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CHAPTER I

INTRODUCTION

The increasing cost of controlling emissions from industrial sources 

has magnified the need to develop accurate mathematical models which can 

relate emission rate to air quality. In order to adequately describe 

the relationship between emissions and air quality, a model must be able 

to describe the variable (time and space) meteorological parameters and 

the chemical or physical processes which remove pollutants from the 

atmosphere.

During the past years, several models have been presented in the 

literature [8], ranging from very simple ones like the box model to more 

general cases solved by finite-difference techniques. The Eulerian formula

tion [8] has been the most common approach due to the availability of 

numerical techniques with which the equations can be solved.

A general model, one which includes temporal and spatial variations 

of meteorological parameters, should provide a good description of 

atmospheric diffusion processes. A dispersion model based on the 

K-theory and solved using orthogonal collocation was presented by Fleischer 

[8]. The atmospheric processes were described by the 3-dimensional, 

unsteady-state diffusion equation including chemical reactions. The 

work was validated with existing experimental data and shown to have 

several significant advantages over other available methods.

Understanding of the cause-effect relationship of pollutant emission 

and dispersion on the air quality may be difficult through a complex 



-2-

general air pollution model. In addition, analytical solutions are 

available only for simplified diffusion equations. The disadvantages of 

solving simple cases using the same complex general method gave rise to 

the present work.

Dispersion models based on the K-theory and solved by improved 

mathematical techniques using spline orthogonal collocation are presented. 

All types of steady-state air pollution problems are simulated. These 

models extend from the simple ground level line source case to the complex 

3-dimensional elevated point source model including the Coriolis effect. 

Spline orthogonal collocation, a weighted residual method, reduces the 

partial differential equation governing the mean concentration of 

pollutant species, within the plume generated by the source, to first- 

order ordinary differential equations. This system of equations is solved 

in a digital computer.

The present work was evaluated by comparing the results to avail

able analytical solutions, e.g., two or three-dimensional cases with 

constant turbulent diffusivities and mean wind velocity, and no reaction. 

Mathematical parameters, inherent of the techniques developed, are 

determined through parametric studies. In addition, several hypothetical 

cases are simulated to explore the present method response to variations 

in atmospheric conditions.
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CHAPTER II

FORMULATION OF MODELS AND THEIR SOLUTION TECHNIQUES

The basic mathematical statement for description of the temporal 

and spatial distribution of chemical species by the Eulerian approach is 

the mass balance or continuity equation. This equation, applied to a 

single species in the atmosphere, based on the K-theory is: 

9C 3C dC dC 9 ,v 9C, 9 9C.vr + u + v 7- + Wx— = -k—(K x—) +9t 9x 9y 9z 9xk x 9x 9y y 9yJ

■L-CK ||) + R (2.1)

The main objective of the present work is to predict the concen

tration distribution with respect to time and space for various 

atmospheric dispersion cases. The diffusion equation (2.1) is the basis 

for all the models presented here. A description of these models and 

their methods of solution is given next, starting with the simplest one, 

the two dimensional continuous ground level line source.

Two Dimensional-Continuous Ground Level Line Source

A widely studied situation is the case of an infinite line source 

in the y-direction at ground level emitting at a constant rate. At 

steady state, equation (2.1) is simplified as

ir = 0 (2*2)

d l

In addition, for an infinite crosswind (y) line source,

^-(K ^) = 0 (2.3)
y Sy
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Upon assuming that the mean flow is along the x-axis, i.e.,

v = w = 0 (2.4)

and that the diffusion in the x-direction is negligible compared to the 

transport by the mean flow, i.e.,

з rv 3C., __ 9C

no chemical reactions are included,

(2.6)

x,z ->• ” (2.7a)

x = z = 0 (2.7b)

z 0, x > 0 (2.7c)

implies zero flux at the surface, i.e., 

the pollutant is completely reflected.

For the lower atmosphere, in adiabatic conditions, it has been seen 

that the wind velocity varies with the logarithm of the height. However, 

such a functional relationship proves intractable if an analytical solution 

of equation (2.6) is desired. When a power-law form is adopted for both 

the mean wind and turbulent diffusivity profiles, i.e.,

и = u (/-)m K = K (-^)n (2.8)
Z, X z.

the analytical solution [2], valid for r = m-n+2 >0, is

9xv x 9xJ 3x

equation (2.1) for the case when

i.e., R=0 reduces to

9C 9 ,v 9C\u to = to(Kz to1

with boundary conditions

C -> 0 as

C -> 00 at

K 0 as z 9z

The last boundary condition
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(2.9)

unity.

at any position in the x(downwind)Continuity should be satisfied

direction:

where s = and z. is taken to be r 1

r 
ulz . 
r^K x

c'x-z’ - vT5T[?^]S exp("

u C(x,z)dz = Q 
o

for all x > 0 (2.10)

where Q is the constant emission rate per unit crosswind length.

The case which is solved in the present work considers m=n=0, i.e., 

the diffusion is Fickian. Equation (2.6) becomes 

2
u-5T'KzH P-11’

oZ

and the analytical solution is reduced to

2 C(x,z) = -i2_[ -^-J^expt- (2.12)
/— 4K X ‘rK X

UYTT Z Z

The boundary condition C+O as z-»-<” is too restrictive because it 

cannot be applied to a case with an inversion layer at a certain height. 

This situation can be represented by

K = 0 at z = z (2.13)z 9z max J

Therefore, equation (2.13) is used as the second boundary condition in 

the vertical direction. If a comparison with the analytical solution is 

desired, zmax can be given a sufficiently large value such that the 

pollutant never reaches the inversion layer. In addition, a solution 
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is usually needed up to a definite position in the x-direction. Equation

(2.11) is solved numerically for

0 < x < x ; 0 < z < z (2.14)max ’ max k J

A transformation of the spatial coordinates to yield limits of 0 to

1 is performed by using

z*=r^" (2-15)
max max

To complete the problem, a boundary condition in the x-direction must 

be specified, and the constant emission rate taken into account.

The model by Fleischer [8] defined the location of the source 

through a boundary condition in the x-direction as

- C at x = 0

C = / (2.16)

0 elsewhere

where Cq is an equivalent source concentration to be calculated from 

the emission rate using quadrature weights. Orthogonal collocation was 

the numerical technique used for solving the partial differential 

equation (2.1). One of the reasons as to why this was done is the 

attractive feature of being able to position the point source exactly as 

a collocation point with concentration Co and the rest of the collocation 

points at x=0 with zero concentration. However, this procedure gives rise 

to several problems:

1) Global collocation must be used, i.e., collocate points to 

reduce the partial differential equation to a system of ordinary differ

ential equations throughout the entire region of interest. Since the 
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solution to a dispersion model should have approximately the shape of a 

conical plume, only a few points would be within this region. This means 

that at several positions in the x-direction, especially close to the 

source, only some points would have a certain concentration value and the 

rest would contain zero concentration. Accurate interpolation from such 

a concentration distribution is impossible;

2) One of the collocation points must match the location of the 

source; and

3) A ground level source cannot be placed at z=0, but at the position 

of the first collocation point, since only interior collocation points

are used in the solution,

In spite of all these restrictions, which will be removed in the 

present work, it was proven that orthogonal collocation has better pro

perties than other numerical techniques, and therefore will be used here 

again,

A point source, which usually represents a stack, can be considered 

as a very small area normal to u with a concentration Co equivalent to 

the constant emission rate, as shown in Figure 2.1.

The present model then will have a discontinuous initial value 

profile expressed as

Co at ?=0 , 0 < z* < 3
C1 = (2.17)

^0 at 5=0 z* > 3

where Co can be calculated using equation (2,10):
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8 --------------

0 -------- -------------- >
0 C Co

FIGURE 2.1 VERTICAL CONCENTRATION DISTRIBUTION

AT x=O - GROUND LEVEL LINE SOURCE

Q
o
uC z dzo max

*

Solving for Co:

C = Q 
o u 8 z (2,18)

Determination of the concentration distribution as a function of the 

spatial variables x and z requires then the solution of equation (2,11) 

with boundary conditions given by (2,7c) and (2,13), and the initial 

condition given by (2.17). The way this model is formulated overcomes
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the restrictions, 2) and 3), previously discussed,

A suitable approach to this problem is immediately suggested by 

using spline orthogonal collocation in the vertical direction, A small 

interval [3-6^, S+62J is considered and equation (2.11) is only solved 

in this interval. The required variable transformation is:

z* = (61 + 62)C + B - 61

where 0 < ^ < 1. Equation (2.11) remains then as, 

2 D - D 9_£ R1 9g R5

where
K p — . p — ______ 5_____lx ’ K5 2 r .2

max z (St+S^)max1 1 2-'

(2.20)

(2.21)

Global orthogonal collocation is applied to the ? domain such that a 

system of first order ordinary differential equations with respect to 5 

is left to be solved. The zeros of the Jacobi polynomials 

serve as collocation points.

The concentration distribution is obtained only within the 

[3-6p interval in the z* domain, where the concentration is known 

to have a significant value, not just zero. Therefore, restriction 1) 

is eliminated from the method of solution. As x increases the pene

tration zone is broadened by choosing larger 6^ and 62« This implies 

that the technique considers moving boundary conditions in the vertical 

direction, and the edge of the plume is known at any position along the 

mean wind direction.



-10-

The calculational procedure is as follows; at any integration step, 

the concentrations at t,=0 and ^=1 are compared with Cq and zero, respec

tively. If the comparisons agree, as it is shown in Figure 2.2 the values 

for <$1 and 6^ are assumed correct and the integration continues to the 

next step.

Since the concentrations should approach CQ and 0 at <;=0 and ^=1, 

respectively, the use of the following boundary conditions is valid:

= 0 at 5=0, 5=1 (2.22)

If at any step, the concentration at 5=0 is considerably smaller 

than Cq, 6^ is increased and the integration is performed for that same 

x with the previous good solution as initial condition. This comparison 

stops when 6^ becomes g. When the concentration at 5=1 is considerably 

larger than zero, the same previous procedure is applied to 62. Finally, 

if an inversion layer is reached (62=1'-B) global collocation is used to 

continue the calculations until x=xmax- In an7 problem 6 is usually 

small so that the condition will always be obtained before 62=1-6.

This technique gives rise to the question as to how close to zero, 

the "zero concentration" is. The present work assigns it as some fraction 

of the centerline concentration, as it is done for the Gaussian plume 

equation [18], where 10% of the centerline concentration is considered to 

be zero. Solutions for different ratios are compared in Chapter III,

The procedure to obtain the collocation matrix, used to integrate in 

the along wind direction, is presented next. Since orthogonal collocation 

is applied to the vertical direction with Nz number of collocation
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FIGURE 2.2 CORRECT VERTICAL CONCENTRATION DISTRIBUTION

AT ANY ? - GROUND LEVEL LINE SOURCE
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points, equation (2,20) remains as

dCj, z
Ri S B..C.1 d£ 5 . . £111=1

, for £=2,..,,N +1> > > z (2.23)

The application of orthogonal collocation to the boundary conditions 

equation (2.22), gives the following expressions:

N +2z
T. An .C. = 0 at ?=0i=l 1’1 1

N +1 z
S A2(i)C.

i=2 1
CN +2 = DEN (2.26)

z

where
A1,N f2

A1« = A1,1 *----Ten-----  t2-27’

A2(i) = A + - A (2.23)
’ z ’ z ’ ’

(2.24)
N +2 z
-Z1 +2,iCi = N 0 at C=1
1=1 z ’

Solving for the concentration at the boundaries C, and CX1 - as6 1 N +2z
functions of the concentrations at the interior collocation points one

obtains

N +1 z
E Al(i)C.

i=2 1
C = - ------ (2.25)1 Al,l
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DEN - +2,1A1,N +2 " +2,N +2 (2.29)
z ’ z ’ z ' z

Finally, by substituting equations (2,25) and (2,26), equation (2.23) 

in matrix notation remains as follows;

dC 
= E C (2.30)

where the elements of the matrix E are

R5BMA1(i) R5Bn R5B£)Nz+2A2(i)
E£i = " R1A1 1 + “R^ + R DEN (2.31)

The solution of equation (2.30) is given by:

C(Q = U exp (A5)y~1C1(5-A5) (2.32)

where U, A, and U are the eigenvectors, eigenvalues (diagonal), and 

eigenrows of the matrix E, respectively. The diagonalization of the 

collocation matrix E is performed by a subroutine called EISYS [12] such 

that U, A, and U can be obtained. Since the collocation matrix depends 

on the parameters 6^ and its eigenvalues, eigenvectors and eigenrows 

have to be recalculated any time 6^ and/or change.

The determination of the initial condition C1 needed to solve

equation (2.30) when E>0 uses the solution of C for the previous integra

tion step A^. If neither 6^ nor 62 are changed, C1(5-A?) is equated to 

C(5-A5). When the parameters 6^ and/or 62 change, the initial condition 

is obtained through a Lagrangian interpolation of the previous good solu

tion and the integration is repeated. This interpolation occurs only for 

the new position of the collocation points which lie within the previous 

region [B-6^, 6+62]. For points to the left of (5-6^) and to the right
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of (g+62) values of CQ and zero are assigned to the concentrations, 

respectively.

The flux at any position in the along wind direction is a useful

piece of information that can be obtained from the results and provides

a check for continuity. It can be expressed by the following equation:

Q
X

z■ max
u C(x,z)dz

•'o
(2.33)

Transformation of the spatial variables gives

rl
Q = u^x o

C(£,z*)z dz* k J max (2.34)

By substituting equation (2.19) one obtains

Qx = U CoZmaxd? + U C^’^Zmax de (2.35)
A V JHa-A k lllcLA■'o

Finally, using Gaussian quadrature weights, equation (2,35) can be 

transformed to

N +2
1 z

Q = Q + uz (6n+6o) E W.C.Xx Xx max'- 1 2-'. . 111=1

where

- u z (B-6..)C maxk o for S1<B

(2.36)

(2,37)

0 for
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Two Dimensional-Continuous Elevated Line Source

Treatment of the two-dimensional diffusion equation (2.11) for the 

case of an elevated line source gives more generality to an air pollution 

model. The only variation with respect to the previous case takes place 

in the boundary condition (2.7b), which is transformed to:

C -> “ at x = 0 and z = H (2.38)

The analytical solution to this problem is given by

(
2 2 \, u(z-H) , , u(z+H) . 1exP(- v ' + exP(" ' -IK'x (2.39)4Kzx 4KzX I/

The technique for solving this case is the same as the previous one, 

but with a different representation of the concentration distribution at 

x=0, as shown in Figure 2.3. This discontinuous initial value profile 

is expressed as:

C at ?=0 , h-g<z*<h+go ’

C1 = (2.40)

0 at 5 = 0 , elsewhere

with
h = -A_ 

z max

and
C = ___2___
o 2uf3z max

(2.41)

(2.42)
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FIGURE 2.3 VERTICAL CONCENTRATION DISTRIBUTION

AT x=0 - ELEVATED LINE SOURCE

In order to apply orthogonal collocation to the entire region of 

interest in the z direction, and taking into account that g is very small 

compared to 1, the following variable tranformation is performed:

z* = (61 + 62 + 2g)c + h - (|3 + 6^ (2.43)

where 0 < ? < 1. The coefficients in equation (2.20) remain then as.

Ri = —~ 1 x max

K
p = ______ 5________
5 2 2z (6- +S„+2B) maxk 1 2 J

(2.44)
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The concentration distribution is now obtained only within the 

[h-B-6^, h+g+^l interval in the z* domain, as shown in Figure 2.4.

The check on the parameters 6^ and 62 is done with the same previous 

criteria, but now the concentrations at £=0 and £=1 are both compared to 

zero (= some fraction of the centerline concentration). The comparison 

at ?=0 stops when the plume has reached the ground, i.e., 6^=h-3, and 

stops at £=1 when the plume reaches the inversion layer, i.e., 

62=l-(h+3).

The calculation of the collocation matrix and its diagonalization to 

obtain the eigenvalues, eigenvectors and eigenrows follows the same 

procedure as before, with its elements given by equation (2.31). The 

solution to this problem is also determined by equation (2.32).

The initial condition C1 at any integration step is calculated in the 

same way as previously discussed. Whenever an interpolation is needed 

for this purpose, zero concentration is assigned to every new collocation 

point that lies outside the region of interest [h-g-d^, h+g+t^l used for 

the previous step.

Equation (2.34) can be utilized to determine the flux at any position 

in the x direction. Substitution of equation (2.43) into (2.34) and the 

use of Gaussian quadrature weights gives the following expression:

N +2 z
Q = u z (2g+61+6n) Z W.C.Xx max'- 1 27. , 111=1

(2.45)



FIGURE 2.4 CORRECT VERTICAL CONCENTRATION DISTRIBUTION AT ANY C - ELEVATED 
LINE SOURCE
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Two Dimensional Models with Chemical Reactions

The next step in complexity of an air pollution model is to consider 

a line source case with a pollutant undergoing some kind of removal pro

cess, usually expressed as a chemical reaction. Steady-state models for 

reactive contaminants do not exist because conditions under which reactive 

pollutant concentrations are not changing with time are virtually non

existent. In spite of this, a solution to this problem is presented next 

since few modifications to the previous cases are required and its study 

will help to understand more complex models like the unsteady-state point 

source case.

The main difference between this case and the previous models occurs 

in equation (2.11). An additional term, which represents the chemical 

reaction, should be incorporated in the diffusion equation as

23 C ,, 9 C — , — ,,
U to “ KZ T2 + R <2-46’

dZ

The technique for solving the collocation equations that arise from 

equation (2.11), using the eigenvalues of the collocation matrix, is still 

valid for equation (2.46) if a first-order reaction model is utilized to 

represent pollutant removal from the atmosphere:

R = -^C (2.47)

The elements of the collocation matrix would now be given by
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R5BK11A1(1) R5Bm RSBt,Nz*2A2<i’ kj 
b£i " R Aj j + R + R DEN R1 °£i (2.48)

where is the Knonecker delta function.

for £ = i

for £ / i

(2.49)

While this is the only modification that should be incorporated in 

the elevated line source model, two more changes should be considered 

in the ground line source case.

The check on the parameter 6^ must be performed with another 

criteria, i.e., if 6^<8, the calculated concentration at c=0 should be 
kjx

compared to Coexp(- ——). The reason being the disappearance of contami

nant due to the chemical reaction.

The other modification takes place in the calculation of the flux 

at any position in the x-direction. Equation (2.35) remains then as 

follows:

B-6i
Q = uC e Xx oJ o

R f- "I
* L , uC(6'e,Zniaxd6 

p-Oj
(2.50)

Therefore, equation (2.36) would contain.
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kl5

For a source which is continuously releasing material at a fixed 

point, the appropriate form of equation (2.1) (again with v and w zero, 

and neglecting the diffusion in the x-direction relative to convection) is

9C 3 3C-, 3 3Cx n roiU -r— = -r— (K -z—) + 77- (K -r—) + R (2.52)3x 3y y 9y 3z z 3zv

At an early stage, observations of diffusion implied a dependence of

Ky on the distance of travel [14]. On the grounds that it is physically 

irrational to regard K as a function of horizontal position, one approach

R1
uz (B-6-. )C e for 6 <gmax 1 o 1

0 for 6 =g

(2.51)

The procedure to follow for non-linear chemical reaction models would 

be to linearize the expression if the eigenvalue method is to be used. 

Another possibility, simpler and more effective, is to integrate the 

collocation equations with a technique that would not depend on the 

expression for the removal processes, e.g., a fourth-order Runge-Kutta 

method.

The concentration distribution for a continuous ground level line 

source for a case with a first-order chemical reaction model is presented 

in Chapter IV.

Three Dimensional-Continuous Point Source
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has been to seek solutions with K , as well as K and u, a function of y z
height above the ground, i.e..

u = u(z) ; K = K (z) ; K = K (z) (2.53)
y / Li.

For this case, equation (2.52) remains as,

„r dK (z) 2 2
u(z) - ST- 3? ’ Ky(z) -2 * Kz(z) TT ♦ R <2-54’

z 9y 9z

Consider an interval [0, ymaxl as the region of interest in the 

crosswind direction y, where a concentration distribution is to be 

obtained. For simplicity, the point source is located at y=0, such that 

no contaminant flows across the centerline y=0. The reason being 

symmetry, only the x-component of the wind velocity is taken into 

account. Therefore, the same approaches previously discussed can be 

used for this three-dimensional continuous point source model.

The crosswind dimension, a subset of the present case, can be con

sidered as an analog of the two-dimensional continuous ground level line 

source. In addition, the two-dimensional continuous elevated line source 

can be used to represent the other subset, i.e., the vertical dimension. 

The reason for different approaches for each spatial dimension is that 

the concentration distribution in the crosswind direction is symmetric 

with respect to the centerline (y=0), whereas the concentration distribu

tion in the vertical direction is not symmetric with respect to the 

effective emission height (z=H). The solution in the z-direction would 
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be symmetric if Kz and u were constant, and moreover only up to an 

x-position where the plume reaches the ground or the inversion layer.

Using the spline collocation approach, the following spatial

variables transformations must be made:

7-7- = y* - («ly ♦ «2y)'1 * 6x ' 6ly (2-55)

-2- = z* = (5 + $ t 211 )t ♦ h - (B ♦ 6 ) (2.S6)
«L Z» X Z»max

where 0 < n < 1 and 0 £ z; £ 1, and h is given by equation (2.41).

The dimensionless variable in the x-direction, presented in equation 

(2.15), is also introduced in the problem.

For completeness of the model, the following boundary conditions 

are used:

c1 = <

c 0 at point source, g=0 ; y*=0 ; z*=h

(2.57)

0 elsewhere. e=o

0 on at n=0,l (2.58)

0 de at e=0,i (2.59)

where the equivalent concentration at the point source can be calculated 

by continuity, as will be seen later.
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This approach can be used to simulate any three-dimensional continuous 

point source model, eg., few modifications must be done if the point 

source is located at the ground, i.e., equation (2.56) would be replaced 

by another equation (2.55) for the vertical direction; any type of removal 

process for the contaminant, e.g., sedimentation would be valid since 

equation (2.59) means no flux at <;=0,l and not at the effective emission 

height, h.

The use of spline collocation for this case again means that the 

solution is obtained with moving boundary conditions in the y and z 

directions. Since no changes in the technique were needed, as compared 

to the previous cases, the check and modifications on 6^ and 62 for each 

direction at any integration step in the x-direction are performed as be

fore.

The collocation equations for two different situations, constant u, 

K , and K , and then as functions of elevation are presented next.y z r

Constant Mean Wind Velocity and Turbulent Diffusivities

Substituting equations (2.15), (2,55) and (2.56) into equation 
dK 

(2.54) (with = 0) one obtains

2 2R1 If = R5 f-l + R6 f-f- + (2.60)
on o^

where

Rx = (2.61)
max
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'5 2 2y (5, +6. y 7max ly 2yv

K_ _______ z__________
6 Z2 (61 +6_ +26 )2 

maxv Iz 2z zv

(2.62)

(2.63)

Application of orthogonal collocation to equation (2.60), with N and 

Nz as the number of interior collocation points in the y and z directions, 

respectively, gives

N +2 N +2
f2) Z

Ri = Rc s c-o + Ra s Bo- + R(C,„) (2.64)1 dE 5 . . . ki i£ 6 . , £i ki v kv v •'1=1 1=1

for k=l,...,N +2
y

£=1,...,N +2 z

where represents the mean concentration at the point (n^j?^)- The 

superscripts of the discretizational matrix of second derivatives B, 

represent the direction and thus the way it is computed, i.e., (2) and 

(3) stand for the y and z directions, respectively.

The use of orthogonal collocation to the boundary conditions in 

the y-direction, equation (2.58) gives the following expressions:

N +2
7 (2)
E A? < C. = 0 at n=0. . 1,1 i£1=1 ’

(2.65)
N +2
y (2)

;2,i ci£ =0 at '=1
1=1 y ’
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Solving for the concentration at the centerline and at the edge

of the plume one obtains.

N +1
y
Z AlY(i)C

N +1y
Z A2Y(i)C.

i=2CN +2,£ = DENY (2.67)
y

where

A1Yti) = Al,i *----TOY-----  C2-68)

A2Y(i) = a(2)a.(2) - a(2)1,1^1 +2,i N +2,1 
y y

Af2)
1,1 (2.69)

DENY = (2) (2) _ (2)
+2,1 1,N +2 1,1

y y
a.(2)+2,N +2 
y y

(2.70)

Application of orthogonal collocation to the boundary conditions in 

the z-direction, equation (2.59) gives:

Nz+2
E Ap^ C. . = 0 at c=0

. . 1,1 ki

(2.71)
N +2
X ^2,1 Cki ■ 0 at ==1

1=1 z ’
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Following the same procedure as for the y-direction, the concen

tration at the edges of the plume in the z-domain is obtained from 

equation (2.71):

N +1 z
E AlZ(i)C

i=2 K1
--------- ^3)----- <2-72)

1,1

N +1 z
E A2Z(i)C. .•=? ki

Ck,N +2 = DENZ (2.73)
z

where

, , *1,N +2 422(1:1

Alz(i) ■ Ai i * —biz------  (2-74)

A2zri) = a(3)a.(3) - a.(3) a(3)AZZ.(1J A An +2 +2
z z

(2.75)

DENZ = A.^3^ A^3) - A^^A.^3'*
ULNZ +2,1A1,N +2 ^,1^ +2,N +2

z ’ z z z
(2.76)

Substituting equations (2.66), (2.67), (2.72), and (2.73) into 

equation (2.64) one obtains.
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1
dCk£ 

dS (
N +1 
y
E

i=2
RC2)+ R(2) 
ki k,N +2 

y

A2Y(i)
DENY J i£

AlY(i)
a(2)Al,l

R(2)
k,l

N +1 z
E 

i=2
(3) AlZ(i) (3) (3) A2Z(i)
£,1 a(3) £i £,Nz+2 DENZ J ki

+ R(Ck£) (2.77)

or simplifying it:

"kJl 5 <
" R1 i=2 AKY(k,i)Ci£ / 1

Rl\ i=2 AKZ(£,i)C. .k J ki

(2.78)

for k=2,...,N +1
y

£=2,...,N +1 z

Equation (2.78) gives a set of (N )(N ) first-order ordinary 
y z

differential equations to solve for the concentration as a function of 

the along wind direction at the orthogonal collocation points in the 

crosswind and vertical directions. The initial condition for this

system of equations is
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C at g=0 , 0 < y* < g

h - g < z* < h + g z - z

0 at 5=0 , y* >

(2.79)

elsewhere z*

Using continuity. the flux at the point source can be expressed as:

Q = 2
A

u(h)C y dy*z dz „ o max J max-ez
(2.80)

Solving for Co> the equivalent concentration at the source one 

obtains,

Co = 4u(h)B z B y (2’81
z max y max

For a ground level point source, the 4 in the denominator should be 

replaced by a 2.

The determination of the initial condition at any integration 

step follows the same procedure as before. If the concentration at 

the edges of the plume lies within the range specified by a fraction 

of the centerline concentration, the solution of the current step is 

used as the initial condition for the next step. For any boundary 

concentration outside this comparison, the corresponding 6 parameter 

must be changed. If this occurs, the new positions of the collocation 
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points have to be calculated by equations (2.55) and/or (2.56) and 

the concentration at these points determined through Lagrangian inter

polation in two dimensions using the good solution of the previous

step. This will be then the initial condition used at the current 

integration step. For simplicity, 6^^. is equated to such that the 

comparisons are performed strictly to the boundary concentrations at 

n=l, C=0 and 5=1.

In order to apply the technique to any air pollution model, i.e., 

with any type of removal processes, the eigenvalue method for obtaining 

the solution was dropped. This method has the attractive feature that 

whenever the region of interest does not change, the same eigenvalues, 

eigenvectors and eigenrows for the previous step can be used for the 

current step. That is, the rediagonalization of the collocation matrix 

must not be done at every integration step, which results in computational 

time savings. But in view of generality, other integration techniques 

were investigated.

A semi-implicit Runge-Kutta technique, based on the method proposed 

by Caillaud and Padmanabhan [3] was developed in the present work. This 

type of technique is applied to difficult stiff differential equations.

As soon as the stiff component has faded away, at certain position 

from the point source, it becomes desirable to enlarge the stepsize.

A stepsize adjustment algorithm, proposed by Villadsen [19] was used 

in the present work. This integration method appeared to be very 

stable and the calculated concentration distribution was the same as 

that determined by the eigenvalue technique. Unfortunately, the 
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complexity of the present air pollution model requires a large number 

of differential equations to be solved. The use of both methods 

involved a large computational time.

Finally DRKGS, a double precision subroutine furnished by IBM [11] 

which is a fourth-order Runge-Kutta method, was applied to the present 

problem. The use of this subroutine was discussed in details by 

Fleischer [8]. It was decided to keep it as the integration method 

for all three-dimensional models since the results were comparable to 

the ones obtained using the previous two methods, but with less than 

half of their computational time.

The present work for the case of no chemical reactions was 

validated by comparing the results to the Gaussian plume equation given 

by

(
n. I ,

1, y.2\ I ( 1rz-Ik \" 2(o 1 ) I’ 2(—> ) *

y • I ' z *

( 1 7+H 2\ \

eXP ’ ) (2182)\ Z • I

and to the analytical solution of the diffusion equation with a reflecting 

plane at the ground z=0, given by

C(x,y,z) = ----- 2---
47rx(KyKz) 2

exp u(z-H) 
4K x z

exp / u(z+H) 
I " 4K x 
\ z

(2.83)
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The flux across any plane normal to the x axis is also calculated

in the present work via

y• max
2

■*o

z• max
u

o
C(x,y,z)dydz (2.84)

Substituting equations (2.55) and (2.56), and using Gaussian 

quadrature weights, equation (2.84) can be transformed to

Q = 2u(61 +6_ )y (61 +6_ +2g )z Z Z W.^Wp^C. „ (2
Xx ly 2y"max^ Iz 2z z max . , . , k £ k£J J k=l £=1

Variable Mean Wind Velocity and Turbulent Diffusivities

The governing equation for this case, equation (2.54), with the 

incorporation of the spatial variable transformations given by equations 

(2.15), (2.55) and (2.56) can be expressed as follows:

2 2
rim H * r3(« If = Rs(o H + f2-86’

dn o?

where
R1(?)=^- (2.87)

max

R3(ti

dK

dz
z (6. +6„ +2g ) max^ Iz 2z z

(2.88)

85)
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K (C)
R5^) = "2---- ------- 2

WW

K to
R (C) = ----- ---------- 2

z (6. +6- +20 Y maxv Iz 2z i

(2.89)

(2.90)

The procedure to obtain the collocation equations is exactly the 

same as the one previously done, with one extra term involving

in these equations. The final expression then is given by

dck£ R3to /v1 \ r oo/y1 \
-dr = -R7to I+^wl +

(
N +1 \z \ R(cy
,Z2 AKZtoi)Ck. (2.91)

for k=2,...,N +1
y

£=2,..,,N +1 z
where

DAKZ(&, i) = -A^ AlZfi! + a(3) t a(3) AZZ^ (2 g2)
X# A. ■ v J A# j_ Aj 1 Aj • £■ Udi

Al,l z

and AKY(k,i), AKZ(£,i), AlZ(i), A2Z(i), and DENZ are the same as before.

The flux across any plane normal to the along wind direction is

calculated by an equation similar to (2.85), i.e..
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Ny+2 Nz+2
Q = 2(6. +6„ )y (5. +6O +2g )z Z Y. u(£)W1('2^Wp)C1 „
Xx iv 2yv/max Iz 2z max , , „ , k £ k£J J k=l £=1

(2.93)

Analytical solutions for arbitrary source heights and unrestricted 

functions of u, K and K with elevation have not yet been obtained.y z J
It should be pointed out that the present technique can be applied to 

any function of u, K and Kz with respect to any spatial variable and 

meteorological parameter, as will be seen later. Few modifications 

must be done to the present model for cases involving functional 

relationship with respect to other spatial variables, besides elevation.

Three Dimensional Mean Wind Velocity

Let us now consider a continuous point source emitting contami

nants to a region where the axial and lateral components of the mean 

wind velocity are important. For this case, equation (2.1) is reduced to:

9C 9C 9 9C. 9 9C. n n..u 7- + v T- = -X— (K -7—) + -T— (K 7T-) + R (2.94)9x 9y 9y y Sy* 9z v z 9zv 1

1 3 9y 9z

where the diffusion in the x-direction is again neglected compared to 

convection, and w is assumed to be zero. Using the same previous 

functional relationships for the velocities and diffusivities, i.e.,

u=u(z); v=v(z); K =K (z); K =K (z) (2.95)y y z. z,

equation (2.94) remains as

, . ac , , ac dKz<z) ac „ , . a2c „ , , a2c „ „„
U(Z) K * v(z) = K (z) —2 * K (z) » R (2.96)
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The previous approach used for the y-direction is not valid for 

the present model since the concentration distribution in this dimension 

is no longer symmetric with respect to the centerline (y=0). For ah. 

interval [-y , y 1 as the region of interest in the y-direction,L 7 max /maxJ b J
the following variable transformations are performed:

-X-+ 1
y max f<-x cxn*\7* = ---- 2---- (2.97)

z* = —— (2.98)
max

y* ' <6iy*52y*26y,T1 * ? " fy’iy’ (2-99)

z* = «, *2B,)C * h - (B ♦« ) (2.100)

where 0 < n < 1 > 0 < z; < 1

The initial condition for this case can then be stated as

C at point source, £=0; y=0(y*=1g); z*=h

L " (2.101)

' 0 elsewhere, £=0

(2.15)Substituting equations (2.97) through (2.100) and equation

into equation (2.96) one obtains

a^r
+ R,(C) + R(C) (2.102)

9n dC
R1(O If * r2(O R3(ti R5(O
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where (2.103)

(2.104)

(2.105)

(2.106)

(2.107)

The boundary conditions in the y and z-directions are the same

of orthogonal collocation to this model adds only one extra term to

the right hand side of equation (2.91):

(2.108)

with

(2.109)

The initial condition for this system of first-order ordinary

differential equations, equation (2.101), can be expressed as

R5(S) =

R2Ce) =

R3to =

R6to =

R^S) =

as before, given by equations (2.58) and (2.59). Therefore, application

kz(?)
~2 2z (6. +28 )max Iz 2z

A,7vn „ .(2) AlY(i) .(2) .(2) A2Y(i)AVY(k,i) = - A<^ + A^.J + A^^ +2 -^1
Al,l 7

r2W / y

uM 
x max

dK

dz
z (6. +6_ +2g ) max Iz 2z

v(?)________
2y (6- +6„ +28 ) 7max ly 2y y

Ky(C) 
2 24y (6. +6O +28 ) Jmax ly 2y y
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Co at 5=0, 1 - 6y < y* < 1 * 6y 

i _ I h - Bz 5 z* < h » Bz 

k£ "" ]

0 at ?=0, elsewhere y* and z*

(2.110)

The equivalent source concentration can again be obtained using 

continuity:

rBy A

'-p '-py z

Solving for C , one obtains

Co 8u(h)y g z g 
k Jmax y max z

(2.112)

Finally, the flux at any position in the along wind direction can

be calculated by

Q
y z max r max

u(z)C(x,y,z)dydz
-y o max

(2.113)

Using the same procedure as before. equation (2.113) can be

reduced to:

Ny+2 Nz+2
Q = 2(6. +6- +2g )y (6, +6„ +2g )z Z E uWW.^^W^C. „ 
Xx k ly 2y y77maxv Iz 2z zv max ^=1 j k J k £ k£ (2.114)
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It should be pointed out that the incorporation of the third 

component of the mean wind velocity, w(z), into the diffusion equation 

(2.94) modifies only one term. Equation (2.105) would have to be 

replaced by the following expression:

dK
w(5)----

dz
R3(-?-) = z (6. +6„ +28 )

max Iz 2z zJ
(2.115)

The procedure to find the edge of the plume in the lateral direction 

at any integration step is also modified with respect to the previous 

models. The centerline will not be at y=0, i.e,, it might be to the 

right or left depending upon the direction of the horizontal mean wind 

velocity.

The concentration at the edges in the y-direction and at the 

effective emission height, i.e., C(n=0, z*=h) and C(n=l, z*=h) are 

compared to a positive or negative value. A negative concentration 

means that the plume, at that downwind position, is wider than the 

actual plume, and therefore the parameter 6^^ or is decreased until 

a positive concentration, at the same x position, is obtained. On the 

other hand, the same procedure used for the previous models is applied 

to positive concentrations at the crosswind direction boundaries. Both 

concentration values are compared to the centerline concentration 

multiplied by some ratio r, and if they/it are/is larger, the parameter(s)

and/or 6 2y are/is increased until the desired accuracy is reached.



-39-

CHAPTER III

PARAMETERS ESTIMATION

Basic parameters are estimated for the simple models through 

parametric studies involving comparison of accuracy and computer time. 

As the complexity of the models increases, most of these parameters 

are kept, and others which are inherent of the model in question are 

estimated for the first time.

Accuracy tests are performed by comparing the calculated concen

tration values to the analytical solution. For this purpose, an error, 

which is used throughout this chapter is defined as,

C - C
e = (-^---^)100 (%) (3.1)

a

where the subscripts a and c stand for analytical and calculated, 

respectively.

The calculations for the present work were done in a UNIVAC 1108 

digital computer.

Mathematical Parameters

Two Dimensional-Continuous Ground Level Line Source

The first basic parameter which is estimated is the number of 

orthogonal collocation points that should be used in calculating the 

concentration distribution. This parametric study is shown in Figure 

3.1. For this case, arbitrary values were assigned to the other
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FIGURE 3.1 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL WITH
ANALYTICAL SOLUTION - PARAMETRIC STUDY ON N
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parameters remaining, i.e., 3 was equated to some small value .006, 

and the ratio of the concentration at the edge of the plume and the 

centerline concentration was assigned a value of 1%, i.e., r = .01.

Concentration comparisons were performed for the effective 

emission height, z=0. The other key variable used to select the most 

convenient number of collocation points, the computer time requirement 

is shown for each case in Table 3.1.

Table 3.1 Computer Time Requirements for Parametric

Study on N - Ground Level Line Source Model

N Time (sec)

4 7

6 17

8 26

10 46

As it was expected, as N increases the error decreases and the 

computer time increases. The differences in the computer time spent 

are not very large with the exception of the last two cases, N=8 and 

N=10. In addition, the error is greatly minimized as N increases from 

4 to 8 interior points, but the difference between the last two cases 

is negligible. Therefore, the number of interior orthogonal collocation 

points selected is 8.
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The next parametric study done, on B, is shown in Figure 3.2.

For this case, r was again given an arbitrary value of 0.01. Time 

requirements are given in Table 3.2.

Table 3.2 Computer Time Requirements for Parametric

Study on B - Ground Level Line Source Model

Time (sec)

.003 31

.006 26

.018 32

An analysis for this case shows that as B increases, the error 

increases for downwind distances close to the emission source. This 

is exactly one of the objectives pursued in using spline collocation 

in problems with a discontinuous initial value profile. Since the 

parameters 6 will have a comparable value to B, small values mean that 

the concentration distribution is calculated only in a region where 

material exists, i.e., within the plume. This region of interest is 

very small close to the emission source. As the pollutant moves down

wind the plume spreads, and therefore the region of interest is 

increased by means of the parameters 6.

The computer time requirements for all cases was almost identical, 

so that a value of .005 was selected for B. Together with the estimation 

of B, the parameters 6^ and must be specified. The procedure is to
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find the pair that will determine a region in space which will contain 

all the material emitted. Since J3 is very small compared to 1 which 

is the entire z* domain, the same value of 0.005 was selected for 6^. 

In order to estimate two cases were simulated in the computer. The

first case had a mass flux at the first integration step higher than 

the emission rate. The other case had smaller than Q such that 

a linear interpolation on both $2 gave the mass flux equal to the 

emission rate. The values for an emission rate of 1 gm/m s are shown in 

Table 3.3.

Table 3.3 Mass Flux vs 62 at the First Integration 

Step - Ground Level Line Source Model

62 Qx(gm/m s)

.004 .9

.006 1.1

.005 1.0

Everytime the concentration at the boundary is larger than zero, 

the region of interest is increased by adding .005 to the previous 

value for 62- This "zero concentration" is assigned a certain fraction 

of the centerline concentration, as it is done in the Gaussian plume 

equation, where r = .10 (10%). This is then the last basic parameter 

to be determined for this model, and the results of the parametric 

study are shown in Figure 3.3 and Table 3.4.
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Table 3.4 Computer Time requirements for Parametric

Study on r - Ground Level Line Source Model

r Time (sec)

.005 31

.01 21

.1 20

As expected, the lower r the better is the description of the pro

cess, i.e., the boundary concentration is closer to zero. But there must 

be also a compromise in the computer time involved. Therefore, r is 

assigned a value of 0.01 for the rest of the present work.

There is one more variable in this model that should be analyzed, 

z , the maximum elevation. If there is an inversion layer, z must max J max
take on that value. On the other hand, if no inversion layer exists, any 

value for zmax can be specified as input data as long as it does not 

create an artificial inversion layer. This could happen if xmax is very 

large, e.g., 10 km, and zmax very small, e.g., 50 m, such that the plume 

reaches the maximum elevation before x max
An increase in the maximum elevation produces a similar effect as 

increasing g. The region of interest becomes wider such that the accuracy 

for downwind distances close to the emission source is aggravated. However 

every time the parameter is increased, a larger z implies more z. max
separation from the ground. This results in fewer situations where the 
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boundary concentration is larger than zero, and thus fewer number of 

computations. In addition, the separations between interior collocation 

points in the z domain are larger so that the concentration gradients 

become smaller. Therefore, the computer time involved is reduced. This 

analysis is shown in Figure 3.4 and Table 3.5

Table 3.5 Computer Time Requirements for Parametric 

Study on z - Ground Level Line Source Model 7 max

z (m) Time (sec)max J

50 45

250 40

500 27

1000 16

Figure 3.4 shows incomplete curves for the cases with zmax equal to 

50 and 250 m. The reason being that at the corresponding downwind 

position the plume reached the maximum elevation and a comparison to the 

analytical solution is no longer valid.

The procedure to find the most convenient maximum elevation would be 

to simulate first a case with a large value for zmax> and then by 

inspecting the results locate the maximum elevation the plume reaches.

A value a little bit higher to the one obtained should be assigned to
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z if accuracy is the objective. For most cases, z = 500 m is max 7 ’ max
reasonable enough, unless the problem involves a very unstable atmosphere 

and/or a very tall stack.

Two Dimensional - Continuous Elevated Line Source

The structure of the technique used to solve this model is different 

to the previous one in the sense that the parameter g is located to both 

sides of the effective emission height. For this reason the number of 

orthogonal collocation points is increased to N = 10.

There is no relation on B for this case and the ground level line source 

model, so that a parametric study was performed. This is shown in 

Figure 3.5 and Table 3.6.

Table 3.6 Computer Time Requirements for Parametric 

Study on B - Elevated Line Source Model

B Time (sec)

.0010 84

.0012 83

.0013 83

.0014 92

.0015 98

.0020 100
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The computer time requirements were similar for all cases, so that the 

selection for 3 was made on grounds of accuracy. Something very peculiar 

happens for this approach in the sense that the errors oscillate between 

zero for the cases of 3 between .0010 and .0014, No explanation can be 

given to this, although it is a fact that as 3 is increased from .0014, 

the accuracy becomes worse, as it should be and was previously discussed. 

The errors were computed at the effective emission height, 100 m. It 

should be pointed out that it would be fortuitous if one of the interior 

collocation points coincided with the effective emission height. This 

is the reason why a one-dimensional Lagrangian interpolation was used to 

obtain the concentration at this elevation. This type of interpolation 

takes into account the concentration at all collocation points, so that 

the error calculated at H, besides Q , shows the overall error involved 

in the solution technique.

A value of 0.0012 was assigned for 3 in this model. The same proce

dure as before was used to estimate the parameters 5^ and • For an 

emission rate of 1 gm/s m. Table 3.7 shows the final values for 6^ and 

62 obtained.

Table 3.7 Mass Flux vs 6^ and 62 at the First Integration 

Step - Elevated Line Source Model

51 52 Qx (gm/s)

.0030 .0030 1.0343

.0026 .0026 .9358

.002861 .002861 1.0001
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The value by which these parameters are increased whenever the 

region of interest must be increased is given a similar value as 5^, 

i.e., .0025.

The same analysis for zmax as previously discussed is presented in 

Figure 3.6 and Table 3.8. The conclusions are exactly the same, but since 

the main objective of the present work is accuracy, zmax = 500 m is used 

when possible throughout the entire research.

Table 3.8 Computer Time Requirements for Parametric Study

on z - Elevated Line Source Model max

Zmax(-m-) Time ^sec)

500 83

2000 27

Three Dimensional Continuous Point Source

Estimation of parameters for this complex model proves that the 

analysis and understanding of the previous simple cases is valuable. 

Determination of a convenient set of parameters to get high accuracy 

would have been difficult without knowledge of the values specified for 

the previous models.

Let us first consider the case where only one component of the mean 

wind velocity is taken into account. In addition to u, both turbulent 

diffusivities, K and K , are assumed constant.y



FIGURE 3.6 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT THE EFFECTIVE
EMISSION HEIGHT WITH ANALYTICAL SOLUTION - PARAMETRIC STUDY ON zmax



-54-

Since the problem can be considered symmetric with respect to the 

centerline (y=0), the technique utilized for the ground level line source 

can be used in the lateral direction. Therefore, N is equated to 8 and 

8 to .005.
y

In many cases air pollution is due to elevated point sources, so that 

the approach used for the elevated line source model can be utilized for 

the z-direction. Therefore, ten interior orthogonal collocation points 

are used in the vertical dimension, i.e.,N = 10, and a value of 0.0012 

is assigned to 8Z-

The procedure to obtain the S' parameters, now there are four, follows 

the one previously discussed. Three of these parameters were given the

same value as before, i.e. 6. =.005, ly 6. =.002861 and the fourth1 z Zi z 
parameter was obtained by comparing the mass flux at the first integration

step with the emission rate. For this model, Q=1 kg/s, and the parametric

study is shown in Table 3.9. A value of ,01069 was assigned to 62y’

vs at the First Integration

Step - Elevated Point Source Model

Table 3.9 Mass Flux

2y Qx(kg/s)

.01 .95607

.011 1.01981

.01069 1,00005
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The increments on these parameters, whenever the boundaries of the 

plume are changed, are the same as the ones used before with the exception 

of 62 which now was changed. Again a comparable value is used for this 

purpose, i.e., 0.015. It should be pointed out that no matter what value 

is given for Q and H, all these parameters do not have to be changed again.

The use of a different method, DRKGS, for integrating the diffusion 

equation along the x direction, as compared to the eigenvalue technique 

utilized before, introduces one more parameter: the upper error bound, 

e, as discussed by Fleischer [8]. A parametric study was performed and 

is shown in Figure 3.7 and Table 3.10.

Table 3.10 Computer Time Requirements for Parametric

Study on e - Elevated Point Source Model

e Time (sec)

IxlO-5 180
IxlO"6 190
IxlO"7 200
IxlO"8 290

The cases simulated involved meteorological parameters that exist for 

very unstable conditions, which will be discussed in the next section. 

This was done in order to have large concentration gradients and the 

possibility of a difficult problem to solve. The error was calculated 

again at the effective emission height. A two-dimensional Lagrangian
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interpolation, which involves the solution at all collocation points, 

was used. The calculated error again gives an estimate of the overall 

error.

An analysis of Figure 3.7 shows that the accuracy is greatly improved 

by modifying the upper error bound from e = 1x10 to e = 1x10 , 

while the computer times involved are similar. The time requirements have 

increased very much compared to the two-dimensional cases because a system 

of 80 first-order ordinary differential equations is being solved for the 

present model.

A closer look at Figure 3.7 shows a peak in the error e at 20 m 

downwind from the source. For practical purposes this does not matter 

very much since the concentration distribution is usually desired from 

50 to 100 m up downwind. Furthermore, this error is 4% which for these 

purposes is quite low. This peak occurs because of the large integration 

stepsize of 10 m at that location. A parametric study on e with a smaller 

stepsize of 2.5 m was simulated next. The absolute error e was identical 

for all previous e used, but not the computer time requirements which 

are presented in Table 3.11.

Table 3.11 Computer Time Requirements for Small Stepsize 

of Integration - Elevated Point Source Model

e Time (sec)

IxlO"5 250
IxlO"6 260
IxlO-7 270
IxlO"8 310
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Since there was no dependence of e in the error for this case, a 

parametric study to check r was performed again, and is shown in 

Figure 3.8. It can be seen that the absolute error is indeed decreased 

by using a smaller stepsize, and the peak is converted to a damped curve 

at downwind distances close to the point source. As expected and 

discussed before, as the ratio increased the error increased and the 
-7

computer time decreased to 250 seconds (c = 1x10 ). The main objective 

of the present work is to develop a highly accurate method of solution, 
-7 

so the small stepsize was adopted with an upper error bound of e = 1x10

The analysis on z discussed for the previous models still holds 

for the three dimensional case. It should be pointed out that an inversion 

layer in the lateral dimension is meaningless. Therefore, ymax must always 

be specified by the user, and if the horizontal spread of the plume has 

reached that value, the solution from that downwind distance until 

would be erroneous. For such a case, y should be increased.

Finally, the parameters for cases with two-dimensional mean wind 

velocities must be specified. These cases must be treated in a different 

way since the concentration distribution is not symmetric to the center- 

line (y=0) anymore. The approach used for the vertical direction is then 

applied to the lateral dimension with y=0 as the analog of the effective 

emission height. Therefore, N^.=Nz=10, 8^=8z=.OO12, all 6 are equated to 

.002861 and their increments to .0025.



STABILITY CLASS A 

H= 100m 

y = O; z = IOOm

.01 .1
x(km)

FIGURE 3.8 COMPARISON OF DOWNWIND CONCENTRATION DISTRIBUTION AT THE EFFECTIVE
EMISSION HEIGHT WITH ANALYTICAL SOLUTION - PARAMETRIC STUDY OF r

-59-



-60-

Meteorological Parameters

General functional relationships and the corresponding parameters 

must be specified for the turbulent diffusivities and velocity profiles 

for completeness of the formulation of the present models. This is 

presented next.

Turbulent Diffusivities K , K 
__________________________ y z

Any work related to air pollution modeling and dispersion processes 

in the atmosphere, which uses the K-theory, must include descriptions for 

the turbulent diffusivities in the lateral and vertical directions, K 
y 

and K^, respectively. Unfortunately, these descriptions vary from one 

work to another. Sometimes experimental data are available, but again they 

usually apply for the specific case in question.

Among the best of these works, Eschenroeder and Martinez [5] relate 

to elevation and most importantly to stability classes, as defined by 

Pasquill and Gifford [18], a parameter that is widely used and known. The 

trapezoidal profile for K^, discussed by Fleischer [8], and the values for 

the maximum constant vertical diffusivities from the knee height up to 

the inversion layer seem to describe fairly well K^. Eschenroeder and
2 Martinez, based on a Los Angeles tetroon data, assigned a value of 500 m /s 

for the constant horizontal diffusivity. Unfortunately, this large value, 

when compared to others, is not appropriate to use as a typical measure 

for Fy. Therefore, their description for is used in the present work, 

but with different absolute values for K and K .z y
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The fact that the Gaussian plume equation, which uses dispersion 

parameters based on experimental data, is the most widely used method to 

determine the concentration distribution helped to develop a method for 

obtaining the turbulent diffusivities. Moreover, one of the most impor

tant questions in air quality is related to the position and magnitude of 

the maximum ground level concentration. Therefore, the three-dimensional 

continuous elevated point source solution, with constant wind speed and 

turbulent diffusivities, was matched to the Gaussian plume equation to give 

the same maximum ground level concentration at the same position. The 

vertical diffusivity was adjusted until the position of the maximum at 

some downwind distance from the source was equal to the one predicted by 

the Gaussian plume equation. Once was determined, the horizontal diffu

sivity was obtained when the spread of the plume was enough such that the 

absolute value for the maximum concentration gave the same as the 

Gaussian plume equation prediction. Typical values for the wind speed, 

depending upon stability classes, were used. Since an analytical solution 

for this model is available, the present method was validated by their 

comparison.

The resulting concentration distributions are shown in Figures 3.9 

through 3.14. All cases were simulated in approximately the same computa

tional time, i.e., 270 seconds. Excellent agreement can be observed 

between the concentration profiles obtained by the present technique and 

the analytical solution. On the other hand, except for the maximum 

ground level concentration, the results do not agree with the Gaussian
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plume equation predictions. This is due to several reasons. The 

Gaussian plume equation corresponds to the solution of a simplified 

continuity equation assuming Gaussian distribution for the plume spread. 

It is a statistical method that makes use of Taylor's theorem [17] for 

the standard deviation, a concept which is not applied to the present 

technique. Furthermore the Gaussian parameters and made functions 

of travelled downwind distance, were obtained and adjusted from the Project 

Prairie Grass field data [1,2,10] which involved a small region of inter

est. The pollutant was emitted at 50 cm above the ground, and most 

samplers were placed at 1.5 m of elevation and along semicircular arcs 

from 50 to 800 meters from the source. The phenomena that occur in the 

lower layers of the atmosphere, such as wind shear,deposition, reflection, 

removal, etc., and the corresponding solution should be used with caution 

to represent most situations. Observation of Figures 3.9 through 3.14 

confirms this analysis in the sense that the more unstable the atmosphere, 

the larger the difference between both methods.

It should be pointed out that the present mathematical technique is 

valid for any type of relationship between the turbulent diffusivities 

and meteorological and/or spatial variables. The more complicated models 

are compared to the Gaussian plume equation in Chapter IV. The selection 

of the present procedure to determine the turbulent diffusivities was 

done in order to present meaningful comparisons besides lack of a reason

able algorithm. The results for the constant vertical and horizontal 

diffusivities obtained are presented in Table 3.12,
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Table 3.12 Constant Turbulent Diffusivities and

Wind Speed used in the Present Method

Stability
Class

Wind
Speed (m/s)

K z 
(m2/s)

K
(m2/s)

A 2 11 18.15

B 3 10.75 25.26

C 5 10.5 30.76

D 6 5.2 46.28

E 3 1.5 30,00

F 2 .325 22.75

Some of the results for the vertical diffusivity are in agreement 

with the ones presented by Eschenroeder and Martinez [5].

The values for presented in Table 3.12 are then used in the 

present work. The ones obtained for Kz are utilized in the constant por

tion of the trapezoidal profile, i.e., from the knee height up to an 

arbitrary elevation of (z -100)m if z >300m and there exists an max max
inversion layer. If this is not the case, the constant value is used 

from the knee height all the way to the top. Eschenroeder and Martinez 

[5] use a knee height that varies from 25 to 75 meters. As suggested by 

Sutton [17], the surface boundary layer ends approximately at 50 meters, 

and therefore this is the elevation at which the knee height was put in 

the present work. The complete description for Kz as used in the present 

work, when applied as a variable with elevation, is shown in Figure 3.15.
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Velocity Profile

Several forms have been used to describe the one dimensional mean wind 

velocity [8]. They all relate u to elevation and roughness or stability 

classes. The power-law form is used in the present work as

m
u = u A (3.2)

1 7.1

The parameters u^, and m should be supplied as input data by a user 

of the present method, although the values in Table 3.13 are given as 

default. Since in most cases the wind speed is known at 10 meters of 

elevation, is equated to this value. Furthermore, the exponent of the 

power-law can be related to stability classes, as presented by 

Seinfeld [16] and shown in Table 3.13.

Table 3.13 Estimates for the Parameters

in Equation (3.2)

Stability 
Class

m u^Zj-lOm)
(m/s)

A .02 2

D .14 6

F .83 2

determined in the following two-dimensional wind velocity description

At some elevation z^ called the geostrophic elevation, which is 
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the mean wind velocity should become constant. Therefore, the complete 

specification for the one-dimensional mean wind velocity is given by

, z .
u = uioW 0<z<z„u (3.3)

m
U = U1O(IO) (3.4)z>z

The value of the velocity at the ground (z=0) is not needed in the 

present work since no interior collocation point will lie in a boundary, 

and the first and last Gaussian quadrature weights used to calculate the 

mass flux at any downwind position are zero.

To describe a two-dimensional wind velocity, one must analyze the 

phenomena that occur within the planetary boundary layer. That is, one 

should include the Coriolis force caused by rotation of the earth and use 

the basic equations of motion for two-dimensional steady mean flow, 

referred to axes fixed in the earth [9,13,17];

-4 1.where f = 2w sin <f> - 1.458x10 sin di --- and is called the CoriolisT sec
parameter, w being the angular velocity of rotation of the earth and 4>

the geographical latitude.

By assuming that the eddy stresses are
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VT = pK -Z— ZX Z dZ

vT = p K zy z 3z

(3.7)

(3.8)

equations (3.5) and (3.6) become

f v - — d-P + d ^u-i _ n p dx dz 3z^ (3.9)

-f u 1 dp 
p dy

+ CK ^) = 0 (3.10)

If the x-direction is oriented parallel to the isobars, i.e. = 0 

and knowing that the free-stream velocity, called geostrophic wind un u 
blows along the isobars, the velocity component perpendicular to the

isobars v vanishes at the height z^. Therefore, from equation (3.10) 

f u„ = u
1 ap 
p dy (3.11)

and equations (3.9) and (3.10) have become independent of pressure.

The Coriolis effect can usually be neglected near the surface. If 

this is assumed to apply from the ground up to the knee height A, 

equation (3.9) and (3.10) can be used to describe the velocity profile 

in the region where is constant. The solution of the equations of 

motion is given by:

u = ^(1 - e az cos az) (3.12)
u
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v = u^e azsin az (3.13)

where
f 35

a = C^-) (3.14)
z

The geostrophic elevation, also used for one-dimensional velocity 

profiles as previously discussed, can be obtained by substituting v=0 

into equation (3.13), i.e.,

-4 -1For a Coriolis parameter of f=10 sec , which corresponds to appro

ximately a geographical latitude of 40° that occurs in the middle of the 

U.S., and the constant values of Kz given by Table 3.12, the resulting 

geostrophic elevations are presented in Table 3.14.

Table 3.14 Geostrophic Elevations used 

in the Present Work

Stability zr(m)
Class

A 1475

B 1455

C 1440

D 1015

E 545

F 255
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For the surface boundary layer, between the ground and the knee 

height A, the power-law form can be used for the component of the velocity 

in the x-direction. Since the Coriolis effect is neglected in this por

tion of the atmosphere, the direction of the velocity will be assumed 

constant and equal to the value that occurs at A=50m, i.e., dependent on 

the stability class. These values are presented in Table 5.15.

Table 3.15 Angle between Wind Velocity and 

Geostrophic Direction for the 

Surface Boundary Layer

Stability 
Class a(°)

A 42

B 42

C 42

D 41

E 37

F 29

The results shown in Tables 3.14 and 3.15 are in agreement with the 

values suggested by Sutton [17].

The complete description for the two-dimensional wind velocity can 

be expressed then by the following algorithm:
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u =
c !z m 
U50 ^lO5

for 0<z<A

(3.16)

v = (tan a)u (3.17)

u = -az uG(l-e cos az) for z>A (3.18)

V = -az u^e sin az for A<z<z„b (3.19)

V = 0 for z>zn b (3.20)

where
c 
U50

,10 ™
(1-e -50a cos 50a) (3.21)

is required for a continuous velocity profile.
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CHAPTER IV

PRESENTATION AND ANALYSIS OF RESULTS

The Eulerian approach was validated by Fleischer [8] through compari

sons between calculated concentration distributions and the few available 

experimental data. The present models have been validated by comparing 

the calculated results with existing analytical solutions. Therefore, the 

main objective of the present work is to obtain concentration distribu

tions for air pollution problems that are either difficult to simulate 

through conventional techniques, such as finite-differences, or which 

have never been solved or presented in the literature.

Two-Dimensional Models

The first problem that was simulated includes pollutant removal from 

the atmosphere, represented by a simplified first order chemical reaction 

model, and applied to the continuous ground level line source case. The
-3 

value of 1.67x10 per minute or 10% loss per hour was used as the reaction 

rate constant. The results, obtained in 27 seconds of CPU time, are 

presented in Figure 4.1. They indeed show that there is no need to 

include chemical reactions to a steady state model since the concentration 

values can be calculated by multiplying the analytical solution to the 
kjx

factor exp(——). This factor is the result of the chemical reaction 

model when solved by itself.

The other two-dimensional model simulated included an inversion layer 

at 250 meters for a continuous elevated line source case, with an
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FIGURE 4.1 DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL - TWO DIMENSIONAL MODEL
WITH CHEMICAL REACTION
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effective emission height of 200 meters. The calculated and analytical 

concentration distributions are shown in Figure 4.2.

The results obtained from the present work in 117 seconds of CPU time 

predict that the plume reaches the inversion layer at a downwind distance 

of 300 m from the source. An inversion layer means that all the material 

reaching that elevation is reflected down. It can be observed that the 

inversion layer starts to affect the concentration at the effective 

emission height at about 1.5 km from the source. Since the analytical 

solution does not take into account the inversion layer, the calculated 

results are higher than the analytical solution for downwind distances 

over 1.5 km.

Three-Dimensional Models

There are an infinite number of situations that could be simulated 

by the three-dimensional models. The most representative have been 

selected and are presented next.

The first interesting problem is to compare the effect of having a 

one-dimensional wind velocity profile as a function of elevation with 

respect to a constant wind speed. This comparison, together with the 

concentration distribution obtained for the case of wind velocity and 

vertical turbulent diffusivity variable with elevation is shown in Figures 

4.3 through 4.5. The results were obtained for the three most important 

stability classes, A, D, and F in approximately 260, 240, and 220 seconds 

of CPU time, respectively.



to
E
CP

o
9

7

5

3

I

0

Q= 1 gm/ms
U = 5m/s 
z max ” 250 m 
H= 200 m

z=200m
----- ANALYTICAL SOLUTION

(NO INVERSION) 

e PRESENT METHOD
I 
00 o

I

TWO DIMENSIONAL MODEL WITH INVERSION LAYER



x(km)

-81-

FIGURE 4.3 DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL - THREE DIMENSIONAL

. MODELS - STABILITY CLASS A
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FIGURE 4.4 DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL - THREE DIMENSIONAL

MODELS - STABILITY CLASS D
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FIGURE 4.5 DOWNWIND CONCENTRATION DISTRIBUTION AT GROUND LEVEL - THREE DIMENSIONAL
MODELS - STABILITY CLASS F
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The wind speed at 10 meters, in equation (3.2), was equated to 

the wind speed for the constant velocity case. This means that the 

velocity below 10 m is lower than the constant wind speed, and that above 

this elevation is higher than u^. The results, as expected, show a maxi

mum ground level concentration lower than for the constant u and model, 

and therefore at a larger distance downwind from the source.

The results also show the influence of the power-law exponent and the 

description of the variable vertical turbulent diffusivity in the ground 

level concentration distribution. A small value for m means that the 

deviation of the variable mean wind velocity with respect to the constant 

profile is negligible as shown by cases (a) and (b) in Figure 4.3. As 

m increases, the deviation from case (a) increases such that for the extreme 

case (very stable atmosphere. Figure 4.5) where m=.83 (Table 3.13) the 

concentration distribution is significantly different.

The description for the variable vertical turbulent diffusivity 

involves a smaller Kz, from the ground up to the knee height, when compared 

to the corresponding constant value. As the instability of the atmos

phere increases, this constant Kz increases and the difference between 

cases (b) and (c) in Figures 4.3 and 4.4 is magnified. An extreme case 

is again a stability class F (Figure 4.5), where no difference exists 

between variable and constant turbulent diffusivity, and therefore cases 

(b) and (c) lie in the same curve,

The Gaussian plume equation is the most widely used model in air 

pollution since the concentration can be obtained in a very simple way. 

Figure 4.6, extracted from Turner [18], shows the ease with which the ground
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FIGURE 4.6 WITH DOWNWIND DISTANCE FOR VARIOUS HEIGHTS 

OF EMISSION - GAUSSIAN PLUME EQUATION
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level concentration can be obtained for any emission rate Q, wind speed U, 

effective emission height H, and stability class. Unfortunately, this 

model should be used only for homogeneous and stationary conditions, 

with all the restrictions discussed in Chapter III.

A graphical method, similar to the one discussed above, is developed 

in the present work for estimation of ground level concentration for the 

several Pasquill-Gifford stability classes. The present computed results 

were obtained for a wind velocity profile which obeys equations (3.3) and 

(3.4), a vertical turbulent diffusivity represented by Figure 3.15, and 

K given by Table 3.12.

The main difference of the present model and the Gaussian plume 

equation is that the position of the maximum ground level concentration 

depends on the wind speed, as it should. Therefore, the variable plotted 

in the abscissa is the time of flight and not x.

The results, for stability class D, are shown in Figure 4.7.

The next more complex three-dimensional model which is solved in the 

present work incorporates a two-dimensional wind velocity profile. In 

order to validate the present results, a constant wind direction case 

was solved first, such that an analytical solution could be available.

A continuous point source emitting 1 kg/s of material at an effective 

emission height of 100 m into a neutral atmosphere (constant diffusivities) 

with a constant axial velocity of 6 m/s and a lateral wind speed of 3 m/s 

in the negative y-direction was simulated using the present technique. 

The results are compared to the analytical solution with a constant wind 

speed of the resultant velocity, i.e., 6.71 m/s. The concentration
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distribution at ground level and at the effective emission height are 

presented in Figure 4.8. The agreement is excellent. It should be pointed 

out that again the concentration at z=100 m is obtained through two- 

dimensional Lagrangian interpolation, and therefore shows the overall 

error involved in the computed results. The computer time was 800 seconds.

With the present work validated for the case of a two-dimensional 

wind velocity profile, the next step was to solve the problem with the 

Coriolis effect. The wind velocity was represented by equations (3.16) 

through (3.21) and the vertical diffusivity profile by Figure 3.15. The 

constant horizontal diffusivity was given by Table 3.12. The geostrophic 

velocity was taken to be the same as u^ given by the power-law equation, 

with u^ for a stability class D assumed to be equal to 6 m/s. A value of 

u-, = 11.45 m/s was calculated for these conditions, u 
3Isopleths of 3 mg/m for the present model and the constant wind 

speed and turbulent diffusivity are shown in Figure 4.9. Both cases are 

quite different, as expected. The centerline for case (a) occurs at y=0 

while for case (b) is skewed to the left. Furthermore, the areas are 

different but the mass flux is the same, i.e., 1 kg/s. The reason being 

that in general, the concentrations for the constant case are higher than 

for the Coriolis model, e.g., the maximum concentrations found were 
3 35.36 mg/m and 5.00 mg/m , respectively. The peculiar form of the curve 

at the left, i.e., more voluminous is due to the effect that the isopleth 

has reached the ground and the material is being reflected upwards.

Figure 4.10 shows the comparison of the Coriolis model to the 

Gaussian plume equation for the ground level concentration at both
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centerlines. Cases (b) and (c) were obtained for a wind speed equal to 

the resultant of the velocity for the present model at the effective 

emission height, 100 m, and at an elevation of 50 meters, respectively. 

The three cases were obtained for neutral stability, and the results are 

quite different.

Since the wind speed used for case (b) is 4.3 m/s, it would be 

more appropriate to obtain the solution using the Gaussian plume equation 

for a stability class C. This concentration distribution is also shown 

in Figure 4.10 as case (d), and the comparison to the present model is 

closer, at least in the downwind position and the value of the maximum 

ground level concentration. For the wind speed of 2.3 m/s no stability 

class was found that would give a Gaussian plume equation solution closer 

to the present model.

It should be noted, as has extensively been done before, that less 

rigorous mathematical parameters can provide a decrease in the computa

tional time. The Coriolis model case (a) was obtained in 880 seconds of 

CPU time. A similar problem was simulated next, but the mathematical 

parameter r was changed to 0.1. A comparison of the mass fluxes at 

several downwind positions is shown in Table 4.1.
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Table 4.1 Mass Rates at Several

Downwind Positions - Coriolis Effect

x(m) Qx(kg/s)

r = .01 r = .1

10 1.0026 1.0031

20 1.0011 1.0108

50 1.0003 .9990

100 1.0067 .9759

200 1.0054 .9881

500 .9976 .9902

960 .9992 1.0348

2000 .9874 .9973

4000 .9846 .9768

It can be observed that the results for the case with r = 0.1(Q=l kg/s) 

are still adequate as compared to the simulation using r = 0.01, but the 

main difference lies in the computer time involved of 580 seconds.
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CHAPTER V

SUMMARY OF RESULTS, CONCLUSIONS AND RECOMMENDATIONS

Turbulent diffusion from single ground level or elevated line or 

point sources in the atmosphere was successfully simulated using the 

K-theory and solved by spline orthogonal collocation. Improved mathe

matical techniques were used to describe the plume, which is generated 

at the source, by means of moving boundary conditions. This implies that 

the edges of the plume are known at any downwind distance from the source, 

and the concentration distribution is obtained only within the region of 

interest, i.e., in the plume. Although the solution was calculated at 

the orthogonal collocation points, accurate two-dimensional Lagrangian 

interpolation was used to obtain the concentration at other desired posi

tions such as the effective emission height.

Several techniques for solving the resulting system of first-order 

ordinary differential equations with respect to the along wind direction 

were tested in the present work. An eigenvalue method was selected for 

the two-dimensional models, and the three-dimensional models were solved 

by a fourth-order Runge-Kutta method.

The present work was used to simulate steady state air pollution 

models. Mathematical parameters, inherent of the techniques developed, 

were determined through parametric studies. The values assigned for 

these mathematical parameters should remain unchanged if the present work 

is used for other problem specifications.

Empirical equations were used to describe the mean wind velocity 
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and the turbulent diffusivities. Several meteorological parameters were 

included in these equations so that many atmospheric conditions can be 

simulated by the present technique. A two-dimensional wind velocity profile 

including the Coriolis effect, obtained by solving the equations of motion 

analytically, was incorporated in the three-dimensional air pollution 

model.

Excellent agreement was observed between the calculated concentra

tion distribution and the analytical solution for cases where the latter 

exists. The present model had also an excellent response to variations 

in atmospheric conditions. This was obtained by simulating hypothetical 

cases. In addition to the concentration distribution, the flux across 

any plane normal to the along wind direction was calculated. Its com

parison to the constant emission rate (steady-state models, no removal 

processes) was excellent. All the results were obtained with a very 

reasonable amount of computer time. This computational time could have 

been decreased by changing some mathematical parameters, but it was 

decided not to do so in order to obtain very accurate results. A 

graphical method for presenting computed results was developed to permit 

estimation of ground level concentration for any source emission rate, wind 

velocity and effective emission height for neutral stability.

Several extensions to the present technique should be investigated 

and are recommended next. They cover a wide spectrum of air pollution 

problems and do not involve significant changes to the present method.
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1) Solution of pollutant dispersion from multiple sources in the 

atmosphere can be obtained by superposition of the effects of the 

individual plumes [4]. This involves only bookkeeping of the solutions 

in the computer. The present method required approximately 20 and SOK of 

storage for the two and three-dimensional models, respectively, leaving 

enough room for solving this type of problem. It should be pointed out 

that the CPU time would be the one used in the present work multiplied

by the number of sources involved. If the number of sources is very 

large it might be more convenient, timewise, to treat them as area 

sources and use finite-difference as the numerical technique.

2) There is sometimes a need for solving air pollution models 

involving complex terrain such as buildings, hills, etc. The idea of

a vertical moving boundary, similar to the one used in the present work, 

but fixed to the description of the terrain could be used to solve this 

type of problem.

3) Finally, unsteady-state models are of some interest in air 

pollution modeling. Sources with emission rates as functions of time, 

problems involving complex removal processes and/or meteorological 

parameters variable with respect to time are typical examples of 

situations that are represented by unsteady-state models.

An unsteady-state model was tried using the present technique. It 

required the solution of 800 first-order ordinary differential equations 

at each time-step of integration. The method was abandoned because it 

involved an excessive amount of CPU time.
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Experimental data for time-changing emissions and also meteorologi

cal conditions are usually given in time intervals of one hour or higher. 

This suggests then to utilize a "quasi-steady-state" assumption. A 

solution using the present model could be obtained and applied to some 

interval of time, comparable to xmax/u- Each interval could be assumed 

sufficiently long to permit full development of the concentration distri

bution at all locations. This could be a poor approximation at low wind 

speeds. The extreme case studied in the present work, the very stable 

atmosphere, involved a time interval of approximately 2 hours for the 

maximum downwind distance considered significant. The general unsteady

state situation could then be obtained through a sequence of steady-state 

intervals. In general, both the pollutant emission and the meteorological 

conditions could then be varied between the consecutive time periods.

Finally, air pollution models involving complex removal processes 

could be treated in a similar way. The chemical kinetic terms generally 

require smaller time steps for stability when compared to advection time 

steps. This suggests then to separate the solution of the removal 

processes from the diffusion equation for any advection time step. The 

present method could be used to obtain the concentration distribution for 

a time step equivalent to Ax/u, Ax being the integration step in the 

downwind direction. The chemistry would then be calculated until the 

chemical time equals the advection time. The process of first calculating 

advection and then incorporating the chemistry solution could be repeated 

as long as desired. This splitting technique has been used by Eskridge 

and Demerjian [6,7] and by Rizzi and Bailey [15].
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APPENDIX A

COMPUTER PROGRAM LISTING

Part of the computer program used for the three-dimensional - 

Coriolis effect model is shown next. The main programs for the other 

models and the subroutines common to all of them can be obtained from the 

Chemical Engineering Department at the University of Houston. All 

statements are written in Fortran IV. These programs have been executed 

in IBM 360/44 and UNIVAC 1108 digital computers.



PAGE 1

1 : C **4*********4*******************************44***********************^^IM 1 ?
2 : 0 NA IN 2C
3: c THREE DINENSICNAL NCDEL kITH CCRICLIS EFFECT NALJ 33
4: c N A IN 4 2
5 : c CEVELOPED 8Y NIGUEL T. FLEISCHER NAIN 5 0
6: c N A IN 6C
7: 0 *********************************************4***********************NAIN 7J
8 : c NAIN 3 3
9: c N A IN SO

10: c NOMENCLATURE NAIN IOC
11: c NAIN lie
12 : c AKYR,AKZB - TURBULENT DIFFUSIVITIES NAIN 12C
13: c ALPHA - CONSTANT TC DETERMINE THE HCRIZCNTAL DIFFUSIVITY MAIN 13C
14: c AM,AMM - CLNSTANTS USED IN THE VELOCITY PROFILES NAIN 140
15: c BETAY,BETAZ - MATHEMATICAL PARAMETERS IN MODEL NAIN 15)
16: 0 CBX - EQUIVALCNT SOURCE CCNCENTRAT ICN MAIN 16C
17: c C(Y,Z) - MEA>I CONCENTRATION AT Y AND Z NAIN 170
18: c DKN(ISTB) - KNEE HEIGHT FOR AKZB NAIN 18?
19: c DUN(ISTB) - REFERENCE HEIGHT FOR POWER-LAW VELOCITY PROFILE MAIN ISl
2 J: c D1Y,...,D2Z - MATHEMATICAL PARAMETERS IN MODEL MAIN 2n i
21: c CD1Y,.,DD2Z - INCREMENTS OF THE PREVIOUS PARAMETERS NAIN 213
22 : c HGZO(ISTB) - GEOSTROPHIC ELEVATION MAIN 2 2C
23: c HSKN - IF GT H, NC SECOND KNEE HEIGHT FOR AKZB MAIN 23C
24: c ISTB - STABILITY CLASS (1 VERY UNSTABLE, 6 VERY STABLE) MAIN 24')
25: c NY,NZ - NUMBER OF COLLOCATION POINTS IN Y,Z DIRECTIONS NAIN 25 J
26: 0 OS - SOURCE STRENGTH MAIN 26C
27: c RATIO - RATIO OF BOUNDARY TC CENTERLINE CONCENTRAT I CN NAIN 270
28 : c SEL - EFFECTIVE EMISSION HEIGHT (LIMITS C TO 1) NAIN 28?
29: c U,V - WIND VELOCITY IN X,Y DIRECTIONS MAIN 290
3n: c UCR - VELOCITY AT GROUND LEVEL MAIN 3C'
31 : c US - VELOCITY AT THE EFFECTIVE EMISSION HEIGHT MAIN 3 10
32 : c LST - GEOSTROPHIC VELOCITY MAIN 3 2r
33: c WY.WZ - QUADRATURE HEIGHTS MAIN 3 3 0
34: 0 X,XB,DX - DOWNWIND DIRECTION, INITIAL VALLE, INCREMENT NAIN 34^
35: c XMAX,YMAX,H - MAXIMUM DISTANCES IN X,Y,Z DIRECTIONS MAIN 3 c 0



PAGZ

36: 0 Y,Z - LATERAL ARD VERTICAL DIRECTICRS MAIN 36 1
37 : C MAIN 37 J
38 : IMPLICIT REAL*3(A-H,C-Z) MAIN 3 8 2
39: EXTERNAL FCT MAIN 392
4f : DIMENSION FAY(12),FAZ(12),FB(12),FC(12),Pn(12),RTZ(12), MAIN 4 J J
41 : 1AY(12,1?),EY(12,12),AZ(12,12),BZ(12,12),WY(12),WZ(12), main 4 1''
42: 2VEC(12),A1Y(12),A2Y(12),A1Z(12),A2Z(12),6VY(12,12), M A I m 4 2 3
43: qY(12),Z(12),AKY(12,12),AKZ(12,12),DAKZ(12,12),ACTY(12),ACTZ(12), MAIN 43 I
44: 4YINTP(12),ZINTP(12),P(136),CECO(12),EHCO(12),CECCY(12 ) , MAIN 44 1
45 : 5C(12,12),CC(12,12),Pk(106,120) t MAIN 4 5*'
46: 6PR^T(5),nY(irc),ALX(8,lCn),CKN(6),DUR(5),FG5C(6), M A IN 4 6 2
47: 7R1(12),R2(12),R3(12),R5(12),R6(12),AKYR(12),AKZB(12),CAKZP(12), MAIN 47 )
48 : 8L(12) ,V(12) MAIN 4 82
49: C MAIN 49
56: C READ AND kRITE INPUT DATA main 5 3'}
51: 0 MAIN ^1 )
52: 1- E AD ( 5, 1 22 ) A Y,NZ , ISTP MAIN G 7 *
53: 1 FCRMATI3I5) MAIN 5 3"'
54: REAC(5,161) XMAX,H,YMAX,ALPHA,AK MAIN 5h )

5 7>: 1 "1 FORM AT(5D15.4) MAIN 552
56: READ(5,1C6) 1ST,AM ,LGR ,QS ,SEL MAIN 5 6'"
57: 166 FURM\T(5D15.4) MAIN 5 7 ■'
58 : P.EAD(5,98) (DKN(I), 1 = 1,6) MAIN 58 v
59: 5P FORMAT!6016.1) MAIN 5 9 C
6?: READ(5,99) (DU'KI), 1 = 1,6) MAIN 6 v2
61 : ?EAC(5,99) (FGEC(I), 1=1,6) MAI N 6 1 ’
62: 99 FORMAT!6D1C.1) MA I '1 6 2
63: R5AD(c,li!4) (PRMT(I), 1 = 1,4) MAIN 6 3 '
64: 1 4 F0RMAT(4C15.4) MAIN 64 J
65: PrAD(5,l'2) C1Y,D2Y,PAT IF , EETAY MAIN 6 5F
66: READ(5,K2C) D 1Z , D2Z , Br T A Z MAIN 65'1
67: 1 >2 FLRMAT(4C15.4) MAIN 67')
68: li FORMAT(3D15.4 ) MAIN 6 8 '
69: READ(5,1C3) XC,PX,CD1Y,DC2Y M A IN 6 -3r
73: READ! 5, L 2) DD 1Z , C C2Z , F SK N , AM Mi MAIN 7 ,
71 : 1 3 rOPMAT(4D15.4) MAIN 7i:
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72: kRITE(6,lC5) (PRMT(I), 1=1,4) MA IN 72?
72 : 1 FUPM4T(10(/),2CX,«PRMTS =*,4(E15.4,IPX)) MAIN 7 3'1
74: VmRITE(6,4C0) XMAX,YMAX,H, SEL, UST,UGR, AM, amv ,QS, ALPHA,AK, XC,DX, MAIN 740
75: lRATin,BETAy,BETAZ,DlY,rD2V,DlZ,02Z,CriY,rr2Y,CDlZ,CC2Z,NY,NZ,ISTB, MAIN 7 5C
76: 2CKN(ISTB),CUN(ISTR),HSKN,HGEO(I STB) MAIN 760
77: 4 FOPMAT(2(/) ,20X,'XMAX =•,Fl 5.4,1OX,•YMAX =',F15.4,10X, MAIN 7 70
70: 1’H =' ,F15.4,1CX,'SFL =' , F15.4,2(/) , 20X,'UST =' , F15.4,1JX, MAIN 7 80
79: 2'UGR =*,F15.4, 10X, 'AM =',F 15.4,2(/),2CX , •AMM =' , F15.4,1OX , MAIN 799
80: 3'CiS =' ,F15.4,10X, 'ALPHA = ', F 1 8.4, 1 0 X , ' AK = ' , E 1 5.4,2 ( / ) , MAIN pr u
81: 42.X,'X"1 =' ,E15.4,10X,'DX =' , El 5.4,1 OX ,' R AT IC = ' , E15.4,1C X , MA LN 8 10
82: 52(/) ,2CX, 'BFTAY =',E15.4,1CX,'BETAZ =',E15.4, MAIN 823
83: 62(/),29X,'C1Y =',E15.4, MAIN 839
84: 7bX,'D2Y =',E15.4,1JX,'D1Z =',E15.4,11X,'C2Z =',E15.4,2(/), MAIN 840
85: fl?ny,'CDlY =',E15.4,5X ,1DD2Y =•,E15.4,10X,•CDIZ =',E15.4,5X, MA I 4 859
86: 9'Cr2Z =',E15.4,2(/),29X, 'NY =',I3,9X,'NZ =',I 3,9X , 'ISTB =' , I 3,2(/) MA I N 86 )
87: *,2rX,'DKN =' ,F15.4,1CX,'DUN =' , F15.4,1?X, ' FSKN =',F15.4,1?X, MA IN 87 1
88: *'HGcO =',F15.4,/) MAIN 88 3
89: C MAIN 39?
99 : C initialization MAIN 90 2
51: c MAIN 9LJ
92: IQjK YP = O MAIN 922
93 : 1CKYM=O MAIN 9 3 )
94: I I()KY = 0 MAIN 940
95: I ST= J MAIN 959
96: FSEL=SEL*F MAIN 96 3
97 : DMULY=1.DC MAIN 970
98: D^ULZ=l.Dl MA IN 9 °C
99: D19Y=D1Y MAIN 99 3

ICO: D1-’Z = D1 Z M A I N 1C C A
l-'l: D2VY=D2Y MA IN 1C 10
11'2: D2 ''Z = C2Z MA IN 1929
1L’3: isT Y= \| Y 4-2 M A I N 1 9 3 )
1^4: N1Y=NY+1 M A IN 1 ,'4O
10 5: NTYH=NTY/2 MAINES'1
106: NTYH1=NTYF+1 MAIN! 9 6'1
L,7: NTZ=NZ+2 M A IN 1C 7
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108: N1Z=NZ+1 MA INI OBJ
1C9: Nr'IM = NY*NZ MA IN 109C
1 R : r. MA INUOO
111 : C CALCULATICN UF URTHOGUNAL POINTS, OLADRATIRE WEIGHTS, MAIN111J
112 : 0 AMD MATRICES A AND B MA INI 12 0
113: C MA IN 113^
114: CALL JCOB I ( 1 2,NY,1,1,r.ODO,CeCDC,FAY,FB,FC,RTY) MAIN1140
115: CALL CFCPR(12,NY,1,1,I,3,FAY,FR,FC,RTY,WY) MAIN115 2
116: DO 457 I=1,NTY A IN 1 16 C
117: CALL DFOPR(12,NY,1,1,1 ,1,FAY,FB,FC,RTY,VEC) NA INI 170
118: Cl) 2 K=1,NTY NAIN1180
119: 2 aY(I ,K)=VEC(K ) M A IN 119 C
12n: CALL DFOPRt12,NY,1,1,1,2,FAY,FB , FC , RTY,VEC) MA 1111200
121: CO 3 K=1,NTY NA IN121')
12? : 3 t5Y( I ,K) =VEC (K ) MA IN 12?'
123: 457 COMTINLE MA IN123C
124: CALL JCOB I ( 12,NZ,1,1,C.CDC,C.CDC,FAZ,FB,FC,RTZ) N A IN124.t
125 : CALL CFCPRt12,NZ,1,1,I,3,FAZ,FR,FC,RTZ,WZ ) NAIN125r
126: DC 45F I=1,NTZ MA IN 126 J
127: CALL DFOPRt12,NZ,1,1,I,1,FAZ,FB,FC,PTZ,VEC) NA IN127O
128: LG 222 K=1,NTZ NA INI 28")
129: 222 AZ(I,K)=VEC(K) MA IN 1290
13u: CALL DFOPRt 12, 1Z , 1 ,1 ,1 ,2 , F AZ , FR , FC , RT Z , V FC ) MA IN1330
131: CU 333 K=1,NTZ N A I N13 1 J
132 : 333 8Z(I ,K)=VEC(K) MAIN132C
133: 458 CONTINUE M A IN 1 3 3 n
134: NS=NY*NZ N A IM34?
135 : X = xr NAIM350
136: C MA IN 13 60
137: C INITIAL CCNDITION DE TERM I KATICN NA IN137C
138: C NAIN138'>
139: CALL VELD IF ( Z ,H,Ui,P,UST, AM,U, V, I STB, AL P H A , N T Z , AK YB , AKZ B , D AKZ B, MA IN 1390
14f': 1SZL,C,US,CKN,DLN,HSKN,HGEC,AMM) NA IN 14C0
141 : PV=-UST*DEXP(-SEL*H/AM)*DSIN(SEL*H/AM)/US NA IK1411
142 : CnX = CS/8.C0/l)S/YMAX/H/BET AY/BET AZ NA IN 142 0
143: DO 26 J=1,KZ MAIN 143'’
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144 : on 26 1=1,NY MA IN 1442
145: JJ=I+(J-1)*NY MA IN145C
146 : PP=1 ,CDO MAIN146J
147 : I F ( ( D1Y+ D2Y + 2 • Cn* B ET AY ) *P T Y ( I + D-D1Y) 2 9,25,27 MAIN147'.
14R: 2 9 P(J J)=C, 'DC MAIN148C
149: CU TO 26 MA IN1493
150; 2° FP=U.CCO M A I N 15 C 3
151: GO TO 299 MA IN 15 10
152: 27 IF((niY+D2Y + 2.D<J*BETAY)*RTY(I + l)-DlY-2.Cr*EETAY) 299,298,297 MA IN 152?
153: 297 P(JJ)=O.OLO MAIN1533
154 : GO TC 26 MA IN 1542
155: 299 PP=C.5DC MAIN155C
156: GO TC 299 M A IM560
1^7: 299 IF ( ( D1Z + D2Z + 2.DC'*RETAZ )*RTZ (J + l )-01Z ) 39,38,37 M A I N 15 7 0
15°: 39 P(JJ)=3.GDC MA IN 1580
159: GU TO 26 MA INI 593
16.': 3.8 P ( JJ ) =0 •5C0*CBX MA IN16CC
161: GO TC 26 MA IN 16 1C
162: 37 IF((D1Z+02Z+2eDC*BETAZ)*RTZ(J*1)—D1Z—2«Cr*EETAZ) 36,35,34 MAIN1629
163 : 34 P(JJ)=3.oCQ MAIN1633
164: GO TC 26 MAIN 1640
165: 05 P(JJ)=n.5CC*CBX MA LN 1650
166: GU TC 26 MAIN1663
167: 36 P(JJ)=0BX*FP MAIN167G
165: 26 CONTINUE MA INI 6 8C
169: C M A IN1693
170: C CALCULATICN CF EXPRESSIONS USED IN MODEL (DEPENDENT MAIN17C0
171: C OF THE NUMBER CF CCLLOCATICN POINTS ONLY) MAI vil71C
17?: c MA IN 1720
173: C=NY=AY(NTY,1 )*AY(1,NTY)-AY(1,1 ) *AY(NTY,NIY) MAIN1730
174: no 41 1=2,MY MA IN 1740
175: A2Y(I)=AY(1,1)*AY(NTY,I)-AY(NTY,1)*AY(1,I) MA If.! 175C
176: A1Y(I)=AY(1,I)+AY(1,NTY)*A2Y(I)/DENY MAIN1763
177 : 41 CONTINUE MA IN 177 0
173: Drh|Z = AZ ( N1Z , 1 )*AZ ( 1 ,fsTZ)-AZ (1 ,1 )* AZ ( NTZ , NTZ ) MA IN 178?
179: CO 441 1=2,N1Z MA IN1793
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18u:
181 :
182 :
183:
184:
185 :
186:
187:
1 88,:
189: 
19G:
191:
192 :
193:
194 :
195 :
196:
197:
193:
199:
213: 
2C1:
2 2 2 :
20 3:
2 04: 
2n5:
20 6:
207:
C. 23: 
2C9:
2io:
211 :
212:
213:
214:
215:

P^Gt 6

A 2Z( I )=AZ(1,1)*AZ(NTZ,I)-AZ(NTZ,1)*AZ(1 , I )
A1Z(I)=AZ(1,I)+AZ(1,NTZ)*A2Z(I)/DENZ

441 COrjTINUE

M ix IN 180 3 
NZ1IN181U 
NAIN182C

C NA IN 1830
C LOOP FUR CHANGING THE BCUNDARY POSITIONS
C

20 CON'TINLE
VftR1Y=DA8S(D1Y+BETAY-.5DC)
VAR2Y=CABS(C2Y-1.)DO+.509+BETAY)
VAR1Z=DABS(C1Z+BETAZ-SEL)
VAP21=DABS(D2Z-1.CDC+SEL+BETAZ)
WRITE(6,5Cfc) C1Y,C2Y,DIZ,C2Z

6 FOPMAT(5(/) ,1OX,'D1Y =•,F10.7,5X,’D2Y = ' ,F19.7,10X, 
1’DIZ =•,F1C.7,5X,«D2Z =' ,F10.7,1(/) )
DO 8 1=1,NTY
Y(I) = (D1Y + C2Y + 2.O'>*RET AY)*RTY(I) + .5C?-BETAY-D1Y

8 ACTY(I)=(2.D0*Y(I)-l.DC)*YYAX
DU 88H 1=1,MTZ
Z(I) = (D1Z + C2Z+2.D »*BETAZ)*RTZ(I) + SEL-BETAZ-C1Z 

88 8 ACTZI I) =Z( I )*H
RSEL= (BFTAZ+D1Z ) / ( D1Z+D2Z +2. DC-*BET AZ )
PYr=(RETAY+DlY)/(blY+C2Y+2.D9*RETAY)
AP.Y? = (2.DC*0. SC'-l . DO )»YI^AX

C

PAIN1849 
I* A I M 8 5 C 
MAIN186C 
PA IN187C 
PAIN18RJ 
MA IN189L 
MA IN19C9 
MA INI91 1 
MA IN192C 
MA IN193G 
MA INI94 ") 
MAIN 1950 
MA IN 1962 
MAIM97D 
M A I N 1 9 8 C 
MA IN 19 9 2 
MA IN2C00 
M A I N 2 01 9 
MA IN2C2C 
MA IN2C3G

C CALCULATICN OF THE DIFFERENTIAL EOLATIONS COEFFICIENTS
C

CALL VELD IF(Z,H,UGR,LST,AM,L,V , IST8 , ALPFA , NTZ,AKY8,AKZ8,CAKZE, 
lSrL, 1 ,US, DKN,DUN,HSKN ,HGEC, AMIM)
LO 253-) L = 2,N1Z
R1(L)=L(L)/XMAX
R2(L)=V(L)/2.L)L/YMAX/(D1Y + D2Y+2.DO*BETAY)
P3(L)=DAKZfe(L)/H/(01Z+D2Z+2.DD*RETAZ)
P5(L)=AKYF(L)/4.D./YMAX/YMAX/(D1Y + C2Y+ 2.CO*PETAY )**2
P 6(L)=AKZB(L) /H/H/(D1Z + D2Z+2.DO*BFTAZ)/(C1Z + C2Z + 2.CP*BETAZ)

MA IN2"'4 3 
MA1N2C52 
MA IN2C6 3 
MAIN2r79 
MAIN2O8O
MA IN2C9C 
MAIN? ID "> 
MAIN2113 
MAIN212C 
MA IN2 13^

2-""'^ CONTINUE MAIU214J
DO l^ K = 2,MY M A IN 2 1 5 0

I
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2'16 CO 15 1 = 2,N1Y M A I N 2 16 I
217 Ar.Y(K,I) = (-BY(K,l)*AlY(I)/AY(l,l)+RY(K,I)4 MA IN217C
218 lbY(K,NTY)*A2Y( I ) /DENY) MA IN 2189
217 AVY(K,I)=(-AY(K,1)*A1Y(I)/AY(1,1)+AY(K,I)4 MAIN2193
22^ 1AY(K,MY)*A2Y(I)/DENY) MAIN22CC
221 15 CONTINUE MA IN221C
222 Efj 155 L=2,N1Z NAIN22Z7
223 t)C 155 1=2,MZ NAIN223n
224 AKZ(L,I)=(-BZ(L,l)*AlZ(I)/AZ(l,l)+eZ(L,I)4 MAIJ224C
225 1CZ(L,NTZ)*A2Z(I)/DFNZ) MAIN225?
226 CAKZ(L,I)=(-AZ(L,i)*A1Z(I)/AZ(1,1)+AZ(L,I)4 MAIN226C
227 1AZ(L ,NTZ)*A2Z(I)/DENZ) MAIN227C
228 155 CLNTINUF NAIN2287
227 co in j=i,ns MAIN229')23~ DC 1. 1=1,NS YA IN23C 1
231 ir PMJ,I)=C.CDC MA IN231C
232 CC 113 K=1,NZ MAIN2321
233 LT 113 IJ=1,NY MA IN233'-
234 JJ=IJ+(K-l)*NY MA IN234C
235 CO 112 J=1,NZ MA IN235O
236 1=IJ+(J-l)*NY MAIN226C
237 11? Pk(JJ,I)=Pk(JJ,I)4-AKZ(K+l,J+l)*R6(K + l)/Rl(K41) + MAIN237C
238 1CAKZ(K+l,J+l)*R3(K+l)/Rl( K+1) Mw IN2389
239 CU 14 J=1,NY MAIN?390
24 " I=J+(K-1)*NY YA IN24CC
241 14 PW(JJ,I)=Pk(JJ,I)+AKY(IJ+l,J+l)*R5(K+l)/Rl(K+l)- MA IN2410
2 42 1AVY(IJ+1,J41)*R2(K+1)/R1(R+1) MAIN242O
243 113 CONTINUE MAIN?43C
.l44 C MA IN244C
245 C INTEGRATION USING DRKGS MA IN2459
246 C MAIN24tiC
247 1 CONTINUE MA IN247C
248 SLJM=C .DC MA IN2480
247 KK=NCIM-1 MAI N2499
25^ DO 31 1=1,KK MA IN2 5Cr
251 CY(I )=1.DC/DFLCAT(NDI M) MA 1'4251?
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252: 31 SL8=SLM+DY(I) MA 10 2 5 2C
253: CYLMDIM ) = 1.DO-SLM M IN2530
2 54: X"=RRMT(1 ) NAIN2549
255 : G X'' = DX MA IN25 5C
256: PRMT( 2) =PRMT( D+DX MA IN2563
257: PRMT()=CX MAIN257j
258: CALL DR KGS(PRKT,P,DY,NCIM,IHLF,FCT,AUX,PW ) VAIN 25 FC
259: X = PR^T( 1) MA IN259C
2 60: 6 5 IF(X .GT.l.CCDO) STOP M AIN2690
2 61 : IF(X.GE. .990-07) DX=3.DD-27 MAIN2615
262: IF(X.GE..990-06) DX=3.nD-U6 MA IN 2620
263: IF(X.GE..S9D-C5) DX=1.CD-C5 NAIN263C
2 64 : IFtX.CE..990-04) CX=0.5D-C4 MAIN264r)
265 : IF ( X.GE..990-03) D X = 'j . 2 5 D-r,3 MA IN26 5C
26o: IF(X.GE..99D-C2) DX=C.25D-C2 MA IN266?
267: IF(X.GE..990-01 ) LX=O.1CD-C1 MA INZbZ^
268 : IF(X.GE..499) DX=U.250-91 MAIN26PC
269: IF(X.GT.C.1D-C1) IICKY=1 MA IN269C
270: C MAIN27 lb
271 : C TRANSFORPATICN OF THE DRKGS RESULTS INTO A C(Y,Z) FORN MAIN271C
2 72: c MA IN272C
273: J=1 MA IN2730
274: Ll = l MAIN2749
275 : L2 = NY MA IN 2 75C
276: 8 1 DO 72 L=L1,L2 MA IN276C
277: K=L-(J-1)*NY MAIN277^
z78: KK=K+1 MAIN278C
2 79: JJ = J+ 1 MA IN279C
280: C(KK,JJ ) = P(L ) MA IN280 9
281 : 7'1 CONTINUE MAIN281C
282: J-J+l M A IN 2 8 2 3
283: IF(J.GT.NZ) GO TO 82 MA IN2830
2 84: L1=L2+1 MA IN2840
285 : L2-L2+NY MA IN2F5L
2 86: GO TO 81 M A IN286C
287: 8 2 CONTINUE MA IN2870
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28U: C PA IN2880
2 89: 0 CALCULATICN OF THE BOLNDARY CONCENTRATIONS PAIN2890
29 C NAIN29CC
291: DO 83 1=1,NTZ PAIN291L
292: C(1, I ) = 0.CDu PAIN292 3
293 : 83 C ( fjTY , I ) =C e pD0 P A I N 2 9 3 C
2 94: DO 833 J=1,NTY PA IN294C
295: c (J, 1 ) = o.CDe PA IN2953
296: 833 C(J,NTZ 1=3.000 PAIN2960
297: CO 84 L = 2,MZ PA IN 297C
293: DO 84 1=2,N1Y MA IN2980
299: C(1,L)=C(1,L)-A1Y(I)*C(I,L)/AY(1,1) PAIN2990
303: 84 C(NTY,L)=C(NTY,L)+A2Y(I)*C(I,Ll/CENY PA IN3CCr
301: DC 844 K=2,N1Y v A IN 3 n 1 j
3U2: CO 844 1=2,N1Z P A IN 3 r 2 j
3'3: C(K,1)=C(K,1)-A1Z(I)*C(K,I)/AZ(1,1) PA IN 3C3C
3C4: 844 C(K,NTZ)=C(K,NTZ)+A2Z(I)»C(K,I)/CENZ PA IN3D4C
305: CO 85 1=2,N1Y PAIN3959
3n6 : C(1,1)=C(1,1)-A1Y(I)*C(I,1)/AY(1,1) PA IN3C6C
3C7: C(NTY ,1)=C(NTY,1)+A2Y(I)*C(I,1l/CENY PA IN 3972
308: C(1,NTZ)=C(1,NTZ)-A1Y(I)*C(I,NTZ)/AY(1,1) PAIN3C80
309: C(NTY,NTZ) = C(NTY,NTZ )+A2Y(I)*C(I,NTZ)/DENY PAIN3''9O
316: C PA IN31CC
311: C CALCULATICN OF THE EFFECTIVE ENISSICN HEIGHT CONCENTRATION P A IN 311 j
312: C PAIN312 3
313 : CALL INTRF(12,NTZ,RSCL,RTZ,FAZ,ZINTP ) MAIN313C
314: DO 855 J=1,NTY PA IN 314C
315: EHCOlJ)=O.DG PA IN3159
316: CO 855 1=1,NTZ P A I N 3 16 2
317: F55 tHCO(J)=EFC0(J) + ZI NTP(I)*C(J,I ) P A IN 3 1 7 C
318: C P A IN318 0
319: C CALCULATICN OF THE CONCENTRATIONS AT Y=C PAIN3199
32-" : C MA IN32CC
321: CALL INTRP(12,NTY,RYC,RTY,FAY,YINTP) PA IN3 2in
322 : CO 8*6 J=1,NTZ PAIN3229
323 : CPCC ( J) =-i.LC M A I N 3 2 3 C
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324: CO 856 1=1,NTY MAIN3243
325: f-56 CcCO(J)=CECC(J)+VIMP(I)*C(I»J) MA IN325C
326: CCO1=C.DC MA IN3260
327: CCU2=n. MAIN327 1
328 : CC03='1.DJ MAIN3280
329: no 857 1=1,NTY MAIN329C
33C : CCO1 = CCO1 + YINTP( I )*EHCO(I) MAIN33C3
331 : 857 CONTINUE M A I N 3 3 1 C
3 32: ClY=EHCO(1) M A IN 3 3 2 C
333: ClY=EHCO(NTY) M A IN 3 3 3 3
334: C f'AIN3341
3 3 5: C CALCLLATICN CF THE MASS RATE MA IN 33 50
336: C MA IN3360
337: C=O.rCO MAIN3379
338: DO 47 1=2,MY MAIN338C
339: DO 4 7 J = 2,MZ MA IN3 39C
340: 47 Q = Q + kiY( I )*kZ( J)*C( I , J)*U( J) MA IN3400
341 : C = 2. Cri*YMAX*( C1Y + C2Y + 2.C0 + BETAY) *H*( D1Z+C 27 + 2 . DC *BE T AZ ) *C MAIN341C
342: 0=1CCC.DO/6C.DC*Q M A IN 3 4 2 0
343: ACTX=X*XMAX M A IN3430
344: C MAIN3441
345: C CALCLLATICN CF THE TRUE CENTERLINE CONCENTRATIONS MA IN345l.
346: C MA IN3463
347: RYC= ( RETAY + C1Y+PV*ACTX/2.DC/YM.AX) /( D1Y+D2Y+2. D0*BETA Y ) MAIN3473
348: DO 859 J=1,NTZ M A IN 3 4 8 C
349: 8C9 CECUY{J)=C.DC MA IN349C
350: IF(RYC.GE.l.ODO) IST=1 MAIN35C0
351 : CALL INTRPI12,NTY,RYC,RTY,FAY, YINTP) MAIN3514

352: DO «6C J=1,NTZ MAIN352 3
3 5 3: CO 86C 1=1,NTY MA IN3 5 30
354: 861 CECUY(J) = CECOY(J)+YINTP ( I )*C ( I , J ) ^AIN3541
355 : APYC=PV*ACTX MA IN 355C
356: DU 85° 1=1,NTZ MA IN3561
357: CCO2 = CCO2 + ZINTP( I )*CECO( I ) MA IN357U
358: CC03=CCC3 + ZIKTP(I)*CECOY( I ) MA IN358C
359: °5P CONTINUE MA IN3 59C
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3 c 2: C ’.Z = C^CCY (1 ) MA IN36CC
361: 01Z=OECOY(NTZ) MA IN3610
46? : EPS = CCO3*RAT IO MA IN3620
363 : C MA IN363C
364: C TEST FOR THE PLLME SPREAD BY CCPPARISCN CF PCUNCAPY MA IN3643
365: C CONCENTRATIONS KITH EPS (= CtTRUE CENTERL INE , EFFECTI VE MA IN365?
366 : C EMISSION FEIGHT)»RATIC) M A I N 3 6 6 C
3 67: c - IF OK, PRINT RESULTS ANC ADVANCE INTEGRATION (12) MA IN 367C
368: C - IF NOI, CEI NFk INITIAL CONDITION AND INTEGRATE AGAII MAIN368C'
369: C MAIN3690
37°: IF(IOKYP.EC.?.AND. IOKYM.FG.2) GC TC 12 MAIN37CC
371: IOKY=C MA IN3710
372: IOKZ=9 MAIN3723
373 : IF ( ( C'*Y ) . LT. EPS. AND. ( C1Y ) .LT. EPS ) IOKY=1 MA IN3732
374: IF(VAR1Y.LT.1.CD-C8.AND.VAR2Y.LT.1.0D-D 8) ICKY = 1 MA IN3743
375: IF(VAR1Y.LT.1.00-08.AND.(C1Y).LT.EPS) IOKY= 1 NAIN3759
376: IF(VAR2Y.LT.1.OD-3 8.ANC.(C 'Y).LT . EPS ) IOKY=1 MAIN376L
377: IF(IOKY.EC.1) GC 1C 13 MA IN377C
378: IF(D1Y.LT.C.5D0-BETAY-1.CD-08.AND.(CCY).G1.EPS)D1Y=D1Y+ MAIN378D
379: 1CC1Y*CMULY MAIN379C
3 C fl ; IF( VAR2Y.GT.1.OD-J8. AND. ( Cl Y ) . GT . EPS ) D2 Y = C2Y + CC2Y=>DMULY MA IN380C
381: IOKY=C MA IN3810
382 : IFdGKYP.EC.l ) IOKYP=2 MAIN382C
383: IF(ICKYP.EG.D) IOKYP=1 MA IN383C
384: 13 CONTINUE MA IN384 3
385 : IF( I IOKY.EC.O) GO TO 133 3 MA IN385D
386: IF(Cr'Y.GT.3.D0.AND.ClY.GT.0.D9) GO TO 1333 MAIN386u
387: IF ( ( Cl Y) . LT. D.CDO)DIY = D1Y-DDIY*CMULY/2.5 DC MA IN387C
388: IF((CIY).LT.O.CD^) D2Y=D2Y-DD2Y*DMLLY/2.5CC MAIN3880
389: ICKY= J MAIN389C
390: IF(ICKYN.EC.l) ICKYM=? MA IN39CC
391: IF( IOKYM.EQ.C ) IOKYM=1 MA IN3910
392 : 13 33 CONTINUE MAIN3920
393: IF((COZ).LT.FPS.AND.(C1Z).LT.EPS) ICKZ=1 MA IN 393 2
394: IF(VAR1Z.LT.1.CD-l8.AND.VAR2Z.LT.1.OD-0 8) ICK Z = 1 MA IN3940
395: IF(VAR1Z.LT.1.DD-O8.AND.(C1Z).LT.EPS) IOKZ=1 MA IN3950
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396: IF(VAR2Z.LT.1.CD-L8.AND.(COZ).LT.EPS) ICKZ=1 h'A IN3960
397: IF( ICKY.EG.1.AND. IOKZ.EQ. 1) GO TO 12 NAIN3970
398: I F (DIZ. LT.SEL-BET AZ-1 .CT-J8 . AN D . ( Ci > Z ) .GT . EP S ) D 1 Z = D 1Z + MAIN398C
399: 1DD1Z*DMULZ MA IN399C
<tOD: IF(VAR2Z.GT.1.00-0 8.AND.(C 1Z).GT.EPS) D2Z=02Z + DD2Z*DNLLZ NAIN40JO
4C1 : ICKZ= ' MA INACIO
4i 2: 133 CONTINUE MAINAC20
403: IF(IOKY.EG. l.AND.IOKZ.EQ. 1) GO TC 12 NAIN4O3C
4l4: IF(X.GE..990-03) DMULY=2.D0 NAIN404"
4f5: IF(X.GE..990-02) DPULY=6.DU MA IN4G 50
406: IF(X.GE..S9D-C1) DMULY=1C.DO MA irj4n60
407: IF(X.GE..99D-C3) DMULZ=4.D0 MAIN4070
4 08 : IF(X.GE..990-02) D^ULZ=12.D0 MA IN4C80
409: IF(X.GE..99D-C1) DMULZ=16.DC MA IN4C90
41C : IF(0.5D0-tETAY-DlY.LE.DDlY*DMULY) DD1Y=(C.cDC-PETAY-D1Y)> CMULY MAIN410?
411 : I F ( 1 . DO-"1.5 DO-BET AY-C2Y . L E . CD2Y*DMULY ) DD 2 Y= ( 1. D 0-C . 5DC-BE TAY-D2Y)/MAIN411C
412: 1PMLLY MA IN412C
413: IF(SEL-BETAZ-D1Z.LE.DD1Z*DMULZ) DD1Z=(SEL-PETAZ-D1Z)/DNUL Z MAIN4130
414: I F (1 . CO-S E L-BET A Z-D2 Z . L E • C D2Z *DMUL Z ) DD2Z = ( 1 . DO-SE L-BE T A Z- D2Z)/ NAIN4140
4 15: 1DMULZ MAIN415C
4 16: C MA IN4160
417: C CALCULATION OF NF^ INITIAL CONDITION MAIN4170
AIR: C MA IN418U
A19: X=XC MA IN4190
420: PRYT( 1)= xr MA IN42JD
421 : CX = DX MAIN421C
422: NCI = 1 MAIN422u
423: 96 DO 92 1=1,NY MA IN42 3 0
424 : J = I + 1 MAIN4240
4 25: VI Y=( (D1Y+D2Y + 2. D'.^RE T AY ) *RTY ( I + 1 ) + Cl 9Y - C1Y ) / ( D10Y + C2C Y + MA IN4253
426: 12.DC*BETAY) MA IN426C
427: IF(VIY.LT.l.OCO) GO TO QU MAIN4273
423: C(J,NCI)=1.000 MA IN42PC
429: GO TO 92 MA IN4290
430: 90 IF(V IY.CT.C.OCC ) GO TO 95 MAIN43C
431 : C(J,NCI)=0.nDn MA IN431r
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432: CO TO 92 NA IN43 29
433: S5 CALL INTRF ( 12 ,NTY, VI Y ,RTY ,FAY ,YIMP ) MA IN433C
434: C( J, NCI )=CC( 1,NCI )*YIMP(l)+CC(MYtNCI)*YIMP(MY) MA IN4342
435: CO 93 K=1,NY MAIN435'
436: 93 C(J,NCI)=C(J,NCI)+YINTP(K+1)*CC(K+1,NCI) MAIN436C
437: S7 CONTI ME MA IN437C
438: NCI=NCI+1 NAIN4383
439: IFINCI.GT.NTZ) GO TO 95* MAIN439C
44C : GO TO 96 MA IN44CC
441: 955 NCI= 1 MA IN4419
442: lr'9r' CO 42 1=1,NZ NAIN442D
443: J=NCI+(I-1)*NY MA KJ443C
444: VIZ=((D1Z+D2Z+2.DC*BETAZ)*RTZ(I+1)+D10Z-C1Z)/(D10Z+C20Z+ MA IN444D
445: 12.^D0*BETAZ ) M A I N44 5 3
446: IFIVIZ.LT.1.9C0) GO TO 40 MAIN446C
447: P(J)=C.CDC MA IN447C
44fi: GO TO 42 MA IN448C
449: 40 IF(VIZ.GT.O.DCO) GO TO 45 MAIN44SC
4 5<': P(J)=C.CDC MAIN45CC
4 51: GO TO 42 MAIN451C
452: 45 CALL INTRPI12,NTZ,VIZ,RTZ,FAZ,ZINTP) NAIN4529
4 53: P(J)=C(NCI+1,1)*ZINTP(1)4C(NCI+1,NTZ)*ZINTP(NTZ) M A IN 4 5 3 0
454: DO 43 K=1,NZ MA IN4540
455: 43 P(J)=P(J)+ZINTPIK+1)*C(NCI+1,K+1) MAIN455 )
456: 42 CONTINUE MA IN456C
457: NCI=NCI+1 MA IN457C
458: IF(NCI.GT.NY) CO TO 2C MAIN4580
459: GO TO i-jnc NAIN459C
4 6 ;) : C MA IN46P0
461: C PRINT AND STORE THE RESULTS NAIN461?
462: C MAIN4623
463: 12 CONTINUE MAIN4630
4 6 4: IOKYP=0 MA IN4643
465 : IOKYM=0 MA IN4650
466: Cl '>Y = D1Y MAIN466C
467: D20Y=D2Y MA IN4 67C
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4 68: P1Z?Z = C1 z MAIN468C
4 69: D2fZ=D2Z MA IN4690
47?: CO 66 1=1,NTY MAIN4710
471 : EHCO( I)=1COO.C9*EHCO( I) MAIN471^
472: DO 66 J = 1,MZ MA IN472C
473: IF(I.FU.l ) CECO(J )=CFCO(J)*1CCC.DC MAIN4730
474: IF(I.EQ.l) CECCY(J ) = CECOY(J)*1CCO.DC MAIN474C
475: CC(I , J)=C(I , J) MAIN475C
476: 66 C( I,J ) = C( I,J)*1GCU.DO MA IN4760
477: ccoi=iooo.co*ccoi MAIN477G
478: CC03=lCC5.cn*CC03 MA IN4782
479: kRITE(6,5CC) ACTX,Q,IHLF MA IN4790
4 89: 5 ofi FURMTl 2(/), 2CX, ' X = • , F1 2.3,2 ? X , • Q = 1 ,F 1C e 2,1 o X , • IHIF =’,I5,/) MAIN48C9
481 : ITE(6,2000) MA IN4 813
482: 2C G 2 FORMAT!2(/)) MA IN482J
4b3: HRITE(6,352) (ACTY(I),I=1,NTYH),ARYC MAIN483J
4 84: 352 FORMAT(IX , 132(•*')/IX ,Z/Y *’,1CF12.2,' ♦') MAIN4840
485: kRITE(b ,650) M A IN 4 8 5 C
486: 68 corn INUE MA IN486O
487: I=NTZ MAIN487C
488: 5'32 CONTINUE MAIN488C
489: WRITF(6,3CC) ACTZ(I),(C(J,I),J=1,NTYH),CECC(I) MA IN489J
490: 3 60 FORM AT(IX,* *’,F7 #2,1 X , 1 *•,10F12«5, * * ' ) MAIN49CT
491: 1 = 1-1 MAIN491C
492: IF(I.EQ.C) GO TO 531 MA IN492D
493: GO TO 5C2 MAIN4930
4 94: 6 )1 CONTINUE MA IN494 3
495: kRITE(6,65C) MA IN49 5C
496: 6 50 FC,RMAT( IX, 1 32 ( •*’ ) ) MAIN4960
497 : WRITE(6,300) HSEL,(EFCC(I ), 1=1,NTYH ) ,CCO1 MAIN497C
498: WRITE(6,2CC'3) MA IN4989
499: WRITE(6,352) (ACTY{I),I=NTYH1,NTY),ARYC MA IN4990
5 2-j: WP ITE(6,650 ) MAIN5CCJ
5l1: 6 o 8 CONTINUE MAIN5010
5 32: I = NTZ MA IN532U
55 3: 5 5,-2 CUNT INUE MAIN5D3O
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51; 4: VxPITE(6,3C0 ) ACTZ(I),(C(J,I),J = NTYH1 ,NTY) ,CECOY(I ) NAIN5040
5?=>: 1 = 1-1 NAIN5r5':
5C6: I F( I.EO.u) GO TO 5501 MA IM 506C
507: GO TO 5502 MAIN5C73
508: 55U1 CONTINUE MAIN5180
5C9: hRITE(6,65C ) MA IN5C9C
510: kRITE(6,3CC) HSEL, (EHCC(I) ,I=NTYH1 ,NTY) ,CCC3 MA IN510O
511: IF(1ST.EQ.1 ) STOP MAIN51in
512 : GO TO 1 M A IN 5 1 2 C
513: Off CONTINUE MA IN513C
514: EI4D MA INC14O
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1: SUBROUTINE DRKGS(PRMT,Y,DERYrND IM,IHLF,FCT,AUX,PW) DRKG 13
2:
3:
4:

C
0
C THS SUBROUTINE SOLVES A SYSTEM OF FIRST ORCER ORDINARY DIFFERENTIAL

DRKG
DRKG
CRKG

2 0
30
40

5: 0 ECLATIONS WITH GIVEN INITIAL CONDITIONS DRKG 5L
6:
7:
8 :

C
C
C PPMT - AN INPUT OUTPUT VECTOR WITH DIMENSION GREATER OR

CRKG
CRKG
DRKG

6C
70
80

9: 0 ECUAL TC 5 DRKG 90
10: C PRMT(l) - LOWER BCLND CF THE INTERVAL CRKG ICO
11: c PRMT(2) - UPPER BOUND OF THE INTERVAL CRKG 110
12 : c PRMTI3) - INITIAL INCREMENT OF TEE INDEPENDENT VARIABLE DRKG 12C
13: c PRMT(A) - UPPER ERRCP BCUND CRKG 130
14: 0 PRMT(5) - NO INPUT PARAMETER. IT IS C UNLESS THE USER WANTS TC CRKG 140
15: c TERMINATE RKGS AT ANY OUTPUT POINT CRKG 15C
16: c DERY - INPUT VECTOR OF ERROR WEIGHTS. UATERCN IS THE VECTOR DRKG 160
17: c CF DERIVATIVES CRKG 170
18: c NDIM - THE NUMBER CF EQUATIONS IN THE SYSTEM CRKG 183
19: c IHLF - THE NUMBER CF BISECTIONS OF THE INITIAL INCREMENT DRKG 190
20: c AUX - A.N AUXILIARY STORAGE ARRAY (8 ROWS AND NDIM COLUMNS) CRKG 200
21:
22:
23:
24:
25 :
26:
27:
28:
29:
30:
31:
32:
33:
34:

c 
c

c 
c

IMPLICIT REAL*8(A-H,C-Z)
DIMENSION Y(1),DERY(1),AUX(8,1),A(4),B(4) ,C(4) ,PRMT( 1 ) , 

1PW(NDIM,NDIM)
DO 1 1 = 1,NDIM

1 AUX(8,I)=CERY(I)/15.DC
X = PRMT(1 )
XEND=PRMT(2)
H=PRMT(3)
PRMT(5)=0 .CO
CALL FCT(Y,NDIM,DERY,PW)

FRRCR TEST

DRKG 
DRKG 
CRKG 
CRKG 
CRKG 
CRKG 
CRKG 
DRKG 
DRKG 
CRKG 
CRKG 
CRKG 
CRKG 
CRKG

210 
220 
230 
243 
250
2 60 
270 
28C 
290 
3C0 
310
3 2 0 
330 
340

35 : c CRKG 35C
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36: IF(H*(XENC-X) )3b,37,2 DRKG 360
37 : C DRKG 37C
38: C PREPARATIONS FOR RLNGE-KLTTA PETHCD DRKG 380
39: C CRKG 390
40: 2 A(1)=.5D) DRKG 40''
41: A(2)=.29289321881345248DG CRKG 410
42: A(3)=1.7071067811865475DC CRKG 420
43: A(4 ) = . 16666666666666667DC CRKG 430
44: B(1)=2.DJ DRKG 443
4 5: 8(21=1.00 CRKG 450
46: 8(31=1.00 CRKG 460
47: P ( 4) =2. D'l CRKG 470
43: C(1)=.5DC CRKG 481
49: C(2)=.2928932188134524800 CRKG 490
59: 0(31=1.70710678118654750^ CRKG 5CC
51: C ( 4)=.5DC CRKG 510
52: C CRKG 520
53 : C PREPARATIONS OF FIRST RUNGE-KUTTA STEP CRKG c;3J
54: C DRKG 540
55: DO 3 1=1, ND IM CRKG 550
56: AUX(1, I ) = Y( I ) CRKG 563
57: AUX(2 ,1 )=CERY(I) DRKG 570
58: AUX(3,I 1=0.00 CRKG 580
59: 3 AUX(6,1 1 = 0.00 CRKG 599
69: IREC=O DRKG 602
61: H=H + H CRKG 613
62: IHLF=-1 CRKG 620
63 : ISTEP=O CRKG 630
6 4: I END= ' CRKG 64-3
65: C CRKG 650
66: C STAPT OF A RLNGE-KUTTA STEP CRKG 669
67: C DRKG 670
68: 4 IF((X+H—XEND)*H)7,6,5 CRKG 683
69: 5 E=XENC-X CRKG 690
71: 6 IEND=1 DRKG 7CC
71: C CRKG 710
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72: C RECORDING OF INITIAL VALUES CF THIS STEP DRKG 72C
73: C DRKG 730
7A: 7 CONTINUE DRKG 740
75 : IF(PRFT(5))40,8,4J DRKG 75C
76: 8 ITEST=O DRKG 76C
77: 9 ISTEP=ISTEP+1 CRKG 77?
78: C DRKG 78C
79: 0 START OF INNcPbTST RUNGE-KUTTA LOOP DRKG 79C
80: C CRKG 803
81: J = 1 DRKG 810
82: lr AJ=A(J) DRKG 82C
83: BJ=R(J) CRKG 83<'
84: CJ=C(J) CRKG 843
85 : DO 11 I=1,NDIN CRKG 85C
86: R1=H*DERV(I) CRKG 86C
87: R2=AJ*(Rl-BJ*AUX(6,1)) CRKG 873
88: Y(I)=Y( I )+R2 CRKG ESC
89: R2=R2+R2+R2 CRKG 890
93: 11 AUX(6,I )=ALX(6,I)+R2-CJ*Rl CRKG 930
91: IF(J-4) 12,15,15 CRKG 910
92: 12 J=J+1 DRKG 920
93: IF(J-3) 13,14,13 CRKG 930
94: 13 X=X+.5D0*F CRKG 943
95: 14 CALL FCT(Y,NDIP,DERY,PW) CRKG 95C
96: GOTO 10 CRKG 96C
97: C CRKG 973
98: C TEST OF ACCURACY DRKG 933
99: C CRKG 99C

1JC: 15 IF(ITEST)16,16,29 CRKGlCn^
101: c CRKG1C1 J
12 2 : c IN CASE ITEST=O THERE IS NO POSSIBILITY FOR TESTING CF ACCURACY DRKG1O20
lv.3: c CRKG1C32
104: 16 DO 17 I=1,NDIM CRKC1043
1 95 : 17 AUX(4,I )=Y( I ) CRKGIt 5 3
106: ITcST^l CRKG 1C6 3
1C7: ISTEP=ISTFP+ISTEP-2 CRKG1C70
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1CA: IP IHLF=IHLF+1 CRKG1C80
ICO:
110:
111:
112:
113:
114:
115:
116: C

x = x-p
F = .5D 3*H
DD 19 1=1 ,NDI M
Y( I ) = AUX( 1,1)
EERY( I ) = ALX(2, I )

19 ALX(6,I )=ALX(3,I)
GOTO 9

CRKG1990 
DRKGllCr 
DRKG1110 
CRKG1120
DRKG1130 
DRKG1140 
CRKG1150 
CRKG116 J

117:
IIP:
119:
120:
121:
122:
123:
124:
125:
126:

c
C

C

IN CASE ITEST=1 TESTING CF ACCURACY

20 IM0D=ISTEP/2
IF( ISTEP-If'CD-IMOC 121,23,21

21 CALL FCT(Y,ND IN,DC RY,Pto)
CO 22 I=1,NDIM
AUX(5, I ) = Y( I )

22 AUX(7,1)=CERY(I)
GOTO 9

IS POSSIBLE DRKGU7'J
CRKG118C
CRKG1199
DRKG12CC
DRKG121C
CRKG122O
DPKG1230
DRKG124C
CRKG1250
ERKG126U

127:
128:
129:
130:

C
C

COMPUTATION CF TEST VALUE CELT

23 CELT=O.DO
CO 24 1=1,NCIM

CRKG127C
CRKG128C
CRKG1293
CRKG13CC

131:
132:
133: C

24 DELT = DELT + AUX(8,I)*DABS(AUX(4, I )- 
IF(DELT—PRMT(41)28,28,25

Y ( I 1 1 DRKG131C
CRKG1323
DRKG1332

134:
135:
136:

c 
c

ERROR IS TOC GREAT

28 IF(IHLF-1C126,36,36

CRKG134C
CRKG1350
CRKG1360

137:
138:
139:
140;
141:
142:
143: c

26 DO 27 1 = 1 ,NCIM
27 AUX( 4,1 )=ALX( 5,1 1

ISTEP=ISTEP+ISTEP-4
X = X-h
IEND=C
GOTO 18

CRKG137C
CRKG138C
CRKG1390
CRKG14C0
DRKG1410
CRKG142C
DRKG1430
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144: 0 RFSLLT VALUES ARE GOUD CPKC1440
145 : C CRKG1450
146: 2F CALL FCK Y,Nri^,DERY,kk) DRKG146C
147: DO 29 I=1,NDIM CRKG1470
148: AUX(1,I)=Y(I) DRKG1480
14Q; AIJX(2,I ) =EERY ( I ) DRKG149C
150: AUX(3,I)=ALX(6,I) CRKG15C0
151: Y( I ) = AUX(5, I ) CRKG1519
152 : 29 DERY(I)=ALX(7,1) DRKG1C2U
153: IF(PR^T(5))4C ,3C ,40 CRKG1530
154: 30 DO 31 1 = 1,ND IM CRKG1540
155 : Y(I )=AUX(1, I ) DR KG 15 50
156: 31 DERY( I)=ALX(2,I) DRKG1560
157: IREC= IHLF CRKG1570
158: I,F(IEND)32,32,39 DRKG1580
159: C DRKG 1590
16-j: c INCREMENT GEIS DOUBLED CRKG1600
161: c CRKG1610
162 : 32 IHLF=IHLF-1 DRKG1622
163: ISTEP=ISTEP/2 CRKG163C
164: F=H + H CRKG164J
165 : I F( IFLF )4,33,33 DRKG165C
166: 33 IMDD=ISTEP/2 DRKG1660
167: IF(I STEP-I MOD-1 MOD)4,34,4 CRKG1670
168: 34 IF(CFLT-.?2CO*PRMT(4) )35, 35,4 DRKG168O
169: 35 IHLF=IHLF-1 DRKG169C
17?: ISTEP=ISTEP/2 CRKG1700
171: H=H + F CRKG1710
172 : GOTO 4 DRKG172C
173: c DRKG173C
174: c RETURNS TO CALLING PROGRAM ERKG1740
175 : 0 DRKG1750
176: 36 IHLF=11 CRKG176C
177: CALL FCT(Y,NDIM,DERY,PH) CRKG177O
173: GOTO 39 DRKG178C
179: 37 IHLF=12 DRKG 179C
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180: GOTC 39 DRKG1FCC
181: 38 IHLF=13 DRKG181C
182: 39 CONTINUE CRKG1820
183: PRMT(1 ) = X DRKG1830
184: F0RMAT(2(/) ,?0X,*X =’ , F16.12,10X,'IHLF =',I5) DRKG184?
185: A'' Re TURN CRKG1850
186: ENC CRKG186J
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1: SURRCUTINE FCT(YP,M,DY,PW ) FCT ID
?: 0 FCT 2C
3: c FCT 30

C THIS SUPRLLTINE COMPUTES THE DERIVATIVES (RIGHT HAND SIDES) FCT 4 )
5: C OF THE SYSTEM TO GIVEN VALUES OF YP(CONCENTRAT ION ) FCT 5 C
6: C FCT EC
7: C FCT 7 0
8 : IMPLICIT REAL*8(A-H,O-Z) FCT 80
9: DIMENSION YP(M) ,DY(M) ,PW(M ,M) FCT 9C

1C: DU 15 J=1,M FCT ion
11: DY(J )=O.OLO FCT 110
12: DO ln I=ltM FCT 12C
13: ir DY(J)=DY(J)+Pk(J,I)*YP(I) FCT 130
14: 15 CONTINUE FCT 140
15 : RETURN FCT 15c
16: -’'ID FCT 16C
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1: SUBROLTnE VELDIF(XZ,H,LGR,LST,AN,U,V,ISTe,ALPHA,h3,AKYtAKZ,CAKZ, VELC 1C
2 j IS^L, IND,US,DKN,DUN,HSKiM,HGEO, AI^M ) VELC 29
3 : C VELD 3C
V. C VELD 40
5: C THIS SUBRCUTINE CALCULATES THE VELOCITY ANC TURBULENT VELC 501
6: C DIFFUSIVITY VECTORS (TWO-CIMENS IONS ) AS FUNCTIONS OF VELD 6C
7: C ELEVATION ANO STABILITY CLASS VELD 7C
8: C VELC 80
9: C VtLD 90
n: IMPLICIT REAL*R(A-H,O-Z) VELD IOC
11: DIMENSION XZ(12) ,AKY(12),AKZ(12),CAKZ(12) ,CCEFK(6),CKN(6), VELD 11?
12: 1TDFKN(b ) ,CUN(6),TOFUN(6),L(12),V(12),HGEC(6) VELC 120
13: DATA C0EFK/5 7O.D9,5 5 5.C9, b49.DO, 2 2 2.D'', 0 . CC ,-7u . 500/ VELD 132
14: IF( IN’D.NE.C) GC TC 5 VELC 14C
15: US=UST*(1.00—DFXP(—SFL*H/AM)*DCOS(SEL#H/AM)) VELC 15?
16: PETURN VELD 16C
17: 5 CONTINUE VELD 172
18: TDFKNt I STB)=DKN( I STB)/H VELC 18^
19: U(1)=UGR VELD 190
2b: PV = DEXP(-CKN(I STB)/AM)*DSIN(DKN( I STB )/AM )/ VELD 2C0
21: 1(1.DC-DEXP(-DKN(I STB)/AM)*DCCS(DKN( I STB)/AM) ) VELC 21C
22: U1 = UST*(l.CC-CCXP(-DKN(ISTB)/AM)*DCOS(DKN(I STB)/AM))/ VELC 22 J
23 : 1(DKN(ISTB)/DUN(ISTB))**AMM VELD 23 2
24: V(1)=-PV*L(1) VELC 24C
25: TDFUN(ISTB)=HGEO(ISTB)/H VELC 25">
26: DO 25 L=2,N3 VELD 262
27: L(L)=UST*(l.DG-DEXP(-XZ(L)*H/AM)*CCCS(XZ(L)*F/AM ) ) VFLC 27C
28: IF(XZ(L ).LE.TDFKN(ISTB)) U(L)=U1*(XZ(L)*F/CLN(ISTB))**AMM VELD 280
29: IF(XZ(L).LT.TCFUN( ISTB) ) V(L)=-UST*CEXP(-XZ(L)*H/AM)* VELD 2 9'2
35: 1DSIN(XZ(L)*H/AM) VELD
31: IF(XZ(L ) .GE.TDFLN( I STB)) V(L)=0.0" VELC 319
32 : IF(XZ(L).LT.TCFKN(ISTB)) V(L)=-PV*U(L) VELD 32 9
33: 25 CONTINUE VELD 33U
34: IF(I STB.GE.5) GO TO 1U VELD 34)
35: IF(DKN(ISTB).GT.1.0-08) GO TO 2C VELC 359
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36:
37:

DO 4 L=2,N3
AKZ(L )=COEFK ( I STR )+9C.D0

VELC 362
VELD 379

38: DAKZ(L)=0.03 VELD 3 80,
39: 4 AKY(L)=ALPFA*AKZ(L) VELC 399
40: RETURN VELC 49?
41 : Z"1 CONTINUE VELD 41.
42: TDSKN = 1.DC-1CC.DC/H VELD 429
43: IF(H.LE.HSKN) TDSKN=1.DO VELC 43?
44 : CO 2 1=2,N3 VELD 44L
45: IF( KZ(L)-TDFKN(I STB) ) 11,12,12 VELD 45C
46: 11 AKZ(L ) = COEFK( I STB)*XZ(L)/TDFKN(ISTB)+90.CC VELC 46U
47: CAKZ(L)=CCEFK (ISTB)/CKN( I STR) VELD 479
48: GO TO 16 VELD 4BC
49: 12 IF(XZ(L)-TDSKN) 13,13,14 VELD 490
S'1*: 13 AKZ(L)=CUEFK(ISTR)+9C.DC VELC 593
51 : DAKZ(L)=3.00 VELD 511
52: GO TO 15 VELD 52n
53 : 14 AKZ(L ) = COEFK( I STR)*H*( 1.DC-XZ(L) )/1CC.DC*SC.D0 VELD 53'J
54: DAKZ(L)=-CCEFK(I STB)/100.03 VcLD 540
55: 15 CONTINUE V-LC 55U
56: 16 AKY(L) = ALPHA*(COEFK(I STB) +SC.DC) VELC 560
57: 2 CONTINUE VELD 57C
58: GO TO 53 VELD 58C
59: 1C CONTINUE VELC 593
60: CO 3 L=2,N3 VELD 6JJ
61: AKZ(L)=CCEFK(ISTB)+9U.C3 VELD 61C
62: DAKZ(L)=3.DC VELD 620
63: 3 AKY1L )=ALPFA*AKZ(L ) VELC 639
64: 53 CONTINUE VELD 641
65: RETURN VELD 652
66: END VELC 669
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c 
c
C INPUT DAT/D RECUIRED
C 
C 

in in 4
4 : I'1, ID+OO 530.00+00 4CCO.')C + 00 8.9CC0D + CJ
667.27D + C’. 322.490 + 00 30.00+00 6C.0200+00

rC.CI? + nn 50.00 + 00 52.CD + C0 5C.0D+CC 50. 00 + 00 5C.C0 + C0
1 ).nC + nn 10.00+03 If'.OD + JO IC.UC+m 10.C0 + CC 1C.CD+CC

147. 350+"1145.670 + 0 1143.970 + '?! 1 DI. 31 C + ul 544.14 0 40 02 53.28 0 + 00 
.CD+CC C.1D-C6 :.1D-C6 1.CCCC-C7

.28610-02 .28610-02 n.iD-^l 0.0120-01

.28610- J2 .2o61C-'l2 >'.120-02
r.CD+Ct r.iD-C6 C.25D-C2 0.250-02

.->5000-02 . 25CCD-r2 15CC.OD + CO 0.140+CC

0. 0
0.20
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APPENDIX B

NOMENCLATURE

a Constant in equation (3.14)

A.. Element of the discretizational matrix of first derivatives
ij

Element of the discretizational matrix of second derivatives

3
C Mean concentration, mg/m

Ca Mean concentration obtained by an analytical solution

Cc Mean concentration calculated by the present work

C^ Mean concentration at the i-th interior orthogonal collocation
point - two-dimensional models

Cq Equivalent mean concentration at the source

C^ Mean concentration at the interior orthogonal collocation
point (n^, 5^) - three-dimensional models

e Absolute error defined by equation (3.1), %

E.. Elements of the collocation matrix
iJ

f Coriolis parameter, sec'^

H Effective emission height, m

Reaction rate constant, min

2K Turbulent diffusivity, m /sec

Turbulent diffusivity at an elevation z^

m Exponent in power-law form for the mean wind velocity profile

n Exponent in power-law form for the turbulent diffusivity profile

N Number of interior orthogonal collocation points.
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p Atmospheric pressure

Q Source strength, kg/sec unless otherwise specified

Q Mass rate through y-z plane at x=constant, gm/sec unless
otherwise specified

r Parameter in equation (2.9)

r Mathematical parameter that represents the ratio of boundary 
to centerline concentration

R Rate of generation of species

Parameter in equation (2.9)

t Time, sec

u Mean wind velocity in the x-direction, m/sec unless otherwise 
specified

U1 Mean wind velocity at an elevation z^

Ujq Mean wind velocity at 10 meters

U Eigenvectors of matrix E

U-1 Eigenrows of matrix E

v Mean wind velocity in the y-direction, m/sec unless otherwise 
specified

w Mean wind velocity in the z-direction, m/sec unless otherwise 
specified

W Quadrature weights

x Cartesian coordinate in mean wind direction, m unless
otherwise specified

x Maximum distance in the x-direction, mmax

y Cartesian coordinate in lateral direction, m

y 'max Maximum distance in the y-direction, m
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Cartesian coordinate in vertical direction, m

z Maximum height above terrain (in some cases refers to the
elevation of the inversion layer), m

Zj Reference height, m

Greek Symbols

a Angle between geostrophic velocity and surface boundary
layer velocity, 0 * * r * t

g Mathematical parameter that represents a source dimension

r Gamma function

b Mathematical parameter used for spatial variable transformations

Kronecker delta function

A Knee height for the vertical turbulent diffusivity profile, m

e Upper error bound in "DRKGS"

C Dimensionless spatial variable in the z-direction

h Dimensionless spatial variable in the y-direction

A Eigenvalues of matrix E

E, Dimensionless spatial variable in the x-direction

p Density

a Standard deviation

t Eddy stresses

<j> Geostrophical latitude, °

ij) Variable used in Figure 4.6. Represents ground-level concen
tration
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Superscripts

i Initial value profile for the concentration

* Refers to dimensionless spatial variables

Subscripts

G Refers to geostrophic flow

i Index in collocation equations

k Represents the y-direction in collocation equations

£ Represents the z-direction in collocation equations

Denotes a vector quantity

Refers to a matrix

X Refers to X coordinate direction

y Refers to y coordinate direction

z Refers to z coordinate direction


