}{2}-\beta_{y} \leq y^{*} \leq \frac{1}{2}+\beta_{y}
\end{array}\right. \\
& 0
\end{align*} \begin{array}{ll}
& \text { at } \quad \xi=0, \tag{2.110}\\
& \text { elsewhere } y^{*} \text { and } z^{*}
\end{array}
$$

The equivalent source concentration can again be obtained using continuity:

$$
\begin{equation*}
Q=\int_{-\beta}^{\beta} y \int_{-\beta}^{\beta} z z_{z} u(h) C_{o}\left(2 y_{\max } d y^{*}\right) z_{\max } d^{*} * \tag{2.111}
\end{equation*}
$$

Solving for C_{0}, one obtains

$$
\begin{equation*}
C_{0}=\frac{Q}{8 u(h) y_{\max } y^{z} \max ^{\beta} z} \tag{2.112}
\end{equation*}
$$

Finally, the flux at any position in the along wind direction can be calculated by

$$
\begin{equation*}
Q_{x}=\int_{-y_{\max }}^{y_{\max }} \int_{0}^{z_{\max }} u(z) C(x, y, z) \operatorname{dyd} z \tag{2.113}
\end{equation*}
$$

Using the same procedure as before, equation (2.113) can be reduced to:

$$
\begin{equation*}
Q_{x}=2\left(\delta_{1 y}+\delta_{2 y}+2 \beta_{y}\right) y_{\max }\left(\delta_{1 z}+\delta_{2 z}+2 \beta_{z}\right) z_{\max } \sum_{k=1}^{N_{y}+2} \sum_{\ell=1}^{N_{z}+2} u(\ell) W_{k}^{(2)} W_{\ell}^{(3)} C_{k \ell} \tag{2.114}
\end{equation*}
$$

It should be pointed out that the incorporation of the third component of the mean wind velocity, $w(z)$, into the diffusion equation (2.94) modifies only one term. Equation (2.105) would have to be replaced by the following expression:

$$
\begin{equation*}
R_{3}(\zeta)=\frac{w(\zeta)-\frac{d K_{z}}{d z}(\zeta)}{z_{\max }\left(\delta_{1 z}+\delta_{2 z}+2 \beta_{z}\right)} \tag{2.115}
\end{equation*}
$$

The procedure to find the edge of the plume in the lateral direction at any integration step is also modified with respect to the previous models. The centerline will not be at $y=0$, i.e., it might be to the right or left depending upon the direction of the horizontal mean wind velocity.

The concentration at the edges in the y-direction and at the effective emission height, i.e., $C\left(n=0, z^{*}=h\right)$ and $C\left(n=1, z^{*}=h\right)$ are compared to a positive or negative value. A negative concentration means that the plume, at that downwind position, is wider than the actual plume, and therefore the parameter $\delta_{1 y}$ or $\delta_{2 y}$ is decreased until a positive concentration, at the same x position, is obtained. On the other hand, the same procedure used for the previous models is applied to positive concentrations at the crosswind direction boundaries. Both concentration values are compared to the centerline concentration multiplied by some ratio r, and if they/it are/is larger, the parameter (s) $\delta_{1 y}$ and/or $\delta_{2 y}$ are/is increased until the desired accuracy is reached.

CHAPTER III

PARAMETERS ESTIMATION

Basic parameters are estimated for the simple models through parametric studies involving comparison of accuracy and computer time. As the complexity of the models increases, most of these parameters are kept, and others which are inherent of the model in question are estimated for the first time.

Accuracy tests are performed by comparing the calculated concentration values to the analytical solution. For this purpose, an error, which is used throughout this chapter is defined as,

$$
e=\left(\frac{C_{a}-{ }^{C_{c}}}{C_{a}}\right) 100
$$

where the subscripts a and c stand for analytical and calculated, respectively.

The calculations for the present work were done in a UNIVAC 1108 digital computer.

Mathematical Parameters

Two Dimensional-Continuous Ground Level Line Source
The first basic parameter which is estimated is the number of orthogonal collocation points that should be used in calculating the concentration distribution. This parametric study is shown in Figure 3.1. For this case, arbitrary values were assigned to the other

FIGURE 3.1 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL WITH ANALYTICAL SOLUTION - PARAMETRIC STUDY ON N
parameters remaining, i.e., β was equated to some small value .006, and the ratio of the concentration at the edge of the plume and the centerline concentration was assigned a value of 1%, i.e., $r=.01$. Concentration comparisons were performed for the effective emission height, $z=0$. The other key variable used to select the most convenient number of collocation points, the computer time requirement is shown for each case in Table 3.1.

Table 3.1	Computer Time Requirements for P
	Study on N - Ground Level Line S
N	Time (sec)
4	7
6	17
8	26
10	46

As it was expected, as N increases the error decreases and the computer time increases. The differences in the computer time spent are not very large with the exception of the last two cases, $N=8$ and $\mathrm{N}=10$. In addition, the error is greatly minimized as N increases from 4 to 8 interior points, but the difference between the last two cases is negligible. Therefore, the number of interior orthogonal collocation points selected is 8.

The next parametric study done, on β, is shown in Figure 3.2. For this case, \mathbf{r} was again given an arbitrary value of 0.01 . Time requirements are given in Table 3.2.

Table 3.2 Computer Time Requirements for Parametric Study on B - Ground Level Line Source Model
\qquad .00331
.00626
$.018 \quad 32$

An analysis for this case shows that as β increases, the error increases for downwind distances close to the emission source. This is exactly one of the objectives pursued in using spline collocation in problems with a discontinuous initial value profile. Since the parameters δ will have a comparable value to β, small values mean that the concentration distribution is calculated only in a region where material exists, i.e., within the plume. This region of interest is very small close to the emission source. As the pollutant moves downwind the plume spreads, and therefore the region of interest is increased by means of the parameters δ.

The computer time requirements for all cases was almost identical, so that a value of .005 was selected for β. Together with the estimation of β, the parameters δ_{1} and δ_{2} must be specified. The procedure is to

FIGURE 3.2 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL WITH ANALYTICAL SOLUTION - PARAMETRIC STUDY ON B
find the pair that will determine a region in space which will contain all the material emitted. Since β is very small compared to 1 which is the entire z^{*} domain, the same value of 0.005 was selected for δ_{1}. In order to estimate δ_{2}, two cases were simulated in the computer. The first case had a mass flux at the first integration step higher than the emission rate. The other case had Q_{x} smaller than Q such that a linear interpolation on both δ_{2} gave the mass flux equal to the emission rate. The values for an emission rate of $1 \mathrm{gm} / \mathrm{m}$ s are shown in Table 3.3.

Table 3.3 Mass Flux vs δ_{2} at the First Integration Step - Ground Leve1 Line Source Mode1

δ_{2}	$Q_{x}(\mathrm{gm} / \mathrm{m} \mathrm{s})$
.004	.9
.006	1.1
.005	1.0

Everytime the concentration at the boundary is larger than zero, the region of interest is increased by adding . 005 to the previous value for δ_{2}. This "zero concentration" is assigned a certain fraction of the centerline concentration, as it is done in the Gaussian plume equation, where $r=.10(10 \%)$. This is then the last basic parameter to be determined for this model, and the results of the parametric study are shown in Figure 3.3 and Table 3.4.

FIGURE 3.3 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL WITH ANALYTICAL SOLUTION - PARAMETRIC STUDY ON r

Table 3.4 Computer Time requirements for Parametric Study on r - Ground Level Line Source Mode1

\mathbf{r}	Time (sec)
.005	31
.01	27
.1	20

As expected, the lower r the better is the description of the process, i.e., the boundary concentration is closer to zero. But there must be also a compromise in the computer time involved. Therefore, r is assigned a value of 0.01 for the rest of the present work.

There is one more variable in this model that should be analyzed, $z_{\text {max }}$, the maximum elevation. If there is an inversion layer, $z_{\text {max }}$ must take on that value. On the other hand, if no inversion layer exists, any value for $z_{\text {max }}$ can be specified as input data as long as it does not create an artificial inversion layer. This could happen if $x_{\max }$ is very large, e.g., 10 km , and $z_{\text {max }}$ very small, e.g., 50 m , such that the plume reaches the maximum elevation before $\mathrm{x}_{\max }$.

An increase in the maximum elevation produces a similar effect as increasing β. The region of interest becomes wider such that the accuracy for downwind distances close to the emission source is aggravated. However, every time the parameter δ_{2} is increased, a larger $z_{\max }$ implies more separation from the ground. This results in fewer situations where the
boundary concentration is larger than zero, and thus fewer number of computations. In addition, the separations between interior collocation points in the z domain are larger so that the concentration gradients become smaller. Therefore, the computer time involved is reduced. This analysis is shown in Figure 3.4 and Table 3.5

Table 3.5 Computer Time Requirements for Parametric
Study on $z_{\text {max }}$ - Ground Level Line Source Model

$z_{\max }(\mathrm{m})$	Time (sec)
50	45
250	40
500	27
1000	16

Figure 3.4 shows incomplete curves for the cases with $z_{\max }$ equal to 50 and 250 m . The reason being that at the corresponding downwind position the plume reached the maximum elevation and a comparison to the analytical solution is no longer valid.

The procedure to find the most convenient maximum elevation would be to simulate first a case with a large value for $\mathrm{z}_{\max }$, and then by inspecting the results locate the maximum elevation the plume reaches. A value a little bit higher to the one obtained should be assigned to

FIGURE 3.4 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL WITH ANALYTICAL SOLUTION - PARAMETRIC STUDY ON $z_{\text {max }}$
$z_{\text {max }}$ if accuracy is the objective. For most cases, $z_{\text {max }}=500 \mathrm{~m}$ is reasonable enough, unless the problem involves a very unstable atmosphere and/or a very tall stack.

Two Dimensional - Continuous Elevated Line Source
The structure of the technique used to solve this model is different to the previous one in the sense that the parameter β is located to both sides of the effective emission height. For this reason the number of orthogonal collocation points is increased to $\mathrm{N}=10$.

There is no relation on β for this case and the ground level line source model, so that a parametric study was performed. This is shown in Figure 3.5 and Table 3.6.
$\begin{aligned} & \text { Table 3.6 Computer Time Requirements for Parametric } \\ & \text { Study on } \beta \text { - Elevated Line Source Model }\end{aligned}$

β	Time (sec)
.0010	84
.0012	83
.0013	83
.0014	92
.0015	98
.0020	100

FIGURE 3.5 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT THE EFFECTIVE EMISSION HEIGHT WITH ANALYTICAL SOLUTION - PARAMETRIC STUDY ON B

The computer time requirements were similar for all cases, so that the selection for β was made on grounds of accuracy. Something very peculiar happens for this approach in the sense that the errors oscillate between zero for the cases of β between . 0010 and .0014 . No explanation can be given to this, although it is a fact that as β is increased from . 0014, the accuracy becomes worse, as it should be and was previously discussed. The errors were computed at the effective emission height, 100 m . It should be pointed out that it would be fortuitous if one of the interior collocation points coincided with the effective emission height. This is the reason why a one-dimensional Lagrangian interpolation was used to obtain the concentration at this elevation. This type of interpolation takes into account the concentration at all collocation points, so that the error calculated at H, besides Q_{x}, shows the overall error involved in the solution technique.

A value of 0,0012 was assigned for β in this model. The same procedure as before was used to estimate the parameters δ_{1} and δ_{2}. For an emission rate of $1 \mathrm{gm} / \mathrm{s} \mathrm{m}$, Table 3.7 shows the final values for δ_{1} and δ_{2} obtained.

Table 3.7 Mass Flux vs δ_{1} and δ_{2} at the First Integration Step - Elevated Line Source Model

δ_{1}	δ_{2}	$Q_{\mathrm{x}}(\mathrm{gm} / \mathrm{s})$
.0030	.0030	1.0343
.0026	.0026	.9358
.002861	.002861	1.0001

The value by which these parameters are increased whenever the region of interest must be increased is given a similar value as δ_{1}, i.e., . 0025.

The same analysis for $z_{\max }$ as previously discussed is presented in Figure 3.6 and Table 3.8. The conclusions are exactly the same, but since the main objective of the present work is accuracy, $\mathrm{z}_{\max }=500 \mathrm{~m}$ is used when possible throughout the entire research.

Table 3.8 Computer Time Requirements for Parametric Study on $z_{\text {max }}$ - Elevated Line Source Model
$\mathrm{z}_{\text {max }}(\mathrm{m}) \quad$ Time (sec)
$500 \quad 83$
200027

Three Dimensional Continuous Point Source

Estimation of parameters for this complex model proves that the analysis and understanding of the previous simple cases is valuable. Determination of a convenient set of parameters to get high accuracy would have been difficult without knowledge of the values specified for the previous models.

Let us first consider the case where only one component of the mean wind velocity is taken into account. In addition to u, both turbulent diffusivities, K_{y} and K_{z}, are assumed constant.

FIGURE 3.6 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT THE EFFECTIVE EMISSION HEIGHT WITH ANALYTICAL SOLUTION - PARAMETRIC STUDY ON zmax

Since the problem can be considered symmetric with respect to the centerline $(y=0)$, the technique utilized for the ground level line source can be used in the lateral direction. Therefore, N_{y} is equated to 8 and β_{y} to .005 .

In many cases air pollution is due to elevated point sources, so that the approach used for the elevated line source model can be utilized for the z-direction. Therefore, ten interior orthogonal collocation points are used in the vertical dimension, i.e., $N_{z}=10$, and a value of 0.0012 is assigned to β_{z}.

The procedure to obtain the δ parameters, now there are four, follows the one previously discussed. Three of these parameters were given the same value as before, i.e., $\delta_{1 y}=.005, \delta_{1 z}=\delta_{2 z}=.002861$ and the fourth parameter was obtained by comparing the mass flux at the first integration step with the emission rate. For this mode1, $Q=1 \mathrm{~kg} / \mathrm{s}$, and the parametric study is shown in Tab1e 3.9. A value of .01069 was assigned to $\delta_{2 y}$.

Table 3.9 Mass Flux vs $\delta_{2 y}$ at the First Integration Step - Elevated Point Source Model

$\delta_{2 y}$	$Q_{x}(\mathrm{~kg} / \mathrm{s})$
.01	.95607
.011	1.01981
.01069	1.00005

The increments on these parameters, whenever the boundaries of the plume are changed, are the same as the ones used before with the exception of $\delta_{2 y}$ which now was changed. Again a comparable value is used for this purpose, i.e., 0.015. It should be pointed out that no matter what value is given for Q and H, all these parameters do not have to be changed again.

The use of a different method, DRKGS, for integrating the diffusion equation along the x direction, as compared to the eigenvalue technique utilized before, introduces one more parameter: the upper error bound, ε, as discussed by Fleischer [8]. A parametric study was performed and is shown in Figure 3.7 and Table 3.10.

Table 3.10 Computer Time Requirements for Parametric Study on ε - Elevated Point Source Model
$\varepsilon \quad$ Time (sec)
1×10^{-5} 180
1×10^{-6} 190
1×10^{-7} 200
1×10^{-8} 290

The cases simulated involved meteorological parameters that exist for very unstable conditions, which will be discussed in the next section. This was done in order to have large concentration gradients and the possibility of a difficult problem to solve. The error was calculated again at the effective emission height. A two-dimensional Lagrangian

FIGURE 3.7 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT THE EFFECTIVE EMISSION HEIGHT WITH ANALYTICAL SOLUTION - PARAMETRIC STUDY ON E
interpolation, which involves the solution at all collocation points, was used. The calculated error again gives an estimate of the overall error.

An analysis of Figure 3.7 shows that the accuracy is greatly improved by modifying the upper error bound from $\varepsilon=1 \times 10^{-6}$ to $\varepsilon=1 \times 10^{-7}$, while the computer times involved are similar. The time requirements have increased very much compared to the two-dimensional cases because a system of 80 first-order ordinary differential equations is being solved for the present model.

A closer 100 k at Figure 3.7 shows a peak in the error e at 20 m downwind from the source. For practical purposes this does not matter very much since the concentration distribution is usually desired from 50 to 100 m up downwind. Furthermore, this error is 4% which for these purposes is quite low. This peak occurs because of the large integration stepsize of 10 m at that location. A parametric study on ε with a smaller stepsize of 2.5 m was simulated next. The absolute error e was identical for all previous ε used, but not the computer time requirements which are presented in Table 3.11.

Table 3.11 Computer Time Requirements for Small Stepsize of Integration - Elevated Point Source Model

ε	Time (sec)
1×10^{-5}	250
1×10^{-6}	260
1×10^{-7}	270
1×10^{-8}	310

Since there was no dependence of ε in the error for this case, a parametric study to check r was performed again, and is shown in Figure 3.8. It can be seen that the absolute error is indeed decreased by using a smaller stepsize, and the peak is converted to a damped curve at downwind distances close to the point source. As expected and discussed before, as the ratio increased the error increased and the computer time decreased to 250 seconds $\left(\varepsilon=1 \times 10^{-7}\right)$. The main objective of the present work is to develop a highly accurate method of solution, so the small stepsize was adopted with an upper error bound of $\varepsilon=1 \times 10^{-7}$.

The analysis on $z_{\max }$ discussed for the previous models still holds for the three dimensional case. It should be pointed out that an inversion layer in the lateral dimension is meaningless. Therefore, $y_{\max }$ must always be specified by the user, and if the horizontal spread of the plume has reached that value, the solution from that downwind distance until $x_{\text {max }}$ would be erroneous. For such a case, $y_{\max }$ should be increased.

Finally, the parameters for cases with two-dimensional mean wind velocities must be specified. These cases must be treated in a different way since the concentration distribution is not symmetric to the centerline ($y=0$) anymore. The approach used for the vertical direction is then applied to the lateral dimension with $y=0$ as the analog of the effective emission height. Therefore, $N_{y}=N_{z}=10, \beta_{y}=\beta_{z}=.0012$, all δ are equated to .002861 and their increments to . 0025 .

STABILITY CLASS A

$$
H=100 \mathrm{~m}
$$

$$
y=0 ; \quad z=100 \mathrm{~m}
$$

FIGURE 3.8 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT THE EFFECTIVE EMISSION HEIGHT WITH ANALYTICAL SOLUTION - PARAMETRIC STUDY OF r

Meteorological Parameters
General functional relationships and the corresponding parameters must be specified for the turbulent diffusivities and velocity profiles for completeness of the formulation of the present models. This is presented next.

Turbulent Diffusivities K_{y}, K_{z}
Any work related to air pollution modeling and dispersion processes in the atmosphere, which uses the K-theory, must include descriptions for the turbulent diffusivities in the lateral and vertical directions, K_{y} and K_{z}, respectively. Unfortunately, these descriptions vary from one work to another. Sometimes experimental data are available, but again they usually apply for the specific case in question.

Among the best of these works, Eschenroeder and Martinez [5] relate K_{z} to elevation and most importantly to stability classes, as defined by Pasquill and Gifford [18], a parameter that is widely used and known. The trapezoidal profile for K_{z}, discussed by Fleischer [8], and the values for the maximum constant vertical diffusivities from the knee height up to the inversion layer seem to describe fairly well K_{z}. Eschenroeder and Martinez, based on a Los Angeles tetroon data, assigned a value of $500 \mathrm{~m}^{2} / \mathrm{s}$ for the constant horizontal diffusivity. Unfortunately, this large value, when compared to others, is not appropriate to use as a typical measure for K_{y}. Therefore, their description for K_{z} is used in the present work, but with different absolute values for K_{z} and K_{y}.

The fact that the Gaussian plume equation, which uses dispersion parameters based on experimental data, is the most widely used method to determine the concentration distribution helped to develop a method for obtaining the turbulent diffusivities. Moreover, one of the most important questions in air quality is related to the position and magnitude of the maximum ground level concentration. Therefore, the three-dimensional continuous elevated point source solution, with constant wind speed and turbulent diffusivities, was matched to the Gaussian plume equation to give the same maximum ground level concentration at the same position. The vertical diffusivity was adjusted until the position of the maximum at some downwind distance from the source was equal to the one predicted by the Gaussian plume equation. Once K_{z} was determined, the horizontal diffusivity was obtained when the spread of the plume was enough such that the absolute value for the maximum concentration gave the same as the Gaussian plume equation prediction. Typical values for the wind speed, depending upon stability classes, were used. Since an analytical solution for this model is available, the present method was validated by their comparison.

The resulting concentration distributions are shown in Figures 3.9 through 3.14. All cases were simulated in approximately the same computational time, i.e., 270 seconds. Excellent agreement can be observed between the concentration profiles obtained by the present technique and the analytical solution. On the other hand, except for the maximum ground level concentration, the results do not agree with the Gaussian

FIGURE 3.9 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL WITH ANALYTICAL SOLUTION AND GAUSSIAN PLUME EQUATION - STABILITY CLASS A

FIGURE 3.10 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL WITH ANALYTICAL SOLUTION AND GAUSSIAN PLUME EQUATION - STABILITY CLASS B

FIGURE 3.11 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL WITH ANALYTICAL SOLUTION AND GAUSSIAN PLUME EQUATION - STABILITY CLASS C

FIGURE 3.12 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL WITH ANALYTICAL SOLUTION AND GAUSSIAN PLUME EQUATION - STABILITY CLASS D

FIGURE 3.13 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL WITH ANALYTICAL SOLUTION AND GAUSSIAN PLUME EQUATION - STABILITY CLASS E

FIgURE 3.14 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL WITH analytical solution and gaussian plume equation - stability class f
plume equation predictions. This is due to several reasons. The Gaussian plume equation corresponds to the solution of a simplified continuity equation assuming Gaussian distribution for the plume spread. It is a statistical method that makes use of Taylor's theorem [17] for the standard deviation, a concept which is not applied to the present technique. Furthermore the Gaussian parameters σ_{y} and σ_{z}, made functions of travelled downwind distance, were obtained and adjusted from the Project Prairie Grass field data $[1,2,10]$ which involved a small region of interest. The pollutant was emitted at 50 cm above the ground, and most samplers were placed at 1.5 m of elevation and along semicircular arcs from 50 to 800 meters from the source. The phenomena that occur in the lower layers of the atmosphere, such as wind shear, deposition, reflection, removal, etc., and the corresponding solution should be used with caution to represent most situations. Observation of Figures 3.9 through 3.14 confirms this analysis in the sense that the more unstable the atmosphere, the larger the difference between both methods.

It should be pointed out that the present mathematical technique is valid for any type of relationship between the turbulent diffusivities and meteorological and/or spatial variables. The more complicated models are compared to the Gaussian plume equation in Chapter IV. The selection of the present procedure to determine the turbulent diffusivities was done in order to present meaningful comparisons besides lack of a reasonable algorithm. The results for the constant vertical and horizontal diffusivities obtained are presented in Table 3,12.

Table 3.12 Constant Turbulent Diffusivities and Wind Speed used in the Present Method

Stability Class	Wind Speed $(\mathrm{m} / \mathrm{s})$	K_{z} $\left(\mathrm{m}^{2} / \mathrm{s}\right)$	$\mathrm{K} y$ $\left(\mathrm{~m}^{2} / \mathrm{s}\right)$
A	2	11	18.15
B	3	10.75	25.26
C	5	10.5	30.76
D	6	5.2	46.28
E	3	1.5	30.00
F	2	.325	22.75

Some of the results for the vertical diffusivity are in agreement with the ones presented by Eschenroeder and Martinez [5].

The values for K_{y} presented in Table 3.12 are then used in the present work. The ones obtained for K_{z} are utilized in the constant portion of the trapezoidal profile, i.e., from the knee height up to an arbitrary elevation of $\left(z_{\max }-100\right) \mathrm{m}$ if $\mathrm{z}_{\max } \geq 300 \mathrm{~m}$ and there exists an inversion layer. If this is not the case, the constant value is used from the knee height all the way to the top. Eschenroeder and Martinez [5] use a knee height that varies from 25 to 75 meters. As suggested by Sutton [17], the surface boundary layer ends approximately at 50 meters, and therefore this is the elevation at which the knee height was put in the present work. The complete description for K_{z} as used in the present work, when applied as a variable with elevation, is shown in Figure 3.15.

Velocity Profile

Several forms have been used to describe the one dimensional mean wind velocity [8]. They all relate u to elevation and roughness or stability classes. The power-1aw form is used in the present work as

$$
\begin{equation*}
\mathrm{u}=\mathrm{u}_{1}\left(\frac{\mathrm{z}}{\mathrm{z}_{1}}\right)^{\mathrm{m}} \tag{3.2}
\end{equation*}
$$

The parameters u_{1}, z_{1} and m should be supplied as input data by a user of the present method, although the values in Table 3.13 are given as default. Since in most cases the wind speed is known at 10 meters of elevation, z_{1} is equated to this value. Furthermore, the exponent of the power-law can be related to stability classes, as presented by Seinfeld [16] and shown in Table 3.13.

Table 3.13 Estimates for the Parameters in Equation (3.2)

Stability Class	m	$\mathrm{u}_{1}\left(\mathrm{z}_{1}=1\right.$ $(\mathrm{m} / \mathrm{s})$
A	.02	2
D	.14	6
F	.83	2

At some elevation z_{G} called the geostrophic elevation, which is determined in the following two-dimensional wind velocity description,
the mean wind velocity should become constant. Therefore, the complete specification for the one-dimensional mean wind velocity is given by

$$
\begin{array}{ll}
u=u_{10}\left(\frac{\mathrm{z}}{10}\right)^{\mathrm{m}} & 0<\mathrm{z}<\mathrm{z}_{\mathrm{G}} \\
\left.\mathrm{u}=\mathrm{u}_{10}\left(\frac{\mathrm{z}}{\mathrm{G}}\right)^{\mathrm{m}}\right)^{2} & \mathrm{z} \geq \mathrm{z}_{\mathrm{G}} \tag{3.4}
\end{array}
$$

The value of the velocity at the ground $(z=0)$ is not needed in the present work since no interior collocation point will lie in a boundary, and the first and last Gaussian quadrature weights used to calculate the mass flux at any downwind position are zero.

To describe a two-dimensional wind velocity, one must analyze the phenomena that occur within the planetary boundary layer. That is, one should include the Coriolis force caused by rotation of the earth and use the basic equations of motion for two-dimensional steady mean flow, referred to axes fixed in the earth $[9,13,17]$;

$$
\begin{align*}
& f v-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{1}{\rho} \frac{\partial}{\partial z} \tau_{z x}=0 \tag{3.5}\\
& -f u-\frac{1}{\rho} \frac{\partial p}{\partial y}+\frac{1}{\rho} \frac{\partial}{\partial z} \tau_{z y}=0 \tag{3.6}
\end{align*}
$$

where $f=2 \mathrm{w} \sin \phi \simeq 1.458 \times 10^{-4} \sin \phi \frac{1}{\sec }$ and is called the Coriolis parameter, w being the angular velocity of rotation of the earth and ϕ the geographical latitude.

By assuming that the eddy stresses are

$$
\begin{align*}
& \tau_{z x}=\rho K_{z} \frac{\partial u}{\partial z} \tag{3.7}\\
& \tau_{z y}=\rho K_{z} \frac{\partial v}{\partial z} \tag{3.8}
\end{align*}
$$

equations (3.5) and (3.6) become

$$
\begin{align*}
& f v-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{\partial}{\partial z}\left(K \frac{\partial u}{\partial z}\right)=0 \tag{3.9}\\
& -f u-\frac{1}{\rho} \frac{\partial p}{\partial y}+\frac{\partial}{\partial z}\left(K \frac{\partial v}{\partial z}\right)=0 \tag{3.10}
\end{align*}
$$

If the x-direction is oriented parallel to the isobars, i.e. $\frac{\partial p}{\partial x}=0$ and knowing that the free-stream velocity, called geostrophic wind u_{G} blows along the isobars, the velocity component perpendicular to the isobars v vanishes at the height z_{G}. Therefore, from equation (3.10)

$$
\begin{equation*}
f u_{G}=-\frac{1}{\rho} \frac{\partial p}{\partial y} \tag{3.11}
\end{equation*}
$$

and equations (3.9) and (3.10) have become independent of pressure. The Coriolis effect can usually be neglected near the surface. If this is assumed to apply from the ground up to the knee height Δ, equation (3.9) and (3.10) can be used to describe the velocity profile in the region where K_{z} is constant. The solution of the equations of motion is given by:

$$
\begin{equation*}
u=u_{G}\left(1-e^{-a z} \cos a z\right) \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
v=u_{G} e^{-a z} \sin a z \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\left(\frac{f}{2 K_{z}}\right)^{\frac{1}{2}} \tag{3.14}
\end{equation*}
$$

The geostrophic elevation, also used for one-dimensional velocity profiles as previously discussed, can be obtained by sutstituting v=0 into equation (3.13), i.e.,

$$
\begin{equation*}
z_{G}=\frac{\pi}{a} \tag{3.15}
\end{equation*}
$$

For a Coriolis parameter of $\mathrm{f}=10^{-4} \mathrm{sec}^{-1}$, which corresponds to approximately a geographical latitude of 40° that occurs in the middle of the U.S., and the constant values of K_{z} given by Table 3.12 , the resulting geostrophic elevations are presented in Table 3.14,

Table 3.14 Geostrophic Elevations used in the Present Work

Stability Class	${ }_{\mathrm{Z}}^{\mathrm{G}} \mathrm{m}^{(\mathrm{m})}$
A	1475
B	1455
C	1440
D	1015
E	545
F	255

For the surface boundary layer, between the ground and the knee height Δ, the power-law form can be used for the component of the velocity in the x-direction. Since the Coriolis effect is neglected in this portion of the atmosphere, the direction of the velocity will be assumed constant and equal to the value that occurs at $\Delta=50 \mathrm{~m}$, i.e., dependent on the stability class. These values are presented in Table 3,15.

Table 3.15 Angle between Wind Velocity and Geostrophic Direction for the Surface Boundary Layer

Stability
Class $\quad \alpha\left({ }^{\circ}\right)$

A
42
B 42
C 42
D 41
E 37
F 29

The results shown in Tables 3.14 and 3.15 are in agreement with the values suggested by Sutton [17].

The complete description for the two-dimensional wind velocity can be expressed then by the following algorithm:

$$
\begin{array}{ll}
u=u_{50}^{c}\left(\frac{z}{10}\right)^{m} & \\
v=(\tan \alpha) u & \\
u=u_{G}\left(1-e^{-a z} \cos a z\right) & \text { for } 0<z \leq \Delta \\
v=u_{G} e^{-a z} \sin a z & \text { for } z>\Delta \\
v=0 & \text { for } \Delta<z<z_{G}
\end{array}
$$

where

$$
\begin{equation*}
u_{50}^{c}=u_{G}\left(\frac{10}{50}\right)^{m}\left(1-e^{-50 a} \cos 50 a\right) \tag{3.21}
\end{equation*}
$$

is required for a continuous velocity profile.

CHAPTER IV

PRESENTATION AND ANALYSIS OF RESULTS

The Eulerian approach was validated by Fleischer [8] through comparisons between calculated concentration distributions and the few available experimental data. The present models have been validated by comparing the calculated results with existing analytical solutions. Therefore, the main objective of the present work is to obtain concentration distributions for air pollution problems that are either difficult to simulate through conventional techniques, such as finite-differences, or which have never been solved or presented in the literature.

Two-Dimensional Models

- The first problem that was simulated includes pollutant removal from the atmosphere, represented by a simplified first order chemical reaction model, and applied to the continuous ground level line source case. The value of 1.67×10^{-3} per minute or 10% loss per hour was used as the reaction rate constant. The results, obtained in 27 seconds of CPU time, are presented in Figure 4.1. They indeed show that there is no need to include chemical reactions to a steady state model since the concentration values can be calculated by multiplying the analytical solution to the factor $\exp \left(-\frac{k_{1} x}{u}\right)$. This factor is the result of the chemical reaction model when solved by itself.

The other two-dimensional model simulated included an inversion layer at 250 meters for a continuous elevated line source case, with an

- ANALYTICAL SOLUTION

- PRESENT METHOD

FIGURE 4.1 DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL - TWO DIMENSIONAL MODEL WITH CHEMICAL REACTION
effective emission height of 200 meters. The calculated and analytical concentration distributions are shown in Figure 4.2.

The results obtained from the present work in 117 seconds of CPU time predict that the plume reaches the inversion layer at a downwind distance of 300 m from the source. An inversion layer means that all the material reaching that elevation is reflected down. It can be observed that the inversion layer starts to affect the concentration at the effective emission height at about 1.5 km from the source. Since the analytical solution does not take into account the inversion layer, the calculated results are higher than the analytical solution for downwind distances over 1.5 km .

Three-Dimensional Models

There are an infinite number of situations that could be simulated by the three-dimensional models. The most representative have been selected and are presented next.

The first interesting problem is to compare the effect of having a one-dimensional wind velocity profile as a function of elevation with respect to a constant wind speed. This comparison, together with the concentration distribution obtained for the case of wind velocity and vertical turbulent diffusivity variable with elevation is shown in Figures 4.3 through 4.5. The results were obtained for the three most important stability classes, A, D, and F in approximately 260, 240, and 220 seconds of CPU time, respectively.

FIgure 4.2 downwind concentration distribution at the effective emission height -
TWO DIMENSIONAL MODEL WITH INVERSION LAYER

FIgure 4.3 downwind concentration distribution at ground level - three dimensional models - stability class a

FIgURE 4.4 DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL - THREE DIMENSIONAL models - stability class d

FIGURE 4.5 DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL - THREE DIMENSIONAL MODELS - STABILITY CLASS F

The wind speed at 10 meters, u_{1} in equation (3.2), was equated to the wind speed for the constant velocity case. This means that the velocity below 10 m is lower than the constant wind speed, and that above this elevation is higher than u_{1}. The results, as expected, show a maximum ground level concentration lower than for the constant u and K_{z} model, and therefore at a larger distance downwind from the source,

The results also show the influence of the power-1aw exponent and the description of the variable vertical turbulent diffusivity in the ground level concentration distribution. A small value for m means that the deviation of the variable mean wind velocity with respect to the constant profile is negligible as shown by cases (a) and (b) in Figure 4.3. As m increases, the deviation from case (a) increases such that for the extreme case (very stable atmosphere, Figure 4.5) where $m=.83$ (Table 3.13) the concentration distribution is significantly different.

The description for the variable vertical turbulent diffusivity involves a smaller K_{z}, from the ground up to the knee height, when compared to the corresponding constant value. As the instability of the atmosphere increases, this constant K_{z} increases and the difference between cases (b) and (c) in Figures 4.3 and 4.4 is magnified. An extreme case is again a stability class F (Figure 4.5), where no difference exists between variable and constant turbulent diffusivity, and therefore cases (b) and (c) lie in the same curve,

The Gaussian plume equation is the most widely used model in air pollution since the concentration can be obtained in a very simple way. Figure 4.6, extracted from Turner [18], shows the ease with which the ground
-85-

level concentration can be obtained for any emission rate Q, wind speed U, effective emission height H, and stability class. Unfortunately, this model should be used only for homogeneous and stationary conditions, with all the restrictions discussed in Chapter III.

A graphical method, similar to the one discussed above, is developed in the present work for estimation of ground level concentration for the several Pasquil1-Gifford stability classes. The present computed results were obtained for a wind velocity profile which obeys equations (3.3) and (3.4), a vertical turbulent diffusivity represented by Figure 3.15, and K_{y} given by Table 3.12 .

The main difference of the present model and the Gaussian plume equation is that the position of the maximum ground level concentration depends on the wind speed, as it should. Therefore, the variable plotted in the abscissa is the time of flight $\frac{x}{u_{1}}$ and not x.

The results, for stability class D, are shown in Figure 4.7.
The next more complex three-dimensional model which is solved in the present work incorporates a two-dimensional wind velocity profile. In order to validate the present results, a constant wind direction case was solved first, such that an analytical solution could be available.

A continuous point source emitting $1 \mathrm{~kg} / \mathrm{s}$ of material at an effective emission height of 100 m into a neutral atmosphere (constant diffusivities) with a constant axial velocity of $6 \mathrm{~m} / \mathrm{s}$ and a lateral wind speed of $3 \mathrm{~m} / \mathrm{s}$ in the negative y-direction was simulated using the present technique. The results are compared to the analytical solution with a constant wind speed of the resultant velocity, i.e., $6.71 \mathrm{~m} / \mathrm{s}$. The concentration

FIgure $4.7 \frac{C u_{1}}{Q}$ WITH TRAVEL TIME FOR VARIOUS HEIGHTS OF EMISSION - PRESENT WORK
distribution at ground level and at the effective emission height are presented in Figure 4.8. The agreement is excellent. It should be pointed out that again the concentration at $\mathrm{z}=100 \mathrm{~m}$ is obtained through twodimensional Lagrangian interpolation, and therefore shows the overall error involved in the computed results. The computer time was 800 seconds. With the present work validated for the case of a two-dimensional wind velocity profile, the next step was to solve the problem with the Coriolis effect. The wind velocity was represented by equations (3.16) through (3.21) and the vertical diffusivity profile by Figure 3.15. The constant horizontal diffusivity was given by Table 3.12. The geostrophic velocity was taken to be the same as u_{G} given by the power-law equation, with u_{1} for a stability class D assumed to be equal to $6 \mathrm{~m} / \mathrm{s}$. A value of $u_{G}=11.45 \mathrm{~m} / \mathrm{s}$ was calculated for these conditions.

Isopleths of $3 \mathrm{mg} / \mathrm{m}^{3}$ for the present model and the constant wind speed and turbulent diffusivity are shown in Figure 4.9. Both cases are quite different, as expected. The centerline for case (a) occurs at $y=0$ while for case (b) is skewed to the left. Furthermore, the areas are different but the mass flux is the same, i.e., $1 \mathrm{~kg} / \mathrm{s}$. The reason being that in general, the concentrations for the constant case are higher than for the Coriolis model, e.g., the maximum concentrations found were . $5.36 \mathrm{mg} / \mathrm{m}^{3}$ and $5.00 \mathrm{mg} / \mathrm{m}^{3}$, respectively. The peculiar form of the curve at the left, i.e., more voluminous is due to the effect that the isopleth has reached the ground and the material is being reflected upwards. Figure 4.10 shows the comparison of the Coriolis model to the Gaussian plume equation for the ground level concentration at both

FIGURE 4.8 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION WITH ANALYTICAL SOLUTION - TWO DIMENSIONAL WIND VELOCITY

FIGURE 4.9 ISOPLETHS AT A CONSTANT x - THREE DIMENSIONAL MODELS

centerlines. Cases (b) and (c) were obtained for a wind speed equal to the resultant of the velocity for the present model at the effective emission height, 100 m , and at an elevation of 50 meters, respectively. The three cases were obtained for neutral stability, and the results are quite different.

Since the wind speed used for case (b) is $4.3 \mathrm{~m} / \mathrm{s}$, it would be more appropriate to obtain the solution using the Gaussian plume equation for a stability class C. This concentration distribution is also shown in Figure 4.10 as case (d), and the comparison to the present model is closer, at least in the downwind position and the value of the maximum ground level concentration. For the wind speed of $2.3 \mathrm{~m} / \mathrm{s}$ no stability class was found that would give a Gaussian plume equation solution closer to the present model.

It should be noted, as has extensively been done before, that less rigorous mathematical parameters can provide a decrease in the computational time. The Coriolis model case (a) was obtained in 880 seconds of CPU time. A similar problem was simulated next, but the mathematical parameter r was changed to 0.1 . A comparison of the mass fluxes at several downwind positions is shown in Table 4.1.

Table 4.1 Mass Rates at Several
Downwind Positions - Coriolis Effect

$x(m)$	$Q_{x}(\mathrm{~kg} / \mathrm{s})$	
	$r=.01$	$r=.1$
10	1.0026	1.0031
20	1.0011	1.0108
50	1.0003	.9990
100	1.0067	.9759
200	1.0054	.9881
500	.9976	.9902
960	.9992	1.0348
2000	.9874	.9973
4000	.9846	.9768

It can be observed that the results for the case with $r=0.1(\mathrm{Q}=1 \mathrm{~kg} / \mathrm{s})$ are still adequate as compared to the simulation using $\mathbf{r}=0.01$, but the main difference lies in the computer time involved of 580 seconds.

CHAPTER V

SUMMARY OF RESULTS, CONCLUSIONS AND RECOMMENDATIONS

Turbulent diffusion from single ground level or elevated line or point sources in the atmosphere was successfully simulated using the K-theory and solved by spline orthogonal collocation. Improved mathematical techniques were used to describe the plume, which is generated at the source, by means of moving boundary conditions. This implies that the edges of the plume are known at any downwind distance from the source, and the concentration distribution is obtained only within the region of interest, i.e., in the plume. Although the solution was calculated at the orthogonal collocation points, accurate two-dimensional Lagrangian interpolation was used to obtain the concentration at other desired positions such as the effective emission height.

Several techniques for solving the resulting system of first-order ordinary differential equations with respect to the along wind direction were tested in the present work. An eigenvalue method was selected for the two-dimensional models, and the three-dimensional models were solved by a fourth-order Runge-Kutta method.

The present work was used to simulate steady state air pollution models. Mathematical parameters, inherent of the techniques developed, were determined through parametric studies. The values assigned for these mathematical parameters should remain unchanged if the present work is used for other problem specifications.

Empirical equations were used to describe the mean wind velocity
and the turbulent diffusivities. Several meteorological parameters were included in these equations so that many atmospheric conditions can be simulated by the present technique. A two-dimensional wind velocity profile, including the Coriolis effect, obtained by solving the equations of motion analytically, was incorporated in the three-dimensional air pollution model.

Excellent agreement was observed between the calculated concentration distribution and the analytical solution for cases where the latter exists. The present model had also an excellent response to variations in atmospheric conditions. This was obtained by simulating hypothetical cases. In addition to the concentration distribution, the flux across any plane normal to the along wind direction was calculated. Its comparison to the constant emission rate (steady-state models, no removal processes) was excellent. All the results were obtained with a very reasonable amount of computer time. This computational time could have been decreased by changing some mathematical parameters, but it was decided not to do so in order to obtain very accurate results. A graphical method for presenting computed results was developed to permit estimation of ground level concentration for any source emission rate, wind velocity and effective emission height for neutral stability.

Several extensions to the present technique should be investigated and are recommended next. They cover a wide spectrum of air pollution problems and do not involve significant changes to the present method.

1) Solution of pollutant dispersion from multiple sources in the atmosphere can be obtained by superposition of the effects of the individual plumes [4]. This involves only bookkeeping of the solutions in the computer. The present method required approximately 20 and 30 K of storage for the two and three-dimensional models, respectively, leaving enough room for solving this type of problem. It should be pointed out that the CPU time would be the one used in the present work multiplied by the number of sources involved. If the number of sources is very large it might be more convenient, timewise, to treat them as area sources and use finite-difference as the numerical technique.
2) There is sometimes a need for solving air pollution models involving complex terrain such as buildings, hills, etc. The idea of a vertical moving boundary, similar to the one used in the present work, but fixed to the description of the terrain could be used to solve this type of problem.
3) Finally, unsteady-state models are of some interest in air pollution modeling. Sources with emission rates as functions of time, problems involving complex removal processes and/or meteorological parameters variable with respect to time are typical examples of situations that are represented by unsteady-state models.

An unsteady-state model was tried using the present technique. It required the solution of 800 first-order ordinary differential equations at each time-step of integration. The method was abandoned because it involved an excessive amount of CPU time.

Experimental data for time-changing emissions and also meteorological conditions are usually given in time intervals of one hour or higher. This suggests then to utilize a "quasi-steady-state" assumption. A solution using the present model could be obtained and applied to some interval of time, comparable to $x_{\max } / u$. Each interval could be assumed sufficiently long to permit full development of the concentration distribution at all locations. This could be a poor approximation at low wind speeds. The extreme case studied in the present work, the very stable atmosphere, involved a time interval of approximately 2 hours for the maximum downwind distance considered significant. The general unsteadystate situation could then be obtained through a sequence of steady-state intervals. In general, both the pollutant emission and the meteorological conditions could then be varied between the consecutive time periods.

Finally, air pollution models involving complex removal processes could be treated in a similar way. The chemical kinetic terms generally require smaller time steps for stability when compared to advection time steps. This suggests then to separate the solution of the removal processes from the diffusion equation for any advection time step. The present method could be used to obtain the concentration distribution for a time step equivalent to $\Delta x / u, \Delta x$ being the integration step in the downwind direction. The chemistry would then be calculated until the chemical time equals the advection time. The process of first calculating advection and then incorporating the chemistry solution could be repeated as long as desired. This splitting technique has been used by Eskridge and Demerjian [6,7] and by Rizzi and Bailey [15].

BIBLIOGRAPHY

1. Barad, M.L., "Project Prairie Grass, A Field Program in Diffusion", Vol. I, Geophysical Research Papers No. 59, AFCRC Report TR-58-235 (i) (1958).
2. Barad, M.L., "Project Prairie Grass, A Field Program in Diffusion", Vol. II, Geophysical Research Papers No. 59, AFCRC Report TR-58-235 (ii) (1959).
3. Caillaud, J.B. and L. Padmanabhan, "An Improved Semi-Implicit RungeKutta Method for Stiff Systems", Chem, Eng. Journa1, 2, 227 (1971).
4. Calder, K.L., "Multiple-Source Plume Models of Urban Air PollutionTheir General Structure", Atmospheric Environment, 11, 403 (1977).
5. Eschenroeder, A.Q., J.R. Martinez and R.A. Nordsieck, "Evaluation of a Diffusion Model for Photochemical Smog Simulation", General Research Corporation, EPA-R4-73-012a, October (1972).
6. Eskridge, R.E. and K.L. Demerjian, "Evaluation of a Numerical Scheme for Solving a Conservation of Species Equation", Proc. 1976 Summer Computer Simulation Conf., Washington, D.C., 394 (1976).
7. Eskridge, R.E. and K.L. Demerjian, "Evaluation of Numerical Schemes for Solving a Conservation of Species Equation with Chemical Terms', Atmospheric Environment, 11, 1029 (1977).
8. Fleischer, M.T., "Solution of a Generalized Air Pollution Model by Orthogonal Collocation", M.S. Thesis, Dept. of Chemical Engineering, University of Houston (1975).
9. Gifford, F.A., Jr., "An Outline of Theories of Diffusion in the Lower Layers of the Atmosphere", in Slade, D.H., Editor, Meteorology and Atomic Energy, USAEC, Div. Tech. Inf., Oak Ridge, Tenn. (1968).
10. Haugen, D.A., "Project Prairie Grass, A Field Program in Diffusion", Vol. III, Geophysical Research Papers No. 59, AFCRC Report TR-58-235 (iii) (1959).
11. IBM Application Program, "System/360 Scientific Subroutine Package", H20-0166-5, IBM Co., 6th Ed., 333 (1970).
12. Michelsen, M.L., "Algorithms for Collocation Solution of Ordinary and Partial Differential Equations", Instituttet for Kemiteknik (1973).
13. Monin, A.S. and A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. I, the M.I.T. Press, Cambridge, Mass. (1971) (English translation).
14. Pasquill, F., Atmospheric Diffusion, 2nd Ed., John Wiley and Sons, New York (1974).
15. Rizzi, A.W. and H.E. Bailey, "Split Space-Marching Finite-Volume Method for Chemically Reacting Supersonic Flow', AIAA J., 14, 621 (1976).
16. Seinfeld, J.H., Air Pollution, McGraw-Hill Book Co., New York (1975).
17. Sutton, O.G.; Micrometeorology, McGraw-Hill Book Co., New York (1953).
18. Turner, D.B., Workbook of Atmospheric Dispersion Estimates, PHS Publ. No. 999-AP-26 (1969).
19. Villadsen, J.V. and M.L. Michelsen, Solution of Differential Equation Models by Polynomial Approximation, Inst. for Kemiteknik Numer. Inst. Danmarks Tekniske H $\overline{\mathrm{j}} \mathrm{jkole}$, Copenhagen (1976).

APPENDIX A

COMPUTER PROGRAM LISTING

Part of the computer program used for the three-dimensional Coriolis effect model is shown next. The main programs for the other models and the subroutines common to all of them can be obtained from the Chemical Engineering Department at the University of Houston. All statements are written in Fortran IV. These programs have been executed in IBM 360/44 and UNIVAC 1108 digital computers.

36：	C	Y, Z－LATERAL AND VERTICAL MIRECTICAS	NAI．J 35）
$37:$	C		NAIN 37\％
38：		INPLICIT REAL＊3（ $\mathrm{A}-\mathrm{H}, \mathrm{C}-\mathrm{Z}$ ）	NAIi，39．
39：		EXTERNAL FCT	NAII 35
41 ：		［IMENSION FAY（12），FAZ（12），FB（12），FC（12），RTY（12），RTZ（12），	NAIN 4J」
41：		$1 \triangle Y(12,12), E Y(12,12), A Z(12,12), B Z(12,12), W Y(12), W Z(12)$,	NAIN 410
42：			MAIN 42
43：		2Y（12），Z（2二），AKY（12，12），AKZ（12，12），DAKZ（12，12），ACTY（12），$\triangle C T Z(12)$,	NAIN 431，
44：		$4 Y I N T P(12), Z I N T P(12), P(1) 0), C \equiv C O(12), E H C O(12), C E C C Y(12)$,	NAIN 44，
45：		5C（12，12），CC（12，12），Ph（17n，1？n），	NAIN 45 ${ }^{\circ}$
46：		EPRMT（5），\cap Y（1「C），ALX（8，1rn），CKN（6），CUA（S），FGFC（6），	NAIN 45\％
47：			NAIN 47）
49：		Yし（12），V（12）	MAIV 4H：
49：	C		NAIN 4＇0
5ワ：	C	RFAD AND WRITE INPUT DATA	NAIN 53＇
51：	C		NAIV 51 ，
52：		HEAU（5，1こ）AY，NZ，ISTA	NAIM 52\％
53：	1しこ	F（RMAT（ 2 I5）	$M \triangle I N 53^{\circ}$
54：		REAC（5，1）1）XMAX，H，YMAX，ALPHA，AK	NAIN 54）
ここ：	17	FORM ${ }^{\text {（ }}$（5D15．4）	MAIN 5うこ
56：		REAO（5，1¢t）LST，AM，LGR，QS，SEL	MAIN 56
57：	10.5	FURM1T（5015．4）	NAIN 57＇
58：		FFEAM（5，9\％）（DKN（I），I＝ 1,6 ）	NAI＇l 59，
59：	S 8	FFRMAT（ $\mathrm{EDI} \mathrm{I} \cdot \mathrm{l}$ ）	NAIN 59%
6？：		READ（5， 39 ）（LOUM（ 1 ）， $\mathrm{I}=1,+$ ）	NAIN 6.
t1：		？EAC（5，99）（1－CEC（I）， $\mathrm{I}=1,6)$	NAIN t．l
62：	$\varsigma \varsigma$		NAIV $E^{\text { }}$
6．3：		RFAD（ 5,1114$)($ PRMT（I），$I=1,4)$	NAINE3
¢4：	14	FCQMAT（4C15．4）	NAIN 64．
65 ：		PrAD（5，1＇2）DIY，D2Y，PATIF，EETAY	NAIV 65
66：		$H=\triangle D(5,112 C) D 1 Z, D 2 Z, B r T A Z$	NAIV 5 S＇1
67：	112	2 FCRMAT（4C15．4）	NAIN67）
68：	112	FORNAT（3015．4）	NAIV $\mathrm{E}^{\text {－}}$
09：			NAINEGC
77：		READ（5，1，こ）ODIZ，CC22，FSKN，AMM	NDIi 7 ，
71：	12	FПQMAT（4п15．4）	NAIV71：

MAIN 72？

```
    1`n
```

 WKITE(6,1(5) (PRMT(I), I \(=1,4)\)
 $1:=\operatorname{FOPMAT(10(/),2CX,~PRMTS}=1,4(E 15.4,1 \cap X))$
NAIN 737
NAIN 740°
WRITE (6, 4CO) XMAX,YMAX,H,SEL,UST,UGR, AM, ANN, QS, ALPHA, AK, XC, DX,

2CKN(ISTE), CUIV(ISTR), HSKN, HGEO(ISTB)
NAIN 75_{i}
NAIN 760°

NAIA 770°
$1^{\prime} H=1, F 15.4,1 C X$, SFL $=1, F 15.4,2(/ 1,20 X$, UST =',F15.4,1JX, NAIN 7EO
2^{\prime} UCR $=1, F 15.4,1 \cap X,{ }^{\prime} A M=1, F 15.4,2(/), 2 こ X,{ }^{\prime} A N N=1, F 15.4,1 \cap X$,
NAIN 780
NAIN: or,

NAIN: $\begin{array}{r} \\ \text { NAI } \\ \hline\end{array}$

MAIN 910
$52(/), 20 X,{ }^{\prime} B F T A Y=1, E 15.4,12 X, P E T A Z=1, E 15.4$, NAIN 82 L
万2 (/), こาX,'두 =', El5.4,
NAIN 825
NAIN 237

NAIN 822
NAIN 837
$71+X, C 2 Y=1, E 15.4,1 U X, D 1 Z=1, E 15.4,17 X,[2 Z=1, E 15.4,2(/), \quad$ MAIV P4C

NAIV 857

* HG (HED $=$, F15.4, 1) NAIN R9)
NAIN 3ナ7
C
INITIALIZATICN
92:
53:
S4:
95:
9ち:
97:
9お:
77:
10):
1"1:
1して:
1じ3:
1:4:
105:
106:
1.7:
MAN 74 C
NAIN $79 n$

INITIALIZATICN

NAIN 3ナ7
IUK $Y P=$ O
ICK．Y N $=0$
IIOKY＝0
IST＝j
HSEL＝SEL＊F
DMULY $=1 . D^{\prime}$
חNULZ $=1 . \Gamma L \quad$ NAIN G？G
NAIN SC：
NAIN Sl：
NAIN 92：
NAIN 93）
NAIN G4J
MAIN 95r
NAIN 96；
$\Gamma \ln Y=C \operatorname{li}$
ח1r $Z=01 Z$
$02: Y=02 Y$
O2＇Z $=C 2 Z$
in $T Y=V Y+2$
in $Y=\because Y+1$
NAIN S？C
NAIN 99）
NAIN1C：
NAIN1010
NAINIn27
NAIN1，2）
MAINIn 42
HTYH＝VTY／Z
NTYHI＝NTYF＋ 1
MAINIC5
NaInlebl
1．7：
NTYH－NTY＋＋
NAIN1C7u

108：		NLZ $=$ NZ +1
169：		$N \cap I M=N Y * N Z$
11．：	r．	
111：	C	CALCULATICN UF URTHOGUNAL POINTS，QLADRATLRE WEIGFTS，
112：	C	AND NATRICES \triangle AND B
113：	C	
114：		CALL JCOBI（12，＇JY，1，1，r．Ono C．CDC，FAY，FB，FC，RTY）
115：		CALL CFCPR（12，NY，1，1，I，3，FAY，FR，FC，RTY，WY）
116：		OT $457 \mathrm{I}=1, \mathrm{NTY}$
117：		CALL DFOPR（12，NY，1，1，I，1，FAY，FR，FC，RTY，VEC）
118：		［O $2 \mathrm{~K}=1, \mathrm{NTY}$
119：	2	$\triangle Y(I, K)=V E C(K)$
129：		CALL DFOPR（12，NY，1，1，I，2，FAY，FH，FC，RTY，VEC）
121：		C．O $3 \mathrm{~K}=1$ ， NTY
12？：	2	$B Y(I, K)=V E C(K)$
123：	457	coitinue
124：		CALL JCOBI（12，NZ，I，I，C． $\mathrm{CDC,C.CDC,FAZ,FB,FC,RTZ)}$
125：		CALL［FCPA（12， $\mathrm{N} 2,1,1, \mathrm{I}, 3, F A Z, F P, F C, R T Z, W Z)$
12t：		DL $45 \mathrm{~F} \quad \mathrm{I}=1, \mathrm{NT}$
127：		CALL UFOPR（12，NZ，1，1，I，1，FAL，FB，FC，RTZ，VEC）
128：		［D $222 \mathrm{~K}=1$ ，NTZ
129：	227	$\Delta Z(I, K)=V E C(K)$
1311		C $\triangle L L$ DFOPR（12，IZ，1，1，I，2，FAZ，FR，FC，RTZ，VFC）
131：		LL 333 K＝1，NTZ
132：	333	Q Z（I，K）＝VEC（K）
123：	458	Contimue
134：		VS $=$ NY＊NZ
135：		$X=X$ ！
136：	C	
137：	C	INITIAL CCNDITIUN DETERMINATICN
138：	C	
139：		
14＂：		1SこL， $2, U S, C K N, D L N, H S K N, H G E C, \triangle N N)$
141：		PV＝－UST＊DEXP（－SFL＊
142：		CกX＝CS／8．L゙／US／YMAX／H／RETAY／BETAZ
143：		いก $26 \mathrm{~J}=1 . \mathrm{NZ}$

NAIN1．3）
MAIVIOgr
NaINllこ？
NAIN111J
MAIN1122
MAIN112～
NAINII40
NAIN115
MAINIIEO
NAIN117
NAIN118？
MAIV11GO
NAIH120n
NAIN121．
MAIN12？
NAIM1220
NAIN124．
NAIN125r
MAIN12t
NAIN127？
NAIN12告
MAIN1253
－AIN137］
NAIN131J
MAIN1320
MAIN： 230
NAIN1342
NAIN135？
NAIN1360
MAIij137？
NAIN133า
MAIN135？
MAIN14CD
NAIN1419
NAIN1422
NAIN14？

```
144:
145:
146:
147:
149:
149:
15n:
151:
152:
153:
154:
155:
156:
157:
15R:
157:
16.1:
161:
162:
163:
164:
165:
106:
167:
165:
169: C
170: C
171:
17?:
173:
174:
175:
17%:
177:
179:
179:
```

```
    O\cap 26 I=1,NY
```

 O\cap 26 I=1,NY
 JJ=I +(J-1)*NY
 JJ=I +(J-1)*NY
 PP=1,CDO
 PP=1,CDO
 IF((DlY+D2Y+2.E^**RETAY)*RTY(I+1)-DIY) 29, <2,27
 IF((DlY+D2Y+2.E^**RETAY)*RTY(I+1)-DIY) 29, <2,27
 2S P(JJ)=0. IC?
 2S P(JJ)=0. IC?
 CU T! 26
 CU T! 26
 \thereforeOFP=,.FD()
 \thereforeOFP=,.FD()
 GO T\cap 2G9
 GO T\cap 2G9
 `7 IF((\capIY+חこY+2.DU*&ETAY)*RTY(I+1)-D1Y-2.[r*RETAY) 299,278,297
 `7 IF((\capIY+חこY+2.DU*&ETAY)*RTY(I+1)-D1Y-2.[r*RETAY) 299,278,297
 297 P(JJ)=0.7[0
 297 P(JJ)=0.7[0
 GC TC 26
 GC TC 26
 299 PF=C.5DC
 299 PF=C.5DC
 C| TC 29?
 C| TC 29?
 279 IF((D1Z+D2Z+2.DG*RETAZ)*RTZ(J+1)-[1Z) 35,38,37
 279 IF((D1Z+D2Z+2.DG*RETAZ)*RTZ(J+1)-[1Z) 35,38,37
 3G P(JJ)=3.i゙CC
 3G P(JJ)=3.i゙CC
 CU TO 26
 CU TO 26
 3.8P(JJ)=0.5[0*CBX
 3.8P(JJ)=0.5[0*CBX
 GO TO 2t
 GO TO 2t
 37 IF((D1Z+DZZ+2.D(*HETAZ)*RTZ(J+1)-D1Z-2.[^*EETAZ) 35,35,34
 37 IF((D1Z+DZZ+2.D(*HETAZ)*RTZ(J+1)-D1Z-2.[^*EETAZ) 35,35,34
 34 P(JJ)=3.|[!
 34 P(JJ)=3.|[!
 j\cap TC 26
 j\cap TC 26
 25 P(JJ)= %.5CC*CBX
 25 P(JJ)= %.5CC*CBX
 GG TC 26
 GG TC 26
 36 P(JJ)=CBX*FP
 36 P(JJ)=CBX*FP
 2t CONTINUE
 2t CONTINUE
 CALCULATICN CF EXPRESSICNS USEC IN MOCEL ICEPENDENT
 CALCULATICN CF EXPRESSICNS USEC IN MOCEL ICEPENDENT
 OF THE NUNBER CF CCLLCCATICN PCINTS CNLY)
 OF THE NUNBER CF CCLLCCATICN PCINTS CNLY)
 [ENY=\DeltaY(1NTY,1)*AY(1,NTY)-AY(1,1)*AY(NTY,NTY)
 [ENY=\DeltaY(1NTY,1)*AY(1,NTY)-AY(1,1)*AY(NTY,NTY)
 n! 4: I = 2, NlY
 n! 4: I = 2, NlY
 AZY(I)=AY(1,1)*AY(NTY,I)-AY(NTY,l)*AY(1,I)
 AZY(I)=AY(1,1)*AY(NTY,I)-AY(NTY,l)*AY(1,I)
 \DeltaIY(I)=\DeltaY(1,I)+\DeltaY(1,NTY)*A2Y(I)/DENY
 \DeltaIY(I)=\DeltaY(1,I)+\DeltaY(1,NTY)*A2Y(I)/DENY
 41 CNMTINUS
 41 CNMTINUS
 DrNZ=AZ(NTZ,1)*AZ(1,NTZ)-AZ(1,1)*AZ(NTZ,NTZ)
 DrNZ=AZ(NTZ,1)*AZ(1,NTZ)-AZ(1,1)*AZ(NTZ,NTZ)
 [\cap^441 I= 二,N1Z
    ```
        [\cap^441 I= 二,N1Z
```

 MAIN144:
 NAIN145
 NAIN146.J
MAIN147
NAIN1430
NAN14 3
NAIN15C7
MAINI510
NAIN1b2?
NAIN153)
NAIN1542
MAIN1550
NAIN155?
NAINL57?
MAINis\&
NAINI5ヨう
MAINIGU2
MAIN $1 \in 10$
MAIN:E40
NAIII 1650
NAIN166
MAIN1E7E
MAINIEE
NaINle?
NAINITC?
MAIV171官

- AIN172.
NAIN173.)
MAIN1743
MAIN175r
NAIN176)
MAIN177?
MA1は178?
NAIN179)

```
18,9:
181:
122:
i93:
184:
185:
186:
187:
188:
189:
194:
71:
192:
193:
194:
95:
196:
197:
58:
159:
20%:
201:
202:
C
C
204: C
<^5:
2「5:
207:
<23:
<C9:
21!:
211:
212:
<13:
214:
215:
```

```
    AZZ(I)=AZ(1,I)*AZ(NTL,I)-AZ(NTZ,I)*AZ(l,I)
    AIZ(I)=AZ(1,I)+\DeltaZ(1,NTZ)*AZZ(I)/DENZ
    AIZ(I)=AZ(1,I)+\DeltaZ(1,NTZ)*AZZ(I)/DENZ
    44? CONTINUE
    44? CONTINUE
C
C
C LGOP FUR CHANGING THE BCUINDARY POSITIUNS
C LGOP FUR CHANGING THE BCUINDARY POSITIUNS
    ar CoIr!TINLE
    ar CoIr!TINLE
        VAR1Y=OABS(D1Y+BFTAY-.5DC)
        VAR1Y=OABS(D1Y+BFTAY-.5DC)
        VAF2Y=CAHS(C2Y-1.)DO+.50n+BETAY)
        VAF2Y=CAHS(C2Y-1.)DO+.50n+BETAY)
        VARIZ=C\DeltaBS(CIZ+BETAZ-SEL)
        VARIZ=C\DeltaBS(CIZ+BETAZ-SEL)
        VAF 2Z=DA.BS(D2Z-1. UDC+SEL+BFTAZ)
        VAF 2Z=DA.BS(D2Z-1. UDC+SEL+BFTAZ)
        WRITE(6,5Ct) C1Y,L2Y, [1Z,C2Z
        WRITE(6,5Ct) C1Y,L2Y, [1Z,C2Z
    & f FCPMAT(5(/),10X,'D1Y = , F10.7,5X,'C2Y =',F17.7,10X,
    & f FCPMAT(5(/),10X,'D1Y = , F10.7,5X,'C2Y =',F17.7,10X,
        1'[12 =',F1C.7,5X,'02Z =',F10.7,1(/))
        1'[12 =',F1C.7,5X,'02Z =',F10.7,1(/))
            CO & I=1,NTY
            CO & I=1,NTY
            Y(I)=(DIY+C2Y+2.D|*RET\DeltaY)*RTY(I)+.5C --BETAY-DIY
            Y(I)=(DIY+C2Y+2.D|*RET\DeltaY)*RTY(I)+.5C --BETAY-DIY
        \rho }ACTY(I)=(Z.DO*Y(I)-1.[C)*YNAX
        \rho }ACTY(I)=(Z.DO*Y(I)-1.[C)*YNAX
            CU &&^ I=1, vTZ
            CU &&^ I=1, vTZ
            Z(I)=(C1Z+[2Z+2.D)*&ETAZ)*RTZ(I)+S5L-B\subseteqTAZ-CIZ
            Z(I)=(C1Z+[2Z+2.D)*&ETAZ)*RTZ(I)+S5L-B\subseteqTAZ-CIZ
    &&F ACTZ(I)=Z(I)*H
    &&F ACTZ(I)=Z(I)*H
        RSEL=(SETAZ+D1Z)/(D1Z+D2Z+2.DQ*BETAZ)
        RSEL=(SETAZ+D1Z)/(D1Z+D2Z+2.DQ*BETAZ)
        PYr=(RETAY+ClY)/(U1Y+C2Y+2.D`*RETAY)
        PYr=(RETAY+ClY)/(U1Y+C2Y+2.D`*RETAY)
        ARYこ=(2.DG*S.5C`-1.DO)*YNAX
        ARYこ=(2.DG*S.5C`-1.DO)*YNAX
C
C
C
C
C
    CALCULATICN OF THE CIFFERENTIAL EOLATIONS CCEFFICIENTS
    CALCULATICN OF THE CIFFERENTIAL EOLATIONS CCEFFICIENTS
            CALL VELDIF(Z,H,UGR,L§T,AN,L,V,ISTB,ALPFA,NTZ,AKYE,AKZE,[AKZE,
            CALL VELDIF(Z,H,UGR,L§T,AN,L,V,ISTB,ALPFA,NTZ,AKYE,AKZE,[AKZE,
        1SrL,1,US,[KV,DUN,HSKN,HGEC,AMM)
        1SrL,1,US,[KV,DUN,HSKN,HGEC,AMM)
            CC 25)') L=2,N1Z
            CC 25)') L=2,N1Z
            RI(L)=L(L)/XNAX
            RI(L)=L(L)/XNAX
            २2(L)=V(L)/2.D)U/YMAX/(DIY+D2Y+2.D(*BETAY)
            २2(L)=V(L)/2.D)U/YMAX/(DIY+D2Y+2.D(*BETAY)
            2?(L)=CAKZE(L)/H/(ClZ+C2Z+2.0う*RETAZ)
            2?(L)=CAKZE(L)/H/(ClZ+C2Z+2.0う*RETAZ)
            2F(L)=AKYF(L)/4.D./YNAX/YNAX/([1Y +C2Y+2.CC*PETAY)**2
            2F(L)=AKYF(L)/4.D./YNAX/YNAX/([1Y +C2Y+2.CC*PETAY)**2
            R.f(L)=AKZH(L)/H/H/(DIZ+DZZ+2.DO*RFTAZ)/(CIZ+CZZ+2.[C*EETAZ)
            R.f(L)=AKZH(L)/H/H/(DIZ+DZZ+2.DO*RFTAZ)/(CIZ+CZZ+2.[C*EETAZ)
<.וֹN CONTINUE
<.וֹN CONTINUE
            1)O If K=2,N1Y
```

 1)O If K=2,N1Y
    ```
NAIN180?
- INL81
MAINIE2O
AIN1 121
NANIP4
AIN185C
MAINIREC
NAIN1870
NAIN18\%.J
MAIN18G6
NAINl9C?
NAIN191
NAIN1520
MAIN1930
NAIN194)
NAIN155:
MAINIG6?
NAIN1970
```

216:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
2116:
216:
2116:
216:
2116:
216:
216:
216:

```
```

 CO 15 I =2,N1Y
    ```
            CO 15 I =2,N1Y
            AKY(K,I)=(-BY(K,1)*AIY(I)/AY(I,I)+RY(K,I)
            AKY(K,I)=(-BY(K,1)*AIY(I)/AY(I,I)+RY(K,I)
            LLY(K,iNTY)*AZY(I)/DFNY)
            LLY(K,iNTY)*AZY(I)/DFNY)
            AVY(K,I)=(-AY(K,1)*A1Y(I)/AY(1,l)+AY(K,I)+
            AVY(K,I)=(-AY(K,1)*A1Y(I)/AY(1,l)+AY(K,I)+
            IAY(K,NTY)*A2Y(I)/DENY)
            IAY(K,NTY)*A2Y(I)/DENY)
        15 CONTINUE
        15 CONTINUE
            Cl155 L= <,N1Z
            Cl155 L= <,N1Z
            1)C 15? I=2,N1Z
            1)C 15? I=2,N1Z
            AKZ(L,I)=(-BZ(L,I)*A1Z(I)/AZ(1,1)+EZ(L,I)+
            AKZ(L,I)=(-BZ(L,I)*A1Z(I)/AZ(1,1)+EZ(L,I)+
            1CZ(L,VTZZ)*A2Z(I)/DFNZ)
            1CZ(L,VTZZ)*A2Z(I)/DFNZ)
            C\DeltaKZ(L,I)=(-AZ(L,1)*\DeltalZ(I)/\Deltal(I,l)+\DeltaZ(L,I)+
            C\DeltaKZ(L,I)=(-AZ(L,1)*\DeltalZ(I)/\Deltal(I,l)+\DeltaZ(L,I)+
            1A7(L,NTZ)*AZZ(I)/DENZ)
            1A7(L,NTZ)*AZZ(I)/DENZ)
    1上5 CUNTINUF
    1上5 CUNTINUF
            [U 1% J=1,NS
            [U 1% J=1,NS
            DC 1, I=1,NS
            DC 1, I=1,NS
    ir PW(J,I)=C.CDC
    ir PW(J,I)=C.CDC
            Cr, 113 K=1,NZ
            Cr, 113 K=1,NZ
            [C.113 IJ=1,NY
            [C.113 IJ=1,NY
            JJ=IJ+(K-I)*NY
            JJ=IJ+(K-I)*NY
            CO 112 J=1,NZ
            CO 112 J=1,NZ
            I=IJ+(J-1)*NY
            I=IJ+(J-1)*NY
    112 PW(JJ,I)=Ph(JJ,I)+AKZ(K+1,J+1)*R6(K+1)/RI(K+1)+
    112 PW(JJ,I)=Ph(JJ,I)+AKZ(K+1,J+1)*R6(K+1)/RI(K+1)+
        1[AKZ(K+1,J+1)*R3(K+1)/R1(K+1)
        1[AKZ(K+1,J+1)*R3(K+1)/R1(K+1)
            [U 14 J=1,NY
            [U 14 J=1,NY
            I=J+(K-1)*NY
            I=J+(K-1)*NY
        I4 PW(JJ,I)=Ph(JJ,I) +AKY(IJ+I,J+1)*R5(K+1)/RI(K+I)-
        I4 PW(JJ,I)=Ph(JJ,I) +AKY(IJ+I,J+1)*R5(K+1)/RI(K+I)-
            1\DeltaVY(IJ+1,J+1) & R2(K+1)/R1(k+1)
            1\DeltaVY(IJ+1,J+1) & R2(K+1)/R1(k+1)
    1:3 cImTINUE
    1:3 cImTINUE
C
C
C INTEGRATICN USING DRKGS
C INTEGRATICN USING DRKGS
C
C
    l CONITINUS
    l CONITINUS
    SUM=1.DC
    SUM=1.DC
    KK=NCIM-1
    KK=NCIM-1
    0\cap 31 I=1,KK
    0\cap 31 I=1,KK
    CY(I)=1.DIC/DFLCAT(NDIN)
```

 CY(I)=1.DIC/DFLCAT(NDIN)
    ```
NAIN216)
MAIN2170
MAIN2195
NAIN2193
NAIN22Cこ
NAIN221?
NAIN22:?
NA1N223r
MAI J2240
NAIN225?
NAIN226C
MAINスごう
NAIN2287
NAIN229
NAIN23C?
MAIN2311
MAIN2327
NAIN232 \({ }^{\circ}\)
MAI'vこき40
NAIN 23517
NAIN236
NAIN227
NAIN2383
NAIN2390
MAIN24CO
MAIH2410
NAIN242
MAIN7430
NAIN \(244^{\circ}\)
NAIN2457
NAIN246:
MAIN二470
NAIN248)
NAIN249?
MAIV25C
NAIN2512
```

252:
253:
254:
255:
256:
257:
258:
259:
200:
261:
2\epsilon2:
263:
264:
265:
260:
267:
268:
<69:
270:
271:
672:
273:
274:
275:
276:
<77:
<78:
279:
280:
<41:
2\&2:
283:
<84:
2\&5:
286:
287:

```
```

 3i SLN=SLM+CY(I)
    ```
    3i SLN=SLM+CY(I)
    Y(NDIM)=1.DO-SLM
    Y(NDIM)=1.DO-SLM
    x-=PRMT(1)
    x-=PRMT(1)
    C, X',}=0
    C, X',}=0
    PFMT(2)=PRMT(1)+DX
    PFMT(2)=PRMT(1)+DX
    PRMT ( 2) = CX
    PRMT ( 2) = CX
    CALL CRKGS(FRNT,P,DY,NCIM,IHLF,FCT,AUX,PW)
    CALL CRKGS(FRNT,P,DY,NCIM,IHLF,FCT,AUX,PW)
    X=PRMT(1)
    X=PRMT(1)
    ,5 IF(X.GT.1.CCDR) STOP
    ,5 IF(X.GT.1.CCDR) STOP
    IF(X.GE..G9C-07) CX=3.)C-C7
    IF(X.GE..G9C-07) CX=3.)C-C7
    F(X.GE.,SG[D-0G) \capX=3.\capD-U6
    F(X.GE.,SG[D-0G) \capX=3.\capD-U6
    IF(X.GE..CSD-C5) OX=1.CD-C5
    IF(X.GE..CSD-C5) OX=1.CD-C5
    IF(X.CE..99[-04) CX=?.5D-04
    IF(X.CE..99[-04) CX=?.5D-04
    IF(X.GE..SSC-O3) CX=`.25C-C13
    IF(X.GE..SSC-O3) CX=`.25C-C13
    IF(X.GE..SSD-C2) nX=C.25D-(2
    IF(X.GE..SSD-C2) nX=C.25D-(2
    IF(X.CE..G9[-C1) LX= ..1CD-C1
    IF(X.CE..G9[-C1) LX= ..1CD-C1
    F(X.GE..499) CX=,!.25C-n1
    F(X.GE..499) CX=,!.25C-n1
    IF(X.GT.G.1D-C1) I ICKY=1
    IF(X.GT.G.1D-C1) I ICKY=1
C
C
C
    TRANSFORNATICN UF THE DRKCS RESULTS INTO A CIY,ZI FORN
    TRANSFORNATICN UF THE DRKCS RESULTS INTO A CIY,ZI FORN
    J=1
    J=1
    Ll=1
    Ll=1
    L2=NY
    L2=NY
    &1 \capO 7こ L=L1,L2
    &1 \capO 7こ L=L1,L2
    K=L-(J-1)*NY
    K=L-(J-1)*NY
    Kk=K+1
    Kk=K+1
    JJ=J+1
    JJ=J+1
    C(KK,JJ)=P(L)
    C(KK,JJ)=P(L)
    79 CCiNTINUE
    79 CCiNTINUE
    J=J+1
    J=J+1
    IF(J.GT.NZ) GC TO 42
    IF(J.GT.NZ) GC TO 42
    Ll=Lこ+1
    Ll=Lこ+1
    L2=L2+NY
    L2=L2+NY
    GT TC E1
    GT TC E1
    ぞ? CLNTINUE
```

 ぞ? CLNTINUE
    ```

MA1N252l
NAIN253＇
NAIN二54？
MAIN2550
NAIN256）
NAIN二57
＊AIN25\％！
NAIN25GC
NAIN26への
NAIN261r
MAIN2も20
NAIN2630
NAIN264
MAIN2E50
NAIN266？
NAIN2677
NAIN268：
NAIIN2EGS
NAIN27Jn
NAIN271：
MAIN2720
NAIN273？
NAINこ74）
MAIN2750
NAIN2760
NAIN277
MAIN2780
MAIN2750
NalNく8の
NAIN281C
MAINて8？
MAIN283
NAIN2840
MAIN285C
vaIN？8ヒC
NAIN287：
```

```
<88:
```

```
<88:
C
C
289: C CALCULATICN OF THE BILNDAKY CUINCENTRATICNS
289: C CALCULATICN OF THE BILNDAKY CUINCENTRATICNS
291: C
291: C
291:
291:
292:
292:
\angle93:
\angle93:
<94:
<94:
295:
295:
296:
296:
<57:
<57:
<93:
<93:
299:
299:
3)า:
3)า:
301:
301:
3\cup2:
3\cup2:
3`3:
3`3:
3こ4:
3こ4:
3コ5:
3コ5:
3n6:
3n6:
3C7:
3C7:
308:
308:
399:
399:
310:
310:
311: C
311: C
12: C
12: C
313:
313:
314:
314:
315:
315:
316:
316:
317:
317:
318:C
318:C
317: C
317: C
32": C
32": C
321:
321:
322
322
323:
```

323:

```
```

O| と I I=I,NTZ

```
O| と I I=I,NTZ
C(1,I)=0.CDE
C(1,I)=0.CDE
    82 C(NTY,I)=C.nO:
    82 C(NTY,I)=C.nO:
        UO 833 J=1,NTY
        UO 833 J=1,NTY
        C(J,l)=C.CDU
        C(J,l)=C.CDU
    433C(J,NTZ)=0.0Cr
    433C(J,NTZ)=0.0Cr
    CU &4 L=2,N1Z
    CU &4 L=2,N1Z
    LO &4 I =2,N1Y
    LO &4 I =2,N1Y
    C(1,L)=C(1,L)-AlY(I)*C(I,L)/AY(1,1)
    C(1,L)=C(1,L)-AlY(I)*C(I,L)/AY(1,1)
    #4C(N!TY,L)=C(NTY,L)+A2Y(I)*C(I,L)/CENY
    #4C(N!TY,L)=C(NTY,L)+A2Y(I)*C(I,L)/CENY
        DC 844 K=2,N1Y
        DC 844 K=2,N1Y
        CU844 I= Z,N1Z
        CU844 I= Z,N1Z
        C(K,I)=C(K,1)-A1Z(I)*C(K,I)/AZ(1,1)
        C(K,I)=C(K,1)-A1Z(I)*C(K,I)/AZ(1,1)
    844C(K,NTZ)=C(K,NTZ)+AZZ(I)*C(K,I)/CENZ
    844C(K,NTZ)=C(K,NTZ)+AZZ(I)*C(K,I)/CENZ
    CO 85 I =2,NIY
    CO 85 I =2,NIY
    C(1,1)=C(1,1)-\DeltaIY(I)*C(I,1)/AY(1,1)
    C(1,1)=C(1,1)-\DeltaIY(I)*C(I,1)/AY(1,1)
    C(NTY,1) =C(NTY,I) + A2Y(I)*C(I,1)/CENY
    C(NTY,1) =C(NTY,I) + A2Y(I)*C(I,1)/CENY
    C(I,NTZ)=C(I,NTZ)-AIY(I)*C(I,NTZ)/\DeltaY(1,1)
    C(I,NTZ)=C(I,NTZ)-AIY(I)*C(I,NTZ)/\DeltaY(1,1)
    &FC(NTY,NTZ)=C(NTY,INTZ)+A2Y(I)*C(I,NTZ)/DENY
    &FC(NTY,NTZ)=C(NTY,INTZ)+A2Y(I)*C(I,NTZ)/DENY
C
C
C
C
C
C
    CALCULATICN OF THE EFFFCTIVE [NISSICN HEICHT CCNCENTFATICN
    CALCULATICN OF THE EFFFCTIVE [NISSICN HEICHT CCNCENTFATICN
    CALL INTRF(12,NTZ,RSFL,RTZ,FAZ,ZINTP)
    CALL INTRF(12,NTZ,RSFL,RTZ,FAZ,ZINTP)
    กO &EE J=1,NTY
    กO &EE J=1,NTY
    EHCO(J)=0.DO
    EHCO(J)=0.DO
    [O 855 I=1,NTZ
    [O 855 I=1,NTZ
    F55 LHCח(J)=EHCC(J)+ZINTP(I)*C(J,I)
    F55 LHCח(J)=EHCC(J)+ZINTP(I)*C(J,I)
C
C
C
C
    CALCULATICN OF THE CONCENTPATIONS AT Y=?
    CALCULATICN OF THE CONCENTPATIONS AT Y=?
    CALL INTRP(I2,NTY,RYC,RTY,FAY,YINTP)
    CALL INTRP(I2,NTY,RYC,RTY,FAY,YINTP)
    CO 8FG J=1,NTZ
    CO 8FG J=1,NTZ
    CFCC(J)=\.C!
```

 CFCC(J)=\.C!
    ```

MAIN2880
NAIN2890
MAIN2SC
MAIN291L
NAIN292
NAIN2930
MAIN 2940
NAIN2950
NAIN2960
MAIN2970
MAIN2980
NAIN299？
MAIN3C \({ }^{\circ}\)
vaIN3n1：
NA1N3～2．
NAIN3r30
\(M \triangle I N \geq \cap 40\)
NAIN3C5n
NAINBCEC
MAIN3n70
NAIN3！8！
NAIN3－90
MAINZ1Cr
NAIN311う
NAIN312
MAIN313C
NAIN 3140
NAIN315］
NAIN316？
MAIN3170
NAIN318：
NAIN3197
MAIN3200
－AIN321
NAIN3227
MAIN 2230
```

325:
326:
327:
328:
327:
33%:
331:
322:
333:
334:
335:
336:
337:
338:
329:
340:
341:
342:
343:
344:
345:
346:
347:
349:
349:
350:
351:
352:
353:
354:
355:
356:
357:

NAIN224]
MAIN 325 5
NAIN326:
NAIN327)
MAIV 228 ?
NAIN229
NAIN330
NAIN231
MAIN $322 C$
NAIN333]
NAIN3347
MAIN2350
NAIN3350
NAIN3379
MAIN32عこ
NAIN 3 3SO
NAIN3410?
NAIN341O.
NAIN 3420
NAIN343?
NAIN3447
MAI'V345
NAI133460
NAIN347
MAIN3480
MAIN34SC
NAIN 350 ?
MAIN351ر
MAIN3520
NAIN?530
NAIN354)
MAIV 355%
MAIN356)
NAIN3571
MAIN35ER.
MAIV259C

```
3c): C?Z=CFCCY(1)
361: C1Z=CECכY(NTZ)
302: EPS=CCOZ*RDTIO
363:
C
C
C
C
C
C
C
        IF(IOKYP.EG.?.AND.IOKYN.FG.2) GC TC 12
        IOKY=0
        IOKZ=?
        IF((C`Y).LT.EPS.ANC.(CIY).LT.EPS) IOKY=1
        IF(VARIY.LT.1.CD-C&.AND.VAR2Y.LT.1.ODOחR) ICKY=1
        IF(VARIY.LT.1.CD-C8.AND.(CIY).LT.EPS) IOKY=1
        IF(VAR2Y.LT.1.OD-j8.ANC.(CIY).LT.EPS) IOKY=1
        IF(IOKY.EG.1) GC 1C 13
        IF(DIY.LT.r.SDO-BETAY-1.(D-C,A.AND.(CCY).GT.EPS)DIY=DIY+
        1[C1Y*CMULY
        IF(VAR2Y.GT.1.nD-JR.AND.(CIY).GT.EPS) C2Y= [.2Y+CL2Y*CNULY
        IOK.Y=C
        IF(ICKYP.EQ.I) IOKYP=2
        IF(ICKYP.EG.N) IOK.YP=1
    12 CONTINUE
        IF(IIOKY.EG.O) GO TO 1333
        IF(C'Y.GT.J.DC.AND.CIY.GT.O.DO) GO TO 1333
        IF((C(Y).LT. R.CDO)D1Y=D1Y-CD1Y*CNULY/2.5CO
        IF((C1Y).LT.).CDר) D2Y=D2Y-DD2Y#DMLLY/2.5[C
        ICKY=)
        IF(ICKYA.EG.1) ICKYM=2
        IF(IOKYM.EQ.C) IOKYM=1
13?2 CCNTINUE
    IF((CNZ).LT.EPS.AND.(CIZ).LT.EPS) ICKZ=1
    IF(VARIZ.LT.I.CD-&タ.AND.VAR2Z.LT.!.OD-N8) ICKZ=1
    IF(VARIZ.LT.I.CD-१R.AND.(CLZ).LT.EPS) IOKZ=1
```

MAIV36CL
NAIV3610
NAIN3620
MAIN3E35
NAIN3640
NAIN365?
NAIN366!
NAIV3670
NAIN3680
NAIN3650
MAIN37CO
NAIN3710
NAIN372.
MAIN3732
NAIN3743
NAIN3757
MAIN 3761
NAIV377
NAIN37R
NAIN37SC
MAIN3ECO
NAIN3910
NAIN3820
MAIN3E30
NAIN384)
NAIN3850
MAIN3EG
MAIN3E70
NAIN3880
NAIN3ESC
MAIN39CO
NAIN3910
NAIN392!
MAIN3932
MAIN3940
NAIN395'

```
            IF(VAR2Z.LT.1.CD-L8.AND.(CCZ).LT.EPS) ICKZ=1
            IF(ICKY.EG.1.AND.IOKZ.EQ.1) GO TO 12
            IF(DIZ.LT.SEL-BETAZ-1.(C-U8.ANC.(CUZ).GT.EPS)DIZ=C1Z+
            1CD12*DMULZ
        IF(VAR2Z.GT.1.こD-ル&.ANU.(CIZ).GT.EPS) D2Z=C2Z+DD2Z*DNLLZ
            ICKZ=1
    133 CCNTINUE
            IF(IOKY.EQ.I.AND.IOKZ.EQ.1) GO TC 12
            IF(X.GE..G9[-ク3) CMULY=2.C?
            IF(X.GE..SSD-92) [MULY=6.C.j
            IF(X.GE..CSD-C1) DMULY=1C.DO
            IF(X.CE..SSC-C3) DMULZ=4.DO
            IF(X.GE..SSD-02) LNULZ=12.CO
            IF(X.GE..CSD-C1) DMULZ=16.DC
            IF(O.5CO-EETAY-CIY.LE.DDIY&DMULY) DOIY=(C.FDE-PETAY-CIY)/CNULY
```



```
            ICMLLY
            IF(SEL-BETAZ-D1Z.LE.DD1Z*DMLLZ) DD1Z=(SEL-RETAZ-D1Z)/DNULZ
            IF(1.CO-SEL-RETAZ-D2Z.LE.CC2Z*CMULZ)CDZZ=(1.Dr-SEL-BETAZ-D2Z)/
            IMMULZ
            CALCULATICN OF NFW INITIAL CONDITION
            x= Xi
            PRMT(1)=Xr
            \Gamma}X=DX
            IC I = 1
            76 LC 92 I= 1,NY
            J=I +1
            VIY=((DIY+D2Y+2.D:1*RETAY)*RTY(I+1)+C1OY-\Gamma1Y)/(D1OY+C2OY+
    1Z.DC*BETAY)
            IF(VIY.LT.I.JCT) GO TO qu
            C(J,NCI)=l.กC?
            GO TO G2
Or IF(VIY.CT.C.)CC) GU TU G5
C(J,NCI)=0.n[,n
```

NAIV396）
NAIN397）
MAIN3980
MAINZGSC
NAIN4OJ？
NAIN4C1
NAIN4C20
NAIN4ก35
NAIN4の4
MAIN4050
MAII4n6？
NAN4？70
MAIN4CE
NAIN4C9n
NAIN410？
MAIN411r
MAIN4120
NAIN413n
NAIN4140
MAIN4150
NAIN416？
NAIN4170
MAI＇v4191
MAIN4195
＊IN42J
MAIN421！
MAIN422
NAIN4233
NAIN424\％
MAIN425
NAIN4260
NAIN427？
MAI：N428こ
NAIN429？
NAIN43：～
MAIN431r

432：
433：
434：
435：
436：
437：
438：
439：
440：
441：
442：
443：
444：
445：
446：
447：
448：
449：
451：
451：
452：
453：
454：
455：
456：
457：
458：
459：
4大？：
461：
462： 4€ 3 ：
464：
465：
466： 467：

CO TO 92
S5 CALL INTRF（12，NTY，VIY，RTY，FAY，YINTP）
$C(J, N C I)=C C(1, N C I) * Y I N T P(1)+C C(N T Y, N C I) * Y I N T P(N T Y)$ ［0 9？$K=1$ ，NY
$93 C(J, N C I)=C(J, N C I)+Y I N T P(K+1) * C C(K+1, N C I)$
૬\％CONTINLE
$N C I=-J C I+1$
IF（NCI．GT．NTZ）GO TO 955
60 TO 96
955，NCI＝ 1
$1 r \pi \operatorname{co~} 42 I=1, N Z$
$J=N C I+(I-1)$ 末NY
$V I Z=((D 1 Z+D 2 Z+2 . D(* B E T A Z) * R T Z(I+1)+D 10 Z-C 1 Z) /(D 10 Z+C 20 Z+$
12．ヘOへ＊BETAZ）
IF（VIZ．LT．1．）C ）GD TC 40
$P(J)=C \cdot C D C$
GU TO 42
4．n IFIVIZ．GT．O．OC．）GC TC 45
$P(J)=C \cdot r D C$
GO TO 42
45 CALL INTRP（12，NTZ，VIZ，RTZ，FAZ，ZINTP）
$P(J)=C(N C I+1,1) * Z \operatorname{INTP}(1)+C(N C I+1, N T Z) * Z I N T P(N T Z)$
DO 42 $K=1, N Z$
$42 P(J)=P(J)+Z$ INTP $(K+1) * C(N C I+1, K+1)$
42 CONTINUE
$\wedge C I=N C I+1$
IF（NCI．GT．NY）GO TO $2 C$
GO TC IJnc
C
PRINT AND STORE THE RESLLTS
12 CONTINUE
I OK YP＝ 0
$I O K Y M=0$
C 1 १Y＝D $1 Y$
D2ヘY＝ $22 Y$

NAIN422
MAIN433C
MAIN4342
NAIN435
MAIV4360
NAIN4370
NAIN4387
NAIN4390
MAIN44CO
MAIN441n
NAIN442．）
NAIN4430
MAIN444
NAIN4453
MAIN446C
NAIN4470
NAIN4480
NAIN4450
MAIN45LO
NAIN451\％．
NAIN4529
MAIN4530
NAIN454n
$N A I N 455$ ）
MAIN456C
MAIN4570
NAN4580
NAIN45GO
MAIV46CO
NAIN461．
NAIN462？
MAIN4E30
MAIN4643
NAIN4650
MAIN4E6こ
MAIN4G7！

4ヒス：
469：
479： 471：
472：
473：
474：
475：
476：
477：
478：
479：
48．）：
481：
482：
483：
484：
4E5：
$486:$
487：
4ह8：
489：
$47 ก$ ：
4S1：
492：
473：
494：
495：
496：
4५7：
498：
499：
5）1：
与 1 ：
5ノ2：
5r．3：

```
    C1.Z=C1Z
    02rZ=02z
    CO 66 I =1,NTY
    EHCO(I)=1CO\cap.Cつ*EHCO(I)
    CO G\epsilon J=?,NTZ
    IF(I.FQ.1) CECO(J)=CFCO(J)*1CCr.DC
        IF(I.EQ.1) CECCY(J)=CECOY(J)*1CCC.CO
        CC(I,J)=C(I,J)
    t\in C(I,J)=C(I,J)*1CCU.D0
    CCOL=1000.[0*CCOI
    CCO3=10C-.[^*CCO3
    WRITE(6,5CC) ACTX,Q,IHLF
```



```
WRITE \((6,2 C O O)\)
2CUS FRRMAT（2（1））
WRITE（6，352）（ACTY（I），I＝1，NTYH），ARYC
352 FDRMAT（1X，132（＇＊＇）／1X，＇＊Z／Y＊＇，1CF12．く．＇＊！）
hRITE（o， 6 Er）
58 CDINTINUE
I＝NT Z
5：2 CONTINUE
WRITF（ \(6,3 C C\) ）\(A C T Z(I),(C(J, I), J=1, N T Y H), C E C[(I)\)
\(30 n\) FORMAT（1X，＊＊＇F7．2，1X，＇＊＇，1กF12．5，＇＊＊！
\(I=I-1\)
IF（I．EQ．C）GO TO 531
GO TO 502
－ 11 CONTINUE
hRITE（6，65C）
E50 FCRMAT（1X，132（＇＊＇）
WFITE \((6,3 C \cap)\) HSEL，（EHCC（I），I \(=1\) ，NTYH），CCO1
WPITE \(6,20 C\) ）
WRITE（6，352）（ACTY（I），I＝NTYH1，NTY），ARYC
WDITF \((6,65 C)\)
```

MAIN468： NAIN4690
NAIN477n
MAIN471
NAIN4726
NAIN4730
NAIN474C
NAIN4750
NAIN4760
NAITV47
MAIN478
MAIV4797
NAIN4EC．
MAIN4E1
NIN482
NAIN483．）
NAIN4940
MAIN4850
NAIN486า
NAIN487？
MAIN4880
NAIN4890
NAIN49C）
MAIN4910
MAIN4920
NIN493n
MAIN4S4S
NIN4S50
NAIN496？
NAIN4G7C
MAIN4980
NAIN499
NAIN5CC
MAIN5013
NAIN5こ20
NAIN5？3＂

```
51,4: WRITE(6,3CO) ACTZ(I),(C(J,I),J=NTYH1,NTY),CECOY(I)
5.5:
5r6:
507:
508:
509:
510:
511:
512:
513:
514:
I= I-I
IF(I.EQ.U) GO TC 5501
GO TO 55R2
55,1 COINTINUE
    IF(IST.EQ.1) STOP
        GO TC 1
gre conjINUE
```

```
    WRITE(6,65C)
```

 WRITE(6,65C)
 WRITE(6,3CC) HSEL,(EHCC(I),I=NTYHI,NTY),CCC3
    ```
    WRITE(6,3CC) HSEL,(EHCC(I),I=NTYHI,NTY),CCC3
```

```
gre corstinue
```

NAIN504?
NAIN5~52
MAINSOEC
NAIN5C7.
NAIN578?
MAINEC90
maivsion
NAIN5110
MAINSI2C
MAINE13C
MAINE147


```
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
43:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
6n:
\epsilon1:
62:
63:
64:
65: C
66: C
67:
68:
67:
77:
71:
```

```
IF(H*(XEN[-X))36,37,2
```

IF(H*(XEN[-X))36,37,2
C
C
frEPARATIONS FOR RLNGE-KLITA NETHCD
frEPARATIONS FOR RLNGE-KLITA NETHCD
2A(1)=.5D)
2A(1)=.5D)
A(2)=.2928932188134524800
A(2)=.2928932188134524800
A(3)=1.7071067811865475DC
A(3)=1.7071067811865475DC
\Delta(4)=.16666666666666t670C
\Delta(4)=.16666666666666t670C
B(1)=2.DJ
B(1)=2.DJ
R(2)=1.DC
R(2)=1.DC
R(3)=1.CC
R(3)=1.CC
B(4)=2.0'!
B(4)=2.0'!
C(1)=.500
C(1)=.500
C(2)=.292893218813452480C
C(2)=.292893218813452480C
C(3)=1.75719678118654750n
C(3)=1.75719678118654750n
C(4)=.5DC
C(4)=.5DC
C
C
C PPEPARATICNS CF FIRST RUNGE-KUTTA STEP
C PPEPARATICNS CF FIRST RUNGE-KUTTA STEP
C
C
CO 3 I= 1,NDIM
CO 3 I= 1,NDIM
\DeltaUX(1,I)=Y(I)
\DeltaUX(1,I)=Y(I)
AUX(2,I)=CERY(I)
AUX(2,I)=CERY(I)
AUX(2,I) =C.DC
AUX(2,I) =C.DC
3 AUX(B,I)=C.Dn
3 AUX(B,I)=C.Dn
I REC=?
I REC=?
H=H+H
H=H+H
IHLF=-1
IHLF=-1
ISTEP=?
ISTEP=?
IEND=?
IEND=?
C
C
C STAPT UF A RLNGE-KUTTA STEP
C STAPT UF A RLNGE-KUTTA STEP
C
C
4 IF((X+H-XEND)*H)7,6,5
4 IF((X+H-XEND)*H)7,6,5
5 F=XENC-X
5 F=XENC-X
\& IEMID=1
\& IEMID=1
C

```
C
```

DRKG 367
CRKG 375
CRKG 380
[RKG 39)
CRKG 49n
ERKG 410
CRKG 420
CRKG 43こ
CRKG 44.
CRKG 450
CRKG 463
CRKG 473
[RKG 487
[RKG 490
CRKG 500
[RKG 510
[RKG 52.]
CPKG 53 J
DRKG 540
[RKG 559
CRKG 56)
DRKG 570
CRKG 58C
[RKG 54.)
DRKG 6::
CRKG $E 10$
[RKG 620
CFKG 630
DRKG 640
[RKG 650
CRKG 66)
CRKG $\in 70$.
[RKG 68)
[RKG 691]
DRKG 7CC
CRKG 710

```
C RFCCEEING CF INITIAL VALUES CF THIS STEP
73: C
        7 CONTIVUE
        IF(PRNT(5))4n,8,4.)
        -ITEST=0
        -> ISTEP=ISTEP+1
C
C START DF INNERMEST RUNGE-KUTTA LCCP
C
        J=1
    Ir }\Delta\textrm{J}=\textrm{A}(\textrm{J}
        BJ=R(J)
        CJ=C(J)
        DO 11 I=1,NDIN
        RI=H*DERY(I)
        R2=AJ*(R1-BJ*AUX(S,I))
        Y(I) =Y(I)+RZ
        R2=22+R2+R2
    11AUX(\epsilon,I)=ALX(\epsilon,I)+R2-CJ*R1
        IF(J-4)12,15,15
    12J=J+1
        IF(J-3)13,14,13
    13 X=X+.5CO就
    14 CALL FCT(Y,NCIM,DERY,FW)
        GOTO 10
C
C TEST OF ACCURACY
C
    15 IF(ITEST)1\epsilon,1も,2`
C
C IN CASE ITEST=O THERE IS NO POSSIPILITY FOR TESTING CF ACCURACY
    15 CO 17 I= 1,NDIM
    17 111\times(4,I)=Y(I)
        I T C ST=1
        ISTEP=ISTEP+ISTEP-?
```

DRKG 72C
［RKG 730
CRKG 740
CKKG 75C
CRKG $7 \in C$
CRKG 77？
CRKG 780
CRKG 7SC
CRKG 80J
CRKG 810
DRKG 8こう
CRKG 830
［RKG 84J
CRKG E50
CRKG \＆\＆C
CRKG 87 ？
CRKG E\＆C
CRKG $8 \rightarrow 0$
CRKG 920
CRKG 917
CKKG S2？
CRKG 93？
［RKG 94）
CRKG 55°
［RKG SEE
［RKG 977
DRKG 93）
CRKG GGE
［RKG1C？
［RKG1：1J
CRKG1R2S
［RKGIC3：
［RKCI747
CRKGILS：
CRKG1CEJ
CRKG1：7J

```
1C?:
11):
111:
112:
113:
114:
115:
116:
117:
118:
117:
12.7:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
147:
141:
142:
143:
2月
*
```

```
    I\rho IHLF=IHLF+1
```

 I\rho IHLF=IHLF+1
 X=X-H
 X=X-H
 F=.50)*H
 F=.50)*H
 ON 19 I=1,NDIN
 ON 19 I=1,NDIN
 Y(I)=AUX(1,I)
 Y(I)=AUX(1,I)
 CERY(I)=ALX(2,I)
 CERY(I)=ALX(2,I)
 15 ALX(6,1)=\DeltaLX(3,1)
 15 ALX(6,1)=\DeltaLX(3,1)
 GUTO S
 GUTO S
 C
C
C IN CASE ITEST=1 TESTING CF ACCURACY IS POSSIPLE
C IN CASE ITEST=1 TESTING CF ACCURACY IS POSSIPLE
20 IMOD=ISTEP/2
20 IMOD=ISTEP/2
IF(ISTEP-INCD-IMOC)21,23,21
IF(ISTEP-INCD-IMOC)21,23,21
21 CALL FCT(Y,NCIN,DERY,FW)
21 CALL FCT(Y,NCIN,DERY,FW)
CO 22 I= I,NDIM
CO 22 I= I,NDIM
AUX(5,I)=Y(I)
AUX(5,I)=Y(I)
22 AUX(7,I)=CERY(I)
22 AUX(7,I)=CERY(I)
GOTO S
GOTO S
C
C
C cCNPUTATION CF TEST valuE dELT
C cCNPUTATION CF TEST valuE dELT
C
C
23 CFLT=0.DO
23 CFLT=0.DO
CO 24 I=1,NCIN
CO 24 I=1,NCIN
24 DELT=DELT+AUX(8,I)*DAES(AUX(4,I)-Y(I))
24 DELT=DELT+AUX(8,I)*DAES(AUX(4,I)-Y(I))
IF(DELT-PRNT(4))28,28,25
IF(DELT-PRNT(4))28,28,25
C
C
C ERRCR IS TCC GREAT
C ERRCR IS TCC GREAT
25 IF(IHLF-10)26,36,36
25 IF(IHLF-10)26,36,36
2h DD 27 I=1,NCIN
2h DD 27 I=1,NCIN
27 AUX(4,I)=ALX(5,I)
27 AUX(4,I)=ALX(5,I)
ISTEP=ISTEP+ISTEP-4
ISTEP=ISTEP+ISTEP-4
X=Xート
X=Xート
IEND=í.
IEND=í.
GOTO 18
GOTO 18
C

```
C
```

CRKG1：89 ［RKG1．）90
CRKG11C
DRKG1110
CRKG112？
DRKG113．
DRKG1145
CRKG115．J
［RKG116J
DRKG117！
［RKG118C
CRKG1190
DFKG12こし
DRKG121C
［RKG122n
DFKG1237
DRKG1240 CRKG125 ［RKG126J CRKG127C ［RKG12ビO ［RKG129） CRKG1320 DRKG1310 ［RKG1323 CRKG133． CRKG1340 CRKG1350 ［RKG136？ CRKG1370 CRKG128C ［RKG1390 CRKG14C： DRKG1410 CRKG1420 DRKG143n

```
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
163:
169:
177:
171:
172:
173:
174:
175:
176:
177:
173:
179:
145: C
```

C kfsllt values are goud

```
C kfsllt values are goud
2F CALL FCT(Y,NCIN,DERY,HW)
2F CALL FCT(Y,NCIN,DERY,HW)
        CO 2G I=1,NDIM
        CO 2G I=1,NDIM
    \DeltaUX(I,I)=Y(I)
    \DeltaUX(I,I)=Y(I)
    AI)X(2,I)=[ERY(I)
    AI)X(2,I)=[ERY(I)
    AUX(3,I)=AUX(6,I)
    AUX(3,I)=AUX(6,I)
    Y(I)=\DeltaUX(E,I)
    Y(I)=\DeltaUX(E,I)
    \angle9 DERY(I) =ALX(7,I)
    \angle9 DERY(I) =ALX(7,I)
    IF(PRNT(5))4C,3C,4C
    IF(PRNT(5))4C,3C,4C
    3\cap CO 31 I=1,NDIM
    3\cap CO 31 I=1,NDIM
    Y(I)=\DeltaUX(1,I)
    Y(I)=\DeltaUX(1,I)
    31 \capEQY(I) =A\X(2,I)
    31 \capEQY(I) =A\X(2,I)
    IREC=IHLF
    IREC=IHLF
    IF(IEND)32,32,39
    IF(IEND)32,32,39
C
C
C INICREME'JT GETS DOLRLED
C INICREME'JT GETS DOLRLED
C
C
    32 IHLF=IHLF-1
    32 IHLF=IHLF-1
    I STEP=ISTEP/2
    I STEP=ISTEP/2
    H=H+H
    H=H+H
    IF(IFLF)4,33,33
    IF(IFLF)4,33,33
    33 IMOD=ISTEP/2
    33 IMOD=ISTEP/2
        IF(ISTEP-INOD-IMOD)4,34,4
        IF(ISTEP-INOD-IMOD)4,34,4
    34 IF(CFLT-. 12C^*PRMT(4))35,35,4
    34 IF(CFLT-. 12C^*PRMT(4))35,35,4
    35 IHLF=IHLF-1
    35 IHLF=IHLF-1
        I STEP=ISTEP/2
        I STEP=ISTEP/2
        H=H+r
        H=H+r
        GOTO 4
        GOTO 4
C
C
C RETURNS TO CALLING PRUGRAM
C RETURNS TO CALLING PRUGRAM
C
C
    36 IHLF=11
    36 IHLF=11
        CALL FCT(Y,NDIM,DERY,PW)
        CALL FCT(Y,NDIM,DERY,PW)
        COTO 39
        COTO 39
C
```

C

```
```

 37 IHLF=12
    ```
```

 37 IHLF=12
    ```
    CRKC1440
CRKG1459
CRKG146
CRKG1473
CRKG1480
DRKG14GC
CRKG1500
[RKG1519
CRKG152
CRKG1530
[RKG1540
CRKG1550
DRKG1560
CRKG157n
DRKG158n
DRKG1590
CRKG16?
CRKG161?
PRKG162
\begin{tabular}{ll}
\(189:\) & GOTC 39 \\
\(181:\) & 39 IHLF \(=13\) \\
\(182:\) & 39 CONTINUE \\
\(183:\) & \\
\(194:\) & PRMT \((1)=x\) \\
\(185:\) & \(4^{\prime}\) \\
FORMAT & RETURN \\
\(186:\) & \\
& \\
& ENC
\end{tabular}

CRKGIRCS
CRKG181C
CRKG1823
CRKG183)
DRKG184?
[RKG185.)
[RKG186)
```

 SUHRCUTINE FCT(YP,M,DY,PW)
 C
c
C
C
r.
C
OF THE SYSTEM TC GIVEN VALUES OF YP(CONCENTRATION)
this surrlutine cumputes the derivatives (right hanc sides)
IMPLICIT REAL*\&(A-H,O-Z)
OIMENSION YP(N),DY(N),FW(N,N)
DU 15 J=1,N
CY(J)=0.\cap\C
DO 1N I=1,N
ir DY(J)=DY(J)+Ph(J,I)*YP(I)
15 cuift IVuE
RETURA
END

```
FCT 20
FCT 30
FT
FCT 50
FCT 60
\begin{tabular}{|c|c|}
\hline FCT & 1 \\
\hline FCT & 20 \\
\hline FCT & 30 \\
\hline FCT & 4) \\
\hline FCT & 50 \\
\hline FCT & 60 \\
\hline FCT & 70 \\
\hline FC T & \(8 \%\) \\
\hline FCT & 90 \\
\hline FCT & \(10 \cap\) \\
\hline FCT & 113 \\
\hline FC T & 120 \\
\hline FCT & 130 \\
\hline FCT & 140 \\
\hline FC T & 15し \\
\hline FCT & \(1 \in C\) \\
\hline
\end{tabular}
1:
```

 SUBROLTINE VELDIF(XZ,H,LGR,LST,AN,U,V,ISTE,ALPHA,N3,AKY,AKZ,[AKZ, VELC IU
 1SrL,IND,US,DKN,DUN,HSKM,HGEO,ANM) VELC 2?
 VELD 3^
 THIS SUBRCUTINC I
 CIFFUSIVITY VECTORS (TWD-CIMENSIONS) AS FLNCTIONS OF VELO 6O
 ELEVATION AND STAÖILITY CLASS VELD 7S
 VELC 80
 VELU 9'J
 VELD ISO
 VELC 11?
 VELE 12O
 VELD 13こ
 VELC 140
 VELC 15J
 VELD 16E
 VELD 17J
 VELC 18^
 VELD 1'`
 VELD 2Cr
 VELC 2IC
 VELC 22)
 VELD 23:
 VELD 24C
 VELC 250
 VELD 2\epsilonE
 VELC <7C
 VELC 29?
 VELD 25:
 VELD 3C?
 VEL[317
 VFLD 32?
 VELD 33.v
 VELL 34)
 VELC 357
5 continue
TDFKV(ISTB)=DKN(ISTB)/H
U(1)=UGR
PV=DEXP(-CKN(ISTB)/AN)*DSIN(DKN(ISTE)/AM)/
1(1.DC-DEXP(-DKN(ISTR)/AN)*DCCS(DKA(ISTB)/AN))
Ul=UST*(1.CC-[EXP(-DKN(ISTR)/AM)*DCOS(DKN(ISTB)/AN))/
1(DKN(ISTR)/DUN(ISTE))**ANN
V(1)=-PV*l(1)
TIIFUN(ISTB)=HGEO(ISTR)/H
00 25 L=2,\3
L(L)=LST*(1. ПO-DEXP(-XZ(L)*H/AN)*CCCS(XZ(L)*F/AM))
IF(XZ(L).LE.TDFKN(ISTB)) L(L)=UI*(XZ(L)*F/[LN(ISTR))**ANN
IF(XZ(L).LT.TCFUN(ISTF)) V(L)=-UST*CEXP(-XZ(L)*H/AM)*
IDSIN(XZ(L)*H/AN)
Ir(XZ(L).GE.TDFLIN(ISTB)) V(L)=C.O^
IF(XZ(L).LT.TCFKN(ISTR)) V(L)=-PV*U(L)
25 crintinue
IF(ISTB.(GE.5) CO TO Ll
IF(CKN(ISTP).GT.1.D-R\&) GU TO 2C

```
```

```
    CO 4 L=2,N3
```

```
    CO 4 L=2,N3
    AKZ(L)=COEFK(ISTR)+90.「N
    AKZ(L)=COEFK(ISTR)+90.「N
    DAKZ(L)=U.CJ
    DAKZ(L)=U.CJ
    4 AKY(L)=ALPFA*AKZ(L)
    4 AKY(L)=ALPFA*AKZ(L)
    RETURN
    RETURN
2) CONTINUE
2) CONTINUE
    TDSKN=1.DL-1CC.OO/H
    TDSKN=1.DL-1CC.OO/H
    IF(H.LE.HSKN) TDSKN=1.DO
    IF(H.LE.HSKN) TDSKN=1.DO
    CN2 L=2,N3
    CN2 L=2,N3
    IF(XZ(L)-TCFKN(ISTR)) 11,12,12
    IF(XZ(L)-TCFKN(ISTR)) 11,12,12
11 AKZ(L)=COEFK(ISTB)*xZ(L)/TDFKN(ISTB)+GO.CC
11 AKZ(L)=COEFK(ISTB)*xZ(L)/TDFKN(ISTB)+GO.CC
    [AKZ(L)=CCEFK(ISTB)/CKN(ISTR)
    [AKZ(L)=CCEFK(ISTB)/CKN(ISTR)
    GO TC 16
    GO TC 16
:2 IF(X7(L)-TCSKN) 13,12,14
:2 IF(X7(L)-TCSKN) 13,12,14
13 AKZ(L)=CUEFK(ISTR)+90.OC
13 AKZ(L)=CUEFK(ISTR)+90.OC
    \capAKZ(L)=7.CO
    \capAKZ(L)=7.CO
    GO TO 15
    GO TO 15
14 AKZ(L)=COEFK(ISTK)*H*(1.DC-XZ(L))/1CC.DC+CC.DR
14 AKZ(L)=COEFK(ISTK)*H*(1.DC-XZ(L))/1CC.DC+CC.DR
    DAKZ(L)=-CCEFK(ISTB)/100.Cn
    DAKZ(L)=-CCEFK(ISTB)/100.Cn
is contivue
is contivue
15 AKY(L)=ALPHA*(COEFK(ISTB)+SC.DC)
15 AKY(L)=ALPHA*(COEFK(ISTB)+SC.DC)
    2 CONTINUE
    2 CONTINUE
    [j) TO 5C
    [j) TO 5C
Ir continue
Ir continue
    CO 3 L=2,N3
    CO 3 L=2,N3
    AKZ(L)=CCEFK(ISTB)+9U.C)
    AKZ(L)=CCEFK(ISTB)+9U.C)
    DAKZ(L)=O.DC
    DAKZ(L)=O.DC
    * }\triangleKYY(L)=ALPFA*AKZ(L
    * }\triangleKYY(L)=ALPFA*AKZ(L
5) Continue
5) Continue
    RETURN
    RETURN
    EN!
```

 EN!
    ```
```

 CO L = N
    ```
```

 CO L = N
    ```
VEL[ 36)
VELD 37.
VELD 28.
VELE 393
VEL[ 43?
VELD 41.
VELD 423
VELC 43 )
VELD 44.
VELD 45C
VELC \(46 U\)
VELD 47 ?
VELO 4dC
VELD 470
VELC 53n
VELO 512
VELD 52
VELC 53.J
VELD 54:
\(V=L C 55\)
VELC 567
VELD 570
VELD 5 90
VELC 597
VELD bJ?
VELD 612
VELD 620
VEL[ 63)
VELD 64:
VELD E5J
VELC 6.6)

InPut data reguirec
C


\section*{APPENDIX B}

\section*{NOMENCLATURE}

C Mean concentration, \(\mathrm{mg} / \mathrm{m}^{3}\)
\(\mathrm{C}_{\mathrm{a}}\)
\(\mathrm{C}_{\mathrm{c}}\)
\(C_{i}\)
\(\mathrm{C}_{\mathrm{o}}\)
\(\mathrm{C}_{\mathrm{k} \ell}\)
e
Constant in equation (3.14) point - two-dimensional models

Elements of the collocation matrix
Coriolis parameter, \(\mathrm{sec}^{-1}\)
Effective emission height, m
Reaction rate constant, \(\min ^{-1}\)
Turbulent diffusivity, \(\mathrm{m}^{2} / \mathrm{sec}\)
Turbulent diffusivity at an elevation \(z_{1}\)

Element of the discretizational matrix of first derivatives

Element of the discretizational matrix of second derivatives

Mean concentration obtained by an analytical solution

Mean concentration calculated by the present work

Mean concentration at the i-th interior orthogonal collocation

Equivalent mean concentration at the source

Mean concentration at the interior orthogonal collocation point ( \(n_{k}, \zeta_{\ell}\) ) - three-dimensional models

Absolute error defined by equation (3.1), \%

Exponent in power-law form for the mean wind velocity profile Exponent in power-law form for the turbulent diffusivity profile Number of interior orthogonal collocation points.
U \(\quad\) Eigenvectors of matrix \(E\)

Atmospheric pressure otherwise specified

Parameter in equation (2.9) to centerline concentration

Rate of generation of species
Parameter in equation (2.9)
Time, sec specified

Mean wind velocity at an elevation \(z_{1}\)

Eigenvectors of matrix \(E\)

Eigenrows of matrix E specified specified

Quadrature weights otherwise specified

Maximum distance in the \(x\)-direction, \(m\)

Cartesian coordinate in lateral direction, \(m\)
Maximum distance in the \(y\)-direction, \(m\)

Source strength, \(\mathrm{kg} / \mathrm{sec}\) unless otherwise specified
Mass rate through \(y-z\) plane at \(x=\) constant, \(g m / s e c\) unless

Mathematical parameter that represents the ratio of boundary

Mean wind velocity in the \(x\)-direction, \(m / s e c\) unless otherwise

Mean wind velocity in the \(y\)-direction, \(m / s e c\) unless otherwise

Mean wind velocity in the \(z\)-direction, \(\mathrm{m} / \mathrm{sec}\) unless otherwise

Cartesian coordinate in mean wind direction, m unless

2
\(z_{\text {max }} \quad\) Maximum height above terrain (in some cases refers to the elevation of the inversion layer), m
\({ }^{\mathrm{Z}} 1\) Cartesian coordinate in vertical direction, m Reference height, m

Greek Symbols
\(\alpha \quad\) Angle between geostrophic velocity and surface boundary layer velocity, \({ }^{\circ}\)
\(\beta \quad\) Mathematical parameter that represents a source dimension
\(\Gamma\) Gamma function
\(\delta\)
\(\delta_{i j}\)
\(\Delta \quad\) Knee height for the vertical turbulent diffusivity profile, m
\(\varepsilon \quad\) Upper error bound in "DRKGS"
\(\zeta \quad\) Dimensionless spatial variable in the z-direction
\(\eta \quad\) Dimensionless spatial variable in the y-direction
\(\underline{\underline{\Lambda}} \quad\) Eigenvalues of matrix E
\(\xi \quad\) Dimensionless spatial variable in the \(x\)-direction
\(\rho \quad\) Density
\(\sigma \quad\) Standard deviation

т Eddy stresses
\(\phi\)
\(\psi\)
Geostrophical latitude, \({ }^{\circ}\)
Variable used in Figure 4.6. Represents ground-level concentration

\section*{Superscripts}
i
*

Subscripts
G
i
k
\(\ell\)
x
y
z
- Denotes a vector quantity
\(=\)
Refers to geostrophic flow
Index in collocation equations

Refers to x coordinate direction
Refers to \(y\) coordinate direction
Refers to \(z\) coordinate direction

Refers to a matrix

Initial value profile for the concentration
Refers to dimensionless spatial variables

Represents the \(y\)-direction in collocation equations
Represents the \(z\)-direction in collocation equations```

