# UNSTEADY-STATE DISTILLATION ACCOMPANIED BY CHEMICAL REACTION

A Dissertation Presented to

The Faculty of the Department of Chemical Engineering University of Houston

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Chemical Engineering

by

Ting-Long Wu

August, 1977

#### ACKNOWLEDGEMENTS

The author is deeply indebted to Dr. C. J. Huang, the faculty advisor, for his guidance and advice during this research. The encourgement received from other faculty members in the University of Houston is also appreciated.

He is grateful for the financial assistance provided by National Science Foundation and American Chemical Society. He also extends his thanks to the University of Houston Computer Center, the Cullen College of Engineering Computer Center, and the Computer Center of Hydrocarbon Research, Inc., Miami, for the use of their respective facilities.

#### TABLE OF CONTENTS

| Chap | ter P                                                                                  | age  |
|------|----------------------------------------------------------------------------------------|------|
| 1.   | Introduction                                                                           | 1    |
| 2.   | Literature Survey in the Related Fields                                                | 9    |
|      | 2.1 Vapor-Liquid Equilibria Accompanied by<br>Chemical Reaction                        | 9    |
|      | 2.2 Unsteady-State Distillation                                                        | 25   |
| 3.   | Mathematic Model for Unsteady-State Distillation<br>with Chemical Reaction             | 43   |
|      | 3.1 General Mathematic Model for Unsteady-State<br>Distillation with Chemical Reaction | 43   |
|      | 3.2 Unsteady-State Distillation without Chemical Reaction                              | 49   |
|      | 3.3 Steady-State Distillation with Chemical Reaction                                   | 51   |
|      | 3.4 Steady-State Distillation without Chemical Reaction                                | 52   |
|      | 3.5 Semi-batch Distillation with Chemical Reaction                                     | . 52 |
| 4.   | Theoretical Model for Semi-batch Distillation                                          |      |
|      | Accompanied by Chemical Reaction                                                       | 55   |
|      | 4.1 Basic Mathematical Model and Reaction                                              | 55   |
|      | 4.2 Reaction Mechanisms                                                                | 60   |
|      | 4.3 Reaction Rate Expressions                                                          | 73   |
|      | 4.4 Individual Rates of Mass Appearance and/or                                         |      |
|      | Disappearance                                                                          | 79   |
|      | 4.5 Mass Transfer Effects on Reaction Rates                                            | 84   |

.

| Chaj           | Page |                                                                                        |          |
|----------------|------|----------------------------------------------------------------------------------------|----------|
|                | 4.6  | Reactionship between the Vapor and Liquid<br>Composition                               | 103      |
| ·              | 4.7  | Numerical Method for Solution of Unsteady<br>State Distillation Accompanied by Chemica | 1        |
|                |      | Reaction                                                                               | 110      |
| 5.             | Expe | rimental Investigation                                                                 | 124      |
|                | 5.1  | Experimental System                                                                    | 124      |
|                | 5.2  | Chemicals                                                                              | 132      |
|                | 5.3  | Major Experimental Units of the System                                                 | 140      |
|                | 5.4  | Equipment Calibration                                                                  | 176      |
|                | 5.5  | Experimental Procedures                                                                | 192      |
| 6.             | Ana] | ysis of Experimental Data and Correlation                                              |          |
|                | of ( | perating Parameters                                                                    | 198      |
|                | 6.1  | Treatment of Experimental Data                                                         | 198      |
|                | 6.2  | Correlations of Parameters                                                             | 208      |
| 7.             | Veri | fication of Theoretical Model and Parametr.                                            | i.c      |
|                | Eval | uation                                                                                 | 241      |
|                | 7.1  | Theoretical Solutions                                                                  | 241      |
|                | 7.2  | Effect of System Parameters on Theoretical Solution                                    | L<br>253 |
|                | 7.3  | Comparison of Theoretical and Experimental                                             | L        |
|                |      | Results                                                                                | 279      |
| 8. Conclusions |      |                                                                                        | 303      |
| Nomenclature   |      |                                                                                        | 309      |
| References     |      |                                                                                        | 314      |

· -

.

•

;

.

•

| Chapter  |   |                     | Page |
|----------|---|---------------------|------|
| Appendix | A | Thermophysical Data | 319  |
| Appendix | В | Calibration Data    | 359  |
| Appendix | Ċ | Computer Programs   | 366  |

.

.

•

.

· ·

•

### LIST OF TABLES

ł

1

| Table     |                                                                                                                                                                            | Pag      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Table 2.1 | Comparison of Liquid Fugacities Determ<br>by (C-S) Correlation and the Grayson S<br>Correlation for ) <sup>0</sup> at 500 <sup>O</sup> F for Hydr<br>Methane and Isobutane | treed    |
| Table 6.1 | Arrhenius Constants                                                                                                                                                        | 230      |
| Table 6.2 | Operation Parameters                                                                                                                                                       | 232      |
| Table 6.3 | Largest Independent Effect of Operatin<br>Conditions on the Frequency Factor                                                                                               | g<br>239 |
| Table 7.1 | Liquid Enthalples and Heat Capacities                                                                                                                                      | 244      |
| Table 7.2 | Vapor Enthalpies at 1 Atm.                                                                                                                                                 | 247      |
| Table 7.3 | Heats of Formation                                                                                                                                                         | 250      |
| Table 7.4 | Heats of Reaction                                                                                                                                                          | 250      |
| Table 7.5 | Effect of Integration Step Size on Cal<br>culated Total Molar Vapor Condensate                                                                                             | -<br>252 |
| Table A.1 | Normal Boiling Points                                                                                                                                                      | 324      |
| Table A.2 | Critical Temperatures                                                                                                                                                      | 327      |
| Table A.3 | Critical Pressures                                                                                                                                                         | 329      |
| Table A.4 | Liquid Densities                                                                                                                                                           | 334      |
| Table A.5 | Antonine Constants for Vapor Pressure                                                                                                                                      | 336      |
| Table A.6 | Acentric Factor                                                                                                                                                            | 337      |

.

e

Table

| Table  | A.7  | Liquid Enthalpies and Heat Capacities                                              | 343      |
|--------|------|------------------------------------------------------------------------------------|----------|
| Table  | A.8  | Vapor Enthalpies at 1 Atm.                                                         | 347      |
| Table  | A.9  | Heats of Formation                                                                 | 353      |
| Table  | A.10 | Heats of Reaction                                                                  | 356      |
| Table  | A.11 | Constants for Fugacity Coefficient of<br>Pure Liquid Represented by Equation (2-6) | 357<br>) |
| Tablej | B.1  | Calibration Table for Iron-Constantan<br>Thermocouples                             | 365      |

,

### LIST OF FIGURES

•

| Figure | Pa                                                                                                                  | age          |
|--------|---------------------------------------------------------------------------------------------------------------------|--------------|
| 2.1    | Comparison of $\gamma_i^0$ for Methane between Chao-Seader Correlation and Grayson-Streed Correlation               | 19           |
| 2.2    | Unsteady-State Distillation of Holland's<br>Model                                                                   | 27           |
| 3.1    | Material and Energy Balance Around a Distilla-<br>tion Tray with Chemical Reactions                                 | 43           |
| 3.2    | Inter-Relations Among Theories of Distillation                                                                      | 54           |
| 4.1    | Semi-Batch Distillation with Chemical Reaction                                                                      | 56           |
| 4.2    | Gas Absorption Accompanied by Chemical Reaction                                                                     | n <b>8</b> 6 |
| 4.3    | Fraction of Unreacted Reactant Entering the<br>Liquid Bulk                                                          | 86           |
| 4.4    | Concentration Gradient for a Very Fast Reaction<br>During Gas Absorption                                            | n<br>86      |
| 4.5    | Concentration Gradient for Liquid Evaporation with Chemical Reaction                                                | 90           |
| 4.6    | Concentration Gradient for a Very Fast Reaction<br>During Liquid Evaporation                                        | n<br>90      |
| 4.7    | Concentration Gradient for a Moderate Fast<br>Reaction with Reactant Coming from both Gas<br>Bubble and Liquid Bulk | 92           |
| 4.8    | Concentration Gradient for a Moderate Slow<br>Reaction with Reactant Coming from both Gas<br>Bubble and Liquid Bulk | 92           |
| 4.9    | Flow Diagram for Integration Procedures by                                                                          |              |
|        | Trial-and-Error                                                                                                     | 119          |

| Figure        |                                                                                   | page        |
|---------------|-----------------------------------------------------------------------------------|-------------|
| 5.1           | Flow Scheme                                                                       | 128         |
| 5.2           | Reaction-Distillation Tray and Its Accessories                                    | 141         |
| 5.3           | Teflon Grease Holder                                                              | 146         |
| 5.4           | Thermocouples                                                                     | 146         |
| 5.5           | Feed Fump                                                                         | <b>1</b> 54 |
| 5.6a          | Feed Preheater for Low Relative Ratio of Vapor<br>to Total Feed                   | 157         |
| 5.60          | Feed Preheater for High Relative Ratio of Vapo                                    | r           |
|               | to Total Feed                                                                     | 157         |
| 5.7           | Vapor Sample Bottle                                                               | 159         |
| 5.8           | Device for Gas flow Shift                                                         | 162         |
| 5.9           | Liquid-Sample Bottle                                                              | 165         |
| 5.10          | Device for Column Packing                                                         | 169         |
| 5.11          | Gas Chromagraphical Analysis of A Typical<br>Vapor Sample                         | 173         |
| 5.12          | Gas Chromagraphical Analysis of A Typical<br>Liquid Sample                        | 175         |
| 6 <b>.</b> 1a | Individual Vapor Molal Condensates for Five<br>Volatile Components                | 201         |
| 6.1b          | Liquid Temperature and Total Vapor Molal<br>Condensate Vs. Real Time, Runs 1 &2   | 202         |
| 6.2           | Liquid Temperature and Total Vapor Molal<br>Condensate Vs. Real Time, Runs 3,4,&5 | 203         |
| 6.3           | Liquid Temperature and Total Vapor Molal<br>Condensate Vs. Real Time, Runs 6&7    | 204         |
| 6.4           | Liquid Temperature and Total Vapor Molal<br>Condensate Vs. Real Time, Runs 8&9    | 205         |

-

•

| F | ì | g | u | r | e |
|---|---|---|---|---|---|
| • | _ | 5 | s |   | ÷ |

.

| 6.5  | Comparison of Calculated Activity Coefficient<br>by the Wilson's Equation To Experimental<br>Activity Coefficients | 217 |
|------|--------------------------------------------------------------------------------------------------------------------|-----|
| 6.6  | Esterification Rate Constant k <sub>1</sub> Vs. Reciprocal of Temperature                                          | 226 |
| 6.7  | Comparison of Frequency Factor for Esterifi-<br>cation                                                             | 235 |
| 6.8  | Comparison of Frequency Factor for Dehydration                                                                     | 236 |
| 6.9  | Comparison of Frequency Factor for Successive<br>Reaction                                                          | 237 |
| 7.1  | Liquid Temperature-Effect of Heat of Reaction                                                                      | 256 |
| 7.2  | Ethyl Acrylate Vapor CondensateEffect of<br>Heat of Reaction                                                       | 259 |
| 7•3  | Total Vapor Molal Condensate-Effect of heat<br>of Reaction                                                         | 261 |
| 7•4  | Liquid Temperature—Effect of Overall Heat<br>Transfer Coefficient                                                  | 262 |
| 7.5  | Liquid Temperature-Effect of Overall Heat<br>Transfer Coefficient                                                  | 264 |
| 7.6  | Ethyl Acrylate Vapor Molal Condensate-Effect<br>of Overall Heat Transfer Coefficient                               | 266 |
| 7.7  | Total Vapor Condensate-Effect of Overall Heat<br>Transfer Coefficient                                              | 267 |
| 7.8  | Liquid TemperatureEffect of initial and<br>Surrounding Temperature                                                 | 269 |
| 7.9  | Ethyl Acrylate Vapor CondensateEffect of<br>Initial and Surrounding Temperature                                    | 270 |
| 7.10 | Total Vapor Molal Condensate-Effect of initial and Surrounding Temperature                                         | 272 |

·

.

| Figure |                                                                                          | Page        |
|--------|------------------------------------------------------------------------------------------|-------------|
| 7.11   | Liquid Temperature Effect of Feed Rate                                                   | 273         |
| 7.12   | Ethyl Acrylate Vapor Molal Condensate Effe<br>of Feed Rate                               | ct<br>275   |
| 7.13   | Total Vapor Molal Condensate — Effect of Fee<br>Rate                                     | d<br>277    |
| 7.14   | Liquid Temperature — Effect of Feed Vapor<br>Fraction                                    | <b>27</b> 8 |
| 7.15   | Ethyl Acrylate Vapor Molal Condensate — Effe<br>of Feed Vapor Fraction                   | ct<br>280   |
| 7.16   | Total Vapor Molal Condensate — Effect of Fee<br>Vapor Fraction                           | d<br>281    |
| 7.17   | Comparison of Theoretical Model and Experimen<br>ResultsVapor Molal Condensate, Run 1    | tal<br>284  |
| 7.18   | Comparison of Theoretical Model and Experimen<br>Results Vapor Molal Condensate, Run 2   | ital<br>285 |
| 7.19   | Comparison of Theoretical Model and Experimen<br>Results Vapor Molal Condensate, Run 3   | tal<br>28ó  |
| 7.20   | Comparison of Theoretical Model and Experimen<br>Results Vapor Molal Condensate, Run 4   | tal<br>287  |
| 7.21   | Comparison of Theoretical Model and Experimen<br>ResultsVapor Molal Condensate, Run 5    | tal<br>288  |
| 7.22   | Comparison of Theoretical Model and Experimen<br>Results Vapor Molal Condensate, Run 6   | tal<br>289  |
| 7.23   | Comparison of Theoretical Model and Experimen<br>Results — Vapor Molal Condensate, Run 7 | tal.<br>290 |
| 7.24   | Comparison of Theoretical Model and Experimen<br>Results — Vapor Molal Condensate, Run 8 | tal<br>291  |

· .

•

ı

.

Figure

.

,

Page

| 7.25 | Comparison of Theoretical Model and Experiment                               | ntal  |
|------|------------------------------------------------------------------------------|-------|
|      | Results — Vapor Molal Condensate, Run 9                                      | 292   |
| 7.26 | Comparison of Theoretical Model and Experiment                               | ntal  |
|      | Results — Liquid Temperature, Run 1 to Run                                   | 3 294 |
| 7.27 | Comparison of Theoretical Model and Experiment                               | ntal  |
|      | Results Liquid Temperature, Run 4 to Run (                                   | 6 295 |
| 7.28 | Comparison of Theoretical Model and Experiment                               | ntal  |
|      | Results — Liquid Temperature, Run 7 to Run                                   | 9 296 |
| 7.29 | Comparison of Theoretical Model and Experime:                                |       |
|      | Results — Liquid Mole Fractions, Run 7                                       | 300   |
| 7.30 | Comparison of Theoretical Model and Experime                                 |       |
|      | Results — Liquid Mole Fractions, Run 9                                       | 301   |
| B.1  | Calibration Curve for Helium Flow Rate                                       | 360   |
| B.2  | Calibration Curve for the Flow Rate of 86 Wt                                 |       |
|      | Weight Aqueous Ethyl Alcohol Solution                                        | 361   |
| B•3  | Calibration Curve for Weight Ratios of Vola-                                 |       |
|      | tile Components to 1-Propanol in the Cas                                     |       |
| ~ I  | Chromatography                                                               | 362   |
| B.4  | Interelations among Volume of Liquid Holdup,                                 |       |
|      | Inside Wall Surface Area, Liquid Height on the<br>Reaction-Distillation Tray | 363   |
| B.5  | Calibration Curves for Vapor Weight Fraction                                 |       |
| ~• ) | in Feed Stream as a Function of Feed Rate                                    | 364   |
|      |                                                                              |       |

.

•

.

t

#### Chapter 1 Introduction

Most chemical processes involve two major operations, namely chemical reaction and component separation. Distillation is one of the most widely used unit operations for separating components of a mixture. Distillation can be carried out under steady-state conditions or under unsteady-state conditions. Furthermore, a chemical reaction may or may not accompany distillation. The combination of these operational modes yields the following four categories of distillation operations

- (1) Steady-State Distillation without Chemical Reaction
- (2) Unsteady-State Distillation without Chemical Reaction
- (3) Steady-State Distillation with Chemical Reaction
- (4) Unsteady-State Distillation with Chemical Reaction

The operation belonging to the first category has been almost thoroughly investigated and the chemical engineering literature is full of articles on this subject. The second category, the unsteady-state distillation without chemical reaction, has become the subject of many investigations during the last two decades. The availability of modern electronic computers as the tools for studying the unsteady-state behavior has certainly contributed to the advance in this field. The most comprehensive treatment of unsteady-state distillation without chemical reaction is provided by Holland ( 36).

Comparing with the first and second categories. the technical papers on the subjects belonging to the third and fourth categories are so few that they can be counted on the fingers of both hands. Experimental investigation of unsteady-state distillation accompanied by chemical reaction started from a series of batch distillation experiments in a distillation column performed by Backhaus in 1921 for esterification of ethyl alcohol and acetic acid. Since the theoretical analysis of an unsteady-state distilation accompanied by chemical reaction. i. e., Category Four, is so difficult that Othmer in 1943 shifted to a series of experimental investigations on steady-state reaction-distillation systems, i. e., Category Three (3,4,17,18,28,19). However, a theoretical model for a steady-state reactiondistillation column to treat the experimental results such as obtained by Othmer was not developed until Marek (45) in 1954 presented a McCabe-Thiele graphical method to study the effect of chemical reaction on distillation.

A theoretical model for the unsteady-state distil-

lation accompanied by chemical reaction, i. e., Category Four, has not been reported in the literature. Therefore, the purpose of this study is to develop such a mathematical model and also to obtain experimental data which will then be used to demonstrate the application of the theoretical model proposed. It is hoped that this work serves as the first attempt to remove the last unknown, represented by Category Four, in the total system of distillation operations. Since the system to be treated is very complex. this first theoretical and experimental study deals with a distillation column of a single perfect tray. This approach enables a better understanding of the fundamental concepts and at the same time provides building blocks for a more complicated column of multiple distillation trays.

Mathematically, methods for solving a steady-state reaction-distillation system, Category Three, are much simpler than those for solving an unsteady-state distillation system, Category Two. However, thermodynamics, reaction kinetics and mass transfer problems involved in a system of Category Three are much more complicated. Two different types of reaction are usually associated in the reaction-distillation systems treated in the literature. One of them is the nonpolar hydrocarbon system represented by the work of Grayson and Streed in hydro-

cracking gas oil (25) and the work of Saito in alkylating meta-para xylene complex with an aluminum chloride catalyst (56). The other is the polar system typically represented by esterifications between alcohols and carboxylic acids.

It is rather astonishing that a close examination on all these known reaction-distillation systems including the most recent work of Babcock (3), reveals no fundamental concepts in describing the effects of chemical reaction on thermoaynamic vapor-liquid equilibria, nor the effect of mass transfer on chemical reaction rate expressions.

According to Hougen, Watson and Ragatz (37), lack of ideal-solution behavior is attributed to chemical reaction and to differences in molecular size and polarity among the different components present. Therefore, the liquid activity coefficients with the effects of chemical reaction should be different from those without the effects of chemical reaction. However, Davies and Jeffreys (11) correlated a set of van Laar constants for liquid activity coefficient from "physical" vaporliquid equilibrium data and then applied them into a system with chemical reaction, where the reaction can only occur at the presence of a catalyst (12). The term, "physical" is used to indicate that the equili-

brium data are measured without the effects of chemical reaction. Therefore, the term "chemical" can be used to represent the vapor-liquid equilibrium data measured with the effects of chemical reaction as well as to distinguish it from the above-mentioned "physical" vapor-liquid equilibrium data. The approach made by these researchers is then not appropriate.

A correlation of "chemical" vapor-liquid equilbrium data has been attempted by Hirata and Komatsu ( 32,33,34) for esterification between alcohols and carboxylic acids. However, the effects of chemical reaction on vapor-liquid equilibrium data were not mentioned. Grayson and Streed (25) correlated the vapor-liquid equilibria of the reaction products of hydrocracking gas oil, but they treated them only from the point of view of "physical" vapor-liquid equilibria. However, since their data for the correlation were obtained from "chemical" vapor-liquid equilibrium. their correlation may be properly reapplied to similar reaction. systems. Their correlation may be used with care for a hydrocracking system which differs greatly from the system used by Grayson and Streed, for example, coal liquefaction systems. Different reaction systems exert different reaction effects on vapor-liquid equilibrium data.

The Grayson and Streed correlation has exactly the same framework as that used by the well known Chao and Seader (9) correlation, which is based on "physical" vapor-liquid equilibrium data. Therefore, a comparison between the two correlations may provide some useful information about the chemical effects. In order to gain a better understanding of the reaction effects on vapor-liquid equilibrium, a reaction-distillation system of esterification between acrylamide sulfate and ethyl alcohol is experimentally investigated in this work.

The major difference between this reaction system and the previously investigated esterification systems is that this has a much larger heat of reaction. It is selected in this work because it is anticipated that a large heat of reaction may promote the evaporation of immediately produced volatile compounds, and thus may provide some useful information about the reaction effects on vapor-liquid equilibrium. Correlations will also be made on the "chemical" vapor-liquid equilibrium data which are experimentally obtained in this study. The data and correlations should be new additions to chemical engineering literature.

The effects of mass transfer and reaction kinetics on the distillation with chemical reaction has been

completely ignored by previous authors. Therefore, some fundamental concepts about interface mass transfer with chemical reaction will be incorporated into the theoretical model. The application of Hatta's film theory (28,29,30,31) will be extended to the absorption of reactants as well as the evaporation of volatile products. Since the interface properties such as interface concentration, film thickness, interface area, etc., can not be measured directly, these effects will be correlated as a function of operating parameters.

It is found that Holland's recommended methods for solving Category Two problems are not suitable for solving an unsteady-state distillation problem with chemical reaction. New techniques are therefore developed in this study. Holland's techniques require three to four initially guessed values for obtaining convergent solutions for the bubble point ( or the dew point ) and the outlet vapor flow rate. The techniques developed by this study, however, require only one initially guessed value to obtain all the convergent solutions.

Therortical solutions with respect to different system variables for the mathematical model of a semibatch distillation accompanied by chemical reaction will be attempted first. Their qualitative characteristics

are analyzed. A good quantitative evaluation of the theoretical model can be made only if all the values of system parameters are accurately obtained from existing experimental data, or predicted from reliable correlation methods. Approaches for getting all the required data for a complicated reaction system such as the one used in this study, are presented and discussed. Finally, the applicability of the proposed theoretical model is tested with the experimental data obtained in this study. Chapter 2 Literature Survey in the Related Fields

As mentioned in the previous chapter, this study is the first attempt at developing the mathematical model of unsteady-state distillation accompanied by chemical reaction (Category Four), there is no direct reference nor previous work in the literature which is related to this subject.

However, the proposed study requires knowledges in the following three major fields:

- 1. Vapor-liquid equilibria in presence of chemical reaction
- 2. Effects of mass transfer on reaction rate and vice versas
- 3. Mathematical methods for solving the problems of unsteady-state distillation.

Therefore, the literature survey has been made for the above three fields. Since the second item shown above will be presented in details later in Chapter 4, only literature on the other two items will be discussed in this chapter.

2.1 Vapor-Liquid Equilibria Accompanied by Chemical Reactions

The "chemical" vapor-liquid equilibria is that measured in the presence of chemical reaction. The conventional "physical" vapor-liquid equilibria does not involve any chemical reaction between components of the mixture.

There are only two types of correlations reported in the literature for "chemical" vapor-liquid equilibrium data. The first is represented by the Grayson and Streed correlation (25) which is developed for the vapor-liquid equilibrium data of hydrocracking heavy gas oil. The second type is represented by the Hirata and Komatsu correlation (32) which is based on the data of esterification between ethyl alcohol and acetic acid. The methods of correlations between the two systems are different because the Grayson-Streed correlation is for nonpolar hydrocarbon systems while the Hirata and Komatsu's correlation is for polar organic compounds. However, both methods have a similar basis in correlation of vapor-liquid equilibrium data, i.e., the correlation was made from multicomponent vapor-liquid equilibrium data experimentally obtained.

It is well known that a conventional correlation for "physical" vapor-liquid equilibrium data of a multicomponent system starts with the constituent binary systems and then applies appropriate mixing rules and

interaction parameters to combine these binary systems to a multicomponent system. For a system in the presence of chemical reaction, binary vapor-liquid equilibrium data for the two reactants can not be obtained because as soon as two reactants are mixed, the reaction products will immediately appear in the system. As reaction progresses, the molal quantity of a reactant changes from time to time if it is a batch process. For a continuous steady-state process a residence time of a reactant changes. These situations are different from "physical" vaporliquid equilibrium, where combination of vapor and liquid molal quantities of a component is always equal to its original molal quantity.

In order to demonstrate the difference between the "physical" vapor-liquid equilibria and the "chemical" vapor-liquid equilibria, and the difference between the above two types of "chemical" vapor-liquid equilibria, the work of Grayson and Streed and that of Hirata and Komatsu are discussed briefly as follows.

2.1.1 Vapor-Liquid Equilibria Accompanied by Chemical Reaction for Nonpolar Hydrocarbon Systems

Grayson and Streed employed a steady-state continuous flow scheme to obtain vapor-liquid equilibrium data of

the heavy gas oil hydrocracking system. According to Gravson and Streed, the hydrocracking conditions must be at temperatures above 600 °F and presure above 1000 psia (25). Although their equilibrium data are obtained in the presence of chemical reactions, they treated them as "physical" vapor-liquid equilibrium data by utilizing the framework of the well known Chao and Seader correlation (9). The Chao and Seader correlation is developed from the vapor-liquid equilibrium data of hydrogen and pure hydrocarbons. However, the hydrocarbon mixtures used by Grayson and Streed are the products obtained from hydrocracking heavy gas oil at different reaction conversions. Since the two correlations have the same framework, the difference between the two correlations may provide useful information on the effects of chemical reactions on the vapor-liquid equilibrium. Before comparing for the difference between the two correlations, it is necessary to present briefly the correlation methods employed by the above researchers.

Under the framework of Chao and Seader, or Grayson and Streed, the vapor-liquid equilibrium ratio, herein defined as equilibrium K-value for convenience, is calculated through a combination of three factors:

$$K = y/x = \frac{\mu_{i}^{0} \gamma_{i}}{\phi_{i}}$$
(2-1)

where

- $V_{i}^{o}$  = fugacity coefficient of component i in the liquid phase
- $\gamma_i$  = activity coefficient of component i in the liquid phase
- $\phi_i$  = vapor fugacity coefficient of component i in the vapor mixture.

The quantity  ${\cal V}_{i}^{o}$  is a well-defined thermodynamic property under conditions where the component actually exists as a liquid. At conditions where the component cannot exist as a pure liquid but is dissolved in the liquid phase of a system, the quantity  $\mathcal{Y}_{i}^{o}$  becomes hypothetical. This hypothetical region exists when the system temperature is above the critical temperature of the component or when the system pressure is below the vapor pressure of the component. A liquid fugacity coefficient correlation for this hypothetical region in addition to the existing subcritical region was first developed by Chao and Seader from experimental "physical" vapor-liquid equilibrium data at moderate temperatures, i.e., the reduced temperatures of from 0.5 to 1.3 or temperatures from -100 °F to 500 °F as cited in their paper Their correlations give an average error of 8.7 % (9). for 2696 data points.

Grayson and Streed employed the same correlation

methods to correlate their high temperature "chemical" vapor-liquid equilibrium data in addition to the Chao and Seader's low temperature data. The average error of their correlation is 7.0 %.

Determination of the liquid fugacity coefficient involves solving Equation (2-1) in the form:

$$y_{i}^{o} = \frac{K_{i} \phi_{i}}{\gamma_{i}}$$
(2-1a)

As mentioned previously,  $K_i$  are experimental data, so  $\mathcal{Y}_i^0$  can be calculated only when  $\phi_i$  and  $\mathcal{I}_i$  can be determined by other methods. The above authors computed  $\phi_i$ from the Redlich-Kwong correlation (54) and  $\mathcal{I}_i$  from the Hildebrand correlation (37). The Redlich-Kwong equation requires only two constants for each component. They are critical temperature,  $T_{c_i}$  and critical pressure,  $P_{c_i}$ . Any two-constant equation of state cannot be expected to yield great accuracy. Therefore, usage of the Chao and Seader correlation is limited to the following conditions:

Pressures: up to 2000 psia

Temperatures:

Hydrogen and Methane: -100 to 500 °F

All hydrocarbons except methane :  $T_r = 0.5$  to 1.3

Hildebrand correlation for liquid activity coefficient

is derived from the regular solution theory (37). According to the regular solution theory, the activity coefficient of component i in a multicomponent mixture is given

by

$$\ln \eta_{i} = v_{i} (\delta_{i} - \bar{\delta})^{2} / RT \qquad (2-4)$$

where  $\mathbf{v}_i$  is the liquid molar volume,  $\delta_i$  is the solubility parameter ( the square root of the cohesive energy density), and  $\overline{\delta}$  is the volume-fraction average solubility parameter for the solution.

Since regular solutions are characterized by the absence of any specific physical interactions between molecules, the theory should apply only to solutions of nonionic. nonpolar, or slightly polar molecules. According to Hougen, Watson and Ragatz(37), liquid activity coefficient is affected by molecular size and polarity as well as chemical reaction. Therefore, this theory does not apply to a system which involves any chemical interactions in producing new molecules from reactant molecules. Simply using the regular solution theory to estimate liquid activity coefficient for the reaction system of hydrocracking of heavy gas oil does not take into the account of the effects of chemical reaction on liquid activity coefficient. However, the calculated liquid fugacity coefficient,  $\mathcal{V}_{i}^{o}$  using the Grayson-Streed "chemical" vapor-liquid equilibrium data and Equation (2-1a) includes the effects of chemical reaction. After the liquid fugacity coefficients  $\nu_{i}^{o}$  are calculated

from Equation (2-1a) based on the experimental data, they are then correlated within the frame work of Pitzer's modified form of the principle of corresponding states. Accordingly,  $\mathcal{V}_{i}^{0}$  is given by

$$\log \gamma_{i}^{0} = \log \gamma_{i}^{(0)} + \omega \log \gamma_{i}^{(1)}$$
(2-5)

The first term on the right-hand side gives the fugacity coefficient of simple fluids characterized by a zero value of the acentric factor. The second term accounts for departure of properties of real fluids from those of the simple fluids.

The two quantities  $\mathcal{Y}_{i}^{(0)}$  and  $\mathcal{Y}_{i}^{(1)}$  are dependent only on reduced temperature and reduced pressure. They are fitted with approximating functions. The quantity  $\mathcal{Y}_{i}^{(0)}$  is given by

$$\log \mathcal{V}_{i}^{(0)} = A_{0} + A_{1} / T_{r} + A_{2} T_{r} + A_{3} T_{r}^{2} + A_{4} T_{r}^{3} + (A_{5} + A_{6} T_{r} + A_{7} T_{r}^{2}) P_{r} + (A_{8} + A_{9} T_{r}) P_{r} - \log P_{r}$$

$$(2-6)$$

where  $A_0$  through  $A_9$  are empirically fitted constants. The quantity  $p_1^{(1)}$  is given by

$$\log y_{i}^{(1)} = -4.23898 + 8.65808 T_{r} - 1.2206/T_{r} - 3.15224$$
$$T_{r}^{3} - 0.025(P_{r} - 0.06) \qquad (2-7)$$

The coefficients in Equation (2-6) for the Chao and Seader correlation are different from those for the Grayson and Streed correlation, while Equation (2-7)is applicable to both correlations except that  $T_r$  must be set equal to unity whenever it exceeds one for the Grayson and Streed correlation. The constants for Equation (2-6) for the two correlations are given in Appendix A.11.

The "chemical" vapor-liquid equilibrium data by Grayson and Streed were obtained at temperatures greater than the upper temperature limits of the Chao-Seader correlation, and at pressures from 1000 psia to 3000 psia. The suitable checking points to compare the two correlations are then at temperatures close to 500  $^{\rm O}$ F or the reduced temperature of 1.3, and at pressures between 1000 psia and 2000 psia. As the two correlations for C<sub>24</sub> hydrocarbons are generalized functions, a properly selected compound can be used to represent the general behavier of the two correlations. It is found that isobutane is an appropriate compound because at 500  $^{\rm O}$ F, it has a reduced temperature very close to 1.3.

For hydrogen and methane, both correlations are obtained on the basis that the acentric factors for the two components are equal to zero. Each of the two components has its individual constants for Equation (2-6). Thus, the comparisons are made for the three compounds, namely hydrogen, methane and isobutane.

Table 2.1 lists the comparison between the two

correlations for the liquid fugacity coefficients,  $\mathcal{V}_{i}^{o}$ , of hydrogen, methane and isobutane at 500  $^{o}$ F.

Table 2.1 Comparison of Liquid Fugacities determined by (C-S) Correlation and the Grayson Streed Correlation for  $y_i^0$  at 500 <sup>O</sup>F for Hydrogen, Methane and Isobutane

|           | <u>at 1000 psia</u> |      | L      | <u>at 2000 psia</u> |      | a      |
|-----------|---------------------|------|--------|---------------------|------|--------|
|           | C-S                 | G-S  | % Dev. | C-S                 | G-S  | % Dev. |
| Hydrogen  | 4.3                 | 5.0  | 16     | 2.5                 | 2.8  | 12     |
| Methane   | 3.05                | 5.0  | 64     | 1.51                | 2.75 | 80 .   |
| Isobutane | 0.626               | 1.02 | 63     | 0.265               | 0.68 | 157    |

Small deviation between the two correlations is observed for hydrogen. However, for methane and isobutane, the Grayson-Streed correlation gives much higher liquid fugacity coefficients than those by the Chao-Seader correlation. For an even clearer illustration of these discrepancies, the liquid fugacity coefficients for methane at 1000 psia and 2000 psia are plotted as a function of temperature and shown in Fig. 2.1.

As mentioned previously, the Grayson-Streed correlation is obtained on the basis of both their own high temperature data and the Chao and Seader low temperature data. Therefore, it is natural that the two correlations



Streed Correlation

have good agreements at low temperature. However, at higher temperatures near the upper limit of the Chao-Seader correlation,  $y_i^0$  calculated by Grayson and Streed correlation is appreciably higher than that obtained by the Chao-Seader correlation, implying a positive effect of chemical reaction on the vapor-liquid equilibrium K-values for methane. Further discussion on this positive effect of chemical reaction on the vapor-liquid equilibrium K-values will be presented later in Chapter 6 along with the experimental results obtained by this work.

# 2.1.2 Vapor-Liquid Equilibria Accompanied by Chemical Reaction for Polar System

The other available correlation for "chemical" vapor-liquid equilibria was reported by Hirata and Komatsu (32) in 1966 for the following esterification reaction between ethyl alcohol and acetic acid:

$$CH_{3}COOH + C_{2}H_{5}OH \xrightarrow{H_{2}O} + CH_{3}COOC_{2}H_{5}$$
(2-8)

Their experiments were performed in an Othmer Still at atmospheric pressure. Thus, their system is a batch process. Like the conventional measurement for "physical" vapor-liquid equilibrium data, a vapor sample is obtained as condensate by using a small overhead condenser while the liquid sample is directly obtained from the liquid holdup. When a vapor sample is not taken, the vapor condensate is returned to the liquid holdup as a reflux stream.

This technique is good for measurement of "physical" vapor-liquid equilibrium data because of the continuous refluxing which enables both the liquid and vapor compositions to reach at their steady-state values as well as to be in equilibrium. However, for obtaining "chemical" vapor-liquid equilibrium data, this technique requires a special attention because the liquid composition changes continuously until chemical equilibrium is reached. The vapor sample in the condensate trap is actually in equilibrium with the liquid mixture of sometime ago when the condensed vapor just left the liquid surface. In other words, there is a time lag between vapor sampling and liquid sampling. If the heat flux of the Othmer Still is small, the vapor flow rate will be small which induces a large time lag between the vapor sample and the liquid sample obtained. This time-inconsistent-vapor and liquid samples will, of course, give erroneus results. In general, the faster the reaction or the smaller the vapor flow rate, the greater the effects of the time lag. Since the heat flux to their Othmer Still was not given, and since consideration of reaction kinetics was not made in their paper, it is impossible to check the effect of time lag on their vapor-liquid equilibrium data.

In a batch "chemical" vapor-liquid equilibrium system, the liquid composition changes continuously as the reaction proceeds. Thus, the bubble point of the liquid mixture also varies as a function of time at isobaric operation. The instantaneous reaction rate of the system depends not only on the concentrations of reactants but also on the temperature. A conventional batch measurement of reaction rate in the liquid phase can be made isothermally at a subcooled temperature. At a subcooled temperature, an isothermal condition may be mechanically controlled by adding heat into or removing heat from the system. However, in a "chemical" vaporliquid equilibrium system, temperature varies as the composition is changed by chemical reaction. Thermal control over a boiling reaction system can change the vapor flow rate but can not adjust the liquid composition to reach the exactly desired bubble point of a batch mixture.

In correlating their "chemical" vapor-liquid equilibrium data, Hirata and Komatsu did not use standard thermodynamic procedures such as the van Laar Equation, the Margules equation, etc., for liquid activity coefficient for polar organic compounds. Instead, for the least volatile component, acetic acid, they correlate its K-value as a linear function of the bubble point:

$$K_{1} = 0.0225 t - 1.666, t > 74 °C$$
  

$$K_{1} = 0.001, t \le 74 °C (2-9)$$

where t is the bubble point in <sup>O</sup>C. The above equation implies that the K-value of acetic acid is not sensitive to the variation in the liquid composition.

For the other three volatile components, ethyl alcohol, water and ethyl acetate, their K-values are experimentally proven to be dependent on both temperature and liquid composition in a peculiar way.

The measured instantaneous "chemical" vapor-liquid equilibrium K-values for the three volatile components are all linearly proportional to the reciprocal of the absolute temperature of the instantaneously measured liquid bubble point. The initial composition of a mixture must satisfy the hypothetical zero conversion which means that at least one product, water or ethyl acetate, should not be present initially. Moreover, their results show that slopes for the these linear equations are same not only for all zero hypothetical conversions but also for all three volatile components. The correlating equation for the K-values of ethyl alcohol, water and ethyl acetate can then be given as follows:

 $\log K_{i} = -\frac{2300}{T} + B_{i}$ (2-10) where B<sub>i</sub> is only a function of the initial composition of a volatile component. For example, for a mixture of which the initial liquid composition is:

 $x_{1} (acetic acid) = 0.49$   $x_{2} (ethyl alcohol) = 0.44$   $x_{3} (water) = 0.07$   $x_{4} (ethyl acetate) = 0.,$ the corresponding B<sub>i</sub>'s are

 $B_2 = 6.492$  $B_3 = 6.438$  $B_4 = 6.704$ 

. .

Each calculated  $B_i$  is then plotted as a function of liquid mole fraction. For example,  $B_2$  is plotted as a function of  $x_2$  for each constant  $x_4$  for all the experimental runs with  $x_3=0$ . Such plots can be seen very arbitrary because  $B_2$  can also be plotted as a function of any combinations of  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$ . Furthermore, to convert such a graphical representation into a computer program, requires tedious curve fittings and interpolations between any two constant  $x_i$ 's. Therefore, the correlation used by these authours for  $K_2$ ,  $K_3$ and  $K_4$  are impractical for computer application.

In this study, the reaction system is also composed of polar compounds . However, a different method based on the standard thermodynamic procedures will be used to correlate the vapor-liquid equilibrium data. The details are discussed in Chapter 6.

2.2 Unsteady-State Distillation

The beginning of the quantitative analysis of the unsteady-state operation of a distillation column was marked by the work of Marshall and Pigford in 1947 (47), who formulated the differential equations that describe the transient behavior of a plate of a distillation column. These authors demonstrated the use of Laplace transforms for solving various types of distillation problems. The following simplifying assumptions were made in order to obtain analytical solutions.

- (1) linear vapor-liquid equilibrium relationship of the form y=mx+b, where m and b depend only upon the identity of a component
- (2) total liquid and vapor flow rates are independent of time
- (3) liquid holdup on a tray is independent of time
- (4) vapor holdup is negligible
- (5) a complete liquid mixing on a tray
- (6) a binary system

In 1950, Lapidus and Amundson (40) extended the method of Marshall and Pigford to obtain transient response of an absorber. A single volatile component was transferred between two inert phases. The carrier liquid phase was taken to be nonvolatile and the carrier gas was taken to be insoluble in the liquid phase. Also, a linear equilibrium relationship that was independent of temperature was employed. Later in 1953, Acrivos and Amundson (1) obtained solutions to this same problem by use of an analog computer. In addition to linear equilibrium relationships, they also employed nonlinear equilibrium relationship for their analog computer simulation.

Since then many workers had proposed different methods for solving various types of distillation problems, but the number of assumptions made above were not reduced until 1964 when Waggoner applied a combined scheme of the Thiele and Geddes method with Holland's  $\theta$  method of convergence (59).

In Waggoner's method, any type of vapor-liquid equilibrium relationship can be used and the total molal vapor or the total liquid flow rate is not necessary to be constant. The variation of total flow rates reflects the effect of the energy balance on each tray representing a more realistic situation. However, the following simplified assumptions are still required:

- (1) Constant liquid holdup
- (2) Negligible vapor holdup

(3)  $Y_i = K_i x_i$  for an ideal tray

 $Y_i = E_i^0 K_i x_i$  for a non-ideal tray where  $E_i^0 =$  vapor tray efficiency as defined by Holland.

In 1966, Holland compiled major unsteady-state distillation problems in his texbook (36) and recommended the uses of an implicit method for integration and his **∂** method for convergence. Since his method is the most general approach for solving an unsteady-state distillation problem, it is briefly reviewed here. It is noted, however, that the problems treated by him are the distillation in absence of chemical reaction.

A system of unsteady-state distillation with the above three assumptions can be illustrated by Fig. 2.2.



Fig. 2.2. Holland's Model for Unsteady-State Distillation

The unsteady-state component material balance equation can be represented by Equation (2-11)

$$\frac{dM_{i}}{dt} = L_{i,IN} + V_{i,IN} - L_{i,OUT} - V_{i,OUT},$$

$$\begin{pmatrix} \text{Rate of} \\ \text{Accumulation} \\ \text{of Mass in} \\ \text{Liquid Holdup} \end{pmatrix} = \begin{pmatrix} \text{Inlet} \\ \text{Liquid} \\ \text{Flow} \\ \text{Rate} \end{pmatrix} + \begin{pmatrix} \text{Inlet} \\ \text{vapor} \\ \text{Flow} \\ \text{Rate} \end{pmatrix} - \begin{pmatrix} \text{Outlet} \\ \text{Liquid} \\ \text{Flow} \\ \text{Rate} \end{pmatrix} + \begin{pmatrix} \text{Outlet} \\ \text{Vapor} \\ \text{Flow} \\ \text{Rate} \end{pmatrix} = \begin{pmatrix} \text{Outlet} \\ \text{Vapor} \\ \text{Flow} \\ \text{Rate} \end{pmatrix}$$

i=1, ..., n (2-11)

where

- - -

n = number of components
L<sub>i</sub> = molal liquid flow rate for component i
V<sub>i</sub> = molal vapor flow rate for component i
M<sub>i</sub> = molal quantity of component i in the liquid
holdup

The overall material balance is written as

$$\frac{dM}{dt} = {}^{L}IN + {}^{V}IN - {}^{L}OUT - {}^{V}OUT$$

$$\begin{pmatrix} Rate of \\ Accumulation \\ of total \\ Mass In the \\ Liquid Holdup \end{pmatrix} + {}^{Total} + {}^{Total} \\ \begin{pmatrix} Total \\ Inlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Liquid \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Liquid \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total} \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total } \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total } \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total } \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}^{Total } \\ \begin{pmatrix} Total \\ Outlet \\ Vapor \\ Flow \\ Rate \end{pmatrix} + {}$$

(2-12)

where

$$\begin{split} & L_{IN} = \text{Total liquid inlet molal flow rate} \\ & V_{IN} = \text{Total vapor inlet molal flow rate} \\ & L_{OUT} = \text{Total liquid outlet molal flow rate} \\ & V_{OUT} = \text{Total vapor outlet molal flow rate} \\ & M = \sum_{i=1}^{n} M_i = \text{Total molal liquid holdup on the tray} \end{split}$$

In his applications, Holland assumed that the liquid holdup ( either molal or volumetric ) is constant. If taking constant molal holdup case as example, the term, dM/dt, is equal to zero, and Equation (2-12) is reduced to

$$L_{IN} + V_{IN} - L_{OUT} - V_{OUT} = 0$$
 (2-13)

The unsteady-state overall energy balance can be expressed by

$$\frac{d}{dt} (Mh_{s}) = L_{IN}h_{IN} + V_{IN}h_{IN} - L_{OUT}h_{OUT}$$

$$\begin{pmatrix} \text{Rate of} \\ \text{Accumulation} \\ \text{of Energy} \\ \text{in the} \\ \text{System} \end{pmatrix} = \begin{pmatrix} \text{Rate of Inlet} \\ \text{Energy} \\ \text{with} \\ \text{Inlet Liquid} \\ \text{Flow} \end{pmatrix} + \begin{pmatrix} \text{Rate of} \\ \text{Inlet} \\ \text{Energy} \\ \text{with} \\ \text{Inlet} \\ \text{Vapor} \\ \text{Flow} \end{pmatrix} - \begin{pmatrix} \text{Rate of} \\ \text{Outlet} \\ \text{Energy} \\ \text{with} \\ \text{Outlet} \\ \text{Liquid} \\ \text{Flow} \end{pmatrix}$$

$$-V_{OUT}H_{OUT} -Q_{L} \qquad (2-14)$$

where:

$$\begin{split} h_{IN} &= \text{Inlet liquid enthalpy per mole} \\ h_{OUT} &= \text{Outlet liquid enthalpy per mole} \\ H_{IN} &= \text{Inlet vapor enthalpy per mole} \\ h_{S} &= \text{Enthalpy of holdup on the tray (assuming negligible vapor holdup) per mole} \\ Q_{L} &= \text{Net heat transfer rate from the system to} \\ &= \text{the surrounding} \end{split}$$

It is noted that no heat of solution is considered in Holland's model. No analytical methods have been available for solving an unsteady-state distillation, with variable total flow rates and exact vapor-liquid relationships. Thus, they have been solved by numerical methods.

According to Holland, the following numerical methods can be applied to solve an unsteady-state distillation problem. They may be divided into three general classes:

(1) Predictor methods

(a) Euler's method

(b) Runge-Kutta method

(2) Predictor-Corrector Method

(a) Two-points Formulas

(b) Milne's Methods

b.1. Milne's Method I (Three-point Formulas)

b.2. Milne's Method II (Five-point Formulas)

(3) Implicit and Corrector Methods

(a) Implicit Methods

(b) Corrector Methods

Detailed discussions on the above methods are given in Holland's book (36). Since this study deals with an unsteady-state distillation accompanied by chemical reaction for a single distillation tray, the following discussion will be limited to Holland's method for a single distillation tray without chemical reaction. His method will be compared later to the methods developed by this work.

Since there are no differential equations which can represent the outlet vapor rate,  $V_{OUT}$ , and the system temperature, T, these two quantities are solved by trialand-error for each integration step. Holland's method employs two  $\theta$ 's for such an unsteady-state distillation system. They are defined as follows.

$$\left(\frac{L_{i,OUT}}{V_{i,OUT}}\right)_{co} = \theta_{-1} \left(\frac{L_{i,OUT}}{V_{i,OUT}}\right)_{ca}$$
(2-15)

$$\left(\frac{M_{i}}{V_{i,OUT}}\right)_{co} = \Theta_{o}\left(\frac{M_{i}}{V_{i,OUT}}\right)_{ca}$$
(2-16)

where

 $\theta$ -1 and  $\theta_0$  are two assumed values. Methods of selecting these two  $\theta$ 's for convergent solutions will be discussed later in this section. The formulation for the two calculated quantities,  $(L_{i,OUT}/V_{i,OUT})_{ca}$  and  $(M_i/V_{i,OUT})_{ca}$ , shown in the above two equations is discussed first as follows.

The integrated form of Equation (2-11) can be expressed by

$$\int_{t_n}^{t_n} + \Delta t \qquad (L_{i,IN} + V_{i,IN} - L_{i,OUT} - V_{i,OUT}) dt$$
$$= M_i |_{t_n} + \Delta t - M_i |_{t_n} \qquad (2-17)$$

If the integration is approximated by the implicit method, as recommended by Holland, Equation (2-17) is reduced to

$$L_{i,IN} + V_{i,IN} - L_{i,OUT} - V_{i,OUT} + \sigma(L_{i,IN}^{\circ} + V_{i,IN}^{\circ} - L_{i,OUT}^{\circ})$$
$$- V_{i,OUT}^{\circ}) = \frac{1}{\sqrt{\Delta t}} (M_{i} - M_{i}^{\circ})$$

which may be solved for  $V_{i,OUT}$  to give

$$V_{i,OUT} = \left\{ L_{i,IN} + V_{i,IN} + \sigma (L_{i,IN}^{o} + V_{i,IN}^{o} - L_{i,OUT}^{o}) - V_{i,OUT}^{o} + (M_{i}^{o}/V_{i,OUT}) \right\} / \left\{ 1 + (L_{i,OUT}^{o}/V_{i,OUT}) + (1/\mu \, \Delta t) (M_{i}^{o}/V_{i,OUT}) \right\}$$
(2-18)

where

$$\mathcal{M}$$
 = multiplier for the implicit method ( $0 \le \mathcal{U} \le 1$ )  
 $\Delta t$  = size of an integration step  
 $\sigma = (1 - \mathcal{M})/\mu$ 

 $t_n$  = time at the end of nth integration step By the definitions, the following relationships can be established.

$$\frac{L_{i,OUT}}{V_{i,OUT}} = \frac{x_i L_{OUT}}{y_i V_{OUT}} = \frac{L_{OUT}}{K_i V_{OUT}}$$
(2-19)

and

$$\frac{M_{i}}{V_{i,OUT}} = \frac{x_{i}M}{y_{i}V_{OUT}} = \frac{M}{K_{i}V_{OUT}}$$
(2-20)

where

It is noted that only an ideal tray will be discussed here, therefore the vaporization efficiency  $E_i^0$  is set to unity. For an assumed outlet vapor flow rate,  $(V_{OUT})_a$ , the corresponding assumed outlet liquid flow rate,  $(L_{OUT})_a$ , can be calculated from Equation (2-13). Substituting Equations (2-19) and (2-20), and the above two assumed values into Equation (2-18) gives the calculated outlet vapor flow rate of component i as follows:

$$(V_{i,OUT})_{ca} = \left\{ L_{i,IN} + V_{i,IN} + \sigma(L_{i,IN}^{0} + V_{i,IN}^{0}) - L_{i,OUT}^{0} - V_{i,OUT}^{0} + (M_{i}^{0}/\mu \Delta t) \right\} \\ / \left\{ 1 + (L_{OUT}/V_{OUT})_{a}(1/K_{i}) + (1/\mu \Delta t)(M/V_{OUT})_{a}(1/K_{i}) \right\}$$
(2-21)

The corresponding values of  $L_{i,OUT}$  and  $M_i$  can be calculated by use of the following relationships, after  $(V_{i,OUT})_{ca}$  has been determined.

$$L_{i,OUT} = V_{i,OUT} A_i$$
 (2-22)

$$M_{i} = (M/L_{OUT})L_{i,OUT}$$
(2-23)

where

$$A_i = L_{OUT}/K_i$$
 = absorption factor (2-24)

The above calculated values can now be used to determine the two corrected molal ratios,  $(L_{i,OUT}/V_{i,OUT})_{co}$  and  $(M_i/V_{i,OUT})_{co}$ , by Equations (2-15) and (2-16). If these two molal ratios are substituted into Equation (2-18), a corresponding corrected outlet vapor flow rate,  $(V_{i,OUT})_{co}$  can be calculated. If Equations (2-15) and (2-16) are substituted into Equation (2-18), the corrected value,  $(V_{i,OUT})_{co}$ , can then be directly expressed as a function of all the calculated values determined from Equations (2-21) through (2-24) as follows.

$$(V_{i,OUT})_{co} = \left\{ L_{i,IN} + V_{i,IN} + \sigma(L_{i,IN}^{o} + V_{i,IN}^{o} - L_{i,OUT}^{o}) - V_{i,OUT}^{o} \right\} + (M_{i}^{o}/\mu\Delta t) \right\} / \left\{ 1 + \Theta_{-1}(L_{i,OUT}/V_{i,OUT})_{ca} + \Theta_{o}(1/\mu\Delta t)(M_{i}/V_{i,OUT}) \right\}$$

$$(2-25)$$

Again, the corrected  $L_{i,OUT}$  and  $M_i$  can be determined from Equations (2-22) and (2-23). These corrected values,  $(V_{i,OUT})_{co}$ ,  $(L_{i,OUT})_{co}$  and  $(M_i)_{co}$  can be considered as convergent solutions if and only if they can satisfy the criteria for a specified set of operating conditions. If the operating pressure is assumed to be constant throughout an unsteady-state operation, the criterion for a convergent solution is established on the basis of temperature requirement. The criterion can be an isothermal or a nonisothermal operation.

### a. Isothermal Distillation Tray

There are two **G**'s to be determined. Therefore, two criteria are required for testing convergent solutions. For an isothermal distillation tray, the first criterion is that the vapor leaves at its dew point, which is constant throughout an unsteady-state operation. Mathematically, this criterion can be represented by

$$\frac{\sum_{i=1}^{n} (V_{i,OUT})_{co}/K_{i}}{\sum_{i=1}^{n} (V_{i,OUT})_{co}} = 1$$
(2-26)

The second criterion is that the summation of all the corrected molal quantities of individual component in the liquid hold-up must be equal to the specified constant total holdup:  $\sum_{i=1}^{n} (M_i)_{i=1}^{\infty} = M \qquad (2-27)$ 

Define the difference between both sides of Equation (2-26) as

$$g_{-1}(\vartheta_{-1}, \vartheta_{0}) = \sum_{i=1}^{n} (V_{i,OUT})_{co} \left(1 - \frac{1}{K_{i}}\right) \quad (2-28)$$

and that of Equation (2-27) as

$$g_{0}(\theta_{-1}, \theta_{0}) = \sum_{i=1}^{n} (M_{i})_{c0} - M.$$
 (2-29)

The two  $\theta$ 's having convergent solutions are then the values which can satisfy  $g_{-1} = g_0 = 0$ , simultaneously. The values of  $\theta_{-1}$  and  $\theta_0$  are found by use of the Newton-Raphson Method. In this method, the following equations are solved repeatedly for  $\theta_{-1}$  and  $\theta_0$  until a set of values for  $\theta_{-1}$  and  $\theta_0$  of the dersired accuracy is obtained.

$$g_{-1} + \frac{\partial g_{-1}}{\partial \theta_{-1}} \Delta \theta_{-1} + \frac{g_{-1}}{\partial \theta_{0}} \Delta \theta_{0} = 0 \qquad (2-30)$$

$$g_{0} + \frac{\partial g_{0}}{\partial \theta_{-1}} \Delta \Theta_{-1} + \frac{\partial g_{0}}{\partial \theta_{0}} \Delta \Theta_{0} = 0 \qquad (2-31)$$

where

 $\Delta \theta_{-1} = \theta_{-1,z+1} - \theta_{-1,z}$  and z denotes the trial number, and

$$\Delta \Theta_{\rm o} = \Theta_{\rm o,z+1} - \Theta_{\rm o,z}$$

To initiate the calculational procedure, three values must be assumed by utilizing Holland's method. They are  $V_{OUT}$ ,  $\theta_{-1}$  and  $\theta_{0}$ . For every assumed value of  $V_{\rm OUT}$ , there is a corresponding value of  $L_{\rm OUT}$  found by Equation (2-13) to give  $(L_{OUT}/V_{OUT})_a$ . Then, the corresponding values of (L<sub>i,OUT</sub>/V<sub>i,OUT</sub>) ca and (M<sub>i</sub>/V<sub>i,OUT</sub>) ca are found by use of Equations (2-15) and (2-17). These quantities are held fixed at these values throughout the succession of trials required to find the  $\Theta$ 's for the given time period. Let  $\theta_{-1,z}$  and  $\theta_{0,z}$  be the two heta's at the iteration number equal to z. The functions  $g_{-1}$  and  $g_0$  and their derivatives are then evaluated at this iteration step. The partial derivatives may be evaluated at the assumed set ( $\theta_{-1,z}, \theta_{o,z}$ ) by use of analytical expressions for these quantities. For example,

$$\frac{\partial g_{-1}}{\partial \theta_{-1}} = -\sum_{i=1}^{n} \left\{ (L_{i,OUT}/V_{i,OUT})_{ca} \left[ L_{i,IN} + V_{i,IN} + \sigma(L_{i,IN}^{o} + V_{i,IN}^{o} - V_{i,OUT}^{o} - L_{i,OUT}^{o}) + (M_{i}^{o}/u \wedge t) \right] \right\} /$$

$$\left\{ 1 + \theta_{-1} (L_{i,OUT} / V_{i,OUT})_{ca} + \theta_{o} \left( (1/\mu \Delta t) (M_{i} / V_{i,OUT})_{ca} \right) \right\}$$
(2-32)

After  $\theta_{-1}$  and  $\theta_0$  have been determined, the  $\theta$ 's to be assumed for the next trial are given by

$$\theta_{-1,z+1} = \theta_{-1,z} + \Delta \theta_{-1}$$
 (2-33)

$$\Theta_{o,z+1} = \Theta_{o,z} + \Delta \Theta_{o} \qquad (2-34)$$

The above procedures are repeated until  $|g_{-1}|$  and  $|g_{0}|$ are both less than allowable error limits. The finally corrected values of  $V_{i,OUT}$ ,  $L_{i,OUT}$  and  $M_{i}$  are then the convergent solutions for this integration step. These convergent solutions become the initial conditions of the next integration step. Solutions for the next integration step can be obtained by following exactly the same trial-and-error procedures stated above.

The solution for an unsteady-state isothermal distillation has been discussed as above. Now, let's discuss the case for a nonisothermal distillation tray.

## b. Nonisothermal Distillation Tray

For a nonisothermal distillation tray two criteria are also required for convergent solution because the same two  $\theta$ 's are unknowns. One of the two criteria is the same as Equation (2-23) and repeated as follows:

$$g_{0}(\theta_{-1},\theta_{0}) = \sum_{i=1}^{n} (M_{i})_{c0} - M$$
 (2-23)

The other must be setup from the energy balance, Equation (2-14), because temperature is an unknown. In an integrated tion form, Equation (2-14) can be expressed as  $\int_{t_n}^{t_n+\Delta t} (L_{IN}h_{IN} + V_{IN}H_{IN} - L_{OUT}h_{OUT} - V_{OUT}H_{OUT} - Q_L)dt$  $= Mh_s \Big|_{t_n+\Delta t} - Mh_s \Big|_{t_n}$ 

When the integral appearing on the left-hand side of this equation is approximated by use of the implicit method, the following result is obtained.

$$(L_{IN}h_{IN} + V_{IN}H_{IN} - L_{OUT}h_{OUT} - V_{OUT}H_{OUT} - Q_L) + \mathcal{O}[L_{IN}h_{IN}^{\circ}]$$

$$+ V_{IN}^{\circ}H_{IN}^{\circ} - L_{OUT}^{\circ}h_{OUT}^{\circ} - V_{OUT}^{\circ}H_{OUT}^{\circ} - Q_L^{\circ}]$$

$$= \frac{1}{\mathcal{M}_{at}} \left[ L_{h_s}^{\circ} - M^{\circ}h_s^{\circ} \right]$$

$$(2-35)$$

The instantaneous temperature of the system is then the temperature that can satisfy the above energy balance equation. Let  $g_{-1}$  ( $\theta_{-1}$ ,  $\theta_{0}$ ) be the difference between both sides of Equation (2-35) with outlet vapor and liquid rates expressed as corrected values of ( $V_{OUT}$  and ( $L_{OUT}$ ) co. Then.

 $g_{-1}(\theta_{-1}, \theta_{0}) = L_{IN}h_{IN} + V_{IN}H_{IN} - (L_{OUT})_{co}h_{OUT} - (V_{OUT})_{co}$  $H_{OUT} - Q_{L} + \sigma \left[ L_{IN}^{o}h_{IN}^{o} + V_{IN}^{o}H_{IN}^{o} - L_{OUT}^{o}h_{OUT}^{o} - V_{OUT}^{o}H_{OUT}^{o} \right]$ 

$$-Q_{\rm L}^{\rm o} - \frac{1}{\mathcal{\mu} \Delta t} \left[ Mh_{\rm s} - M^{\rm o}h_{\rm s}^{\rm o} \right]$$
(2-36)

The two corrected values,  $(V_{OUT})_{co}$  and  $(L_{OUT})_{co}$  can be calculated by following exactly the same procedures as those used for the isothermal case as described previously. The system temperature at the elapsed time of an integration step is then obtained by trial-and-error until the following criterion is satisfied.

$$g_{-1}(\theta_{-1},\theta_{0}) = 0.$$
 (2-37)

The trial-and-error procedures are described below.

For an assumed set of  $\theta_{-1}, \theta_{o}, V_{OUT}$  and T, there are the corresponding set of  $(M_i)_{co}$  and  $(V_{i,OUT})_{co}$ . The corrected vapor and liquid mole fractions can then be determined by the following definitions:

$$(x_i)_{co} = \frac{(M_i)_{co}}{M}$$
 (2-38)

and

$$(\mathbf{y}_{i})_{co} = \frac{(\mathbf{v}_{i,OUT})_{co}}{\Sigma(\mathbf{v}_{i,OUT})_{co}}$$
(2-39)

From these corrected vapor-liquid relationships, a corresponding temperature can then be determined from the vapor-liquid equilibrium relationship of the system. This newly determined temperature becomes the assumed temperature for the next trial-and-error calculations. As soon as two convergent-  $\theta$ 's are found, the latest ( $V_{OUT}$ )<sub>co</sub>.

 $(M_i)_{co}$  and assumed temperature become the convergent solutions for this integration step for a nonisothermal operation. If the heat loss term,  $Q_L$  is zero, the nonisothermal distillation tray is reduced to an adiabatic distillation tray. For an unsteady-state adiabatic distillation tray, its criteria of convergence and the method of solution are exactly the same as those for an unsteady-state nonisothermal distillation tray as presented here.

Although Holland's  $\theta$  method is applicable for solving an unsteady-state distillation without chemical reaction, it can not be used to solve a general problem of unsteadystate distillation accompanied by chemical reactions. According to Equation (2-18), the basic concept of Holland's method is to obtain vapor-liquid molal ratio for each component so that the  $\theta$  method can be used according to the definitions of Equations (2-15) and (2-16). In order to obtain such a molal ratio, all the molal quantities which are dependent variables must be liner. Otherwise, a form of  $\frac{M_1M_j}{V_{i,OUT}}$ ,  $\frac{(L_{i,OUT})^n}{V_{i,OUT}}$ , or  $\frac{(M_1)^m}{V_{i,OUT}}$  will be ob-

tained, where n and m are integers unequal to unity, and i and j are different component idenitity numbers. The above nonlinear forms are some of the possible reaction rate terms. Therefore, only unsteady-state distillation system with first-order reaction can be solved by the  $\theta$  method. However, all the known practical distillation accompanied by chemical reaction systems have reaction orders equal to two or higher and Holland's  $\theta$  method is then not applicable. In Chapter 4 a new method is developed to solve a general problem of unsteady-state distillation accompanied by chemical reaction. Furthermore, Holland's  $\theta$  method requires four initially guessed values. They are outlet vapor flow rate,  $V_{\rm OUT}$ , temperature, T,  $\theta_0$  and  $\theta_{-1}$ . The new method developed here will require only one initially guessed value, which is the outlet vapor flow rate,  $V_{\rm OUT}$ .

# Chapter 3 Mathematic Model for Unsteady-State Distillation with Chemical Reaction

3.1 General Mathematic Model for Unsteady-State Distillation with Chemical Reaction

As discussed earlier Holland ( 36 ) has made an intensive investigation on unsteady-state distillation. However, his study has limited to those systems where no chemical reaction takes place. Therefore, it is believed that this study is the first attempt to develop a general mathematic model for unsteady-state distillation accompanied by chemical reaction.

A system of unsteady-state distillation accompanied by chemical reaction is best illustrated by Fig. 3.1.



Fig. 3.1 Material and Energy Balance Around a Distillation Tray with Chemical Reactions

The following assumptions are made for developing the mathematic model.

- (1) The liquid phase is completely mixed.
- (2) The vapor holdup on the tray is negligibly small.
- (3) The reactions occur only in the liquid film or the bulkphase liquid.

The unsteady-state material balance for component i can be expressed as

 $\frac{dM_{i}}{dt} = L_{i,IN} + V_{i,IN} - L_{i,OUT}$ 

| Rate of       |   | Inlet  |   | Inlet |   | Outlet |
|---------------|---|--------|---|-------|---|--------|
| Accumulation  | = | Liquid | + | Vapor | - | Liquid |
| of Mass in    |   | Flow   |   | Flow  |   | Flow   |
| Liquid Holdup |   | Rate   |   | Rate  |   | Rate   |

-  $V_{i,OUT}$  +  $vR_i$ - Outlet - Vapor Flow Rate - i=1,...,n (3-1)

where

n =number of components

L<sub>i</sub> = molal liquid flow rate for component i
V<sub>i</sub> = molal vapor flow rate for component i
R<sub>i</sub> = net rate of component i produced
 and/or consumed by reaction
M<sub>i</sub> = Molal quantity of component i in the liquid
 holdup

v = Total volume of liquid holdup.

The overall material balance can be written as

where

L<sub>IN</sub> =Total liquid inlet rate, molal quantity

$$L_{OUT} = \text{Total liquid outlet rate, molal quantity}}$$

$$V_{IN} = \text{Total vapor inlet rate, molal quantity}}$$

$$V_{OUT} = \text{Total vapor outlet rate, molal quantity}}$$

$$M = \sum_{i=1}^{n} M_{i}, \text{Total molal holdup on the tray}}$$

$$\prod_{i=1}^{n} R_{i} = \text{Total net rate of mass produced and/or}}$$

$$\min_{i=1}^{n} M_{i}, \text{ consumed by chemical reactions}}$$

Holland (36) assumed that all the trays have constant holdup, implying that dM/dt is equal to zero for a constant molal holdup, or  $\sum M_i / \tilde{f}_i$  is a fixed value, where  $\bar{f}_i$  is molal liquid density, for a constant volumetric holdup. However, the Holland assumption is not necessarily valid for the problem in hands where chemical reactions occur. Thus, for the present development a more realistic postulation of the liquid holdup being a time-dependent function is adopted.

The unsteady-state overall energy balance can be expressed as follows:

$$\frac{d}{dt} Mh_{s} = L_{IN}h_{IN} + V_{IN}H_{IN}$$

$$\begin{pmatrix} \text{Rate of} \\ \text{Accumulation} \\ \text{of Energy} \\ \text{in the} \\ \text{System} \end{pmatrix} = \begin{pmatrix} \text{Rate of} \\ \text{Inlet} \\ \text{Energy} \\ \text{with Inlet} \\ \text{Liquid Flow} \end{pmatrix} + \begin{pmatrix} \text{Rate of} \\ \text{Inlet} \\ \text{Energy} \\ \text{with Vapor} \\ \text{Flow} \end{pmatrix}$$

- 
$$L_{OUT}h_{OUT}$$
 -  $V_{OUT}H_{OUT}$   
Rate of  
Outlet  
- Energy  
with Liquid  
Flow  
-  $Q_L$  +  $\sum_{j=1}^{n_r} R_j(-\Delta H_{R,j})$  (3-3)  
Rate of  
Heat Loss  
to the  
Surrounding  
+ Generated  
by Reaction

where:

=Inlet liquid enthalpy h<sub>TN</sub> =Out liquid enthalpy hOUT =Inlet vapor enthalpy H<sub>TN</sub>  $H_{OUT}$  =Outlet vapor enthalpy =Enthalpy of holdup on the tray h<sub>S</sub> ( assuming negligible vapor holdup) =Net heat transfer rate form the system to Q<sub>T.</sub> the surrounding =Rate of reaction for reaction j  $R_{j}$  $-\Delta H_{R, j}$  = heat of reaction of Reaction j =Number of reactions Nr

It is noted that heat of solution is assumed negligible

and thus not shown in the above equation. All the enthalpy terms shown above represent the molal enthalpies for the mixture.

The rate of accumulation of energy, i.e, the lefthand side of Equation (4-3), can be rewritten in terms of temperature change as follows.

$$\frac{d}{dt}(Mh_s) = h_s \frac{dM}{dt} + M \frac{dh_s}{dT} \frac{dT}{dt}$$
(3-4)

Since the term dh<sub>s</sub>/dT is equivalent to heat capacity C at temperature T, Equation (3-4) can now be rewritten as

$$\frac{d(Mh_s)}{dt} = h_s \frac{dM}{dt} + C_p \frac{dT}{dt}$$
(3-5)

where:

T is the temperature of liquid holdup. Equation (3-5) is substituted into Equation (3-3), and the term  $h_s \frac{dM}{dt}$  shifted to the right-hand side of the equation. The temerature change with time can then be expressed as

$$MC_{p} \frac{dT}{dt} = L_{IN}h_{IN} + V_{IN}H_{IN} - L_{OUT}h_{OUT} - V_{OUT}H_{OUT}$$
$$-Q_{L} + \sum_{j=1}^{n_{r}} R_{j}(-\Delta H_{R,j}) - h_{s}\frac{dM}{dt}$$
(3-6)

Equation (3-2) is introduced to Equation (3-6) and a proper algebraic rearrangement will yield the following equation where the  $\frac{dM}{dt}$  disappers.

$$\frac{dT}{dt} = \frac{1}{MC_{p}} \left( L_{IN}h_{IN} + V_{IN}H_{IN} - L_{OUT}h_{OUT} - V_{OUT}H_{OUT} - Q_{L} + \sum_{j=1}^{n} R_{j}(-\Delta H_{R,j}) - h_{s}(L_{IN} + V_{IN} - L_{OUT} - V_{OUT} + v \sum_{i=1}^{n} R_{i}) \right)$$
(3-7)

Thus, the unsteady-state distillation accompanied by chemical reaction can be mathematically formulated into Equations (3-1), (3-2), and (3-7). It should be noted that since the liquid on the tray is assumed to be completely mixed, the variation of local temperatures and concentrations within the liquid bulk is considered to be negligible. The proposed general model, i. e., Equations (3-1), (3-2), and (3-7) are the basic working equations from which analytical or numerical solutions can be obtained for a given specific reaction-distillation system.

3.2 Unsteady-State Distillation without Chemical Reaction (Category Two Problems).

In the case, the distillation is not accompanied by chemical reaction, the reaction terms in Equation (3-1), (3-2), and (3-3) can be equated zero.

Then, the following equations are obtained.

$$\frac{dM_{i}}{dt} = L_{i,IN} + V_{i,IN} - L_{i,OUT} - V_{i,OUT}$$
(3-8)

$$\frac{dM}{dt} = L_{IN} + V_{IN} - L_{OUT} - V_{OUT} \qquad (3-9)$$

$$\frac{d}{dt} (Mh_s) = L_{IN}h_{IN} + V_{IN}H_{IN} - L_{OUT}h_{OUT} - V_{OUT}H_{OUT}$$

$$-Q_L \qquad (3-10)$$

The above equations are identical to those developed by Holland (36) for unsteady-state distillation without chemical reaction. Since no temperature term is shown in Equation (3-10), temperature should be obtained by trial-and-error. The iteration procedure is proposed by Holland (36). If the rate of accumulation of energy in Equation (3-10) is changed into the rate of temperature change, the resulting equation is Equation (3-7) without the reaction term. It can be written as follows:

$$\frac{dT}{dt} = \frac{1}{MC_p} \left[ L_{IN}h_{IN} + V_{IN}H_{IN} - L_{OUT}h_{OUT} - V_{OUT}H_{OUT} - h_s (L_{IN} + V_{IN} - L_{OUT} - V_{OUT}) \right]$$
(3-11)

The above equation can give the instantaneous temperature without trial-and-error on the temperature term. Also if Holland's method is used to solve the above rate equations, as stated before the tray must have constant liquid holdup implying the steady inlet and outlet streams.

Equation (3-10) is then reduced to

$$0 = L_{IN} + V_{IN} - L_{OUT} - V_{OUT}$$
  
or  $L_{IN} + V_{IN} = L_{OUT} + V_{OUT}$  (3-12)

3.3 Steady-State Distillation with Chemical Reaction (Category Three Problems).

On the other hand, if the distillation is accompanied by chemical reaction but it is operated at steadystate conditions, the derivative terms in Equation (3-1), (3-2), (3-7) can be set to zero:

$$\frac{dM_{i}}{dt} = 0$$
$$\frac{dM}{dt} = 0$$
$$\frac{dT}{dt} = 0$$

Substituting the above to Equations (3-1), (3-2), and (3-7) yields the following sets of equations.

$$L_{i,IN} + V_{i,IN} - L_{i,OUT} - V_{i,OUT} + vR_{i} = 0$$
 (3-13)

$$L_{IN} + V_{IN} - L_{OUT} - V_{OUT} + V \sum_{i=1}^{R} R_{i} = 0 \qquad (3-14)$$

$$L_{IN}h_{IN} + V_{IN}H_{IN} - L_{OUT}h_{OUT} - V_{OUT}H_{OUT} - Q_{L}$$

$$+ \sum_{i=1}^{n} R_{i}(-\Delta H_{R,i}) = 0 \qquad (3-15)$$

The above equations are identical to those proposed by Marek (45) and Belck (5) and utilized by Davies and Jeffreys (12) for analysis of their steady-state experimental data.

The methods of solution for above algebraic equations can be obtained by graphical procedures or analytical solutions for distillation with a single and simple chemical reaction.

3.4 Steady-State Distillation without Chemical Reaction (Category One Problems).

Equations (3-13), (3-14), and (3-15) can be reduced to the mathematical model for the steady-state distillation without chemical reaction. This can be accomplished by substituting  $R_i=0$  into Equation (3-13), (3-14), and (3-15). The following equations are then obtained.

$$L_{i,IN} + V_{i,IN} - L_{i,OUT} - V_{i,OUT} = 0$$
 (3-16)

$$L_{IN} + V_{IN} - L_{OUT} - V_{OUT} = 0$$
 (3-17)

 $L_{IN}h_{IN} + V_{IN}H_{IN} - L_{OUT}h_{OUT} - V_{OUT}H_{OUT} - Q_{L}=0$  (3-18)

The above are the familiar model to represent the steadystate distillation without chemical reaction. Many articles have been published about the solutions for those equations.

## 3.5 Semi-Batch Distillation with Chemical Reaction

When the outlet liquid flow is not present, the gen-

eral system shown in Figure 3.1 is reduced to a semibatch distillation accompanied by chemical reaction. For this case,

 $L_{i,OUT} = L_{OUT} = 0$  (3-19) and the general model is reduced to the following set of equation:

$$\frac{dM_{i}}{dt} = L_{i,IN} + V_{i,IN} - V_{i,OUT} + vR_{i}$$
(3-20)

$$\frac{dM}{dt} = L_{IN} + V_{IN} - V_{OUT} + v \sum_{i=1}^{n} R_i$$
(3-21)

$$\frac{d\mathbf{T}}{dt} = \frac{1}{MC_{p}} \left[ \mathbf{L}_{IN}\mathbf{h}_{IN} + \mathbf{V}_{IN}\mathbf{H}_{IN} - \mathbf{V}_{OUT}\mathbf{H}_{OUT} - \mathbf{Q}_{L} + \frac{\mathbf{n}_{r}}{\sum_{j=1}^{r}} \mathbf{R}_{j}(-\Delta \mathbf{H}_{R,j}) - \mathbf{h}_{s}(\mathbf{L}_{IN} + \mathbf{V}_{IN} - \mathbf{V}_{OUT} + \mathbf{v}_{j=1}^{r} \mathbf{R}_{j}) \right]$$
(3-22)

The simultaneous solution of the above equations for a complex system including several simultaneous reactions will be given in the next chapter.

Summarizing, generality of the proposed model can be best illustrated in Fig. 3.2





# Chapter 4 Theoretical Model for Semi-Batch Distillation Accompanied by Chemical Reaction

4,1 Basic Mathematical Model and Reactions

The mathematical model for a semi-batch distillation accompanied by chemical reaction can be obtained by reducing the general model as shown in the previous chapter. These are repeated below.

$$\frac{dM_{i}}{dt} = L_{i,IN} + V_{i,IN} - V_{i,OUT} + R_{i} (3-20)$$

$$\frac{dM}{dt} = L_{IN} + V_{IN} - V_{OUT} + \frac{n}{i=1}R_{i} (3-21)$$

$$\frac{dT}{dt} = \frac{1}{MCp} \left( L_{IN} h_{IN} + V_{IN} H_{IN} - V_{OUT} H_{OUT} - Q_{L} + \frac{n}{j=1}R_{j} (-\Delta H_{R,j}) - h_{s} (L_{IN} + V_{IN} - V_{IN} + V_{IN} - V_{IN} + V_{IN} + V_{IN} - V_{OUT} + \frac{n}{j=1}R_{j} \right)$$

$$(3-22)$$

The simultaneous solution for the above model now will be given in this chapter. The system for which the solutions are developed is the esterification of acrylamide sulfate and ethyl alcohol. The product, namely ethyl acrylate, is distilled into the vapor phase. The proposed system is best illustrated in Figure 4.1.

Initially, a known volume of the equilibrium





solution containing acrylamide, sulfuric acid, acrylamide sulfate is prepared and charged to the reactiondistillation tray. The equilibrium relationship can be represented as

Equilibrium Reaction

CH<sub>2</sub>CHCONH<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub> - CH<sub>2</sub>CHC(OH)NH<sub>2</sub>HSO<sub>4</sub> (4-1) acrylamide sulfuric acid acrylamide sulfate. The method of preparing the above solution and other experimental set-ups and procedures for this study are described in more details in the following chapter. The continuous feed, liquid and vapor, of ethyl alcohol and water, are charged to the reaction-distillation tray. The tray is a micro-sieve tray, with perforations of 60 - 75  $\mu$ . As scon as ethyl alcohol comes into contact with acrylamide sulfate, the following three chemical reactions occur.

a. Major Reaction - Esterification

 $CH_{2}CHC(OH)NH_{2}HSO_{4} + C_{2}H_{5}OH$ acrylamide sulfate ethyl alcohol =  $CH_{2}CHCOOC_{2}H_{5} + NH_{4}HSO_{4}$  (4-2)

ethyl acrylate ammonium bisulfate

b. Minor Side Reaction - Dehydration

 $\begin{array}{c} 2 C_2 H_5 0 H \\ \hline \end{array} \begin{array}{c} H_2 S O_4 \\ \hline \end{array} \begin{array}{c} C_2 H_5 0 C_2 H_5 \\ \hline \end{array} \begin{array}{c} H_2 0 \\ \hline \end{array} \begin{array}{c} (4-3) \\ \hline \end{array} \end{array}$ 

The catalyst for the reaction is  $H_2SO_4$  which is present in the solution.

#### c. Minor Successive Reaction

Another by-product,  $\beta$ -ethoxy-ethyl propionate is produced from two successive reaction routes. One of them is the addition of ethyl alcohol into the main product, ethyl acrylate. The other is the reaction between ethyl alcohol and the intermediate complex,  $C_2H_5OC_2H_4C(OH)NH_2HSO_4$ , whose formation will be discussed later in this chapter. The combined reaction may be represented by the following third-order reaction with respect to acrylamide sulfate and ethyl alcohol:

 $CH_2CHC(OH)NH_2HSO_4 + 2C_2H_5OH$ acrylamide sulfate ethyl alcohol

> =  $C_2H_5OC_2H_4COOC_2H_5$  +  $NH_4HSO_4$  (4-4)  $\beta$ -ethoxy-ethyl propionate ammonium bisulfate

From the above three equations, it is obvious that the system is a complex mixture including the following nine separate chemical species

| Identifying<br>Subscripts | Compound<br>Names | Chemical<br>Formulas             |
|---------------------------|-------------------|----------------------------------|
| 1                         | Ethyl Alcohol     | с <sub>2</sub> н <sub>5</sub> 0н |
| 2                         | Ethyl Acrylate    | CH2CHCOOC2H5                     |
| 3                         | Water             | H <sub>2</sub> 0                 |
| 4                         | Diethyl Ether     | C2H50C2H5                        |

| 5 | β-Ethoxy-ethyl<br>Propionate | C2H5CC2H4C00C2H5               |
|---|------------------------------|--------------------------------|
| 6 | Acrylamide<br>Sulfate        | CH2CHC(OH)NH2HS04              |
| 7 | Sulfuric Acid                | H <sub>2</sub> S0 <sub>4</sub> |
| 8 | Ammonium<br>Bisulfate        | NH4HSO4                        |
| 9 | Acrylamide                   | CH2CHCONH2                     |

It is noted that at the time of the initial introduction of the ethyl alcohol-water mixture to the system, the reaction moves slowly and a negligible amount of vapor containing ethyl acrylate is produced. The heat of reaction and the heat of condensation of the feed vapor provide the energy to raise the system temperature rapidly until it reaches the bubble point of the liquid mixture. With the continuous feed of the volatile ethyl alcohol-water mixture, the reactions proceed, yielding the vapor products which include ethyl acrylate. In addition to ethyl acrylate, the outlet vapor contains four other components, namely ethyl alcohol, water, diethyl ether and  $\beta$ -ethoxy-ethyl propionate. The semibatch distillation system to be dealt in this investigation does not have an outgoing liquid stream. The liquid holdup on the tray contains all the nine components which are listed earlier.

The fundamental equations, i. e., Equations (3-20), (3-21), (3-22), derived in the previous chapter are readily applicable where the component subscript i ( from 1 to 9 ) represents for each compound respectively. There are basically four reactions occuring in the system and the reaction subscript j ( from 1 to 4 ) represents the four reactions, i. e., Equations (4-1), (4-2), (4-3), (4-4), as follows.

| Reaction Identifi-<br>cation Subscript j | Reaction             | Reaction<br><u>Equation</u> |  |
|------------------------------------------|----------------------|-----------------------------|--|
| 1                                        | Esterification       | (4-2)                       |  |
| 2                                        | Dehydration          | (4-3)                       |  |
| 3                                        | Successive Reaction  | (4-4)                       |  |
| 4                                        | Equilibrium Reaction | (4-1)                       |  |

## 4.2 Reaction Mechanisms

# 4.2.1 Structural Formula of Molecular Complex, Acrylamide Sulfate

Before discussing the kinetics and mechanisms of the reaction system, a complex reactant, acrylamide sulfate, should be understood first. Three formulas (38,57,60) have been proposed to represent acrylamide sulfate. They are:

| сн <sub>2</sub> снс(он) NH <sub>2</sub> HSO4                       | [A] |
|--------------------------------------------------------------------|-----|
| сн <sub>2</sub> снсолн <sub>2</sub> н <sub>2</sub> so <sub>4</sub> | [B] |
| CH2CHCONH3HSO4                                                     | [0] |

Among them, formula [A] is a better representation on the basis of the electron affinity theory and the structure of the reaction by-product, i. e.,  $\beta$ -ethoxyethyl propionate. When acrylamide is added into the aqueous sulfuric acid solution to form acrylamide sulfate, the proton H<sup>+</sup> is dissociated first from the sulfuric acid. It attaches immediately onto the most electronegative carboxyl oxygen. Then the electron in the double bond of the carboxyl group will shift to the oxygen to neutralize the proton. A positive carbonyl ion is then formed as shown below.

$$CH_2 = CH - C \stackrel{0!}{\underset{NH_2}{\leftarrow}} + H^+ \longrightarrow CH_2 = CH - C + OH (4-5)$$

The electron shifts further from the unsaturated carbon to the positive carbonyl ion and leads to the following ionic resonance form:



The overall chemical reaction for yielding the main product, ethyl acrylate, from the mixture of

acrylamide, sulfuric acid and ethyl alcohol can be shown as

$$CH_2 = CH - C \swarrow_{NH_2}^{0} + H_2 SO_4 + C_2 H_5 OH$$
  
 $\longrightarrow CH_2 = CH - C \lll_{0-C_2 H_5}^{0} + NH_4 HSO_4 (4-7)$ 

The reaction shows the addition of high electronegative cxygen of ethyl alcohol onto the carboxyl carbon of acrylamide. Therefore, this carbon is an electron acceptor.

A further reaction of ethyl acrylate with ethyl alcohol gives the by-product,  $\beta$ -ethoxy-ethyl propionate;

$$CH_2 = CH - C < \bigcirc 0 \\ 0 - C_2H_5 + C_2H_5OH \longrightarrow \bigcirc \beta \\ C_2H_5OH - C_2H_5 + C_2H_5OH - C_2$$

The addition of ethoxyl oxygen onto the  $\beta$ -carbon of ethyl acrylate also indicates the  $\beta$ -carbon is an electron acceptor.

The above discussion justifies the ionic resonance form (4-6). Except a strong acid, a strong base or their salts, a compound seldom dissociates completely to its ionic forms. Acrylamide sulfate is no exception and, therefore, there exists a structural formula with covalent bond for acrylamide sulfate:

$$CH_2 = CH - C - OSO_3H$$
 (4-9)

Of course, the covalent bond should be in equilibrium with the ionic bond, which can be expressed as follows:

$$CH_{2}=CH-C-OSO_{3}H \longrightarrow \left(CH_{2}-CH=C \swarrow OH \\ H_{2} \longrightarrow OH \\ H_{2} \longrightarrow OH \\ CH_{2}=CH-C + OH \\ H_{2} \longrightarrow OH \\ H_{2} \longrightarrow OH \\ (4-10)$$

During the alcoholysis, electrophilic ethoxyl oxygen should first attack the ionic molecules, then the covalent bond dissociates instantaneously into ionic bond to supply the ionic reactant for further alcoholysis.

# 4.2.2 Preparation of Acrylamide Sulfate

Three methods have been reported in literature for preparing acrylamide sulfate. A different reactant is used to react with sulfuric acid in an aqueous solution.

1. Starting with acrylamide ( 57 ):

 $CH_2CHCONH_2 + H_2SO_4 \xrightarrow{\sim} CH_2CHC(OH)NH_2HSO_4$ (4-1)

2. Starting with acrylonitrile (27):  

$$CH_2CHCN + H_2O + H_2SO_4 \longrightarrow CH_2CHC(OH)NH_2HSO_4$$
(4-11)

3. Starting with ethylene cyanohydrin (57):  $CH_2(OH)CH_2CN + H_2SO_4 \longrightarrow CH_2CHC(OH)NH_2HSO_4$ (4-12)

It was reported that the reactions starting with acrylonitrile or ethylene cyanohydrin are accompanied by side reactions and consequently not all the reactants are converted to the sulfate. On the other hand, the reaction starting with acrylamide is not accompanied by a competitive side reaction. Therefore, for this study, acrylamide sulfate is prepared by reacting acrylamide with sulfuric acid in an aqueous solution as represented in Equation (4-1).

# 4.2.3 Esterification of Acrylamide Sulfate and Ethyl Alcohol

Two different reaction mechanisms can be postulated depending on the concentration of water in the mixture. If a large amount of water is presented in the acrylamide sulfate solution (57,2), most of acrylamide sulfate will be hydrolysed to produce acrylic acid first:

 $CH_2CHC(OH)NH_2HSO_4 + H_2O \longrightarrow CH_2CHCOOH + NH_4HSO_4$ acrylic acid (4-13)

Then acrylic acid reacts with ethyl alcohol to yield the desired product, ethyl acrylate:

 $CH_2CHCOOH + C_2H_5OH = CH_2CHCOOC_2H_5 + H_2O$  (4-14)

The mechanisms of the above reactions are best explained from the structural point of view as presented in Section 4.2.1. In the ionic resonance form  $\begin{pmatrix} + \\ CH_2-CH=C \\ NH_2 \end{pmatrix}$ 

$$\rightarrow CH_2 = CH - C + OH_{NH_2}$$
, the structure  $\left[ CH_2 = CH - C + OH_{NH_2} \right]$ 

is much more stable than  $\begin{bmatrix} + \\ CH_2 - CH = C < \\ NH_2 \end{bmatrix}$  because

hydroxyl group -OH and amine group  $-NH_2$  have very high electron-negativity, which will suppress the electron of unsaturated carbon from moving to the positive carboxyl carbon. Therefore, the hydrolysis is proceeded mostly with the stable ion  $\left(CH_2=CH-C+ OH_{NH_2}\right)$ :

$$CH_2=CH-C+ OH + OH + OH + CH_2=CH-C-O+ H (4-15)$$

Then, the proton is released from the hydroxyl oxygen and shifted to amine group:

$$CH=CH-C-O+H H CH_2=CH-C-OH (4-16)$$

Since -NH<sub>3</sub> is an electron acceptor, the electrons on hydroxy] oxygen will shift to the adjacent carbon and the proton is then released from it. The shift of electrons to the carboxyl carbon expels the electrons in C-N bond. Free ammonia is then released and combined together with protron to form ammonium ion:

$$CH_2 = CH - C - OH \longrightarrow CH_2 = CH - C \stackrel{0}{\leftarrow} 0 + NH_4^+ \qquad (4-17)$$

The mechanism for the consecutive alcoholysis of acrylic acid is initiated also by the proton which is abundant in the dilute sulfuric acid solution:

$$CH_2 = CH - C \stackrel{0}{\underset{CH}{=}} H^+ - CH_2 = CH - C \stackrel{0H}{\underset{OH}{=}} (4-18)$$

Both the hydroxyl oxygens with high electronegativity suppress the electron of unsaturated carbon from coming to the positive carboxyl carbon and give the stable structure of the ionic resonance form  $\begin{bmatrix} + & 0H \\ CH_2 - CH = C \end{bmatrix} \begin{bmatrix} 0H \\ OH \end{bmatrix}$  $\leftarrow CH_2 = CH - C + \begin{bmatrix} 0H \\ OH \end{bmatrix}$ .

Then the carbonyl ion reacts with ethyl alcohol

$$CH_2=CH-C+ \bigcirc OH \\ OH \end{pmatrix} + \odot \swarrow \begin{pmatrix} H \\ C_2H_5 \end{pmatrix} \longrightarrow CH_2=CH-C-O+ \begin{pmatrix} OH \\ I \\ C_2H_5 \end{pmatrix} \end{pmatrix} (4-19)$$
  
The proton is then released and attached onto the hy-  
droxyl oxygen

$$CH_2 = CH - C - 0 + H - CH_2 = CH - C - 0C_2H_5$$
 (4-20)  
 $CH_2 = CH - C - 0C_2H_5$  (4-20)

The group  $-\dot{OH}_2$  will attract the electron from another hydroxyl oxygen. The proton is then released from the oxygen. Also the addition of electrons on the carboxyl carbon will expel the water molecule. The water molecule is then combined with proton to form hydronium ion  $H_30^+$ :

$$CH_2 = CH - C - OC_2H_5 \longrightarrow CH_2 = CH - C < 0 + H_3O^+ (4-21)$$
  
 $H_2O^+ \qquad (4-21)$ 

The above reaction in a dilute sulfate solution yields acrylic acid as intermediate by-product, and hence substantially reduce the yield of the desired product, ethyl acrylate.

Thus, the other reaction in the solution having small amount of water should be investigated to determine the preferrable reaction conditions. With a small amount of water, the water is used mostly to dissociate protons from the sulfuric acid which in turn initiates the formation of acrylamide sulfate. The esterification of acrylamide sulfate and ethyl alcohol can be represented by

 $CH_2CHC(OH)NH_2HSO_4 + C_2H_5OH ---- CH_2CHCOOC_2H_5 + NH_4HSO_4$ (4-2)

Its reaction mechanism can be explained starting with

the stable ionic structure  $CH_2=CH-C+\frac{OH}{NH_2}$  of acry-

lamide sulfate. It reacts with ethyl alcohol in the following manner.

$$CH_2 = CH - C + \underbrace{OH}_{NH_2} + O \xrightarrow{H}_{C_2H_5} \xrightarrow{CH_2 = CH - C - 0 + H}_{NH_2} C_{2H_5}$$

$$(4-22)$$

The rest of steps leading to the product, ethyl acrylate, are similar to those of hydrolysis leading to the acrylic acid:



From the above analysis, appropriate amount of water is then selected here according to the previous worker(27) so that the yield of acrylic acid becomes negligible while enough protons can be produced to initiate the esterification.

#### 4.2.4 Side Reactions

As mentioned in Section 4.1, there are two important side reactions which produce volatile by-products, namely diethyl ether and  $\beta$ -ethoxy-ethyl propionate.

## a. Production of Diethyl Ether:

The mechanism of forming diethyl ether from ethyl alcohol in the presence of  $H_2SO_4$  as catalyst can be thought of a series of the following successive reactions:  $C_2H_5OH + H_2SO_4 = C_2H_5OSO_3H + H_2O$  (4-24)  $C_2H_5OH + C_2H_5OSO_3H = C_2H_5OC_2H_5 + H_2SO_4(4-25)$  $C_2H_5OH + C_2H_5OSO_3H = (C_2H_5O)_2SO_2 + H_2O$  (4-26)

$$c_{2}H_{5}OH + (c_{2}H_{5}O)_{2}SO_{2} = c_{2}H_{5}OSO_{3}H + c_{2}H_{5}OC_{2}H_{5}$$
(4-27)

The overall results of the above reactions can be given by the following equation:

$$2 C_2 H_5 OH = C_2 H_5 OC_2 H_5 + H_2 O$$
 (4-28)

# b. Production of $\beta$ -Ethoxy-Ethyl Propionate:

The formation of  $\beta$ -ethoxy-ethyl propionate is obtained from two successive reaction routes. They are:

$$\left[ CH_{2}=CH-C+ \underset{NH_{2}}{\overset{OH}{=}} \right] + C_{2}H_{5}OH \xrightarrow{\text{fast}} CH_{2}CHCOOC_{2}H_{5} + NH_{4}^{+}$$

$$\left[ D \right] + C_{2}H_{5}OH \xrightarrow{C_{2}H_{5}OC_{2}H_{4}COOC_{2}H_{5}}, \qquad (4-29)$$

and

$$\begin{bmatrix} + & & \\ CH_2 - CH = C & \\ NH_2 \end{bmatrix} + C_2H_5OH \xrightarrow{\text{slow}} \begin{bmatrix} c_2H_5OC_2H_4C + & \\ NH_2 \end{bmatrix}$$

$$\begin{bmatrix} F \end{bmatrix}$$

$$\begin{array}{c} + & \\ F \end{bmatrix} \\ \hline + & \\ F \end{bmatrix}$$

$$\begin{array}{c} + & \\ F \end{bmatrix} \\ \hline \\ \hline \\ fast \end{bmatrix} \\ \begin{array}{c} C_2H_5OC_2H_4COOC_2H_5 + NH_4^+ & (4-30) \end{bmatrix}$$

The first step of Equation (4-29) is formation of the desired product, ethyl acrylate. It is a fast reaction. Its mechanism has been discussed in Section 4.2.3. The last step of this successive reaction is formation of the by-product,  $\beta$ -ethoxy-ethyl propionate. Its mechanism begins from the formation of carbonyl ion by the addition of proton into ethyl acrylate.

$$CH_2 = CH - C \begin{pmatrix} 0 \\ 0C_2H_5 \end{pmatrix} + H^{+} \longrightarrow \begin{pmatrix} CH_2 = CH - C \neq 0H \\ 0C_2H_5 \end{pmatrix} (4-31)$$

$$[G]$$

Since the ethoxyl group,  $-OC_2H_5$ , is much less electronegative than amine group,  $-NH_2$ , as in the previous case, the other resonance form  $\begin{pmatrix} CH_2-CH=C & OH \\ OC_2H_5 \end{pmatrix}$  will be comparably more stable than  $\begin{pmatrix} +\\ CH_2-CH=C & OH \\ NH_2 \end{pmatrix}$ . Also,

the steric effect of larger molecular groups OH and  $OC_2H_5$  prevent alcohol from adding to the carboxyl carbon of formula [G]. Therefore, the mechanism for this side reaction can be represented as follows:



The proton released in the above equation then attaches on the unsaturated  $\alpha$ -carbon because it has much less steric hinderance than carboxyl carbon:

$$CH_2-CH=C \xrightarrow{OH} + H^+ \longrightarrow CH_2 - CH-C \xrightarrow{OH} (4-34)$$
  
$$CH_2 - CH-C \xrightarrow{OH} (4-34)$$
  
$$CH_2 - CH-C \xrightarrow{OH} (2-34)$$

The positive carbonyl ion then attracts the electron from hydroxyl oxygen and then proton is released again to give the by-product,  $\beta$ -ethoxy-ethyl propionate:

$$CH_2-CH_2-C+OH \longrightarrow CH_2-CH_2-C \longrightarrow OC_2H_5 \longrightarrow$$

The proton is then a catalyst for the above addition reaction.

Equation (4-30) is an alternate reaction route leading to the by-product,  $\beta$ -ethcxy-ethyl propionate. Since formula [E] is much less stable than formula [D] as mentioned in Section 4.2.1, the following addition reaction is then a very slow reaction:



Following the same mechanisms given in Equations (4-33), and (4-34), the product of the above reaction proceeds to the intermediate complex ion,  $\begin{bmatrix} CH_2-CH_2-C+ & OH \\ OC_2H_5 \end{bmatrix}$ .



Formula (F) with bisulfate ion,  $HSO_{4}$  gives the intermediate complex,  $C_2H_5OC_2H_4C(OH)NH_2HSO_4$  as mentioned in Section 4.1.

As soon as the above positive carbonyl ion is formed and more ethyl alcohol is added, the hydroxyl oxygen in ethyl alcohol will attach onto the carboxyl carbon.



Shifts of proton and formation of ammonium ion are similar to those shown in Equation (4-23).

 $(H_2-CH_2-C-0+C_2H_5)$   $(H_2-CH_2-C-0C_2H_5)$  $(H_2-CH_2-C-0C_2H_5)$   $(H_2-CH_2-C-0C_2H_5)$ 

$$\xrightarrow{\text{CH}_2-\text{CH}_2-\text{C}}_{\text{OC}_2\text{H}_5}^{0} + \text{NH}_4^+ \qquad (4-39)$$

Since the reaction rate for this stage is much faster than the previous stage, the yield of the intermediate complex,  $C_2H_5OC_2H_4C(OH)NH_2HSO_4$  is then essentially negligible. Summerizing the mechanisms described above, the formation of  $\beta$ -ethoxy-ethyl propionate can then be represented by the following overall reaction.

 $CH_2CHC(OH)NH_2HSO_4 + 2C_2H_5OH$ 

 $--- C_2 H_5 O C_2 H_4 C O O C_2 H_5 + N H_4 H S O_4 (4-4)$ 

4.3 Reaction Rate Expressions

4.3.1 Esterification of Acrylamide Sulfate

Since the amount of water presented in the system is small, the reaction mechanism of esterification is best expressed by Equations (4-22) and (4-23). Since the transient electron shifts can be considered to be instantaneous and since the ionic structure of

 $\begin{bmatrix} CH_2 = CH - C + \begin{pmatrix} 0H \\ NH_2 \end{bmatrix} \text{ dominates the reaction, the overall} \\ \text{reaction may be represented by its equilivalent mole-} \\ \text{cular formula as shown in Equation (4-40).} \\ CH_2CHC(0H)NH_2HSO_4 + C_2H_5OH \xrightarrow{k_1} \\ CH_2CHCOOC_2H_5 + NH_4HSC_4 (4-40) \end{bmatrix}$ 

As most of product,  $CH_2CHCOOC_2H_5$  is distilled and leaves the system, the above reaction can be considered as a second-order irreversible reaction. Then, the rate expression of producing ethyl acrylate by the above overall reaction can be expressed as

$$R'_{1} = k_{1}C_{1}C_{6} \tag{4-41}$$

where

R'\_1 = reaction rate yielding ethyl acrylate, g-mole/l-min

 $k_1$  = reaction rate constant, 1/g-mole-min

C<sub>i</sub> = concentration for component i, g-mole/l The Arrhenius equation states that

$$k = k_0 e^{-E_0 / 1.987T}$$
 (4-42)

where

 $k_o =$ frequency factor  $E_o =$ activation energy, cal/g-mole T =absolute temperature,  $^{O}K$ 

Substituting Equation (4-42) into Equation (4-41) with the corresponding subscript gives

$$R_1' = k_{01} e^{-E_{01}/1.987T} C_1 C_6$$
 (4-43)

where

 $E_{o1}$  = activation energy for the rate constant  $k_1$  $k_{o1}$  = frequency factor for the rate constant  $k_1$ 

## 4.3.2 Production of Diethyl Ether

The reaction forming diethyl ether as represented by Equation (4-3) can be written as a second-order reversible reaction:

$$2 C_2 H_5 0H \xrightarrow{k_2} C_2 H_5 0 C_2 H_5 + H_2 0$$
 (4-44)

However, the product, diethyl ether, is very volatile and thus the concentration of diethyl ether in the liquid phase is negligibly small. Under this condition, the backward reaction may be neglected and the reaction treated as a second-order irreversible reaction. The rate of producing diethyl ether is then expressed by

$$R_2' = k_2 C_1^2 \tag{4-45}$$

where

$$R'_2$$
 = production rate of diethyl ether  
 $k_2$  = forward reaction rate constant

4.3.3 Formation of  $\beta$ -Ethoxy-ethyl propionate

The overall reaction expressed by Equation (4-4) has been shown in Section 4.2.5 as a combination of two consecutive reactions. It is repeated below

 $CH_2CHC(OH)NH_2HSO_4 + 2C_2H_5OH$ 

$$-\frac{\kappa_3}{C_2H_50C_2H_4C00C_2H_5} + NH_4HS0_4$$
 (4-46)

Since the reactant, ethyl alcohol, is supplied continuously and the product,  $\beta$ -ethoxy-ethyl propionate is partly vaporized and removed from the reacting mixture, the reaction can be considered as an irreversible thirdorder reaction. The rate equation is, then, written

$$R'_{3} = k_{3}C_{1}^{2}C_{6}$$
 (4-47)

where

 $R'_{3}$  = production rate of  $\beta$ -ethoxy-ethyl propionate  $k_{3}$  = rate constant for Reaction 3.

# 4.3.4 Equilibrium Reaction Forming Acrylamide Sulfate Complex

The acrylamide sulfate is not continuously charged to the reaction mixture, but is formed instead in the reaction mixture by the following reaction:

 $CH_2CHCONH_2 + H_2SO_4 \implies CH_2CHC(OH)NH_2HSO_4$  (4-1) When acrylamide is dissolved in the aqueous sulfuric acid at a ratio of about 1:1.2, as used in this work, acrylamide crystal can be seen in equilibrium with the brown product, acrylamide sulfate in the mixture at the temperature below the melting point of acrylamide, 84.5 °C. However, when the temperature is increased to the range of 90 - 130 °C as used in this study, acrylamide sulfate is formed almost instantaneously. Accord-

ing to American Cynamid Company ( 2), molten acrylamide polymerizes vigorously with evolution of heat. Since no polymerization (viscous material ) has been found in any of the acrylamide sulfate solutions prepared in this experimental system, it is evident that acrylamide is stabilized in the form of molecular complex, acrylamide sulfate. Amount of free acrylamide in the sulfate solution is then negligible. Thus. it may be assumed that all the added acrylamide is converted into acrylamide sulfate for the experiments being investigated. When the temperature exceeds 135 °C, acrylamide sulfate may be decomposed because strong odors can be detested from the liquid. To avoid such a decomposition at high temperatures, and to avoid the equilibrium reaction at low temperatures, the moderate temperature of 90-130 °C is chosen as an appropriate range for this study.

The molal quantity of the acrylamide sulfate complex can be represented in terms of initial molal quantity of acrylamide and its consumptions by the reactions. All the added acrylamide is consumed to produce acrylamide sulfate while acrylamide sulfate is consumed to produce two components, namely ethyl acrylate and  $\beta$ -ethoxy-ethyl propionate as follows.

(i) For producing acrylamide sulfate

$$CH_2CHCONH_2 + H_2SO_4 \longrightarrow CH_2CHC(OH)NH_2HSO_4 (4-1)$$

Equations (4-1) and (4-2) can be combined together stochiometrically:

+  $NH_{l_{\downarrow}}HSO_{l_{\downarrow}}$  (4-4)

 $CH_{2}CHCONH_{2} + H_{2}SO_{4} + 2C_{2}H_{5}OH \longrightarrow C_{2}H_{5}OC_{2}H_{4}COOC_{2}H_{5}$  $+ NH_{4}HSO_{4} \qquad (4-49)$ 

Now, let A<sub>i</sub> represent the total molal quantities of component i in both liquid and vapor phases. Stochiometric consideration of Equations (4-1), (4-48) and (4-49) then lead to the following expressions:

Moles of initial acrylamide sulfate =  $A_{6,0}$ = Moles of total added acrylamide =  $A_{9,0}$  (4-50) Moles of acrylamide sulfate consumed =  $A_2 + A_5$  Thus, the amounts of acrylamide and sulfuric acid remained in the reaction mixture at any time can be represented by

$$M_{7} = M_{7,0} - M_{9,0}$$
(4-51)  
$$M_{9} = 0$$
(4-52)

where M<sub>7,0</sub> is the molal quantity of sulfuric acid presented in the initial mixture. Since acrylamide sulfate is very nonvolatile.

$$A_{6} \cong M_{6} \tag{4-53}$$

Equation (4-53) can be incorporated with the relationships given in Equation (4-50) to give

$$M_{5} = M_{9,0} - (A_{2} + A_{5})$$
 (4-54)

# 4.4 Individual Rates of Mass Appearance and/or Disappearance

Ethyl alcohol is involved in three chemical reactions, i.e., Reactions (1), (2) and (3). The molal rate of ethyl alcohol consumptions by the reactions is

$$v(R_1 + 2R_2 + 2R_3).$$

Substituting the above into Equation (3-20) for ethyl alcohol yields

$$\frac{dM_1}{dt} = L_{1,IN} + V_{1,IN} - V_{1,OUT} - v(R_1 + 2R_2 + 2R_3)$$
(4-55)

#### 4.4.2 Ethyl Acrylate

Both liquid and vapor feeds to the system contain no ethyl acrylate. Therefore,

 $L_{2,IN} = V_{2,IN} = 0$ 

It is the main product of the esterification and leaves the system as a part of the exit vapor. It may be consumed by addition of ethyl alcohol to give  $\beta$ -ethoxyethyl propionate. However, the formation of  $\beta$ -ethoxyethyl propionate is a very slow reaction and has been proved to be more dependent on the concentrations of ethyl alcohol and acrylamide sulfate. Thus, the molal reaction rate of ethyl acrylate is mostly attributed to Reaction (1), vR<sub>1</sub>. Substituting this quantity into Equation (3-20) gives the equation for rate of appearance of ethyl acrylate in the system.

$$\frac{dM_2}{dt} = -V_{2,0UT} + VR_1$$
 (4-56)

4.4.3 Water

All the streams entering and leaving the system contain water. It is also formed as a by-product by Reaction (2) of which main product is diethyl ether. Its rate of formation is  $vR_2$  and Equation (3-20) can be written in the following form for water.

$$\frac{dM_3}{dt} = L_{3,IN} + V_{3,IN} - V_{3,OUT} + V_{R_2}$$
(4-57)

4.4.4 Diethyl Ether

The feeds contain no ether and it is produced by Reaction (2). Thus, the rate of mass change of diethyl ether is expressed as

$$\frac{dM_{4}}{dt} = -V_{4,OUT} + vR_{2}$$
 (4-58)

4.4.5 G-Ethoxy-Ethyl Propionate

The source of  $\beta$ -ethoxy ethyl propionate is Reagtion (3). It is volatile and leaves the system in the exit vapor. Thus,

$$\frac{dM_{5}}{dt} = -V_{5,0UT} + VR_{3}$$
(4-59)

4.4.6 Acrylamide Sulfate

Acrylamide sulfate does not enter and leave the system. It is only consumed by chemical reactions within the system. Differentiation of Equation (4-54) gives the rate of consumption of acrylamide sulfate as a function of production rates of ethyl acrylate and  $\beta$ -ethoxy-ethyl propionate as follows:

$$\frac{dM_6}{dt} = -\left(\frac{dA_2}{dt} + \frac{dA_5}{dt}\right)$$
(4-60)

Now, the rate of production of ethyl acrylate can be expressed as

$$\frac{dA_2}{dt} = vR_1 \tag{4-61}$$

where v is the volume of total liquid in the system. The production rate of  $\beta$ -ethoxy ethyl propionate can be expressed by Equation (4-47) which can be rewritten as follows:

$$\frac{dA_5}{dt} = vR_3 \tag{4-62}$$

Equations (4-61) and (4-62) can be introduced into Equation (4-60) to yield

$$\frac{dM_6}{dt} = -v(R_1 + R_3)$$
 (4-63)

### 4.4.7 Sulfuric Acid

Sulfuric acid is charged to the system only once before the system operation. It is very nonvolatile. Its presence in vapor condensate can not be detected by titration with barium chloride solution. Since sulfuric acid is also not generated or consumed by chemical reactions, it has a zero molal rate of change obtained from differentiation of Equation (4-52) with respect to time.

$$\frac{dM_{7}}{dt} = 0 \qquad (4-64)$$

4.4.8 Ammonium Bisulfate

The sources for ammonium busulfate are Reactions (1) and (3). Thus,

$$\frac{dM_8}{dt} = v(R_1 + R_3)$$
 (4-65)

Ammonium bisulfate is a very nonvolatile solid. The outlet vapor contains no trace of it.

4.4.9 Acrylamide

Similar to sulfuric acid, the expression for  $\frac{dM_9}{dt}$ can be obtained by differentiating Equation (4-53).  $\frac{dM_9}{dt} = 0$  (4-66)

4.4.10 Overall Rates of Mass and Energy Changes

Summation of Equations (4-55) to (4-59) and (4-63) to (4-66) gives the overall mass change rate as follows:  $\frac{dM}{dt} = V_{IN} + L_{IN} - V_{OUT} - vR_3 \qquad (4-67)$ where

$$L_{IN} = L_{1,IN} + L_{3,IN}$$
  
 $V_{IN} = V_{1,IN} + V_{3,IN}$   
 $V_{OUT} = \sum_{i=1}^{5} V_{i,OUT}$ 

The heat loss from the system to the surrounding can be represented by the heat transfer rate equation.

$$Q_{L} = U_{i}a_{i}(T - T_{o})$$
 (4-63)

where

a; = inside heat transfer area

U<sub>i</sub> = overall heat transfer coefficient in terms of inside heat transfer area

Substituting this equation into Equation (3-14a) yields the following expression for temperature change in the system

$$\frac{\mathrm{dT}}{\mathrm{dt}} = \frac{1}{\mathrm{MCp}} \left( L_{\mathrm{IN}} h_{\mathrm{IN}} + V_{\mathrm{IN}} H_{\mathrm{IN}} - V_{\mathrm{OUT}} H_{\mathrm{OUT}} + v \sum_{j=1}^{3} R_{j} (1 - \alpha H_{\mathrm{R}, j}) - U_{i} a_{i} (T - T_{o}) - h_{s} \frac{\mathrm{dM}}{\mathrm{dt}} \right)$$
(4-69)

4.5 Mass Transfer Effects on Reaction Rates

## 4.5.1 Hatta's Film Theory

The reaction rates as discussed in the previous sections are affected by mass transfer of molecular

species at the interface. The mass transfer effects are very complex, but its characteristics can be analyzed and discussed by the use of Hatta's film theory (28,29,30,31). Though actual reactions involved in the present study are the pseudo-high-order reactions, the film theory will be initially considered for a firstorder irreversible chemical reaction. A basic mathematical model developed will then be modified and extended to the present system. Let the reaction be

$$A \xrightarrow{k} P \qquad (4-70)$$

where

A= reactant

P= product

k= reaction rate constant

In this study, the reactant enters the system through both gas and liquid feed streams. The case with only gas feed stream will be discussed first. Its liquidgas interface can best be postulated by Fig. 4.2.

According to Hatta's film theory, for any given moment, the rate of change of mass flux by diffusion was set equal to the chemical reaction rate, assuming the rate of accumulation in the thin film is comparable very small and negligible. The relationship can be expressed as



 $\mathbf{O}$ 

Fig. 4.4 Concentration Gradient for a Very Fast Reaction During Gas Absorption

$$\mathscr{D} \frac{\mathrm{d}^2 \mathrm{C}}{\mathrm{dx}^2} = \mathrm{kC} \tag{4-71}$$

where

x = axial distance k = reaction rate constant C = concentration of dissolved gas reactant in liquid film \$\overline\$ = diffusivity of dissolved gas reactant through liquid film

The corresponding boundary conditions are

(1) x = 0  $C = C_{1}$  (4-72) (2)  $x = \delta$   $C = C_{b}$  (4-73)

where

 $\delta$  = film thickness  $C_i$  = interface concentration of reactant A  $C_b$  = concentration of reactant A in liquid bulk  $C_i > C_b$ 

A solution for Equation (4-71) can be obtained readily in the form of

 $C = A_1 \sinh \alpha x + A_2 \cosh \alpha x \qquad (4-74)$ 

where

 $\alpha' = \sqrt{k/\varpi}$ 

The boundary conditions (4-72) and (4-73) can be substituted in Equation (4-74) yielding the following expression for the concentration of reactant A within the liquid film,

$$C = \frac{C_{b} \sinh \alpha x + C_{i} \sinh \alpha (\delta - x)}{\sinh \alpha \delta}$$
(4-75)

The rate of diffusion of solute A into the liquid is obtained from

$$N_{A} = -\mathcal{G}\frac{dC}{dx}\Big|_{x=0} = \frac{\mathcal{G}\left(-C_{b} + C_{i}\cosh\alpha\delta\right)}{\sinh\alpha\delta}$$
(4-76)

Also the rate of diffusion of solute A into the bulk of the liquid is obtained by substituting x = S:

$$N_{\Lambda} = -\vartheta \frac{dC}{dx} \bigg|_{x=S} = \frac{\vartheta (C_{j} - C_{b} \cosh d)}{\sinh} \qquad (4-77)$$

Of the solute A entering the liquid phase, the fraction & reaching the liquid bulk without reacting is given by

$$\mathbf{E} = \frac{C_{i} - C_{b} \cosh \alpha \delta}{C_{i} \cosh \alpha \delta - C_{b}}$$
(4-78)

The reacted fraction  $\epsilon$  of solute A for C<sub>b</sub> equal to zero is shown in Fig. 4.3.

For a very slow reaction, i.e.,  $\int \frac{k}{9} \rightarrow 0$ , all the absorbed reactants enter the liquid bulk without reaction. For a fast reaction, the solute disappears very quickly as it moves across the liquid film. For a very fast reaction, the dissolved A is entirely consumed by the reaction within the liquid film as shown in Fig. 4.4. The boundary conditions for such a situation are

(1) 
$$x=0$$
  $C = C_{i}$  (4-72)

(2) 
$$x = \beta \delta$$
  $C = 0, 0 < \beta \leq 1$  (4-79)

The solution of Equation (4-71) with the above boundary conditions is

$$C = \frac{C_{i} \sin \alpha (\beta \delta - x)}{\sinh \alpha \beta \delta}$$
(4-80)

Next, consider the case where a liquid reactant A diffuses through the liquid film toward the gas phase. Its gas-liquid interface can be illustrated by Fig. 4.5. The rate equation, boundary conditions, and solution for this case are identical to Equations (4-71), (4-72), and (4-73) for gas-absorption accompanied by chemical reaction except that the concentration in liquid bulk, C<sub>h</sub> is greater than that at the gas-liquid interface, C<sub>i</sub>. For a very slow reaction, i.e.,  $\delta \sqrt{k/2} \rightarrow 0$ , all the reactants diffused from the liquid bulk are evaporated into the gas bubble without reaction. For a fast reaction, the solute disappears very quickly as it moves across the liquid film. For a very fast reaction, the dissolved A is entirely consumed by the reaction within the liquid film as shown in Fig. 4.6. The boundary conditions for such a case will be

(1)  $x = \beta \delta$  C = 0 (4-79)



Fig. 4.5 Concentration Gradient for Liquid Evaporation with Chemical Reaction



Fig. 4.6 Concentration Gradient for A Very Fast Reaction During Liquid Evaporation

(2) 
$$x = \delta$$
  $C = C_b$  (4-73)

The solution of Equation (4-71) with the above boundary conditions can be solved readily:

$$C = \frac{C_{b} \sinh \alpha (x - \beta \delta)}{\sinh \alpha \delta (1 - \beta)}$$
(4-81)

There is no reactant A entering the gas bubble and Equation (4-81) can be obtained from a more general solution of Equation (4-75) by proper substitution.

Finally, consider a combined case in which the reactant A is supplied from both gas bubble and liquid bulk. For a very fast reaction, the reactant A coming from the gas bubble completely disappears in the film at  $x = \beta \delta$  and that coming from the liquid bulk disappears at  $x = \frac{2}{3}\delta$  as shown by Fig 4.7. Since this is a combination of Fig 4.3 and Fig 4.5, the solutions for the concentration gradients are identical to Equations (4-80) and (4-81) except that the fraction  $\beta$  shown in Equation (4-81) should be replaced by  $\frac{2}{3}$ . The complete solution for this case are as follows:

$$\begin{cases} C = \frac{C_{i} \sinh \alpha'(\beta \delta - x)}{\sinh \alpha \beta \delta} & 0 \le x \le \beta \delta \quad (4-82a) \\ C = 0 & \beta \delta \le x \le \beta \delta \quad (4-82b) \\ C = \frac{C_{b} \sinh (x - \beta \delta)}{\sinh (1 - \beta)} & \beta \delta \le x \le \delta \quad (4-82c) \end{cases}$$

A special case for the above equations is applied when



Fig. 4.7 Concentration Gradient for A Moderate Fast Reaction with Reactant Coming from both Gas Bubble and Liquid Bulk





the two concentration curves become zero at the same point, i.e.,  $f = \beta$ . The solutions become

$$\int C = \frac{C_{i} \sinh \alpha (\beta \delta - x)}{\sinh \alpha \beta \delta} \qquad 0 \le x \le \beta \delta \qquad (4-83a)$$

$$C = \frac{C_{b} \sinh \alpha (x - \beta \delta)}{\sinh \alpha \delta (1 - \beta)} \qquad \beta \delta \leq x \leq \delta \qquad (4-83b)$$

For moderate reaction rate, the two concentration curves will intersect at a point  $\beta S$  and have same concentration,  $C_m$  as shown by Fig. 4.8. The boundary conditions for such a situation include the following two sets:

Set 1 
$$\begin{cases} x = 0 & C = C_{i} \\ x = \beta \delta & C = C_{m} \end{cases}$$
 (4-72)  
(4-84)

Set 2 
$$\left\{ x = \beta \right\}$$
  $C = C_m$  (4-84)

$$l_{\mathbf{x}} = \delta \qquad \mathbf{C} = \mathbf{C}_{\mathbf{b}} \qquad (4-73)$$

The solution of Equation (4-86) and the above boundary conditions can be obtained readily as

$$\begin{cases} C = \frac{C_{m} \sinh \alpha x + C_{i} \sinh \alpha (\beta \delta - x)}{\sinh \alpha \beta \delta}, \quad 0 \le x \le \beta \} (4-85a) \\ C = \frac{C_{m} \sinh \alpha (\delta - x) + C_{b} \sinh \alpha (x - \beta \delta)}{\sinh \alpha \delta (1 - \beta)}, \end{cases}$$

βδ≤x≤δ (4-85b)

Again, if  $C_m$  is equal to zero, Equations (4-85a) and (4-85b) can then be reduced to a special case whose

. *•* 

solutions are represented by Equations (4-83a) and (4-83b).

Now, if the interface area of all the bubbles in the system is a  $cm^2/cm^3$  clear liquid volume, the rate of mass produced and/or consumed by reaction in the liquid film surrounding the bubbles will be

$$W_{f} = \int_{0}^{\delta} akC \, dx \qquad (4-86)$$

A more general form of the reactant concentration gradient, i.e., Equation (4-85a) and (4-85b), is substituted into Equation (4-86) to yield the rate of mass generation or consumption within the liquid films.

$$W_{f} = \int_{0}^{\delta} akC \, dx = ak \int_{0}^{\beta\delta} \left[ \frac{C_{m} \sinh \alpha x + C_{i} \sinh (\beta\delta - x)}{\sinh \alpha \beta\delta} \right] dx$$

$$+ \int_{\beta\delta}^{\delta} \left[ \frac{C_{m} \sinh \alpha (\delta - x) + C_{b} \sinh \alpha (x - \beta\delta)}{\sinh \alpha \delta (1 - \beta)} \right] dx$$

$$= \frac{ak}{\sinh \alpha \beta\delta} \left[ \frac{C_{m}}{\alpha} \cosh \alpha x - \frac{C_{i}}{\alpha} \cosh \alpha (\beta\delta - x) \right]_{0}^{\beta\delta}$$

$$+ \frac{ak}{\sinh \alpha \delta (1 - \beta)} \left[ - \frac{C_{m}}{\alpha} \cosh \alpha (\delta - x) + \frac{C_{b}}{\alpha} \cosh \alpha (x - \beta\delta) \right]_{\beta\delta}^{\delta}$$

$$= \frac{ak}{\alpha \sinh \alpha \beta\delta} \left[ C_{m} (\cosh \beta\delta - 1) - C_{i} (1 - \cosh \beta\delta) \right]$$

$$+ \frac{ak}{\alpha \sinh \alpha \delta (1 - \beta)} \left[ -C_{m} \left\{ 1 - \cosh \delta (1 - \beta) \right\} + C_{b} \left\{ \cosh \lambda \delta (1 - \beta) - 1 \right\} \right]$$

$$= \frac{\operatorname{ak}(C_{m}+C_{i})(\cosh \alpha \beta \delta - 1)}{\alpha \sinh \alpha \beta \delta} + \frac{\operatorname{ak}(C_{m}+C_{b})[\cosh \alpha \delta(1-\beta) - 1]}{\alpha \sinh \alpha \delta(1-\beta)}$$

$$(4-87)$$

It will be of interest to predict the behavior, by the above equation, of the system under extreme conditions.

If the diffusional mass transfer rate is very large compared to the reaction rate, the mass transfer resistance will be very small such that  $\delta \rightarrow 0$ . With  $S \longrightarrow 0$ , Equation (4-87) can be reduced to zero:  $\lim_{\delta \to 0} \int_{0}^{\delta} \operatorname{akc} dx = \lim_{\delta \to 0} \frac{\operatorname{ak}(C_{m}+C_{i})(\cosh \alpha \beta \delta - 1)}{\alpha \sinh \alpha \beta \delta}$  $= \frac{ak(C_{m}+C_{i})}{\alpha} \lim_{\delta \to 0} \frac{\cosh \alpha \beta \delta -1}{\sinh \alpha \beta \delta} + \frac{ak(C_{m}+C_{b})}{\alpha} \lim_{\delta \to 0} \delta = 0$  $\frac{\cosh \, \measuredangle \int (1-\beta)-1}{\sinh \, \measuredangle \int (1-\beta)}$  $= \frac{ak(C_m+C_i)}{\propto} \lim_{\delta \to 0} \frac{\alpha\beta \sinh \alpha\beta\delta}{\alpha\beta} + \frac{ak(C_m+C_i)}{\alpha} \lim_{\delta \to 0} \lim_{\delta \to 0} \frac{\beta\beta}{\beta} + \frac{ak(C_m+C_i)}{\alpha\beta} \lim_{\delta \to 0} \frac{\beta\beta}{\beta} + \frac{\beta\beta$  $\alpha(1-\beta)$  sinh  $\alpha(\beta(1-\beta))$  $\chi(1-\beta)\cosh\chi\delta(1-\beta)$ 

This means that the production or consumption is almost none within the liquid film and that all the reactions take place in the liquid bulk if the diffusional mass transfer rate is extremely large.

On the other hand, if the reaction rate is extremely high compared with the diffusion rate, Equations (4-82a), (4-82b) and (4-82c) can be substituted into Equation (4-86) giving:

$$\int_{0}^{\delta} akC \, dx = \frac{akC_{i}}{\sinh \sim \beta \delta} \int_{0}^{\beta \delta} \sinh \alpha (\beta \delta - x) \, dx + \int_{\beta \delta}^{\beta \delta} 0 \, dx$$

$$+ \frac{akC_{b}}{\sinh \alpha \delta (1 - \beta)} \int_{\beta \delta}^{\delta} \sinh \alpha (x - \beta \delta) \, dx$$

$$= \frac{-akC_{i}}{\alpha \sinh \alpha \beta \delta} \left[ \cosh \alpha (\beta \delta - x) \right]_{0}^{\beta \delta}$$

$$+ \frac{akC_{b}}{\alpha \sinh \alpha \delta (1 - \beta)} \left[ \cosh \alpha (x - \beta \delta) \right]_{\beta \delta}^{\delta}$$

$$= \frac{akC_{i} (\cosh \alpha \beta \delta - 1)}{\alpha \sinh \alpha \beta \delta} + \frac{akC_{b} [\cosh \alpha (x - \beta \delta)]_{\beta \delta}^{\delta}}{\alpha \sinh \alpha \delta (1 - \beta)} \left[ \cosh \alpha (x - \beta \delta) \right]_{\beta \delta}^{\delta}$$

$$= \frac{akC_{i} (\cosh \alpha \beta \delta - 1)}{\alpha \sinh \alpha \beta \delta} + \frac{akC_{b} [\cosh \alpha (x - \beta \delta)]_{\beta \delta}^{\delta}}{\alpha \sinh \alpha \delta (1 - \beta)} \left[ \cosh \alpha (x - \beta \delta) \right]_{\beta \delta}^{\delta}$$

$$= \frac{akC_{i} (\cosh \alpha \beta \delta - 1)}{\alpha \sinh \alpha \beta \delta} + \frac{akC_{b} [\cosh \alpha (x - \beta \delta)]_{\beta \delta}^{\delta}}{\alpha \sinh \alpha \delta (1 - \beta)} \left[ \cosh \alpha (x - \beta \delta) \right]_{\beta \delta}^{\delta}$$

$$= \frac{akC_{i} (\cosh \alpha \beta \delta - 1)}{\alpha \sinh \alpha \delta \delta} + \frac{akC_{b} [\cosh \alpha (x - \beta \delta)]_{\beta \delta}^{\delta}}{\alpha \sinh \alpha \delta (1 - \beta)} \left[ \cosh \alpha (x - \beta \delta) \right]_{\beta \delta}^{\delta}$$

If there is no liquid feed, i.e.,  $C_b = 0$ , the overall amount of reactant consumed within the film will depend on gas-liquid interfacial solubility  $C_i$  only, and no reactant diffuses into the liquid bulk from the vapor bubbles. On the contrary, if there is no vapor feed, i.e.,  $C_i = 0$ , there will be no reactant appearing in the generated vapor bubbles.

## 4.5.2 Reaction in Liquid Bulk

Since the liquid portion of the feed contains a reactant, ethyl alcohol, the reaction also takes place continuously in the liquid bulk. The rate of mass production and consumption in the liquid bulk is designated  $W_{\rm B}$  and can be expressed as follows.

$$W_{\rm B} = kC_{\rm b}(v - a\delta) \qquad (4-89)$$

where v is the clear liquid volume. It should be noted that the volume of liquid bulk excluding the film is represented by ( $v - a\delta$ ).

## 4.5.3 Overall Rates of Mass Production or Consumption

Since a component is consumed or produced both within the liquid film and in the liquid bulk, its overall mass rate of production or consumption can be expressed as

 $W_{T} = W_{f} + W_{B}$ 

Substituting Equations (4-87) and (4-89) into the above yields

$$W_{\rm T} = \frac{{\rm ak}(C_{\rm m}+C_{\rm i})(\cosh \alpha \beta \delta - 1)}{\alpha \sinh \alpha \beta \delta} + \frac{{\rm ak}(C_{\rm m}+C_{\rm b})\left(\cosh \alpha \delta (1-\beta) - 1\right)}{\alpha \sinh \alpha \delta (1-\beta)} + {\rm kC_{\rm b}}(v - a\delta) \qquad (4-90)$$

If the reaction rate for a unit volume is designated by  $R_{\rm T}^{},$  then

$$W_{\rm T} = R_{\rm T}^{\rm V} \tag{4-91}$$

Equating Equations (4-90) and (4-91) gives

$$R_{T} = \frac{1}{v} \left\{ \frac{ak(C_{m}+C_{i})(\cosh \alpha \beta \delta - 1)}{\alpha' \sinh \alpha' \beta} + \frac{ak(C_{m}+C_{b})[\cosh \alpha \beta (1-\beta) - 1]}{\alpha' \sinh \alpha \delta (1-\beta)} + kC_{b}(v - a\delta) \right\}$$

or,

$$R_{T} = kC_{b}(1 - \frac{a\delta}{v}) + \frac{ak(C_{m}+C_{i})(\cosh \alpha\beta\delta - 1)}{\alpha \langle v \sinh \alpha \beta} + \frac{ak(C_{m}+C_{b})[\cosh \alpha\delta(1-\beta) - 1]}{\alpha \langle v \sinh \alpha\delta(1-\beta)}$$
(4-92)

4.5.4 Mass Transfer Effects Correction Factors

In order to account for the mass transfer effects, a mass transfer correction factor is introduced to the following intrinsic rate expression,

$$R_{\rm T} = \eta \, k C_{\rm T} \tag{4-93}$$

where

¢

 $\mathcal{M}$ : mass transfer correction factor on the intrinsic rate expression

k: intrinsic rate constant

C<sub>T</sub>: concentration measured from an overall liquid sample

Equating the exact solution, Equation (4-92) and the defining equation, Equation (4-93) gives

$$\begin{aligned}
\eta &= \frac{C_{b}}{C_{T}} \left(1 - \frac{a\delta}{v}\right) + \frac{a(C_{i} + C_{m})(\cosh \alpha \beta \delta^{-1})}{\alpha C_{T} \sinh \alpha \beta \delta} \\
&+ \frac{a(C_{m} + C_{b})[\cosh \alpha \delta (1 - \beta) - 1]}{\alpha V C_{T} \sinh \alpha \delta (1 - \beta)}
\end{aligned}$$
(4-94)

Equation (4-94) contains three terms which represent the mass transfer effects on reaction rates, namely film thickness, interfacial area, and interfacial concentration. These three terms,  $\delta$ , a and C<sub>1</sub> cannot be measured directly and separately. Therefore, it is convenient and practical that the correction factor,  $\eta$ , is introduced to lump the three unmeasurable variables into one.

As the values of the liquid film thickness, the interfacial area, and the interfacial concentrations are affected by the system operating conditions, the mass transfer effects correction factor is characterized by the same system parameters. These parameters are numerous and include those related to physical dimensions and shape of the apparatus, operating and flow conditions, and transport properties of the system. It is too ambitious to study, the effects of all the parameters on the correction factors. For the present study, therefore, the number of the parameters of which the effects are to be investigated is limited to four. These variables are: 1. Initial system temperature and surrounding temperature, T

2. Total feed rate, F

3. Relative ratio of feed vapor to total feed,  $\psi$ 

4. System temperatur, T

Thus, the correction factor,  $\eta$ , can be expressed by

 $\eta = \eta((T_0, F, \psi, T))$  (4-95) It is noted that the first three variables,  $T_0$ , F, and  $\psi$  change from one experimental run to another but are set equal to certain constant values during a given run. The system temperature T is a time-dependent function during each run. It is assumed that  $\eta$ -function is a product of two separate functions as follows:

$$\eta = \mathcal{N}(\mathbf{T}_{0}, \mathbf{F}, \boldsymbol{\psi}, \mathbf{T}) = \eta_{s}(\mathbf{T}_{0}, \mathbf{F}, \boldsymbol{\psi}) \cdot \eta_{T}(\mathbf{T}) \quad (4-96)$$

The above approach is useful because one function  $\mathcal{N}_s$ , which is not time-dependent, is separated from the other  $\mathcal{N}_T$ , which is time-dependent. It is further assumed that the temperature dependent function,  $\mathcal{N}_T$ , is related to temperature in a functional relationship similar to the Arrhenius Equation, namely,

$$\eta_{\rm T}({\rm T}) = e^{-E\eta/RT} \qquad (4-97)$$

where

R = gas constant = 1.987 cal/g-mole-<sup>O</sup>C Substituting Equation (4-97) into Equation (4-96) gives the following expression for the mass transfer coefficient factor:

$$\eta = \eta_{\rm s} \eta_{\rm T} = \eta_{\rm s} \, e^{-E_{\rm T}/RT} \tag{4-98}$$

It is recalled that the Arrhenius Equation relates the reaction rate constant k to temperature as follows

$$k = k_0 e^{-E_0/RT}$$
 (4-99)

Substituting Equation (4-98) and (4-99) into Equation (4-93) yields

$$R_{T} = \eta k C_{T} = \left[ \eta_{s} e^{-E \eta / RT} \right] \left[ k_{o} e^{-E_{o} / RT} \right] C_{T}$$
$$= \eta_{s} k_{o} e^{-(E \eta + E_{o}) / RT}$$

or

$$R_{\rm T} = K_{\rm m} e^{-E_{\rm m}/RT} C_{\rm T}$$
 (4-100)

where

$$E_{\rm m} = E_{\eta} + E_{\rm o}$$
 (4-100a)  
 $K_{\rm m} = \eta_{\rm s} k_{\rm o}$  (4-100b)

Furthermore, if an intrinsic reaction rate equation

$$R_{T} = k_{m}C_{T} \qquad (4-101)$$

is adopted for expressing the overall reaction rate which indicates not only the reaction kinetics but also the mass transfer effects, the constant,  $k_m$ , can

be represented by the Arrhenius-type equation

$$k_{\rm m} = K_{\rm m} e^{-E_{\rm m}/RT}$$
 (4-102)

It is emphasized that the terms,  $k_m$ ,  $E_m$ , and  $K_m$ , as defined by their respective equations, include the variables representing the contributions from both reaction kinetics and mass transfer.

### 4.5.5 Pseudo-High-Order Reactions

As discussed earlier, the chemical reactions encountered in this study are more complex and pseudo-highorder reactions. The mathematical analysis and models for the rate expressions including mass transfer effects for such reactions will be extremely complex but the basic approach in deriving Equations (4-100) to (4-102) may be extended to the high-order reactions. Thus, For Reaction 1 --- Esterification

$$R_{1,T} = k_{m,1}C_{1,T}C_{6,T} = K_{m,1} e^{-E_{m,1}/RT}C_{1,T}C_{6,T}$$
(4-103)

For Reaction 2 --- Dehydration

$$R_{2,T} = k_{m,2}C_{1,T}^2 = K_{m,2} e^{-E_{m,2}/RT}C_{1,T}^2$$
 (4-104)

For Reaction 3 --- Successive Reaction

$$R_{3,T} = k_{m,3}c_{1,T}^2 c_{6,T} = K_{m,3} e^{-E_{m,3}/RT} c_{1,T}^2 c_{6,T}^2$$
(4-105)

The rate equations should then be used to calculate the respective rates, R<sub>i</sub>'s, in the series of equations derived in Section 4.4.1 through 4.4.10.

4.6 Relationship between the Vapor and Liquid Composition

Both chemical reaction and mass transfer affects the vapor-liquid relationship of a reaction-distillation system. The effects of chemical reaction on a vapor-liquid equilibrium system reflect in the activity coefficients while the effects of mass transfer deviate the system from vapor-liquid equilibrium. In order to reduce the mass transfer effects to the minimum and consequently to obtain a perfectly or nearly perfectly mixed tray as assumed previously, a micro-sieve distillation tray equipped with with a high speed stirrer and three baffle plates is then employed. The micro-sieve tray ( 60-75 ) produces very tiny bubbles resulting in large interfacial area as well as excellent mixing. The stirrer and the baffle plates provide good mixing and good contact with the vapor bubbles as well as liquid droplets. Therefore, it is reasonable to consider that the sieve tray used in this study can be treated as an ideal tray and the vapor leaving the tray is momentarily in equilibrium with the liquid mixture on the tray.

The equilibrium mole fractions of component i in the vapor and liquid phases may be related by the following definition.

$$\mathbf{y}_{\mathbf{i}} = \mathbf{K}_{\mathbf{i}}\mathbf{x}_{\mathbf{i}} \tag{4-106}$$

where

K<sub>i</sub> = vapor-liquid equilibrium ratio
y<sub>i</sub> = vapor mole fraction
x<sub>i</sub> = liquid mole fraction

When a chemical reaction is present in the liquid phase, it proceeds until the chemical equilibrium is attained. The vapor-liquid concentration relationship which is sought for the distillation accompanied by chemical reaction is, in general, not that under the chemical equilibrium. Instead, the interest is to determine the relationship of vapor and liquid compositions while they are still under the influence of active chemical reaction. A typical example is the vapor-liquid equilibrium relationship obtained by Hirata and Komatsu (32,33,34), as mentioned previously in Section 2.1.2, for the esterification of acetic acid and ethyl alcohol.

 $CH_3COOH + C_2H_5OH \longrightarrow CH_3COOC_2H_5 + H_2O$  (4-107) For the present study, it is also assumed that there exists an instantaneous equilibrium at any moment between the vapor leaving the system and the liquid remaining in the system. The instantaneous temperature so measured is considered to be the bubble point of the liquid corresponding to vapor-liquid equilibrium.

Component i in vapor and liquid are in equilibrium if, and only if, fugacity of vapor phase is equal to that of liquid phase.

$$\mathbf{f}_{\mathbf{i}}^{\mathbf{V}} \equiv \mathbf{f}_{\mathbf{i}}^{\mathbf{L}} \tag{4-108}$$

where

 $f_{i}^{V}$  = vapor phase fugacity  $f_{i}^{L}$  = liquid phase fugacity

The vapor phase fugacity is related to the vapor phase mole fraction through the vapor phase fugacity coefficient  $\phi_{i}$  by

$$\mathbf{f}_{i}^{V} = \phi_{i} \mathbf{y}_{i} \mathbf{P} \tag{4-109}$$

where

 $\phi_i$  = vapor phase fugacity coefficient P = total system pressure  $y_i$  = mole fraction of component i in vapor phase

The liquid phase fugacity  $f_i^L$  is related to the liquid phase mole fraction  $x_i$  by an activity coefficient and a standard-state fugacity. In this study, the liquid solution is extremely complex. As discussed in Section 4.2, it contains nine compounds as well as their associated ionic species. These ionic species are all initiated by the protons supplied by sulfuric acid at the presence of water. The amount of free sulfuric acid in the liquid solution is essentially fixed for all the experimental runs at any instance. The amount of water is increased due to a continuous feed and a dehydration reaction but decreased due to a continuous evaporation. The resulting amount of water from the above three functions gives an almost constant water mole fraction in the liquid solution. Therefore, the effects of the liquid compositions of all the ionic species on the activity coefficients of the nine compounds in the system may have little variations. Therefore, it is reasonable, as a practical application, to set up vapor-liquid equilibria for this reaction-distillation system only based on the thermophysical properties of these nine compounds. That is, all the ionic species are included in their corresponding compound. Since all the compounds in the system are condensable, the following form given by Prausnitz, et al. (53) for the liquid fugacity coefficient of a condensable component is then adopted here.

$$f_{i}^{L} = \gamma_{i} x_{i} f_{i}^{oL} \exp\left(\int_{P}^{P} \frac{\overline{v}_{i}^{L} dP}{RT}\right)$$
(4-110)

where

 $\mathcal{A}_i$  = activity coefficient of component i at temperature T adjusted to the reference pressure Pr  $\mathbf{\tilde{v}_i^L}$  = partial molal volume of i in the solution at temperature T.

The standard-state fugacity is given by

$$f_{i}^{oL} = p_{i}^{o}\phi_{i}^{o} \exp\left(\int_{p_{i}^{o}}^{p^{r}} \frac{v_{i}^{L}}{RT} dP\right)$$
 (4-111)

where

 $p_i^0$  = saturated vapor pressure of pure liquid i  $\phi_i^0$  = fugacity coefficient of pure vapor i at temperature T and pressure  $p_i^0$ , and  $v_i^L$  = molar liquid volume of pure component i at temperature T.

Since the solution in the system is far from critical conditions,  $v_i^L$  and  $\bar{v}_i^L$  are of negligible difference. Equations (4-110) and (4-111) can then be combined and simplified to

$$f_{i}^{L} = \gamma_{i} x_{i} p_{i}^{0} \phi_{i}^{0} \exp \left( \int_{p_{i}^{0}}^{P} \frac{v_{i}^{L}}{RT} dP \right)$$
(4-112)

Also, at low subcritical conditions, the liquid molar volume vi may be considered to be independent of system pressure (53), Equation (4-112) may be further reduced  $f_{i}^{L} = \gamma_{i}x_{i}p_{i}\phi_{i} \exp\left(\frac{v_{i}^{L}(P-p_{i}^{O})}{DT}\right)$ to:

$$(4-113)$$

Substituting Equations (4-109) and (4-113) into Equation (4-108) gives the following vapor-liquid equilibrium relationship.

$$\phi_{i}y_{i}P = \mathcal{A}_{i}x_{i}p_{i}^{0}\phi_{i}^{0} \exp\left(\frac{v_{i}^{L}(P-p_{i}^{0})}{RT}\right)$$
(4-114)

Equation (4-114) can now be incorporated with the defining equation, Equation (4-106) to yield the following expression fo  $K_i$ :

$$K_{i} = \frac{y_{i}}{x_{i}} = \frac{\gamma_{i}p_{i}\phi_{i}^{\circ}\exp\left[v_{i}^{L}(P-p_{i}^{\circ})/RT\right]}{\phi_{i}P} \qquad (4-115)$$

The exponential term, exp  $(v_i^L(P-p_i^0)/RT)$ , in the above equation is called Poynting factor. At atmospheric pressure, the highest calculated Poynting factor is 1.009 for ethyl alcohol at 130 °C. This term can then be simply set to unity. Also at the low pressure the vapor mixture may be considered to be an ideal gas and ideal solution. Thus, the vapor fugacity coefficient in the mixture,  $\phi_i$ , may also be set to unity without significant error.

With the assumptions that  $\Phi_i = 1.0$  and exp  $\left[ v_i^L(P-p_i^0)/RT \right] = 1.0$ , Equation (4-115) can now be reduced to the following working equation

$$K_{i} = \frac{\gamma_{i} p_{i} \phi_{i}}{P}$$
(4-116)

It is noted that fugacity coefficient of pure vapor,  $\phi_i^c$ 

cannot be omitted from the above equation because its value for ethyl alcohol at the highest operating temperature, 125.4  $^{\circ}$ C is only 0.837, which is 16.3 % below unity. The three-parameter general correlations by Prausnitz, et al. are used for estimating the fugacity coefficients of pure vapors. Their correlations are shown in Appendix A.12. For vapor pressures,  $p_i^{\circ}$ , the Antoine Equation given in Appendix A.5 is used. Its three constants are either obtained from the literature or fitted from vapor pressure data by the computer program BSOLFIT given in Appendix C.5.

In this study, the instantaneous vapor and liquid compositions are measured experimentally. Thus,  $K_i$ -values are obtained from experiments. The only undetermined quantity in Equation(4-116), liquid activity coefficient, can then be calculated from the following rearranged form of Equation (4-116).

$$\gamma_{i} = \frac{K_{i}P}{\phi_{i}^{0}p_{i}^{0}} = \frac{y_{i}P}{x_{i}\phi_{i}^{0}p_{i}^{0}}$$
(4-117)

However, there are some difficulties when using the above equation for calculating activity coefficients of either very volatile diethyl ether or four very nonvolatile components, namely acrylamide sulfate, sulfuric acid, ammonium bisulfate and acrylamide. For very volatile diethyl ether, its liquid mole fraction,

x,, can not be measured accurately. For the four very nonvolatile compounds, their vapor mole fractions, y;, can not be determined properly either. These are all due to the facts that diethyl ether is not detectable in the liquid phase and the four very nonvolatile compounds are not found in the vapor condensate. Since the activity coefficients of diethyl ether and all the nonvolatile compounds are not important for vapor-liquid equilibrium calculations, it is expeditious to lump all the very nonvolatile compounds as a pseudo-component and to treat diethyl ether as a gaseous product from dehydration. The pseudo-component is designated as very nonvolatile material. Summarizing, the liquid mixture to be considered for correlating liquid activity coefficients, as will be shown in Chapter 6, contains the following five readjusted components.

| Readjusted Component<br>Identity Number | Component Name            |
|-----------------------------------------|---------------------------|
| 1                                       | Ethyl Alcohol             |
| 2                                       | Ethyl Acrylate            |
| 3                                       | Water                     |
| 4                                       | G-Ethoxy-ethyl propionate |
| 5                                       | Very Nonvolatile Material |

4.7 Numerical Method for Solution of Unsteady-State Distillation Accompanied by Chemical Reactions

The mathematical model for the semi-batch distillation accompanied by chemical reaction is represented

by a series of differential equations developed in Chapter Because of its complexity, an analytical method for 3. simultaneously solving this set of equations is not available. Therefore, a numerical method is applied. As happened so often the system has more unknowns than the number of equations. It then demands a trialand-error integrating procedure. Holland ( 36 ) has proposed the  $\partial$ -method for solving an unsteady-state distillation in absence of chemical reaction with a constant holdup. His method is not applicable to the present problem since the liquid holdup on the tray is not constant and the reaction rate expressions are nonlinear here. A new convergence method is proposed in this study to solve the model developed for the unsteady-state distillation accompanied by chemical reaction.

4.7.1 Reduction of Unknown Variables in Working Equation

In order to reduce the number of unknown variables, and to rewrite the model into forms for easier numerical solutions, the following relationships are introduced to Equations (4-55) through (4-59) and (4-63) through (4-66),

(1) Vapor composition

$$\mathbf{v}_{i,OUT} = \mathbf{y}_i \mathbf{v}_{OUT} \tag{4-118}$$

(2) Vapor - liquid equilibrium

$$y_{i} = \frac{\gamma_{i} p_{i}^{o} \phi_{i}^{o}}{P} \quad x_{i} \qquad (4-119)$$

(3) Liquid molal holdup

$$M_{i} = X_{i}M \qquad (4-120a)$$

or

$$x_{i} = \frac{M_{i}}{M} = \frac{M_{i}}{\sum_{i=1}^{2} M_{i}}$$
 (4-120b)

(4) Reaction rates

$$R_1 = R_{1,T} = K_{m,1} e^{-E_{m,1}/RT} C_{1,T}C_{6,T}$$
 (4-103)

$$R_2 = R_{2,T} = K_{m,2} e^{-E_{m,2}/RT} C_{1,T}^2$$
 (4-104)

$$R_3 = R_{3,T} = K_{m,3} e^{-E_{m,3}/RT} C_{1,T}^2 C_{6,T}^2$$
 (4-105)

(5) Concentration

$$C_{i,T} = \frac{M_i}{v} \tag{4-121}$$

After substitutions and certain rearrangements, Equations (4-55) through (4-59) and (4-63) through (4-66) can be rewritten to the following set of equations

$$\frac{dM_{1}}{dt} = L_{1,IN} + V_{1,IN} - \frac{\gamma_{1}p_{1}^{0} \ddagger_{1}^{0}}{P} \frac{V_{OUT}M_{1}}{M} - \left[K_{m,1}e^{-E_{m,1}/RT} + \frac{(M_{1}M_{6})}{V} + 2K_{m,2}e^{-E_{m,2}/RT} \frac{M_{1}^{2}}{V} + 2K_{m,3}e^{-E_{m,3}/RT} \frac{M_{1}M_{6}}{V^{2}}\right]$$

(4-122)

$$\frac{dM_2}{dt} = -\frac{\gamma_2 p_2^{o} \phi_2^{o}}{P} \frac{M_2 V_{OUT}}{M} + K_{m,1} e^{-E_{m,1}/RT} \frac{M_1 M_6}{V} \quad (4-123)$$

$$\frac{dM_{3}}{dt} = L_{3,IN} + V_{3,IN} - \frac{\gamma_{3}p_{3}^{o}\phi_{3}^{o}}{p} \frac{M_{3}V_{OUT}}{M} + K_{m,2}e^{-E_{m,2}/RT} - \frac{M_{1}^{2}}{y}$$
(4-124)

$$\frac{dM_{4}}{dt} = -\frac{\gamma_{4} p_{4}^{0} \phi_{4}^{0}}{P} \frac{M_{4} V_{0UT}}{M} + K_{m,2} e^{-E_{m,2}/RT} \frac{M_{1}^{2}}{V} \qquad (4-125)$$

$$\frac{dM_{5}}{dt} = -\frac{\gamma_{5}p_{5}^{\circ}\phi_{5}^{\circ}}{P} \frac{M_{5}V_{0UT}}{M} + K_{m,3}e^{-E_{m,3}/RT} \frac{M_{1}^{2}M_{6}}{v^{2}} \quad (4-126)$$

$$\frac{dM_{6}}{dt} = -K_{m,1}e^{-E_{m,1}/RT} \frac{M_{1}M_{6}}{v} - K_{m,3}e^{-E_{m,3}/RT} \frac{M_{1}^{2}M_{6}}{v^{2}}$$

$$\frac{dM_{7}}{dt} = 0 \qquad (4-123)$$

$$\frac{dM_{8}}{dt} = K_{m,1}e^{-E_{m,1}/RT} \frac{M_{1}M_{6}}{v} + K_{m,3}e^{-E_{m,3}/RT} \frac{M_{1}^{2}M_{6}}{v^{2}} \qquad (4-129)$$

$$\frac{dM_{9}}{dt} = 0 \tag{4-130}$$

It is noted that 9 unknowns (  $\rm V_{i,OUT}$  ) are eliminated and replaced by a new unknown, total vapor rate (  $\rm V_{OUT}$  ).

The above equations can be substituted into Equation (4-67) to yield another equation for the total mass change.

$$\frac{dM}{dt} = L_{IN} + V_{IN} - V_{OUT} - K_{m,3} e^{-E_{m,3}/RT} \frac{M_1^2 M_6}{v^2} \quad (4-131)$$

The values of heats of reaction needed in Equation (4-69) can be calculated from heats of formation by applying Hess' law. The heats of formation are obtained from literature or estimated by reliable correlations. All the determined heats of reaction along with related data sources and correlation methods are given in Appendix A.10. The reaction rate equations and the heat of reaction expressions are substituted into Equation (4-69) to yield the following new equation for the temperature change with time:

$$\frac{dT}{dt} = \frac{1}{MC_{p}} \left[ L_{IN}h_{IN} + V_{IN}H_{IN} - V_{OUT}H_{OUT} + (-\Delta H_{R,1})K_{m,1}e^{-E_{m,1}/RT} \frac{M_{1}M_{6}}{v} + (-\Delta H_{R,2})K_{m,2}e^{-E_{m,2}/RT} \frac{M_{1}^{2}}{v} + (-\Delta H_{R,3})K_{m,3} + (-\Delta H_{R,3})K_{m,3} + e^{-E_{m,3}/RT} \frac{M_{1}^{2}M_{6}}{v^{2}} - U_{1}a_{1}(T - T_{0}) - h_{s}\frac{dM}{dt} \right] (4-132)$$

Again, the liquid enthalpy and vapor enthalpy required in the above equation are obtained from literature or estimated from the reliable correlations. Appendix A.7 and Appendix A.8 have detailed discussions on these two items. Since the clear liquid volume, v, is required for calculating the reaction rates for all the three reactions, it is necessary to formulate its rate equation. The difference between the feed rate and the leaving vapor rate contributes most of variation in the clear liquid volume. Assuming excess volume induced from mixing and composition changes by chemical reactions is negligibl small compared to the above mentioned factor, the rate of change of the clear liquid volume can be represented by the following equation:

$$\frac{dv}{dt} = \sum_{i=1}^{5} \frac{F_{i}}{F_{i}} - \sum_{i=1}^{5} \frac{V_{i,OUT}}{F_{i}}$$
(4-133)

where

In order to compare the measured vapor molal condensates by the mathematical model, it is then necessary to write rate equations for the vapor condensates of individual components as well as of the total mixture. Let  $N_i$  be the instantaneous vapor condensate of component i and  $N_T$  the instantaneous total accumulated vapor condensate. Then the relationship between  $N_i$  and  $V_{i,OUT}$  can be expressed by the following definition:

$$\frac{dN_{i}}{dt} = V_{i,OUT}$$
(4-134)

The above definition can be incorporated with the definitions of Equations (4-118) and (4-119) to give the following working equations for the rates of change of  $N_i$  and  $N_T$ :

$$\frac{dN_{i}}{dt} = \left(\frac{\gamma_{i} p_{i}^{o} \phi_{i}^{o}}{P} \frac{M_{i}}{M}\right) V_{OUT}, \quad i = 1, \cdots, 5 \quad (4-135)$$
to (4-139)

$$\frac{dN_{T}}{dt} = V_{OUT}$$
(4-140)

Now, it can be summerized that there are 19 unknowns ( $M_1$ ,  $\cdots$ ,  $M_9$ ,  $N_1$ ,  $\cdots$ ,  $N_5$ , T, M, v,  $N_T$ ,  $V_{OUT}$ ) to be solved simultaneously from 18 equations which can be recapitulated as follows.

$$\frac{dM_{i}}{dt} = f_{i} = f_{i} (M_{1}, \dots, M_{9}, N_{1}, \dots, N_{5}, T, M, v, N_{T}, V_{0UT}), \quad i = 1, \dots, 9 \quad (4-141)$$
  
to (4-149)  
$$\frac{dT}{dt} = f_{10} \qquad (4-150)$$

$$\frac{\mathrm{dM}}{\mathrm{dt}} = f_{11} \tag{4-151}$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = f_{12} \tag{4-152}$$

$$\frac{dN_{i}}{dt} = f_{12+i}, \quad i=1, \dots, 5 \quad (4-153)$$

to (4-157)

$$\frac{dN_{\rm T}}{dt} = f_{18} \tag{4-158}$$

The boundary and initial conditions given for the solution are the initial liquid compositions, the inlet liquid and vapor compositions and surrounding or oil bath temperature.

A trial procedure begins with an assumed value for  $V_{OUT}$  which is the total vapor outlet flow. Then, the integrations and solutions are obtained for the remaining 18 variables by the Runge-Kutta method. The details are given in the next section.

Trial- and-error procedure requires a means of checking whether the assumed value is correct. For this solution, the criterion is that the sum of the component compositions in the outlet vapor must be equal to unity.

$$\sum_{i=1}^{5} y_{i} = 1.0$$
 (4-159)

Substituting Equation (4-119) into the above equation yields

$$\sum_{i=1}^{5} \frac{\gamma_i p_i^{o} \phi_i^{o} x_i}{p} = 1.0$$
 (4-160)

If an error function a is defined,

$$\alpha = \sum_{i=1}^{5} \frac{\gamma_{i} p_{i}^{0} \phi_{i}^{0} x_{i}}{p} - 1.0 \qquad (4-161)$$

A set of solutions ( $M_1$ ,  $\dots$ ,  $M_9$ , T, M, v,  $N_1$ ,  $\dots$ ,  $N_5$ ,  $N_T$ ) is obtained when an iteration of the trial—and error procedure reaches an  $\measuredangle$ -value within the allowable tolerance  $\in$ . The trial-and-error procedure is best illustrated by the flow diagram given in Fig. 4.9.

#### 4.7.2 Runge-Kutta Method

The Runge-Kutta method ( $\delta$ ) has been used widely for obtaining satisfactory numerical solutions for differential equations. It is also used in this study for solving the above 18 simultaneous differential equations. Let  $t_z$  and  $t_{z+1}$  represent, at the (z+1)th integration step, the previous time and the elapsed time respectively. The Runge-Kutta method makes use of the values of  $x_{i,z}^{0}$ and  $t_z$  to predict  $x_{i,z+1}^{0}$  values where  $x^{0}$  stands for any of the 18 dependent variables. It is based on Taylor's series of expansion of  $x_{i}^{0}$  about t. The evaluation of the terms which are higher than the fourth order is not necessary for most applications, and the Runge-Kutta fourth-order method is discussed here.

In order for a uniform and easy discussion of the



Fig. 4.9 Flow Diagram for Integration Procedures by Trial-And-Error

procedures, the 18 dependent variables are represented by the above mentioned mathematical terms,  $x_i^0$  as follows.

$$x_{1}^{o} = M_{1}$$
  

$$x_{9}^{o} = M_{9}$$
  

$$x_{10}^{o} = T$$
  

$$x_{11}^{o} = M$$
  

$$x_{12}^{o} = V$$
  

$$x_{13}^{o} = N_{1}$$
  

$$x_{17}^{o} = N_{5}$$
  

$$x_{18}^{o} = N_{T}$$

Then, a general representation of a working equation can be written for variable  $x_i^0$ :

$$\frac{dx_{i}^{0}}{dt} = f_{i}(x_{i}^{0}, V_{OUT}, t) \qquad (4-162)$$

Then, the Runge-Kutta formula can be represented as

<u>م الم</u>

$$x_{i,z+1}^{o} = x_{i,z}^{o} + \frac{x_{i,z}}{6} (G_{i,1} + 2G_{i,2} + 2G_{i,3} + G_{i,4})$$
  
(4-163)

where

$$\Delta t = \text{Size of integration step}$$

$$G_{i,1} = f(t_z, x_{i,z}^0, V_{\text{OUT},z}) \qquad (4-164)$$

$$G_{i,2} = f(t_{z+\frac{1}{2}}, x_{i,z}^{o} + \frac{1}{2} \Delta t G_{i,1}, V_{OUT,z+\frac{1}{2}})$$
 (4-165)

$$G_{i,3} = f(t_{z+\frac{1}{2}}, x_{i,z}^{0} + \frac{1}{2} \Delta t_{i,2}^{0}, V_{OUT,z+\frac{1}{2}})$$
 (4-166)

 $G_{i,4} = f(t_{z+1}, x_{i,z}^{0} + \Delta tG_{i,3}, V_{OUT,z+1})$  (4-167)

With the exception of  $V_{OUT,z+1}$ ,  $V_{OUT,z+\frac{1}{2}}$ , the values of individual terms in the right-hand sides of the above equations are available from the calculated results of the previous step. The first assumption is made for the value of  $V_{OUT,z}$  which is then designated as  $V^{(1)}$ . If the very small time interval  $\Delta t$  is chosen so that  $V_{OUT}$ can be represented as a linear function of time, then

$$V_{OUT, z+\frac{1}{2}} = \frac{1}{2} (V_{OUT, z} + V_{OUT, z+1})$$

$$v_{OUT, z+\frac{1}{2}} = \frac{1}{2} (v_{OUT, z} + v^{(1)})$$
 (4-163)

Thus,  $x_{i,z+1}^{0}$  can be calculated by Equation (4-163) after  $G_{i,1}, G_{i,2}, G_{i,3}$ , and  $G_{i,4}$  are determined by Equations (4-164) through (4-167). It is noted that during the course of computation, the computation requires values for vapor pressure, activity coefficient, and reaction rate constants. These values will be obtained by appropriate correlations which are given later in Chapter 6.

When a set of  $x_{i,z+1}^{0}$ 's is obtained, the value of the error function  $\alpha$  is calculated by Equation (4-161). If the absolute value of  $\alpha$  is less than the tolerance, then the trial procedure is terminated for the (z+1)th step. The last assumed value of  $V_{OUT}$  and the last calculated values of  $x_i^{0}$ 's are the desired solutions. These values are then used as the starting values for another series of trial-and-error calculations for the next time interval. However, if the absolute value of the calculated error function is greater than the tollerance, a new series of  $V_{OUT}$  must be assumed and the new iterative computations by the Runge-Kutta equation should be repeated. How quickly a good convergence can be obtained will depend on the method of assigning the next assumed value of  $V^{(2)}$ .

## 4.7.3 Convergent Method

The convergent method is essentially a linear interpolation ( or extrapolation ) of the previous results. Mathematically, it can be stated that

$$v^{(k+2)} = \frac{v^{(k)} \alpha^{(k+1)} - v^{(k+1)} \alpha^{(k)}}{\alpha^{(k+1)} - \alpha^{(k)}}$$
(4-169)

In order to avoid unreasonable extrapolation at the beginning of using the above equation, the first iterative pair of error functions,  $a^{(k)}$  and  $a^{(k+1)}$  must is satisfy the following criterion:

$$\alpha^{(k)} \alpha^{(k+1)} < 0$$
 (4-170)

These error functions can be obtained by repeatedly adjusting the first assumed value of  $V^{(1)}$  until a pair of assumed values of  $V^{(k)}$  and  $V^{(k+1)}$  can produce a pair of error functions to satisfy the above mentioned criterion. The adjusting function employed is expressed as follows:

$$V^{(m+1)} = (1 + \beta)^m V^{(1)} \quad m = 1, \dots, k \quad (4-171)$$

where m is number of adjustments on  $V^{(1)}$  and  $\beta$  is an arbitrary value having the same sign with that of  $o^{(1)}$ .

#### Chapter 5 Experimental Investigation

#### 5.1 Experimental System

# 5.1.1 Design of Experimental System to Meet the Process Requirements

A general system of the semi-batch distillation accompanied by chemical reaction was illustrated previously in Figure 4.1. The experimental scheme proposed here is developed to meet the conceptual design. The first task in designing the experimental system is to provide the mechanisms whereby the following three operating parameters can be measured consistantly and accurately.

- (1) Initial and Constant Surrounding Temperature, T.
- (2) Feed Flow Rate, F

(3) Relative Ratio of Feed Vapor to Total Feed,  $\psi$ A constant temperature bath is used to satisfy the first condition. In order to avoid any operating difficulty later, the initial temperature of each experimental run is adjusted to the surrounding temperature. The initial liquid holdup on the reaction-distillation tray is made up of the very nonvolatile reactant, acrylamide sulfate. The seperately prepared acrylamide sulfate is charged to and kept in the reaction-distillation tray until its temperature becomes equal to the surrounding temperature. with the maximum tolerence of 0.02 <sup>o</sup>C. When this tray temperature is reached, the other reactant, ethyl alcohol, is introduced to the tray.

A variable-speed pump is used to feed the liquid, ethyl alcohol, the more volatile reactant, from a storage container to a preheater. The feed rate of the liquid ethyl alcohol is measured by a rotameter installed in front of the preheater. The second design condition is thus met. The preheater is a simple tube submerged in the oil bath. The ethyl alcohol is heated and partially vaporized. While it passes through the preheater, the tiny vapor bubbles and liquid droplets are dispersed into the reaction-distillation tray through the perforations. The bubbles and droplets stir and mix the liquid holdup on the tray with the aid of a high-speed stirrer such that an assumption of a complete mixing on the tray can be justified.

Although the tube preheater is simple it has a certain limitation. For a given liquid feed rate, a given oil bath temperature and a given tube length and material, there is a definite corresponding ratio of vapor to feed. The heat input to the preheater cannot be manipulated independently. In order to provide different ratios, two different types of tubes are used. A copper tubing is used to provide a high heat flux and consequently a

high vapor to feed ratio while a glass tubing is adopted for a low vapor to feed ratio.

A large oil bath is selected so that a constant temperature can be maintained even though there is a constant transfer of heat from the oil to the preheater. Furthermore, the cold feed to the preheater is installed far away from the reaction-distillation tray. This is done because most of heat flux from the oil to the preheater occurs in this region and consequently a constant oil temperature in the vicinity of the reaction-distillation zone can be further guaranteed.

The left section of Figure 5.1 is an illustration of the experimental setup to measure the above three operating variables. As soon as ethyl alcohol is mixed with acrylamide sulfate in the reaction-distillation tray, the three reactions, i.e., esterification, dehydration, and successive reaction, take place immediately. In order to satisfy the assumption that the tray is a perfect tray, a stirrer driven by a motor and three baffle plates are furnished. Uniform temperature and concentration distribution in the liquid holdup are obtained with these assistances. The instantaneous liquid temperature is measured by a thremocouple and the instantaneous liquid sample is obtained by a syringe as shown in





Fig. 5.1. The remaining section of Fig. 5.1 shows a special design for sampling a vapor condensate. Its concentration is not only dependent on time but also affected by chemical reactions. Details of its flow scheme are discussed in the next section as follows.

5.1.2 Experimental Arrangment for Vapor Sampling

The reaction products as well as unreacted ethyl alcohol may absorb enough heat to be vaporized. The conventional method to obtain a vapor sample is first to use a water cooler to condense this vapor stream. However, in this study, the vapor condensate collected must be an instantaneous sample corresponding to the liquid sample withdrawn. The vapor travelling time from the vapor-liquid interface to the sample bottle of the vapor condensate must be accurately measured. The conventional water cooler can not provide a substantial temperature driving force to make a very fast condensation. The / condensation involves complicated heat and mass transfer. Furthermore, the conventional method often leaves a certain amount of vapor condensate in the condensation tube and causes a mass loss. Therefore, the vapor condensate collected by the conventional method cannot closely relate to the vapor which leaves the vapor-liquid interface. A special design for sampling a time-dependent vapor condensate is then required for this study.

The present method of vapor condensate sampling includes two specific features, one using helium as a carrier gas and the other liquid nitrogen as a cooling medium for the condenser. The use of helium as a carrier gas reduces the time lag for the vapor sample to reach the condenser. Liquid nitrogen (B.P., -195 °C) provides a large temperature driving force to condense the vapor sample quickly without condensing the helium carrier gas. Furthermore, liquid nitrogen is the least expensive cryogenic liquid available.

Helium is supplied by a pressurized helium tank as shown on the left-hand side of Fig. 5.1. A rotameter is used to measure its flow rate. The boundary of the mathematical model considered in this study is only large enough to enclose the liquid holdup. Once the vapor leaves the liquid holdup and is heated up to a slightly higher temperature to keep it from refluxing back to the system, the vapor temperature beyond the boundary will have negligible effect on the system energy and material balances. In order to prevent the condensation before the vapor reaches the condenser the vapor temperature in the vapor stream is raised about 5 °C higher than the liquid temperature. To maintain this temperature in the upper section of the equipment the carrier gas was preheated before it is introduced to the system. All the rest of the vapor path is also maintained at about the same high

temperature to avoid vapor condensation before it reaches the sample bottle. The heat required for maintaining high temperature in these sections is supplied by heating tapes. Since these temperatures do not enter into the system analysis, accurate temperature controlling devices are not required.

During preparation for an experiment, all the vapor and gas lines are cold. Since helium is too expensive to be used to warmup the system, a much less expensive nitrogen gas of intermediate grade is then used for this service. A three-way valve has been equipped for selecting either nitrogen or helium for different operating requirements.

The vapor sample bottle is immersed in liquid nitrogen and functions as a vapor condenser. It has two stages. The connecting tube between the two stages must be free in the air. Since liquid nitrogen is extremely cold, most of vapor condensate can be trapped in the first stage. The remaining small amount of uncondensed vapor components is crystalized and filtrated by a section of fine fiberglass in the second stage. Finally, the non-condensible helium gas is discharged through the vent. It is noted that if the connecting tube between the two stages is also immersed

in liquid nitrogen, vapor will be crystalized gradually inside the tube until it completely block the vapor passage. This, of course, will lead to an explosion causing ruptures of part of the equipment.

Although two vapor sample bottles are connected to the hot vapor line, only one of them is in service at any particular instant. The other is prepared ready for next vapor sampling. Since liquid nitrogen can also condense the oxygen in air, the helium is used to purge the air in the vapor sample bottle before the latter is used to collect the vapor condensate. The purge helium line is shown at the bottom of Fig. 5.1. Its flow rate can also be measured by a rotameter.

The complete experimental system of semi-batch distillation accompanied by chemical reaction is shown in Fig. 5.1.

#### 5.2 Chemicals

## 5.2.1 Reactants and Related Chemicals

#### 1. ACPYLAMIDE

The highest purity grade of acrylamide manufactured by Eastman Kodak Company is used in this experiment. It is a white crystalline solid with a melting point of 84.5 °C. Since its vapor pressure is only 20 mm-Hg at 130 °C compared to 3360-mm Hg for ethyl alcohol at the same temperature, it is then treated as a nonvolatile component in the system. It is thermally stable and has a long shelf life as compared with some other vinyl monomers, if the environmental temperature does not exceed its melting point. For example, even after 24 hours at 80 °C, a pure sample shows little or no polymer formation (2). However, to maintain its highest purity for a long period, all the samples are stored at 5 °C in a refrigerator.

Nolten acrylamide polymerizes vigorously with evolution of heat(2). Even for a small amount, it is recommended that the solid acrylamide should not be heated above the melting point without due precautions. In this study, acrylamide is dissolved in concentrated sulfuric acid to form the molecular complex, acrylamide sulfate. The temperature of the acrylamide

sulfate solution may be above the melting point of acrylamide without any polymer formation. It is assumed that if the molal quantity of sulfuric acid is in excess of that of acrylamide, all the acrylamide is converted into acrylamide sulfate. That is, the amount of free acrylamide in such a acrylamide sulfate solution is negligible.

#### 2. SULFURIC ACID

As mentioned previously in Section 4.2.3. if a large amount of water is presented in the acrylamide sulfate solution, esterification between acrylamide sulfate and ethyl alcohol will produce appreciable amount of by-product, acrylic acid. This by-product can be reduced to a negligible amount by reducing the water quantity in the acrylamide sulfate solution. Thus, the concentrated sulfuric acid must be used for preparing acrylamide sulfate.

A 89.6 Wt % sulfuric acid solution is used for all the experimental runs in this study. This concentration is within the range recommended by Hardman et. al. (27). The small amount of water in the acid is used mostly to dissociate protons  $(H^+)$  from the sulfuric acid which in turn initiates the formation of acrylamide sulfate.

The above-mentioned sulfuric acid solution is made

by diluting the 95-98 Wt % sulfuric acid of Fisher Scientific Company. The water used for dilution is specially treated. Deionized water is redistilled twice with the addition of 0.5 Wt % potassium permanganate solution. The potassium permanganate solution can destroy some organic compounds in the water which are not removed by an ion exchanger. The redistilled water has been tested by a gas chromatographer, which shows no trace of peaks other than that of water.

The diluted sulfuric acid is titrated by a dilute sodium hydroxide solution. Since the acid concentration of the sulfuric acid solution in the experiments is very high, a sulfuric acid solution sample for the concentration determination is prepared in two stages. The first stage is to take about 3 grams of the 95-98 % sulfuric acid and dilute it by adding about 50 ml of water. All these quantities can be accurately measured by the electronic balances available in the University of Houston Chemical Engineering Department. Then take a known volume of this newly diluted sulfuric acid solution and titrate it by a dilute sodium hydroxide solution.

The normality of the dilute sodium hydroxide solution can be determined from a standard acid solution. This standard acid solution is prepared by dissolving a known amount of potassium phthalic acid in a known amount of water. The potassium phthalic acid used here is obtained from Matheson, Coleman & Bell.

Since sulfuric acid has very strong tendency to absorb moisture from the air, it is recommended that this prepared 89.6 Wt % sulfuric acid be stored in a desiccator. The sulfuric acid stored even for a month in the desiccator has shown no change in concentration.

#### 3. ETHYL ALCOHOL

Pure ethyl alcohol manufactured by Commerical Solvents Corporation can be obtained from the University of Houston Chemistry Department store room.

Ethyl alcohol is the major reactant for esterification. It is prepared as a 86 Wt % aqueous solution. The small amount of water presented in the feed stream is to make up the water evaporated from the liquid holdup. Without this small amount of water in the feed stream, a reduction of water in the liquid holdup reduce the amount of protons which is necessary for the formation of acrylamide sulfate. The lack of the protons may lead to other serious side reactions. The concentration of aqueous ethyl alcohol solution used in this study is also within the range recommended by Hardman et. al. (27).

5.2.2 Reaction Products and Related Chemicals

### 1. ETHYL ACRYLATE

Ethyl acrylate is the major product of this reaction system.

It can be easily polymerized at the time when it is produced by esterification. Therefore, a small amount of polymerization inhibitor, hydroquinone (about 0.5 Wt %) must be added into the acrylamide sulfate sclution to prevent the polymerization. Both ethyl acrylate and hydroquinone are maufactured by Eastman Kodak Company.

#### 2. DIETHYL ETHER

Diethyl ether is a trace by-product of this system. An analyzed reagent grade of diethyl ether from Matheson, Coleman & Bell is adopted for blank test in gas chromatrography.

# 3. <u>**B**-ETHOXY-ETHYL PRIPIONATE</u>

E-Ethoxy-ethyl pripionate is another trace byproduct in the system. Since it is not available commercially, all its properties including its relationship with other components in the gas chromatography must be estimated. Accuracies of these estimated quantities have little effect on the entire system's behavior because it is a trace component in the system.

# 5.2.3 Chemicals for Gas Chromatography

# 1. CARBOWAX 1000

The columns in gas chromatography used in this study are prepared by the author. Three types of chemicals are required for packing a gas chromatographic column. They are used as stationary phase, support and solvent. For selection of stationary phase, McReynolds' book, "Gas Chromatograph Retention Data " (47 ) has been referred. The column must be able to separating 1-propanol and acetone in addition to all the five volatile components in the system. 1-Propanol is used as a reference compound while acetone is a solvent for the vapor sample. Detailed functions for these two additional compounds in the samples will be discussed later in this Chapter. Comparing the retentions times for the above seven components in the McReynolds' book. it is found that Carbowax 1000 is the most suitable stationary phase and is, therefore, adopted for this study.

### 2. <u>CHROMOSOB W 80/100</u>

According to Horváth (14), almost any analytical problem in gas chromatography can be solved with columns made of diatomaceous supports. The acid washed chromosorb is a common diatomaceous support. It is chosen as column support for this system. Small partical size of the support increases the pressure drop along the column. However, it can provide more surface area for the same total amount of support. Selection of particle size should then be judged from these two factors. It is found that 80/100 mesh acid washed chromosob can provide desired separation and is then used in this system.

#### 3. ETHYLENE CHLORIDE

Selection of solvent in correspondance with a stationary phase is specified in most of commerical catalogs of gas chromatographic columns. The solvent is used to dissolve the stationary phase and then to cost it on the column support. For carbowax 1000, ethylene chloride should be used. The manufacturers of the above mentioned chemicals are listed as follows.

| Carbowax 1000      | Variant Aerograph |
|--------------------|-------------------|
| Chromosob W 80/100 | Fisher Scientific |
| Ethylene Chloride  | Fisher Scientific |
| Acetone            | Fisher Scientific |
| 1-Propanol         | Fisher Scientific |

#### 4. HELIUM

In addition to the above three chemicals, helium is used as a carrier gas in gas chromatography. A helium with minimum 99.995 % purity is used in this work. It is also used as carrier gas for the vapor sampling system. The gas is a product of Union Carbide.

5.2.4 Miscellaneous Chemicals

#### 1. SILICONE FLUID

Dow Corning 200 dielectric silicon fluid has low vapor pressure, low viscosity, moderate heat capacity and high dielectric constant at high temperature. It is recommended by the manufacturer to be used as heating medium of a high-temperature oil bath. The silicon fluid is supplied by Lubri-Kote Company, Houston, Texas.

#### 2. LIQUID NITROGEN

· Liquid nitrogen is used to condense vapor samples as mentioned previously in Section 5.1. A liquid nitrogen tank with a capacity of 160 liters is used in this experiment. It is manufactured by Union Carbide and supplied by IWECO, Houston.

# 3. <u>GLYCERINE</u>

Glyerine with 99+% purity is used in this work for

calibrating overall heat transfer coefficient and relative ratio of feed vapor to total feed. This compound is obtained from Curtin Scientific Company, Houston. It has extremely low vapor pressure ( 1.5 mm Hg at 130 °C) and is infinitely miscible with water and ethyl alcohol. Therefore, it can absorb these feed vapors with negligible amount of vapor loss above the liquid surface. The heat of condensation of the feed vapor is used principally to increase the temperature of glycerine. From the temperature rise of glycerine, the relative ratio of feed vapor to total feed can be determined. Detailed techniques of using glycerine for determining the relative vapor ratio will be presented later in Section 5.4.

### 5.3 Major Experimental Units of the System

5.3.1 Reaction-Distillation Tray and Its Accessories

The reaction-distillation tray and its accessories are illustrated in Fig. 5.2. The reaction-distillation tray is the portion below the Teflon gasket as shown in the figure. The wall of the reaction-distillation tray is a 2" standard pyrex pipe, i.e., it has an inside diameter of 2.068" and wall thickness of 0.125". A micro-sieve Pyrex disc with pore sizes of  $60-75 \mu$ , is fitted onto the bottom of the pipe as the distilla-







tion tray. The disc has a thickness of 1/8" and diameter of 20 millimeters. Below the disc, the 2" pipe is connected to a capillary glass tubing with 1.0- mm inside diameter and 1/4" outside diameter. A stirrer is suspended above the sieve tray. This stirrer is housed in a stirrer guide and driven by a motor. Detailed descriptions on the stirrer guide and the motor will be presented later in this section. This stirrer is employed to provide good mixing in the liquid holdup. Its 10-mm shaft is equipped with four symmetric flat blades, each of which is 15° declined from the vertical line. This decline in blades enables the liquid to make up-and-down mixing. The blade is 7 wide, 10 mm long and sweep out a circle of 24-mm mm diameter making the ratio of stirrer radius to the pipe inside diameter of about 1 : 2.1. The stirrer is positioned so that the blades are 1.5" above the sieve distillation plate. To improve mixing, 3 glass baffle plates are provided. Each baffle is 1/4" wide, 1/8" thick and 3.5" long. The clearance between the baffle plate and the pipe wall is 1/8" to avoide mixing dead spots. The baffle plates are connected to the pipe wall only at two points as shown in Fig. 5.2. At the stirring speed of about 1000 rpm. as used in this system, very uniform temperature and concentration distributions can be obtained. The temperature distribution can be tested by

moving the thermocouple positions while the concentration distribution of the liquid is directly obtained by sampling at two different positions simultaneously by sampling syringes. Details on temperature measurement and liquid sampling will be discussed later in this chapter.

The portion above the Teflon gasket up to the top edge of the larger horizontal pipe is the area for vapor withdrawal. It looks like a T-shape pipe joint. The vertical part is a 2" glass pipe flange and the horizontal part right on the top of the flang is a 2" glass Total length of the 2" horizontal pipe is 5 inches. pipe. At each of its two ends, the pipe is reduced conically and then connected to a 1/2" glass tubing. At the lefthand side the 1/2" glass tubing is only 1.5" long. It is connected to a 1/4" copper tubing by a reducing union. The copper tubing is enclosed in a heating tape and served as a preheater for the carrier gas, helium. The preheated helium carrys the up-coming vapor and leaves this vapor withdrawal section. It then enters the 1/2" horizontal tubing at the right hand side of the unit, and eventually goes to the vapor sample unit. In order to prevent vapor from condensation, the larger pipe portion is surrounded by a heating mantle obtained from Curtin Scientific Company. The rest of small tubings ( 1/2" & 1/4" ) are all wraped by heating tapes.

All the temperatures along the vapor path are manually controlled by transformers. This operation is justified because the purpose is not to obtain accurate temperatures but to get temperatures greater than dew points of the entire gas-vapor stream.

On the center top of the large horizontal pipe, there are one stirrer guide and three vertical ports. As mentioned early in this section, the stirrer guide is used to house the stirrer for stable operation. Silicon fluid is used as lubricating fluid, and sealing material in this gap. The silicon fluid may flow down along the stirrer shaft and enter the reaction-distillation tray due to high-temperature operation and partial dissolution of silicon fluid in organic compounds. Τo prevent it from contaminating the liquid mixture, a small Teflon holder is installed on the stirrer rod right beneath the stirrer guide to hold the grease as shown in Fig. 5.3. Since the thermal expansion of Teflon is much higher than that of glass. the hole at the bottom of the Teflon grease holder must be small enough such that at the operation temperature, it still can tightly hold on the glass rod. Therefore, the installation of the Teflon holder on the glass rod must be performed at a temperature higher than the system operating temperature. This device is very helpful for avoiding the grease contamination in a reaction system in-

yolving organic vapors. In this experiment, the accumulated grease is only about 0.2 ml compared to more than 100 ml vapor condensate for a complete run. The amount of vapor dissolved in the grease is even smaller and thus negligible.

The stirrer is driven by a reversible and variablespeed (0-6000 rpm) motor with 1/40 horse power. Both motor and speed controller are manufactured by G. K. Heller corporation. A short piece of thick rubber tubing is used to connect the stirrer rod and the motor shaft. The rubber tubing used here is to reduce the stress of stirrer rod on the stirrer guide and to avoid breaking stirrer shaft or stirrer guide.

The port on the left-hand side among the three vertical ports are the largest one. It is 5/8" in diameter, and 1.125" in height, and used as the feed entrance of acrylamide sulfate at the beginning of each run. It is also used as a thermocouple path. The other two ports are both 1/4" diameter and 1" high. The center port is a path way for liquid sampling syringe and the righthand port is used as a thermocouple path. The midpoint of the right-hand port is connected to a glass tubing of 1/8" 0.D. and 1" long. This 1/8" glass tubing is connected to a pressure guage (0-5 psig) by a flexible Tygon tubing for measuring the operating pressure of the reaction-distillation system.







Fig. 5.4 Thermocouples

### 5.3.2 Temperature Measuring System

# 5.3.2.1 For Reaction-Distillation Tray and Its Accessories

Two sets of iron-constantan thermocouples are used for measuring the temperatures in the liquid holdup as well as in the vapor withdrawal area. These two sets have the same configuration as shown in Fig. 5.4. Each set constains a hot junction, a reference junction, two sleeves, two leads, and two recorder adaptors.

The reference junction is immersed in a tubing containing Dow Corning dielectric silicon fluid. Since the tubing is immersed in an insulated ice bath, the temperature of the silicon fluid can achieve a stable 0 °C reference temperature after an overnight immersion of the tubing in the ice bath. It is noted that the direct immersion of thermocouple in the ice bath sometimes may lead to inaccurate reference temperature if the ice bath contains impurities, especially ionic impurities.

The hot junction is immersed in the reaction-distillation tray. Since the reaction system is very corrosive, coating metal on the hot junction as well as on the thermocouple sleeves must be properly selected. It is found from the experiment that type-316 or type-347 stainless-steel coating can be completely destroyed

in only one run. However, inconel, an nickle alloy, has excellent resistance to this reaction system. Throughout the entire experiments, only one inconelcoated thermocouple is used without replacement.

Two constantan cords from the thermocouple leads must be welded together at point C as shown in Fig. 5.4. Thus, when the hot junction is immersed in a hot fluid, the difference in conductance between the two metals will produce a net thermo-electrical current. This current is then detected and converted into voltage by a "Honeywell 19" two-pen recorder. For iron-constantan thermocouple, 0.05 mv is equivalent to about 1 °C if the reference temperature is 0 °C. The conversion table for the iron-constantan thermocouple used in this system is given in Table B.1 of Appendix B.

The hot junction for measuring the liquid temperature is located at about one third of total liquid height from the liquid surface. At the first ten minuites of each run, the bottom temperature is about 1 <sup>O</sup>C higher than that at the above-mentioned location. This is because all the heat of reaction cannot be dispersed fast enough and is absorbed in the liquid phase in this section. However, after the initial period, a uniform temperature throughout the liquid holdup can be achieved with the same apparatus described in Section 5.2. The mathematical model for semi-batch diatillation accompanied by

1.48

chemical reactions deals with the above operating period of uniform temperature distribution.

The hot junction for measuring the temperature of the carrier gas-product vapor is located at the intersection between the center of the 2" horizontal pipe and the right-hand edge of the vertical 2" pipe. This location was considered as an ideal point for obtaining average temperature of the gas-vapor mixture.

# 5.3.2.2. For Isothermal Oil Bath

Since oil bath temperature is constant throughout a run, it is not necessary to use thermocouple for measuring temperature. A calibrated thermometer is then employed for measuring the temperature of silicon fluid in the oil bath. Deionized boiling water (100  $^{\circ}$ C) and deionized ice water (0  $^{\circ}$ C) are the two checking points. for this calibration.

5.3.2.3 For Cryogenic Temperature

Temperatures of the carrier gas, helium, in the vapor sample bottle are well below the ice point. They can not be measured by any thermometers. But the thermocouples presented in Section 5.3.2.1 can be used for this purpose

with a minor modification. The required modification is to shift the zero reference point on the Honeywell 19 Recorder from one end of the recorder chart to the other end. Thus, negative voltages can be shown on the recorder charts. Conversion of this negative voltage to a corresponding cryogenic temperature is also given in Table B. 1 of Appendix B.

# 5.3.3 Preparation of Nonvolatile Reactant, Acrylamide Sulfate

The molal ratio of acrylamide to sulfuric acid used for preparing acrylamide sulfate for all experimental runs is about 1:1.2. For comparison, each run uses about one mole of acrylamide. This acrylamide sulfate solution is prepared separatly outside the reactiondistillation tray as described below.

The weighed concentrated sulfuric acid (89.6 Wt %) of desired quantity is heated in a 250-ml glass beaker over an electric heater. The temperature of the sulfuric acid can be increased rapidly up to 60-70 °C under agitation. The temperatures are measured by the calibrated thermometer described in Section 5.3.2, which is mainly used for measuring the oil bath temperature. Then, the weighed acrylamide of desired quantity is gradually added also under agitation into the sulfuric acid in about 30 seconds. Because heat is evolved from the reaction be-

tween these two components as well as supplied by the electrical heater, the liquid temperature can be further increased up to 115-125 °C after all the desired quantity of acrylamide is added. The temperature is normally about 10 °C above the desired oil bath temperatures. Since the prepared acrylamide sulfate must be fed through a glass funnel, which is normally at room temperature, the liquid temperature. Whenever there are differences between these two temperatures, it is necessary to wait for about 25 minutes before the absolute difference between the two temperatures becomes less than an allowable error of 0.02 °C. Then, an initial liquid temperature (surrounding temperature) can then be reached.

As mentioned earlier, ethyl acrylate from esterification between acrylamide sulfate and ethyl alcohol may polymerize as soon as vinyl group is freed from the molecular complex, i.e., acrylamide sulfate. Thus, 0.2 Wt % of hydroquinone is then added into the acrylamide sulfate solution before feeding ethyl alcohol into the reaction-distillation tray.

5.3.4 Volatile Reaction Feed System

Volatile reactant, ethyl alcohol is prepared as an 86 Wt % aqueous solution. Sufficient amount of ethyl alcohol solution for one run is stored in a 250-ml

calibrated glass cylinder. The solution is first pumped from the cylinder and its rate measured by a rotameter. It is then preheated by the heat from the hot silicon fluid in the oil bath before entering the reaction-distillation tray. Details on the storages, cylinder pumping device, rotameter and feed preheater are described as follows.

5.3.4.1 Storage Cylinder and Flow Rate Measurement

A capillary glass tubing with outside diameter of 1/4" and inside diameter of 1 mm is immersed into the ethyl alcohol solution in the cylinder. Its open end is located 1 centimeter above the bottom of the cylinder. The other end is outside of the cylinder. It is reduced and then connected to a flexible Tygon tubing with outside diameter of 1/8" and wall thickness of 1/32". This Tygon tubing is extended to a pump for pumping the solution from the cylinder to the reaction-distillation tray.

When suction is obtained from the pump, the ethyl alcohol solution will enter the open end of the capillary tubing. The solution level instantaneously reduced in the cylinder can then be read from the readings marked on the cylinder.

With the amount of the solution consumed and the corresponding time measurement, the feed rate of the solution can be determined. Thus, this storage cylinder

with calibrated volume serve as a storage tank as well as a device for fine flow rate measurement.

However, this device can not be used for controlling the desired flow rate. A rotameter is installed for presetting the desired flow rate for each run. The rotameter is located right after the discharge stream from the feed pump. Gilmount No. 260 flowrator is used for this service. Its calibration will be presented later in details in Section 5.4.

5.3.4.2 Feed pump

A polystalic pump manufactured by Bucher Instruments is very suitable for delivering continuous small liquid stream ranged from 2 ml/hr to 1000 ml/hr. In this system, the observed flow rates are ranged from 60 to 120 ml/hr, which are well covered by the capacity . of this pump.

The pump has four parallel rotating stainless-steel cylinders. On each rotating cylinder, there are ten stainless-steel bearings. All the cylinders are attached to a variable internal motor, whose rate can be controlled by a dial on the top panel of the pump as shown in Fig.5.5. The Tygon tubing mentioned in the previous section is pressed against on five of the ten bearings for each rotating cylinder. The liquid solution then moves in the same direction of the rotating cylinder



Fig. 5.5 Feed Pump

, · ·

when the five bearings press the Tygon tubing against a fixed vertical wall. Although the flow pattern produced by polystalic pump is slightly peristatic, the amplitude of the peristalsis is constant and very small. For example, for ethyl alcohol fed at 2 ml/min or 120 ml/hr the rotameter reading is  $60 \pm 0.2$ . The peristaltic duration is only 0.4 seconds. Therefore, this flow pattern can be considered to be constant and stable. Though there are four rotating cylinders, only one of them is in use at any time.

5.3.4.3 Feed Preheater

For the best feed rate measurement, aqueous ethyl alohol solution is fed to the system in liquid state at room temperature. The solution is then preheated to the desired relative ratio of vapor to total feed. As mentioned in previous sections, the solution is preheated by the heat from the hot silicon fluid in the oil bath. Heat transfer surface is a glass tubing wall, or a copper tubing wall, or both of them in series, If low relative ratio of vapor to total feed is desired. only a segment of glass tubing directly connected to the bottom of the reaction-distillation tray is used as preheater. This preheater is illustrated in Fig. 5.6.a. The heating section is an eleven-inch long capillary glass tubing with inside diameter of 1 mm and outside diameter of 1/4". The free end of the heating tubing is connected by a swagelog elbow

union to an upward glass tubing of the same size. The other end of the upward glass tubing is reduced to a size such that it can be fitted and connected to the 1/8" tygon tubing extended from polystalic pump. It is noted that the free end of the heating glass tubing must be kept in a position that the elbow union is still underneath the surface of the oil bath. This is because the free end of the glass tubing should be connected to a copper tubing for high relative ratio of vapor to total feed. If the union is exposed to the air, the vapor from the copper tubing will be condensed. Heat loss caused by this false installation will lead to serious error in determining relative ratio of vapor to total feed. The preheater for higher relative ratio of vapor to total feed is illustrated in Fig. 5.6.b.

In addition to the glass heating tubing montioned early in this section, a 43" long of spiral copper tubing with outside diameter of 1/4" is used to increase vapor ratio in the feed stream. At the downstream of the copper tubing, a pressure gauge of 5 psig is attached on the tubing to measure the pressure of the feed stream at this point. For a given oil bath temperature and a selected flow rate, there is a corresponding pressure. This pressure can be kept almost constant throughout a run im-



Fig. 5.6b Feed Preheater for High Relative Ratio of Vapor to Total Feed



Fig. 5.6a Feed Preheater for Low Relative Ratio of Vapor to Total Feed

plying that the feed flow rate can be steadily maintained. Calibration of relative ratio of vapor to total feed will be presented later in Section 5.4.

#### 5.3.5 Vapor Sampling System

Vapor sampling system starts from the cylinder with carrier gas helium to the vapor sample bottles immersed in liquid nitrogen. Helium is delivered by pressure drop at a fixed flow rate for all experimental runs. The rate is set at 4.5 standard cubic ft per hour or 2170 ml/min. Since the total volume in the helium path from the vapor withdrawal section to the vapor sample bottle is 250 ml. the above-mentioned carrier gas rate then reflects a time lag of only 0.11 minutes compared a total of about 120 minutes of operation time for each run. The error caused by the time lag of vapor sample to liquid sample can then be reduced to minimum.

Vapor withdrawal section has been described in Section 5.3.1. Here the discussion is devoted to vapor condensation in liquid nitrogen, which is contained in a 1200 ml dewar for good insulation.

Two-stage sample bottles are used for trapping vapor sample by liquid nitrogen and shown in Fig. 5.7. The first stage is a small glass bottle with very thin wall thickness. It has a diameter of 1.125" and height of 2", which can be used to contain vapor condensate up to



Fig. 5.7 Vapor Sample Bottle

25 ml. Two inlet and outlet glass arms are connected to both sides of the upper edge of the bottle and extended straight upward. The inlet arm has a flat opening end which can be attached onto the hot tubing extended from the vapor withdrawal section. The outlet arm of the first-stage bottle is connected by a U tube to the second-stage bottle.

The second-stage bottle has two paralled vertical glass tubings with an outside diameter of 1" and a length of 5". They are on tops of a shallow cylinder of 3" in diameter and 1" in height. This shallow cylinder is designed to allow the entire sample bottle sitting stably on the table or weighing pan. One of the two vertical tubes is, of course, connected to the above-mentioned U tube and the other is connected to a flexible rubber tube by a special Teflon cap. The female screw in the Teflon cap is fitted to the male screw on the glass tube for connection. A hole is punched on the center of the teflon cap. Then a small segment of teflon tubing with outside diameter slightly greater than the hole is forced into the hole for tight connection between the teflon tube and teflon cap. The free end of the teflon tube is then connected to a vent gas line by a piece of flexible rubber tube. The sample of the vent gas can then be taken by a gas sampling syringe at the flexible rubber tube for analysis.

Within the two parallel vertical tubes and the shallow cylinder, fine glass fiber is packed for filtration purpose. The outlet temperature of the exhausted gas in the bottle beneath liquid nitrogen level is measured to be -192 <sup>O</sup>C by the thermocouple described in Section 5.3.2.3. At such cryogenic temperature all the vapors in the system become crystals. Although most of vapors are condensed in the first stage of the vapor sample bottle, the rest of vapor may become particles suspending in the helium stream. These particles can not be adsorpted simply by glass wall. Therefore, fine glass fiber must be provided for a complete collection of all the vapor components by filtration.

Since the product vapor mixture is a continuous stream, the sampling devices should permit an immediate shift of the vapor stream from one sample bottle to another without any mass loss. Therefore, two vapor sample bottles must be connected in parrallel to the hot helium-vapor line for this purpose. The devices are illustrated in Fig. 5.8.

The down-stream tubing for hot helium-vapor stream from the reaction-distillation tray extends for 13 inches before bended vertically downward for 3 inches. A small port is installed at the elbow as a path way for thermocouple. The port is covered by a silicon rubber cap for sealing. The vertical tube is then connected to a three-



Fig. 5.8 Device for Gas Flow Shift

way stopcock. The other two ways of the stopcock are connected to two symmetric glass tubes with 30 <sup>0</sup> declination. The declined tubes are then bended downward vertically for adopting two vapor sample bottles by tubing unions.

At the center points of the two declined tubes, the declined tubes are connected to another set of three-way stopcock unit. The free end of its three paths is connected to helium gas cylinder by a flexible rubber tubing. The purpose of this device is to expel air in the vapor sample bottle by helium before it is surrounded by liquid nitrogen because oxygen in the air is condensible at liquid nitrogen temperature. The flow rate of this helium stream can also be measured by a rotameter.

It is noted that the glass tubing in the regions with hot vapor stream are wrapped by heating tape to prevent vapor from condensing on the tubing walls.

5.3.6 Liquid Sampling System

As the reaction-distillation tray is immersed in an oil bath, liquid samples should be taken from the sample port located on the top of the 2" horizontal pipe as shown in Fig. 5.2. The distance between the liquid holdup and the sample port requires a syringe with an 8"long needle. Cast stainless-steel of type-316 is used as the material of the needle. It has much better corrosive resistance to the reacting liquid mixture than the weld type-316 stainless steel used for coating on thermocouple as mentioned previously. For more than one-hundred liquid samplings no visible corrosion on the needle, i.e., no visible reduction in needle diameter, is found.

To overcome high liquid head in the long syringe needle, a Glenco gas-tight glass syringe is used. It has a maximum capacity of 10 ml with an adapter fitted to Hamilton syringe needle with gauge number of 18. The strong suction of this gas-tight syringe greatly reduces the time required for taking a liquid sample.

Since acrylamide and ammonium bisulfate in the system are in solid state at room temperature. If the syringe needle is not preheated before liquid sampling, these two compounds will be crystalized inside the needle as soon as the needle is pulled from the hot liquid holdup. The crystallized compounds block the path way of the needle and make sampling become completely impossible. Thus, a copper tubing with a sealed end is used for preheating the needle. The copper tubing is immersed in the hot oil bath and has an outside diameter of 1/8" and a length of 8". For similar reason, another piece of copper tubing immersed in the oil bath is also used to preheat the glass syringe to avoid crystallization in the syringe. This copper tubing has a larger diameter

of 7/8" and a shorter length of 6". The syringe and syringe needle must be inserted into the above mentioned two heating tubes at least 5 minutes before taking liquid sample. Thus, the temperatures of the syringe and the syringe needle can become high enough to maintain the liquid sample as a clear brown liquid solution. The liquid sample is then injected into a liquid sample bottle. The liquid sample bottle is illustrated in Fig. 5.9. It is a 1/2" x 2" cylindrical vial. A silicon rubber stopper with reversible sleeve provides path way for syringe needle and simultaneouly gives an excellent seal for the bottle.



Fig. 5.9 Liquid Sample Bottle

In order to terminate reactions in the liquid sample, cold water is used to quench the liquid sample. Since the liquid sample becomes partially crystallized at low temperature, this cold water also becomes a good solvent for dissolving all solid compounds in the liquid sample. As the bottle is entirely closed, injection of liquid sample will increase the internal pressure of the bottle. This increased internal pressure reduces sample injection rate and even pushes away the rubber stopper. Therefore, all the liquid sample bottles are partially vacuumed in advance by a gas-tight syringe to provide fast sample injection rate and to secure the rubber stopper.

During the sample injection, the needle tip must not be in touch with cold water in the bottle. Otherwise, nonvolatile compounds may be crystallized in the needle to block the sample path way. As soon as the sample is injected into the water, the sample bottle is shaked violently to speedup quench function as well as dissolution of solid compounds in the sample. A clear liquid solution is then obtained, and immersed in ice bath for sample analysis.

5.3.7 Sample Analysis by Gas Chromatography

Gaw Mac Model 69-500 Gas Chromatography is used in this system for sample analysis. Its detector is a thermal conductivity cell. Although a hydrogen flame

ionization detector is more sensitive to organic compounds, it cannot be used here because the system contains water. Its oven can house two columns of same size, and same packed material for producing same chromatograms. As mentioned in Section 5.2, gas chromatographic columns used in this work are self prepared. Since good separation for the components in a sample greatly depend on the quality of a packed column, preparation of the packed column is then presented first in this section.

# 5.3.7.1 Preparation of Packed Column

Carbowax 1000 and Chromosob W 80/100 have been selected previously as stationary phase and support respectively. The next step is to coat Carbowax 1000 on Chromosorb W 80/100. A desired amount of Carbowax 1000 is dissolved in the solvent, methylene chloride, in a flask. The corresponding amount of Chromosorb W, which makes 35 Wt % of Carbowax 1000 on this support, is placed in a shallow porcelein dish. Then pour the methylene chloride solution in the Chromosorb W with constant and mild stirring. The solvent is then gradually evaporated from the dish, where heat is supplied from a heater underneath it. The temperature of the heater is generally controlled slightly below the boiling point of the solvent. For this case, temperature is adjusted at about 40-50 <sup>o</sup>C. As soon as the coated support is completely solvent free, it is then ready for being packed into a column.

According to Horváth (14), small-diameter columns with inside diameters from 2-3 mm are most adequate for analytical purpose. Thus, the tube used in this work have outside diameter of 1/8" and inside diameter of 3/32", which is equivalent to 2.4 mm. Two six-foot stainless-steel tubes of the above mentioned size are then cleaned and dried for column packing. The method of packing the coated support into the stainless-steel tubes is illustrated in Fig. 5. 10.

The method employs a vacuum pump to provide a suction force such that the support can be forced into the tube. It is used here because it is easy to operate and its low pressure drop across the column does not seriously crush the particles of the support.

The tube is declined 45-60  $^{\circ}$  from the floor. On its top, it is connected to a small glass funnel by a small segment of flexible Tygon tube. To pack the column, the packing material is fed into the column from the funnel. At the bottom of the tube, it is connected to one end of a Nupro filter by a tube union. The other end of the filter is further connected to the vacuum pump. In the filter, the filtration is performed by a 50-60  $\mu$ sintered metal which prevents the packing material





.

from entering the vacuum pump. The upper space of the filter is filled with glass beads to serve as the filtration media and thus reduce the amount of the packing material falling into the filter. Although pressure drop presents the entire column tube, the small inside diameter of the tube reduces incoming flow rate of the support. Therefore, tapping must be applied by a metal bar on the tube. It is better to tap the tube up-and-down lightly until the packing is finished. The packed column is then removed from the packing system and inserted with fine glass fiber on both of its ends. All the Procedures are then repeated for packing the another column. Finally, both of the column tubes are bent into coils and connected by Swagelog tube fittings onto the tube adaptors in the column oven of the gas chromatography.

Now, the next step is to condition the prepared columns. At first, each column is only connected to the sample injection chamber. The other end is let free to avoid the contamination of detector filament at the beginning of column conditioning. Helium of 99.995 % is used as carrier gas. The flow rate is set at 30 ml/min The oven temperature is adjusted at 125 °C, maximum suggested temperature for the Carbowax 1000. The column is then operated overnight at the above mentioned conditions. Next, the column is attached to the tube adaptor in the oven, which is connected to the detector. The detector temperature is set at 110 °C while the oven temperature is reduced from 125 °C to 100 °C and the carrier gas is increased from 30 ml/min to 50 ml/min with a gauge pressure of 60 psig. The current of the detector filament is set at 180 ma at 110 °C detector temperature. The current may be adjusted slightly higher or lower than 180 ma depending upon the size of the sample. After another 24 hours, a stable base line can be obtained and no impurities can be observed from the chromatograms. The column is then ready for sample analysis. It is operated isothermally.

5.3.7.2 Sample Analysis

### 1. Vapor Sample:

Most of vapor sample is in solid state when it is removed from the liquid nitrogen bath. The vapor sample bottle is then flushed by warm water until the entire vapor sample becomes liquid state. This step takes about 30 seconds. The bottle is then weighed by an electronic balance to get total weight of the sample. Since some vapor sample is caught in glass fiber, about 60-ml acetone per sample is added into the bottle to extract it out and also to mix uniformly all the vapor sample.

For better results, 1-propanol is used as reference compound in gas chromatographic analysis. The amount of this reference compound must be known. It can be calculated from the difference between the weights of bottle before and after the addition of 1-propanol. A typical gas chromatogram for a vapor sample is shown in Fig. 5.11. Very clear peak separation among all the components including acetone and 1-propanol in the sample bottle can be observed. This demonstrates that the prepared column is excellent for analyzing the compounds in this system. The peak area for each compound is measured by a Hudron planimeter. The measured area for each peak should be devided by the antenuator shown on the top of the peak. The resulting areas for all the compound then has the same basis.

Although water peak has a long tailing because of its high polarity, its relatively small quantity in the entire sample does not produce a significant effect on analysis for major compounds such as ethyl acrylate and ethyl alcohol. The area ratio of a component to 1-propanol as measured above does not reflect actual weight ratio between the two components. Therefore, relationship between area ratio and weight ratio for a component to the reference compound, 1-propanol must be determined from blank test on gas chromatography. Calibration between these ratios will be presented later in Section 5.4.

2. Liquid Sample



The molal quantities in the liquid holdup are calculated from the instantaneously stochiometric balance on the basis of the accumulated feed quantities, vapor condensate, and reaction relationship. Therefore, only relative ratios among ethyl alcohol, ethyl acrylate, diethyl ether, and  $\beta$ -ethoxy ethyl propionate are needed to be determined. No reference compound is used in liquid sample because the presence of sulfuric acid in the liquid sample can cause serious side reactions with 1-propanol. and thus produces unclear gas chromatograms.

A typical gas chromatogram for a liquid sample is shown in Fig. 5.12. A slight shift in base line is caused. by the deposit of nonvolatile compounds and sulfuric acid. This shift may be assumed to have negligible error in determination of relative areas among the different peaks. Because of the effect of sulfuric acid, inorganic nonvolatile compounds, the peak of ethyl alcohol has a tailing effect which overlaps the peak of ethyl acrylate. The relationship between the two over-lapped compounds has been determined by blank test. The shaded area all belongs to ethyl alcohol and that of the unshaded peak belongs to ethyl acrylate. Since large amount of water is used to quench the liquid sample and to dissolve its solid compound, the peak of water in the gas chromatographic chart is then very large. Since the quanity of water





A Typical Liquid Sample

produced can be calculated from the amount of diethyl ether produced, its peak in this chromatogram is not used to determine its quantity. It is noted that diethyl ether does not show on the chart of the liquid sample. All the diethyl ether produced in the reaction is evaporated and appears in the vapor condensate sample. Calibration of gas chromatographical area ratio as a function of actual weight ratio will be presented in Section 5.4.

### 5.4 Equipment Calibration

Several equipment used in the experimental system are calibrated by the procedures described below.

#### 5.4.1 Feed Flow Rate

The feed flow rate is one of the three operating parameters in the system. It is measured by a Roger Gilmont rotameter. For calibriation purpose, a threeway stopcock is equipped on the top of the rotameter. One of the two outlets of the stopcock goes to the reaction-distillation tray. The other is a free end. During calibration , this free end is attached by a glass cylinder as a collection bottle while aqueous ethyl alcohol solution flow through the rotameter. For a preset rotameter reading, an accumulated amount of ethyl alcohol solution is weighed with respect to the measured time interval. Then the mass flow rate of the feed can be calculated for its corresponding reading on the rotameter. If a volume flow rate is preferred, the density of the prepared aqueous alcohol solution can be used to convert the mass flow rate into the volume flow rate. All the calibrated volumetric feed rate for the Gilmont rotameter is given in Fig. B.2 of Appendix B.

5.4.2 Overall Heat Transfer Coefficient Across the Wall of the Reaction-Distillation Tray

Boiling water, boiling ethyl alcohol and nonvolatile glycerine are the three materials used to simulate the liquid mixture in the reaction-distillation tray. Overall heat transfer coefficient for each of the above three materials across the wall of the reaction-distillation tray is measured separatly. Since the variations among the three sets of measured overall heat transfer coefficient are small, their average value is then used as a simulated overall heat transfer coefficient for the reaction-distillation liquid mixture. Detailed techniques for measuring the above three sets of overall heat transfer coefficients are described as follows.

5.4.2.1 Overall Heat Transfer Coefficient of Boiling Water in the Reaction-Distillation Tray

A fixed amount of water is preheated up to about

90 <sup>o</sup>C and then put into the reaction-distillation tray. The oil bath temperature is set higher than the boiling point of water such that water in the reaction-distillation tray can be heated up to its boiling point and also kept boiling at the boiling point. It is noted that no water is fed into the reaction-distillation tray during this measurement. Thus, all the heat transferred across the wall of the reaction-distillation tray contributes to evaporate water vapor. The amount of heat transferred can then be calculated from water vaporization rate and heat of vaporization of water by the following equation;

$$Q = \lambda_{H_2 0} V_{H_2 0}$$
 (5-1)

where

Q = heat transfer rate across the wall of the reaction-distillation tray

V<sub>H2</sub>O=vapor mass flow rate of water, i,e. vaporization rate

H<sub>2</sub>C=heat of vaporization of water From the definition of overall heat transfer coefficient Q can be alternatively represented by

$$Q = U_{i}a_{i}(T_{0} - T)$$
 (5-2)

where

a = inside heat transfer area of the reactioni distillation tray

$$T_0 = oil bath temperature$$
  
 $T = liquid temperature in the reaction-distillation$   
tray

Equating the above two equations and removing the term,  $a_i(T_0 - T)$  to the other side give the following working equation for U; :

$$U_{i} = \frac{\lambda_{H_{2}0} V_{H_{2}0}}{a_{i}(T_{0} - T)}$$
(5-3)

The water vapor rate,  $V_{\rm H_20}$ , can be calculated from the amount of water vapor condensate collected within a measured time interval. The experimental apparatus introduced in Section 5.3.6 for vapor sampling can be used to measure water vapor condensate, and a stop watch to measure the time interval. If the temperature driving force,  $(T_0 - T)$ , which is constant throughout a measuring period, is not large, evaporation rate will be small. And, if the temperature driving force is too small, amount of water evaporated will be too small. This may reduce the accuracy in calculated total heat transfer rate across the wall of the reaction-distillation tray. Therefore, three oil bath temperatures, 105 , 110 and 115 °C. which can provide moderate temperature driving forces, are used. Before calculating heat transfer area, a<sub>i</sub>, the aerated volume must be determined first.

The aerated water volume is calculated from the following equation:

$$\mathbf{v}_{a} = \frac{\left(\mathbf{W}_{o} - \mathbf{W}_{c}/2\right)}{\mathcal{P}} \mathbf{x} \in (5-4)$$

where

v = aerated water volume

- W<sub>o</sub> = amount of water in the reaction-distillation tray at the beginning of measurement
- W<sub>c</sub> = amount of water vapor condensate collected at the end of measurement

f = water density at 100 °C

E = volumetric ratio of aerated water to clear
water

The term,  $\boldsymbol{\epsilon}$ , is predetermined to be 1.06. The procedures are described below. The clear water volume is calculated from water quantity and water density. The aerated volume is obtained by first measuring the height of the aerated water and then using the calibration chart given in Fig. B.3 of Appendix B for the volume of aerated water.

When the aerated volume,  $v_a$ , is determined from Equation (5-4), its corresponding heat transfer area, which can not be directly measured in this reaction-distillation system, can be obtained from a calibration curve also given in Fig. B.3. For computer calculations in the program MODEL, this calibration curve has been fitted by a polynomial equation. The program MODEL is a computer simulation for the mathematical model of semi-batch distillation accompanied by chemical reaction.

Now, all the terms on the right-hand side of Equation (5-3) are known, the overall heat transfer coefficient,  $U_i$ , can then be calculated. Since the reactiondistillation liquid is mixed by a stirrer at about 1000 rpm, the overall heat transfer coefficient of the boiling water is also measured at the same stirring speed. The measured results are listed as follows.

 $T_{0}$ ,  $^{O}C$  $(T_{0}-T)$ ,  $^{O}C$  $U_{j}$ , cal/min- $^{O}C-cm^{2}$ 10550.180110100.184115150.185

An average value of 0.183 cal/min-<sup>o</sup>C-cm<sup>2</sup> for the above three quantities is then used to represent the overall heat transfer coefficient of boiling water in the reaction-distillation tray.

5.4.2.2 Overall Heat Transfer Coefficient of Boiling Ethyl Alcohol in the Reaction-Distillation Tray

The method and equations given in the previous

section are also used here to measure overall heat transfer coefficient of boiling ethyl alcohol in the reactiondistillation tray. Three oil bath temperatures, 85, 90 and 95  $^{\circ}$ C are used to provide temperature driving forces close to those shown in the previous section. It is noted that boiling point of ethyl alcohol is 78.4  $^{\circ}$ C. The results are listed as follows.

 $T_0$ , C  $(T_0-T)$ , C  $U_i$ , cal/min- $C-cm^2$ 85 6.6 0.150 90 11.6 0.152 95 16.6 0.152

An average value of 0.151cal/min-<sup>o</sup>C-cm<sup>2</sup> is then used to represent the overall heat transfer coefficient of boiling ethyl alcohol in the reaction-distillation tray.

5.4.2.3 Overall Heat Transfer Coefficient of Nonvolatile Glycerine in the Reaction-Distillation Tray

Vapor pressure of glycerine is very small. Therefore, during the determination of overall heat transfer coefficient using glycerine, there is no vaporization of glycerine in the reaction-distillation tray. All the heat transferred from the oil bath then contributes to increase the temperature of glycerine. The glycerine is also completely mixed in a similar manner as used in the two previous cases. For any instant, the energy balance require that the rate changes of heat transfer and internal energy increase should be equal. Thus,

$$M \frac{dE}{dt} = U_{i}a_{i}(T_{0}-T)$$
 (5-5)

At atmospheric pressure, the differential internal . energy, dE, may be approximated by

$$dE = d(n-pv) \stackrel{\checkmark}{=} dh = C_p dT$$

Substituting the above relationship into Equation(5-5) yields  $MC_{p} \frac{dT}{dt} = U_{i}a_{i}(T_{0}-T)$ 

If the temperature range is narrow, an average heat capacity  $\bar{C}_p$ , may be used to replace  $C_p$  without any significant error. Then the above equation can be readily integrated to give the following working equation for overall heat transfer coefficient:

$$U_{i} = \frac{M\bar{C}_{p} \ln \frac{T_{o} - T_{1}}{T_{o} - T_{2}}}{a_{i}(t_{2} - t_{1})}$$
(5-6)

where

1 =subscript to represent the initial conditions 2 =subscript to represent the final conditions  $\tilde{C}_p$ =average heat capacity Two oil bath temperatures, 105 and 115  $^{\circ}$ C are used and the temperature rise for glycerine is in the range of 70 to 85  $^{\circ}$ C. The results are listed as follows.

105 0.145

An average value of 0.147 cal/min-<sup>0</sup>C-cm<sup>2</sup> is then used to represent overall heat transfer coefficient of nonvolatile glycerine in the reaction-distillation trav.

5.4.2.4 Overall Heat Transfer Coefficient of the Reaction-Distillation Liquid Mixture

The reaction-distillation liquid mixture contains both volatile components such as ethyl alcohol and water, and very nonvolatile components such as sulfuric acid and ammonium bisulfate. Therefore, a simulated overall heat transfer coefficient calculated from an average of the above three experimental overall heat transfer coefficients is then used for the reaction-distillation liquid holdups. The calculated average value is 0.16 cal/min-<sup>o</sup>C-cm<sup>2</sup>. Since the liquid inside the reaction-distillation tray is boiling and under a vigrous stirring, its resistance to heat transfer should be much smaller than that of the silicon film on the outside wall of the reaction-distillation system. The silicon fluid is very nonvolatile and stirred mildly. The silicon film on the outside of the glass wall and the glass wall itself are the major components of the overall heat transfer resistance. This is verified by the fact that the overall heat transfer coefficients determined by using the three different fluids in the system are about the same. Therefore, the use of an average overall heat transfer coefficient is justified.

5.4.3 Relative Ratio of Vapor to Total Feed

. The relative ratio of vapor to total feed is used to calculate the inlet enthalpy of the feed stream. According to the definition of the system, the inlet enthalpy of the feed stream should be that at the micro sieve tray entry, or more precisely, right before its mixing with the liquid holdup. Because of the glass-blowing technique, the feed glass tube is connected to the bottom of the reaction-distillation tray as a whole piece. Thus, the feed enthalpy is best measured with the same preheater (feed tubing) and under the same operating conditions as used in the reaction-distillation system except that glycerine is used as liquid holdup. The incoming aqueous ethyl alcohol solution is absorbed into glycerine without chemical reaction. When the vapor in the feed stream is absorbed by glycerine, an appreciable amount of heat will be released because the absorbed vapor is condensed into the liquid holdup. This released heat of conden-

sation will then increase the temperature of glycerine. The overall heat transfer coefficient across the wall of the reaction-distillation tray with such an additional insulation by Teflon sheet is then measured by the same procedures described in Section 5.4.2.3. The new measured overall heat transfer coefficient is 0.056 cal/min-°C-cm<sup>2</sup>, which is much smaller than the original 0.16 cal/min-°C-cm<sup>2</sup>.

The instantaneous energy balance around the reactiondistillation tray can be represented by

$$\frac{d}{dt}(Mh) = V_{IN}H_{IN} + L_{IN}h_{IN} + U_{i}a_{i}(T_{o}-T)$$

For a small measuring period, average liquid holdup, heat capacity, and heat transfer area may be employed. Then, the above equation can be reduced to the following equation:

$$\widetilde{MC}_{p} \frac{dT}{dt} = V_{IN}H_{IN} + L_{IN}h_{IN} + U_{i}\widetilde{a}_{i}(T_{o}-T)$$

Integration of the above equation yield:

$$\frac{V_{IN}H_{IN} + L_{IN}h_{IN}}{U_{i}a_{i}} = \frac{T_{2} - T_{1}e^{-\alpha \Delta t}}{1 + e^{-\alpha \Delta t}} - T_{0}$$
(5-7)

where

$$\alpha = \frac{U_i a_i}{\widetilde{MC}_p}$$

At = measured time interval
T<sub>1</sub> = temperature of glycerine before absorbing ethyl
alcohol solution

At a high ethyl alcohol concentration, equilibrium compositions of vapor and liquid very close. Therefore, it may be assumed that the vapor composition is the same as the feed composition. Thus, the inlet enthalpy can be expressed as a function of heat of vaporization, total feed rate and relative ratio of vapor to total feed as follows:

$$V_{IN}H_{IN} + L_{IN}h_{IN} = (\psi \lambda + h_F)F$$

where

$$\psi$$
 = relative ratio of vapor to total feed

F = total feed rate

 $\lambda$  = heat of vaporization of feed stream

 $h_F =$ liquid enthalpy for total feed at the exit temperature of the preheater

Substituting the above equation into Equation (5-7) and rearranging the equation will give the following working equation to determine the relative ratio of vapor to total feed.

$$\psi = \frac{U_j a_j}{\lambda F} \left( \frac{T_2 T_1 e^{-\alpha \Delta t}}{1 + e^{-\alpha \Delta t}} - T_0 \right) - \frac{hF}{\lambda}$$
(5-8)

As mentioned in Section 5.3.4.3, glass tubing is used for generating a low relative ratio of vapor to total feed and copper tubing plus the above mentioned glass tubing is used to generate a high relative ratio of vapor to total feed. For each set of operating conditions, i.e., oil bath temperature, feed rate, and tubing material, the experiments are repeated twice. The average value of  $\psi$ 's determined by Equation (5-8) is plotted in Fig. B.4. of Appendix B and its smoothed curve is used as the calibration for relative ratio of vapor to total feed. Figure B.4 shows that at a higher flow rate, the relative ratio of vapor to total feed is smaller if the other operating conditions such as the oil bath temperature and tubing material do not change. Though an increase in inside flow rate can increase the inside film heat transfer rate, it is too small to affect an overall heat transfer coefficient.

# 5.4.4 Relation between Weight Ratio and Area Ratio in Gas Chromatography

As mentioned in Section 5.3.5. 1-propanol is used as the reference compound in gas chromagraphical analysis. Therefore, for each volatile compound except  $\beta$ -ethoxy ethyl propionate in the system, serveral samples with different weight ratios to 1-propanol are prepared for blank test. The peak areas of the test compound and 1-propanol from the chromatographical analysis are then integrated by a Hudron planimeter. The weight ratios are then plotted against the corresponding area ratios

as shown in Fig.B.5 of Appendix B. It is found that ethyl acrylate and ethyl alcohol have the constant relationships between the ratios. But the similar relationships for water and diethyl ether are functions of weight ratios. As mentioned in Section 5.2,  $\beta$ -ethoxy-ethyl propionate can not be purchased from commercial sources for use in a blank test. Since the system contains only a trace amount of this by-product, any error introduced by a simplifying assumption is negligible. It is assumed that the weight and the area ratios for this compound are the same.

All the smoothed curves in Fig. B.5 have been fitted into polyncmial equations and used by the computer program LABDATA. That is, all the gas chromatographical analysis obtained from area ratios into actual weight ratios by these polynomial equations is in the program LABDATA.

## 5.4.5 Heat of Reaction for the Reaction between Acrylamide and Sulfuric Acid

Heat of reaction for the reaction between acrylamide and sulfuric acid is required for calculating heat of formation of molecular complex, acrylamide sulfate. Then the heat of formation of acrylamide sulfate is used to calculate the heats of reaction for esterification and successive reaction on the basic of Hess' law. The heat of reaction between acrylamide and sulfuric acid is

.

measured as follows.

A 250-ml beaker containing 131.3 grams of sulfuric acid solution of 89.6 Wt %, which is equivalent to 1.2 moles of pure sulfuric acid. is immersed in the oil bath at 80 °C. Temperature of sulfuric acid is finally reached at 80 °C. Then, 71.1 grams or 1 mole of acrylamide at the room temperature,  $25^{\circ}$ C, is added into the sulfuric acid solution under continuous stirring. The released heat from the reaction between sulfuric acid and acrylamide not only melts crystalline acrylamide but also raise the temperature of the formed acrylamide sulfate solution to 89.2 °C. The heat of reaction is then equal to the heat required to melt acrylamide and temperatures of acrylamide from 25 °C to 89.2 °C raises and sulfuric acid from 80 °C to 89.2 °C. The calculation procedures are given as follows.

### 1. Heat of Fusion of Acrylamide:

General correlation for heat of fusion has been unsuccessful. However, entropies of fusion of homologous compounds are generally very close while those of heterogenous compounds are widely apart as shown below.

| Paraffins | Entropy of Fysion<br>cal/g-mole- <sup>0</sup> K |
|-----------|-------------------------------------------------|
| n-Hexane  | 17.51                                           |
| n-Heptane | 18.37                                           |

Naphthene

|    | Cyclohexane      |             | 2.28 |
|----|------------------|-------------|------|
|    | 1,cis-2-Dimethyl | Cyclohexane | 1.76 |
| A: | romatics         |             |      |
| •  | Benzene          |             | 8.43 |
|    | Toluene          |             | 8.83 |

Therefore, the best estimate for heat of fusion is to use the entropy of fusion of a homologous compound with known heat of fusion or entropy of fusion. The closest compound to acrylamide with known heat of fusion is cyanamide (52). It is then used to estimate the heat of fusion of acrylamide as follows.

| Compound   | Melting Point<br><sup>O</sup> C | Heat of Fusion<br>Kcal/g-mole |
|------------|---------------------------------|-------------------------------|
| Cyanamide  | 444                             | 2.09                          |
| Acrylamide | 84.5                            | x                             |

 $x=2.09x \frac{273.2 + 84.5}{273.2 + 44} = 2.36 \text{ Kcal/g-mole}$ 

2. Sensible Hcat: For pure sulfuric acid  $\bar{C}_p = 0.38 \text{ cal/g-}^{\circ}C$   $h_1 = 131.3 \times 0.896 \times 0.38(89.2 - 80) \times 10^{-3}$ = 0.41 Kcal/g-mole acrylamide

For water

$$\bar{C}_p = 1.0 \text{ cal/g-}^{\circ}C$$
  
 $h_2 = 131.3 \text{ x}(1-0.896) \text{ x } 1.0(89.2-80) \text{ x } 10^{-3}$   
=0.12 cal/g-mole acrylamide

For acrylamide

$$\tilde{c}_p = 0.60 \text{ cal/g-}^{\circ}C$$
  
 $h_3 = 71.1 \times 0.60 \times (89.2 - 25.0) \times 10^{-3}$   
 $= 2.73 \text{ Kcal/g-mole acrylamide}$ 

3. Heat of Reaction:

Difference in heat capacities between the reactant and the product is assumed to be negligible. Then heat of reaction for this reaction, Reaction 4 is equal to the sum of the above four energy terms:

$$\Delta H_{R_{4}} = \lambda_{f} + h_{1} + h_{2} + h_{3}$$
  
= 2.36 + 0.41 + 0.12 + 2.73  
= 5.62 Kcal/g-mcle acrylamide

5.5 Experimental Procedures

5.5.1 Preparatory Work

1. Turn on the gas chromatographic equipment at least 48 hours before sample analysis.

2. Prepare vapor sample bottle following the method given in Section 5.3.5.

3. Prepare liquid sample bottle following the method given in Section5.3.6

4. Before the addition of silicon fluid into the oil bath, assemble experimental apparatus according to the flow scheme shown in Fig. 5.1.

5. Add silicon fluid into the oil bath, turn on the heater and the stirrer, and set the desired temperature of the oil bath.

6. Feed nitrogen gas into the vapor withdrawal system for preheating the system.

7. Turn on heating tapes and heating mantle along the vapor withdrawal line and set the desired temperature.

8. It takes at least an hour before the constant temperatures both in the oil bath and the vapor withdrawal system are reached.

9. Preheat the liquid sample syringe and syringe needle following the method given in Section 5.3.6.

10 Shift the above nitrogen gas to carrier gas helium.

11. Feed the auxiliary helium into the vapor sample bottles to expel air in the bottles.

12. Two minutes later, pour liquid nitrogen into the 1200 ml dewar to immerse vapor sample bottles about 1/2" below the U tube of the bottle.

13. Another three minutes later, close the auxiliary helium stream and open the carrier gas helium stream.

14. Prepare nonvolatile reactant, acrylamide sulfate solution following the method given in Section 5.3.3

15. Pour the above prepared acrylamide sulfate solution into the reaction-distillation tray through the largest vertical port.

16. Seal the largest vertical port by a large Teflon stopper equipped with a silicon-Teflon rubber, and seal other two vertical ports with silicon rubber stopper with reversible sleeves.

17. Insert thermocouples through the above mentioned silicon-Teflon rubber or silicon rubber stopper for measuring liquid and carrier gas temperatures.

18. As soon as the temperature in the liquid holdup (acrylamide sulfate solution) become the same as oil bath temperature, or the difference between the two temperatures becomes less than 0.02 °C, the system is ready for conducting an experiment on semi-batch distillation accompanied by chemical reaction.

5.5.2 Reaction-distillation Experiment and Vapor Liquid Sampling

19. First close the feed line to the reaction-distillation tray but open the flow path to the glass cylinder. The latter is used for the feed rate adjustment and calibration.

20. Turn on the feed pump and adjust its variable dial for the rotameter reading equivalent to the desired flow rate. 21. As soon as the desired flow rate is obtained, turn the three-way stopcock to shift the feed flow from the glass cylinder to the reaction-distillation tray.

22. Notice that a sudden decrease in rotameter reading can be observed at this moment because a sudden vaporization occurs in the preheater and consequently increases the pressure drop across the micro-sieve tray. Therefore, readjust the dial on the feed pump immediately. It takes only 5 to 15 seconds to get another steady and constant flow at the desired flow rate.

23. At the desired sampling time, take the liquid sample by a Glenco gas-tight syringe through the liquid sample port.

24. Inject the liquid sample into the cold liquid sample bottle to quench immediately the reaction.

25. Immerse the liquid sample bottle in an ice bath to keep it from reacting. Then take the vapor sample by shifting the helium-product vapor stream into a previously empty bottle for next vapor sampling. The shifting can be accomplished by truning the three way stopcock on the upper part of the gas-shifting device shown in Fig. 5.8.

26. Remove the vapor sample bottle with the vapor condensate from the gas-shifting device. Seal the bottle with a silicon rubber stopper and then flush the bottle surface with tap water until all the frozen solids are melted. 27. Clean the contaminated syringe and syringe needle used in Steps 23 and 24 for liquid sampling. If spare syringes and syringe needles are enough for a complete experimental run, this step can be skipped. Otherwise, a longer time period between two samplings must be allowed because this step requires at least 5 minutes. The cleaned syringe and syringe needle are then preheated following the method given in Section 5.3.6.

28. Replace the liquid nitrogen-containing dewar, which was used to condense the previous vapor sample, by an empty dewar. Attach a new empty vapor sample bottle on the gas-shifting device. The empty dewar should be adjusted so that the empty vapor sample bottle can be suspended right above its center bottom.

29. Blow auxiliary helium stream through the empty vapor sample bottle to expel the air in it for about two minutes. Then, pour liquid nitrogen into the dewar to pre-cool the vapor sample bottle. The liquid nitrogen level should be about one centimeter below the horizontal connecting tube in the sample bottle.

30. Repeat Steps 23 through 29 for next set of liquid and vapor samplings until the end of an experimental run.

31. Remove reaction residue from the reaction-distillation tray and then clean all the experimental appratus for next experimental run. 32. Finally, analyze all the collected vapor and liquid samples by the gas chromatography following the methods given in Section 5.3.7.2.

# Chapter 6 Analysis of Experimental Data and Correlation of Operating Parameters

6.1 Treatment of Experimental Data

Data obtained from the experiments described in the previous chapter include the following:

- (1) Composition analyses of vapor and liquid samplesby gas chromatograph
- (2) Accumulated vapor condensate for each vapor sample
- (3) Instantaneous liquid temperature

The above data were obtained for different sets of operation conditions. Three operating parameters discussed in Chapter 4 define the conditions for each experimental run. These operating parameters are:

- (4) Initial and constant surrounding temperature
- (5) Feed rate of aqueous alcohol solution
- (6) Relative ratio of vapor to total feed

Among the above six different data, values of items (4) and (6) are used for energy balance calculations only. For the system investigated in this study, the energy balance calculations are required for solving the mathematical model of the semi-batch distillation accompanied by chemical reaction. The energy balance based on the mathematical model will be discussed in next chapter. Thus, data analysis presented in this chapter will deal with the remaining four items, i.e., Items (1), (2), (3) and (5). These are required for correlating "chemical" vapor-liquid equilibria and reaction rates. The correlations, in turn, provide numerical values for verifying the mathematical model as discussed in Chapter 7.

#### 6.1.1 Vapor and Liquid Compositions

The individual vapor molal quantities of a vapor sample can be calculated from its total weight and gas chromatographical analysis obtained in the previous chapter. The required calibration curves for converting the relative area ratios to the weight ratio of a component to 1-propanol are given in Fig. B.5 of Appendix B. The vapor molal quantities for a compound determined above at different time intervals are then added to get the accumulated vapor molal quantity. The derivative of the smoothed curve of this accumulated quantity at any moment then becomes its instantaneous molal flow rate. The individual accumulated vapor molal quantites can be typically represented by Run 1 and plotted in Fig. 6.1.a. The results show that the relative content of the main product, ethyl acrylate, is very high at the early stage due to an active esterification, and becomes smaller than those of ethyl alcohol and water at the end of the run due to a continuous feed of the later two compounds and a much less active esterification. Very low contents in diethyl ether

and  $\beta$ -ethoxy-ethyl propionate indicate that the two side reactions, dehydration and successive reaction, are very minor.

The total vapor molal quantities calculated from the above individual molal condensates, and the liquid hold-up temperatures are plotted as a function of time and shown in Figs. 6.1.b through 6.4 for the nine experimental runs made in this study. During the first ten minutes of the reaction between acrylamide sulfate and ethyl alcohol, the amount of vapor condensate collected in the vapor sample bottle is negligibly small. A rapid temperature rise of the liquid holdup is observed for this time period. These phenomena indicate that the reacting liquid mixture during the first ten minutes is still below its bubble point. Therefore, the heat released from chemical reactions are absorbed entirely by the liquid mixture to raise its temperature.

When the temperature reaches its maximum value it indicates that the liquid mixture has reached its bubble point. Then, the additional release of heat of reaction is consumed by vaporizing the volatile product and other components. The accumulation of the vapor condensate becomes noticeable. After this maximum point, the liquid bubbling temperature, starts to decline as more of the relatively cold ethyl alcohol is fed into the system and as the liquid composition changes because of reactions. Heat of reactions is sufficient enough to vaporize products and other volatile compounds. The vapor condensate





Fig. 6.1.b Liquid Temperature and Total Vapor Molal Condensate Vs. Real Time, Runs 1 & 2

202



Fig. 6.2 Liquid Temperature and Total Vapor Molal Condensate Vs. Real Time, Run 3, 4, 25



Fig. 6.3 Liquid Temperature and Potal Vapor Molal Condensate Vs. Real Time, Runs 6 & 7



Fig. 6.4 Liquid Temperature and Total Vapor Molal Condensate Vs. Real Time, Runs 8 & 9

205

is accumulated steadily almost at a constant rate, Runs 1 through 9 exhibit the similar behavior. Generally, the higher the feed rate and the higher the relative ratio of vapor to total feed, the higher the maximum temperature obtained. This is because a higher feed rate yields a higher reaction rate and consequently releases more heat of reaction. The higher relative ratio of vapor to total feed provides a larger inlet enthalpy.

In order to make sure all the collected vapor samples are obtained from a boiling liquid, the data points used for evaluating the semi-batch distillation accompanied by chemical reaction are those after the maximum liquid temperature of each run. Since, usually, the maximum temperature is reached after the second sampling, the third sampling time is taken as the zero time in the data correlation and analysis.

Since the variation of accumulated vapor molal quantities, as a function of time, is rather moderate, they can be properly fitted into a polynomial equation. Then, the instantaneous vapor molal flow rate for each component is obtained as the derivative of its corresponding polynomial equation.

As mentioned in Chapter 5, there is a certain time lag, though small, between the vapor and liquid sampling.

This time lag can be calculated from the vapor molal flow rate. The total vapor molal flow rate is first calculated as the sum of all the individual molal flow rates. Since the system is operated at atmospheric pressure, the ideal gas law can be used to convert total vapor molal flow rate into total vapor volumetric flow rate. Other information required is the carrier gas (helium) flow rate and the volume of the entire vapor flow path. It is found that the time lag between vapor generation and vapor collection is between 0.24 to 0.41 minutes for all the experimental runs of this study. These time lags are relatively small. However, these time lags are not ignored but are taken into account for correcting the sampling time. For the mathematical model analysis, the vapor and liquid samples should be at equilibrium.

### 6.1.2 "Chemical" Vapor-Liquid Equilibria

Molal quantities determined in the previous section can be used to determine instantaneous vapor and liquid compositions at the vapor-liquid interface. With the calculated vapor and liquid compositions, the corresponding K-value for "chemical" vapor-liquid equilibrium can be readily determined.

From the above determined K-value, liquid activity

coefficient can be calculated by Equation (4-117) which is repeated below

$$\Upsilon_{i} = \frac{K_{i}P}{\phi_{i}P_{i}^{0}} = \frac{y_{i}P}{x_{i}i^{0}P_{i}^{0}}$$
(4-117)

The vapor pressure,  $P_i^o$ , can be calculated from Antoine constants given in Table A.5 and fugacity coefficient,  $\oint_i^o$ , from the correlations of Prausnitz and his coworkers as given in Appendix A.12. The activity coefficients calculated from Equation (4-117) for all the five volatile components in the system are correlated by the methods presented later in Section 6.2.1.

### 6.1.3 Reaction Rates

Ethyl acrylate, the main product of the reaction system, appers in both liquid and vapor phases. Therefore, its overall production rate should be equal to the sum of its rate of flow to the vapor condensate and its rate of accumulation in the liquid holdup. The volume of the liquid holdup is equal to its original volume plus the net change. The net change is the difference between the liquid volume of the entering feed under the tray conditions and the volume of the accumulated vapor condensate. With these information, the reaction rate can be calculated.

For determination of the dehydration rate, i.e.,

R2 for the second reaction, numerical values of the vapor molal flow rate of diethyl ether are only required. Diethyl ether is totally vaporized and it is not detectable in the liquid mixture. For the successive reaction, i.e., the third reaction, its reaction rate can be calculated from the vapor molal flow rate and accumulation rate of  $\beta$ -ethoxy ethyl propionate in the liquid. A procedure similar to that for esterification can be used. The liquid concentrations of all the components in the liquid mixtures can be determined analytically as discussed in Chapter 5. The rate and the liquid composition dots are substituted into Equation (4-103) through (4-105) to obtain three corresponding rate constants,  $k_{m,1}$ ,  $k_{m,2}$ ,  $k_{m,2}$ and  $k_{m,3}$ . If these three rate constants can be properly correlated as a function of the three operating parameters, the reaction rates under different operating conditions can be estimated. The correlations of the reaction rate constants will be presented in Section 6.2.2.

Based on the methods described above computer program LABDATA was prepared and used to treat all the laboratory data. The program listing input data and calculated results for all the above experimental results are given in Appendix C.1.

6.2 Correlations of Parameters

# 6.2.1 Correlation of Activity Coefficient for "Chemical" Vapor-Liquid Equilibria

The conventional correlation of activity coefficients must satisfy the Gibbs-Duhem equation, the basic thermodynamic relation to treat the nonideality of a liquid solution. However, in this study, the activity coefficients of several compounds and their associated ionic species can not be measured. These compounds include the very volatile compound, diethyl ether, and the four very nonvolatile compounds, namely acrylamide sulfate, sulfuric acid, ammonium bisulfate and acrylamide. As mentioned in Section 4.6, the purpose of this correlation is to predict accurate vapor mole fractions from the known liquid compositions. A hypothetical liquid solution, containing four volatile components, namely ethyl alcohol, ethyl acrylate, water and -ethoxyethyl propionate, and one pseudo-component, "very nonvolatile material", is then used as the basis of this correlation. The pseudo-component, "very nonvolatile material", is a lumped parameter obtained from lumping together the four very nonvolatile compounds and their associated ionic species.

Even for a hypothetical liquid solution, a conventional correlation equation which can satisfy the

. .

Gibbs-Duhem equation can make better prediction of activity coefficient than an arbitrary function. Therefore, a good correlation equation for the activity coefficients of the four volatile components may be selected from the five well-known correlations of Wilson, van Laar, Margules, Wohl, and Hala (11).

Sabylin and Aristovich (55) made a comparison of the five correlations with the "physical" equilibrium data of 30 ternary and 4 quaternary systems. It was concluded that the Wilson equation gives the best prediction while the Wohl and Hala equations are least successful in predicting good multicomponent dat. The superiority of the Wilson equation to predict multicomponent data from the binary data, implies that the mixing rule and the function forms proposed by Wilson are also superior. The Wilson method is then adopted here as the basis for developing the correlation for the multicomponent "chemical" vapor-liquid equilibria.

#### 6.2.1.1 Working Equation

The Wilson equation for a multicomponent system can be represented by the following equation.

$$\ln \gamma_{i} = 1 - \ln \left(\sum_{j=1}^{N} \Lambda_{ij} x_{j}\right) - \sum_{k=1}^{N} \frac{x_{k} \Lambda_{ki}}{\Lambda_{kj} x_{j}} \qquad (6-1)$$

where

$$\Lambda_{ij} = \frac{v_j^L}{v_i^L} \exp\left[-\frac{(\lambda_{ij} - \lambda_{ji})}{RT}\right]$$
(6-1a)

In equation (6-1a),  $v_i^L$  and  $v_j^L$  are the liquid molal volumes of the pure components i and j and  $(\lambda_{ij} - \lambda_{ii})$ is an empirically determined energy term. Since the temperature range for this reaction-distillation system is small, the Wilson constant,  $\Lambda_{ij}$ , is treated as a constant, independent of both temperature and pressure. It is noted that the binary Wilson constants ( $\Lambda_{kj}$  and  $\Lambda_{jk}$ ) are the only parameters appear in Equation (6-1). The parameters,  $\Lambda_{ij}$ ,  $\Lambda_{kk}$ , etc., should be equal to unity.

In order to clearly understand the characteristics of the Wilson equation, its simplest form, that is the binary form, may be examined. For a binary mixture, Equation (6-1) is reduced to

$$\ln \eta_{1} = -\ln(x_{1} + \Lambda_{12}x_{2}) + \left(\frac{\Lambda_{12}}{x_{1} + \Lambda_{12}x_{2}} - \frac{\Lambda_{12}}{\Lambda_{21}x_{1} + x_{2}}\right)x_{2} \quad (6-2a)$$

$$\ln \gamma_2 = -\ln(x_1 + \Lambda_{21}x_1) - (\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{12}}{\Lambda_{21}x_1 + x_2})x_1 \quad (6-2b)$$

If a mixture is an infinitely diluted solution of component 1 its composition can be expressed as

and

x<sub>2</sub> ----- 1.

With the relationships, equations (6-2a) and (6-2b) are reduced to

$$\ln \gamma_{1} = -\ln \Lambda_{12} + 1 - \Lambda_{21}$$
(6-3a)  
$$\ln \gamma_{2} = 0$$
(6-3b)

The activity coefficient of a component at an infinite dilution is then a function of  $\Lambda_{12}$  and  $\Lambda_{21}$  while the activity coefficient of pure component is unity.

For an ideal solution  $\wedge_{12} = \wedge_{21} = 1$ . Thus, deviation of the parameters from unity is an indication of the nonideality of the solution. If both  $\wedge_{12}$  and  $\wedge_{21}$ are greater than unity,  $\mathcal{A}_1$  becomes less than unity according to Equation (6-3a). That is, the solution exhibits negative deviations from ideality. However, if they are both less than unity, positive deviations from ideality can be observed. It is possible that one parameter may exceed unity and the other less than unity for cases where deviations from ideality are not large. Although the Wilson equation used in this work is an empirical form, the relationship between the calculated activity coefficients and the Wilson constants should have the same characteristics as discussed above.

. . .

## 6,2.1.2 Data Regression

For a five-component system, total number of required Wilson binary constants is 5x(5-1)=20, which excludes all the unity terms,  $\Lambda_{11}, \Lambda_{22}, \cdots$ , and  $\Lambda_{55}$ . Now, the desired correlating equation, Equation(6-1) has twenty undetermined constants. These twenty constants can be obtained from regression of experimental data by SUBROUTINE BSOLVE, which is suitable for either linear or nonlinear fit of the experimental data by the method of least-squares. This subroutine employes either the Newton Raphson Method or the Steepest Descent Method for obtaining convergent solutions. There are two other computer programs developed and used in this study. One is SUBROUTINE FUNC, which is used to calculate the activity coefficient based on the given functions. The other is SUBROUTINE DERIV which calculates the partial derivative of activity coefficient. The form of functions used in this work is the general simultaneous equation. Equation (6-1). Since the number of undetermined constants is very large, it will be too cumbersome to list all the twenty individual derivatives calculated by SUBROUTINE DERIV. Instead, they are grouped into the following three general cases.

Case 1:

$$\frac{\partial \ln \gamma_{i}}{\partial \Lambda_{ik}} = -\frac{x_{k}}{\sum_{j=1}^{N} \Lambda_{ij} x_{j}} + \frac{x_{i} x_{k}}{\left(\sum_{j=1}^{N} \Lambda_{ij} x_{j}\right)^{2}}$$
(6-4a)

Case 2:

$$\frac{\partial \ln \gamma_{i}}{\partial \Lambda_{ki}} = -\frac{x_{k}}{\sum_{j=1}^{N} \Lambda_{kj} x_{j}} + \frac{\Lambda_{ki} x_{i} x_{k}}{(\sum_{j=1}^{N} \Lambda_{kj} x_{j})^{2}}$$
(6-4b)

where  $k \neq i$ 

Case 3:

$$\frac{\partial \mathbf{i}_{n} \gamma_{i}}{\partial \Lambda_{km}} = \frac{\Lambda_{ki} x_{k}}{\frac{N}{\sum_{j=1}^{N} \Lambda_{kj} j}}$$
(6-4c)

where  $k \neq m \neq i$ 

All the above subroutines are included in the program "CHEMACT" which is listed in Appendices C.3.1 - C.3.3. The input data and constants for the program are also shown in the Appendices.

By the definition as given in Equation (6-1a),  $\Lambda_{ij}$  must be a positive value. Therefore, the lower bound of  $\Lambda_{ij}$  is set equal to zero during the data regression. Since the range of experimental temperatures are only between 90 °C and 130 °C, the difference of tempereture effects on activity coefficients are very small compared to the effects of composition on the solution nonideality. Since the system is operated at constant pressure,  $\gamma_i$  can be treated here as a function of only composition. With the above assumptions, the fitted values of  $\Lambda_{\rm ij}$  by the program CHEMACT are as follows,

| ۸<br>12         | 0.0709 | ∧21             | 0.494  |
|-----------------|--------|-----------------|--------|
| ^ <sub>13</sub> | 0.     | ∧ <sub>31</sub> | 1.41   |
| $\wedge_{14}$   | 0.     | $\wedge_{41}$   | 0.     |
| ∧ <sub>15</sub> | 0.677  | ۸ <sub>51</sub> | 13.2   |
| ٨_23            | 0.     | ۸ <sub>32</sub> | 9.11   |
| ۸ <sub>24</sub> | 0.271  | ∧ <sub>42</sub> | 0.     |
| ∧25             | 0.     | ۸ <sub>52</sub> | 0.     |
| ∧<br>34         | 10.9   | ∧ <sub>43</sub> | 0.0269 |
| ∧               | 6.02   | ∧53             | 3.91   |
| ∧ <sub>45</sub> | 0.     | ∧ <sub>54</sub> | 6.91   |



Fig. 6.5 Comparison of Calculated Activity Coefficients by The Wilson's Equation To Experimental Activity Coefficients

The calculated activity coefficients using the above coefficients and Wilson's equations are plotted against the experimental values as shown in Fig.6.5. The agreement between the calculated values and the experimental data are satisfactory, especially for the reactant ethyl alcohol and the most polar component. water. Larger deviation can be seen for the activity coefficient of the two volatile products, ethyl acrylate and  $\beta$ -ethoxy ethyl propionate. This larger deviation may be explained as follows. The mole fractions of these two products in the reacting liquid are very small, only up to 0.0525 for ethyl acrylate and 0.0076for  $\beta$ -ethoxy ethyl propionate. It is not unusual that the percentage error for measuring a very small quontity is larger than that for measuring a large quantity. Furthermore, determination of a smaller peak area from the gas chromatograph also has an inherent larger percentage reading error.

Since the liquid mixture contains mostly the nonvolatile material, the activity coefficients of the four volatile components are affected by their molecular relationships to this nonvolatile material. Water is a very polar compound. Its presence helps sulfuric acid to generate proton for promoting the

formation of acrylamide sulfate. Its affinity to the nonvolatile liquid mixture is then very high and thus its activity coefficient is the smallest among the four volatile components. These low water activity coefficients can be characteristically represented by the fitted Wilson constants for the binary pair of water and nonvolatile meterial. The constants are  $\Lambda_{35}=6.02$ and  $\Lambda_{53}$ =3.91. As discussed earlier high values of  $\Lambda_{ij}$ give low  $\mathcal{N}_{i}$ . This is consistent with water activity coefficient determined for water here. For reactant ethyl alcohol, activity coefficients in the pair with the nonvolatile material are such that  $\Lambda_{51}$  is greater than unity while  $\bigwedge_{15}$  is less than unity. For the main product, ethyl acrylate,  $\Lambda_{25} = \Lambda_{52} = 0$ . This indicates that ethyl acrylate has very large activity coefficients, which are not affected by the liquid compositions of the system components. Instead, this large product activity coefficient is affected by the large heat of reaction of the system as explained below.

During the production of ethyl acrylate, a large amount of heat of reaction is released (please see the calculation by Hess' Law as given in Appendix A.10). If ethyl acrylate were a nonvolatile meterial, this heat would be uniformly distributed in the liquid solution through a mechanical mixing resulting in the rise of liquid temperature. However, ethyl acrylate is a volatile component with low heat of vaporization. The heat of reaction immediately becomes available as the heat of vaporization for the reaction product. Therefore, the vapor stream becomes very rich in ethyl acrylate. The liquid temperature is reduced because the part of its enthalpy is also used to vaporize ethyl acrylate.

For the by-product,  $\beta$ -ethoxy ethyl propionate, its binary Wilson constants with nonvolatile material are  $\Lambda_{45}=0$  and  $\Lambda_{54}=6.91$ . Since its mole fraction in the liquid is extremely small, its activity coefficient may be considered at inifinite dilution. At infinite dilution, its activity coefficient in a binary system may be represented by Equation (6-3) and repeated below with corresponding subscript:

$$\ln \gamma_4 = -\ln \Lambda_{45} + 1 - \Lambda_{54}$$

Although  $\Lambda_{54}$  is much greater then unity, it is still a small term compared to  $-\ln \Lambda_{45}$  where  $\Lambda_{45}$  approaches zero. Therefore, the calculated  $\Upsilon_4$  is the largest among the four components. This unusually large activity coefficient for by-product  $\beta$ -ethoxy-ethyl propionate is another indication of substantive effect of chemical reaction on vaporliquid equilibria.

In a "physical" vapor-liquid equilibrium system, the activity coefficients in a multicomponent mixture, as mentioned in Chapter 2, are generally developed from the data of its constituent binary systems. Therefore, the activity coefficients of its any two constituents have the same relative order-of-magnitude as they are in a binary mixture. However, in a "chemical" vaporliquid equilibrium system, such as the one used in this study, a reverse order of magnitude for some binary pair can be observed.

As an example, the binary system of ethyl acrylate and ethyl alcohol is considered. The activity coefficients of ethyl acrylate calculated from the present "chemical" vapor-liquid equilibrium data fall between 3 and 12. They are much higher than those of ethyl alcohol, which are between 0.45 to 1.4. However, the activity coefficients of these two compounds calculated from the "physical" vapor-liquid equilibrium data of Loginova, et al. (43) show a reverse trend. The activity coefficients of ethyl alcohol are between 1.0 to 9.45, while those of ethyl acrylate are between 0.53 to 2.56.

Based on the above analysis of the present experimental data and on the comparison between the Chao-Seader

22i

"physical" vapor-liquid equilibrium correlation and the Grayson-Streed "chemical" vapor-liquid equilibrium correlation, given in Section 2.1, it can be concluded that chemical reaction do have a definite effect on vaporliquid equilibrium. One of the causes yielding, definite effect of chemical reactions on vapor-liquid equilibrium is the release of the heats of reactions. For Grayson Streed hydrocracking system, the reaction kinetics are extremely complicated. However, the exothermic reactions of the system can be typically represented by the hydrocracking of n-decane as shown below:

Heat of Reaction,  $AH_{K}$   $Kcal/g-mole H_{2}$   $n-C_{10}H_{22} + H_{2} \longrightarrow C_{3}H_{8} + n-C_{7}H_{16} -3.66$  $n-C_{10}H_{22} + H_{2} \longrightarrow n-C_{4}H_{10} + n-C_{6}H_{14} -3.81$ 

 $n-C_{10}H_{22} + H_2 - 2 n-C_5H_{10} -4.11$ 

The average heat of reaction for hydrocracking of n-decane is then equal to -3.86 Kcal per gram mole of hydrogen consumed. This heat of reaction per gram mole of hydrogen consumed is somewhat different if the reactant is a different type of hydrocarbon such as naphthene or aromatic, or a different size of hydrocarbon such as n-heptane or n-hepta-decane.

If hydrogen consumption is very large for a hydro-

cracking system, the exothermic heat of reaction per mole of a heavy hydrocarbon must be very large, implying that this system has a high reaction conversion. Hydrocracking can be performed thermally. It can be further promoted at the presence of a catalyst. Since these two types of operation have different reaction kinetics, resulting in different conversions, their heats of reaction are then different and so are their effects of chemical reaction on "chemical" vapor-liquid equilibrium. Therefore, for a reactor effluent from a catalytic bed, the vapor-liquid equilibrium pattern right after the cataltic bed may be different from that a remote separation zone without the presence of catalyst. When measuring "chemical" vapor-liquid equilibria for such a system, it is recommended that the residence time and the variation in "chemical" vapor-liquid equilibrium from the catalytic bed to the separation zone should be taken into account.

6.2.2 Reaction Rate Constants

The reaction rate constants,  $k_{m,1}$ ,  $k_{m,2}$  and  $k_{m,3}$  defined in Section 4.5.4 can be expressed in the following Arrhenius type equations:

$$k_{m,1} = K_{m,1}e^{-E_{m,1}/RT}$$
  
 $k_{m,2} = K_{m,2}e^{-E_{m,2}/RT}$   
 $k_{m,3} = K_{m,3}e^{-E_{m,3}/RT}$ 

Taking the logarithm of the above three equations gives the

following general form:

$$\log k_{m,1} = \log K_{m,1} - \frac{E_{m,1}}{2,303 \text{ kT}}, i=1,\dots, 3$$
 (6-5)

For each experimental run,  $k_{m,1}$  are then plotted against 1/(2.303 RT) on semilog graph paper which is shown as Fig. 6.6 for esterification reaction, It is observed that for the first hour of operation, i.e., the first 5-6 experimental points, the above plot yields straight lines. Furthermore, these straight lines are parallel to each other indicating that the activation energy for all the nine experimental runs are the same for the first five to six data points. This is a significant experimental confirmation of the assumption mode for this study. For the rest of each experimental run. the reaction rate is greatly reduced and the temperature is decreased as the time progresses. This phenomenon is an indication of more active side reactions near the end of an experimental run. The possible side reaction may be the decomposition of acrylamide sulfate and the formation of alkyl sulfates  $(C_2H_5)_2SO_4$  and  $C_2H_5HSO_4$ , which are generally the transition components for the formation of diethyl ether.

For the first five to six points of each run, a universal activation energy can now be introduced to



Fig. 6.6 Esterification Rate Constant k<sub>1</sub> Vs. Reciprocal of Temperature

make further simplification. The procedures are stated below.

For a data point in the run s, Equation (6-5) is rewritten, with the activation energy in Kcal/(g-mole), as

 $\log K_{s} - \frac{1000 E_{s}}{2.303 R T_{s,j}} = \log K_{s,j}, s=1, \cdots, n_{s} (6-6)$ where

 $\begin{array}{ll} n_{\rm s} = {\rm number \ of \ experimental \ runs} \\ E_{\rm s} = {\rm universal \ activation \ energy \ in \ Kcal/(g-mole)} \\ {\rm Define} & \begin{cases} {\rm s,j} = 1000/(2.303 {\rm RT}_{\rm s,j}) \\ {\rm fs,j} = \log k_{\rm s,j}, \end{cases} \\ {\rm fs,j} = \log k_{\rm s,j}, \end{cases} \\ {\rm and} & {\rm F_{\rm s}} = \log K_{\rm s}. \end{array}$ 

Equation (6-6) can then be reduced to

$$F_{s} - E_{s} \neq s, j = \Phi_{s, j}$$
,  $s=1, \dots, n_{s}$  (6-7)

The difference between the experimental and calculated values of log  $K_s$  for the data point j in the run s is equal to that between right-hand side and left-hand side of Equation (6-7). Mathematically it can be represented as follows:

$$\mathcal{E}_{s,j} = \Phi_{s,j} - F_s + E_s \mathcal{J}_{s,j} \qquad (6-8)$$

The variation for all the data points, where the universal activation energy concept can be applied, is written according to the definition:

$$\sigma^{2} = \sum_{s=1}^{n} \sum_{j=1}^{n} \mathcal{E}_{s,j}^{2}$$
(6-9)

where

 $\sigma^2$  = variation  $n_s$  = number of runs = 9  $n_j$  = number of data points for run s.

Substituting Equation (6-8) into Equation (6-9) gives the following working equation

$$\sigma^{2} = \sum_{s=1}^{n_{s}} \sum_{j=1}^{n_{j}} (\Phi_{s,j} - F_{s} + E \beta_{s,j})^{2}$$
(6-iv)

The least-squares method requires that

$$\frac{\partial \sigma^2}{\partial E} = 0$$
 and  $\frac{\partial \sigma^2}{\partial F_s} = 0$ ,  $s=1, \cdots, n_s$ 

The corresponding  $(n_s + 1)$  simultaneous linear equations can now be obtained by differentiating Equation (6-10) with the above  $(n_s + 1)$  constraints:

$$2\sum_{s=1}^{n}\sum_{j=1}^{n}(\tilde{\Phi}_{s,j} - F_s + E_{s,j}^2)\beta_{s,j} = 0 \quad (6-11)$$

and

$$2\sum_{j=1}^{n} \sum_{j=1}^{n_{j}} (\Phi_{s,j} - F_{s} + E_{s,j}^{2}) = 0, \quad s=1, \cdots, n_{s}$$
(6-12)

Equation (6-11) can be further simplified as follows:

$$\sum_{s=1}^{n} \sum_{j=1}^{n} \beta_{s,j} = \sum_{s=1}^{n} \sum_{j=1}^{n} \beta_{s,j} = \sum_{s=1}^{n} \beta_{s,j} = \sum_{s=1}^{n} \beta_{s,j} = 0$$

$$\sum_{s=1}^{n} \sum_{j=1}^{n} \beta_{s,j} = \sum_{s=1}^{n} \beta_{s,j} = 0$$
(6-13)

From Equation (6-12),

$$\sum_{j=1}^{n_j} \overline{\Phi}_{s,j} - n_j F_s + E \sum_{j=1}^{n_j} \overline{f}_{s,j} = 0$$

or

$$F_{s} = \frac{\sum_{j=1}^{n_{j}} \Phi_{s,j} + E\sum_{j=1}^{n_{j}} F_{s,j}}{\sum_{j=1}^{n_{j}} F_{s,j}}$$
(6-14)

Substituting Equation (6-14) into Equation (6-13) gives the following solution for E, the universal activation energy:

$$E = \frac{\sum_{s=1}^{n} \sum_{j=1}^{n,j} \int_{s,j} \Phi_{s,j} - \sum_{s=1}^{n,s} (\sum_{j=1}^{n,j} \int_{s,j}) (\sum_{j=1}^{n,j} \Phi_{s,j})}{\sum_{s=1}^{n,s} (\sum_{j=1}^{n,j} \int_{s,j})^{2/n} - \sum_{s=1}^{n,s} \sum_{j=1}^{n,j} \int_{s,j}^{2} (\sum_{s=1}^{n,j} \int_{s,j})^{2/n} (6-15)}$$

The value of the universal activation energy, E, is obtained by the above equation with all the experimental data points. Then Equation (6-14) can be used to determine F<sub>s</sub> for each run. The frequency factor, K<sub>m,1</sub> is simply calculated as 10<sup>Fs</sup>.

The above procedures for data reduction are also used for the dehydration and the successive reactions. These procedures have been programmed into the computer program RXNRATE which is given in Appendix C.4. The reduction of all the experimental data by the computer program RXNRATE yields the activation energies and frequency factors for the three reactions of all the experimental runs. They are summarized in Table 6.1. As shown in Table 6.1 the average percentage errors for the three reactions are small, which justify and confirm the appropriateness of the proposed rate expressions for the three chemical reactions dealt in this study.

The above data reduction has shown that a specific behavior of each experimental run can be represented by a single factor, namely Frequency Factor. Thus. the different effects of interface mass transfer on reaction rate can now be discussed quantitatively in terms of the frequency factors. Furthermore, since the interface properties such as interface concentration, film thickness, etc, cannot be measured directly, the frequency factor be used to represent the overall effects of these properties on the reaction behavior. As discussed earlier the interfacial properties are functions of the three operating parameters, i.e., the initial and surrounding temperature, the feed rate of aqueous ethyl alcohol solution, and the relative ratio of vapor to total feed. These operating conditions for all the experimental runs are listed in Table 6.2.

The frequency factor may now be quantitatively related to the operating parameters as follows, assuming

| f                                                    |                      |                                                     |                                                     |                                                      |
|------------------------------------------------------|----------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|
|                                                      |                      | Esteri-<br>fication                                 | Dehydration                                         | Successive<br>Reaction                               |
| Activation Energy E. Kcal/g-mole                     |                      | 35.56                                               | 47.97                                               | 52.88                                                |
|                                                      | Units<br>Run No<br>s | K <sub>s,1</sub> x10 <sup>-17</sup><br>l/g-mole-min | K <sub>s,2</sub> x10 <sup>-23</sup><br>l/g-mole-min | $\frac{K_{s,3} \times 10^{-25}}{1^2 / (g-mole)^2}$ - |
|                                                      | 1                    | 2.59                                                | 1.01                                                | 3.51                                                 |
| Frequency<br>Factors                                 | 2                    | 2.93                                                | 0.93                                                | 2.70                                                 |
|                                                      | 3                    | 3.08                                                | 1.82                                                | 5.35                                                 |
|                                                      | 4                    | 3.12                                                | 3.21                                                | 5.02                                                 |
|                                                      | - 5                  | 3.85                                                | 2.60                                                | 6.25                                                 |
|                                                      | 6                    | 3.96                                                | 2.11                                                | 3.71                                                 |
|                                                      | 7                    | 4.02                                                | 1.69                                                | 3.37                                                 |
|                                                      | 8                    | 7.41                                                | 7.11                                                | 13.79                                                |
|                                                      | 9                    | 10.21                                               | 3.60                                                | 17.95                                                |
| Average Percent-<br>age Error of<br><sup>K</sup> s,i |                      | 3.77                                                | 6.29                                                | 12.6                                                 |

Table 6.1 Arrhenius Constants

$$k_{s,1}=K_{s,1}e^{-35560/RT}$$
  
 $k_{s,2}=K_{s,2}e^{-49970/RT}$   
 $k_{s,3}=K_{s,3}e^{-52880/RT}$   
 $R = 1.987 \text{ cal/g-mole-}^{0}K$   
 $T = \text{temperature in }^{0}K$ 

that each parameter has independent influence.

$$K_{s,i} = g_1(T_0) g_2(F) g_3(\psi)$$
 (6-16)

where

$$K_{s,i} =$$
frequency factor for reaction i and run  
number s  
 $T_o =$ initial and surrounding temperature  
 $F =$ feed rate  
 $\psi =$ vapor fraction of feed stream  
 $g_1, g_2,$ and  $g_3 =$ independent functions

It is assumed that each independent function, g<sub>1</sub>, has two constants to represent the effects of its corresponding parameter. The following function form is found to be very suitable,

$$g_{1}(f) = (f + b_{1})^{b_{2}}$$

where

$$f = T_0, F \text{ or } \psi$$
.

With the above relation, Equation  $(^{6-16})$  can be rewritten as

$$K_{s,i} = b_7 (T_{IN} + b_1)^{b_2} (F + b_3)^{b_4} (\psi + b_5)^{b_6} \qquad (6-17.)$$

where the constant  $b_7$  is an adjusting factor to match the relative magnitudes between  $K_{s,1}$  and three  $g_i$ 's.

Although there are only nine frequency factors to fit seven constants for the above equation, the •

•

| Run Number | Initial Temp., <sup>0</sup> C | Feed Rate, ml/min | Vapor *<br>Fraction |
|------------|-------------------------------|-------------------|---------------------|
| 1          | 115                           | 1.56              | 0.82                |
| 2          | 115                           | 1.736             | 0.34                |
| 3          | 111.5                         | 1.496             | 0.69                |
| 4          | 111.5                         | 1.558             | 0.60                |
| 5          | 111.5                         | 1.192             | 0.70                |
| 6          | 110.0                         | 1.147             | 0.55                |
| 7          | 110.0                         | 1.465             | 0.76                |
| 8          | 106.0                         | 1.26              | 0.85                |
| 9          | 106.0                         | 1.506             | 0.0                 |

\* Relative Ratio of Vapor to Total Feed

232

.

operating temperatures in the nine runs have covered the applicable reaction temperature range. Therefore, these nine experimental runs were considered to be sufficient to demonstrate how the basic information required for this study can be obtained. The constants in Equation (6-17) are determined by the computer program BSOLFIT. The program is developed on the basis of the BSOLVE techniques, which was described in Section 6.2.1 and is listed in Appendix C.5. The working equations for the three reactions with appropriate constants obtained by the computer program BSOLFIT with the data of Table 6.1 and 6.2 are given as follows.

# Esterification:

$$K_{m,1} = 0.196(T_0 - 104)^{-0.571} \times (F + 0.911)^{-0.501}$$
$$\times (\psi + 0.0447)^{-0.13} \times 10^{18} \ 1/(g-mole) - min$$
(6-18)

#### Dehydration:

 $K_{m,2} = 1.31(T_0 - 103)^{-1.14} \times (F - 0.661)^{-0.258}$  $\times (\psi + 0.01)^{0.131} \times 10^{23} \ l/(g-mole) - min \qquad (6-19)$ 

Successive Reaction:  

$$K_{m,3} = 7.22(T_0 - 104)^{-0.885} \times (F - 0.164)^{1.84}$$

$$\times (\psi - 0.749)^{-0.4} \times 10^{25} \ 1^2 / (g-mole)^2 - min \quad (6-20)$$

The calculated frequency factors from Equations (6-18) to (6-20) are plotted in Figures 6.7 - 6.9 and compared to the experimental frequency factors listed in Table 6.1. For the esterification reaction, the agreement is very satisfactory. However, for the dehydration and the successive reactions it is only fair. The experimental runs with intermediate operating conditions exhibit larger deviations. Thus, the simple correlation model as given by Equation (6-17) may be inadequate for the correlation of these two reactions. Fortunately, these two reactions are minor compared with the esterification reaction. Therefore, a somewhat larger error in their frequency factors would not significantly affact the prediction of the system behavior. Therefore, their fitted equations, Equations (6-19) and (6-20) may still be adopted by for the simulation studies which will be presented in the next chapter.

Since Equation (6-18) can accurately predict the frequency factors for the main reaction, esterification, it can be used to discuss the effects of operating conditions on the frequency factor. The major advantage of this equation is to express the three operating parameters,  $T_0$ , F, and  $\psi$  as separated variables. If any two of the three operating conditions are kept constant, the effect of the third operating condition can be readily



Esterification







Successive Reaction

derived from Equation (6-18) as an independent parameter. If the effect is expressed as the ratio of frequency factors of Condition 2 to Condition 1, the three independent effects can be expressed as follows:

$$\left( \frac{K_{T,2}}{K_{T,1}} \right)_{F,\psi} = \left( \frac{T_{0,2} - 104}{T_{0,1} - 104} \right)^{-0.571}$$
(6-21)

$$\binom{K_{F,2}}{K_{F,1}}_{T_0,\psi} = \left(\frac{F_2 + 0.911}{F_1 + 0.911}\right)^{-0.501}$$
(6-22)

$$\begin{bmatrix} \frac{K_{\psi,2}}{K_{\psi,1}} \end{bmatrix}_{T_{0},F} = \left( \frac{\psi_{2} + 0.0447}{\psi_{1} + 0.0447} \right)^{-0.13}$$
(6-25)

where subscripts 1 and 2 stand for Condition 1 and Condition 2, and subscripts T, F, and  $\psi$  stand for T<sub>0</sub>, F and  $\psi'$ , respectively. If Condition 1 is taken as the operating condition giving the smallest frequency factor and Condition 2 giving the largest frequency factor within the boundary of the operating conditions used by this study, then the largest independent effects by the three operating parameters can be determined from the above three equations. The results are summarized in Table 6.3. These results demonstrate that the frequency factor is most sensitive to the initial and surrounding temperature, T<sub>0</sub>, and least affected by the volatile reactant feed rate, F. If the initial and surrounding temperature is

# Table 6.3 Largest Independent Effect of Operating

.

|                                           | pendent Ope<br>neter | rating         | Condition 1 | Condition 2 | Ratio of Frequency<br>Factors K <sub>2</sub> /K <sub>1</sub> |
|-------------------------------------------|----------------------|----------------|-------------|-------------|--------------------------------------------------------------|
| Name                                      | Symbol               | unit           |             |             |                                                              |
| Initial and<br>Surrounding<br>Temperature | То                   | ° <sub>C</sub> | 115         | 106         | 2.65                                                         |
| Volatile Re-<br>actant Feed<br>Rate       | ㅋ                    | ml/min         | 1.127       | 1.736       | 1.13                                                         |
| Ratio of<br>Vapor to<br>Total Feed        | · $\psi$             | -              | 0.85        | 0.0         | 1.48                                                         |

# Conditions on the Frequency Factors

increased from 106 °C to 115 °C, the frequency factor will be reduced by a factor of 2.65. This implies that the reaction occurs mostly in the liquid film due to a high reaction rate at a high temperature. If the vapor fraction in the total feed is reduced from 0.85 to zero, the frequency factor will be increased by a factor of 1.48. This implies that the film reaction is reduced to the minimum by introducing a totally liquid feed stream. The volatile reactant feed rate mostly contributes to increasing the concentration of the volatile reactant, ethyl alcohol, in the liquid holdup. Its effect on the frequency factor is then small.

# Chapter 7 Verification of Theoretical Model and Parametric Evaluation

### 7.1 Theoretical Solutions

Two conditions must be met and satisfied for any theoretical model to predict the system behavior accurately. First, the model must be developed on the sound theoretical foundation. Secondly, the physical and chemical data to be applied and used in the model must be accurate. Thus, before analysing the system behavior predicted by the model, the preparation of accurate physical and chemical data will be discussed.

## 7.1.1 Physical and Chemical Data Required for System Analysis

The physical and chemical data required in this system consist of two groups. One group is the data related mainly with material balance equations and the other for energy balance.

The data for material balance are essentially those related to

(1) Chemical vapor-liquid equilibria

(2) Chemical reaction rates

The correlations of the above data, with the experimental

data obtained by this work, were discussed in details in Chapter 6. They will not be repeated here.

The data for energy balance equations include:

- (1) Liquid and vapor enthalpies
- (2) Heats of reactions
- (3) Overall heat transfer coefficient

As mentioned in Chapter 3 heat of solution is assumed to be negligibly small compared to heats of reactions or latent heats of vaporization. Therefore, the enthalpy of a mixture, either liquid or vapor, is determined by adding the enthalpies of individual components. The enthalpy of a pure liquid component is calculated from heat capacity data according to the definition with datum temperature of 0  $^{\circ}$ C. If liquid heat capacity, C<sub>p</sub>, is related to temperature by the following polynomial equation:

$$C_p = a_1 + a_2 T + a_3 T^2 + a_4 T^3$$
 (7-1)

where

 $C_p$  = liquid heat capacity in cal/g-<sup>o</sup>C T = temperature, <sup>o</sup>C

 $a_1, a_2, a_3$  and  $a_4$  = constants for a component, then liquid enthalpy can be readily obtained as

$$h = a_1 T + (1/2)a_2 T^2 + (1/3)a_3 T^3 + (1/4)a_4 T^4 \quad (7-2)$$

Therefore, only liquid heat capacity data are required for obtaining the constants,  $a_1$ ,  $a_2$ ,  $a_3$  and  $a_4$ . The data regression by the least-square method is made using the computer program POLYFIT, as described in Appendix C.6. The computer program employs the Gauss elimination method to solve simultaneous linear equations.

The liquid heat capacity data for ethyl alcohol (15), ethyl acrylate (17), water (52), diethyl ether (16), and sulfuric acid (52) are available in the literature. For other compounds of which data are not available in the literature, reliable correlations are used. For example, the method of Johnson and Huang (39, 52) is used for predicting the liquid heat capacities at 20 °C. The method is based on the idea of additive contribution from constituent atomic groups. The correlation is relatively accurate, with 5 and 16 per cent average and maximum deviations. For estimation of the heat capacities at temperature other than 20 °C, the Watson expansion factor (23) method is employed. Estimation of liquid heat capacities for the components without available literature data are discussed in details in Appendix A.7. All the constants of Equation (7-1), determined by the program POLYFIT from either available literature data or the above mentioned estimated data. are listed in Table 7.1.

$$C_{p} = a_{1} + a_{2}^{T} + a_{3}^{T} + a_{4}^{T}$$
  

$$h = a_{1}^{T} + a_{2}^{T} / 2 + a_{3}^{T} / 3 + a_{4}^{T} / 4$$
  

$$C_{p} = cal/g^{-0}C ; h = cal/g ; T = {}^{0}C$$

| Component Name                | a <sub>1</sub> | $a_2 \times 10^3$ | a <sub>5</sub> x 10 <sup>5</sup> | $a_4 \times 10^7$ | Ref.   |
|-------------------------------|----------------|-------------------|----------------------------------|-------------------|--------|
| Ethyl Alcohol                 | 0.53150        | 2.2012            | 0.72024                          |                   | (15)   |
| Ethyl Acrylate                | 0.45560        | 0.48312           | 0.17086                          | -                 | (17)   |
| Water                         | 1.0060         | -0.31738          | 0.34230                          | -                 | (52)   |
| Diethyl Ether                 | 0.53002        | 0.97143           | 1.10120                          | -                 | (16)   |
| β-Ethoxy-ethyl<br>Propionate  | 0.44220        | 1.0364            | 0.26786                          | -                 | (Est.) |
| Acrylamide Sulfate            | 0.51106        | -2.6872           | 2.5080                           | -0.46642          | (Est.) |
| Sulfuric Acid                 | 0.47483        | 5-4866            | 4.1811                           | -0.81692          | (52)   |
| Ammonium Bisulfate<br>(Solid) | 0.42665        | -2.3368           | 1.7822                           | -0.34821          | (Est.) |
| Acrylamide                    | 0.56106        | 1.1766            | 0.19881                          | 0.017361          | (Est.) |

•

х Х .

The vapor enthalpy can be treated as the ideal gas enthalpy because the system is operated at atmospheric pressure. The ideal gas enthalpy of a volatile component, except  $\beta$ -ethoxy-ethyl propionate, at the boiling point is equal to the sum of the heat of vaporization and the liquid enthalpy at that temperature. The vapor enthalpy at other temperatures is calculated from the heat capacity data following the similar procedure as employed for determining the liquid entholpy. Vapor heat capacities and heats of vaporization for ethyl alcohol (15), ethyl acrylate (17), water (52), and diethyl ether (16) are available in the literatures.

The heat capacity or the enthalpy data for  $\beta$ -ethoxyethyl propionate are not available in the literature. They are, therefore, calculated by the correlations. The Giacalone method (21) is used for estimating heat of vaporization at its normal boiling point. The method has an average error of 3 % and maximum error of 10 % (52). For the estimation of heat of vaporization at other temperatures, the Watson temperature correlation is used. It is relatively accurate with 4.7 % average error for 247 organic compounds (21). For detailed procedures of the estimation, refer to Appendix A.8.

All the vapor enthalpy data determined from the procedures stated above are then fitted into poly-

nomial equations by the program POLYFIT. The fitted constants along with the vapor enthalpy equation are listed in Table 7.2.

The second set of data needed for energy balance calculations is heat of reaction. As mentioned in the previous chapter, Hess' law is used to calculate heat of reaction. To utilize Hess' law, heats of formation for all the reactants and the products must be obtained first. Since neither experimental data nor estimation methods are available for obtaining the heat of formation of the molecular complex, acrylamide sulfate, a special procedure is then used to calculate its heat of formation.

As mentioned in Section 5.4.5, heat of reaction for Reaction 4, the formation of acrylamide sulfate from acrylamide and sulfuric acid, or Equation (4-1), is measured to be -5.62 Kcal/g-mole. Then from this heat of reaction, heat of formation for the molecular complex, acrylamide sulfate can be estimated from the following equation according to Hess' law:

$$H_{f,6} = H_{f,7} + H_{f,9} + \Delta H_{R,4}$$
 (7-3)

where

 $H_r$  = heat of formation

# Table 7.2 Vapor Enthalpies at 1 Atm.

 $H = a_1 + a_2T + a_3 T^2 + \cdots$  $T = temperature, ^{O}C$ 

H = ideal gas enthalpy, cal/g

| Component                           | a <sub>1</sub> | a <sub>2</sub> | a3x10 <sup>5</sup> | $a_4 x 10^7$ | Ref.   |
|-------------------------------------|----------------|----------------|--------------------|--------------|--------|
| Ethanol                             | 227.0          | 0.3630         | 33.978             |              | (15)   |
| Ethyl Acrylate                      | 96•0           | 0.2387         | 67.20              | -0.132       | (16)   |
| Water                               | 597.6          | 0.4200         | 0.102              |              | (52)   |
| Diethyl Ether                       | 90.0           | 0.3450         | 0.375              |              | (16)   |
| $\beta$ -Ethoxy-ethyl<br>Propionate | 79.7           | 0.3695         | - 6.211            | 8.929        | (Est.) |

•

The heat of formation for sulfuric acid, at 25  $^{\circ}C$ , H<sub>f.7</sub>, is available in the literature (48) while the heat of formation of acrylamide at 25 °C is estimated from the method of Anderson, Beyer and Watson (22). The ABW method is the only available method, which contains heat of formation of a basic amide group, formamide (HCONH2). ĩſ the estimation starts from formamide, instead of other simpler atomic groups as used by other estimation methods, the estimation error can then be reduced to minimum. Therefore, this method is adopted in this work for estimating heat of formation of acrylamide. After the heat of formation of acrylamide sulfate is determined, by Equation (7-3), heats of reaction for all the three major reactions can then readily be calculated from the following equations by utilizing Hess' law.

(1) For esterification, or Reaction 1, or Equation (4-2)

(4-4)

$$\Delta H_{R,3} = H_{f,5} + H_{f,8} - 2 H_{f,1} - H_{f,6}$$
(7-6)

The contribution of the net heat capacity between reactants and products to the heat of reaction, for the above three reactions, is found to be very small compared to the calculated heat of reaction. Therefore, heats of reactions at 25  $^{\circ}$ C, determined from the heats of formations at 25  $^{\circ}$ C by the above three equations, are used for the entire temperature range.

All the required heats of formation shown in Equation (7-4) through (7-6) are listed in Table 7.3. Their literature sources or the methods of estimation used are given in Appendix A.9. The detailed procedures for determining the heats of reactions of the above three reactions are discussed in Appendix A.10. Table 7.4 is a summary of the heat of reaction determined and used in in this chapter for analysis of the mathematical model.

The last data required for energy balance calculations is overall heat transfer coefficient across the system wall. It is determined experimentally as described in details in Section 5.4.2.3.

7.1.2 Solution of Theoretical Model

# Table 7.3 Heats of Formation

| No. | Component                        | Phase            | Kcal/g-mole     | Ref.   |
|-----|----------------------------------|------------------|-----------------|--------|
| 1   | Ethyl Alcohol                    | $\mathbf{L}$     | -66.35          | (52)   |
| 2   | Ethyl Acrylate                   | L                | -92.46          | (Est.) |
| 3   | Water                            | L                | -68.32          | (52)   |
| 4   | Diethyl Ether                    | L <sup>°</sup>   | -65.2           | (52)   |
| 5   | $\beta$ -Ethoxy-Ethyl Propionate | L                | -160.81         | (8st.) |
| 6   | Acrylamide Sulfate               | $\mathbf{L}$     | -245.91         | (Exp.) |
| 7   | Sulfuric Acid                    | L                | <b>-193.</b> 69 | (52)   |
| 8   | Ammonium Bisulfate               | S                | -238.99         | (Est.) |
| 9   | Acrylamide                       | $\mathbf{L}_{t}$ | -46.6           | (Est.) |

# Table 7.4 Heats of Reaction

| Reaction No. | Reaction                  | Equation | Heat of Reaction<br>Kcal/g-mole |
|--------------|---------------------------|----------|---------------------------------|
| 1            | Esterification            | (4-2)    | - 19.2                          |
| 2            | Dehydration               | (4-3)    | - 0.82                          |
| 3            | Successive Reac-<br>tion  | (4-4)    | - 21.2                          |
| 4            | Equilibrium Reac-<br>tion | (4-1)    | - 5.62                          |
|              | (Complex Formation        | 1)       |                                 |

,

As mentioned in Chapter 4 the Runge-Kutta fourthorder method was used for numerical solution of the proposed mathematical model. This method can be shown (8) to be convergent, that is,

$$\lim_{\Delta t \to 0} \left[ y_{i} - y_{i}(t_{i}) \right] = 0$$
 (7-7)

where

t<sub>i</sub> = independent variable
y<sub>i</sub>(t<sub>i</sub>) = true solution
y<sub>i</sub> = numerical solution
At = size of integration step

To obtain an exact solution  $y_i(t_i)$  the size of integration step should be approaching zero, which is equivalent to requiring infinite integration steps. This is not practical. Instead, the size of an integration step is determined on the basis of considering both the desired accuracy and the computer time required to achieve this accuracy. Table 7.5 listed the calculated vapor condensate for Run No. 1, using four different integration steps, i. e.,  $\Delta t = 1$ , 2, 4, and 8 minutes. Though no analytical solution can be obtained for comparison with these four sets of numerical solutions, the criterion of Equation (7-7) can be used to justify that the smaller the integration step the close the numberical solution can approach the true solution. Significant differences

### Table 7.5

Effect of Integration Step Size on Calculated Total Molal Vapor Condensate

| -<br>-  | Integ  | ration Step | Sizes  | ,      |
|---------|--------|-------------|--------|--------|
| minutes | 1 min. | 2 min.      | 4 min. | 8 min. |
| 0       | 0.432  | 0.432       | 0.432  | 0.432  |
| 4       | 0.563  | 0.568       | 0.558  |        |
| 8       | 0.676  | 0.678       | 0.676  | 0.655  |
| 12      | 0.789  | 0.739       | 0.784  |        |
| 16      | 0.902  | 0.901       | 0.900  | 0.897  |
| 20      | 1.012  | 1.011       | 1.009  |        |
| 24      | 1.121  | 1.120       | 1.119  | 1.110  |
| 28      | 1.229  | 1.227       | 1.225  |        |
| 32      | 1.336  | 1.334       | 1.333  | 1.329  |
| 36      | 1.442  | 1.440       | 1.438  |        |
| 40      | 1.549  | 1.547       | 1.545  | 1.533  |
| 44      | 1.657  | 1.654       | 1.651  |        |
| 48      | 1.765  | 1.763       | 1.760  | 1.749  |
| 52      | 1.875  | 1.872       | 1.868  |        |
| 56      | 1.986  | 1.983       | 1.979  | 1.964  |
| 60      | 2.098  | 2.095       | 2.090  |        |
| 64      | 2.211  | 2.208       | 2.204  | 2.189  |
| 68      | 2.326  | 2.323       | 2.318  |        |
| 72      | 2.443  | 2.440       | 2.434  | 2,418  |
| 76      | 2.561  | 2.558       | 2.552  |        |
| 80      | 2.680  | 2.677       | 2.671  | 2.655  |

in vapor molal condensate between the 4-minute step size and the 8-minute step size can be observed. As the integration step size is reduced to 1 minute, the improvement from 2-minute step size becomes very small, for example, less than 0.08 % at t = 80 minutes. Therefore, the step size for the numerical integration was then selected as 2 minutes throughout this work, except a few severe cases such as adiabatic simulation where a smaller step size should be used for convergent solution.

7.2 Effects of System Farameters on Theoretical Solution

Among many independent parameters defining the system. three operating parameters are chosen as variables for the experimental investigations. They are initial and surrounding temperature, volatile reactant feed rate, and relative ratio of vapor to total feed. The effects of these three parameters on the system behavior will be discussed in details in this section. Furthermore, for a better understanding of the system characteristics, the system response to two other parameters, though not independent variables, will also be analysed. They are heat of reaction and overall heat transfer coefficient. For each of the above five system parameters, discussions are presented for the following three system responses:

- (1) Ethyl Acrylate Vapor Molal Condensate
- (2) Total Vapor Molal Condensate
- (3) Liquid Temperature

In a semibatch operation, the feed rate is generally limited to a certain range such that the system can be operated reasonably. For example, if the feed rate is too small, it will take a long time before the boiling point of the liquid mixture is attained. On the other hand if the feed rate is too large, the liquid holdup may increase rapidly such that liquid may overflow to the vapor flow path as entrainment. Since Bun No. 1 is at a flow rate which is about in the middle of the appropriate flow range used in this study, all its system parameters are then used as the reference parameters for the discussion.

### 7.2.1 Effects of Heat of Reaction

Heats of reactions for this particular reaction system has been determined from Hess' law as described early in this chapter. Since heats of formation of several compounds required for such determinations are estimated, the calculated heats of reactions should have some degree of uncertainty. Because of this uncertainty, the analysis should be made to determine the effects if the estimated values of heat of reaction are erroneous.

The calculated value of heat of reaction for esterification is - 19.2 Kcal/g-mole. Five other values, namely -35, -30, -25, -10, and 0 Kcal/g-mole are chosen to determine the effect if the correct heat of reaction were not -19.2 Kcal/g-mole. No positive heat of reaction is used because the system being studied is exothermic.

Fig. 7.1 shows the plots of the liquid temperature as a function of time. For the case where the released heat of reaction exceeds 35 Kcal/g-mole, the liquid temperature becomes greater than 135 °C when time reaches 12 minutes. It has been experimentally verified that the acrylamide sulfate solution prepared in Section 5.3.3 decomposes near the vicinity of 135 °C. The decomposition can be detected easily by the smell of ammonia, one of the decomposed products. No actual measurements have been made for such decomposed vapors. If the absolute heat of reaction is lower, say at 30 Kcal/g-mole, the liquid temperature reaches the maximum which is slightly below 135 °C at t=28 minutes. Before reaching the maximum temperature, the system behavior is similar to the above "run-away" case. High heat of reaction forces out appreciable amount of volatile components and thus increases the bubble point of the liquid mixture.

After reaching the maximum temperature, more volatile



components are either absorbed or produced in the liquid phase and more nonvolatile reactant (acrylamide sulfate) is consumed as time proceeds. Thus, the bubble point of the liquid mixture starts declining after the maximum temperature. If heat of reaction is small such that heat of generation is less than the net heat removal, the liquid temperature decreases continuously from the beginning of the rvn. This phenomenon can be recognized by the temperature lines of  $\Delta H_R$  at -19.2, -10, and 0 Kcal/g-mole in Fig. 7.1. The effect of heat of reaction, as compared to its base value of -19.2 Kcal/g-mole can be summarized as

| Difference in<br>Heat of Reaction<br>$\left( \Delta H_{R,1} - (-19.2) \right)$ | Maximum<br>Temperature<br>Difference | Max. Temp.<br>Difference per<br>Unit Change of<br>Heat of Reaction |
|--------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------|
| Kcal/g-mole                                                                    | °c                                   | <sup>O</sup> C/(Kcal/g-mole)                                       |
| -10.8                                                                          | +11.7                                | 1.08                                                               |
| - 5.8                                                                          | + 3.8                                | 0.66                                                               |
| + 9.2                                                                          | - 3.8                                | 0.41                                                               |
| +19.2                                                                          | - 6.2                                | 0.32                                                               |

The results show that the maximum temperature difference per unit change of heat of reaction is least at zero heat of reaction and largest at the highest investigated heat of reaction of -35 Kcal/g-mole.

When the released heat of reaction is higher than 19.2 Kcal/g-mole, more ethyl acrylate can be produced and collected in the vapor condensate as shown in Fig. This is because the reaction rate can be repre-7.2. sented by the Arrhenius equation. As discussed earlier, the higher heat of reaction yields a higher liquid temperature which in turn results in a higher reacting rate. For the case of  $\Delta H_{R,1} = -35$  Kcal/g-mole, it was stated that the liquid temperature reaches above 135 °C after 12 minutes of operation and that the product decomposi-Therefore, no molal quantity of ethyl acrytion occurs. late vapor condensate is shown in Fig. 7.2 after this For all the other selected heats of reaction, point. the molal quantities of ethyl acrylate vapor condensate are plotted up to t = 80 minutes so as to include all the data points used in Chapter 6 for correlating reaction rate expressions. At the operating time of 80 minutes, the difference of the collected amount of ethyl acrylate vapor condensate can be summarized as follows.

| Difference in<br>Heat of Reaction<br>H <sub>R,1</sub> - ( -19.2) | Difference in<br>Ethyl Acrylate<br>Vapor Condensate | Molal %<br>Difference |
|------------------------------------------------------------------|-----------------------------------------------------|-----------------------|
| Kcal/g-mole                                                      | Moles                                               |                       |
| -10.8                                                            | +0.112                                              | +14.7                 |
| - 5.8                                                            | +0.045                                              | - + 5.9               |
| + 9.2                                                            | -0.055                                              | - 7.2                 |
| +19.2                                                            | -0.100                                              | -13.1                 |



Effect of Heat of Reaction

As shown in Fig. 7.3, during the early stage of the reaction, the variation of total vapor molal condensate is still appreciable, depending on the amount of heat of reaction released. This phenomenon reflects the high heat of reaction forcing out more volatile components from the liquid mixture. However, the differences are narrowed near the end of reaction because the esterification reaction rate becomes very small and consequently the effect of heat of reaction is greatly reduced.

#### 7.2.2 Heat Transfer Coefficient

The overall heat transfer coefficient was measured previously as 0.16 cal/min- $^{\circ}$ C-cm<sup>2</sup> using the similar fluids. If the system is operated adiabatically, i. e., no heat is transfered through the system boundary, the liquid temperature rises very rapidly and reaches 135  $^{\circ}$ C in less than 8 minutes as shown in Fig. 7.4. If the insulation material can be adjusted to give an overall heat transfer coefficient of 0.08 cal/min- $^{\circ}$ C-cm<sup>2</sup>, the decomposition temperature of 135  $^{\circ}$ C, may also be reached rapidly in about 17 minutes. However, such "run-away" temperatures are reached only when the initial and surrounding temperature ( $T_{0}$ ) is high, or the relative ratio of vapor to total feed ( $\psi$ ) is large, or both. Run 1 is operated under such conditions. For Run 9, the initial and surrounding temperature is



ì

Effect of Heat of Reaction



Overall Heat Transfer Coefficient

set to 106 <sup>o</sup>C, and the relative ratio of vapor to total feed is zero, which are respectively lower than those of Run 1. As shown in Fig. 7.5 the maximum temperature is only 118.5 <sup>o</sup>C even the system is operated adiabatically. Therefore, undesirable high operating temperatures can be avoided even for an adiabatic operation if the above mentioned two operating parameters are properly adjusted.

Now, return to Fig. 7.4. The overall heat transfer coefficient can be increased if the material of the pyrex wall of the reaction-distillation column is replaced by the corrosion-resistent metal such as inconcl. Then, the liquid temperature will rapidly approach the surrounding temperature as shown by the lines of high overall heat transfer coefficients, ranged from 0.20-0.32 cal/min-<sup>o</sup>C-cm<sup>2</sup>. As shown in Fig. 7.5, the liquid temperature may even go below the surrounding temperature. Usually this occurs only in the system where the feed is totally or nearly totally liquid.

If the overall heat transfer coefficient is small, the reaction temperature is higher, resulting in higher product yield. This phenomenon is illustrated in Fig. 7.6. The relation between product yield and overall heat transfer coefficient at the reaction time of 80 minutes can be summarized as follows.



Overall Heat Transfer Coefficient

| U, cal/min- <sup>o</sup> C-cm <sup>2</sup> | Ethyl Acrylate, moles |
|--------------------------------------------|-----------------------|
| 0.12                                       | 0.852                 |
| 0.16(measured value)                       | 0.752                 |
| .0.24                                      | 0.701                 |
| 0.32                                       | 0.678                 |

During the early stage of reaction, small overall heat transfer coefficient leads to higher liquid temperature, which in turn forces out more volatile components from the liquid mixture to give a higher total vapor molal condensate as shown in Fig. 7.6. At the end of the reaction, all the liquid temperatures approach the surrounding temperature as illustrated by Fig. 7.4. Therefore, the effect of overall heat transfer coefficient on total vapor molal condensate is greatly reduced as shown in Fig. 7.7.

## 7.2.3 Initial and Surrounding Temperature, To

The initial temperature as discussed in Section 5.1.1 is set equal to the surrounding temperature to avoid further complicating the system. Fig. 7.8 gives the temperature history of the system at four different initial and surrounding temperatures,  $T_0$ . For all the four cases, liquid temperature approaches to the surrounding temperatures. There is a temperature cross-over between the 110 °C and 106 °C lines. The cross-over is caused by two factors. One of them is frequency factor, and the other



Effect of Overall Heat Transfer Coefficient





is heat loss. The ratio of the frequency factors of the 106  $^{\circ}$ C case to the 110  $^{\circ}$ C case can be calculated from Equation (6-29) as given in Chapter 6. It is found that the frequency factor for the 106  $^{\circ}$ C case is 1.87 times that for the 110  $^{\circ}$ C case. Therefore, during the early stage of reaction, the 106  $^{\circ}$ C case produces more heat of reaction, resulting in a higher liquid temperature. As time proceeds, higher heat loss due to a higher temperature driving force across the reactor wall for the 106  $^{\circ}$ C case rapidly brings down its liquid temperature line and then crosses over the 110  $^{\circ}$ C line. If two sets of initial and surrounding temperature are very apart as in the cases of 115  $^{\circ}$ C and 106  $^{\circ}$ C, there is no cross-over because the less heat loss at 115  $^{\circ}$ C can maintain higher liquid temperature during the run.

For this system, the reaction rate constant is higher for a lower initial and surrounding temperature. It is resulted from a higher frequency factor for this lower initial and surrounding temperaure and a high starting liquid temperature, which in turn gives a high value for the Arrhenius exponential term. Therefore, the product yield at 106 °C is very high as shown in Fig.. 7.9.

At a higher surrounding temperature with a higher





initial temperature, the temperature driving force is small, consequently there is less heat loss through the wall of the reaction-distillation column. Therefore, the liquid temperature is higher and there is more volatile vapor leaving the liquid mixture as shown in Fig. 7.10.

### 7.2.4 Feed Flow Rate, F

As mentioned early in this section (7.1.3), feed flow rate can be neither too large nor too spall for a semibatch system if the appropriate operating range is to be maintained. The selected flow rates in this study are between 1.0 and 2.0 ml/min. Since the feed flow rate during Run 1 is an intermediate rate, 1.56 ml/min., this flow rate along with the above mentioned feed rates are then used as the typical cases for the following discussions.

The liquid temperature during a run is plotted in Fig. 7.11 for three different rates. At the smallest feed rate, the liquid temperature in the early stage of reaction is the lowest. At the smallest feed rate, the concentration of ethyl alcohol in the liquid is lowest. Thus, its reaction rate is the slowest with release of the least heat of reaction. As the reaction continues,



of Initial and Surrounding Temperature



the content of volatile components in the liquid mixture becomes much less. Therefore, its bubble point eventually becomes the highest among the three cases. This cross-over of the liquid temperature lines happens frequently; for example, the temperature cross-over between the cases of 1.56 and 2.0 ml/min. feed rates is at 21.5 minutes and similarly between 1.0 and 1.56 ml/min. at 42 minutes.

Since a high feed rate reduces the liquid temperature in the long run, it does not proportionately increase the product yield. Fig. 7.12 shows that the product yield at 2.0 ml/min. feed rate is slightly higher than that at 1.56 ml/min. during the first 60 minutes of operation. However, its yield becomes smaller after 60 minutes of operation. With little improvement in the product yield, this excessive increase of volatile components, introduced by the feed, will reduce the product concentration in the vapor condensate collected. Selection of a proper feed rate is, therefore, very important for obtaining the desired product concentration. However, it should be noted that many operating parameters interact and, therefore, the selection of feed rate should also be considered in accordance with other parameters, such as overall heat transfer coefficient, initial temperature, surrounding temperature and relative ratio of vapor to



total feed.

As can be expected, a higher feed rate, containing volatile components, produces more total vapor condensate. This is shown in Fig. 7.13. The difference in the amounts of accumulated total condensate at the different feed rates is very large compared to the similar variation in the product yield.

### 7.2.5 Vapor Fraction in the Total Feed

It has been shown earlier in Fig. 7.5. that the liquid temperature becomes less than the surrounding temperature if the feed is totally liquid. The illustration is shown for the case of a low initial and surrounding temperature of 106  $^{\circ}$ C. However, a similar phenomenon can be observed for the run with a high initial and surrounding temperature of 115  $^{\circ}$ C, as long as the relative ratio of vapor to feed rate is low. The latter is shown in Fig. 7.14. The liquid temperature becomes lower than the surrounding temperature, 115  $^{\circ}$ C, at t= 20 minutes if the feed stream is totally liquid. As the relative ratio of vapor to total feed is increased, the liquid temperature increases substantially, especially at t=22 minutes. No "run-away" temperature is reached because the outgoing vapor carrys away some of this heat



Fig. 7.13 Total Vapor Molal Condensate --- Effect of Feed Rate



Fig. 7.14 Liquid Temperature - Effect of Feed Vapor Fraction

flow to maintain a moderate temperature operation. However, if the system is operated adiabatically and with the feed of totally vapor, the liquid temperatures may reach the "run-away" temperature of 135 °C.

As shown in Fig. 7.14, the higher  $\psi$  the higher the liquid temperature. The corresponding product yield is then higher for the cases with higher  $\psi$  values, except the case of  $\psi$ =0. At low  $\psi$ , the ethyl alcohol concentration in the liquid is high. As discussed in Section 6.2.2, at low  $\psi$ , the frequency factor is also high. Therefore, a combination of low temperature, high frequency factor and high liquid concentration, as required for calculating reaction rate constant, may give a higher product yield at a lower  $\psi$  as shown in Fig. 7.15.

At the constant feed rate of F=1.56 ml/min., the amount of total vapor condensate increases as the vapor fraction of the feed is increased. It can be reasoned simply that a feed with a higher content of vapor bring with it more heat which is in turn used for vaporization. This can be shown by Fig. 7.16.

7.3 Comparison of Theoretical and Experimental Results

The previous section has presented the parametric evaluations of the unsteady state system behavior, using



Effect of Foed Vapor Fraction



Effect of Feed Vapor Fraction

the proposed mathematical model. Now, the discussion should be extended to examine how accurately the proposed mathematical model represents and predicts the actual experimental results obtained in this study. The three operating parameters for all the nine experimental runs are given in Table 6.2, while their initial values are shown in the computer print-outs of the program LABDATA detailed in Appendix C.1.3.

Since the proposed theoretical model includes eighteen simultaneous differential equations, as presented in Chapter 4, eighteen initial conditions are required for the solution. These initial values are given, more conveniently, in the computer print-outs of the model simulation program, MODEL. They are included in Appendix C.2.3. Although there are eighteen dynamic quantities, as mentioned above, which can be used for comparing the theoretically calculated and experimentally measured values, only those with great importance are selected for presentation here. Among the selected are the accumulated vapor molal condensate and the liquid temperature. Since the liquid compositions provides useful information on the distribution of the volatile components between vapor and liquid as well as on the reaction conversion, they are also included in this comparative study.

## 7.3.1 Comparison on Vapor Molal Condensates

Since ethyl acrylate is the main product and ethyl alcohol is an important unreacted reactant in the vapor phase, they are the two vapor molal quantities of greatest importance. With the additional knowledge of the amount of total vapor molal condensate, the relative purity of ethyl acrylate in the condensate can be determined. Therefore, these three quantities are to be evaluated in this section. No discussions will be presented for the rest of components in the vapor, such as water, diethyl ether and  $\beta$ -ethoxy ethyl propionate, because water is not a product and the other two compounds are by-products with only trace quantities.

The comparisons between theoretically calculated and experimentally measured results for the above three important quantities are presented in Figures 7.17 - 7.25, one for each experimental run. The comparisons are made for the dynamic behavior of the system during the initial 80 minutes operation.

For the main reaction product, ethyl acrylate, the agreement between the theoretical and experimental values is very satisfactory except Run 9 where the theoretical calculations give an average error of 0.095 moles, i. e., approximately 23 %. It is noted that one of the original



















reactant, acrylamide, for all the nine runs was prepared to be in the range of  $1.007 \pm 0.021$  gram moles. Therefore, the molal quantities shown on thes graphs for ethyl acrylate essentially reflect total conversion of the reactant, acrylamide, to the main product, ethyl acrylate.

For ethyl alcohol, an unreacted volatile reactant, the theoretical prediction is also satisfactory except Run 3, where the quantity of the predicted vapor ethyl alcohol is 0.14 moles above the experimental data, 0.96 moles at t=78.7 minutes. This is equivalent to the discrepancy of 14.6 %.

The theoretical model also predicts fairly accurately the experimentally measured amount of the total vapor molal condensate. The average deviation is 7.9 % over the 47 data points covered in the nine runs. The maximum deviation occurs in Run 9 with an absolute average error of 19.5 % while the best prediction is seen in Run 5 with an absolute average error of only 1.2 %.

In view of the complexity of the mathematical model and of the reaction system, the agreement between the theoretical and the experimental results is excellent.

7.3.2 Comparison on Liquid Temperature







The liquid temperature has significant effects on reaction rate and vapor-liquid equilibria, as demonstrated in the correlation work discussed in Chapter 6. Since the description of the physico-chemical system includes several energy terms such as heat of reactions, heat loss, enthalpy of feed stream and enthalpy of leaving vapor, an accurate prediction of the liquid temperature is dependent on the accuracy of the prediction or the measurement of these energy terms.

Comparison between theoretical and experimental liquid temperatures is given in Fig. 7-26 through 7-28 for all the nine runs. Although experimental temperature were measured continuously by a Honeywell 19 recoder, only discrete experimental temperatures at each sampling time are used here for comparison. The agreement for Runs 2, 3, 4, 6 and 7 are very satisfactory. For the other four Runs, 1, 5, 8 and 9, the predicted temperatures are 1 to 3  $^{\circ}$ C higher than the experimental values. As shown in the figures, once a higher predicted temperature is reached, the temperature profile remains high for a period of time because of consequential contribution from heats of reaction.

Maximum temperatures are predicted by the model for Run 5, 6, 8 and 9. This phenomenon indicates that net

accumulated energy estimated for the early stage of reaction is too high. As demonstrated in Section 7.2, the maximum temperatures can be obtained when the heat of reaction is high, or the overall heat transfer coefficient is small, or the relative ratio of vapor to feed is large.

Since the temperature deviations of 1 to 3 °C give very small errors in predicting the experimental molal quantities of vapor condensate as demonstrated by graphs, Figs. 7.17 - 7.25, these temperature deviations are considered to be insignificant and acceptable.

7.3.3 Comparison on Liquid Mole Fractions

If the agreement in total vapor molal condensate between the theoretical and experimental results of the total vapor condensate is satisfactory, the agreement on total liquid molal quantity should also be satisfactory. This is because the sums of the liquid and vapor quantities should be stochiometrically constant for each component except of  $\beta$ -ethoxy-ethyl propionate which is prsented in trace quantity. The variation of  $\beta$ -ethoxyethyl propionate quantity is not significant on the total picture.

The most severe test of the theoretical model is

whether it is able to predict the liquid composition. The comparison of liquid mole fractions of individual components can provide useful informations about distribution of volatile components between vapor and liquid as well as the conversion of reactants.

Since the theoretical model gives the best prediction for Run 7 and the worst prediction for Run 9 as to both the vapor molal condensate and the liquid temperature, the comparisons on the liquid composition will be made for these two runs. Fig. 7.29 presents the comparison of liquid mole fractions for seven liquid components in Run 7. The agreements between the model and the experimental results are excellent for all the seven components. Acrylamide is not shown in the figure because it is assumed to be completely converted into acrylamide sulfate. Another component, diethyl ether was totally vaporized and not detectable in the liquid phase.

Fig. 7.30 is a similar presentation for Run 9, which is considered to be the worst case for matching the experimental and theoretical values of total vapor molal quantity. But it is amazing how well the model predicts the experimental liquid compositions for even Run 9. The agreements between the calculated and the experimental mole fractions of each component in the liquid phase are excellent, except of the ethyl acrylate. This may be



Fig. 7.29 Comparison of Liquid Mole Fractions, Run 7



Fig. 7.30 Comparison of Liquid Mole Fractions, Run 9

due to an under estimation of liquid activity coefficient of ethyl acrylate at low temperatures. A better correlation of multicomponent "chemical" vapor-liquid equilibrium data is needed. In fact, until the present study, there was no "chemical" vapor-liquid equilibrium correlation available on the sound thermodynamic basis. The present approach of using the Wilson-type equation, as presented earlier, is the first attempt for such a correlation.

## Chapter 8 Conclusions

The following conclusions have been drawn from this study:

A general and theoretical model for unsteady state distillation accompanied by chemical reaction is proposed. The model is a general model since it can be reduced to represent all the four basic cases of distillation operation. With substitution of proper limiting values to certain terms of the equations, the proposed general mathematical model yields the theoretical equations for

- (a) Marek Model for Steady-State Distillationwith Chemical Reaction
- (b) Holland Model for Unsteady-State Distillation without Chemical Reaction
- (c) Thiele-Geddes Model for Steady State Distillation without Chemical Reaction

2 The model contains 18 simultaneous differential equations. Even for a simpler system of nonisothermal system of unsteady-state distillation without chemical reaction, Holland's numerical solution of such equations requires that at least four values must be initially assumed. However, the numerical solution proposed in

this study requires only one assumed initial value, i.e., the outlet vapor flow rate. The proposed procedure is based on the Runge-Kutta method and the solution converges very rapidly.

In order to verify the proposed theoretical model, the experiments were conducted to determine the system responses of a semibatch ( therefore unsteady-state ) distillation accompanied by chemical reaction. The chemical reactions involved are esterification between acrylamide sulfate and ethyl alcohol to produce ethyl acrylate, and the associated side and competitive reactions. The experimental apparatus and procedures developed were sound because the reproducible results were obtained. It is concluded that the apparatus and the procedures can be readily adopted for other distillation systems with different reactions.

4 The experimental results compare very satisfactorily with the theoretical predictions by the mathematical model. The quantitative predictions of the accumulated total vapor condensate by the model agree with the experimental values, with the average error of 7.9 % for all the nine experimental runs. The maximum deviation was observed for Run 9 which is 19.5 %.

5 The agreement between the experimental and the calculated values for the vapor condensate of ethyl acrylate, the reaction product, is very satisfactory. So is the similar comparison for ethyl alcohol, one of the major reactants. The excellent agreements imply that not only the mathematical model is theoretically sound but also the correlations for the reaction rates and for the vapor-liquid equilibrium are good.

<u>6</u> The liquid temperature calculated by the model deviates from the experimental values with an average deviation of 1.2 °C for the entire experiments. It is noted that the magnitude of 1.2 °C temperature deviation is too small to yield any significant error in predicting the accumulated vapor molal condensates.

7 Another proof of the soundness of the theoretical model is that the calculated liquid compositions of each component agree excellently with the measured values by the chromatograph.

8 The attempt by the Wilson-type equation, which was made to correlate the "chemical" vapor-liquid equilibrium data, is found to be satisfactory. The proposed method is more useful for computer calculations than that employed by Hirata and Komatsu, who correlated "chemical" vaporliquid equilibrium data by discrete equations.

The mass transfer effects on chemical reactions 9 were correlated by the film theory and the Arrhenius-The activation energy in the Arrhenius type equation. equation is found to be uniform for the three reactions involved in the system. The frequency factor is successfully correlated by a general function of the three operating parameters, initial and surrounding temperature, volatil reactant feed rate, and vapor fraction in the total feed. The major advantage of the general function is to express the three operating parameters as separated variables. Therefore, their individual effects on the frequency factor can be evaluated. It is found that the frequency factor is most sensitive to initial and surrounding temperature and least affected by volatile reactant feed rate. If the initial and surrounding temperature is increased from 106 °C to 115 °C, the frequency factor will be reduced by a factor of 2.65. This implies that the reaction occurs mostly in the liquid film due to a high reaction rate at a high temperature. If the vapor fraction in the total feed is reduced from 0.85 to zero, the frequency factor will be increased by a factor of 1.48. This implies that the film reaction is reduced to the minimum by introducing a totally liquid feed stream. The volatile reactant feed rate mostly contributes to increasing the

concentration of the volatile reactant, ethyl alcohol in the liquid holdup. Its effect on the frequency factor is then small.

10 With the above sound general correlatios for the "chemical" vapor-liquid equilibrium and the chemical reaction rate expressions, the system characteristics are then investigated by the appropriate parametric studies using the theoretical model. The increase of heat of reaction promotes the product yield as well as the liquid temperature increase. If the system is operated adiabatically, it can reach very rapidly to high liquid temperature of 135 °C at which the decomposition of acrylamide sulfate takes place. Since the tendency is particularly apparent if the feed. contains a larger fraction of vapor, the propertion of liquid in the feed may be increased to avoid the undesirable decomposition. In a case with a large proportion of vapor in the feed, the liquid temperature is initially high. But as the reaction time progresses, the liquid composition moves toward the higher content of volatile materials, resulting in the lowering of the liquid temperature. The product yield does not increase proportionately with the vapor content in the feed.

11 The effects of chemical reactions on distillation

behavior are very complex. At this time, no simple and general methods are available to predict these effects. Heat of reaction, particular if it is significantly large, certainly affects the distillation. For example, the esterification encountered in the present system has the heat of reaction of -19.2 Kcal/g-mole. The heat released by the reaction is fairly large and directly influences the vapor-liquid equilibrium and thus the distillation performance.

12 A chemical reaction within a given distillation system affects directly its vapor-liquid equilibrium. then, in turn, the distillation performance. More specifically, the value of liquid activity coefficient of the same compound differs depending on whether the system is in physical equilibrium or accompanied by chemical reaction. Thus, it is concluded that a chemical reaction affects distillation behavior mainly by changing the value of liquid activity coefficient or by supplying the latent heat of vaporization.

13 The present model of a single-tray distillation accompanied by chemical reaction can be used in the future as a building block for a more complicated multipletray distillation problem. This is recommended as a follow-up to the present study. NOMENCLATURE

.

| A i             | 1  | Total molal quantities of component i in both vapor and liquid phases                                                              |
|-----------------|----|------------------------------------------------------------------------------------------------------------------------------------|
| a <sub>i</sub>  | :  | Inside heat transfer area                                                                                                          |
| с <sub>ь</sub>  | 1  | Concentration of reactant A in liquid bulk                                                                                         |
| C <sub>i</sub>  | :  | Concentration for component i, g-mole/1                                                                                            |
| ēp              | \$ | Average or molal heat capacity                                                                                                     |
| с <sub>р</sub>  | :  | Liquid heat capacity at temperature T, cal/g- $^{9}$ C                                                                             |
| c <sup>T</sup>  | 1  | Concentration measured from a overall liquid sample                                                                                |
| Ð               | 1  | Diffusivity of liquid through liquid                                                                                               |
| <sup>E</sup> o  | I  | Activation energy, cal/g-mole                                                                                                      |
| <sup>E</sup> o1 | ŧ  | Activation energy for the rate constant $k_1$                                                                                      |
| $E_1^0$         | t  | Vaporization tray efficient defined by Holland                                                                                     |
| F               | :  | Total feed rate                                                                                                                    |
| F <sub>i</sub>  | :  | Feed rate for component i                                                                                                          |
| $f_1^{oL}$      | 1  | Standard-state fugacity, i.e., fugacity of pure<br>liquid i at temperature T adjusted to the reference<br>pressure, P <sup>r</sup> |
| н <sub>F</sub>  | :  | heat of formation                                                                                                                  |
| h <sub>F</sub>  | 8  | Liquid enthalpy for total feed at the exit<br>temperature of the preheater                                                         |

,

309

.

| H <sub>IN</sub>     | 5  | Inlet vapor enthalpy                                               |
|---------------------|----|--------------------------------------------------------------------|
| h <sub>IN</sub>     | :  | Inlet liquid enthalpy                                              |
| H <sub>OUT</sub>    | :  | Outlet vapor enthalpy                                              |
| h <sub>OUT</sub>    | 1  | Cutlet liquid enthalpy                                             |
| -∆H <sub>R</sub> ,j | 5  | Heat of reaction of reaction j                                     |
| h <sub>S</sub>      | 1  | Enthalpy of hold up on the tray (assuming negligible vapor holdup) |
| K <sub>o</sub>      | :  | Frequency factor                                                   |
| K <sub>01</sub>     | :  | Frequency factor for the rate constant $k_1$                       |
| ĸ                   | 8  | y <sub>i</sub> /x <sub>i</sub> =vapor-liquid equilibriam ratios    |
| <sup>k</sup> i      | ł  | Rate constant for reaction i                                       |
| K <sub>s,i</sub>    | 1  | Frequency factor for reaction i and run<br>number s                |
| <sup>L</sup> i      | :  | Molal liquid quantity for component i                              |
| L <sub>IN</sub>     | :  | Total liquid inlet molal quantity                                  |
| L <sub>OUT</sub>    |    | Total liquid outlet molal quantity                                 |
| М                   | :  | $\sum_{i=1}^{n} M_{i}$ =Total molal holdup on the tray             |
| Mi                  | \$ | Molal quantity of component i in the liquid hold up                |
| n                   | :  | Number of components                                               |
| nj                  | :  | Number of data points for an experimental run                      |
| n <sub>r</sub>      | t  | Number of reactions                                                |

,

•

.

.

| n <sub>s</sub>   | :  | Number of experimental runs                                                                                       |
|------------------|----|-------------------------------------------------------------------------------------------------------------------|
| n <sub>T</sub>   | \$ | Total vapor molal condensate                                                                                      |
| P                | :  | Product or total pressure                                                                                         |
| P <sup>o</sup> i | 5  | Saturated vapor pressure of pure liquid i<br>at temperature T                                                     |
| Q                | :  | Heat transfer rate across the wall of the reaction-distillation tray                                              |
| QL               | \$ | Net heat transfer rate from the system to the surrounding                                                         |
| R <sub>i</sub>   | 1  | Net rate of component i generated and/or con-<br>sumed by reaction                                                |
| <sup>R</sup> j   | \$ | Rate of reaction for reaction j                                                                                   |
| ≏t               | \$ | Integration step size, or measured time<br>interval                                                               |
| Т                | 1  | Absolute temperature, <sup>O</sup> K or liquid temperature<br>in the reaction-distillation tray in <sup>O</sup> C |
| t                | 1  | Temperature in <sup>O</sup> C, or time in minutes                                                                 |
| то               | ł  | Oil bath temperature or initial and surround-<br>ing temperature                                                  |
| T <sub>1</sub>   | t  | Temperature of glycerine before absorbing ethyl alcohol solution                                                  |
| <sup>T</sup> 2   | :  | Temperature of glycerine at the end of a measuring period                                                         |
| t <sub>i</sub>   | ő  | Independent variable                                                                                              |
| T <sub>m</sub>   | 1  | Melting point in degree Kelvin                                                                                    |
| tn               | z  | Time at the end of nth integration step                                                                           |

•

.

| Ŭi                               | :  | Overall heat transfer coefficient in terms of inside heat transfer area           |
|----------------------------------|----|-----------------------------------------------------------------------------------|
| v                                | 1  | Total volume of liquid holdup                                                     |
| va                               | :  | Aerated water volume                                                              |
| V <sub>i</sub>                   | 8  | Molal vapor quantity for component i                                              |
| v <sup>L</sup><br>i              | :  | Partial molal volume of i in the solution at temperature T                        |
| ٧L                               | \$ | Molar liquid volume of pure i at temperature T                                    |
| V <sub>IN</sub>                  | 8  | Total vapor inlet molal quantity                                                  |
| V <sub>OUT</sub> .               | :  | Total vapor outlet molal quantity                                                 |
| V <sub>OUT</sub> ,z              | ŝ  | Outlet vapor flow rate at the previous time of the $z$ th integration step        |
| V <sup>(1)</sup><br>z+1          | 3  | Initially assumed $V_{OUT}$ at the elapsed time of the (z+1)th integration step   |
| W <sub>o</sub>                   | ę  | Amount of water in the reaction-distillation tray at the beginning of measurement |
| <sup>W</sup> с                   | ľ  | Amount of water vapor condensate collected at the end of measurement              |
| ×.                               | :  | Liquid mole fraction                                                              |
| Уi                               | 5  | Vapor mole fraction                                                               |
| y <sub>i</sub> (t <sub>i</sub> ) | :  | True solution of a dependent variable                                             |
| $\gamma_{i}$                     | ŧ  | Activity coefficient of component i in the<br>liquid mixture                      |

•

.

.

| n                     | :  | Mass transfer correction factor on the in-<br>trinsic rate expression                     |
|-----------------------|----|-------------------------------------------------------------------------------------------|
| 8                     | 1  | Film thickness                                                                            |
| $\lambda$             | 1  | Heat of vaporization                                                                      |
| $\lambda_{	extsf{f}}$ | :  | Heat of fusion at melting point                                                           |
| $\Sigma_{\rm H_20}$   | :  | Heat of vaporization of water                                                             |
| o<br>i                | ł  | Fugacity coefficient of component i in the<br>liquid phase                                |
| $\phi_{i}$            |    | Vapor fugacity coefficient of component i<br>in the vapor mixture                         |
| $\phi_{i}^{o}$        | 1  | Fugacity coefficient of pure saturated vapor<br>i at temperature $T$ and pressure $P_i^0$ |
| Ψ                     | \$ | Relative ratio of vapor to total feed                                                     |
| 0-                    | t  | (1-p)/p                                                                                   |
| $\sigma^2$            | :  | Variance                                                                                  |
| e                     | :  | Volumetric ratio of aerated water to clear<br>water                                       |
| μ                     | :  | Multiplier for the implict method                                                         |
| ω                     | :  | Acentric factor                                                                           |
| ſ                     | :  | Water density at 100 °C                                                                   |
| $f_{i}$               | :  | Liquid density for component i at the tempera-<br>ture of the reacting liquid mixture     |
| 5                     | :  | T <sub>o</sub> , For $\psi$                                                               |

,

#### REFERENCES

- (1) Acrivos, A. and N. R. Amundson, Ind. Eng. Chem., <u>45</u>, 467(1953)
- (2) American Cyanamid Company, "The Chemistry of Acrylamide", New Yark 1969
- (3) Babcock, P. D., "Distillation with Chemical Reaction", Ph. D. Dissertation, Lehigh University, 1976
- (4) Backhaus, A. A., U. S. Patents : 1,400,849, 1,400,850, 1,400,851(1921); 1,403,224, 1,403,225 1,425,624, 1,425,625(1922); 1,454,462, 1,454,463 (1923)
- (5) Belck, L. H., A. I. Ch. E. Jl, 1, No. 4, 407(1955)
- (6) Berman, S. H. Isbenjian, Sedoff, and D. F. Othmer, Ind. Eng. Chem, <u>40</u>, 2139(1948)
- (7) Berman, S., A. A. Melnychak, and D. F. Othmer, Ind. Eng. Chem., <u>40</u>, 1312(1948)
- (8). Carnahan, S., H. A. Luther, and J. O. Wilkes,
   "Applied Numerical Methods", John Willy and Sons,
   Inc., New York, 1969
- (9) Chao, K. C., and J. D. Seader. A. I. Ch. E. Joural 1, 598(1961)
- (10) Chow, W. M. and Bright, J. A., Jr., Chem. Eng. Progr., <u>49</u>, 175(1953)
- (11) Davies, B., J. D. Jenkins and G. V. Jeffreys, Trans. Inst. Chem. Engrs., <u>51</u>, 267(1973)

- (12) Davies, B., and G. V. Jeffreys, Trans. Inst. Chem. Engrs., <u>51</u>, 275(1973)
- (13) Dean, J. A., "Lange's Handbock of Chemistry", MCGraw-Hill Book Company, 11 Edi., 1973
- (14) Ettre, L. S. & A. Zlatkis, "The Practice of Gas Chromatography", Wiley & Sons, Inc., New York, 129(1967)
- (15) Gallant, Robert W., Hydrocarbon Processing, <u>45</u>, No. 10, 171(1966)
- (16) ibid, 47, No. 9, 169(1968)
- (17) ibid, <u>47</u>, No. 11, 223(1968)
- (18) Gold, P. I. and G. J. Cgle, Chemical Eng., Nov. 4, 1968
- (19) ibid, Nov. 18, 1958
- (20) ibid, Jan. 13, 1969
- (21) ibid, Feb. 24, 1969
- (22) ibid, Mar. 10, 1969
- (23) ibid, April 7, 1969
- (24) ibid, Sept. 8, 1969
- (25) Grayson, H. G., and C. W. Streed, Proc. 6th world Petro. Congr., Frankfort/Main III, Paper 20-PD7, 233(1963)
- (26) Hála, Edward, Wichterle, Ivan, Palak Jiri and Tomas Boublik, "Vapor-Liquid Equilibrium Data at Normal Pressures" Pergamon Press Ltd, 175(1968)

- (27) Hardman, H. F., and A. Miller, U. S. Pat. No. 3,325,534, June 13 1967
- (28) Hatta, S., Ind. Chem. (Japan), 37, 601(1934)
- (29) Hatta, S., New Chem. Eng. Series, VIII -4, NiKan Ind. News, Japan (1957)
- (30) Hatta, S., Tech. Reports, Tohoku Imp. Univ., Japan, <u>8</u>, 1(1928-29)
- (31) Hatta, S., Tech. Reports, Tohoku Imp. Univ., <u>10</u>, 119(1932)
- (32) Hirata, N. and H. Kowatsu, Kagaku Kogaku, <u>30</u>, No. 2, 129(1966)
- (33) ibid, 30, No. 11, 989(1966)
- (34) Hirata, M. and H. Komatsu, Kagaku Kogaku (Abridged Edition), 5, No. 1, 143(1967)
- (35) Hildebrand J. H. and R. L. Scott, "The Solubility of Nonelectrolytes", Reinhold, Publishing Corp. (1950)
- (36) Holland, C. D., "Unsteady State Processes with Applications in Multicomponent Distillation", Prentice-Hall, N. J. (1967)
- (37) Hougen, O. A., K. M. Watson, and R. A. Ragatz,"Chemical Process Principals", Wiley, New York(1947)
- (38) Ito, Shunichi, Asahi Garasu Kenkyu Hokoku, <u>16</u>, 133(1966)
- (39) Johnson, A. I. and C. J. Huang, Can. J. Technol., <u>33</u>, 421(1955)
- (40) Lapidus, L., and N.R. Amundson, Ind. Eng. Chem., 42, 1071(1950)
- (41) Leyes, C.E. and D.F. Othmer Trans. Am. Inst.

Chem. Engr. 41, 157(1945)

- (42) Leyes, C. E., and D. F. Othmer, Ind. Chem., <u>37</u>, 968(1945)
- (43) Loginova, M. A., A. F Frolob, and B. F. Ustashchikov, Lhimicheskaia Promyshlennost, No. 4, 275(1968)
- (44) Lyderson, A. L., "Estimation of Critical Properties of Organic Compounds", University of Wisconsin, Engineering Experimental Station, Report No. 3, Madison. Wis., Apr. 1955
- (45) Marek, J., Colln Czech, Chem. Commum., 19, 1055(105k)
- (46) Marshall, W. R., Jr., and R. L. Figford, "The Application of Differential Equations to Chemical Engineering Problems. Newark, Del. : Univ. Delaware, 1947
- (47) McReynolds, W. O., "Gas Chromatographic Retention Data" Preston Technical Abstract Co., Evanston, Ill.(1966)
- (48) Ministry of Supply, Department of Director of
   Ordnance Factories (Explosives) "Thermal Properties
   of the System H<sub>2</sub>0 S0<sub>3</sub>".
- (49) Natural Gas Processors Supplies Association, "NGPSA Engineering Data Book"
- (50) Othmer, D. F. Ind. Eng. Chem., 35, 614(1943)
- (51) Othmer, D. F., N. Shlechter, and S. Marshar, Ind.
   Eng. Chem., <u>37</u>, 900(1945)

- (52) Perry, R. H., et al., "Chemical Engineers Handbock, 5th ed., McGraw-Hill Book Company, 1973
- (53) Prausnitz, J. M., et al., "Computer Calculations for multicomponent vapor-liquid Euuilibrium," Prentice Hall, New Jersey (1967)
- (54) Redlich, 0., and J. N. W. Kwong, Chem. Rev., <u>44</u>, 233(1949)
- (55) Sabylin, I. I., and Aristovich, Yu. V. Zh. Prikl. Khim., Leningr., <u>43</u>, No. 9, 2021(1970)
- (56) Saito, S., et al J. Chem. Eng., Japan, 1971, <u>4</u>, No. 1, P.37
- (57) Sitting, Marshall, "Acrylic Acid and Esters", Noyls Development Corp., Park Ridge, N. J. (1965)
- (58) Wilson, G. M., Advan. Cryog. Eng. 2, 168(1963)
- Waggoner, R. C., "Solution of Unsteady State
   Distillation Problem", Ph. D. Dissertation,
   Texas A & M University, College Station, Texas, 1964
- (60) Yamazaki, Ken-ichi, Polymers (Japan), <u>19</u>, No. 224, 1045(1970)

Appendix A Basic Physical and Chemical Data

As mentioned in Chapter 1, a good quantitative evaluation of the theoretical model can be made only if all the values of system parameters are accurately obtained from existing experimental data, or predicted from reliable correlation methods. In a reaction-distillation system, the system parameters include those for material balance calculations such as vapor-liquid equilibrium ratios and reaction rates, as well as those for energy balance calculations such as liquid and vapor enthalpies, heats of reaction and heat transfer rate across the system boundary.

Since some of these parameters are determined and/ or calculated on the bases of more fundamental physical and chemical data, the latters must be very accurate too. The fundamental physical and chemical data used in this study include the following twelve items.

- (1) Normal Boiling Point (NBP)
- (2) Critical Temperature (T<sub>o</sub>)
- (3) Critical Pressure (P)
- (4) Liquid Density (9)
- (5) Vapor Pressure (p<sup>0</sup>)
- (6) Acentric Factor  $(\omega)$

- (7) Liquid Enthalpy (h)
- (8) Vapor Enthalpy (H)
- (9) Heat of Formation  $(H_{f})$
- (10) Heat of Reaction  $(\Delta H_R)$
- (11) Fugacity Coefficient of Pure Liquid (  $\gamma^{0}$ )
- (12) Fugacity Coefficient of Pure Vapor (  $\phi^{0}$  )

This Appendix presents and discusses the sources of experimental data for the above physical and chemical properties as well as the methods used for estimating the values if experimental data are not available. The discussions are followed by tables summarizing the final data, both experimental and predicted, for the compounds encountered in the study.

#### A.1 Normal Boiling Point (NBP)

#### Estimated NBP

# 1. $\beta$ -Ethoxy-cthyl propionate

FORMULA: C2H50C2H4C00C2H5

METHOD: Three methods may be used for estimating the normal boiling point according to the compilation of Gold and Ogle (20). They are the Burnop Rule, the Watson Nethod, and the Atomic Number correla-The last one is the best method with an tion. absolute average error of only 3.38 % for 90 organic compounds. However, it can be used only for specific homologous series such as ketones, aldehydes, etc. Since the ester group is not included in this correlation, the next best method, Burnop Rule is then adopted here. The Burnop Rule has an absolute average error of 28.47 % for 255 organic compounds. Any other chemical and physical properties derived from the boiling point must be used with care. Since  $\beta$ -ethoxy-ethyl propionate is trace in the system, any errors induced from this approximation should have little effects on predicting the system behavior. The Burnop Rule states that

$$W = M \log_{10} T_{B} + 8 \sqrt{M}$$
 (A-1)

where

W = atomic contribution
M = molecular weight
T<sub>B</sub> = normal boiling point in<sup>o</sup>K

ESTIMATION DETAILS:

| Atom                            | Atomic<br>Contribution | No. of<br>Atoms | Subtotal<br>Contribution |  |
|---------------------------------|------------------------|-----------------|--------------------------|--|
| C                               | 23.2                   | 7.              | 162.4                    |  |
| Н                               | 10.9                   | 14              | 152.6                    |  |
| 0                               | 51.0                   | 3               | 153.0                    |  |
| Total Atomic Contribution 468.0 |                        |                 |                          |  |
| Double Bond Contribution 16.1   |                        |                 |                          |  |

W = Total Contribution 484.1 M = 146.2 Then, solve Equation (A-1) for  $T_B$ 484.1 = 146.2  $Log_{10} T_B + 8\sqrt{146.2}$  $T_B = 446.2 \ ^{O}K = 173.0 \ ^{O}C$ 

2. Acrylamide

FORMULA : CH2CHCOONH2

METHOD : The molten acrylamide (M.P. 84.5 °C) poly-

merizes vigorously and exothermally before it reaches the normal boiling point. However it becomes very stable when it forms a molecular complex, acrylamide sulfate, with sulfuric acid at a temperature well above its melting point. Therefore, many thermophysical properties of acrylamide and acrylamide sulfate are estimated on an assumption that they have same thermophysical properties of compounds with similar molecular structure. The following comparison method is then used for estimating the normal boiling point of acrylamide.

#### ESTIMATION DETAILS:

| Comparison of Amide Group |                                                                  |                       |                    |  |
|---------------------------|------------------------------------------------------------------|-----------------------|--------------------|--|
| Compound                  | Formula                                                          | NBP, <sup>O</sup> C   | Ref.               |  |
| Ethyl amide               | CH3CONH2                                                         | 222                   | (52)               |  |
| Butyl amide               | CH3CH2CH2CONH2                                                   | 216                   | (52)               |  |
| Propyl amide (CH          | 3 <sup>CH</sup> 2 <sup>CONH</sup> 2) ≅ 22                        | $\frac{2+216}{2} = 2$ | 219 <sup>0</sup> C |  |
| Comparison between        | Double Bond and                                                  | d Single Bo           | ond                |  |
| Ethyl Propionate          | сн <sub>3</sub> сн <sub>2</sub> соос <sub>2</sub> н <sub>5</sub> | 99.1 °                | 0                  |  |
| Ethyl Acrylate            | CH2CHCOOC2H5                                                     | 100.1 0               | 2                  |  |
| Double Bond Contr         | ibution                                                          | +1.0 %                | ;                  |  |
|                           |                                                                  |                       |                    |  |

pseuo-NBP of acrylamide  $\approx 219 + 1 = 220$  °C The experimental and the calculated values of NBP for the compounds are summarized in Table A.1.

Table A.1 Normal Boiling Points

| No | . Component                      | NBP, <sup>O</sup> C | Ref,    |
|----|----------------------------------|---------------------|---------|
| 1  | Ethyl Alcohol                    | 78.4                | (52)    |
| 2  | Ethyl Acrylate                   | 100.1               | (17)    |
| 3  | Water                            | 1.00.0              | (52)    |
| 4. | Diethyl Ether                    | 34.6                | (52)    |
| 5  | $\beta$ -Ethoxy-ethyl Propionate | 173                 | (Est.). |
| 6  | Acrylamide Sulfate               | Not in use          |         |
| 7  | Sulfuric Acid                    | 340.0               | (52)    |
| 8  | Ammonium Bisulfate               | 490.0               | (52)    |
| 9  | Acrylamide                       | 220                 | (Est.)  |

A.2 Critical Temperature (  $T_{c}$  )

### Estimated Tc

1.  $\beta$ -Ethoxy..ethyl propionate

FORMULA : C2H50C2H4C00C2H5

METHOD : The Lydersen method is generally recommended for estimating critical temperatures of organic compounds (18, 52). The absolute average error by the method is 5.14 % on the basis of 216 organic compounds. This method is adopted here. The Lydersen method (43) states that

$$T_{c} = T_{B}/\Theta \qquad (A-2)$$

and

$$\Theta = 0.567 + \sum \Delta t - (\sum \Delta t)^2 \qquad (A-3)$$

where

#### $\Delta t = group contribution$

ESTIMATION DETAILS :

| Atomic<br>Group  | Group Con-<br>tribution, ∆t | No. of<br>Group | Subtotal<br>Contribution |
|------------------|-----------------------------|-----------------|--------------------------|
| -CH <sub>2</sub> | 0.02                        | 4               | 0.08                     |
| -сн <sub>3</sub> | 0.02                        | 2               | 0.04                     |
| -0-              | 0.021                       | 1               | 0.021                    |

$$\begin{array}{cccc} -& 0.047 & 1 & 0.047 \\ \hline 0.188 & 0.188 & -(0.188)^2 & = 0.7197 \\ T_c & = 446.2/0.7197 & = 620.0 \text{ K} & = 346.8 & ^{\text{O}}\text{C} \end{array}$$

2. Acrylamide

FORMULA : CH2CHCOONH2

METHOD : The Lydersen method is also adopted here.

ESTIMATION DETAILS:

| Atomic<br>Group              | Group Con-<br>tribution, At | No. of<br>Groups | Subtotal<br>Contribution |
|------------------------------|-----------------------------|------------------|--------------------------|
| <sup>CH</sup> 2 <sup>=</sup> | 0.018                       | 1                | 0,018                    |
| =CH                          | 0.0                         | 1                | 0.0                      |
| -C=0                         | 0.040                       | 1                | 0.04                     |
| -NH2                         | 0.031                       | 1                | 0.031                    |
|                              |                             |                  | 0.089                    |

 $\theta = 0.567 + 0.039 - (0.089)^2 = 0.648$ T<sub>c</sub> = (220 + 273.2)/0.648 = 760.8 °K = 487.6 °C

#### Table A.2 Critical Temperature

| <u>No</u> . | Compound                         | т <u>с, <sup>о</sup>с</u> | <u>Ref.</u> |
|-------------|----------------------------------|---------------------------|-------------|
| 1           | Ethanol                          | 243.1                     | (15)        |
| 2           | Ethyl Acrylate                   | 288.0                     | ( 17 )      |
| 3           | Water                            | 374.1                     | (49)        |
| 4           | Diethyl Ethyl                    | 193.8                     | (16)        |
| 5           | $\beta$ -Ethoxy-Ethyl Propionate | 346.8                     | (Est.)      |
| 9           | Acrylamide                       | 487.6                     | (Est.)      |

.

.

#### A.3 Critical Pressure (P)

# Estimated Pc

# 1. <u>B-Ethoxy-ethyl Propionate</u>

FORMULA :C2H50C2H4COOC2H5

METHOD : The Lydersen method is also recommended for estimating critical pressures of organic compounds(52). It has an absolute average error of 3.7 % for 182 compounds. The working equation is given as follows (45)

$$P_{c} = \frac{M}{(0.34 + \Delta p)^{2}}$$
 (A-4)

where

M = molecular weight $\Delta p = atomic group contribution$ 

ESTIMATION DETAILS :

| Atomic<br>Group    | Group Con-<br>tribution,∡p         | NO. of<br>Groups | Subtotal<br>Contribution |
|--------------------|------------------------------------|------------------|--------------------------|
| - <sup>CH</sup> 2, | -CH <sub>3</sub> 0.227             | 6                | 1.362                    |
| -000-              | 0.47                               | 1                | 0.470                    |
| -0-                | 0.16                               | 1                | 0.16                     |
|                    | 146                                |                  | 1.992                    |
| $P_c = -$          | $\frac{1}{0.34 + 1.992)^2} = 26.9$ | ) atm.           |                          |

2. Acrylamide

FORMULA :CH2CHCOONH2

METHOD : The Lydersen method given by Equation (A-4) is also used.

ESTIMATION DETAILS

| Atomic<br>Group | Group Con-<br>tribution | No. of<br>Groups | Subtotal<br>Contribution |
|-----------------|-------------------------|------------------|--------------------------|
| CH2=            | 0.198                   | 1                | 0.193                    |
| =CH-            | 0.193                   | 1                | 0.193                    |
| -C=0            | 0.290                   | 1                | 0.290                    |
| -NH2            | 0.095                   | 1                | 0.095                    |
| ~<br>P =        | 71.08                   | 56.6 atm.        | 0.7*1                    |
| $P_c = -$       | $.34 + 0.781)^2 =$      |                  |                          |

Table A.3 Critical Pressures

| No. | Component             | P <sub>c</sub> , Atm | Ref.    |
|-----|-----------------------|----------------------|---------|
| 1   | Ethyl Alcohol         | 62.9                 | (15)    |
| 2   | Ethyl Acrylate        | 36.3                 | (17)    |
| 3   | Water                 | 218.2                | (49)    |
| 4   | Diethyl Ether         | 35.5                 | (16)    |
| 5   | $\beta$ -Ethoxy-ethyl | 26.9                 | (Est.)  |
| 9   | Acrylamide            | 56.6                 | (Est. ) |

### A.4 Liquid Density (f) :

#### Estimated P

### 1. <u>B-Ethoxy-ethyl Propionate</u>

FORMULA : C2H50C2H4C00C2H5

METHOD : There are ten methods available for estimating liquid density (19). The first Guggenheim method is considered to be the most suitable for the compounds dealt in this system considering both accuracry and availability of the basic data required. The working equation can be represented by

$$f_r = 1 + 1.75(1 - T_r)^{1/3} + 0.75(1 - T_r)$$
(A-5)

where

 $T_r = reduced temperature$  $f_r = fV_c = reduced density$  $V_c = critical volume$ 

The critical volume is estimated by the Lyderson method as shown below.

| Atomic<br>Group                    | Group Con-<br>tribution,⊿V | No. of<br>Groups | Subtotal<br>Contributions |
|------------------------------------|----------------------------|------------------|---------------------------|
| -CH <sub>2</sub> ,-CH <sub>3</sub> | 55                         | 6                | 330                       |
| -000-                              | 80                         | 1                | 80                        |
| -0-                                | 20                         | 1                | . 20                      |
|                                    |                            |                  | 430                       |

 $V_c = \sum (\Delta V) = 430 \text{ c.c./g-mole} = 2.94 \text{ c.c./g.}$  $f_c = 1/V_c = 0.34 \text{ g/c.c.}$ 

The critical temperature  $T_c$  can be obtained from Appendix A. 2. Then for any given temperature a corresponding liquid density can be calculated by Equation (A-5).

2. Acrylamide

FORMULA : CH2CHCONH2

METHOD : The First Guggenheim method, or Equation (A-5), is used. The required critical volume of acrylamide is estimated as follows.

| Atomic<br>Group       | Group Con-<br>tribution, | No. of<br>Groups | Subtotal<br>contribution |
|-----------------------|--------------------------|------------------|--------------------------|
| CH <sub>2</sub> =, CH | I= 45                    | 2                | 90                       |
| C=0                   | 60                       | 1                | 60                       |
| -NH2                  | 28                       | 1                | 28                       |
|                       |                          |                  | 178                      |
| 17                    | - 178 a a /m mal         | 0 - 2 EOE 0      | 0 /~                     |

 $V_c = 178 \text{ c.c./g-mole} = 2.505 \text{ c.c./g.}$  $f_c = 0.399 \text{ g/c.c.}$  3. Acrylamide Sulfate

FORMULA : CH2CHC(OH)NH2HSO4

METHOD :Assume that the liquid molar volume of this molecular complex is approximately equal to the sum of the liquid molar volumes of its two pure constituents. Then

$$\frac{1}{\bar{y_6}} \stackrel{\simeq}{=} \frac{1}{\bar{y_6}} + \frac{1}{\bar{y_7}}$$
 (A-5)

where

 $\tilde{f}_i$  = liquid molar density for component i  $1/\tilde{f}_i$  = liquid molar volume

4. Armonium Bisulfate

FORMULA : NH4HSO4

METHOD :Ammonium bisulfate is a dissolved solid in the liquid solution. Its molar volume may be assumed equal to the average molar volume of ammonium sulfate,  $(NH_4)_2SO_4$ , and sulfuric acid,  $H_2SO_4$ . Then,

$$\frac{1}{\bar{f}_8} = \left[\frac{1}{\bar{g}_{(NH_4)_2} S O_4} + \frac{1}{\bar{g}_7}\right]/2$$

At a low operating pressure, liquid density is only a function of temperature. The densities obtained from either the literature or Equation (A-5) are then fitted as a function of temperature according to the follow-ing polynomial equation.

$$f_{i} = a_{i,1} + a_{i,2}^{T} + a_{i,3}^{T^{2}}$$
 (A-6)

The program POLYFIT given in Appendix C.6 can be used for data regression to obtain the coefficients of Equation (A-6). These determined coefficients for the nine components in this system are summarized in TABLE A.4.

### Table A.4 Liquid Densities

$$f_{i} = a_{i,1} + a_{i,2}T + a_{i,3}T^{2}$$

#### where

•

-

 $\beta =$ liquid density, g/ml

 $T = temperature, ^{O}C$ 

| i Compound                         | <sup>a</sup> i,1 | $a_{i,2} \times 10^{3}$ | <sup>a</sup> i,3 x 10 <sup>5</sup> | Data<br>Sources |
|------------------------------------|------------------|-------------------------|------------------------------------|-----------------|
| 1 Ethyl Alcohol                    | 0.79300          | -0.75060                | -0.16369                           | (15)            |
| 2 Ethyl Acrylate                   | 0.93971          | • -0.94345              | -0.16369                           | (17)            |
| 3 Water                            | 0.10067          | -0.25200                | -0.22973                           | (52)            |
| 4 Diethyl Ether                    | 0.73271          | -0.88333                | -0.32738                           | (16)            |
| 5 $\beta$ -Ethoxy-ethyl Propionate | 0.97266          | -0.87446                | -0.014881                          | (Est.)          |
| 6 Acrylamide Sulfate               | 1.4734           | -0.95768                | +0.0031945                         | (Est.)          |
| 7 Sulfuric Acid                    | 1.8511           | -0.99000                | -                                  | (52)            |
| 8 Ammonium Bisulfate               | 1.8141           | -2.7500                 | -                                  | (Est.)          |
| 9 Acrylamide                       | 1.1452           | -0.76236                | -0.38601                           | (Est.)          |

### Estimated p<sup>0</sup>

1.  $\beta$  -Ethoxy-ethyl Propionate

FORMULA : C2H50C2H4C00C2H5

METHOD : The Riedel correlation is a suitable method among the "reduced" correlations (24) for estimating vapor pressure, considering both accuracy and availability of correlating parameters. There are four different forms of the Riedel Correlation. The third form is most suitable for the compound being studied and thus presented here as follows.

$$\log_{10} p_{r}^{0} = - \underline{\Phi}(T_{r}) - (\alpha_{c} - 7) \not/ (T_{r}) \qquad (A-7)$$

$$\overline{\Phi}(\mathbf{T}_{r}) = 0.118 \phi(\mathbf{T}_{r}) - 7 \log \mathbf{T}_{r}$$
 (A-8)

$$\gamma'(T_r) = 0.0364 \ \phi(T_r) - \log T_r$$
 (A-9)

$$\phi(T_r) = 36/T_r + 42 \log T_r - 35 - T_r^6$$
 (A-10)

$$\alpha'_{c} = 0.9076 \left[ 1 + \frac{T_{B,r} \ln P_{c}}{1 - T_{B,r}} \right]$$
 (A-11)

where

$$p_r^o = p^o/p_c$$

The required critical temperature  $(T_c)$  and critical pressure  $(p_c)$  are obtained in the previous sections.

The vapor pressure data obtained from either the literature or the above Riedel method can be correlated by the following Antoine equation

 $\log_{10} p^{\circ} = A - \frac{C}{B + T}$  (A-12) where

 $p^{o} = vapor pressure, mm H_{g}$ 

 $T = temperature, ^{O}C$ 

A,B,C = Antoine constants

The Antoine constants for the five volatile components in the system are obtained and given in Table A.5.

#### Table A.5 Antoine Constants for Vapor Pressure

| No. | Component                        | А       | В      | C      | Ref.   |
|-----|----------------------------------|---------|--------|--------|--------|
| 1   | Ethanol                          | 8.1629  | 1623.2 | 228.98 | (26)   |
| 2   | Ethyl Acrylate                   | 6.9773  | 1283.1 | 212.19 | (17)   |
| 3   | Water                            | 7.96681 | 1668.2 | 228.0  | (26)   |
| 4   | Diethyl Ether                    | 6.89227 | 1051.3 | 227.43 | (26)   |
| 5   | $\beta$ -Ethoxy-ethyl Propionate | 8.3190  | 2691.9 | 318.38 | (Est.) |

A.6 Acentric Factor  $(\omega)$ :

The acentric factor is defined as

$$\omega = -1 - (\log P_r)_{T_r} = 0.7$$
 (A-13)

It is a factor to account for the degree of departure of a real fluid from a simple fluid. It is used in this study for estimating fugacity coefficient of a pure vapor by the Prausnitz general correlation (53). The acentric factors of ethyl alcohol, water and diethyl ether are given by the Pransnitz compilation (53) while those of ethyl acrylate and  $\beta$ -ethory-ethyl propionate can be calculated from Equation (A-13) utilizing the vapor pressure data estimated in Section A.5. Table A.6 is a list of the acentric factors for the five volatile components.

### Table A.6 Acentric Factor

| No. | Component                        | Acentric        | Ref.   |
|-----|----------------------------------|-----------------|--------|
| 1   | Ethanol                          | Factor<br>0.637 | (53)   |
| 2   | Ethyl Acrylate                   | 0.329           | (Est.) |
| 3   | Water                            | 0.344           | (53)   |
| 4   | Diethyl Ether                    | 0.283           | (53)   |
| 5   | $\beta$ -Ethoxy-ethyl Propionate | 0.557           | (Est.) |

#### A.7 Liquid Enthalpy ( h )

Liquid enthalpy is only dependent on temperature at low pressure and can be calculated from liquid heat capacity by

$$h = \int_{T_{d}}^{T} C_{p} dT \qquad (A-14)$$

where

If liquid heat capacity is expressed by a polynomial equation,

$$C_{p} = a_{1} + a_{2}T + a_{3}T^{2}$$
 (A-15)

and the datum temperature is chosen as  $0^{\circ}C$ , the liquid enthalpy can be obtained readily by integration of Equation (A-14):

$$h = a_1 T + a_2 T^2 / 2 + a_3 T^3 / 3$$
 (A-16)

Therefore, only liquid heat capacities are required for obtaining liquid enthalpies. The liquid heat capacities are estimated for the compounds for which measured data are not available.

# Estimated Liquid Heat Capacity, C<sub>p</sub>

1.  $\beta$  -Ethoxy-ethyl propionate

FORMULA: C2H50C2H4C00C2H5

METHOD: The heat capacities of organic liquids at 20 °C may be simply evaluated with relatively good accuracy ( 5 and 16 per cent average and maximum errors ) with the additive-contribution method of Johnson and Huang ( 39 ). The working equations can be expressed by

 $\overline{C}_{p,20}\circ_{C} = \Sigma$  Atomic Group Contributions (A-17)

where

 $\overline{C}_{p,20}$ °C = molar heat capacity at 20 °C

Heat capacities calculated in this manner at 20 <sup>O</sup>C may be used to calculate the constant b of the following Chow and Bright general correlation; (10, 23)

 $\overline{c}_{p}\omega^{2,8} = bM$ 

Once the constant b is determined, the equation can be used for calculating a heat capacity at any temperature. Since the system is operated at atmospheric pressure and the reduced temperature encountered in this study is less than 0.65, the following Watson expansion factor is used (52)

$$\omega = 0.1745 - 0.0838 T_{n}$$

The following working equation is obtained by combining the above two equations.

$$\overline{c}_{p}$$
 (0.1745 - 0.0838  $T_{r}$ )<sup>2.8</sup> = bM (A-18)

ESTIMATION DETAILS :

| For C <sub>p, 20</sub> C                                                                        | C                       |                 |                          |  |  |  |
|-------------------------------------------------------------------------------------------------|-------------------------|-----------------|--------------------------|--|--|--|
| Atomic<br>Group                                                                                 | Group Con-<br>tribution | No. of<br>Group | Subtotal<br>Contribution |  |  |  |
| CH3                                                                                             | 9.9                     | 2               | 19.8                     |  |  |  |
| -CH2                                                                                            | 6.3                     | 4               | 25.2                     |  |  |  |
| -000-                                                                                           | 14.5                    | 1               | 14.5                     |  |  |  |
| -0-                                                                                             | 8.4                     | 1               | 8.4                      |  |  |  |
|                                                                                                 |                         |                 | 67.9                     |  |  |  |
| $C_{p, 20} \circ_{C} = 67.9 \text{ Cal/g-mole-}^{\circ}C$ (Molal Basis)                         |                         |                 |                          |  |  |  |
| Molecular Weight = 146.2                                                                        |                         |                 |                          |  |  |  |
| $C_{p, 20} \circ_{C} = \frac{67.9}{146.2} = 0.464 \text{ Cal/g-}^{\circ}C \text{ (Mass Basis)}$ |                         |                 |                          |  |  |  |
| Determination of b using $C_{D,20}O_{C}$                                                        |                         |                 |                          |  |  |  |
| 0.464( 0.1745 - 0.0838 x $\frac{20 + 273.2}{346.8 + 273.2}$ ) <sup>2.8</sup> = b                |                         |                 |                          |  |  |  |
| b= 0.007893                                                                                     |                         |                 |                          |  |  |  |
| For C <sub>p</sub> at Other Temperatures                                                        |                         |                 |                          |  |  |  |
| $C_{p} = 126.69(0.1745 - 0.0838 T_{r})^{2.8}$                                                   |                         |                 |                          |  |  |  |
| 2. <u>Acrylamid</u>                                                                             | <u>e</u>                |                 | ·                        |  |  |  |

FORMULA : CH2CHCONH2

•

.

METHOD : The Johnson-Huang method given by Equation (A-17) and the Watson expansion factor method given by Equation (A-18) are also adopted here.

ESTIMATION DETAILS :

For Cp, 20 °C

| Atomic<br>Group | Group con-<br>tribution | No. of<br>Groups | Subtotal<br>Contribution |
|-----------------|-------------------------|------------------|--------------------------|
| CH2=            | 6.3                     | 1                | 6.3                      |
| =CH-            | 5.4                     | 1                | 5• <sup>1</sup>          |
| C=0             | 14.7                    | 1 .              | 14.7                     |
| -NH2            | 15.2                    | 1                | 15.2                     |
|                 |                         | C                | p = 41.6                 |

Molecular Weight = 71.06  $C_{p:, 20} \circ_C = \frac{41.6}{71.06} = 0.5854 \text{ Cal/g-}^{\circ}C$ 

For C<sub>p</sub> at Other Temperature

 $0.5854(\ 0.1745 - 0.0838 \times \frac{20 + 273.2}{487.6 + 273.2})^{2.8} = b$ b = 0.007253  $C_{p} = 137.88(\ 0.1745 - 0.00838 T_{p})^{2.8}$ 

3. <u>Acrylamide Sulfate</u> :

FORMULA : CH2CHC(OH)NH2HSO4

METHOD: The enthalpy of acrylamide sulfate is equal to the sum of the enthalpies of its two constituent compounds, acrylamide and sulfuric according to the assumption made in Chapter 7. Its molal heat capacity can then be readily determined, by definition, from the following equation.

$$\overline{C}_{p,6} = \left( \frac{M_7}{M_6} \overline{C}_{p,7} + \frac{M_9}{M_6} \overline{C}_{p,9} \right)$$
 (A-19)

where M stands for molecular weight.

4. Ammonium Bisulfate

FORMULA: NH4HSO4

METHOD: The method used for acrylamide sulfate as stated above is also used here. Accordingly, the heat capacity of ammonium bisulfate can be expressed in terms of those of sulfuric acid and ammonium sulfate as follows.

$$\overline{C}_{p,8} = \frac{1}{2} \left[ \frac{M_7}{M_8} \overline{C}_{p,7} + \frac{M(NH_4)_2 SO_4}{M_8} \overline{C}_{p,(NH_4)_2 SO_4} \right]$$
(A-20)

Liquid heat capacities obtained from the literature or estimated by the above mentioned methods are then fitted to Equation (A-15) by the computer program POLYFIT given in Appendix C.6. The fitted coefficients are listed in Table A.7.

### Table A.7 Liquid Enthalpies and Heat Capacities

$$C_{p} = a_{1} + a_{2}T + a_{3}T^{2} + a_{4}T^{3}$$
  

$$h = a_{1}T + a_{2}T^{2}/2 + a_{3}T^{3}/3 + a_{4}T^{4}/4$$
  

$$C_{p} = cal/g^{0}C ; h = cal/g ; T = ^{0}C$$

· · ·

| <u>.</u>                            | <u>,                                    </u> |                   |                   |                                          |        |
|-------------------------------------|----------------------------------------------|-------------------|-------------------|------------------------------------------|--------|
| Component Name                      | <sup>a</sup> 1                               | $a_2 \times 10^3$ | $a_5 \times 10^5$ | a <sub>4</sub> x 10 <sup>7</sup>         | Ref.   |
| Ethyl Alcohol                       | 0.53150                                      | 2.2012            | 0.72024           | an a | (15)   |
| Ethyl Acrylate                      | 0.45560                                      | 0.48312           | 0.17086           | -                                        | (17)   |
| Water                               | 1.0060                                       | -0.31738          | 0.34230           | -                                        | (52)   |
| Diethyl Ether                       | 0.53002                                      | 0.97143           | 1.10120           | -                                        | (16)   |
| $\beta$ -Ethoxy-ethyl<br>Propionate | 0.44220                                      | 1.0364            | 0.26786           |                                          | (Est.) |
| Acrylamide Sulfate                  | 0.51106                                      | -2.6872           | 2.5080            | -0.46642                                 | (Est.) |
| Sulfuric Acid                       | 0.47483                                      | -5.4866           | 4.1811            | -0.81692                                 | (52)   |
| Ammonium Bisulfate<br>(Solid)       | 0.42665                                      | -2.3368           | 1.7822            | -0.34821                                 | (Est.) |
| Acrylamide                          | 0.56106                                      | 1.1766            | 0.19861           | 0.017361                                 | (Est.) |

343

.

.

# A.8 Vapor Enthalpy ( H )

A vapor mixture at atmospheric pressure may be treated as an ideal gas without a significant error. Two methods are used to obtain vapor enthalpies for the five volatile compounds. The first method uses the following equation to calculate vapor enthalpy.

$$H = \mathcal{X}_{0} + \int_{0}^{T} C_{p_{v}}^{dT}$$
 (A-21)

where

H = vapor enthalpy at temperature T  ${}^{6}C$  $\lambda_{0}$  = heat of vaporization at 0  ${}^{6}C$  $C_{p_{v}}$  = vapor heat capacity

This method is applied for the first four volatile compounds. The data for  $\lambda$  at 0  $^{\circ0}$ C and C for these four compounds are available in the literature. For the least volatile compound,  $\beta$ -Ethexy-ethyl propionate, none of the above data are available. It is then more convenient to obtain its vapor enthalpy from the previously estimated liquid enthalpy plus heat of vaporization for a given temperature. Thus,

 $H = \lambda_{p} + h$  (A-22)

where

 $\lambda_{\mathrm{T}}$  = heat of vaporization at temperature T

Since vapor pressure of  $\beta$ -ethoxy-ethyl propionate in the system is always less than atmospheric pressure, the vapor enthalpy obtained from the above equation may be treated as an ideal gas enthalpy.

#### Estimated Heat of Vaporization, A

METHOD: There are four methods which may be used to estimate heat of vaporization at the normal boiling point (21). The Giacalone correlation is most suitable for this compound, considering both accuracy and availability of correlating parameters. His method is presented here as follows.

$$B = \frac{R T_B T_c \ln P_c}{(T_c - T_B)M}$$
(A-23)

The above equation has average and maximum errors of about 3 and 10 per cent, respectively.

For heat of vaporization at other temperatures, the Watson temperature correlation can be employed and is expressed as follows:

$$\lambda_{\rm T} = \lambda_{\rm B} (\frac{1 - T_{\rm r}}{1 - T_{\rm B, r}})^{0.38}$$
 (A-24)

where

 $\lambda_{\rm T}$  = heat of vaporization at temperature T T<sub>B</sub>, r = T<sub>B</sub>/T<sub>c</sub>

The average absolute error of Equation (A-24) is 4.7 % for 247 organic compounds.

#### ESTIMATION DETAILS:

From TABLE A.1,  $T_{B,5} = 173 \ ^{\circ}C = 446.2 \ ^{\circ}K$ From TABLE A.2,  $T_{c,5} = 346.8 \ ^{\circ}C = 620 \ ^{\circ}K$  $T_{B,r} = \frac{446.2}{620} = 0.7197$ 

From TABLE A.3,  $P_c = 26.9$  atm From Equation (A-23)

$$\lambda_{\rm B} = \frac{1.987 \times 446.2 \times 620 \times \ln 26.9}{(620 - 446.2) \times 146.2}$$
  
= 71.2 cal/g

From Equation (A-24)

$$\lambda_{\rm T} = 71.2 \left(\frac{1 - T_{\rm r}}{1 - 0.7197}\right)^{0.38}$$
  
or  $\lambda_{\rm T} = 115.42 (1 - T_{\rm r})^{0.38}$ 

From Equation (A-22)

$$H_5 = \lambda_{T,5} + h_5$$

or

$$H_5 = 115.42(1 - T_r)^{0.38} + h_5$$
 (A-25)

The vapor enthalpy of  $\beta$ -ethoxy-ethyl propionate can now be calculated from Equation ( A-25) as a function of temperature ( or reduced temperature).

The vapor enthalpy calculated from either Equation (A-21) or Equation (A-25) is then fitted into a polynomial equation again by the program POLYFIT given in Appendix C.6. The fitted coefficients and the data sources for the five volatile compounds are listed in Table A.8.

#### Table A.8 Vapor Enthalpies at 1 Atm.

|                                     | a <sub>1</sub> + a <sub>2</sub> T<br>temperat |                | + • • •                         |                                 |        |
|-------------------------------------|-----------------------------------------------|----------------|---------------------------------|---------------------------------|--------|
|                                     | -                                             | -              | py, cal/g                       |                                 |        |
| Component                           | a <sub>1</sub>                                | a <sub>2</sub> | a <sub>3</sub> x10 <sup>5</sup> | a <sub>4</sub> x10 <sup>7</sup> | Ref.   |
| Ethanol                             | 227.0                                         | 0.3630         | 33.978                          | 1                               | (15)   |
| Ethyl Acrylate                      | 96.0                                          | 0.2337         | 67.20                           | -0.132                          | (16)   |
| water                               | 597.6                                         | 0.4200         | 0.102                           |                                 | (52)   |
| Diethyl Ether                       | 90.0                                          | 0.3450         | 0.375                           |                                 | (16)   |
| $\beta$ -Ethoxy-ethyl<br>Propionate | 79.7                                          | 0.3695         | - 6.211                         | 8.929                           | (Est.) |

#### A.9 Heat of Formation ( $H_{f}$ )

The heats of formation presented in this section are all evaluated at normal reference temperature, 25 <sup>o</sup>C. They are needed for calculating heat of reaction by Hess' rule in the next section.

### Estimated H<sub>f</sub>

1. Ethyl Acrylate

FORMULA: CH2CHCOOC2H5

METHOD: The heat of formation of ethyl acrylate in the liquid state is estimated by two steps. The first step is to estimate its heat of formation in the ideal gas state, namely  $H_{f}^{0}$ , by the method of Andersen, Beyer and Watson as mentioned in Chapter 7. To reduce error to a minimum, a largest molecule of "close size and structure", ethyl propionate, is used as base group. The second step is to estimate its heat of vaporization by Equations (A-23) and (A-24) following the precedures gives in Section A.8. Then, its heat of formation in the liquid state, namely  $H_{f}^{L}$ , can be readily calculated.

#### ESTIMATION DETAILS

(1)  $H_{f,2}^{0}$  ( Ideal gas heat of formation ): Kcal/g-mole Ref. Base Group Ethyl Propionate -112.36 (52) CH3CH2COOC2H5 Double Bond Contribution +30.0 -82.36 CH2CHCOOC2H5  $(2)\lambda_2$ (3)  $H_{f.2}^{L}$ -92.46 2.  $\beta$ -Ethoxy-ethyl propionate FORMULA: C2H50C2H4C00C2H5 METHOD: The same method used for ethyl acrylate is employed. ESTIMATION DETAILS:

Kcal/g-moleRef.Base GroupEthyl Propionate $CH_3CH_2COOC_2H_5$ -112.36 (52)Contribution of Secondary  $CH_3$ to  $CH_3CH_2CH_2COOC_2H_5$ to  $CH_3CH_2CH_2COOC_2H_5$ -5.2Contribution of Substitutionof  $CH_3$  by -OH to

(1)  $H_{f,5}^{0}$ 

HOCH<sub>2</sub>CH<sub>2</sub>COOC<sub>2</sub>H<sub>5</sub> -32.7  
Contribution of Substitution  
of H in OH group by CH<sub>3</sub> to  
CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub>COOC<sub>2</sub>H<sub>5</sub> +9.5  
Contribution of Secondary  
CH<sub>3</sub> to C<sub>2</sub>H<sub>5</sub>OC<sub>2</sub>H<sub>4</sub>COOC<sub>2</sub>H<sub>5</sub> -7.0  
-147.76  
(2) 
$$\lambda_5$$
 -160.81

3. Ammonium Bisulfate

FORMULA: NH4HSO4

METHOD: Heat of formation of solid ammonium bisulfate is assumed equal to the average heat of formation of solid sulfuric acid and ammonium sulfate. It is defined as  $II_{f,8}^{s}$ . ESTIMATION DEATILS:

| 4. Acrylamide:                          |                |      |
|-----------------------------------------|----------------|------|
| FORMULA: CH2CHCONH2                     |                |      |
| METHOD: The method used for ethyl       | . acrylate     |      |
| is employed.                            |                |      |
| ESTIMATION DETAILS:                     |                |      |
| (1) H <sup>o</sup> f,9                  | Kcal/g-mole    | Ref. |
| Base Group                              |                |      |
| Formamide, HCONH <sub>2</sub>           | -49.5          | (52) |
| Contribution of Primary CH <sub>3</sub> |                |      |
| Substitution to CH3CONH2                | -9.0           |      |
| Contribution of Secondary Cl            | H <sub>3</sub> |      |
| Substitution to CH3CH2CONH              | -5.0           |      |
| Contribution of Double Bond             |                |      |
| to CH2CHCONH2                           | +30.0          |      |
|                                         | -33.5          |      |
| (2) $\lambda_9$                         | -) -13.1       |      |
| (2) $\lambda_9$                         | -46.6          |      |

Experimentally Determined H<sub>f</sub>

5. Acrylamide Sulfate: FORMULA: CH<sub>2</sub>CHC(OH)NH<sub>2</sub>HSO METHOD: Acrylamide sulfate is a molecular complex. Its heat of formation can not be estimated by any available correlation methods. Therefore, it must be determined from the experimental heat of reaction data between sulfuric acid and acrylamide and their heats of formation by Equation (7-3) as discussed in Chapter 7.

$$H_{f,6}^{L} = H_{f,7}^{L} + H_{f,9}^{L} + \Delta H_{R}$$
 (7-3)

From Section 5.4.5 of Chapter 5,

 $\Delta H_{R} = -5.62 \text{ Kcal/g-mole}$ From Perrys' Handbook (52),  $H_{f,7}^{L} = -193.69 \text{ Kcal/g-mole}$ From the previous section,

 $H_{f,9}^{L} = -46.6 \text{ Kcal/g-mole}$ 

Then, the heat of formation of acrylamide sulfate can be readily calculated by Eqution (7-3).

$$H_{f,6}^{L} = (-193.69) + (-46.6) + (-5.62)$$
  
= -245.91 Kcal/g-mole.

# Table A.9 Heats of Formation

:

· .

.

۰.

|     |                                  | -     |             |        |
|-----|----------------------------------|-------|-------------|--------|
| No. | Component                        | Phase | Kcal/g-mole | Ref.   |
| 1   | Ethyl Alcohol                    | L     | -66.35      | (52)   |
| 2   | Ethyl Acrylate                   | L     | -92.46      | (Est.) |
| 3   | Water                            | L     | -68.32      | (52)   |
| 4   | Diethyl Ether                    | L     | 65.2        | (52)   |
| 5   | $\beta$ -Ethoxy-Ethyl Propionate | L     | -160.81     | (Est.) |
| 6   | Acrylamide Sulfate               | L     | -245.91     | (Exp.) |
| 7   | Sulfuric Acid                    | L     | -193,69     | (52)   |
| 8   | Ammonium Biculfate               | ន     | -238.99     | (Est.) |
| 9   | Acrylamide                       | L     | -46.6       | (Est.) |
|     |                                  |       |             |        |

### A.10 Heat of Reaction, $(\Delta H_R)$

The heats of reaction for the three reactions encounterred in this study are determined by Equation (7-4) through (7-6), using the data listed in Table A.9. The details of calculation are given below.

for Reaction 1, Esterification:  

$$P_{R_1}$$
  
From TABLE A.9  
 $H_{f,1}^L = -66.35$   
 $H_{f,2}^L = -92.46$   
 $H_{f,6}^L = -245.91$   
 $H_{f,8}^S = -238.99$ 

Substituting the above data into Equation (7-4) gives

$$A H_{R_{1}} = H_{f,2}^{L} + H_{f,8}^{S} - H_{f,6}^{L} - H_{f,1}^{L}$$
(7-4)  
=(-92.46) + (-238.99) - (-245.91) - (-66.35)  
= -19.19 = -19.2 Kcal/g-mole

2. AH<sub>R2</sub> for Reaction 2, Dehydration: From Table A.9.  $H_{f,1}^{L} = -66.35$  $H_{f,3}^{L} = -68.32$  $H_{f,4}^{L} = -65.2$ 

The heat of reaction for Dehydration can now be readily calculated from Equation (7-5):

$$\Delta H_{R_2} = H_{f,3}^{L} + H_{f,4}^{L} - 2H_{f,1}^{L}$$

$$= (-68.32) + (-65.2) - 2(-66.35)$$

$$= -0.82 \text{ Kcal/g-mole}$$
(7-5)

3.  $\Delta H_{R_3}$  for Reaction 3, Successive Reaction 3

From TABLE A.9.

$$H_{f,1}^{L} = -66.35$$

$$H_{f,5}^{L} = -160.81$$

$$H_{f,6}^{L} = -245.91$$

$$H_{f,8}^{S} = -238.99$$

Then, the heat of reaction of Successive Reaction can be determined from the above four heats of formation by Equation (7-6) as follows.

$$\Delta H_{R_3} = H_{f,5}^{L} + H_{f,8}^{S} - H_{f,6}^{L} - 2H_{f,1}^{L} \quad (7-6)$$
  
= (-160.81)+(-238.99)-(-245.91)-2(-66.35)  
= -21.19<sup>\vert</sup> - 21.2 Kcal/g-mole

355

e ...

### Table A.10 Heats of Reaction

.

| Reaction<br>No. | Reaction                  | Equation | Heat of Reaction<br>Kcal/g-mole |
|-----------------|---------------------------|----------|---------------------------------|
| 1               | Esterification            | (4-2)    | -19.2                           |
| 2               | Dehydration               | (4-3)    | - 0.82                          |
| 3               | Successive Reac-<br>tion  | (4-4)    | -21.2                           |
| 4               | Equilibrium Reac-<br>tion | (4-1)    | - 5.62                          |
|                 | (Complex Formation)       |          |                                 |

:

## Appendix A.11 Fugacity Coefficients of Pure Liquid $(p^{\circ})$

### Table 11 Constants of Equation (2-6) for Deter-

#### mining Fugacity Coefficients of Pure Liquid

| Constant                         | Grave           | Grayson-Streed Correlation |              |           | Chao-Seader Correlation |              |  |  |
|----------------------------------|-----------------|----------------------------|--------------|-----------|-------------------------|--------------|--|--|
|                                  | <u>Hydrogen</u> | Methane                    | Simple Fluid | Hydrogen  | Methane                 | Simple Fluid |  |  |
| A                                | 1.50709         | 1.36822                    | 2.05135      | 1.96718   | 2.43840                 | 5.75748      |  |  |
| A <sub>1</sub>                   | 2.74283         | -1.54831                   | -2.10899     | 1.02972   | -2.24550                | -3.01761     |  |  |
| A <sub>2</sub>                   | -0.02110        | 0.                         | Ο.           | -0.054009 | -0.34084                | -4.98500     |  |  |
| 1.3                              | 0.00011         | 0.02889                    | -0.19395     | 0,0005288 | 0.00212                 | 2.02299      |  |  |
| Λ4                               | 0.              | -0.01076                   | 0.02282      | 0.        | -0.00223                | 0.           |  |  |
| <sup>A</sup> 5                   | 0.008585        | 0.1.486                    | 0.08852      | 0.008585  | 0.10486                 | 0.08427      |  |  |
| $\Lambda_{\check{\mathfrak{C}}}$ | 0.              | -0.02529                   | Ο.           | 0 •       | -0.03691                | 0.26667      |  |  |
| A7                               | 0.              | 0.                         | -0.00872     | 0.        | 0.                      | -0.31138     |  |  |
| A <sub>8</sub>                   | 0.              | 0.                         | -0.00353     | 0.        | 0.                      | -0.02655     |  |  |
| <sup>A</sup> 9                   | 0.              | 0.                         | 0.00203      | Ο.        | 0.                      | 0.02883      |  |  |

•

-

## A.12 Fugacity Coefficient of Pure Vapor ( $\phi^{\circ}$ )

Fugacity coefficient of pure vapor is estimated by Prausnitz' three-parameter general correlation (53). The correlating equations are:

$$\log \phi_{i}^{0} = \log \phi_{i}^{(0)} \quad \omega_{i} \log \phi_{i}^{(1)}$$
  
$$\log \phi_{i}^{(0)} = ((0.57335/T_{r} - 3.0756)/T_{r} - 5.6086)/T_{r}$$
  
$$- 3.5021$$

and

where

$$T_r = \frac{T}{T_c}$$
 reduced temperature  
 $\omega_i = \text{acentric factor}$ 

The required critical temperature  $T_c$  and accentric factor can be obtained from Section A.2 and A.6, respectively.

The five calibration curves and one calibration table are included in this appendix. The methods of calibration and the respective data sources are described in Chapter 5. The calibration curves and table are listed as follows:

Fig. B.1 Calibration Curve for Helium Flow Rate

- Fig. B.2 Calibration Curve for the Flow Rate of 86 Wt % Aqueous Ethyl Alcohol Solution
- Fig. B.3 Calibration Curve for Weight Ratios of Volatile Components to 1-Propanol in the Gas Chromatography
- Fig. B.4 Interelations among Volume of Liquid Holdup, Inside Wall Surface Area, Liquid Height on the Reaction-Distillation Tray
- Fig. B.5 Calibration Curves for Vapor Weight Fraction in Feed Stream as a Function of Feed Rate
- TABLE B.1 Calibration Table for Iron-Constantan Thermocouples



Fig. B.1 Calibration Curve For Helium Flow Rate

<u> 360</u>













| CALIBRATION TABLES<br>FOR THERMOCOUPLES (Confirmed)<br>IRON-CONSTANTAN THEE MOCOUPLES<br>(MODIFIED 1913)<br>(Electrometive Force in Absolute Millicolts, Teleprentures in Degrees C<br>(Int. 1943), Reference Junctions at 0° C.) |                                           |                                                                 |                                              |                                              |                                                      |                                              |                                                                      |                                              |                                              |                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--|
| न्त                                                                                                                                                                                                                               | 0                                         | 1-1-                                                            | 1 2                                          |                                              |                                                      |                                              | 15 AL U 1                                                            | -                                            | 1 5                                          |                                              |  |
| -150-<br>-170-<br>-160-                                                                                                                                                                                                           | -7 66<br>-7.40<br>-7 12<br>-6.82<br>-6.50 | 7.69<br>- 7.43<br>7.15<br>- 6.85<br>6.53                        | - 7.71<br>7.45<br>7.18<br>6.88<br>6.56       | -7.73<br>-7.49<br>-7.21<br>-6.91<br>-6.50    | 24) (12<br>-7 7(<br>-7 51<br>-7 24<br>-6 94<br>-6 63 | -7.78<br>-7.54<br>-7.27<br>-6.47<br>-6.65    | -7.5.<br>-1.30<br>-1.05<br>-6.60                                     | 7.59<br>7.32<br>7.03<br>6.72                 | 7 51<br>7.25<br>7.05<br>6.18                 | -7.03<br>-7.03<br>-7.03<br>-6.75             |  |
| -120<br>-120<br>-110                                                                                                                                                                                                              | -6.16<br>-5.60<br>-5.42<br>-5.03<br>-4.63 | -6.19<br>-5.84<br>-5.40<br>-5.07<br>-4.67                       | -5.22<br>-5.57<br>-5.50<br>-5.11<br>-4.71    | -6 26<br>-5 91<br>-5.54<br>-5.15<br>- 4.75   | -5 59                                                | - 6.33<br>- 5.98<br>- 5.01<br>-5.23<br>-4.53 | -6.36<br>-6.01<br>-5.65<br>-5.27<br>-4.87                            | -6 40<br>-5 05<br>-5 31<br>-4.91             | -6.43<br>-6.5<br>-5.72<br>-5.35<br>-4.95     | -6.47<br>-0.12<br>-5.7<br>-5.3<br>-4.5?      |  |
| - 23                                                                                                                                                                                                                              | -4.21<br>-3.78<br>-3.34<br>-2.89<br>-2,43 | -1.25<br>-3 82<br>-3 35<br>-2.94<br>-2.15                       | -4.30<br>-3.87<br>-3.43<br>-2.95<br>-2.52    | -4.34<br>-3.91<br>-3.47<br>-3.03<br>-2.57    | -4.38<br>-3.95<br>-3.52<br>-3.07<br>-2.52            | -4 42<br>-4.00<br>-3.56<br>-3.12<br>-2.66    | -4 45<br>-4.64<br>-3.67<br>-3.15<br>-2.71                            | -450<br>-403<br>-3.65<br>-321<br>-2.75       | -4.55<br>-4.13<br>-3.09<br>-3.25<br>-2.80    | -4.59<br>-4.11<br>-3.74<br>-3.54<br>-2.84    |  |
| - 30<br>- 20<br>- 10                                                                                                                                                                                                              | - 1.96<br>-1 45<br>-1.00<br>-0.50<br>0.00 | $\begin{array}{r} -2.01 \\ -1 53 \\ -0.55 \\ -0.05 \end{array}$ |                                              | -2.19<br>-1.63<br>-1.11<br>-0.65<br>-0.15    | -2.15<br>-1.67<br>-0.70<br>-0.20                     | +2 20<br>-1 72<br>-1.24<br>-6.75<br>-0.25    | $ \begin{array}{r} -2.24 \\ -1.77 \\ -0.30 \\ -0.30 \\ \end{array} $ | 2.29<br>1.82<br>1.23<br>0.85<br>0.35         | 2 34<br>-1.07<br>-1 39<br>-0.00<br>-0.40     | 2.38<br>1.41<br>0.9<br>0.40                  |  |
| (+)0<br>10<br>20<br>30<br>40<br>50                                                                                                                                                                                                | 0.00<br>1.02<br>1.54                      | 0.05<br>0.56<br>1.07<br>1.59<br>2.11<br>2.54                    | 0.10<br>0.61<br>1.12<br>1.64<br>2.16<br>2.69 | 0.15<br>0.60<br>1.17<br>1.69<br>2.22<br>2.74 | 0 20<br>0.71<br>1.22<br>1.74<br>2.27<br>2.80         | 0.25<br>0.76<br>1.28<br>1.80<br>2.31<br>2.55 | 0.00<br>0.81<br>1.33<br>1.85<br>2.37<br>2.90                         | 0 25<br>6.25<br>1.38<br>1.90<br>2.42<br>2.66 | P.40<br>0.91<br>1.43<br>1.95<br>2.15<br>3.61 | 0.41<br>0.57<br>1.41<br>2.63<br>2.53<br>5.63 |  |
| 00<br>70<br>90<br>90<br>100                                                                                                                                                                                                       | 3.11<br>3 65<br>4.19<br>4.73<br>6.27      | $\begin{array}{c} 3.17\\ 3.70\\ 4.24\\ 4.78\\ 5.52\end{array}$  | 3.22<br>3.76<br>4.29<br>4.83<br>5.35         | 3.27<br>3.81<br>4.05<br>4.89<br>5.43         | 3,33<br>3,5f<br>4,40<br>4,54<br>5,45                 | 8 38<br>3,92<br>4,46<br>5,07<br>8,54         | 3.43<br>5.97<br>4.51<br>5.05<br>5.29                                 | 3.49<br>4.02<br>4.55<br>5.10<br>5.05         |                                              | 5.70                                         |  |
| 110<br>120<br>130<br>140<br>159                                                                                                                                                                                                   | 5.81<br>6.36<br>6.30<br>7.45<br>8.00      | 5.86<br>6.41<br>6.25<br>7.51<br>8.06                            | 5.92<br>6.47<br>7.01<br>7.56<br>8.12         | 5.67<br>6.32<br>7.67<br>7.62<br>8.17         | 6.03<br>6.50<br>7.12<br>7.67<br>8.23                 | 6.05<br>6.63<br>7.18<br>7.73<br>8.28         | 6.14<br>6.63<br>7.20<br>7.78<br>8.34                                 | 6 19<br>6 74<br>7 25<br>7 84<br>8.30         | 5,25<br>6,79<br>7 31<br>7 50<br>8,45         | 6.80<br>6.95<br>7.11<br>7.95                 |  |
| 160<br>170<br>189<br>190<br>200                                                                                                                                                                                                   | 8.56<br>9.11<br>5.57<br>10 22<br>10.78    | 8.51<br>9 17<br>9 72<br>10 25<br>10.84                          | 8.67<br>9 22<br>6 75<br>10 24<br>10 54       | 8.72<br>9.25<br>9.53<br>10.32<br>10.55       | 8,78<br>9,23<br>9,57<br>10,45<br>11,00               | 8.84<br>9.35<br>5.55<br>10.51<br>11.05       | 8 S9<br>9 44<br>10 (0<br>10.55<br>11.15                              | 8.95<br>3.50<br>10 CJ<br>10.61<br>11.17      | 9 60<br>9 56<br>10.11<br>10.67<br>11.23      | 9.09<br>9.61<br>10.17<br>10.72<br>11.25      |  |
| 220<br>230<br>210                                                                                                                                                                                                                 | 11 34<br>11 99<br>12,45<br>13,01<br>13,56 | 11.5°<br>11.55<br>12.50<br>13.03<br>13.62                       | 11 45<br>12 00<br>12 50<br>12,12<br>13,67    | 11.50<br>12.03<br>12.52<br>13.17<br>13.73    | 11.56<br>12.12<br>12.67<br>13.23<br>13.78            | 11 f2<br>12.17<br>12.73<br>15.25<br>13.54    | 11 67<br>12.20<br>12.75<br>13 34<br>13.85                            | 11.73<br>12.28<br>12.31<br>13.40<br>13.95    | 11.78<br>12.54<br>12.59<br>13.45<br>14.00    | 11.81<br>12.01<br>12.90<br>13.51<br>14.00    |  |
| 270<br>280<br>290                                                                                                                                                                                                                 | 14.12<br>14.67<br>15.22<br>15.77<br>16.33 | 15.17<br>14.70<br>15.28<br>15.53<br>16.08                       | 14.23<br>14.79<br>15.33<br>15.55<br>16.44    | 14.25<br>14.23<br>15.39<br>15.94<br>16 49    | 14 34<br>14 52<br>15.44<br>16 (C<br>16 55            | 14.39<br>14.01<br>15.50<br>16.65<br>16.50    | 14.45<br>15.00<br>15.50<br>10.11<br>10.05                            | 14.50<br>15.C5<br>15.61<br>16.16<br>16.71    | 14.58<br>15 11<br>15.65<br>16 22<br>16.77    | 14.61<br>15.17<br>15.72<br>16.27<br>16.82    |  |
| 320 <sup>-</sup><br>330<br>344                                                                                                                                                                                                    | 16 88<br>17,43<br>17,95<br>19,54<br>19,09 | 16:93<br>17.48<br>18 04<br>18.59<br>19 14                       | 15.00<br>17.54<br>15.00<br>19.65<br>19.10    | 17.04<br>17.00<br>18.15<br>15.70<br>19.20    | 17 10<br>17.65<br>15 20<br>15.76<br>15.21            | 15.51                                        | 17.21<br>17.76<br>18.32<br>14.37<br>11.12                            | 13.45                                        | 17.30<br>17.87<br>19.43<br>18.95<br>14.53    | 17 33<br>17,5<br>18,4<br>19 0                |  |

.

.

.

.

TABLE B.1 Calibration Table for Iron-Con-

stantan Thermocourles

,

#### Appendix C Computer Programs

C.1 Program LABDATA: For treating the laboratory data

- of semibatch distillation accompanied by chemical reactions
- C.1.1 Program List
- C.1.2 Input Data
- C.1.3 Results
- C.2 Program MODEL: For solving the mathematical model of semibatch distillation accompanied by chemical reactions
  - C.2.1 Program List
  - C.2.2 Input Data
  - C.2.3 Results
- C.3 Program CHEMACT: For correlating liquid activity coefficients under the effect of chemical reactions
  - C.3.1 Program List
  - C.3.2 Input Data
  - C.3.3 Results
- C.4 Program RXNRATE: For calculating activation energy and frequency factor for reaction rate constant

C.4.1 Program List

C.4.2 Input Data

C.4.3 Results

C.5 Program BSOLFIT: For fitting data into nonlinear equation by the BSOLVE technique C.5.1 Program List

C.6 Program POLYFIT: For fitting data into polynomial equation by the Gauss elimination method C.6.1 Program List

C.1.1 Program List for Program LABDATA 368 LAPDATA CDC 77/01/29 PAGE 1 PROGRAM LABDATA (INPUT.OUTPUT.TAPE8=INPUT.TAPE5,TAPE7,TAPE6=CUTPUT) REAL NT. MH COVMON CC(6), JJJ+YPN(10)DIMENSION A(9.5), ACV5 (5.5) . VG (10.5), VP (10.5), GAMMA(10.5), CH (5.5), ]RN(10+5)+U(10+9)+XX(10+9)+YY(10+5)+RR(10+4)+YPR(10+9)+CS(10+5)+ 2EK(10+5) DIMENSION AP(5) + 3P(5) + CP(5) + MP(9) + YF(9) + XL(10) + XV(10) + INT(10) + PG(10) + T(10) + YI(5) + XVC(10) + X(10) + RS(10) + DJ(9) + Q(10) + YSA(10) 2,01(10).03(10).VC(10).WT(10).VI(5).DELV(10).V(10).TLAG(10).VY(10) 3.x<UM(10).5YPR(10).PERR(20).STDEV(20).NAME(5).Y5(9) 4, FK1(10), RK2(10), RK3(10), RTIMV(10), TC(5), OMEGA(5) IOHACPYLATE IOHWATEP DATA NAME/10HALCOHOL . ,10HPROPIONATE/ +10HETHER READ(7.10) USET READ(7.10) M.MM.MV READ(7,14) ((A(K,J),J=1,M),K=1,MM) READ(7+11) - (My(K)+K=1+MM);  $READ(7, 1) (TC(I) \cdot I = 1 \cdot MV)$ RFAD(7.11) (GMEGA(I) + I=1 + MV) READ(7,14) ((ACVS(J.K),K=1.M),J=1.MV) READ(7\*16)(AP(J)\*BP(J)\*CP(J)\*J=1\*MV)READ(7:11) XF RFAD(7,11) (YF(J)+J=1+MM) 80=82.05 55 REWIND 5 READ(8.10) JSTOP+MU MU]=MU+1 10 FORMAT(815) 11 FORMAT(8-10.0) 12 FORMAT (5E16.5) 14 FORMAT(5E14.5) 35 FORMAT(5F10.0) 16 FORMAT(3F10.0) 02 FORMAT(SE10.0) 00 FORMAT(1H1+///1X+8HPUN NO. +12) 1 READ(5.10) N1. ISET RFAD(5,11) FEED+H2SO4,AMIDE,PT+TI,H20+YII,RHOA,FRACTI N=N:1+2 PFAD(5, 11) (XL(I), I=1,N1) PEAD(5, 11) (XV(I), I=1, N1)READ(5,11) (NT(I), I=1,N1)PEAD(5,202) = ((VG(I,J),J=1,MV),PG(I),I=1,N1)PFAD(5,15) = ((XP(J,J),J=1,MV),I=1,N)READ(5,11) (T(1),1=1,N)DETERMINATION OF INSTANTANEOUS VAPOR QUANTITIES AND TIME LAGS

JJJ=1 -YI(1)=YI1 YI(3)=1.-YI(1) YI(2)=0. YI(4)=0. YI(5)=0. DO 206 I=3.N1 IT=I-2  $X \vee C(II) = X \vee (I) - x \lfloor (3)$ 

 $06 \times (II) = \times L(I) - \times L(3)$ IF(ISFT.LQ.8) GO TO 84 D0 553 1=1\*M RS(I)=0. D0 229 J=1,MV R = VG(I,J)/PG(J)CVS = ACVS(J+1)DO 205 K=2.4 05 CVS=CVS+ACVS(J,K)\*R\*\*(K-1) RAHPYCVS RS(I) = RS(I) + PARN(T,J) = RA#NT(I)29 CONTINUE DU 504 1=1.NJ DO 208 J=1, MV OR RN(I+J) = RN(I+J) / RS(I)DO 210 1=2,N1 11 = 1 - 1NT(I) = NT(I) + NT(II)AW+1=F 012 00 10 RM(I+J)=RN(I+J)+RN(II+J) GO TO 85 84 DO 86 1=1+N1 Do 86 J≈1.MV  $BS_RN(J_{\bullet}J) = VG(I_{\bullet}J)$ 85 DO 211 I=1•N 00 51) K=J•₩W  $D(I_{9}K) = A(K_{9}I)$ DO 211 J=2.M  $11 D(J \circ K) = D(I \circ K) + A(K \circ J) * T(I) * * (J-1)$ DO 212 K=1.MM DI(K) = 0. DO 212 J=1.M 12 DY(K)=DI(K)\*A(K\*J)\*TI\*\*(J-1) V0=H20/01(3)+AMIDE/D1(6)+H2S04/D1(7) H20M=H20/M#(3)  $H_{2504} = H_{2504} / M_{W}(7)$ ANTDE=4MIDE/71.06 W0=H20X+H2S04+AMIDE DO 213 I=1.N J = 1 + 5Q(T) = FEFD \* XL(J)Q(I)=0(I)\*FHOA Q1(I) = O(I) \* YI1Q3(I) = Q(I) \* (I - YII)VON = VO + OI(I) / O(I + 1) + O3(I) / O(I + 3) = PN(J + 1) / O(I + 1) = PN(J + 2) / O(I + 2) = O(I + 2) / O(1 PN(J,3)/D(I,3) PN(J,4)/D(I,4) PN(J,5)/D(I,5)13 VC(I)=323.1-VON DU 516 9=1.WA UN 231 K=1,N 31 VY(K)=>N(K+2+J)  $Y \leq (J) = Y F (J) / 10$ . CALL LSTSOR(N+MU+XVC+VY+XF+YS(J)+PERR(J)+STDEV(J)) UN 216 K=1.N

PAGE

З

```
36 YP=(K.J)=YPN(K)/MW(J)
   D0 219 K=1.N
   IND=YDP(K+1)
   VN•S=C 062 00
90 THP=TMR+YPP(K+J)
   VP = TUP \approx PC \approx (T(K) + 273.16) / (PT / 760.)
   T_{1,kG}(x) = VC(k) / VR + 250 \cdot / (2170 \cdot + VR)
19 XVC(K) \simeq XVC(K) - TLAG(K)
   00 220 J=1+MV
   DO 234 K=1.N
34 VY(K)=>N(K+2+J)
   L=dV+J
   CALL LSTSOP(N,MU,XVC,VY,XF,YS(J),PEPP(L),STDEV(L))
   10M .1=10 055 00
S0 CH(J JL) = CC(JL)
   D0 551 1=1.1
   NW+1=F 122 00
   YY(I,J) = CH(J,1)
   DO 255 70=5'ND
22 YY(I,J)=YY(J,J)+CH(J,JL)*X(I)**(JL-1)
   JF(YY(I \bullet J) \bullet J I \bullet 0 \bullet) YY(I \bullet J) = 0 \bullet
21 CONTINUE
 DETERMINATION OF INSTANTANEOUS LIQUID QUANTITIES
   DO 88 1=1.4
   XP(I_{1}) = XP(I_{1}) \approx 0.913
   XP(1,2) = XP(1,2) + 1 + 274
   WI(1) = OI(1) - YY(1,1)
   MI(5) = -AA(1^{5})
   WT(3) = 03(1) - YY(1,3)
   WI(4) = -YY(I+4)
   w_{1}(5) = -YY(I,5)
   DELV(I)=0.
   DO 35 K=1.MV
V(I)=V0+DELV(I)
   C1=1.+(0.4602*XP(I.2)+0.626*XP(I.5))/XP(I.1)
   (2 = w](1) = 0.4602 # YY(1.2) = 1.244 # YY(1.4) = 0.625 # YY(1.5)
   \lambda Y (1,1) = C2/C1
   X X (I \bullet 5) = X_{0} (I \bullet 5) + X X (I \bullet 1) / X_{0} (I \bullet 1)
   X \times (I_{*}4) = X P(I_{*}4) = X X (I_{*}1) / X P(I_{*}1)
   X \times (I_{+}5) = X P (I_{+}5) \times X \times (I_{+}1) / X P (I_{+}1)
   X \times (I,3) = \forall I(3) + \exists 20 + 0.2432 + YY(I,4)
88 CONTINHE
   00 72 1=1.N
   00 72 K=1+MV
   XX(I•K)=XX(I•K)/MJ(K)
72 YY(I+K)=YY(I+K)/Mw(K)
   DO 73 1=1+N
   AC = x \times (I + 2) + Y \vee (I + 2) + X \times (I + 5) + Y \vee (I + 5)
   X \times (I_{9}6) = A \times IDE - ACR
   X_X(1,7) = H2SO4 - AMIDE
   XX(I,⊬) = ACQ
73 CONTINUE
```

```
00 80 I=1.N
  WT(])=0.
  UN 80 J=1.MM
(U + I) X X + (I) T = (I) T = (I + J)
  DO 37 1=1+N
  00 37 K=1.4V
(7 \ CS(I_{9}K) = XX(I_{9}K) + YY(I_{9}K))
DETERMINATION OF INSTANTANEOUS REACTION RATES
  N6 01 7=5*4A
  JH=J−1
  IF (J.EQ.3) GO TO 51
  IF(J.GT.3) JM=J-2
  LL=L+JM
  CALL LSTSOR (N.MU.Y.CS(1,J), XF.YF(J), PEPR(LL), STDEV(LL))
  DO 64 I = 1 \cdot N
54 PP(I,JM)=YPN(I)
51 CONTINUE
  00 471 I=1,N1
  D0 471 J=1+MV
(L,U) 44 (L, J) # RN(I, J) / 44 (J)
  DO 434 ]=1•N
  RK_{1}(J) = PR(I_{9}1) #V(I) / XX(I_{9}1) / XY(I_{9}6)
  BK5(1)=BS(1)5)*V(1)/(XX(1+1))**5
  PK3(1) = RR(I,3) + (V(I) / XX(I,1)) + 2/XX(I,6)
  RTINV(I)=218.53/(T(I)+273.16)
34 YSA(])=YY(I+1)+YY(I+2)+YY(I+3)+YY(I+4)+YY(I+5)
  IF(IPS.E2.1) 60 TO 696
  WRITE(6.500) ISET
  WRITE(6,131)
31 FORMAT(/1X,12HDEFINITIONS-)
  WPITE (5+112)
12 FORMATE 3X, #REAL TIME IS COUNTED FROM THE MOMENT ALCOHOL IS FIRST
 1 MIXED WITH ACRYLAMIDE SULFATE*/3X+*ADJUSTED TIME IS COUNTED FROM
 2THE MOMENT STUDIES FOR DISTILLATION ACCOMPANIED BY CHEMICAL REACTI
 30NS BEGIN#/3X, #ADJUSTED TIME MUST BEGIN RIGHT OR SLIGHTLY AFTER TH
 4E PEACTING LIDUID MIXTURE RECOMES BOILING*//IX.*INITIAL CONDITIONS
 5 FOR THE REAL TIME*/)
  WPITE(6.113) TI.VO.WO.AMIDE.H2504.H20M
13 FORMAT(2X,5HTENP=+F7.2+2H C+3X,4HVOL=+F7.2+3H ML+3X+8HTOT LIQ=,
 1F7.4.4H MOL.3X.6HAMIDE=, F6.3.4H MOL.3X.6HH2504=.F6.3.4H MOL.3X.
 264WATER= F6. 3.4H MOL)
  WEITE(6.114) FEED.YI(1).YI(3).FRACTI
14 FORMAT(/1x+15HEFED CONDITIONS//2X+5HRATE=+F6+4+7H ML/MIN+4X+8MALCO
 INDL=+F6.4.12H +T FPACTION.4X.6H#ATEP=+F6.4.12H +T FRACTION.4X.
 21-4VAPOR FRACTION=+F6.4)
  WRITE(6.1011)
11 FORMAT(//lx+*MIXTURE QUANTITIES AND REACTION RATES VS ADJUSTED TIM
 11:*)
  WRITE(6:115)
15 FORMAT(/4x.4HTIME.4X.8HTIME LAG.8X.4HTEMP.5X.7HLID VOL.5X.
 +7HLID MOL+5X,7HVAP MOL,4X,6HACP HATE,4X,8HHOR GATE,4X,8HHPRO HATE)
  #PITE(5+144) (X(I)+TLAG(I)+T(I)+V(I)+WT(I)+YSA(I)+(RR(I+J)+
 +J=1+3)+I=1+N)
```

```
4 FORMAT(F8.2.F12.5.2F12.2.2F12.5.3F12.7)
  WRITE(6.1033)
33 FORMAT(//IX+*INSTANTANEOUS LIQUID MOLAR QUANTITIES VS ADJUSTED IIM
 1E#)
  WFITE(5.103)
D3 FORMAT(74%,4HTIME,5X,7HALCOHOL,4X,6HACHYLATE,7%,5HWATEP,7X,5HETHEP
 +,2x,10HPROPIONATE,5X,7HCOMPLEX,7X,5HH2S04,5X,7HNH4HS04)
  WPITE(6*104) = (X(I)*(XX(I*K)*K=1*MM)*I=1*N)
04 FORMAT(FR.2,8F12.6)
  WP11E(6+350)
20 FORMAT(//ly,*ACCUMULATED VAPOR MOLAR OUANTITIES VS ADJUSTED TIME*)
  RRTTE(6+340)
40 FORMAT(/4X,4HT175,5X,7HALCOHOL,4X,8HACRYLATE,7X,5HWATER,7X,
 +5HETHFR+2X+10HPROPIONATE)
43 FORMAT(/4X,4HTIJE,5X,7HALCOHOL,4X,8HACPYLATE,7X,5HWATER,7X,
 *5HFTHER, 2X, 10HPROPIONATE, 7X, SHVRATE)
  WPITE(6,310) (x(1) • (YY(I • K) • K=1 • MV) • I=1 • N)
10 FODMAT(P8.2,5F)2.6)
12 FORMAT(F8.2,6F12.6)
  WRITE (5.505) ISET
05 FORMAT(1H1;///1X;3HRUN NO. .12:)2H (CONTINUED))
  WP1TF(6+390)
90 FOPMAT(//1/+*INSTANTANEOUS TOTAL MOLAR QUANTITIES VS AUJUSTED TIME
 +*.16X.*REACTION RATE CONSTANTS*)
  WRITE (6+342)
42 FOPMAT(747,4HTIME,5X,7HALCOHOL,4X,8HACRYLATE,7X,5HWATEP,7X,
 +5HETHED, 2X.10HPROPIONATE.2X.10H1000/2.3RT, 2X.10HACR RCONST, 2X.
 +10HROP RCONST, 2%, 10HPRO RCONST)
   wPITE(6.105)(X(I).(CS(1.K).K=1.MV).RTINV(I).RK1(I).RK2(I).RK3(I).
 +1=].N)
05 FORMAT (F8.2,9F12.6)
  WPITE (6,324)
24 FORMAT(//)X,*ACCUMULATED VAPOR QUANTITIES VS PEAL TIME*)
   WP]TE(6,340)
   WFJTE(6,310) (XV(I) + (RN(I+K) + K=1 + MV) + I=1 + N1)
96 L1=LL+1
  L7=LL+2
   J.JJ=2
   CALL LSTSOR(N.MU.X.T.XF.YF(1), PEPR(L1), STDEV(L1))
   00 40 I=1+N
   X \subseteq (IM(J) = 0.
  DO 40 J=1.MM
40 X \leq HM(I) = X \leq HM(I) + X \times (I \cdot J)
   CALL LETSOP (N. HU. X. XSUM. XF. YF (1) . PERP (L2) . STDEV (L2))
   TOIL=TI
, D∩ 43 J=1,N
   10 43 J=1+MV
   (2 + U) + O = (U + I) = O + (U + 2)
   1F (MU1.LT.3) GO TO 43
   PU 54 K=3+M11
50 Ant(I*1)=Ans(I*1)+EFUVAL(R+1)*CH(1*K)*X(I)**(R+5)
   IF (YPP(I.J).LT.0.) YPR(I,J)=0.
43 CONTINUE
```

DETERMINATION OF INSTANTANEOUS VAPOR-LIQUID EQUILIBRIA

10() 41 I=1+1 DO 41 J=1,MM \Lambda Lambda Lambd Lambda Lamb U(1 44 1=1.1) SYDR(J)=0. 00 44 J=1."V YPP(I.J)=YPP(I.J)/MP(J) 44 SYPP(I)=SYPR(I)+YPR(I.J) PT=P1/760. DO 45 T=1+N V0 45 J=1+₩V YY(1,J)=YPF(1,J)/SYPP(1) PS=10,\*\*(AP(J)-BP(J)/(CP(J)+T(I)))/760. IF (J.E0.4) GO TO 58  $IF(XX(T_{1}J)=0.00001) = 58,58,59$ 58 EK(I+J)=100. 6AMMA(I.J)=100. GO TO 45 59 Ek(I,J) = YY(I,J) / XX(I,J) $IP = (T(I) + 273 \cdot 16) / (10(J) + 273 \cdot 16)$ PHIS0=((0.57335/TR-3.0766)/TP+5.6086)/TP-3.5021 PHIS1=(((((((((((((0+012089/TR+0.015172)/TR+0.068604)/TP+0.024365)/ 1TP+0.14937)/TR+0.18927)/TP-0.12147)/TR-0.10666)/TR-1.1662)/TP+ 20.12666)/TR+0.31661)/TR+4.3539)/TR-3.7694 PHIS=]0.\*\*(PHIS0+OMEGA(J)\*PHIS1) GAMMA(I,J)=PT\*EK(I,J)/PS/PHIS 45 CONTINUE WPITE(6+350) 50 FORMAT(//1X,\*INSTANTANEOUS LIQUID MOLE FRACTION VS ADJUSTED TIME\*) WRITE (6+103) WRITE( $5 \cdot 104$ ) (X(I)  $\cdot (XX(I \cdot K) \cdot K = 1 \cdot MM) \cdot 1 = 1 \cdot N$ ) WPITE(6+360) 60 FORMAT(//1X+#INSTANTANEOUS VAPOR MOLE FRACTIONS AND TOTAL VAPOR FL 10w RATE VS ADJUSTED TIME\*) WPITE (6+343) WPITE(6.312) (X(I),(YY(I,K),K=1,MV),SYPR(I),I=1,M) ##ITF(6+505) ISET WRITE(6.340) 80 FORMAT(//lx,#INSTANTANEOUS EQUILIBRIUM CONSTANTS VS ADJUSTED TIME# 1) WPITF(6+340) WRITE (5, 314) = (X(I), (EK(1,K), K=1,3), EK(I,5), I=1,N)14 FOPMAT(F6.2.3F12.6.12X.F12.6) WEITE (6.370) 70 FORMATE /1x, #INSTANTANEOUS LIQUID ACTIVITY COEFFICIENT VS ADJUSTED 1 TINF\*) WOJTF (5.340) (X(I) + (GAMMA(1+K) + K=1+3) + GAMMA(1+5) + I=1+N) WUTTF (6+314) WRITE(6+404) MU 04 FORMAT(/////IX.#SUMMARY OF ERFORS FOR CURVE FITS--\*+12.\* UEGAFE P 10LYNGYIALS\*) WHITE (6.406) D5 FORMAT(//lx.#VAPOR FLOW RATES#) WRITE (6+407)

07 FORMAT(21X, #VAPOR RATE VS VAPOR #,10%, #VAPOR RATE VS LIQUID # +/21X+#AUJUSTED TIME REFORE#+10X+#ADJUSTED TIME AFTER #+/ +11X.2(10X.\*TIME LAG CORRECTION \*)) WQTTE(6+408) 08 FORMAT(11x,2(10x,20H------SRTTE(6.410)10 FORMAT(14X+2(4X+11HARS PCT EPR+3X+12PSTANDARD DEV)/) DO 419 J=1.MV Ix = I + 519 WPITE(6+411) NAME(1)+PERP(1)+STDEV(I)+PERP(IX)+STDEV(IX) 11 FORMAT(2X\*A10+2X+4E15+5) WRITE(6.412) 12 FORMAT(//lx;\*REACTION RATE\* /22X;8HACR RATE;7X;8HRDR RATE;7%; +SHOPO PATE) kPITE(6+4)4) (PERR(I)+I=11+13) 14 FORMAT(/3x+12HABS PCT ERR +3E15.5) WRITE(6+436) (STOEV(I)+I=1)+13) 16 FORMAT(3%, )2HSTANDARD DEV, 3E15.5) 1F(ISET-JSET) 1,999,999 99 IF(JSTOP-2) 555+9999+9999

99 STAP

END

```
SHEROUTINE LSTSOR (N.K.XA.YA.XF.YF.PEPR.STDEV)
  DIMENSION XA(1) • YA(1) • YCAL(10) • XSUM(10) • A(6•6)
   COMMON CA(6) + JJJ + YPN(10)
  DO 10 1=1+N
  XA(I) = XA(I) + XF
10 YA(I)=YA(I)*YF
   C_{A}(1) = 0.
   DO 12 J=1.N
12 CA(1)=CA(1)+YA(J)
   X \le I \le I \le N
   K_{1} = K + 1
   D0 14 1=2,K1
   CA(J)=0.
   Dn 14 J=1.N
14 CA(I)=CA(I)+YA(J)*(XA(J))**(I-1)
   KK=2*K+1
   DO 16 I=2.KK
   XSUM(J) = 0.
   Un 16 J=1 ⋅ N
16 XSUM(I)=XSUM(I)+XA(J)**(I-1)
   DO 18 1=1,K1
   Do 18 J=1+K1
   L=[+J-]
18 A(I,J) = XSUM(L)
   DU 50 I=J*KJ
   Dn 24 J=1,K1
   DFT=A(J J)
   CA(J) = CA(J) / A(J * I)
   DO 24 L=1,K1
24 A(J,L) = A(J,L) / DET
   D0 20 J=1+K1
   IF(J.E0.I) GO TO 20
   CA(J) = CA(J) - CA(I)
   DO 26 L=1;K1
26 \quad A(J,L) = A(J,L) - A(I,L)
20 CONTINUE
   DO 28 I=1*K1
28 CA(I) = CA(I) / A(I \cdot I)
   CA(1) = CA(1) / YF
   DO 30 1=2,K1
30 CA(1)=CA(1)/YF*XF**(1-1)
   DO 32 I=1.N
   X \land (I) = X \land (I) / X F
   Y \Delta (I) = Y \Delta (I) / Y F
   Y(4L(1) = CA(1)
   DO 32 J=2+K1
32 YCAL(I)=Y(AL(I)+CA(J)*XA(I)**(J-1)
   D(+ 34 1=1+M
   Y P M (I) = CA(2)
   1F(K1.LT.3) GO TO 34
   D_0 = 36 = 3 + 71
3v Abw(I)=Abh(I)+EFUUL(1-J)*CV(1)*XV(I)**(1-5)
   6n TN (38,34),JJJ
38 IF (YPN(1) . LT. 0.) YPN(1)=0.
34 CONTINUE
```

.....

ŧ

PEPR=0. STDEV=0. NM=N DO 42 I=1.N DFLY=YCAL(I)-YA(I) IF(ABS(YA(I))\*YF-.001) 44.46.46 44 NM=NM-1 60 TO 42 46 PERD=PERR+ABS(DELY/YA(I)) STDEV=STDEV+DELY\*DELY 42 CONTINUE

STDEV=SORT(STDEV/FLOAT(NM-1)) PEPP=PERR/FLOAT(NM)#100. RETURN END

```
1.2 Input Data for Program LABDATA
                                                                        377
    £:
         5
٦
·748901+00
            -0.75050E-03
                            -0.16369E-05
· 43971++00
            -0.94345E-03
                            -0.16369E-05
e100678+01
            -6.252005-03
                            -0.22973E-05
.13571++00
            -0.K8333E-03
                            -0.327381-05
                            -0.148411-06
. 472661+00
            -0.87446E-03
.147345+01
            -6.95764F-03
                             0.31945F-07
.145J1F+01
            -0.990008-03
            -0.275002-02
.18)+1++01
                                                    169.14
                                                               48.08
                                                                          115.05
. 07
                 18.016
                              74.08
                                           147.2
      100.11
                 374.1
                            193.8
                                       346.8
ļ
      78.8 .
                 0.344
                            0.283
                                       0.557
1
      (.324
•91300F+00
.J2740F+01
            -0.75617E-01
                            0.15432E-01
el(:()45++()]
+897305+00
             0.109102-01
.10000F+01
1.4
      1423.2
                 224,98
                 515.19
73
      1283.1
                 228.0
      1668.2
0.01
                 227.43
755
      1051.3
46
      1795.2
                 211.67
                                       100.
                                                                         1.0
                 10.0
                            100.
                                                  1.0
                                                              1.9
      1.0
```

| 12542            | 71.9                    | 762.0                 | 115.0          | 1].0          | 0.86    | 378<br>0.024 |
|------------------|-------------------------|-----------------------|----------------|---------------|---------|--------------|
|                  | 31.0                    | 43.57                 |                | 74.92         |         |              |
| 20.2<br>132.35   |                         |                       |                |               | 58.0    | 103.57       |
| 20.47            | 31.58                   | 44.17                 | 58,33          | 75.43         | ្ឋមន.5៩ | 104.3        |
| 12.712           | 16.3283                 | 18,6803               | 19.997         | 24.6075       | 17.057  | 25.02        |
| QD.              | .455                    | 1.                    | 0.             | 928.          |         |              |
| 1500.            | 162.                    | 40.                   | 14.            | 4月0.          |         |              |
| 1692.            | 230.                    | 52.                   | 72.            | 928 <b>.</b>  |         |              |
| 248(1.           | 260.                    | 92.                   | 142.           | 450.          |         | •            |
| 2302.            | 420.                    | 100.                  | 204.           | 896.          |         |              |
| 1080.            | 234.                    | 92.                   | 234.           | 736.          |         |              |
| 856.             | 542.                    | 112.                  | 310.           | 1432.         |         |              |
| 326.             | 384.                    | 84.                   | 212.           | 816.          |         |              |
| 208.             | 544.                    | 92.                   | 178.           | 928.          |         |              |
| 200.             | 650.                    | 86.                   | 163.           | 1510.         |         |              |
| 30.<br>14.       |                         | -                     | 0.<br>4.       |               |         |              |
| 18.              |                         |                       | 5.             |               |         |              |
| 13.              |                         |                       | 7.             |               |         |              |
| 6.               |                         |                       | 5.             |               |         |              |
| 4.5              |                         |                       | 4.             |               |         |              |
| 4.               |                         |                       | 4.             |               |         |              |
| 3.               |                         |                       | 4.             |               |         |              |
| 123.16           | 120.33                  | 118.47                | 116.99         | 115.65        | 114.93  | )]4          |
| 15915            | 70.53                   | 765.                  | 115.           | 12.51         | 0.86    | 0.825        |
| 20.17            | 30.53                   | 42.                   | 52.            | 64.92         | 78.83   | 90.25        |
| 1)5.1            | <b>~</b> 1 <b>/ ~</b> 7 | ( <b>)</b> ( <b>)</b> | 50 00          |               | 70.5    |              |
| 20.75            | 31.47                   | 42.67                 | 52.88          | 65.58         | 79.5    | 90.83        |
| 115.M<br>13.3230 | 15.5898                 | 17.5507               | 12.7885        | 1- 2010       | 21 14/2 | 1. 7.        |
| 19.9357          |                         |                       |                | 15.3210       | 21,1943 | 15.79        |
| 124.             | 534.                    | 10.                   | 0.             | 4672.         |         |              |
| 4434             | 60.                     | 6.                    | 2.             | 170.          |         |              |
| 474.             | 58.<br>32               | 16.                   | 10.            | 158.          |         |              |
| 344 .<br>439 .   | 36.<br>46               | ]4.                   | 26.            | 175.          |         |              |
| 672.             | 95.<br>122.             | 16.<br>32.            | 64.<br>60.     | 288.<br>368.  |         |              |
| 544 ·            | 580°<br>155°            | 32.                   | 94 <b>.</b>    | 358.<br>558.  |         |              |
| 318.             | 100.                    | <i>ು೭</i> .<br>1 ರ .  | 70.            | つわけ。<br>448。  |         |              |
| 214.             | 235.                    | 14.                   | 58.            | 400.          |         |              |
| · · · •          | 2000 ·                  | 1 ··· ·<br>6 •        | ວິທີ•<br>ວິທີ• | 4-30 <b>.</b> |         |              |
| 36.              | · •                     | •••                   | 3.             | · · · · · •   |         |              |
| 25.              |                         |                       | 3.             |               |         |              |
| 311.             |                         |                       | 4.             |               |         |              |
| • 1 4            |                         |                       | 3.             |               |         |              |
| 22.              |                         |                       | 5.             |               |         |              |
| 22.              |                         |                       | <b>6.</b>      |               |         |              |
| 17.              |                         |                       | 4.             |               |         |              |
| ×.               |                         |                       | 3.             |               |         |              |
| 120.65           | 118.26                  | 114.07                | 111.28         | 110.2         | 109.6   | 108.4        |

.

;

| 3                          |            |            |              |            |         | 379     |
|----------------------------|------------|------------|--------------|------------|---------|---------|
|                            | 73.02      | 768.       | 111.5        | 13.3       | •86     | • 826   |
| 14.67<br>124.6K            | 31.47      | 40.67      | 51,62        | 75.        | 85.62   | 99.08   |
| 14.72<br>125.03            | 33,17      | 41.33      | 52.03        | 70.67      | 86.12   | 99.7    |
| 1.90%4<br>20.1344          | 15*5268    | 11.0025    | 13.4326      | 24.2902    | 20.7939 | 18,2725 |
| ]64.<br>]6.                | 5.<br>0.   | 3.         | • 0          | 403.       |         |         |
| 115.                       | ]].        | 2.<br>4.   | 0.<br>2.     | 20.        |         |         |
| 126.                       | 26.        | 7.         | 12.          | 52.<br>72. |         |         |
| 76.                        | 20.        | 4 "        | 4.           | 52.        |         |         |
| 200.                       | 38.        | 16.        | 18.          | 60.        |         |         |
| ]44.                       | 48.        | 5.         | 20.          | 95.        |         |         |
| 44.                        | 34.        | 4 •        | 12.          | 40.        |         |         |
| 76.                        | 50.        | 8.         | 28.          | 116.       |         |         |
| 112.<br>40.                | 114.       | 15.        | 55.          | 192.       |         |         |
| 44.                        |            |            | •0<br>6•     | •          |         |         |
| 36.                        |            | •          | 8.           |            |         |         |
| 22.                        |            |            | 8.           |            |         |         |
| 55.                        |            |            | 16.          |            |         |         |
| 32.                        |            |            | 14.          |            |         |         |
| 22.                        |            |            | 14.          |            |         |         |
| 10.<br>116.46              | 115.8      | 114.45     | 6.<br>]12.9  | 1.0.0      | 34.7    | 3.0.7   |
| 4                          |            |            |              | 109.       | 107.9   | 107.    |
| 122.3                      | 69.89      | 760.2      | 111.5        | 15.1       | • 8h    |         |
| 15.17                      | 25.08      | 36.        | 59.          | 73.33      | 85.17   | 98:67   |
| ) to a                     | 25.83      | 36.83      | 60.42        | 74.42      | 87.     | 100.    |
| 1.5267                     | 12.0440    | 15.7124    | 31.5077      | 19.4365    | 19.0522 | 18.556  |
| 32.                        | 30.        | 40.        | 0.           | 100.       |         |         |
| 76.                        | 25.        | 3.         | • 0          | 104.       |         |         |
| 372.                       | 25.        | 4.         | 6.           | 152.       |         |         |
| 158.                       | 30.        | 18.        | 10.          | 76.        |         |         |
| 1220.                      | 194.       | 90.        | 132.         | 720.       |         |         |
| 1000                       | 46.        | 16.<br>19. | 28.          | 116.       |         |         |
| > 4 e                      | 40.<br>50. | 55.        | 12.5<br>20.  | 102.       |         |         |
| 250.                       | 230.       | 40.        | 20•<br>54•   | 512.       |         |         |
| 32.                        |            |            | •            | era na €   |         |         |
| 21.                        |            |            | 3.5          |            |         |         |
| e • 5                      |            |            | 3.5          |            |         | ~       |
| 7.6                        |            |            | 5.5          |            |         | •       |
| •~ •<br>1:                 |            |            | 4.           |            |         |         |
| د <b>.</b><br>د <b>.</b> ۲ |            |            | 4 .          |            |         |         |
| 117.91                     | 115.12     | 113.6      | 5.<br>112.51 | 111.6      | 111.52  |         |

| 1       | 5                 |         |         |            |                |           | 380     |
|---------|-------------------|---------|---------|------------|----------------|-----------|---------|
|         | 173.              | 72.7    | 764.5   | 111.5      | 12.1           | • 86      | •020    |
|         | ] 🖓 🖡             | 31.75   | 45.67   | 61.33      | 74.75          | 90.68     | 102.14  |
| с<br>., | 19.75             | 32.25   | 46.33   | 62.08      | 75.5           | 91.       | 102.87  |
| 7       | 1,7921            | 11.6142 | 16.2350 | 17.8692    | 16.5196        | 16.1718   | 15.2768 |
| 1       | 72.               | 200.    | 2.      |            | 195.           |           |         |
|         | 100.              | 12.     | 4.      | • 0        | 44.            |           |         |
|         | 764.              | 33.     | 6.      | • 0        | 124.           |           |         |
|         | 568.              | 50.     | 50.     | 8.         | 208.           |           |         |
|         | 564.              | 60.     | 26.     | 36.        | 230.           |           |         |
|         | 320.              | 70.     | 18.     | 4().       | 188.           |           |         |
|         | 247.              | 54.     | 50.     | 40.        | 184.           |           |         |
|         | ] 6 H .           | 68.     | 14.     | 30.        | 128.           |           |         |
|         | 248.              | 188.    | 30.     | 80.        | 264.           |           |         |
|         | 60.               | 100.    | 50¢     | 4.         | e, () er e     |           |         |
|         | 57.               |         |         | 12.        |                |           |         |
|         | 42.               |         |         | 18.        |                |           |         |
|         | 38.               |         |         | 27.        |                |           |         |
|         | 36.               |         |         | 24.        |                |           |         |
|         | 26.               |         |         | 16.        |                |           |         |
|         | 2ו                |         |         |            |                |           |         |
| 5       | 116.8             | 115.47  | 114 14  | 14.        | 110 71         | 1 1 1 2 3 |         |
| ز       | 6                 | 110041  | 114.16  | 113.07     | 112.71         | 111.63    |         |
|         | 120.25            | 72.22   | 762.    | 110.       | 12.87          | • br      | .826    |
|         | 20.5              | 37.17   | 49.17   | 63.67      | 80.            | 98.17     | 111.    |
| -       | 21.67             | 37.75   | 50.33   | 64.67      | 87 <b>.</b> 58 | 98,58     | 111.58  |
| 7       | 4.577]            | 18.1065 | 12.2995 | 15.6062    | 23.8542        | 13.0677   | 13.2782 |
| )       |                   |         |         |            |                |           |         |
|         | 124.              | 920.    | 5.      | • 0        | 7360.          |           |         |
|         | 124 •             | • 0     | 5*      | 0.         | 120.           |           |         |
|         | 312.              | 32.     | 4.      | 6.         | 96.            |           |         |
|         | 364.              | 40.     | 16.     | 14.        | 156.           |           |         |
|         | 1024.             | 123.    | 10.     | 22.        | 44H.           |           |         |
|         | 235.              | 38.     | 14.     | ]4.        | 132.           |           |         |
|         | 158.              | 40.     | 10.     | 12.        | 1-4.           |           |         |
|         | 220.              | 112.    | 14.     | 14.        | 320.           |           |         |
|         | 45.               | 28.     | 6.      | 14.        | 128.           |           |         |
|         | [* *              |         |         | ć.         |                |           |         |
|         | 47.               |         |         | 4.         |                |           |         |
|         | 24.               |         |         | 6.         |                |           |         |
|         | R22.              |         |         | 15.        |                |           |         |
|         | 12.               |         |         | <b>*</b> • |                |           | ,       |
|         | \$ <sup>2</sup> • |         |         | <b>ن</b> . |                |           | •       |
| •       | ٤                 |         |         | 4          |                |           |         |
| ч       | 116.41            | 115.    | 112.7   | 110.5      | 104.           | 107.3     |         |
|         | · - · · ·         | •       | ~ ~ ~ . | ·· •       |                | ·-        |         |

. .

.

| -        | _                                                                                                                   |                                                                     |                                                            |                                                                                                       |                                                                       |         | 381      |
|----------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------|----------|
|          | 7<br>}25.7                                                                                                          | 71.2                                                                | 760.                                                       | 110.                                                                                                  | 13.6                                                                  | • 86    | 4 h2 h 1 |
|          | 10.43                                                                                                               | 30.5                                                                | 44.22                                                      | 59.52                                                                                                 | 73.55                                                                 | 93.58   | 108.82   |
|          | 20.17                                                                                                               | 31.1                                                                | 44.83                                                      | 60.17                                                                                                 | 74.03                                                                 | 91.72   | 109.22   |
| k.       | 6.2834                                                                                                              | 13.921                                                              | 18,4603                                                    | 20.4970                                                                                               | 18.543                                                                | 23.6981 | 23,37**  |
| 63       | 40.<br>1056.<br>1984.<br>2048.<br>1600.<br>1568.<br>1200.<br>400.<br>464.<br>49.<br>39.<br>55.<br>20.<br>24.<br>28. | 16.<br>174.<br>266.<br>244.<br>138.<br>408.<br>586.<br>266.<br>600. | 2.<br>48.<br>40.<br>72.<br>64.<br>84.<br>80.<br>44.<br>56. | .0<br>8.<br>36.<br>95.<br>121.<br>180.<br>94.<br>37.<br>124.<br>3.5<br>6.0<br>9.0<br>3.5<br>5.5<br>6. | 80.<br>608.<br>752.<br>704.<br>704.<br>1104.<br>975.<br>448.<br>1072. |         |          |
| 7        | 12.<br>118.92                                                                                                       | 116,32                                                              | 114.07                                                     | 4.5<br>111.74                                                                                         | 110.71                                                                | 110.03  |          |
|          | 8<br>125.8                                                                                                          | 71.03                                                               | 752.3                                                      | 106.                                                                                                  | 11.4                                                                  | 0.86    | 0,825    |
|          | 20+                                                                                                                 | 30.                                                                 | 41•                                                        | 50.                                                                                                   | 60.1                                                                  | 71.     | 104.     |
| ۶        | 20.35                                                                                                               | 30.35                                                               | 41.35                                                      | 50.35                                                                                                 | 60.45                                                                 | 71.35   | 104.35   |
| 5.20     | 2.7333                                                                                                              | 12.5778                                                             | 24.9192                                                    | 36,4829                                                                                               | 47.6515                                                               | 61,4506 | 77.5095  |
| トクタ<br>+ | 56.57<br>97.<br>47.<br>47.<br>-1.<br>-1.<br>-1.<br>-1.                                                              |                                                                     | .945<br>1.289<br>1.83<br>2.45 <i>c</i>                     | 0.3248<br>.72<br>1.12<br>1.58<br>2.89<br>3.91<br>2.<br>5.<br>9.<br>19.<br>12.<br>4.5                  | 1.                                                                    |         |          |
| 7 ;      | 23.<br>]14.44                                                                                                       | 113.42                                                              | 111.97                                                     | с.<br>110.н                                                                                           | 104-36                                                                | 107.39  |          |

.

•

• •

•

•

. .

|              | ų      |         |         |         |         |         | 382     |
|--------------|--------|---------|---------|---------|---------|---------|---------|
|              | 176.3  | 71.5    | 764.0   | 106.    | 15•1    | •86     | Asers   |
| 1            | 20.45  | 33.47   | 46.12   | 62,75   | 75.23   | 87.38   | 195.13  |
|              | 20.98  | 34.08   | 46.98   | 63.33   | 76.03   | 90.     | 105.7   |
| 7<br>7<br>54 | 1.5737 | 14.1775 | 16.1748 | 18.1824 | 12.5872 | 15.3696 | 14.1500 |
| : 4          | 3+0.   | 400.    | 2.      | • 0     | 1280.   |         |         |
|              | 1:0.   | 58.     | 5.      | • 0     | 272.    |         |         |
|              | 56H.   | 60.     | 12.     | 4.      | 204.    |         |         |
|              | ٩ ٩ ٢  | 20.     | 6.      | 16.     | 128.    |         |         |
|              | 1344.  | 152.    | 44.     | 31.     | 528.    |         | •       |
|              | 410.   | 80.     | 16.     | 60.     | 354.    |         |         |
|              | 1120.  | 231.    | 440     | 70.     | 928.    |         |         |
|              | 544.   | 158.    | 26.     | 100.    | 496.    |         |         |
|              | 302.   | 120.    | 13.     | 84.     | 384.    |         |         |
|              | +2.    |         |         | 2.      |         |         |         |
|              | 45.    |         |         | 6.      |         |         |         |
|              | 54 ·   |         |         | 8.      |         |         |         |
|              | 42.    |         | •       | 10.     |         |         |         |
|              | 4 (1 . |         |         | 12.     |         |         |         |
|              | 24.    |         |         | 7.      |         |         |         |
|              | ]3.    |         |         | 6.      |         |         |         |
| 3            | 105.47 | 105.    | 102.6   | 100.38  | 98.     | 97.     |         |

•

3

.

• •

.

#### C.1.3 Results from Program LABDATA

Each run contains three pages of computer outputs to represent the treated experimental data. The major work of this program is to convert measured temperature, feed rate, total vapor condensate and analytical results from Gas Chromatography into vapor and liquid molal quantities, reaction rate and all associated quantities. The items shown on the computer printouts are explained as follows. Page 1 -

- 1. INITIAL CONDITIONS FOR THE REAL TIME TEMP = inital and surrounding temperature, <sup>o</sup>C VOL = clear liquid volume, milliliters TOT LIQ = initial total liquid molal quantity AMIDE = initial molal quantity of acrylamide  $H_2SO_4$  = initial molal quantity of sulfuric acid  $H_2O$  = initial molar quantity of water
- 2. FEED CONDITIONS

RATE = feed rate of aqueous ethyl alcohol solution ALCOHOL = weight fraction of ethyl alcohol WATER = weight fraction of water VAPOR FRACTION = vapor to feed ratio by weight

3. MIXTURE QUANTITIES AND REACTION RATES VS ADJUSTED TIME

```
TIME = adjusted time as defined in the computer
printouts
```

TIME LAG = time lag for vapor condensate from its leaving laquid surface to vapor sample bottle

4. INSTANTANEOUS LIQUID MOLAL QUANTITIES VS ADJUSTED

TIME

All the terms are well defined

5. ACCUMLATED VAPOR MOLAL QUANTITIES VS ADJUSTED TIME All the terms are well defined

Page 2 -

1. INSTANTANEOUS TOTAL MOLAL QUANTITIES VS ADJUSTED TIME ... REACTION RATE CONSTANTS  $1000/2.3 \text{ RT} = \frac{1000}{(2.3)(1.987)(\text{temperature in }^{0}\text{K})}$ 

ACR RCONST = rate constant of esterification, ml/g-mole-min.

ROR RCONST = rate constant of dehydration,

ml/g-mole-min.

PRO RCONST = rate constant of successive reaction, (ml/g-mole)<sup>2</sup>/min.

- 2. ACCUMULATED VAPOR QUANTITIES VS REAL TIME All the quantities are in g-moles.
- 3. INSTANTANEOUS LIQUID MOLE FRACTION VS ADJUSTED TIME All the terms are well defined
- 4. INSTANTANEOUS VAPOR MOLE FRACTIONS AND TOTAL
  VAPOR FLOW RATE VS ADJUSTED TIME
  V RATE = total vapor flow rate, g-moles/min.

Page3 -

- 1. INSTANTANEOUS EQUILIBRIUM CONSTANTS VS ADJUSTED TIME All the terms are well defined.
- 2. INSTANTANEOUS LIQUID ACTIVITY COEFFICIENT VS ADJUST TIME

All the terms are well defined.

3. SUMMARY OF ERRORS FOR CURVES FITS-3 DEGREE POLYNOMIALS In order to calculate vapor flow rate and reaction rate, all the instantaneous molal quantities are fitted with respect to time into third order polynomial equations. The errors for each set of data fit are represented by absolute average percentage error and standard deviation.

.

.

| DEFINITIO<br>DEFINITIO |                  | D FROM THE M     | OMENT ALCOHO     | L IS FIRST         | MIXED WITH AC      | PYLANTDE SUL         | FATE                 |                      |        |          |
|------------------------|------------------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|--------|----------|
|                        |                  |                  |                  |                    | EACTING LIGHT      |                      |                      |                      | IN     |          |
| - INITIAL C            | ONDITIONS FO     | R THE REAL T     | IME              |                    |                    |                      |                      |                      | ,      |          |
| TEMB= 11               | 5,00 c VOL       | = 136.40 ML.     | TOT LIGE 2       | . 8989 MOL         | AMIDE= 1.012       | MOL H2504            | = 1.277 MOL          | WATER= .6            | 11 MOL | <b>-</b> |
| FEED COND              | ITTONS           |                  |                  |                    |                    |                      |                      |                      |        |          |
| T RATE=1.5             | END WLIMIN       | ALCOHOL= .       | 8600 WT FRAC     | TION WAT           | ER= .1400 WT       | FPACTION             | VAPOR FRACT          | 10N= +8500           |        |          |
| MIXTURE 0              | UANTITIES AN     | D REACTION R     | ATES VS ADJU     | ISTED TIME         |                    |                      |                      |                      |        |          |
| TIME                   | TINE LAG         | TEMP             | LIO VOL          | LIO MOL            | VAP MOL            | ACR DATE             | ROP RATE             | PPO PATE             |        |          |
| 12.57                  | .33651<br>.31394 | 125.41           | 156.03<br>155.23 | 2.50867            | .43191<br>.70411   | .0091911<br>.0077392 | .0004011<br>.0003765 | .0009354<br>.0008345 |        |          |
| 86.45                  | 29213            | 120.83           | 154.10           | 2.78919            | 1.04793            | 0062251              | .0003495             | .0007109             |        |          |
| 43.42                  | .27416           | 118.47           | 152.47           | 2.90723            | 1.49586            | .0045439             | .0003194             | .1005523             |        |          |
| 57.00                  | .24359           | 116.99           | 151.00           | 2.97113            | 1.87056            | .0035753             | ,0002975             | .0004244             |        |          |
| 72+52                  | . 25108          | 115.65           | 149.01           | 3.01878            | 2.34641            | .0024800             | .0002729             | .0002614             |        |          |
| HF.02<br>101.35        | .24249           | 114.93<br>114.82 | 146.75<br>144.60 | 3.03711<br>3.03171 | 2.85341<br>3.31313 | .0015700<br>.0064350 | .0002500<br>.0002315 | .0000885<br>0.000000 |        |          |
|                        |                  | -                |                  | •                  |                    |                      |                      |                      | •      | <b>.</b> |
| INSTANTAD              | EOUS LIQUID      | MOLAR QUANTI     | TIES VS ADJU     | ISTED TIME         |                    |                      |                      |                      |        |          |
|                        | ALCOHOL          | ACRYLATE         | WATER            | FTHEP              | PROPIONATE         | COMPLEX              | H2504                | N444504              |        |          |
| 0.00                   | .341341          | .092631          | .70A134          | 0.000000           | 0.000000           | -6R6895              | .264489              | .324926              |        |          |
| 12.57                  | .343766          | .088969          | .880844          | 0.000000           | .009999            | .559089              | .264688              | .452732              |        |          |
| 26.95                  | ,473730          | .072049          | .956222          | 0.00000            | •010684            | .454814              | .264588              | .557007              |        |          |
| 43.92                  | .542430          | .051457          | 1.022043         | 0.000000           | .014791            | .353927              | .264688              | •657894              |        |          |
| 57.00                  | . 544.555        | .035252          | 1.058135         | 0.000000           | •015652            | .296765              | .264688              | .715056              |        | ,        |
| 72.52                  | .610177          | .030400          | 1.087264         | 0.000000           | .014425            | .236773              | ·264638              | •775048              |        |          |
| 44.02                  | .621146          | .022793          | 1-104494         | 0.000000           | .012167            | .201737              | .264688              | ·810084              |        |          |
| 101.35                 |                  | .013277          | 1.117224         | 0.000000           | . 009450           | .191874              | .264688              | •819947              |        |          |
|                        |                  |                  |                  |                    |                    |                      |                      |                      |        |          |

- ÷-

---- ---

- --- -- --

-----

387

. . . . . . . .

. . .

ACCUMULATED VAPOR MOLAR QUANTITIES VS ADJUSTED TIME

| TINF   | ALCOHOL  | ACRYLATE | WATER   | ETHER    | PROPIONATE |
|--------|----------|----------|---------|----------|------------|
| 0.00   | .065494  | .229716  | .129481 | .005636  | .002580    |
| 12.57  | .163300  | .346500  | .176524 | .010522  | .007174    |
| 26.95  | .307560  | .460830  | .250353 | .015740  | .013444    |
| 43.92  | .522672  | .570165  | .360130 | .021413  | .021481    |
| 57.00  | .721949  | .636540  | .459344 | .025445  | •027583    |
| 72.52  | .996576  | .696160  | .589745 | .029870  | .034062    |
| PF*05  | 1.312596 | .736098  | .731770 | . 033921 | . 039026   |
| 101.35 | 1.618057 | .755680  | .860724 | .037128  | .041540    |

· •·•

• •

INSTANTANEOUS TOTAL MOLAR QUANTITIES VS ADJUSTED TIME

PEACTION PATE CONSTANTS

| TIME   | ALCOHOL  | ACRYLATE | WATER    | FTHER   | PROPIONATE | 1000/2.3PT | ACR RCONST | ROP PCONST | PRO PCONST |  |
|--------|----------|----------|----------|---------|------------|------------|------------|------------|------------|--|
| 0.00   | .406885  | .322346  | .926615  | .005636 | .002580    | .548285    | 6.115397   | .537017    | 284.445787 |  |
| 12.57  | .557065  | 435559   | 1.057367 |         | .017173    | .551398    | 5.455291   | .376892    | 231,970560 |  |
| 26.95  | 781289   | 532879   | 1.206576 | .015740 | .024128    | .554659    | 4.452343   | •53968S    | 165.403652 |  |
| 43.92  | 1.055102 | .621622  | 1.382173 | .021413 | .036272    | .555001    | 3.632273   | .165514    | 123.438654 |  |
| 57.00  | 1.307504 | .671792  | 1.517179 | .025445 | .043264    | .550118    | 3.107630   | .131008    | 95.100×21  |  |
| 72.52  | 1.606753 | ,726560  | 1.677009 | .029870 | .045487    | ·542049    | 2.557874   | .10∋227    | 65.84A840  |  |
| 49.02  | 1.933742 | .758891  | 1.836264 | .033921 | .051194    | .5-3091    | 1.434547   | .095075    | 24.491023  |  |
| 101.35 | 2.239305 | .769957  | 1.972948 | .037128 | . 151990   | .563251    | 1.136155   | ,046248    | 0.00000    |  |

ACCUMULATED VAPOR QUANTITIES VS REAL TIME

| TIME     | ALCOHOL    | ACRYLATE | WATEP    | ETHER   | PROPIONATE |
|----------|------------|----------|----------|---------|------------|
| 10.42    | .000871    | .000785  | .008424  | .00008  | 0.000000   |
| 20.67    | 029805     | .103254  | .055763  | ·005915 | .000511    |
| 31.58    | 082546     | 222863   | . 125736 | .006113 | .003228    |
| 44.17    | .151397    | 359876   | .178842  | •010284 | .006834    |
| 58.33    | 275130     | .475847  | .265572  | .014924 | .012136    |
| 75.43    | 544612     | .563017  | . 346469 | .022002 | .022219    |
| 58.58    | .792138    | .603901  | .456903  | .027099 | .030155    |
| 104.33   | 948358     | .727777  | .600597  | .028550 | .032556    |
| _ 119.67 | . 1.316864 | .740595  | •741867  | 033952  | .038412    |
| 133.33   | 1.644258   | .749462  | .863598  | .037585 | .042269    |

· ····

INSTANTAMENUS LIQUID MOLE FRACTION VS ADJUSTED TIME

| TIMF<br>0.00<br>12.57<br> | ALCOHOL<br>136085<br>148586<br>169845<br>186580<br>197081<br>202127<br>204519 | ACRYLATE<br>036924<br>033572<br>025832<br>017700<br>011865<br>010070<br>007505 | WATER<br>.318151<br>.332383<br>.342831<br>.351552<br>.356139<br>.360167<br>.363666 | 000000.00<br>000000.00<br>000000.00<br>000000.00<br>000000 | PROPIONATE<br>0.000000<br>003773<br>003830<br>005088<br>005273<br>004779<br>004006 | COMPLEX<br>273809<br>210970<br>143063<br>121740<br>099883<br>078434<br>064424 | H2S04<br>.105509<br>.099879<br>.094898<br>.091045<br>.089087<br>.087681<br>.087151 | NH4H504<br>.129521<br>.170H37<br>.199702<br>.226296<br>.240668<br>.256742<br>.256729 | <br>····· |
|---------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------|
| 88.02<br>101.35           | .204519<br>.204587                                                            | .007505<br>.004379                                                             | •363656<br>•366564                                                                 | 0.000000<br>0.000000000000000000000000000                  | .004006<br>.003117                                                                 | •055424<br>•053289                                                            | •087151<br>•087307                                                                 | .270457                                                                              |           |

INSTANTANEOUS VAPOR MOLE FRACTIONS AND TOTAL VAPOR FLOW RATE VS ADJUSTED TIME

' -- ---

| TIME   | ALCOHOL | ACRYLATE | WATER    | FTHER    | PROPIONATE | VSATE    |
|--------|---------|----------|----------|----------|------------|----------|
| 0.00   | 327526  | 483575   | .153760  | .019501  | .015638    | .021570. |
| 12.57  | 388459  | 380955   | . 196230 | .016566. | .017789    | .022724  |
| 26.45  | 448285  | 288852   | .230533  | .013938  | .018391    | .075074  |
| 43.92  | 509850  | .204355  | .257043  | .011535  | .017217    | .027589  |
| 57.00  | 552410  | .152084  | .269823  |          | .015830    | ·029598  |
| 72.52  | 600392  | .100786  | ,278337  | .008607  | .011878    | .031700  |
| 56.05  | .645467 | 058487   | .281051  | .007420  | .007604    | .033536  |
| 101.35 | 6H300P  | 027708   | .279453  | .006562  | .003269    | •035272  |

-----

-- ---

. .

. ......

\_ · · ·

. . . . . . . . .

- 308 ·

|                                                     | VAPOP PATE                                                         | IME REFORE                                                         | VAPOR PATE<br>ADJUSTED T<br>TIME LAG C                             | IME AFTER                                                          |
|-----------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                     | ARS PCT ERR                                                        | STANDARD DEV                                                       | ABS PCT FRP                                                        | STANDARD DEV                                                       |
| ALCOHOL<br>ACPYLATE<br>WATEP<br>ETHEP<br>PROPIONATE | .74251E+01<br>.28585F+01<br>.20909F+01<br>.368165+01<br>.68655E+01 | .17214E+01<br>.19276E+01<br>.16428E+00<br>.68164E-01<br>.19567E+00 | •742095+01<br>•28572F+01<br>•20009F+01<br>•36815F+01<br>•68590F+01 | .17216E+01<br>.19272E+01<br>.16424E+00<br>.64179E-01<br>.19565E+00 |
| REACTION PATE                                       | ACP RATE                                                           | ROP RATE                                                           | <br>PPO RATE                                                       |                                                                    |
| ARS PCT FOR<br>STANDARD DEV                         | .545905+00<br>.35369E-02                                           | .61763F-10<br>.94537E-14                                           | .774445+01<br>.120875-02                                           |                                                                    |

.....

SHAMARY OF ERRORS FOR CURVE FITS-- 3 DEGREE POLYNOMIALS

VAPOP FLOW PATES

------ ------- -

| TIME   | AL COHOL | ACPYLATE | VATER   | ETHER       | PROPIONATE |
|--------|----------|----------|---------|-------------|------------|
| 0.00   | .572884  | 7.741847 | .220218 | <b>L</b>    | 100.000000 |
| 12.57  | 654504   | 7.072706 | .247840 |             | 22.527482  |
| 26.95  | .707950  | 7.369938 | .352011 |             | 24.957217  |
| 43.42  | 7-0950   | 8.060208 | .411793 | · · · · · · | 19.183815  |
| 57.00  | .H34713  | 9.283515 | .446980 |             | 17.284738  |
| 72.52  | .917300  | 7.495861 | .475687 |             | 15.659167  |
| 44.02  | .994412  | 5.944233 | .486695 |             | 12.288375  |
| 101.35 | 1.055140 | 4.839434 | .481451 |             | 6.817560   |

. . .

-----

\_\_INSTANTAMEOUS LIQUID ACTIVITY COEFFICIENT VS ADJUSTED TIME

| TIME   | AL COHOL | ACPYLATE  | WATER   | FTHEP | PROPIONATE |
|--------|----------|-----------|---------|-------|------------|
| 0.00   | 2.406778 | 13.096401 | .483291 |       | 100.000000 |
| 12.57  | 2.614374 | 11.347407 | .590374 |       | 4.714969   |
| 26.95  | 2.639383 | 11.182162 | .672439 |       | 4.801321   |
| 43.42  | 2,732613 | 11.545717 | .731167 |       | 3.384020   |
| 57.00  | 2.804990 | 12.818165 | .757634 |       | 2,885521   |
| 72.52  | 2.970368 | 10.008112 | .772799 |       | 2.485679   |
| 44.02  | 3.156028 | 7.793407  | .772744 |       | 1.898136   |
| 101.35 | 3.338467 | 6.327256  | .761735 |       | 1,048590   |

INSTANTANEOUS COULLTRRIUM CONSTANTS VS ADJUSTED TIME

DEFINITIONS-PEAL TIME IS COUNTED FROM THE MOMENT ALCOHOL IS FIRST MIXED WITH ACRYLAMIDE SULFATE ADJUSTED TIME IS CONNED FROM THE MOMENT STUDIES FOR DISTILLATION ACCOMPANIED BY CHEMICAL REACTIONS BEGIN ADJUSTED TIME MUST BEGIN RIGHT OF SLIGHTLY AFTER THE REACTING LIQUID MIXTURE BECOMES BOILING INITIAL CONCITIONS FOR THE REAL TIME TEMP= 115.00 C VOL= 137.79 ML TOT LIG= 2.9779 MOL AMIDE= .997 MOL H2504= 1.287 MOL WATER= .694 MOL FEED CONDITIONS PATE=1.7360 ML/MIN ALCOHOL= .8600 WT FRACTION. WATER= .1400 WT FPACTION VAPOR FRACTION= .3400 MIXTUPE QUANTITIES AND REACTION PATES VS ADJUSTED TIME

LIG VOL TIME LAG TEMP LTO MOL VAD MOL ACP PATE POP PATE PRO PATE 0.00 ·34H73 123.57 163.16 2.69542 .43814 .0110038 .0003453 .0004965 11.47 .30729 120.65 165.64 2.88715 .67444 .0084700 .0003405 .0004792 21.47 .27710 118.26 167.19 3.02478 .91176 .0055471 .0002956 .0004587 34.34 .25193 168.24 3.16339 1.25895 114.07 .0044575 .0002413 .0004248 48.30 .23365 111.28 168.51 3.26183 1.68037 .0027051 .0001475 .0003789 59.72 .22080 110.20 16P.18 3.31017 2.06041 .0016521 .0001470 .0003339 71 - 7 .21026 109.60 167.38 3.33317 2.4846: .0019259 .0001045 ·0005905 84.57 3.32466 2.98193 .20176 108.80 166.04 .0005520 .0000705 .0002133 . . .....

INSTANTANEOUS LIQUID MOLAR GUANTITIES VS ADJUSTED TIME

| TIME  | ALCOHOL  | ACRYLATE        | WATEP    | FTHER    | PROPIONATE | COMPLEX  | H2504   | NH4H504 |
|-------|----------|-----------------|----------|----------|------------|----------|---------|---------|
| 0.00  | .4]H]44  | .079233         | .907816  | 0.000000 | .003525    | .691470  | .289941 | .305243 |
| 11,47 | .534163  | <b>.</b> 07∻599 | .979780  | 0.00000  | .004907    | •571331  | ·SKA341 | .425432 |
| 21.47 | .625785  | .067728         | 1.039740 | 0,00000  | .004821    | .496403  | .289941 | .500360 |
| 34.39 | . 200527 | .052887         | 1.109335 | 0.000000 | .003874    | .419473  | ·ShAA41 | .577251 |
| 48.30 | .745940  | .053766         | 1.158896 | 0.000000 | .006523    | .3* 2001 | .289941 | .533763 |
| 54.72 | .754178  | ·050448         | 1.201497 | 0.000000 | .007345    | .320050  | .289941 | .567714 |
| 71.57 | .793602  | .031523         | 1.215729 | 0.000000 | .005609    | .351295  | .2899+1 | .675001 |
| 54.57 | .801698  | .027095         | 1.203739 | 0.00000  | .00542-    | .301971  | ·289941 | .594792 |

ACCUMULATED VAPOR MOLAR DUANTITIES VS ADJUSTED TIME

| TIME  | ALCOHOL   | ACRYLATE | WATER   | FTHEP   | PROPIONATE               |
|-------|-----------|----------|---------|---------|--------------------------|
| °,00  | .077872   | .221134  | 132248  | .005487 | .001401                  |
| 11.47 | .128494   | .337102  | .192310 | .069704 | .006825                  |
| 21.47 | .224105   | .416746  | .246959 | .012583 | .011066                  |
| 34,20 | .407296   | .494522  | .324794 | .016347 | .016008                  |
| 44.30 | , 444 165 | •552638  | +423208 | •019353 | <ul><li>020336</li></ul> |
| 54.72 | .909495   | •585356  | .519766 | .021231 | .024565                  |
| 71.57 | 1.184909  | .609520  | .639089 | .022742 | .028349                  |
| 64.57 | 1.492659  | .629715  | •797096 | .073901 | .032558                  |

# INSTANTANEOUS TOTAL MOLAR QUANTITIES VS ADJUSTED TIME

REACTION PATE CONSTANTS

| TIME    | ALCOHOL  | ACRYLATE | WATEP    | ETHER    | PROPIONATE      | 1000/2.38T | ACR RCONST | POP RCONST | PPO PCONST |
|---------|----------|----------|----------|----------|-----------------|------------|------------|------------|------------|
| 0.00    | .494016  | .300367  | 1.040064 | .005487  | .004926         | .550928    | 6.209472   | .368875    | 109.333212 |
| . 11+47 | .667657  | .413700  | 1.172090 | . 009704 | .011732         | .554912    | 4.555648   | .194115    | 79.207877  |
| 21.47   | .849891  | .484473  | 1.286699 | .012883  | .015887         | .559301    | 3.523689   | .126206    | 65.962112  |
| 34.39   | 1.107873 | .557409  | 1.434129 | . 016347 | <b>.</b> 019881 | .554342    | S*22141    | .082701    | 58,398748  |
| 44.30   | 1.410306 | .606404  | 1.592104 | .019323  | .027359         | .568437    | 1.683497   | .056789    | 53.264167  |
| 59.72   | 1.673674 | .635804  | 1.721263 | .021231  | .031910         | .570039    | 1.104975   | .042350    | 49.144958  |
| 71.57   | 1.978511 | .641043  | 1.854818 | .022742  | •033959         | .571932    | .607559    | .028853    | 38,740586  |
| 84.57   | 2.310357 | .656810  | 2.000835 | .023901  | .037982         | -572128    | .385424    | .018201    | 30.290933  |

ACCUMULATED VAPOR QUANTITIES VS PEAL TIME

| TIME     | ALCOHOL  | ACRYLATE | WATER   | ÈTHER   | PROPIONATE               |
|----------|----------|----------|---------|---------|--------------------------|
| 4.42     | .000390  | .000390  | .004918 | •000050 | 0.00000                  |
| 20.75    | .023310  | .110290  | .067226 | .001422 | .000262                  |
| 31.47    | .074030  | .225371  | .134530 | .005560 | .001711                  |
| 42.+7    | .144555  | ·347082  | .192520 | .010279 | .006622                  |
| 52.AP    | ,230191  | .414259  | .256692 | .012650 | .011959                  |
|          | 338109   | .502991  | 325628  | 014686  | .016188                  |
| 79.50    | .695403  | ,547552  | .424779 | .019182 | .020249                  |
| on.+3    | ·926968  | .584769  | .5]45]4 | .021189 | .024672                  |
| . 102.72 | 1.175953 | .616747  | .656354 | .023092 | <ul><li>054045</li></ul> |
| 115.80   | 1.515462 | .627885  | .799442 | .023815 | .032470                  |

INSTANTANEOUS LIQUID MOLE FRACTION VS ADJUSTED TIME

| <br>TIME  | ALCOHOL | ACRYLATE | WATER   | ETHER    | PROPIONATE | COMPLEX  | H2S04            | NH4HS04 |
|-----------|---------|----------|---------|----------|------------|----------|------------------|---------|
| 0.00      | .155131 | .029396  | .336799 | 0.00000  | .001308    | .256535  | .107568          | .113263 |
| 11,47     | .185746 | .026531  | .330359 | 0.000000 | .001700    | .197837  | .100425          | .147354 |
| <br>21.47 | 206886  | .022391  | 343741  | 0.000000 |            | ·164112  | .095855          | .165420 |
| 34.39     | .221467 | .019880  | .350680 | 0.00000  | .001224    | .132602  | •091655          | .182491 |
| 44.30     | ,228638 | .016483  | .358356 | 0.00000  | .005000    | +111287  | .084380          | .194297 |
| <br>59.72 | ·230H57 | .015240  |         | 0.000000 | 002219     | . (19406 | .087591          | .201715 |
| 71.57     | ·538095 | .009457  | .364737 | 0,00000  | .001683    | .096533  | • 08698 <b>7</b> | .202510 |
| 84.57     | .241137 | .008150  | .362064 | 0.10100  | .001631    | •0=045H  | .057209          | .208951 |

INSTANTANEOUS VAPOR MOLE FRACTIONS AND TOTAL VAPOR FLOW RATE VS ADJUSTED TIME

-----

| -<br>TI%F | ALCOHOL  | ACRYLATE | WATER   | FTHFP   | PROPIDUATE | VPATE   |
|-----------|----------|----------|---------|---------|------------|---------|
| 0.00      | .073627  | .602457  | .276336 | .020954 | .020.025   | .018465 |
|           | .326916  | .349653  | ·238195 | .015271 | -014955    | 2055303 |
| 21.47     | 46674B   | ,280844  | .225067 | .011761 | 1616081    | -025136 |
| 34.39     | .575859  | .176912  | .226076 | .008446 | .012708    | •025557 |
| 44.30     | . 634784 | .105932  | .242984 | .005864 | .010435    | .031975 |
| 59.72     | .650886  | .069472  | .266088 | .004255 | .009297    | .034549 |
| 71.57     | .644147  | .047011  | .297279 | .002934 | .008629    | +0270h9 |
| 84.57     | .614364  | .036529  | .338951 | .001786 | .008371    | .039458 |

391 ·

· · ·

--- --

-----

-----

· - ·

### \_INSTANTANEOUS FOUTLIBRIUM CONSTANTS VS ADJUSTED TIME

| TIME  | AL COHOL | ACRYLATE  | WATER   | ETHEP | PROPIONATE |
|-------|----------|-----------|---------|-------|------------|
| 0+00  | .474614  | 20.494866 |         |       | 20.360884  |
| 11.47 | 1.750596 | 15.063729 | .701899 | - •   | 11.747123  |
| 21.47 | 2.253640 | 12.542729 | .654759 |       | 10.090117  |
| 34.30 | 2.600199 | 8,899127  | .644670 |       | 10.377958  |
| 48.30 | 2.775758 | 6.426532  | .678053 |       | 5.218424   |
| 59.72 | 2.810428 | 4.558454  | .733083 |       | 4.190202   |
| 71.57 | 2.705449 | 4.970985  | 815051  |       | 5.127869   |
| 84.57 | 2.547782 | 4.482202  | •936163 |       | 5-130888   |

#### \_\_INSTANTANEOUS LIGHID ACTIVITY COEFFICIENT VS ADJUSTED TIME

| TIME  | ALCOHOL  | ACRYLATE  | WATER   | ETHER | PROPIONATE |
|-------|----------|-----------|---------|-------|------------|
| 0.00  | .118923  | 12.700462 | .396653 |       | 96.242627  |
| 11.47 | .473668  | 10.010804 | .370928 | •     | 61.705617  |
| 21.47 | .650301  | 8,337005  | .372649 |       | 57.874358  |
| 34.39 | . 442615 | 6.964917  | .419021 |       | 69.696302  |
| 48.30 | .974029  | 5.404909  | .482425 |       | 39.027828  |
| 59.72 | 1.020822 | 3.943735  | .540394 |       | 32.690141  |
| 71.57 | .9948868 | 4.369082  | .612827 | •     | 40.959718  |
| 84.57 |          | 4.023956  | •722797 |       | 42.300270  |

.74578E+00

.57630E+00

-11885E+00

.21955E-01

.672242-01

SUMMARY OF FRADRS FOR CURVE FITS-- 3 DEGREE POLYNOMIALS

VAPOP FLOW PATES VAPOR PATE VS LIQUID VAPOR RATE VS VAPOR ADJUSTED TIME REFORE ADJUSTED TIME AFTER TIME LAG CORPECTION TIME LAG COPPECTION ------\_\_\_\_\_ ARS PCT ERR STANDARD DEV ABS PCT FPP STANDAPD DEV ALCOHOL .36128E+01 .74618F+00 .36242F+01 ACPYLATE +11062E+01 .57696E+00 .11044F+01 WATEP .11894E+00 .11357F+01 .11350F+01 ETHER .21964E-01 .19150F+01 .191657+01 PROPIONATE .22727E+01 .67296E-01 .22766E+01 TREACTION PATE ACR RATE ROR PATE PPO PATE

APS PCT FOR .34654E+00 .29924E-10 .392575+01 STANDARD DEV .28744E-02 .749925-03 .40696F-14

DEFINITIONS-

ADJUSTED TIME MUST BEGIN PIGHT OR SLIGHTLY AFTER THE REACTING LIGHTLY MIXED WITH ACRYLAMIDE SULFATE ADJUSTED TIME IS COUNTED FROM THE MOMENT STUDIES FOR DISTILLATION ACCOMPANIED BY CHEMICAL REACTIONS BEGIN ADJUSTED TIME MUST BEGIN PIGHT OR SLIGHTLY AFTER THE REACTING LIGHTLY MIXTURE BECOMES BOILING

INITIAL CONDITIONS FOR THE REAL TIME

\_\_\_\_TEMP= 111.50 C.\_\_VOL= 139.28 ML\_\_\_TOT\_LIG= 3.0413\_MOL\_\_\_AMIDE= 1.028 MOL\_\_\_H2S04= 1.275\_MOL\_\_\_WATER= ....738\_MOL\_\_\_\_

#### FEED CONDITIONS

RATE=1.49(0 ML/MIN ALCOHOL= .8600 WT FRACTION WATER= .1400 WT FRACTION VAPOR FRACTION= .6900

MIXTURE QUANTITIES AND REACTION PATES VS ADJUSTED TIME

|       | TIME LAG | TEMP   |        |         | NAD MOI | ACD DATE | DOD DATE | DDD DATE |
|-------|----------|--------|--------|---------|---------|----------|----------|----------|
| 0.00  | .31740   | 118.03 | 177.70 | 2.85516 | .18560  | .0079597 | .0005198 | .0009599 |
| 9.20  | .30304   | 116.86 | 178.45 | 2.95539 | .37584  | .0073100 | .0004585 | 0008544  |
| 20.15 | 28670    | 115.80 | 179.12 |         |         |          |          |          |
| 43.53 | .25366   | 114,45 | 179.51 | 3.24588 | 1.18650 | .0046192 | .0003213 | .0005468 |
| 54.15 | .24847   | 112.90 | 179.06 | 3,29513 | 1.47199 | .0037018 | .0002899 | .0004719 |
|       |          |        | 177.80 |         | 1.85923 | .0024812 | 0002598  | .0003917 |
| 78.65 | • 22931  | 107.90 | 176.34 | 3.36160 | 5.10053 | .0014310 | .0002431 | .0003381 |
| 92.61 | •51841   | 107.00 | 173.75 | 3.35584 | 2.65342 | .0000429 | .0002324 | .0002851 |

#### INSTANTANEOUS LIGHTD MOLAR QUANTITIES VS ADJUSTED TIME

|       |                 |          |           |           |            |         |         |         | · · · · · · · · · · · · · · · · · · · |
|-------|-----------------|----------|-----------|-----------|------------|---------|---------|---------|---------------------------------------|
| TIME  | ALCOHOL         | ACRYLATE | WATER     | ETHEP     | PROPIONATE | COMPLEX | H2504   | N444504 |                                       |
| 0.00  |                 |          | .9989R5   |           |            |         | .247907 |         | · · · ·                               |
| 9.20  |                 |          |           | 0.000000. |            |         | 247907  | 291204  |                                       |
| 20.15 | .607408         | .096177  | 1.075016  | 0.00000   | .011409    | 654469  | .247907 | .373113 |                                       |
| 43.53 | .698055         | .112065  | 1.143177  | 0.00000   | .017092    | .478812 | .247907 | .548771 |                                       |
|       | .755118         |          | 1.165199  |           | .024979    |         |         |         |                                       |
| 67.51 | .H07387         | .067996  | 1.183651* | 0.000000  | .015880    | .409366 | .247907 | .519217 |                                       |
| 74,66 | <b>.</b> 81P631 | .057826  | 1,190009  | 0.000000  | .019644    | .276350 | .247907 | .650632 |                                       |
| 92.61 |                 |          | 1.185464  |           |            |         | 247907  |         |                                       |

#### ACCUMULATED VAPOR MOLAR QUANTITIES VS ADJUSIED TIME

.

|  | PROPIONATE | ETHER   | WATER   | ACRYLATE | ALCOHOL  | TIME  |
|--|------------|---------|---------|----------|----------|-------|
|  | .001069    |         |         | 095009_  | .040962_ |       |
|  | .003463    | .008105 | .101507 | .174360  | .088402  | 5.20  |
|  | •005559    | •012930 | .171824 | .258968  | .165360  | 20.15 |
|  | •014438    | .071461 |         | . 405176 | . 408731 | 43.53 |
|  | .018761    | .024701 | .419895 | ,456713  | .55)925  | 54.15 |
|  | .025073    | ·028389 | .534379 | .509268  | .762125  | 67.61 |
|  | .031053    |         | .636901 |          |          |       |
|  | .039773    | .034464 | .778703 | •57081B  | 1.234659 | 92.61 |
|  |            |         |         |          |          |       |
|  |            |         |         |          |          |       |

INSTANTAMEDUS TOTAL MOLAR QUANTITIES VS ADJUSTED TIME PEACTION\_RATE\_CONSTANTS

| TIME  | ALCOHOL  | ACRYLATE | WATER     |         |         |          |            | ROP PCONST |             |  |
|-------|----------|----------|-----------|---------|---------|----------|------------|------------|-------------|--|
|       | .494036  | 222616   | 1.043984  |         |         |          |            | 449959_    | 183.695450_ |  |
| 9.20  | .619557  | .280048  | 1.136869  | .008105 | ·C11157 | .550305  | 3.335145   | .296311    | 131.573279  |  |
| 20.15 | .77376A  | .355145  | 1.246840  | .012930 | .017959 | .561332  | 5.952258   | -50062     | 99.306952   |  |
| 43.53 | 1.106786 |          | 1.479877_ |         | 031530_ |          | 2.450.434_ |            | 75.513160   |  |
| 54.15 | 1.317043 | .521053  | 1.585094  | .024701 | .043740 | • 544052 | 1.871959   | .088687    | 55,851030   |  |
| 67.61 | 1.569511 |          | 1.718031  |         | .040953 | .571829  |            | .070867    |             |  |
| 76,65 | 1.776696 | .599936  | 1.326910  | .031161 | .050697 | .573479  |            |            | 41.515732_  |  |
| 92.61 | 2,074755 |          | 1.964168  | .034464 |         | •574837  |            |            | 33.791551   |  |

ACCUMULATED VAPOR QUANTITIES VS REAL TIME

| TIME.  | ALCOHOL  | ACRYLATE | WATER    | FTHER_  | _PROPIONATE |
|--------|----------|----------|----------|---------|-------------|
| 9.53   | .000886  | .000365  | 0.000000 | .000006 | 0.000000    |
| 14.72  | .008869  | .013546  | .006369  | .001402 | 0.000000    |
| 33.17  | .050131  | .106285  | .045667  | .004557 | .000884     |
| 41.33  | ,084532  | .181393  | .106994  | .008241 | .004422     |
| 52.03  | -169669  | .255590  | .190257  | •011962 | ,005506     |
| 70.67  | .354856  | .379463  | .289094  | .021424 |             |
| 85.12  | .555942  | .462474  | .406227  | .024170 | .018613     |
| 99.70  | .765405  | .508800  | .554768  | .028183 | .025357     |
| 110.83 | .058229  | .541296  | .645665  | .031441 | .031748     |
| 125•08 | 1.251094 | .573084  | .781854  | .034585 | .040081     |

### INSTANTANEDIIS LIGHID MOLE FRACTION VS ADJUSTED TIME

| TIME  | ALCOHOL         | ACRYLATE | WATER                    | FTHER    | PROPIONATE | COMPLEX | H2S04   | NH4HS04 |
|-------|-----------------|----------|--------------------------|----------|------------|---------|---------|---------|
| 0.00  | .158686         | .044693  | .349888                  | 0.000000 | 0.000000   | .281560 | .086828 | .078344 |
| 9.20  | .179724         | .035761  | .350330                  | 0.000000 | .002503    | .249165 | .083883 | .099533 |
| 20.15 | .140143         | .031374  | .350682                  | 0.000000 | .003722    | .213495 | .080370 | .121714 |
| 43.53 | •215059         | .034525  | .352193                  | 0.000000 | .005266    | .147514 | .075375 | .169067 |
| 54.15 | .232197         | .019526  | <ul><li>353613</li></ul> | 0,00000  | .007581    | .140447 | .075234 | .171403 |
| 67.01 | .240992         | .020295  |                          | 0.00000  | .004740    |         | .073993 | .194520 |
| 78.66 | .24 3524        | .017202  | .354001                  | 0.000000 | .005844    | .112134 | .073747 | .193549 |
| 92.61 | •25033 <u>9</u> | .012366  | .353254                  | 0.000000 | .003961    | .107932 | .073373 | .198275 |

INSTANTANEOUS VAPOR MOLE FRACTIONS AND TOTAL VAPOR FLOW RATE VS ADJUSTED TIME

| TIME  | ALCOHOL         | ACPYLATE | WATER   | ETHIP   | PROPIONATE | VPATE   |  |     |
|-------|-----------------|----------|---------|---------|------------|---------|--|-----|
| 0.00  | .211401         | .449951  | .300241 | .025865 | •012543    | *020096 |  |     |
| 9.20  | .284966         | .386082  | .294314 | •022027 | .012671    | 021266  |  |     |
| 20.15 | .359572         | .318885  | .290249 | .018213 | .013082    | .0/2725 |  |     |
| 43.53 | <b>.</b> 4×1328 | ·S0528   | .290091 | •015355 | .014570    | .026075 |  |     |
| 54.15 | 521051          |          |         | .010467 | .015625    |         |  |     |
| 67.61 | .562299         | .113438  | .298578 | .008703 | .016982    | .029956 |  |     |
| 75.56 | .549324         | .080215  | .304505 | .007659 | •018186    | .031704 |  | 1.0 |
| 92.61 | .614368         | .045728  | •313304 | .006805 | .019793    | .034139 |  | 9   |
|       |                 |          |         |         |            |         |  |     |

\_\_\_\_

### INSTANTANEOUS EQUILIBRIUM CONSTANTS VS ADJUSTED TIME

| TIME         | ALCOHOL    | ACRYLATE         | WATER   | ETHER PROPIONATE |  |
|--------------|------------|------------------|---------|------------------|--|
| 0.00         | 1.332195_  | 10.067497        |         | 100.000000       |  |
| 9.20         | 1.585241   | 10.796173        | .940105 | 4.867270         |  |
| 20.15        | 1.814707   | 10.164017        | ·827669 | 3.514819.        |  |
| 43.53        | _2.233751_ | 5.86609 <u>8</u> | H23671  |                  |  |
| 54.15        | 2.244002   | 8.188772         | .828490 | 2.061158         |  |
| 67.61        | 2.333366   | 5.589537         | .845146 | 3.552810         |  |
| 74.65        |            |                  |         |                  |  |
| <b>72.01</b> | 2.454146   | 3.597411         | ·886907 | 4.997329         |  |

\_\_INSTANTANEOUS\_LIQUID\_ACTIVITY\_COEFFICIENT\_VS\_ADJUSTED\_TIME\_\_\_\_\_

| TIME  | ALCOHOL  | ACRYLATE  | WATER                    | ETHER | PPOPIONATE |   |
|-------|----------|-----------|--------------------------|-------|------------|---|
|       | .388344  | 7.161463  |                          |       |            |   |
| 9.20  | .477158  | 7.906254  | •501590                  |       | 29.528718  |   |
| 20.15 | .562475  | 7.643653  | •511031                  |       | SS*16080S  |   |
| 43.53 |          |           | .530047_                 |       |            |   |
| 54.15 | .754643  | 6.629886  | .561389                  |       | 14.534421  |   |
| 67.61 | .878473  | 5.011072  | .650748                  |       | 29.419428  |   |
| 7t+65 | .940394_ | 4.337141_ | 687029_                  |       | 26.698382  |   |
| 92.61 | .980432  | 3.497370  | <ul><li>730055</li></ul> |       | 44.439047  | , |

SUMMAPY OF EPROPS FOR CURVE FITS-- 3 DEGREE POLYNOMIALS

VAPOP FLOW PATES

|               |             | IMS BEFORE   | VAPOR.RATE<br>ADJUSTED 1<br>TIME LAG C | TIME AFTER   |             |                                       |                                                  |
|---------------|-------------|--------------|----------------------------------------|--------------|-------------|---------------------------------------|--------------------------------------------------|
| <u></u>       | ARS PCT ERR | STANDARD DEV | ABS PCT FPR                            | STANDARD DEV |             |                                       |                                                  |
| АЦСОНОЦ       | 197432+01   |              | 19663E+01                              | .13895E+00   |             |                                       |                                                  |
| ACRYLATE      | +88415E+00  | .30889F+00   | .88595E+00                             | .30911E+00   |             |                                       |                                                  |
| WATER         | .52502E+01  | 22978E+00    | •52555F+01                             | .55030£+00   | · · · · · · |                                       |                                                  |
| ETHER         | 32748E+01   | 54435E+01    | 32695E+01                              |              |             |                                       |                                                  |
| PROPIONATE    | .10888E+02  | •66102E-01   | -10894E+02                             | •66148F-01   |             |                                       |                                                  |
| REACTION RATE |             |              |                                        |              |             |                                       |                                                  |
| •••           | ACR RATE    | ROP RATE     | PRO PATE                               |              |             |                                       |                                                  |
| AHS PCT FOR   | .1947?E+01  | .56018E-11   | .11497E+02                             |              |             | · · · · · · · · · · · · · · · · · · · |                                                  |
| STANDARD DEV  | .11912E-01  | .13729E-14   | .25989E-02                             |              |             |                                       | 5.00 S                                           |
|               |             |              |                                        |              |             |                                       | الي:<br>من من م |
|               |             |              |                                        |              |             |                                       | Ur Ur                                            |

| ANJUSTE        | ME IS COUNTE<br>D TIME IS CO | UNTED FROM T     | THE MOMENT ST    | TUDIES FOR D       | MIXED WITH ACDISTILLATION A | ACCOMPANIED          | BY CHEMICAL          | REACTIONS BEGIN      |       |             |
|----------------|------------------------------|------------------|------------------|--------------------|-----------------------------|----------------------|----------------------|----------------------|-------|-------------|
| INITIAL C      | ONDITIONS FO                 | R THE REAL T     | TIME             |                    |                             |                      |                      |                      |       |             |
| TEMP= 11       | 1.50 C VOL                   | = 134.12 ML      | TOT LIQ= 2       | 5.9021 MOL         | AMIDE= .984                 | A MOL H250           | 4= 1.247 MOL         | WATER= .672          | MOL . |             |
| FFED COND      | ITIONS                       |                  |                  |                    |                             |                      |                      |                      |       |             |
|                | 575 ML/MIN                   | ALCOHOL= .       | .8600 WT FRAC    | CTION WAT          | 'ER= .1400 WT               | FRACTION             | VAPOR FRACTI         | CN= .6000            |       | ••••        |
| MIXTURE 0      | UANTITIES AN                 | D REACTION R     | ATES VS ADJU     | ISTED TIME         |                             |                      |                      |                      |       | · · · · · · |
| TIME           | TIME LAG                     | TEMP             | LIQ VOL          | LID MOL            | VAP MOL                     | ACP PATE             | POP RATE             | PPO PATE             |       |             |
| 0.00           | .39015<br>.33825             | 119.46<br>117.91 | 162.22<br>163.63 | 2.57020<br>2.72996 | .20084<br>.40048            | .0081780<br>.0070556 | .0004171<br>.0005505 | •0010704<br>•0008797 |       |             |
| 33.42          | 27643                        | 115.12           | 164.00           | 2.96764<br>3.05593 | .93052                      | .0049540             | .0007024             | .0005384             |       |             |
| 48.25<br>60.09 | .25689<br>.24959             | 113.60<br>112.51 | 162.82<br>161.28 | 3.10544            | 1.32204<br>1.67284          | .0038244<br>.0024951 | .0007085<br>.0006622 | .0003674<br>.0002501 |       |             |
| 73.59          | .24267<br>.23769             | 111.60<br>111.52 | 159.08<br>155.23 | 3.13755<br>3.15287 | 2.09571<br>2.78662          | .0021646             | 0005528<br>0002612   | .0001429             |       | `           |
| INSTANTAN      | EOUS LIQUID                  | MOLAR OUANTI     | TJES VS ADJU     | ISTED TIME         |                             |                      |                      |                      |       |             |
| TIME           | ALCOHOL                      | ACRYLATE         | WATER            | FTHER              | PROPIONATE                  | COMPLEX              | H2504                | VH44504              |       |             |
| 0.00           | .334454                      | .114545          | .874261          | 0.000000           | 0.000000                    | .765238              | .263406              | .218297              |       | -           |
| 10.42          | .432274                      | .097155          | .944945          | 0.00000            | .008644                     | ,561445              | .263406              | ■3550≥0              |       |             |
| 33.92          | . 608889                     | . 046633         | 1.051775         |                    | •013404                     | .520201              | .263406              | .463334              |       | <b>-</b> .  |
| 48.25          | .650244                      | .036341          | $1 \cdot 098181$ | 0.000000           | .014227                     | .443993              | •263406              | .539542              |       |             |
| 60.09          | .690632                      | •026556          | 1.129973         | 0.001000           | .011341                     | .401589              | .263406              | .581846              |       |             |
| 73.59          |                              | .019630          | 1.163549         | 0.00000            | . 010479                    | •362435              | .263406              | •521100              |       |             |
|                |                              |                  |                  |                    |                             |                      |                      |                      |       |             |

.006975

.263405

.329136

.654399

0.000000

.

. .

. .

. .

- ----

- - - --

• •

.

.

· • · · ·

----

ŝ 3

ACCUMULATED VAPOR MOLAR DUANTITIES VS ADJUSTED TIME

.011759

94.67

.675530

| TIME  | ALCOHOL  | ACRYLATE | WATER . | ETHER    | PROPIONATE |
|-------|----------|----------|---------|----------|------------|
| 0.00  | .043488  | .103202  | .050849 | .002756  | .000551    |
| 10.52 | .081462  | .212367  | .094654 | .008075  | .003923    |
| 33.42 | .271900  | .389578  | .232504 | . 022820 | .013719    |
| 48.25 | .460502  | 468490   | .339548 | 033011   | .120485    |
| 60.09 | .653435  | .518189  | 434285  | •041171  | .025760    |
| 73.59 | .911339  | .560185  | •543939 | .049440  | .030807    |
| 94.67 | 1.387268 | .600594  | .705406 | .058279  | .035070    |

1.221661

# INSTANTANEOUS TOTAL MOLAR QUANTITIES VS ADJUSTED TIME

PEACTION RATE CONSTANTS

| TIME  | ALCOHOL  | ACRYLATE | WATER    | ETHER    | PROPIONATE | 1000/2.3PT | ACP RCONST | POP RCONST | PRO PCONST |  |
|-------|----------|----------|----------|----------|------------|------------|------------|------------|------------|--|
| 0.00  | .377942  | .217746  | +925110  | .002756  | .000551    | .556594    | 5-183416   | .504863    | 329.080896 |  |
| 10.02 | .513736  | .309522  | 1.039599 | .008075  | .012557    | .559800    | 4.037874   | .482101    | 190.564686 |  |
| 33.92 | .880789  | .435211  | 1.284279 | .022820  | .027123    | .562815    | 2.564954   | •310718.   | 75.082952  |  |
| 48.25 | 1.120746 | .504831  | 1.437730 | .033011  | .034711    | .565027    | 2,124201   | .254439    | 50.319350  |  |
| 60.09 | 1.344058 | .544745  | 1.564257 | • 041171 | .037102    | .566524    | 1.741216   | .223913    | 33,048931  |  |
| 73.59 | 1.508295 | .579814  | 1.707489 | .049440  | .041285    | .567964    | 1.363215   | .181038    | 20.542881  |  |
| 94.67 | 2.062798 | .612353  | 1.927068 | .058279  | .042045    | .568083    | .776923    | .088865    | 5.164531   |  |

## ACCUMULATED VAPOR QUANTITIES VS PEAL TIME

| TIME   | ALCOHOL  | ACRYLATE | WATER   | FTHEP   | PROPIONATE |
|--------|----------|----------|---------|---------|------------|
| 6.33   | .000209  | .000043  | .000172 | .000051 | 0.000000   |
| 16,00  | .005353  | .010086  | .014398 | .000429 | 0.000000   |
| 25.83  | .036399  | .108936  | .043155 | -001441 | .000851    |
| 36.83  | .092534  | .213138  | .114016 | .010964 | .003810    |
| 60.42  | .278531  | .400115  | •732105 | •023116 | •013791    |
| 74.42  | .466585  | .470924  | .335134 | .031490 | .021995    |
| 87.00  | .683681  | .524731  | .459603 | .042572 | .026076    |
| 100.00 | .940598  | .561588  | •553327 | •051777 | .030751    |
| 120.17 | 1.389036 | .601308  | .704872 | .057690 | .035233    |

### INSTANTANEOUS LIQUID MOLE FRACTION VS ADJUSTED TIME

| TIME  | ALCOHOL | ACRYLATE | WATEP   | ETHER    | PROPIONATE | COMPLEX | H2504                    | NH4H504 | • |
|-------|---------|----------|---------|----------|------------|---------|--------------------------|---------|---|
| 0.00  | •130128 | .044566  | .340153 | 0.000000 | 0.000000   | .297735 | .102485                  | .084934 |   |
| 10.92 | .158345 | 035589   | .346139 | 0.000000 | .003166    | .242291 | .096437                  | 117983  |   |
| 33.92 | 205176  | .015714  | .354414 | 0.00000  | .004517    | .175291 | <ul><li>0ドお759</li></ul> | .156129 |   |
| 48.25 | .216053 | .011892  | .359360 | 0.00000  | .004655    | 145289  | .086195                  | .176555 |   |
| 60.09 | .222394 | .008552  | 363868  | 0.000000 | .003652    | .129350 | .084821                  | .187363 |   |
| 73.59 | .222133 | .006256  | .370845 | 0.000000 | .003340    | .115515 | .083953                  | 197957  |   |
| 94.57 | ·213582 | .003718  | .386251 | 0.000000 | •00SS02    | .104053 | .083281                  | •502360 |   |

## INSTANTANEOUS VAPOP MOLE FRACTIONS AND TOTAL VAPOR FLOW PATE VS ADJUSTED TIME

-

|   | VRATE   | PROPIONATE | ETHER   | WATER   | ACRYLATE | ALCOHOL | TIME  |
|---|---------|------------|---------|---------|----------|---------|-------|
|   | .016549 | .015359    | .025202 | .195075 | .652675  | .111688 | 0.00  |
|   | .019450 | .017947    | .027596 | .237986 | .461841  | 254629  | 10.92 |
|   | .025937 | .018158    | .027167 | .271966 | 243310   |         | 33.92 |
|   | .023676 | .016229    | .024708 | .272959 | .165969  | 520135  | 44.25 |
|   | .030506 | .013747    | .021707 | .266191 | .120007  | 578347  | 60.09 |
| • | +032643 | .005983    | .017252 | .251325 | .080937  | 640503  | 73.59 |
|   | .033269 | .001932    | .007852 | .213178 | .039688  | .737349 | 94.57 |
|   |         |            |         |         |          |         |       |

392

## INSTANTAMENUS FOULLIBRIUM CONSTANTS VS ADJUSTED TIME

|     | TIME  | ALCOHOL  | ACRYLATE  | WATER           | ETHER PROPIONATE |
|-----|-------|----------|-----------|-----------------|------------------|
|     | 0.00  | .858299  | 14.644999 | •573493         | 100.000000       |
| ~~~ | 10.92 | 1.608071 | 12.977234 | .687546         | 5.667993         |
|     | 33.92 | 2.141572 | 15.483791 | .767369         | 4.019920         |
|     | 48.25 | 2.407443 | 13.956431 | •75956 <b>9</b> | 3.486104         |
| ~   | 60.09 | 2.600552 | 14.033328 | •731559         | 3.764228         |
|     | 73.59 | 2.883416 | 12.936922 | .677707         | 2.989037         |
|     | 54.07 | 2.452308 | 10.674622 | .551916         | .876106          |

### INSTANTANEOUS LIQUID ACTIVITY COEFFICIENT VS ADJUSTED TIME

| TIME  | ALCOHOL  | ACRYLATE  | WATER    | ETHEP | PROPIONATE |
|-------|----------|-----------|----------|-------|------------|
| 0.00  | ·538520  | 9.955608  | .312451  |       | 100.000000 |
| 10.92 | .465524  | 9.164696  | •393138  | · ·   | 32.728981  |
| 33.92 | .669612  | 11.725458 | • 479252 |       | 25.777024  |
| 44.25 | .745517  | 10.985626 | •49P073  |       | 23+687233  |
| 60.09 | .875349  | 11.360054 | •496914  | · · · | 26.672315  |
| 73.59 | .996222  | 10.722373 | •474171  |       | 21,939458  |
| 94.67 | 1.195526 | 8.865763  | .387168  |       | 6.450625   |

SUMMARY OF ERROPS FOR CURVE FITS-- 3 DEGREE POLYNOMIALS

### \_VAPOR FLOW PATES

- • -

|            | ADJUSTED    | E VS VAPOP<br>TIME BEFORE<br>COPRECTION | VAPOR PATE VS LIQUID<br>ADJUSTED TIME AFTEP<br>TIME LAG CORPECTION |              |  |
|------------|-------------|-----------------------------------------|--------------------------------------------------------------------|--------------|--|
|            | APS PCT EPR | STANDARD DEV                            | ABS PCT FPP                                                        | STANDARD DEV |  |
| ALCOHOL    | •58561E+01  | • 38122E+00                             | •54705E+01                                                         | .38275E+00   |  |
| ACRYLATE   | •72442E+00  | • 23701E+00                             | •73157E+00                                                         | .23913E+00   |  |
| AATER      | •64925E+01  | • 19697E+00                             | •54969E+01                                                         | .19725E+00   |  |
| ETHEP      | .19997E+02  | .12560F+00                              | •19978E+02                                                         | .12573F+00   |  |
| PROPIONATE | .62723E+01  | .82926E+01                              | •62269E+01                                                         | .827916-01   |  |

## REACTION PATE

|              | ACP RATE   | ROR RATE   | PRO RATE   |
|--------------|------------|------------|------------|
| ARS PCT FRP  | •69592E+00 | •26933E-10 | .14526E+02 |
| STANDARD DEV | •33847E-02 | •32037E-14 | .70547E-03 |

. . ....

-----

. . . . . . . . . . .

.

. . .. -

- -

\_ \_\_\_\_\_

. . . . . . .

**....** .....

· · · · · · · · · · · ·

· · · · · · · · · · · ·

| ADJUSTED   | ME IS COUNTER<br>D TIME IS COU | UNTED FROM TH | OMENT_ALCOHOL<br>THE MOMENT STU<br>OR SLIGHTLY A | DIES FOR DI | ISTILLATION  | ACCOMPANIED | BY CHEMICAL    | PEACTIONS BEGINS | IN     |
|------------|--------------------------------|---------------|--------------------------------------------------|-------------|--------------|-------------|----------------|------------------|--------|
| INITIAL CC | DADITIONS FOR                  | P THE REAL TI | IWE                                              |             |              |             |                |                  |        |
| TEMP=_11)  | 1.50_CVOL                      | =.136.58.ML_  | IOT_LIQ=_2.                                      | 9488_MOL    | _AMIDE=_1.02 | 3. MOL      | 14=1.254_ MOL. | WAIER=67         | 72_MOL |
| FEED CONDI | ITTONS                         |               |                                                  |             |              |             |                |                  |        |
| PATE=1.19  | 920 ML/MEN                     | 4LC0H0L=      | 3600 WT FRACT                                    | ION WATE    | EP= .1400 WT | FRACTION    | VAPOR FRACTI   | JON= .7000       |        |
| MIXTURE QU | JANTITIES AND                  | D PEACTION R/ | ATES VS ADJUS                                    | TED TIME    |              |             |                |                  | ,      |
| TIME       | TIME LAG                       | •••••         | LIQ .VOL                                         | LIQ MOL     |              | ACR RATE.   | ROR RATE -     |                  |        |
| 0.00       | .40039                         | 118.86        | 163.44                                           | 2.54249     | .20576       | .0074508    | .0003143       | .0005839         |        |
| 13,92      | ·38780                         | 116.80        | 162.13                                           | 2.66646     | .43731       | .0067901    | .0003294       | .0006431         |        |
|            |                                |               | 160.48                                           | 2.78431     | .71600       |             | ·········      |                  |        |
| 43.00      | .34756                         | 114.16        | 158.86                                           | 2.85420     | .97571       | .0050951    | .0003485       | .0005214         |        |
| 58.43      | •31950                         | 113.07        | 156.66                                           | 2.93414     | 1.31613      | .0039981    | .0003542       | .0003141         |        |
| 70.39      |                                |               | 154.85                                           | 2.95943     |              |             |                | .0001034         |        |
| 64.17      | .27967                         | 111.63        | 152.36                                           | 2.95825     | 1.94515      | .0020157    | .0003555       | 0+0000000        |        |
| INSTANTANE | IOUS LIQUID +                  | MOLAR QUANTIT | TIES VS ADJUST                                   | TED TIME    | ·· •···      |             |                | · · · · ·        |        |
| TIME       | ALCOHOL                        | ACRYLATE.     |                                                  | ETHER       | _PROPIONATE_ | COMPLEX.    | H2SO4          | NH4HS04          |        |
| 0.00       | .315402                        | •110475       | .858602                                          | 0.000000    | .003932      | .807022     | .230999        | .216057          |        |
| 13.92      | 402017                         | .084569       | .916297                                          | 0.000000    | .009504      | .702744     | .230999        | .320295          |        |
| 29.55      |                                |               |                                                  | 0.000000    |              |             | 230499 .       | 436410           |        |
| 43.00      | .502658                        | .055786       | 1.020140                                         | 0.110000    | .021539      | •51000H     | .230499        | .513071          |        |
| 58.93      | .541373                        | .053031       | 1.066809                                         | 0.000000    | .018873      | .429264     | .530368        | .593815          |        |
|            |                                |               | 1.075054                                         | _0.000000   |              |             |                | .537421          |        |
| 84.17      | .599982                        | .036945       | 1.057389                                         | 0.000000    | .009861      | .350718     | •530999        | .572361          |        |

ACCUMULATED VAPOR MOLAR QUANTITIES VS ADJUSTED TIME

------

| PROPIOMATE | EIHER-  | WAIER_  | ACHYLATE_ | ALCOHOL- | 1     |
|------------|---------|---------|-----------|----------|-------|
| 0.000000   | •002580 | .058527 | .101651   | .042997  | 0.00  |
| .001242    | .007057 | .111813 | •S54580   | .092218  | 13.42 |
| .005171    |         |         |           |          | 29.58 |
| .010039    | •016929 | .231337 | .424707   | .242596  | 43.00 |
| ·016985    | .022531 | .321153 | .504927   | 450535   | 58.43 |
| S86350.    |         | .404661 |           |          |       |
| .028886    | .031508 | •532664 | •596669   | .756434  | 84.17 |

• • • • • • • • • • •

....

## INSTANTANEONS TOTAL MOLAR QUANTITIES VS ADJUSTED TIME \_\_\_\_\_\_ REACTION\_RATE\_CONSTANTS\_\_\_\_\_\_

.....

400

\_\_\_\_\_

| TIME  | ALCOHOL  | ACRYLATE | WATEP    | FTHEP   | PROPIONATE | 1000/2.3RT | ACR RCDNST | POR RCONST | PRO RCONST |  |
|-------|----------|----------|----------|---------|------------|------------|------------|------------|------------|--|
| 0.00  | 358399   |          |          |         |            |            | 4.790531   |            | 194.292051 |  |
| 13.92 | .494235  | .309549  | 1.028110 | .007057 | .010746    | .540391    | 3.896484   | .329415    | 148.826391 |  |
| 29.58 | .644351  | .414564  | 1.153171 | .012301 | .021846    | .552309    | 3.528931   | .259113    | 129.702825 |  |
| 43.00 | .745353  | .481493  | 1.260477 | .016929 | .031577    | .564210    | 3.157412   | .219122    | 102.114462 |  |
|       |          |          | 1.387962 |         |            |            |            | .199330    |            |  |
| 70.39 | 1.148563 | •549339  | 1,479715 | .026602 | .038083    | .566331    | 2.220847   | .171582    | 20.005447  |  |
| 4.17  | ].356416 | .633614  | 1.590053 | .031508 | -039747    | .567920    | 1.459408   | .150479    | 0.000000   |  |

# ACCUMULATED VAPOR QUANTITIES VS REAL TIME

| ALCOHOL | ACRYLATE                                                                             | WATER                                                                                                                                                  | FTHER                                                                                                                                                                                                                                                                                                                                                                                                 | PROPIONATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .001647 | .000164                                                                              | .001875                                                                                                                                                | .000004                                                                                                                                                                                                                                                                                                                                                                                               | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •006821 | •014009                                                                              | .009013                                                                                                                                                | .000532                                                                                                                                                                                                                                                                                                                                                                                               | 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .042550 | <b>.</b> 102915                                                                      | .059862                                                                                                                                                | •002580                                                                                                                                                                                                                                                                                                                                                                                               | 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .095521 | .226343                                                                              |                                                                                                                                                        | .007211                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 135043  | .344054                                                                              | .166497                                                                                                                                                | .012429                                                                                                                                                                                                                                                                                                                                                                                               | .005034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .299106 | .430226                                                                              | .246946                                                                                                                                                | •017048                                                                                                                                                                                                                                                                                                                                                                                               | .010835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .446362 | .499533                                                                              | .311953                                                                                                                                                | .022397                                                                                                                                                                                                                                                                                                                                                                                               | .016826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •54062A | •556752                                                                              | .409805                                                                                                                                                | .026941                                                                                                                                                                                                                                                                                                                                                                                               | .022281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .761662 | .597285                                                                              | .538259                                                                                                                                                | .031614                                                                                                                                                                                                                                                                                                                                                                                               | •029260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | .001647<br>.006821<br>.042550<br>.095521<br>.135043<br>.299106<br>.446362<br>.590626 | .001647<br>.006821<br>.014009<br>.042550<br>.102915<br>.095521<br>.226343<br>.135043<br>.344054<br>.249106<br>.430226<br>.446362<br>.590626<br>.556752 | .001647         .000164         .001875           .006821         .014009         .009013           .042550         .102915         .059862           .095521         .226343         .112172           .135043         .344054         .166497           .249106         .430226         .246946           .446362         .499533         .311953           .540626         .556752         .409805 | .001647         .000164         .001875         .000004           .006821         .014009         .009013         .000532           .042550         .102915         .059862         .002580           .095521         .226343         .112172         .007211           .135043         .344054         .166497         .012429           .299106         .430226         .246946         .017048           .446362         .499533         .311953         .022397           .590626         .556752         .409805         .026941 |

### INSTANTANEOUS LIQUID MOLE FRACTION VS ADJUSTED TIME

| TIME  | ALCOHOL | ACRYLATE | WATER                    | ETHER    | PROPIONATE | COMPLEX | H2504   | 1444504 |
|-------|---------|----------|--------------------------|----------|------------|---------|---------|---------|
| 0.00  | .124053 | .043451  | .337701                  | 0.00000  | .001546    | +317414 | .090856 | .084979 |
| 13.92 | .150768 | .031716  | .343637                  | 0.000000 | .003564    | .263564 | .086631 | .150150 |
| 29.58 | .145000 | ,026177  | .352425                  | 0.000000 | .005989    | .210705 | ·082965 | .156739 |
| 43.00 | .175497 | .019826  | .359311                  | 0.000000 | .007520    | .178063 | .080550 | .179132 |
| 5%.93 | .144507 | .018074  | <ul><li>363582</li></ul> | 0.000000 | .006432    | .144299 | .078727 | ·5053H0 |
| 70.39 | .141524 | • 16150  | .363264                  | 0.00000  | .005305    | .130315 | .072055 | .215386 |
| 84.17 | .202816 | .012489  | .357437                  | 0.000000 | •003333    | .11°556 | .078035 | ·227283 |

### INSTANTANEOUS VAPOP MOLE FRACTIONS AND TOTAL VAPOR FLOW RATE VS ADJUSTED TIME

| TIME  | ALCOHOL | ACPYLATE | WATEP   | ETHER   | PROPIONATE | VENTE     |  |
|-------|---------|----------|---------|---------|------------|-----------|--|
| 0.00  | .143923 | .588697  | .247190 | .019351 | •000934    | •016242   |  |
| 13.92 | .274619 | .477809  | .218038 | •019189 | •010345    | .017113   |  |
| 29,59 | .392271 | .363667  | •218606 | .018353 | .017099    | .CIR:62   |  |
| 43.00 | .441974 | .279186  | .241660 | .017250 | .019931    | *050505   |  |
| 58,93 | ,479140 | .196938  | .287852 |         | .020413    | .022524   |  |
| 70.39 | .487631 | .149597  | •356020 | •014455 | .019290    | a 1745.14 |  |
| h4.17 | .482606 | .104479  | .383197 | ·015955 | .016796    | ,027515   |  |
|       |         |          |         |         |            |           |  |
|       |         |          |         |         |            |           |  |

### INSTANTANEOUS EQUILIBRIUM CONSTANTS VS ADJUSTED TIME

| TIME   | ALCOHOL   | ACRYLATE  | WATER    | ETHER PROPIONATE |  |
|--------|-----------|-----------|----------|------------------|--|
|        | 1.159375  | 13.548407 |          | .606599          |  |
| 13.42  | 1.821469  | 15.065425 | .634501  | 2.902283         |  |
| 29.5H  | 2.316791  | 13.392467 | •620291  | 2.855147         |  |
| 43.00_ | 2.519416_ | 14.081701 |          | 2.650350         |  |
| 58.93  | 2.596367  | 10.895523 | .791713  | 3.173578         |  |
| 70.39  | 2.546057  | 9.263032  | .905842  | 3.635923         |  |
| H4.17  | 2.379522  |           | 1.072069 | 5.038799         |  |

### INSTANTANEOUS LIQUID ACTIVITY COEFFICIENT VS ADJUSTED TIME

|      | ··· · ·   | ·         |         |       |            |   |                | <br> |
|------|-----------|-----------|---------|-------|------------|---|----------------|------|
| TIM  | E ALCOHOL | ACRYLATE  | WATER   | FTHER | PROPIONATE |   |                |      |
| 0.0  | 0 .328928 | 9.399434  | .408603 |       | 3.400628   |   |                |      |
|      | 2         |           |         |       |            |   | * •• F. ****** | <br> |
| 29.5 | ٩ .721418 | 10.486772 | .345265 |       | 18.158955  |   |                |      |
| 43.0 | 0 .813514 | 10.988620 | •435599 |       | 17.726560  |   |                |      |
|      | 3865135 . |           |         |       |            |   |                |      |
| 70.3 | 9 .856947 | 7.502088  | •614777 |       | 25.709717  | • |                |      |
| 84.1 | .826063   | 6.967612  | •753598 |       | 37.150528  |   |                |      |
|      |           |           |         |       |            |   |                |      |
|      |           |           |         |       |            |   |                |      |

### -SUMMARY\_OF\_FREDES.FOR\_CURVE\_FITS--3-DEGREE\_POLYNOMIALS

-----

| AHS PCT EPR       STANDARD DEV       ABS PCT EPR       STANDARD DEV         ALCOHOL       .11105E+01       .13477E+00       .11104F+01       .13522E+00         ACPYLATE       .47916E+00       .30090E+00       .47948F+00       .30140E+00         WATER       .21878E+01       .13226E+00       .21899F+01       .13237E+00         ETHER       .53435E+00       .75281E-02       .53494E+00       .75485E-02         PROPIONATE       .61829E+01       .53082E-01       .61953F+01       .53152E-01         REACTION RATE       ACR RATE       ROP RATE       PRO PATE |               |               | E VS VAPOR<br>TIME PEFORE<br>CORRECTION |             | TIME AFTER   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-----------------------------------------|-------------|--------------|--|
| ACPYLATE       .47916E+00       .30090E+00       .47948F+00       .30140E+00         WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | AHS PCT EPR   | STANDARD DEV                            | ABS PCT EPR | STANDARD DEV |  |
| WATER       .2187RE+01       .132265+00       .218995+01       .13237E+00         ETHER       .534355+00       .75281E+02       .53494E+00       .75485E+02         PROPIONATE       .618295+01       .53082E+01       .53152E+01         REACTION RATE                                                                                                                                                                                                                                                                                                                    |               |               |                                         |             |              |  |
| ETHER       .53435E+00       .75281E+02       .53494E+00       .75485E+02         PROPIONATE       .61829E+01       .53082E+01       .53152E+01         REACTION RATE                                                                                                                                                                                                                                                                                                                                                                                                      |               | • • • • • • • |                                         | • • • • • • |              |  |
| ACR RATEACR RATEROP_RATEPRO_PATE<br>AHS PCT FRR .36429E+00 .40862E-11 .54306E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |               |                                         |             |              |  |
| ACR RATE ROP_RATE PRO PATE<br>AHS PCT FRP .36429E+00 .40862E-11 .54306E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROPIONATE    | .618295+01    | .53082E-01                              | •61953F+01  | .53152E-01   |  |
| ARS PCT FRP .36429E+00 .40862E-11 .54306E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | REACTION RATE |               |                                         |             |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | ACR RATE      | ROP. RATE                               | PRO PATE.   |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AHS POT FRR   | -36429E+00    | -40862E-11                              | -54306E+01  |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |               |                                         |             |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |               |                                         |             |              |  |

| ADJUSTE     | ME IS COUNTE<br>D TIME IS CO | UNTED FOOM T | HE MOMENT ST | UDIES FOR C | MIXED WITH AC<br>DISTILLATION A<br>EACTING LIQUI | CCOMPANIED F               | BY CHEMICAL  | PEACTIONS BEGIN |                                         |
|-------------|------------------------------|--------------|--------------|-------------|--------------------------------------------------|----------------------------|--------------|-----------------|-----------------------------------------|
| THITIAL C   | MOTIONS FO                   | P THE REAL T | IME          |             |                                                  |                            |              |                 |                                         |
| TFMP= 11    | 0.00 C VOL                   | = 135,33 ML  | TOT LIQ= 2   | 9567 MOL    | AMIDE= 1.016                                     | MOL H2504                  | t≖ 1•550 MOF | WATER= .714     | MOL                                     |
| FEED COND   | ITTONS                       |              |              |             |                                                  |                            |              |                 | ·                                       |
| RATE=1.1    | TO ML/MIN                    | ALCOHOL= .   | 8600 WT FRAC | TION WAT    | EP= .1400 WT                                     | FRACTION                   | VAPOP FRACT  | [CN= .5500      |                                         |
| - MIXTUPE O | JANTITIES AN                 | D REACTION R | ATES VS ADJI | ISTED TIME  |                                                  |                            |              |                 | · ·                                     |
| TIME        | TIME LAG                     | TEMP         | LIO VOL      | LIQ MOL     | VAP MOL                                          | ACP PATE                   | ROP PATE     | PRO PATE        |                                         |
| 0.00        | .50110                       | 118.34       | 155.63       | 2.53738     | .33001                                           | .0078523                   | .0001328     | .0004537        |                                         |
| 15.00       | •4 <u>792</u> 4              | 116.81       | 156.62       | 2.66625     | .49735                                           | .0057068                   | • 0001999    | .0003H78        |                                         |
| 26.50       |                              | 115.00       | 156.35       | S•28501     | •23554                                           | .0054160                   | .0002534     | .0003067        |                                         |
| 42.83       | .36419                       | 112.70       | 156.84       | 2.49165     | 1.03401                                          | .0040847                   | ·0002778     | .0002137        |                                         |
| 61.00       | . 34041                      | 110.60       | 152.72       | 2.97023     | 1.40811                                          | .0027557                   | .0002601     | .0001079        |                                         |
| 73,+3       | . 32955                      | 109.00       | 151.54       | 3.00751     | 1.69169                                          | .0019139                   | .0002191     | .0000319        | ria and an ever a constant and a second |
| 82.83       | .32371                       | 107.00       | 151.13       | 3.02567     | 1.89817                                          | •0013712                   | .0001764     | 0.000000        |                                         |
| INSTANTAN   | LIDUS LIDUID                 | MOLAR QUANTI | TIPS VS ADJU | ISTED TIME  |                                                  |                            |              |                 | · · · · ·                               |
| TINE        |                              | ACRYLATE     |              | ETHER       | PROPIONATE                                       | COMPLEX                    |              | NH4HSO4         | · · · · · · · · · · · · · · · · · · ·   |
| 0.00        | .316017                      | .087630      | .905228      | 0.00000     | .002462                                          | .734085                    | .209716      | •278239         |                                         |
| 12.00       | <ul><li>371656</li></ul>     | .106635      | •956507      | 0.000000    | .005421                                          | <ul> <li>622450</li> </ul> | .209716      | -393875         |                                         |
| 26.50       | . 473099                     | .067512      | 1.013355     | - 0.00000   | .009010                                          | ,553574                    | .209716      | .462750         |                                         |
| 42.43       | .541035                      | •044471      | 1.068971     | 0.000000    | .011128                                          | .472781                    | .209715      | .543544         |                                         |
| 61.00       | •576829                      | .038991      | 1.117961     | 0.00000     | -010407                                          | .301801                    | •Suð110      | .624523         |                                         |
| 73.43       | .604628                      |              | 1.142885     | 0.000000    | .008494                                          | .356000                    | .209716      | +650324         |                                         |
| 42.43       | .614532                      | .017603      | 1.154973     | 0.000000    | .007518                                          | •357531                    | .209716      | .658793         |                                         |

402

,

ACCUMULATED VAPOR MOLAR ONANTITIES VS ADJUSTED TIME

- - -

. . .

| TIMF    | ALCOHOL | ACPYLATE | WATEP   | FTHER   | PROPIONATE               |
|---------|---------|----------|---------|---------|--------------------------|
| 0.00    | .053337 | .186560  | .085659 | .002866 | .001587                  |
| 15.00   | .085902 | .278835  | .124745 | .004382 | .002982                  |
| 26.50   | .159836 | .381292  | .177973 | .008205 | .004937                  |
| 42.43   | .286495 | •480499  | .246972 | .012594 | .007456                  |
| 61.00   | •47P724 | .564518  | .336712 | •017552 | .010507                  |
| 73.83   | .645328 | .603345  | .409345 | .020651 | .013024                  |
| - H2*H3 | .776748 | ·618870  | •465307 | .022439 | <ul><li>914802</li></ul> |

. . . . . . . . . .

---

## \_INSTANTAMENUS TOTAL MOLAR RUANTITIES VS ADJUSTED TIME

PEACTION RATE CONSTANTS

| TIME    | ALCOHOL  | ACRYLATE | WATER      | ETHER   | PROPIONATE | 1000/2.397 | ACP RCONST | ROP RCONST | PPO PCONST |
|---------|----------|----------|------------|---------|------------|------------|------------|------------|------------|
| 0.00    | .369354  | .274190  | .990487    | .002866 | .004049    | .558136    | 5.239388   | .206990    | 149,102136 |
| 12.00   | .457557  | .385471  | 1.081251   | .004882 | .008404    | .550376    | 4.540511   | .226622    | 110.627838 |
| 26.50   | .632934  | .448804  | 1.191327   | .008205 | .013947    | .542984    | 3.233272   | .177024    | 60.517403  |
| 42.83   | .827531  | 524960   | _ 1.315943 | .012544 | .018534    | .555345    | 2.472651   | .146932    | 37.021753  |
| 61.00   | 1.055553 | .603509  | 1.454073   | .017552 | .071015    | .51.4444   | 1.862121   | .119353    | 19.310559  |
| 73.83   | 1.249956 | .628805  | 1.552231   | .020651 | .021519    | .571829    | 1.310539   | .090839    | 5.467848   |
| . 42,53 | 1.396279 | .636473  | 1.620280   | .022439 | .022320    | .573630    | .935544    | .069456    | 0.000000   |

### ACCUMULATED VAPOR QUANTITIES VS REAL TIME

| TIME       | ALCOHOL | ACRYLATE | WATER   | ETHER   | PROPIONATE |
|------------|---------|----------|---------|---------|------------|
| <br>12.00  | 001959  |          | 020261  | 000010  | 0.000000   |
| 21.57      | +011225 | .041640  | .020261 | .000639 | 0.000000   |
| 37,75      | .05276A | ,188479  | .084701 | .002432 | .001507    |
| <br>50,33  | .090058 |          |         | .006286 | .003347    |
| 64.67      | .166377 | .388649  | .184000 | .007292 | .004637    |
| 87.58      | .348120 | .516161  | .272120 | .014501 | .008675    |
| <br>.98.58 |         |          |         |         | .011163    |
| 111.58     | .653602 | .602489  | .418783 | .020419 | .012407    |
| 120.67     | .779792 | • 620029 | .462906 | .022507 | •015138    |

### INSTANTANEOUS LIQUID MOLE FRACTION VS ADJUSTED TIME

| <br>•       |         |          |         |          |            |         |         |         |
|-------------|---------|----------|---------|----------|------------|---------|---------|---------|
| TIME        | ALCOHOL | ACRYLATE | WATER   | ETHER    | PROPIONATE | COMPLEX | H2S04   | NH4HS04 |
| 0.00        | .124545 | .034536  | .356757 | 0.000000 | .000970    | .290885 | .082651 | .109656 |
| <br>12.00   | .139392 | .039994. | .358745 | 0.00000  | .002033    | .233454 | .078655 | 147726  |
| 26.50       | .169629 | .024206  | .363338 | 0.00000  | .003230    | .195484 | .075193 | .165919 |
| 42.83       | .187103 | .015379  | .369676 | 0.000000 | .003843    | .163499 | .072525 | .187970 |
| <br>61.00 . | .194204 | .013127  | .376389 | 0.00000  | .003504    | .131909 | .070505 | •S105¢1 |
| 73.83       | •50103ô | .008465  | .380011 | 0.000000 | •002824    | .121696 | .069731 | ·216234 |
| 85.83       | .204759 | .005818  | .381725 | 0.000000 | .002485    | -114166 | .059315 | .217735 |
|             |         |          |         |          |            |         |         |         |

### INSTANTANEOUS VAPOR MOLE FRACTIONS AND TOTAL VAPOR FLOW RATE VS ADJUSTED TIME

|       | ••••     |          | a state |          |            |          |
|-------|----------|----------|---------|----------|------------|----------|
| TJME  | ALCOHOL  | ACRYLATE | WATER   | ETHER    | PPOPIONATE | VPATE    |
| 0.00  | .125017  | .615850  | .240426 | .010344  | .008363    | +012341  |
| 12.00 | ,253763  | .495779  | ·558851 | .013314  | .008322    | .015011  |
| 26.50 | .367486  | .383498  | .226070 | .014620  | .008325    | .017333  |
| 42.83 | . 466320 | .278594  | .232505 | .014204  | .008377    | .010555  |
| 61.00 | . 557661 | 173408   | .248379 | .012075  | .008477    | .021537  |
| 73.83 | .616373  | .100978  | .264391 | • 009685 | .003572    | 19224.55 |
| F2.83 | •656363  | .049443  | .277950 | .007592  | •008552    | .023236  |
|       |          |          |         |          |            |          |

\_ INSTANTANEOUS FOULLIBPIUM CONSTANTS VS ADJUSTED TIME

|   | TIME  | ALCOMOL  | ACRYLATE  | WATER   | ETHEP | PROPIONATE |
|---|-------|----------|-----------|---------|-------|------------|
|   | 0.00  | 1.003780 | 17.832358 | .673920 |       | 8.618434   |
| - | 12.00 | 1.820499 | 12.396219 | •637H3R |       | 4.092732   |
|   | 21.50 | 2.166405 | 15.842925 | .622203 |       | 2.577275   |
|   | 42.13 | 2.492315 | 18.115154 | .622944 |       | S.176690   |
|   | 61.00 | 2.871528 | 13.200849 | .659900 |       | 2.419276   |
|   | 73.83 | 9.065931 | 11.929258 | .695746 |       | 3.035035   |
|   | H2.F3 | 3.205543 | 9.498370  | .728142 |       | 3.482004   |

# INSTANTANEOUS LIGHTD ACTIVITY COEFFICIENT VS ADJUSTED TIME

| TIME  | AL COHOL   | ACRYLATE   | WATER   |   | FTHER | PROPIONATE |
|-------|------------|------------|---------|---|-------|------------|
| 0.00  | .287487    | 12.489878  | .381096 |   |       | 49.095677  |
| 12.00 | 5444R      | 9.018323   | .378447 |   |       | 24,681977  |
| 250   | 691263     | 12.062405  | .391005 |   |       | 16.640789  |
| 42.+3 | .836354    | 14.627174  | .425594 |   |       | 15.347020  |
| 61.00 | 1.023632   | 11.24.4723 | .478208 | - |       | 18.507329  |
| 73.83 | 1.145254   | 10.610250  | •531528 |   |       | 24.726810  |
| 85.83 | . 1.240659 | 7.805105   | .578956 | • |       | 29.753977  |

SUMMARY OF ERROPS FOR CURVE FITS-- 3 DEGREE POLYNOMIALS

VAPOR FLOW PATES

|                                                     | VAPOR RATE<br>ADJUSTED TI<br>TIME LAG CO                           | ME REFORE                                                          | VAPOR PATE<br>ADJUSTED T<br>TIME-LAG C                             |                                                                    |
|-----------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                     | ARS PCT ERR                                                        | STANDARD DEV                                                       | ABS PCT ERR                                                        | STANDAPD DEV                                                       |
| ΑLCOHOL<br>ΔCΡΥLΔΤΕ<br>ΨΔΤΕΡ<br>ΕΤΗΓΡ<br>ΡΓΟΡΙΟΝΑΤΓ | .14075E+01<br>.52735E+00<br>.15599E+01<br>.83624E+01<br>.51183E+01 | .21654E+00<br>.23232E+00<br>.99241E-01<br>.55828E-01<br>.62226E-01 | .140035+01<br>.52732F+00<br>.15530F+01<br>.83574F+01<br>.511885+01 | .21522F+00<br>.23231E+00<br>.98960F-01<br>.55844E-01<br>.52225E-01 |

REACTION RATE

| REACTION RATE | ACP PATE   | ROP RATE   | PPO PATE   |  |
|---------------|------------|------------|------------|--|
| AHS PCT FPP   | .18273E+01 | .21163E-10 | .25175E+01 |  |
| Standard NEV  | .95334E-02 | .17879E-14 | .35547E-03 |  |

DEFINITIONS-

PEAL TIME IS COUNTED FROM THE MOMENT ALCOHOL IS FIRST MIXED WITH ACRYLAMIDE SULFATE ADJUSTED TIME IS COUNTED FROM THE MOMENT STUDIES FOR DISTILLATION ACCOMPANIED BY CHEMICAL PEACTIONS BEGIN ADJUSTED TIME MUST PEGIN RIGHT OR SLIGHTLY AFTER THE PEACTING LIQUID MIXTURE BECOMES BOILING

INITIAL CONDITIONS FOR THE REAL TIME

TEMP= 110.00 C VOL= 138.48 ML \_ TOT LIG= 3.0385 MOL AMIDE= 1.002 MOL H2504= 1.282 MOL WATER= .755 MOL

FEED CONDITIONS

PATE=1.4650 ML/MIN ALCOHOLE .8600 WT FRACTION WATER= .1400 WT FRACTION VAPOR FRACTION= .7500

MIXTURE QUANTITIES AND REACTION RATES VS ADJUSTED TIME

| т   | INF .               | TIME LAG | TEMP   | LIQ VOL | LID MOL | VAP MOL | ACP PATE | POP PATE | PRO RATE |
|-----|---------------------|----------|--------|---------|---------|---------|----------|----------|----------|
| с.  | 00                  | .38533   | 120.77 | 164.84  | 2.68972 | ·316°3  | .0108451 | .0003246 | .0007003 |
| 13. | 52.                 | .33159   | 118.92 | 164.69  | 2.86613 | .56985  | .00-1809 | .0003110 | .0004697 |
| 24. | .02                 | .29520   | 116.32 | 163.91  | 3.01500 | .90635  | .0056545 | .0002948 | .0002755 |
| 43. | .05 -               | .27364   | 114.07 | 162.74  | 3.10892 | 1.25871 | .0037499 | .0002790 | .0001559 |
| 63. | 08                  | .25212   | 111.74 | 160.49  | 3.18355 | 1.82166 | .0017141 | .0002549 | .0000821 |
| 74. | 32                  | .24579   | 110.71 | 158.43  | 3.20410 | 2.24722 | .0007035 | .0002353 | •0001022 |
| 92. | .01 <sup>°°°°</sup> | .24133   | 110.03 | 155.41  | 3.20261 | 2.72522 | .0001926 | .0002169 | .0001764 |

INSTANTANEOUS LIGUID MOLAR QUANTITIES VS ADJUSTED TIME

| TIME  | ALCOHOL | ACRYLATE | WATER    | FTHER    | PROPIONATE | COMPLEX | H2504   | NH4H504 |
|-------|---------|----------|----------|----------|------------|---------|---------|---------|
| 0.00  | -33480B | .126927  | .941537  | 0.000000 | .004840    | .714460 | ·279637 | .287510 |
| 13.72 | .422734 | .121689  | 1.030110 | 0.000000 | .009994    | .573783 | 279637  | .428147 |
| 29.02 | .505509 | .110893  | 1.107308 | 0.000000 | .009687    | .442739 | .279537 | .539231 |
| 43.05 | .565284 | .093077  | 1.160252 | 0.000000 | .008695    | .397207 | .279537 | .604763 |
| 63.08 | .622177 | .061863  | 1.21033A | 0.000000 | .007568    | .346256 | .279637 | .655714 |
| 74.32 | .629404 | .055204  | 1.231570 | 0.000000 | .005315    | .313149 | .279637 | .688821 |
| 92.00 | .647227 | .027133  | 1.240556 | 0.000000 | .005432    | .316703 | .279637 | .585267 |

€0\$

ACCUMULATED VAPOR MOLAR QUANTITIES VS ADJUSTED TIME

|   | TIME   | ALCOHOL  | ACRYLATE | WATER   | FTHER   | PROPIONATE |
|---|--------|----------|----------|---------|---------|------------|
|   | _ 0.00 | .052611  | .154978  | .104365 | .004213 | •000766    |
|   | 13.72  | .115509  | .291300  | .149169 | .008574 | .005204    |
| • | 29.02  | .254014  |          | .220479 | .013209 | .009626    |
|   | 43.05  | .434991  | 489787   | .303491 | .017235 | •013204    |
|   | 63.08  | .765690  | .568737  | •447106 | .022584 | .017545    |
|   | 78.32  | 1.060674 | .607037  | .572919 | .026320 | •020264    |
|   | 92.00  | 1.347434 | .630415  | •695666 | .029414 | .022237    |
|   |        |          |          |         |         |            |

## INSTANTANEOUS TOTAL MOLAP QUANTITIES VS ADJUSTED TIME

REACTION RATE CONSTANTS

| TIME  | ALCOHOL         | ACRYLATE | WATER      | FTHER   | PROPIONATE | 1000/2.3PT | ACP PCONST | ROR RCONST | PRO PCONST |
|-------|-----------------|----------|------------|---------|------------|------------|------------|------------|------------|
| 0.00  | .347419         | .281905  | 1.045902   | .004213 | .005606    | .554743    | 7.473510   | .477376    | 237.587783 |
| 13.72 | <b>.</b> 538343 | 412989   | 1.179279   | .008574 | •015198    | .557361    | 5.554533   | .286589    | 124.230146 |
| 29.05 | .759523         | .519913  | 1.327787   | .013209 | .019313    | .561081    | 3.962153   | .189064    | 62.601479  |
| 43.05 | 1.000276        |          | 1.463743   | .017235 | •021899    | ·244345    | 2.717880   | .142057    | 32.538518  |
| 63.08 | 1.307867        | .630600  | 1.657444   | .022584 | .025114    | •54775A    | 1.276942   | 105662     | 15.770849  |
| 78.32 | 1.690978        | .662242  | 1.804489 . | .026320 | .026579    | .549281    | .555487    | .094112    | 20.675628  |
| 92.00 | 1.995320        | .657549  | 1.936222   | .029414 | .027719    | .570292    | .146776    | •080817    | 32.463331  |

### ACCUMULATED VAPOR QUANTITIES VS REAL TIME

| TIME   | ALCOPOL  | ACRYLATE | WATEP      | FTHER   | PROPIONATE |
|--------|----------|----------|------------|---------|------------|
| 10,17  |          | 001904   | .002741    | .000076 | 0.000000   |
| 20.17  | .014684  | .050558  | .037152    | •002182 | .000197    |
| 31.10  | .051304  | ,158555  | .099023    | .004255 | .001243    |
| 44.83  | . 121952 |          |            | .008672 | .004506    |
| 60.17  | .255607  | .413963  | .212199    | .013383 | .009497    |
| 74.03  | .434631  | .491764  | .298613    | .017354 | .014265    |
|        | 724619   |          |            | 021692  | .017121    |
| 102.55 | 1.064545 | .608075  | .573331    | .026725 | .019491    |
| 155.95 | 1.350567 | 630645   | .596426    | .029319 | .022711    |
| -      | -        | •        | <b>.</b> . |         |            |

### INSTANTANEOUS LIGHID MOLE FRACTION VS ADJUSTED TIME

|         |          |           | •         | •        |            |          |          |         |
|---------|----------|-----------|-----------|----------|------------|----------|----------|---------|
| TIME    | ALCOHOL  | ACRYLATE  | WATEP     | FTHER    | PROPIONATE | COMPLEX  | H2504    | N444504 |
| 0.00    | .124477  | .047190   | .350050   | 0.000000 | .001799    | .265526  | .103965  | .105892 |
| _ 13.72 |          | .042458 . | 359407    | 0.000000 | .003487    | .200194  | .097566  | .149395 |
| 29.02   | .167654  | .036780   | .367266   | 0.000000 | .003213    | .153479  | •09274A  | .178849 |
| 43.05   | .181827  | .029939   | .373202   | 0.00000  | .002797    | .127764  | .089947  | .194525 |
| _ 63.08 | .195435  | 019432    | 380185    | 0.000000 | .002377    | .108764  | - 087B38 | S02868  |
| 74.32   | . 196437 | .017229   | .384373 . | 9.000000 | .001971    | • 997734 | •0H7275  | .2149H1 |
| 92.00   | •505599  | .008472   | 387357    | 0.000000 | •001696    | •04899à  | .087315  | .213971 |
|         |          |           |           |          |            |          |          |         |

# INSTANTANEOUS VAPOP MOLE FRACTIONS AND TOTAL VAPOR FLOW RATE VS ADJUSTED TIME

| AFCUHUE | ACPYLATE                                                       | WATEP                                                                                                                                                                       | FTHER                                                                                                                                                                                                                                                           | PPOPIONATE                                                                                                                                                                                                                                                                                                                                          | VPATE                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .137404 | .668520                                                        | .154039                                                                                                                                                                     | .019553                                                                                                                                                                                                                                                         | •020434                                                                                                                                                                                                                                                                                                                                             | .015602                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .336969 | 436807                                                         | .195623                                                                                                                                                                     | .015398                                                                                                                                                                                                                                                         | .015203                                                                                                                                                                                                                                                                                                                                             | .020196                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .471112 | .279628                                                        | .225386                                                                                                                                                                     | .012436                                                                                                                                                                                                                                                         | •01143°                                                                                                                                                                                                                                                                                                                                             | .023705                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ,549331 | 186598                                                         | .244498                                                                                                                                                                     | .010546                                                                                                                                                                                                                                                         | .009038                                                                                                                                                                                                                                                                                                                                             | .025452                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .617513 |                                                                | .264246                                                                                                                                                                     | •008608                                                                                                                                                                                                                                                         | .006577                                                                                                                                                                                                                                                                                                                                             | .024508                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .646774 | .064816                                                        | .275752                                                                                                                                                                     | .007494                                                                                                                                                                                                                                                         | .005164                                                                                                                                                                                                                                                                                                                                             | .031401                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .660808 | .043946                                                        | .284479                                                                                                                                                                     | .006660                                                                                                                                                                                                                                                         | .004107                                                                                                                                                                                                                                                                                                                                             | .032564                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | .137404<br>.336969<br>.471112<br>.549331<br>.617513<br>.646774 | .137404       .668520         .336969       .436807         .471112       .279628         .549331       .186598         .617513       .103055         .646774       .064816 | .137404       .668520       .154039         .336969       .436807       .195623         .471112       .279628       .225386         .549331       .186598       .244488         .617513       .103055       .264246         .646774       .064816       .275752 | .137404       .668520       .154039       .019553         .336969       .436807       .195623       .015398         .471112       .279628       .225386       .012436         .549331       .186598       .244488       .010546         .617513       .103055       .264246       .008608         .646774       .064816       .275752       .007494 | .137404       .668520       .154039       .019553       .020434         .336969       .436807       .195623       .015398       .915203         .471112       .279628       .225386       .012436       .011439         .549331       .186598       .244488       .010546       .009038         .617513       .103055       .264246       .008608       .006577         .646774       .064816       .275752       .007494       .005164 |

## INSTANTANEOUS FOULLIBRIUM CONSTANTS VS ADJUSTED TIME

| TIME  | ALCOHOL   | ACRYLATE  | WATEP   | ETHER PROPIONATE |  |
|-------|-----------|-----------|---------|------------------|--|
| 0.00  | 1.103850  | 14.166686 | .440047 | 11.384082        |  |
| 13.72 | 2.284647  | 10.288065 | .544294 | 4.359934         |  |
| 24.02 | 2.80984 B | 7.602615  | •613686 | 3.560288         |  |
| 43.05 | 3.021174  | 6.232686  | .655109 | 3.231348         |  |
| 63.0A | 3.159688  | 5.303341  | .695047 | 2.766787         |  |
| 78.32 | 3.242526  | 3.761963  | .717408 | 2.620042         |  |
| 92.00 | 3.266486  | 5.187101  | .734409 | 2.421406         |  |
|       |           |           |         |                  |  |

## INSTANTANEOUS LIQUID ACTIVITY COEFFICIENT VS ADJUSTED TIME

| <br>      |                 |          | -               |                  |
|-----------|-----------------|----------|-----------------|------------------|
| TINE      | ALCOHOL         | ACPYLATE | WATER           | ETHER PROPIONATE |
| 0.00      | .295776         | 9.325998 | .230178         | 59.148271        |
| <br>13.72 | <b>.</b> 6433≹0 | 7.085057 | .301482         | 24.244372        |
| 29.02     | .849518         | 5.584450 | .368830         | 21.812203        |
| 43.05     | .972637         | 4.845140 | 423018          | 21.559256        |
| <br>63.08 | 1.097000        | 4.378397 | .483960         | 20-192701        |
| 78.32     | 1.146897        | 3.190405 | <b>.</b> 516647 | 19.904729        |
| 95.00     | 1.180794        | 4.478259 | ·540854         | 18.892585        |

----

.....

\_SUMMARY OF FRROPS FOR CURVE FITS-- 3 DEGREE POLYNOMIALS

-----

| VAPOR FLOW PATES                                    | ADJUSTED 1                                                         | E VS VAPOR<br>TIME BEFORE<br>COPPECTION                            | ADJUSTED 1                                                         | E VS LIQUID<br>Time After<br>Correction                            |
|-----------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                     | ARS PCT ERR                                                        | STANDARD DEV                                                       | ABS PCT ERR                                                        | STANDARD DEV                                                       |
| ALCOPOL<br>ACRYLATE<br>WATEP<br>ETHEP<br>PEOPIONATE | •12521F+01<br>•458715+00<br>•35090F+01<br>•72623F+00<br>•93279F+01 | .12020E+00<br>.20424E+00<br>.16424E+00<br>.16156E-01<br>.97693E~01 | .12588E+01<br>.46287E+00<br>.35073E+01<br>.72394E+00<br>.93213E+01 | •12054F+00<br>•20602E+00<br>•16421E+00<br>•16156E-01<br>•97768E-01 |

407

### REACTION PATE

|              | ACR RATE   | POR RATE   | PPO RATE   |
|--------------|------------|------------|------------|
| ALS PCT FRR  | •47792E+00 | .22122E-10 | •35950F+01 |
| STANDARD DEV | •42623E-02 | .25639E-14 | •65219E-03 |

-----

DEFINITIONS-

PEAL TIME IS COUNTED FROM THE MOMENT ALCOHOL IS FIRST MIXED WITH ACRYLAMIDE SULFATE ADJUSTED TIME IS COUNTED FROM THE MOMENT STUDIES FOR DISTILLATION ACCOMPANIED BY CHEMICAL REACTIONS REGIN ADJUSTED TIME MUST BEGIN RIGHT OR SLIGHTLY AFTER THE REACTING LIQUID MIXTURE RECOMES' POILING

INITIAL CONDITIONS FOR THE REAL TIME

\_\_\_ TEMP= 106.00 C. VOL= 135.79 ML TOT LIG= 2.9157 MOL AMIDE= 1.000 MOL H2SO4= 1.283 MOL WATER= .633 MOL

FEED CONDITIONS

PATE=1.2500 ML/MIN ALCOHOL= .8600 WT FRACTION WATER= .1400 WT FRACTION VAPOR FRACTION= .8500

MIXTUPE QUANTITIES AND PEACTION PATES VS ADJUSTED TIME

| LTIME  | . TIME LAG . | TEMP   | LIQ VOL  | LIG MOL | VAP MOL | ACR PATE | ROP PATE | PPO PATE |
|--------|--------------|--------|----------|---------|---------|----------|----------|----------|
| 0.00   | .32041       | 115.71 | 165.86   | 2.60603 | .13304  | .0113540 | .0005178 | .0008334 |
| 11.00  | .33115       | 114.94 | 162.45   | 2.67167 | .36118  | .0089632 | .0005030 | .0005770 |
| 20.00. |              | 113.42 | 160.51   | 2.72651 | •54×01  | .0072277 | •0004835 | .0005621 |
| 30.10  | .32587       | 111.97 | 159.09   | 2.78835 | •75957  | .0055255 | .0004539 | .0004472 |
| 41.00  | .32467       | 110.80 | 158.20   | 2.85241 | .99225  | .0039795 | .0004125 | .0003399 |
| 74.00  | .30058       | 109.36 | . 156.58 | 2.99505 | 1.74897 | .0011410 | .0002234 | .0001501 |
| S4.00  | • ?777B      | 107.39 | 153.80   | 3.02653 | 2.26675 | .0007585 | .0000738 | .0000640 |

#### INSTANTANEOUS LIQUID MOLAR QUANTITIES VS ADJUSTED TIME

| TIME  | ALCOHOL | ACRYLATE | WATER           | ETHER    | PROPIONATE. | COMPLEX | H2S04   | VH44504 |
|-------|---------|----------|-----------------|----------|-------------|---------|---------|---------|
| 0.00  | .306B17 | .146505  | <b>.</b> 868283 | 0.000000 | .001798     | .765755 | .282345 | .234527 |
| 11.00 | -3439×D | .140294  | .896803         | 0.000000 | .007957     | .646201 | .282345 | .354081 |
| 20.00 |         | .139790  | .920947         | 0.000000 | .011579     | .561576 | ·282345 | .438705 |
| 30.10 | .415431 | .128352  | .948506         | 0.000000 | .013435     | .495279 | .282345 | .505003 |
| 41.00 | .468976 | .108905  | .978326         | 0.00000  | .013679     | .448703 | ·282345 | ·551578 |
|       | 556059  | 079636   | 1.063697        | 0.000000 | .013029     | .354136 | ·2H2345 | .545145 |
| 94,00 | .574021 | .055052  | 1.107164        | 0.00000  | .007667     | .339607 | ·242345 | .560674 |

408

ACCUMULATED VAPOR MOLAR QUANTITIES VS ADJUSTED TIME

| TIME  | ALCOHOL  | ACPYLATE | WATER   | FTHER   | BEUDIONATE |
|-------|----------|----------|---------|---------|------------|
| 0.00  | .0327×1  | .086224  | .010575 | .003458 | 0.000000   |
| 11.00 | .069637  | .203103  | .076641 | •009082 | .002716    |
| 20.00 | +117422  | .282273  | .129731 | .013526 | .005063    |
| 30.10 | .189486  | .355490  | .188597 | .018267 | .007726    |
| 41.00 | .248598  | .418341  | .251662 | .022997 | .010653    |
| 74.00 | .717564  | •533411  | .444003 | .033817 | +020071.   |
| 54.00 | 1.056539 | •571581  | •565364 | .034893 | .026374    |

### \_INSTANTANEOUS TOTAL MOLAP QUANTITIES VS ADJUSTED TIME

PEACTION RATE CONSTANTS

1

| TIME  | ALCOHOL  | ACRYLATE | WATEP    | ETHER   | PROPIONATE | 1000/2.3RT | ACR RCONST | RCP RCONST | PRO PCONST |  |
|-------|----------|----------|----------|---------|------------|------------|------------|------------|------------|--|
| 0.00  | ,370598  | .232729  | .978857  | .003458 | •001798    | .561962    | 8.022451   | .912363    | 318.042323 |  |
| 11.00 | .413617  | .343397  | .973445  | .009082 | .010583    | .563077    | 6.550538   | .690576    | 233,657446 |  |
| 20.00 | .422994  | .422062  | 1.050677 | .013526 | .016643    | .545290    | 5.554615   | .562133    | 186.775121 |  |
|       | .604417  | .483842  | 1.137103 | .018267 | .021151    | .567419    | 4.272268   | .418370    | 132.418351 |  |
| 41.00 | .757473  | .527246  | 1.229989 | 022997  | .024332    | .549148    | 2.492279   | ·296841    | 86.221852  |  |
| 74.00 | 1.273623 | .613047  | 1.507700 | .033817 | .033098    | .571290    | .907245    | .115681    | 26.895555  |  |
| 94.00 | 1.640560 | .626634  | 1.672528 | .036893 | .034040    | .574248    | .606430    | .034436    | 13.529227  |  |

### ACCUMULATED VAPOR QUANTITIES VS REAL TIME

| TIMF   | ALCOHOL  | ACRYLATE | WATER           | ETHER   | PPCPIONATE |
|--------|----------|----------|-----------------|---------|------------|
| 10.35  | 0.000000 | .000300  | 0.00000         | .000054 | 0.000000   |
| 20.35  | .007779  | .022775  | 0.00000         | .001296 | 0.000000   |
| 30.35  | .030536  | .073219  | .024423         | .003658 | .000217    |
| 41.35  | .071496  | .216062  | .057171         | .009341 | .005502    |
| 51.35  | .124031  | .312117  | •114343         | .012756 | .004891    |
| 60.45  | .184176  | .332834  | .204263         | .017400 | .007609    |
| 71.35  | .285629  | .401958  | .266430         | .024703 | .011413    |
| 104.35 | .721133  | .549795  | •430173         | .033099 | .019533    |
| 124.35 | 1.056855 | •565578  | <b>.</b> 571159 | .037149 | .026562    |

### INSTANTANEOUS LIQUID MOLE FRACTION VS ADJUSTED TIME

| TIME -    | - ALCOHOL | ACPYLATE | WATER   | ETHER    | PROPIONATE | COMPLEX | H2504                | NH4HS04 |
|-----------|-----------|----------|---------|----------|------------|---------|----------------------|---------|
| 0.00      | .117734   | .056218  | .333182 | 0.00000  | .000690    | .293840 | .108343              | .089944 |
| 11.00     | .128751   | .052512  | .335671 | 0.00000  | •002982    | .241871 | .105681              | .132532 |
|           | .136281   | .051270  | .337774 | 0.000000 | .004247    | .205969 | .103555              | .160903 |
| 30.10     | 148988    | .046032  | .340167 | 0.000000 | .004818    | .177624 | •101259 <sup>°</sup> | ·181115 |
| 41.00     | .164379   | .038180  | .342982 | 0.00000  | .004796    | .157307 | .098985              | .193372 |
| - 74.00 - | .]85660   | .026589  | .355152 | 0.10000  | .004350    | ·11H241 | .094271              | -215738 |
| 94.00     | .189653   | .018190  | .365820 | 0.000000 | .002533    | .112210 | .093290              | .218294 |

### INSTANTANEOUS VAPOR MOLE FRACTIONS AND TOTAL VAPOR FLOW RATE VS ADJUSTED TIME

| TIME  | ALCOHOL | ACRYLATE | WATER   | ETHER   | PROPIONATE | VPATE   |
|-------|---------|----------|---------|---------|------------|---------|
| 0.00  | .108359 | .562378  | .291927 | .024874 | .012461    | .020818 |
| 11.00 | .214022 | •462486  | .286680 | .024269 | .012542    | .020725 |
| 20.00 | .296696 | .385996  | .281503 | .023226 | .012579    | .020819 |
| 30.10 | .383109 | .307888  | .2749CB | .021505 | .012539    | .921104 |
| 41.00 | 466524  | .234688  | .267090 | .019074 | .012563    | .021627 |
| 74.00 | .643972 | .092620  | .241814 | .009298 | 012296     | .074569 |
| 94.00 | .696453 | .061438  | .227365 | .002698 | .012045    | .027345 |
|       |         |          |         |         |            | 5       |

### \_\_INSTANTANEOUS FOULLIBRIUM CONSTANTS VS ADJUSTED TIME

| TIME  | ALCOHOL  | ACPYLATE  | WATER    | FTHER | PPOPIONATE |
|-------|----------|-----------|----------|-------|------------|
| 0.00  | .920376  | 10.003577 | .876179  |       | 18.065505  |
| 11.00 | 1,662297 | 8.807304  | .854051  |       | 4.205774   |
| 20.00 | 2.1770H2 | 7.528618  | .833406  |       | 2,961955   |
| 30.10 | 2.571410 | 6.688641  | .808154  |       | 2.612850   |
| 41.00 | 2.838474 | 6.145886  | .778730  |       | 2.619725   |
| 74.00 | 3,468564 | 3.483385  | .680875  |       | 2.826705   |
| 94.00 | 3.672055 | 3.377594  | . 621523 |       | 4.755141   |

### INSTANTANEOUS LIQUID ACTIVITY COEFFICIENT VS ADJUSTED TIME

| T [**F | ALCOHOL          | ACRYLATE | WATER   | ETHER | PPOPIONATE |
|--------|------------------|----------|---------|-------|------------|
| 0.00   | .280142          | 7.385919 | •531441 |       | 112.084661 |
| 11.00  | .516950          | 6.630366 | .530887 |       | 26.871026  |
| 20.00  | .706657          | 5.891575 | .543959 |       | 20.054575  |
| 30.10  | .969 <u>89</u> 1 | 5.433614 | •552856 |       | 18.708359  |
| 41.00  | .903140          | 5.148026 | •553490 |       | 10.631486  |
| 74.00  | 1.265704         | 3.030003 | .507455 |       | 22.415134  |
| 94.00  | 1.420355         | 3.096449 | .494632 |       | 40.778548  |

----

SUMMARY OF EPPOPS FOR CURVE FITS-- 3 DEGREE POLYNOMIALS

### VAPOR FLOW PATES

|            | ADJUSTED    | E VS VAPOP<br>TIME REFORE<br>Correction | VAPOP PATE VS LIQUID<br>ADJUSTED TIME AFTER<br>TIME LAG COPPECTION |              |  |  |
|------------|-------------|-----------------------------------------|--------------------------------------------------------------------|--------------|--|--|
|            |             |                                         |                                                                    |              |  |  |
|            | ABS PCT EPR | STANDARD DEV                            | ABS PCT FRR                                                        | STANDARD DEV |  |  |
|            |             | •                                       |                                                                    |              |  |  |
| ALCOHOL '  | 27859E+01   | 18279E+00                               | .27951E+01                                                         | 18352E+00    |  |  |
| ACRYLATE   | •693P8E+01  | .19659E+01                              | +69543F+01                                                         | .19691E+01   |  |  |
| WATEP      | .172975+02  | 28444F+00                               |                                                                    | .29414E+00   |  |  |
| . ETHER    | .40866E+01  | .67215E-01                              | .40244F+01                                                         | .67187E-01   |  |  |
| PPOPIONATE | .283195+02  | .66729E-01                              | -28315F+02                                                         | .66666E-01   |  |  |

| REACTION RATE | ACR PATE   | POR RATE . | PPO RATE   |
|---------------|------------|------------|------------|
| ARS PCT FRP   | .56876F+00 | .13097E-10 | .45928F±01 |
| STANDAPD DEV  | .34811E-02 | .18169E-14 | .58349F=03 |

DEET ITTCHS-FEAL TIME IS CONNTED FROM THE MOMENT ALCOHOL IS FIRST MIXED WITH ACRYLAMIDE SULFATE. AUGUSTED TIME MUST REGIN RIGHT OF SLIGHTLY AFTER THE REACTING LIGHTD MIXTURE BECOMES BOILING

ACOUSTED TIME IS COUNTED FROM THE MOMENT STUDIES FOR DISTILLATION ACCOMPANIED BY CHEMICAL REACTIONS BEGIN

VOL= 137.40 ML TOT LID= 2.9706 MOL AMIDE= 1.006 MOL H2SO4= 1.293 MOL WATER= .672 MOL

VAPOR FRACTION=0,0000

MIXTHEE QUANTITIES AND REACTION PATES VS ADJUSTED TIME

INITIAL CONDITIONS FOR THE REAL TIME.

TEMP= 106.00 C FEED CONVITIONS

RATE=1.5060 ML/MIN

| - | TINE  | TIVE LAG | TEMP           | LIO VOL | LIO MOL | VAD MOL | ACP PATE | 407 DATE | PRO PATE |
|---|-------|----------|----------------|---------|---------|---------|----------|----------|----------|
|   | 0.00  | .36350   | 110-80         | 175.50  | 2.82511 | 23682   | 0093422  | 0001945  | .0007131 |
|   | 12.45 | .35454   | 108-47         | 177.56  | 3.01435 | 45510   | 0074428  | 0001962  | .0005449 |
|   | 29.28 | .35107   | 105-00         | 182.40  | 3.25903 | 74331   | 0052282  | 0001913  | .0003645 |
|   | 41.76 | .32505   | 102-60         | 186.57  | 3.44269 | 97179   | 0037770  | 0001823  | .0002722 |
|   | 55.41 | .29320   | 100-38         | 190.72  | 3.62123 | 1.25561 | 0023501  | 0001656  | .0001972 |
|   | 71.66 | .25972   | 98-00          | 193.22  | 3.77762 | 1.61729 | 0010350  | 0001422  | .0001580 |
|   | 71.65 | .23223   | 98.00<br>97.00 | 192+39  | 3.55737 | 1.98822 | .0001169 | .0001147 | .000152  |

ALCOHOL= .8600 WT FPACTION WATEP= .1400 WT FPACTION

INSTANTAMENIS LIDHID MOLAP QUANTITIES VS ADJUSTED TIME

| TIME<br>0.00<br>12.65<br>24.28<br>41.76<br>55.61 | AL COMOL<br>.447400<br>.564378<br>.705045<br>.812174<br>.938392 | ACPYLATE<br>153557<br>129316<br>134339<br>121693<br>094154 | WATEP<br>.928691<br>1.017205<br>1.125164<br>1.200533<br>1.280798 | FTHEP<br>0.000000<br>0.000000<br>0.000000<br>0.000000<br>0.000000 | PROPIONATE<br>.002644<br>.008629<br>.010624<br>.015467<br>.015079 | COMPLEX<br>.726725<br>.625482<br>.501271<br>.438390<br>.400958 | H2504<br>•256630<br>•256630<br>•256630<br>•256530<br>•256530<br>•256630 | VH4HS04<br>.279467<br>.377710<br>.504921<br>.567802<br>.605233 |
|--------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|
| 55.61<br>71.56<br>86.50                          | 1.044370<br>1.047470                                            | •044154<br>•063043<br>•034400                              | 1.364470                                                         | 0.000000                                                          | .009954<br>.008475                                                | .3752H3<br>.357070                                             | .286530<br>.286530                                                      | .530909<br>.649122                                             |

ACCUMULATED VAPOR MOLAR DUANTITIES VS ADJUSTED TIME

| TIME  | AL COHOL | ACRYLATE | WATER   | FTHER   | PPOPIONATE |
|-------|----------|----------|---------|---------|------------|
| 0.00  | 042065   | 122646   | .058983 | .002506 | .000520    |
| 12.65 | 105128   | .236620  | .105227 | .004982 | .003144    |
| 29.28 | 213879   | 353777   | .161258 | .008216 | .006180    |
| 41.76 | .321735  | .422006  | .208864 | .010552 | .008636    |
| 55 91 | 479726   | 483978   | .267858 | .013028 | °015055    |
| 71.65 | 705005   | .539847  | .338876 | .015469 | .017055    |
| 65.50 | . 959402 | .583211  | .405116 | .017253 | .023036    |

# - INSTANTANEOUS TOTAL MOLAD QUANTITIES VS ADJUSTED TIME

PEACTION RATE CONSTANTS

| - | TIME<br>0,00            | ALCOHOL<br>• 483465              | ACRYLATE<br>.276203           | WATER<br>.997674                 | ETHER<br>002506               | PPOPIONATE<br>.003264<br>.011773 | 1000/2.3PT<br>.569148<br>.572523 | ACP PCONST<br>5.042564<br>3.712546 | POP PCONST<br>.170458<br>.109595 | P90 RCONST<br>150.980198<br>85.206897 |
|---|-------------------------|----------------------------------|-------------------------------|----------------------------------|-------------------------------|----------------------------------|----------------------------------|------------------------------------|----------------------------------|---------------------------------------|
|   | 12.65<br>24.28<br>41.76 | .671506<br>.918964<br>1.133909   | .365937<br>.488117<br>.543699 | 1+122432<br>1+226422<br>1+409397 | .002216<br>.002216<br>.010552 | •014×04<br>•024103               | •577477<br>•577477               | 2.698102                           | .070193                          | 49.337590<br>32.759578                |
|   | 55.91<br>71.55<br>85.50 | 1.41710H<br>1.752365<br>2.047472 | .578133<br>.603890<br>.617610 | 1.548656<br>1.703346<br>1.938916 | .013028<br>.015469<br>.017253 | 027101<br>027019<br>031512       | .585024<br>.588776<br>.590366    | 1.191266<br>.509263<br>.057911     | .035083<br>.025039<br>.018646    | 20.312852<br>14.352836<br>14.194684   |

## ACCUMULATED VAPOR DUANTITIES VS REAL TIME

| TIME   | ALCOHOL | ACRYLATE | WATEP   | ETHER   | PPOPIONATE |
|--------|---------|----------|---------|---------|------------|
| 10.58  | .000969 | .000526  | .002371 | .00003  | 0.000000   |
| 20.4H  | .005521 | .010911  | .018612 | .000312 | 0.000000   |
| 34.08  | 042995  | 123901   | .069817 | .002585 | .000425    |
| 46.48  | 108219  | .242161  | 105388  | .004932 | •003932    |
|        | 219989  | 358572   | .165533 | .008563 | .005365    |
| 76.03  | 324968  | 418987   | ·508487 | .010480 | ·009397    |
| 90.00  | 444081  | .443434  | .266631 | .012910 | .011504    |
| 105.70 | 710700  | 545782   | .343568 | .015726 | .017533    |
| 119.67 | 969184  | 592641   | .406322 | •017236 | .023106    |

## INSTANTANEOUS LIQUID MOLE FRACTION VS ADJUSTED TIME

| <u> </u> | TIMF<br>0.00            | ALCOHOU<br>•158365            | ACRYLATE<br>.054354           | WATER<br>•328727<br>•337454   | FTHER<br>0.000000<br>0.000000    | PPOPIONATE<br>.000936<br>.002853 | COMPLEX<br>.257237<br>.204497 | H2504<br>•101458<br>•095089   | NH4HS04<br>•098922<br>•125304 |
|----------|-------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------------|----------------------------------|-------------------------------|-------------------------------|-------------------------------|
| -        | 12.65<br>24.28<br>41.76 | .187894<br>.215752<br>.235913 | •042900<br>•041107<br>•035349 | .344294<br>.348720            | 0.000000                         | .003251<br>.004493               | .153346<br>.127339            | .087707<br>.083258            | •154503<br>•164930            |
|          |                         | .259)33<br>.275992<br>.282024 | .025001<br>.016940<br>.008918 | •353691<br>•361198<br>•371704 | 0.000000<br>0.000000<br>0.000000 | •004154<br>•002638<br>•002147    | .110724<br>.099344<br>.092568 | •079153<br>•075876<br>•074307 | .167135<br>.157012<br>.168281 |

# INSTANTAMENUS VAPOR MOLE FRACTIONS AND TOTAL VAPOR FLOW RATE VS ADJUSTED TIME

| <br>TINE<br>0.00<br>12.65<br>29.28 | ALCOHOL<br>•256241<br>•324555<br>•43)104 | ACRYLATE<br>.569956<br>.472570<br>.342794<br>.258089 | WATER<br>150324<br>180520<br>204853<br>209975 | FTHER<br>.011113<br>.011452<br>.010785<br>.009598 | PROPIONATE<br>.012366<br>.010404<br>.010452<br>.011170 | VPATE<br>.017498<br>.017132<br>.017735<br>.016997 |
|------------------------------------|------------------------------------------|------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|
| <br>55.01                          | .591078                                  | .184240                                              | .204079                                       | .007933                                           | •012770                                                | .02)248                                           |
| 71.65                              | .660217                                  | .131179                                              | .187832                                       | .005723                                           | •015049                                                | .024844                                           |
| 85.50                              | .703588                                  | .105862                                              | .169444                                       | .003969                                           | •017137                                                | .024900                                           |

## \_ INSTANTAMEDUS FOUTLIBRIUM CONSTANTS VS ADJUSTED TIME

| TIME  | ALCOHOL  | ACRYLATE  | WATER                      | ETHER PROPIONATE |
|-------|----------|-----------|----------------------------|------------------|
| 0.00  | 1.618040 | 10.485959 | .457291                    | 13.211312        |
| 12.65 | 1.727329 | 11.015550 | .534946                    | 3.809114         |
| 29.28 | 1.949145 | 8.339049  | .595023                    | 3.214466         |
| 41.76 | 2.166771 | 7.301326  | .602131                    | 2.486212         |
| 55.61 | 5.540985 | 7.085987  | <ul> <li>576998</li> </ul> | 3.066831         |
| 71.56 | 2.393526 | 7.743656  | .520025                    | 5.705781         |
| **.*0 | 2.494779 | 11.870681 | 455857                     | 7.799550         |

### INSTANTAMENUS LINHID ACTIVITY COEFFICIENT VS ADJUSTED TIME

| TIVE  | ALCOHOL  | ACPYLATE  | WATEP   | ETHEP | PROPIONATE |
|-------|----------|-----------|---------|-------|------------|
| 0.00  | .577972  | 8.965281  | .331807 |       | 101.057998 |
| 12.65 | .640554  | 10.015710 | .419218 |       | 31.941801  |
| 24.24 | .H47009  | 9.327)76  | .524044 |       | 30,996186  |
| 41.76 | .QHCH23  | 7.790925  | .575737 |       | 26.451568  |
| 55.41 | 1.117008 | 8.049561  | .595911 |       | 35.794925  |
| 71.66 | 1.254316 | 9.416235  | •583968 |       | 73.665102  |
| 85.50 | 1.361432 | 14.859862 | .530410 |       | 105.109495 |

- SUMMARY OF FREDRS FOR CURVE FITS-- 3 DEGREE POLYNOMIALS

### VAPOR FLOW RATES

|                              | ADJUSTED                               | VAPOR RATE VS VAPOR<br>ADJUSTED TIME REFORE<br>TIME LAG CORRECTION |                                                                     | VAPOR PATE VS LIQUID<br>ADJUSTED TIME AFTER<br>TIME LAG CORPECTION |   |
|------------------------------|----------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|---|
|                              | APS PCT EPP                            | STAMDARD DEV                                                       | ABS PCT FRR                                                         | STANDARD DEV                                                       |   |
| ALCOMOL<br>ACPYLATE<br>WATES | .23766E+00<br>.75909E+00<br>.95454E+00 | .37398F-01<br>.34893F+00<br>.43843E-01                             | <ul> <li>23460F+00</li> <li>76465F+00</li> <li>95577E+00</li> </ul> | .372408-01<br>.350498+00<br>.438×26-01                             |   |
| FTHED<br>PHOFIONATE          | -175905+01<br>-15305E+02               | .14147F-01<br>.90230E-01                                           | .17593F+01<br>.15327E+02                                            | •14157E-01<br>•90247E-01                                           | • |

### REACTION RATE

|              | ACP PATE   | ROR RATE   | PPO PATE   |
|--------------|------------|------------|------------|
| AHS PCT FER  | .12291E+01 | •18497E-10 | .50102E+01 |
| Standard ofy | .64117E-02 | •12533E-14 | .13240E-02 |

```
C.2.1 Program List for Program MODEL
                                                                       414
       MODEL
                                     11/01/29
                         CDC
                                                     PAGE
                                                            1
   PPOGRAM MODEL (INPUT, OUTPUT, IAPES=INPUT, TAPEG=OUTPUT)
   COMMON MM+MV+M+NM+VF+V+Y(5)+YIN(5)+RMW(9)+X(18)+X1(18)+XLAMDA(5+5)
   1, HINT, HOUTOT, HLOSS, HRXN, HUXDTM, CPMDTDT
   COMMON /BLOCK1/ APHO(9.5) + ACPL(9.5) + AHVO(5.5) + TIN+RC+ARK1+E01+
  1APY2+E02+ARK3+E03+DHR1+DHR2+DHR3+QUALE+U0+FEEDP
   COMMON /HLOCK2/ AP(5), HP(5), CP(5), TC(5), PT, SUNY, DY, RMT, OMEGA(5)
   COMMON /BLOCK3/ RM(18), TIRE, TIME1, DTIME, VN
   DIMENSION RP(9) + IDEN(9) + RMD(18) + YD(5)
 x(1)
        ---- X(9)
                   LIQUID MOLE FRACTIONS
 RM(1) ---- PM(9)
                       LIQUID MOLAR QUANTITIES
 RM(]0)=TEMPERATURE
 RM(1))=LIQUID TOTAL MOLAR QUANTITY
 RM(12)=CLEAR LIQUID VOLUME
        -----
 PM(13)
                 RM(17)
                         ACCUMULATED VAPOR MOLAR QUANTITIES
 RM(1A)=ACCUMULATED VAPOR TOTAL MOLAR OUANTITY
 Y(1) - Y(5)
                   EQUILIBRIUM VAPOR MOLE FRACTIONS
 VEINSTANTANEOUS MOLAR EVAPOPATION PATE
   READ(5+24) MM.WV.M.NN
   READ(5.12) ((APHO(I.J), J=1.M) .I=1.MM)
   READ(5.12) ((ACPL(1.J), J=1.M), J=1.MM)
   READ(5.12) ((AHV0(I.J), J=1.MV), I=1.MV)
   READ(5+11) = (RMW(I)+J=1+MM)
   REFD(5,11) (TC(I), I=1, MV)
   RFAD(5,11) (OMEGA(I) · I=1, MV)
   READ(5,14) = (AP(I), BP(I), CP(I), I=1, MV)
   READ(5.)) E01,E02,E03.PC
   PFAU(5,27)((XLAMDA(I,J),J=1,5),I=1,5)
27 FORMAT(5F10.0)
   READ(5,87) (IDEN(1),1=1,MM)
   DO 16 1=1.MM
   00 16 J=1,M
   ARHO(I,J) = ARHO(I,J) *1000./PMW(I)
   ACPL(I,J)=ACFL(I,J)*RMW(I)
16 CONTINUE
   DO 28 1=1.4V
   DO 28 J=1.M
28 AHV0(I+J)=AHV0(I+J)*RMW(I)
30 READ(5+24) ISET
   PEAD(5+11) TIN+FEEDV+RHOIN+PT+V
   READ(5+11) (PM(I),I=1+NN)
   READ(5,11) (Y(I), I=1, MV)
   RFAD(5.11) (YIN(I).1=1.MV)
   DO 15 I=1+3V
15 YIW(I)=YIW(I)*FEEDV*RHOIN/RMW(I)
   FFFDP=YIV(1) + YIV(3)
   YIN(1) =YIN(1) /FEEDR
   YIN(3) = 1 - YIN(1)
   PT=PT/760.
   UN 444 I=1,NN
44 RMO(I)==M(I)
   DO 443 I=1.MV
43 Y \cap (I) = Y (I)
   V \theta = V
```

```
11 FORMAT(8F10.0)
12 FORMAT(5E14.5)
 14 FORMAT(3F10.0)
24 FORMAT(415)
87 FORMAT(946)
UO2 READ(5.11) UHRI.OHR2.DHR3.U0.QUALE
    READ(5,11) DTIME, ATIME, TSLT, DVN, EPS
    WRITE (5,129) ISET
129 FORMAT(1H1,2X,7HRUN NO.,13)
    WRITE(6.144) QUALE.DTIME.U0.0HR1
144 FORMAT(/2X, 21HINLET VAPOR FRACTION=, F5.2, 5X, 22HINTEGRATION STEP-SI
   IZE=.F7.2.8H MINUTES//2X.3HU0=.F5.2.14H CAL/CM2-MIN-C.5X.5HDHR1=.
   IFE.1.10H CAL/G MOL/)
    AFK1=2.303*(18.19607-0.57106*ALOG10(TIN-104.)-0.13054**LOG10(
   10UALE+0.044739)-0.50106*ALOG10(0.9112+FEEDV))
    Apx2=2.303*(24.3061-1.1396*AL0610(T)N-103.22)+0.13061*4L0610(
   loualE+0.01)-0.25786*AL0610(FEEDV-0.66092))
    ARK3=2.303*(26.72173-0.88507*AL0G10(TIN-104.)-0.39986*AL0G10(
   10H4LE+1.8434) -0.16398*AL0610(6.7684+FEEDV))
    RMS = RM(2) + PM(5) + RM(14) + RM(17)
    JJ=0
    TIME1=0.
    SU#Y=1.
    RHT=0.
    D0 25 J=1.4M
25 RMT=PMT+PM(J)
    DU 50 I=1.1W
25 X(I) = RM(I) / RMT
    WPITE(6,100)
100 FORMAT(//1X,41HINITIAL CONDITIONS BASED ON ADJUSTED TIME/)
    DO 70 I=1.~V
70 RP(I)=Y(I) /
    RP(6) = V
    RP(7) = SUMY
    RP(8) = 0.
    PP(9) = 0.
    DO 88 I=1.MM
    JP = I + 9
RR write(6,101) = I * X(I) * I * RM(I) * JP * RM(JP) * IDFN(I) * RP(I)
101 FURMAT(3X+2HX(+I2+2H)=+F9+5+6X+3HRM(+I2+2H)=+F9+5+6X+3HRM(+I2+
   12H = F11.5+6X+A6+F11.5
72 VPPEV=-0.1
    ITFP=0
    V M = V + D V N
540 ITER=ITER+1
    IF (ITFR.GE.20) GO TO 18
    CALL RUNKUT
    IF (AKS(DY)-EPS) 18.18.20
20 1F(VPPFV) 600,600,615
600 SHMYP=SUMY
    VEREVEVN
    IF(DY) 605+18+610
605 VN=0.75*VN
    0Y1=0Y
    GO TO 540
```

|            |                                    |                       |                       |              | 420            |
|------------|------------------------------------|-----------------------|-----------------------|--------------|----------------|
|            | MODEL                              | CDC                   | 77/01/29              | PAGE         | 3              |
| 10         | VN=VN#1+25                         |                       | ~                     |              |                |
| . V        | DY]=0Y                             |                       | ~                     |              |                |
|            | GO TO 540                          |                       |                       |              |                |
|            | IF(DY*071) 626                     |                       |                       |              |                |
| 26         | IF (ABS ( (VM-VPR                  |                       |                       |              |                |
|            | SLOPE=(EUMY-SU                     | VYP)/(VN-VPCE         | V)                    |              |                |
|            | VPREV=VN                           |                       |                       |              |                |
|            | SUMYP=SUMY<br>VM=VN+GY/SLOPE       |                       |                       |              |                |
|            | GO TO 540                          |                       |                       |              |                |
| 18         | TIME1=11ME                         |                       |                       |              |                |
|            | V=VN                               |                       |                       |              |                |
|            | DO 51 1=1.0N                       |                       |                       |              |                |
| 51         | $RM(\mathbf{I}) = Xl(\mathbf{I})$  |                       |                       |              |                |
|            | RTM#TIME1/ATIME                    |                       |                       |              |                |
|            | ICTNERTN                           |                       |                       |              |                |
|            | RTM=RTM-FLOAT ()                   |                       | <b>v</b> • •.         |              |                |
| 00         | 1F (ABS (RTH) -0.7                 |                       | (138                  |              |                |
|            | WRITE(S+102) TI<br>FORMAT((())Y-50 |                       | + MINUTES,15X,21      |              | - **###******* |
|            | 1137)                              | 111 10 - 01 012 4 (1) | 1 P 19071239138961    | LUNAAUSER AL | 11ERM11002=*   |
|            | DO 186 I=].MV                      |                       |                       |              |                |
| 86         | RP(I) = Y(I)                       |                       |                       |              |                |
|            | PP(6)=V                            |                       |                       |              |                |
|            | RP(7)=5UMY                         |                       |                       |              |                |
|            | RP(8)=0Y1                          |                       |                       |              |                |
|            | RP(9)=DY<br>DO 89 I=1+NM           |                       |                       |              |                |
|            | UP=1+9                             |                       |                       |              |                |
| 89         |                                    | [•X(T)•T.RM(T)        | , JP + RH (JP) + 10FA | (I) PP(I)    |                |
|            |                                    |                       | DSS. HPKN. HDXDTM.    | • •          |                |
| 04         | FORMAT (3) + SHEIN                 | vT = + F9.3+3×+6      | 5HHOUTO=+F9.3+3+      | (+6HFLOSS=   | F9.3:3X:       |
| ]          | 10HPPXNS=+F9+3+3                   | 3X。6HRDMDT=sF         | 9.3.3X.6HMEHDT=.      | (19.3)       |                |
|            | IF(TINEL-TSET)                     |                       |                       |              |                |
| 9 <i>0</i> | READ(5+24) IRE                     |                       |                       |              |                |
| 32         | GO TO (30,32,99<br>DG 434 I=1.NN   | 75) + 1 REP           |                       |              |                |
|            | $R^{M}(I) = P^{M}O(I)$             |                       |                       |              |                |
| ++         | $D_0 433 I = 1.6V$                 |                       |                       |              |                |
| 33         | X(I) = XO(I)                       |                       |                       | •            |                |
|            | V=V0                               |                       |                       |              |                |
|            | GO TO 1002                         |                       |                       |              |                |
| 98         | STOP                               |                       |                       |              |                |
|            | END                                |                       |                       |              |                |
|            |                                    |                       |                       |              |                |

**.**...

.

416

•

417

```
SUBROUTINE RUNKUT
  COMMON MM, MV, M. NN . VF . V. Y (5) . YIN (5) . RMW (9) . Y (18) . X1 (18) . XLAMDA (5.5)
  COMMON /BLOCK3/ RM(18) .TIME .TIME1.DTIME .VN
  COMMON /SLOCK4/ FF(18)
  DIMENSION_{G1}(18) \cdot G2(18) \cdot G3(18) \cdot G4(18)
  DO 10 J=1+NN
0 \lambda I(1) = \Im M(I)
  VF = V
  TIME=TIME1
  CALL FUNC
  DO 12 1=1.NN
  G_1(I) = DTIME * FF(I)
2 \times 1(I) = 2 \times (I) + G I(I) / 2.
  VF = (V + VN) / 2.
  TIME=TIME1+D1IME/2.
  CALL YVALUE
  CALL FUNC
  DO 14 J=1.NN
  G_{2}(I) = D_{IIME} \times F_{F}(I)
4 X1(I)=RM(I)+62(I)/2.
  CALL YVALUE
  CALL FUNC
  DO 16 T=1+NN
  G_3(1) = DTIME * FF(T)
6 X1(I)=RM(I)+63(1)/2.
  VF=VN
  TIME=TIME+DTIME/2.
  CALL YVALUE
  CALL FUNC
  DO 18 I=1. NN
  G4(I) = DTIVE*FF(I)
P = X_1(J) = QM(J) + (G_1(J) + 2 \cdot *G_2(J) + 2 \cdot *G_3(J) + G_4(J)) / 5.
  CALL YVALUE
  RETURN
```

END

```
MODEL
                           CDC
                                        77/01/29
                                                         PAGE
                                                                 5
   SUPPOUTINE YVALUE
   COMMON MM \cdot MV \cdot M \cdot NN \cdot VF \cdot V \cdot Y (5) \cdot YIN (5) \cdot PNW (9) \cdot X (18) \cdot X1 (18) \cdot XLAMDA (5,5)
   COMMON /HLOCK1/ ARHO(9,5) + ACPE(9+5) + AHV0(5,5) + TIN+ RC+ ARK1+ E01+
  1Apk2.F02.APK3.E03.DHR1.DHP2.DHP3.OUALE.U0.FEEDR
   COMMON /BLOCK2/ AP(5), BP(5), CP(5), TC(5), PT, SUMY, DY, RMT, OMEGA(5)
   COMMON /HLOCK3/ RM(13) . TIME . TIME1 . DTIME . VN
   COMMON /BEOCKA/ FF(18)
   DIMENSION XG(5), GAMMA(5), SUM(5)
CALCULATE LIQUID MOLE FRACTIONS
   RMT=0.
   DO 10 I=1.MM
10 RMT = RMT + X1(I)
   DO 11 1=1.MM
11 X(I) = Y I(I) / RMT
 CALCULATE VAPOR MOLE FRACTIONS
   T_{K=X1}(10) + 273.16
   XG(1) = X(1)
   XG(2) = Y(2)
   XG(3) = X(3)
   XG(4) = X(5)
   x_G(5) = 1 - x_G(1) - x_G(2) - x_G(3) - x_G(4)
   Do 42 1=1.5
   SHM(I)=0.
   UN 42 J=1.5
42 SUM(I) = SUM(I) + XG(J) + XLAMDA(I,J)
   DO 44 I = 1.4
   SUMT=0.
   Un 46 K=1.5
46 SUMT=SUMT+XG(K)*XLAMDA(K.I)/SUM(K)
44 GANNA(I)=EXP(1.-ALOG(SUM(I))-SUMT)
   GAMMA(5) = GAMMA(4)
   DO 31 I=1.MV
   JF(I.FO.4) GO TO 31
   Ps=10.**(AP(I)-BP(I)/(CP(I)+X1(10)))/760.
   T_{r}=T_{r}/(T_{c}(1)+273.16)
   PHISO=((0.57335/TR-3.0766)/TR+5.6086)/TR-3.5021
   PHTS1=(((((((((((((0.012089/TR+0.015172)/TR+0.068604)/TR+0.024365)/
  1TP+0.14937)/TP+0.18927)/TP-0.12147)/TP-0.10666)/TP-1.1662)/TP+
  20.12666)/TR+0.31661)/TR+4.3539)/TE-3.7694
   PHIS=10, ##(PHIS0+OMEGA(I) #PHIS1)
   Y(I) = 65 \text{ MMA}(I) \text{ PSPPHISEX}(I) / PT
31 CONTINUE
                          -E02/PC/TK)*X1(1)**2/X1(12)
   BVIES=EX5( VEK5
   Y(4) = 24TE2/VE
   SUMY=0.
   Do 12 I=1.MV
12 SHMY=SUMY+Y(I)
   DY=SUMY-1.
   RETURN
```

END -

| MODEL                                                                                                                                 | CDC                                                                   | 77/01/29                                           | PAGE 6                | 419       |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|-----------------------|-----------|
| SHAROUTINE FUNC<br>COMMON MM+MV+M+<br>1+HINT+HOUTOT+HLO<br>COMMON /BLOCK1/<br>1APK2+EU2+APK3+E<br>COMMON /BLOCK4/<br>DIMENSION CPL(9) | NN+VF+V,Y(5)<br>OSS+HPXN+HDX<br>ARHO(9+5)+A<br>O3+DHR1+DHR2<br>FF(18) | DTM+CPMDTDT<br>CPL(9+5)+AHV0(5<br>+DHF3+QUALE+U0+1 | •5)•TIN•RC•4<br>FEEDR | ARK1.E01, |

CPL(J)=ACPL(I+1) HL(1)=ACPL(I+1)\*X1(10) HLIN(I)=ACPL(I+1)\*TIN DO 15 J=2+M RHO(I)=RHO(I)+ARHO(I+J)\*X1(10)\*\*(J-1) CPL(I)=CPL(I)+ACPL(I+J)\*X1(10)\*\*(J-1) HL(I)=HL(I)+ACPL(I+J)\*X1(10)\*\*J/FLOAT(J) 15 HLIN(I)=HLIN(I)+ACPL(I+J)\*TIN\*\*J/FLOAT(J) DO 16 I=1+MV HV(I)=AHVO(I+1) HVIN(I)=AHVO(I+1) DO 16 J=2+M

HV(I)=HV(I)+AHV0(I,J)\*X1(10)\*\*(J-1) 16 HVIN(1)=HVIN(I)+AHVO(I+J)+TIN++(J-1) DO 18 I=1, VV 18 H1N(I)=HLIN(I)\*(1.-QUALE)\*HVIN(I)\*QUALE TK = X1(10) + 273.16RATE1=EYP( APK1 -E01/RC/TK) #X1(1) #X1(6)/X1(12) RATES=EXP( APKS ~E05/8C/1K) \*X1(1) \*\*S/X1(15) RATE3=EXP( ARK3 -E03/PC/TK)\*X1(1)\*\*2\*X1(6)/X1(12)\*\*2 FF(1)=YIN(1)\*FEEDR-Y(1)\*VF-RATE1-2.\*(RATE2+RATE3) FF(2) = -Y(2) \* VF + RATE1FF(3)=YIN(3)\*FEEDR-Y(3)\*VF+RATE2 FF (4) = 0 . FF(5) = -Y(5) + VF + RATE3FF(12) = 0. DO 126 J=1,5 26 FF(12)=FF(12)+(FEEDR\*YIN(J)-VF\*Y(J))/9H0(J) X = X1(2) + X1(5) + X1(14) + X1(17)FF(6) = -RATE1 - RATE3FF(7) = 0. FF(8) = PATE1 + PATE3FF(9) = 0. RMXCP=0. HDXDTH=0. HINT=0. HOUTOT=0.

```
b0 20 J=1.4MM
RMXCP=3MXCP+X1(J)*CPL(J)
D0 22 J=1.4MV
HTNT=HINT+HIN(J)*FEFDP*YIN(J)
28 HOUTOT=HOUTOT+HV(J)*Y(J)*VF
VS=X1(12)*1.06*1000.
TOIL=TIN
```

IF(VS-150.) 50.00.51

DO 15 T=1+MM RHO(I)=APHO(I+1)

- 50 UA=U0\*AF(VS) GO TO 65 51 IF(VS-172.4) 52.52.53
- 52 XP=1.3750+(VS-150.)789.6 US1=1.7(1.7U0+16.4\*ALOG(XP/1.125)) UA=U0\*150.4+US1\*(AF(VS)~150.4) G0 T0 65
- 53 1F (VS-187.4) 54.54.55
- 54 UA=U0\*150.4+(AF(VS)-172.4)/(1./U0+4.74)+22.4/(1./U0+4.) 60 T0 65
- 55 IF(VS-212.2) 56.56.57
- 56 XP=1.6750-(VS-187.4)/91.6 US3=1./(1./U0+4.+16.4\*ALOG(XR/1.125)) U4=U0\*150.4+22.4/(1./U0+2.)+10.9/(1./U0+2.37)+(AF(VS)-183.2)\*US3 G0 10 65
- 57 UA=U0\*150.4+22.4/(1./U0+4.)+10.9/(1./U0+4.74)+29./(1./U0+4.84)+ 100\*(AF(VS)-212.2)
- 65 HLOSS=UA\*(X1(10)-TOIL) HPXN=DHR1\*PATE1+DHR2\*RATE2+DHP3\*RATE3 FF(10)=(HINT-HOUTOT-HLOSS+HRXN-HDXDTh)/RMXCP CPMDTDT=FF(10)\*RMXCP FF(11)=0. UO 26 J=1+MM 25 FF(11)=FF(11)+FF(J)
- DO 27 J=13.17 JJ=J-12 27 FF(J)=Y(JJ)\*VF FF(18)=VF RETURN

```
END
```

FUNCTION AF (VS) AF=48.844-0.12787\*VS+0.011009\*VS\*\*2-0.49516E~04\*VS\*\*3+0.79715E~07 1\*VS\*\*4 RETURN END

.

2.2 Input Data for Program MODEL

| . ب   | , <b>L</b> | ) M                                     |            |             |           |           | · [ Who |
|-------|------------|-----------------------------------------|------------|-------------|-----------|-----------|---------|
|       |            | -0.7505000-03                           | -0.16369F  |             |           |           |         |
| -397) |            | -0.94345E-03                            | -0.163698  |             |           |           |         |
| 10057 |            | -0.25200E-03                            | -0.229738  |             |           |           |         |
| 13211 |            | -0. HH333E-03                           | -0.327.33F |             |           |           |         |
| 9726t |            | -0.K7446E-03                            | ~0.14861E  |             |           |           |         |
| 14734 |            | -0.95765E-03                            | 0,31945E   |             |           |           |         |
| 14754 |            | -0.49000E-03                            | 0.012420   | ~07         |           |           |         |
|       |            |                                         |            |             |           |           |         |
| 18141 |            | -0.27500E-02                            | A 067010   | · • • •     |           |           |         |
| 11452 |            | -0.76236E-03                            | -0.38601E  |             |           |           |         |
| 53150 |            | 50-251055.0                             | 0.720241   |             |           |           |         |
| 45560 |            | 0.483126-03                             | 0.17036F   |             |           |           |         |
| 10060 |            | -0.31738F-03                            | 0.34230F   |             |           |           |         |
| p300z |            | 0.471435-03                             | 0.11012F   |             |           |           |         |
| 44720 |            | 0.10364E-02                             | 0.26736F   |             |           |           |         |
| p110t |            | -0.268725-02                            | 0.25080F   | -           | 6642E-07  |           |         |
| 47483 |            | -0.54866E-02                            | 0.418111   |             | 16922-07  |           |         |
| 42665 |            | -0.23368E-02                            |            | -04 -0.34   |           |           |         |
|       |            | 0.11766E-02                             | 0.198816   |             | 7361E-08  |           |         |
|       |            | 0.36300E+00                             | 0.33978    | -03         |           |           |         |
|       | 1++02      | 0.238695+00                             | 0.67200E   | -03 -0.10   | 3211E-07  |           |         |
| 69760 | 01-+03     | 0.420005+00                             | 0.10500E   | -05         |           |           |         |
| 40000 | 50+40      | 0.34500E+00                             | 0.375008   | -05         |           |           |         |
| 79690 | 4F+02      | 0.36948E+00                             | -0.621108  | -04 0.85    | 1290E-06  |           |         |
| 07    | 100.1      | 1 18.016                                | 74.03      | 147.2       | 169.14    | 48.03     | 115.03  |
|       |            |                                         |            |             |           |           |         |
|       | 285.       | 374.1                                   | 193.8      | 352.8       |           |           |         |
|       | 0,329      | 0.344                                   | 0.283      | 0.288       |           |           |         |
| (j    | 1523.2     | 228.93                                  |            |             |           |           |         |
| 3     | 1283.1     | 515.16                                  |            |             |           |           |         |
| h]    | 1-68.2     | <b>558</b> °0                           | •          |             |           |           |         |
| 75    | 1451.3     | 227.43                                  |            |             | •         |           |         |
| t,    | 1795.2     | 211.67                                  |            |             |           |           |         |
| •     | 47970.     | 52840.                                  | 1.987      |             |           |           |         |
|       | 0.0708     | 72 0.                                   | 0.         | 0.57696     |           |           |         |
| Ĵ     | 1.0        | 0.                                      | 0.27093    | ().         |           |           |         |
|       |            | 1.                                      |            |             |           |           |         |
|       | 0.         | 0.026437                                |            | 0.          |           |           |         |
| 3     | r.         |                                         |            |             |           |           |         |
|       |            | ) = Y(4) = Y(5)                         |            |             | DY=       |           |         |
|       |            | , , , , , , , , , , , , , , , , , , , , |            |             |           |           |         |
|       | 1.50       | 0.625                                   | 762.       | 0.02057     |           |           |         |
| 9]    |            | 1 .795134                               | -          | 0.          | .686895   | .204633   | .324426 |
|       | 125.41     | 2.50857                                 |            |             |           | .120481   |         |
| 54    | .43141     |                                         |            |             |           |           |         |
| 25    | .48357     |                                         | .019501    | .015638     |           |           |         |
|       |            | 0.14                                    |            |             |           |           |         |
| •     |            | 51500.                                  |            |             |           |           |         |
| Ĺ     | ц.         | 53.                                     | 0.00H      |             |           |           |         |
|       | •          | 10 MC W                                 |            |             |           |           | -       |
|       |            |                                         |            |             |           |           |         |
|       |            | • 6 2 5                                 | 765.       | · () ] hhhm |           |           |         |
| 44    |            | 3. •407416                              | • 0        | .003525     | -64147    | -+ EN4941 | -305243 |
|       | 123.57     |                                         | .16316     |             | 221134    |           |         |
| 1)]   | .43814     |                                         |            |             | · · · + = |           | · · ·   |
| c7    |            |                                         | .020954    | .026625     |           |           |         |
|       | 0.         |                                         | 0.         | 0.          | •         |           |         |
| •     | 120.       |                                         | 0.15       | • 34        |           |           |         |
|       | 4          | 87.                                     | 0.004      | 0.0001      |           |           |         |
|       | -          | · -                                     |            |             |           | •         |         |

•

•

|              |                                  |                                   |                     |                          |                    |                                        | 423                                    |
|--------------|----------------------------------|-----------------------------------|---------------------|--------------------------|--------------------|----------------------------------------|----------------------------------------|
| -<br>- 4-4   | 1.496<br>.127607<br>118.03       | . 494995<br>2. 494995<br>2. 49516 | 768。<br>•0<br>•1777 | •020096<br>•0<br>•040962 | •803898<br>•095009 | •247907<br>•044999                     | •223545<br>•103553                     |
| 159<br>01    | .1855                            | .300241                           | 025465              | .012543                  |                    |                                        |                                        |
| Ω <b>Τ</b>   | • 449451<br>0 •                  | •300241<br>0•14                   | • 025"65<br>0•      | •012543<br>0•            |                    |                                        |                                        |
| •            | 220.<br>4.                       | 21200 <b>.</b>                    | 0.16<br>0.008       | • 69                     |                    |                                        |                                        |
|              | 1.5575                           | •826<br>•7*2()                    | 760.2               |                          |                    | 24.24.04                               |                                        |
| -54<br>กร]   | •114545<br>119•46<br>•20024      | •874251<br>2•5702                 | •105555<br>•0       | • 0<br>• 04348년          | .765238<br>.103020 |                                        | .214247<br>.002755                     |
| 78           | . 452675                         | .195075                           | .025505             | .015359                  |                    |                                        |                                        |
| • •          | 0.<br>F20.                       | 0.14<br>21200.                    | 0.<br>0.16          | 0.<br>.60                |                    |                                        |                                        |
|              | 4.                               | 95 <b>.</b>                       | 0.008               | 0.0001                   |                    |                                        |                                        |
| -02<br>-     | 1.192                            | ·825                              | 764:5               | 016242                   |                    | 521.630                                | ······································ |
| . U <i>C</i> | .110475<br>)]8.46<br>0.20576     | •858602<br>2•54249                | •0<br>•16344        | .003932<br>.042997       | .807022<br>.101651 | ,230999<br>,058527                     | .216057<br>.00254                      |
| .73          | , 588697<br>0                    | •24714<br>0•14                    | .019351<br>0.       | .000938<br>0.            |                    |                                        |                                        |
| ),           | 820.                             | 21200.                            | 0.16                | •70                      |                    |                                        |                                        |
| <b>2</b> 23  | 4.                               | 87.                               | 0.008               | 0.0001                   |                    |                                        |                                        |
| 3            | 1.147                            |                                   | 762.                | .012841                  |                    |                                        |                                        |
| 017          | .08763<br>118.34                 | •905228<br>2•53738                | 0.<br>.15563        | .002462<br>.053337       | .738085<br>.18656  | .209716<br>.085659                     | .276230<br>.002455                     |
| ۶.7          | .3300]                           | C. + 00 F00                       | •10000              | • (333331                | •1000m             | 6 VO U U 7                             | eUV∠nno                                |
| 17           | .61585                           | .240426                           |                     | .008363                  |                    |                                        |                                        |
| •            | n.<br>20.                        | 0.14<br>21200.                    | 0.<br>0.16          | 0.<br>.55                |                    |                                        |                                        |
|              | 4                                | 83.                               | 0.00%               | 0.0001                   |                    |                                        |                                        |
|              | 1.+65                            | • 825                             | 750.                | .016602                  | ••• • • • • • •    | ······································ |                                        |
| (, ਸ         | •126527<br>120•77                | •941537<br>2•68972                | •0<br>•16484        | •00484<br>•052611        | •71445<br>•154978  | •279537<br>•104305                     | -28751<br>-304213                      |
| 155          | .3]1.93                          | 112030                            |                     |                          |                    |                                        |                                        |
| + (: 4       | 0.000                            | •154039<br>0•14                   | .014553<br>0.       | •()2()4×4<br>()•         |                    |                                        |                                        |
| •            | 520.                             | 51500.                            | 0.15                | •75                      |                    |                                        | ,                                      |
|              | د: .                             | 91.                               | 0.000               | 0.0001                   |                    | •                                      | •<br>•                                 |
|              | 1,25                             |                                   | 752+3               | • 1708] *                |                    | ·                                      |                                        |
| <]7          | • ] 46505<br>] 15•71<br>• ] 3304 | •868283<br>2•60603                | •0<br>•16586        | •001798<br>•001798       | •765755<br>•886224 | •282345<br>•010575                     |                                        |
| 3459         | + 23/3                           | . 29] 927                         | .074874             | .012461                  |                    | -                                      | •                                      |
| J <b>.</b>   | 0.<br>►20.                       | 0.14<br>21200.                    | 0.15                | 0.<br>.85                |                    |                                        |                                        |
|              | 4.                               | 95.                               | 0.001               |                          |                    | •                                      |                                        |

|               |                                                     |                                                                                         |                                                                                                                       |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ).506         | .826                                                | 763.5                                                                                   | .017498                                                                                                               |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .153557       | .425091                                             | • 0                                                                                     | .002644                                                                                                               | .726725                                                                                                                                                                                                                                                                                              | .28663                                                                                                                                                                                                                                                                                                                                    | .279467                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>11</u> 0.× | 2.82511                                             | <b>.</b> 1755 •                                                                         | .042055                                                                                                               | 122646                                                                                                                                                                                                                                                                                               | .068983                                                                                                                                                                                                                                                                                                                                   | .002506                                                                                                                                                                                                                                                                                                                                                                                                                      |
| .23642        |                                                     |                                                                                         |                                                                                                                       |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .569450       | .150324                                             | .011113                                                                                 | .015366                                                                                                               |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| e.            | 0.14                                                | 0.                                                                                      | ()。                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ト2り。          | 51500.                                              | 0.000001                                                                                | 0 <b>.</b>                                                                                                            |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.            | 83.                                                 | 0.012                                                                                   | 0.0001                                                                                                                |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | .183557<br>J10.*<br>.23682<br>.569450<br>0.<br>820. | .153557 .925091<br>J10.* 2.82511<br>.23682<br>.569950 .150324<br>0. 0.14<br>820. 21200. | •153557 •925591 •0<br>110.* 2.52511 •1755*<br>-23682<br>•569955 •150324 •011113<br>0. 0.14 0.<br>820. 21200. 0.000001 | .153557       .925591       .0       .002644         J10.8       2.82511       .1755*       .042055         .23682       .011113       .012366         .569355       .150324       .011113       .012366         0.       0.14       0.       0.         .820.       .21200.       0.000001       0. | .153557       .925591       .0       .002644       .726725         J10.8       2.62511       .1755*       .042055       .122646         .23682       .011113       .012366       .0         .569355       .150324       .011113       .012366         0.       0.14       0.       0.         .820.       .21200.       0.000001       0. | .153557       .925591       .0       .002644       .726725       .28663         J10.8       2.62511       .1755*       .042055       .122646       .068983         .23682       .011113       .012366       .0       .002644       .122646       .068983         .23682       .011113       .012366       .0       .0       .0       .0         .0014       0.0000001       0.0       .0       .0       .0       .0       .0 |

\*\*\*\*\*

C.2.3 Results form Program MODEL

cal/min.

Each integration step contains forty two instantaneous quantities. They are defined as follows. X(1) to X(9) = liquid mole fractions for components 1 to 9 RM(1) to RM(9) = liquid molal quantities for components 1 to 9 RM(10) = liquid temperatureRM(11) = total liquid molal quantity RM(12) = clear liquid volumeRM(13) to RM(17) = accumulated vapor molal condensate for components 1 to 5 RM(18) = accumulated total vapor condensate, g-moles Y(1) to Y(5) = vapor mole fractions for components 1 to 5 V RATE = vapor flow rate, g-moles/min. SUMY = calculated total vapor mole fraction DY1 = deviation in total vapor mole fraction right before the last iteration DY = deviation in total vapor mole fraction after the last iteration HINT = total feed enthalpy, cal/min. HOUTO = total outlet vapor enthalpy, cal/min. HLOSS = convection heat loss across the reactor wall, cal/min. HRXNS = total heat generated by chemical reactions,

HDMDT =  $h_s \frac{dM}{dt}$  shown in Equation (4-132) MDHDT =  $M \frac{dH}{dt}$  =  $MC_p \frac{dT}{dt}$  shown in Equation (4-132)

· · ·

·

| <br>X ( | 1)=              | -14829      | `₽ <b>М (</b> | 1)=*** | .37782  |   | RM(10)="" | 124.33357 | Y(1)=                                                          | .32699                                       |
|---------|------------------|-------------|---------------|--------|---------|---|-----------|-----------|----------------------------------------------------------------|----------------------------------------------|
| × (     | = (S             | .05501      | RM (          | 2)=    | .05608  |   | RM(11)=   | 2.54783   | Y(2)=                                                          | ,36475                                       |
| X (     | 3)=              | ,32585      | PM(           | 3)=    | .83021  |   | PM(12)=   | .14852    | Y(3)=                                                          | .27185                                       |
| <br>X ( | 4)=              | n,0nnng · · | ₽М (          | 4)=    | 0.0000  | - | RM(13)=   | .16991    | Y(4)=                                                          | .02038                                       |
| ¥(      | 5)=              | .00283      | P~1 (         | 5)=    | .00721  |   | RM(14) =  | ,38190    | Y(5)=                                                          | .01602                                       |
| ХC      | <del>(</del> ) = | *51008      | RM (          | 6)=    | .56049  |   | RM(15)=   | .22188    | VRATES                                                         | • 97441                                      |
| <br>χį  | -7)=             |             | ₽M(           | 7) =   | .26469  |   | PM(16)=   |           | !MY=</td <td>• <b>•</b> • • • • • • • • • • • • • • • • •</td> | • <b>•</b> • • • • • • • • • • • • • • • • • |
| ¥ (     | ∽)=              | .17714      | RM (          | 8)≃    | .45133  |   | RM(17) =  | .00614    | 0×1 =                                                          | -,00015                                      |
| v /     | ί. <b>ι</b> –    | 0 0 0 0 0 0 | Dist          | 01-    | 0 00000 |   | D:11 11-  | 7.31.72.4 | · · · · ·                                                      |                                              |

TIME= 12.00 MINUTES

NUMBER OF ITERATIONS= 10

|                                        |                 |                  |                    | ONS= 11     | R OF ITERATI | NUMBE   |      | TES    | 8.00 MINU            | TIME=   |
|----------------------------------------|-----------------|------------------|--------------------|-------------|--------------|---------|------|--------|----------------------|---------|
| · _ · · · · · · · · · · · · · · · ·    |                 | .30667           | Y(1)=              | -174.27339- | RM(10)=      | -36686  | 1)=  | PM (   | .14512               |         |
|                                        |                 | .39319           | = (S)Y             | 2.52793     | PM(11)=      | .06082  | 2)=  | RM (   | .02406               | X(2)=   |
|                                        |                 | .26540           | Y(3)=              | 15017       | RM(12) =     | .81858  | 3)=  | ) M G  | .323H2               | X(3)=   |
| · ···································· |                 | .02176           | Y(4)=              | .13403      |              | 0.00000 | 4)=` |        | <pre>- n.00000</pre> | X( 4)=  |
|                                        |                 | .01294           | Y(5)=              | .33911      | RM(14)=      | .00515  | 5)=  | - RM ( | .00204               | X( 5)=  |
|                                        |                 | .02115           | VPATE=             | .19151      | ₽м(15)⇒      | • 60227 | 6)=  | 2 RM ( | 23425                | X( 6)=  |
|                                        | · · · · · · · · | · <b>,</b> 99995 | <u>\$U*Y</u> = ··· | .00970      | RM(16)=      |         | 7)=" | RM(    | 10471                | `X(`7)= |
|                                        |                 | -,00017          | DY1=               | .0044R      | PM(17)=      | .40955  | 8)=  | PM (   | .16201               | X( 8)=  |
|                                        |                 | 00005            | DY=                | .67565      | RM(19)=      | 0.0000  | 9)=  | RM (   | 0.00000              | X( ())= |

427

| TIME=   | 4.00 MINU        | TES            |     | NIMB    | ER OI          | F ITERATI | ONS= 14     | •      |        |               |         |            |                 |
|---------|------------------|----------------|-----|---------|----------------|-----------|-------------|--------|--------|---------------|---------|------------|-----------------|
| x (1)   | =14050           | ·              | 1)= |         | · <b>-</b> · · | PM(10)=   | -123.77776- | Y(1)=  | .27726 | •             |         |            | - · · - <b></b> |
| X( 2)   | = <b>.</b> 02703 | PM (           | 2)= | .06768  |                | PM(11)=   | 2.50424     | Y(2)=  | .42760 |               |         |            |                 |
| X(3):   | 32161            | PM (           | 3)= | .80540  |                | PM(12)=   | .15174      | Y(3)=  | .25411 |               |         |            |                 |
|         | = _ 0,00000 ;    | PM (           | 4)= | 0.0000  |                | PM(13)=   | 10173       | Y(4) = | .03285 | • · · ·       | •       |            |                 |
| ×(5)    | = .00112         | РМ (           | 5)= | 09200   |                | RM(14) =  | .29397      | Y(5)=  | .00812 |               |         |            |                 |
| X( 6)   | 25721            | PM (           | 6)= | .64411  |                | RM(15) =  | .16290      | VRATE= | •01181 | ·             |         |            |                 |
| ×( 7)   | 10570            | DW(            | 7)= | .26469  |                | PM(16)=   | .00780      | SUMY=  | .99493 | · · • · ·     |         |            |                 |
| . X( E) | 14644            | RM (           | 8)= | .36771  |                | RM(17)=   | .00326      | Ū¥1=   | 00055  |               |         |            |                 |
| X ( 4)  | = 0.00000        | • <b>P</b> M ( | 9)= | 0.0000  |                | RM(18)=   | .56753      | DY=    | 00007  |               |         |            |                 |
| HINT    | = 363.406        | ной            | T0= | 153.116 | · }            | 1099= 2   | 23.095      |        | •661 H | HDMDT= 41.044 | - монот | r= 139.812 |                 |

| •• • • • |      |                 |              |     |         |            |            | ·        |         |   | <br> | · · · |
|----------|------|-----------------|--------------|-----|---------|------------|------------|----------|---------|---|------|-------|
| X (      | 1)=  | 13608           | RM (         | 1)= | .34139  | RM(10)=    | 125.41000  | Y(1)=    | .32753  |   |      |       |
| ¥ (      | 2)=  | .03692          | RM (         | S)= | .09263  | PM(11)=    | 2.50857    | Y(2)=    | .48358  |   |      |       |
| x (      | 3) = | 31915 -         | ·            | 3)= | .79813  | RM(12)=    | 15603-     |          | .15376  |   | <br> |       |
| X (      | 4)=  | 0.00000         | 무세 (         | 4)= | 0.00000 | PM(13)=    | .06549     | Y(4)=    | .01950  |   |      | ,     |
| ¥ (      | 5)=  | <b>n</b> _00000 | 무석 (         | 5)= | 0.00000 | PM(14)=    | .22975     | Y(5)=    | .01564  |   |      |       |
| · x (    | 6)=  | .27381          | RM (         | 6)= | .68689  | -· PM(15)= | - · .12848 | - VPATE= | ×02057  |   |      | •     |
| X (      | 7)=  | .10551          | с <b>м</b> ( | 7)= | .26469  | QM(16)=    | .00564     | CHNA =   | 1.00000 |   |      |       |
| X (      | H)=  | .12952          | RM (         | 8)= | .32493  | PM(17)=    | .00258     | ∩×1 =    | 0.00000 |   |      |       |
| x (      | 9)=- | . u°uduu ,      | PM (         | 9)= | 0.00000 | RM(18)=-   | .43191-    | DY= .    | 0.0000  | • | <br> | ***   |
|          |      |                 |              |     |         |            |            |          |         |   |      |       |

------

INITIAL COMPITIONS BASED ON ADJUSTED TIME

----CONTRACT E CONTRACTOR STATE

. . . . . . . . . . . . . . . . . .

|                |                 |          |                   |               |            |                                       | 104110  |                                  |            |                                       |       |              |
|----------------|-----------------|----------|-------------------|---------------|------------|---------------------------------------|---------|----------------------------------|------------|---------------------------------------|-------|--------------|
| X(3)=          | .32767          | =(E)M9   | .84160            | RM(12) =      | .14708     | Y(3)=                                 | •27655  |                                  |            |                                       |       |              |
| X(4)=-         | 00000           | RM( 4)=  | 0.0000            | PM(13) = -    | .20760 -   | Y(4)=-                                |         |                                  |            | • • • • • • • • •                     |       |              |
| ×( 5)=         | .00349          | RM(5)=   | .0089 <b>7</b>    | PM(14) =      | .42150     | Y(5)=                                 | •01802  |                                  |            |                                       |       |              |
| X( た)=         | .20261          | P4(6)=   | .52940            | RM(15)=       | .25259     | VPATE=                                | .02603  |                                  |            |                                       |       |              |
| ×(-7)=-        | 10305           | PM( 7)=  | 26469 -           | PH(16)=       | .01392-    | SUNY=-                                | .99997  |                                  |            |                                       |       |              |
| =(8)X          | .19133          | RM(8)=   | .49142            | PM(17) =      | .00807     | () Y ] =                              | 00012   |                                  |            |                                       |       |              |
|                | 0,00000         |          | 0.00000           | RM(18) =      | .90075     | DY=                                   | 00003   |                                  |            |                                       |       |              |
|                |                 |          |                   | HL055= 2      |            |                                       |         |                                  | -19-423    | MOHOT=1(                              | . 871 |              |
|                |                 |          | 557 <b>0</b> 7,25 |               | COBULI     | 1.1.V.1.2.4 1.41                      | • 200   | (12) #1 <b>9</b> [ <del>14</del> | -100-60    | ען ⇒ויוחיידי גע                       | 1.011 |              |
|                |                 |          |                   |               |            |                                       |         |                                  |            |                                       |       |              |
|                |                 | <b></b>  |                   |               |            |                                       |         |                                  |            |                                       |       |              |
| TTUE- 3        | 0 00 14711-177  | -        | LILLING           | ED OF TIEDATT |            |                                       |         |                                  |            | •                                     |       |              |
| TIME= 2        | 0.00 MINUTES    | 5        | NUMBI             | ER OF ITERATI | 01157 8    |                                       |         |                                  |            |                                       |       |              |
|                |                 |          |                   |               |            |                                       |         |                                  | <b>.</b> . |                                       |       |              |
|                |                 |          |                   | RM(10)=       |            |                                       |         | •                                |            |                                       |       |              |
| X ( 2) =       | .01947          | RM(2)=   | .05044            | PM(1))=       | 2.54055    | Y(?)=                                 | .31947  |                                  |            |                                       |       |              |
| X(3)=          | .32929          | RM(3)=   | .85303            | RM(12)=       | .14589     | Y(3)=                                 | .27934  |                                  |            |                                       |       |              |
| X(-4)=-        | •               |          |                   | PM(13)=-      |            |                                       |         | · · · ·                          |            |                                       |       |              |
| X ( 5) =       | .00403          | RM( 5)=  | .01044            | RM(14) =      | .45807     | Y(5)=                                 | .01931  |                                  | •          |                                       |       |              |
| X( 6)=         | .18634          | RM( 6)=  | .48272            | PM(15) =      | .28331     | VRATE=                                | .02657  |                                  |            |                                       |       |              |
|                |                 | RM(·7)=- | 26469 -           | RM(16)=       | .01619-    | S(INX= -                              |         | •                                |            |                                       |       |              |
| ×( ♂)=         | .20424          | RM( 8)=  | .52910            | PM(17)=       | .01015     | DY1=                                  | 00030   |                                  |            |                                       |       |              |
|                | 0,00000         |          | 0.00000           | PM(1H) =      | 1.01095    | DY=                                   | 00009   |                                  |            |                                       |       |              |
|                |                 |          |                   | HLOSS= -2     |            |                                       |         | HDMDT=                           | -18.023    |                                       | 152   |              |
|                |                 |          |                   | · • • •       |            | • • • • • •                           | - · ·   |                                  |            |                                       | * * * |              |
|                |                 |          |                   |               |            |                                       |         |                                  |            |                                       |       |              |
|                |                 |          |                   |               |            |                                       |         | • •                              |            | · · · · · · · · · · · · · · · · · · · |       | ·····        |
| TIME= 2        | 4.00 MINUTES    | 2        | MIIMO             | ER OF ITERATI |            |                                       |         |                                  |            | •                                     |       |              |
| 11 · 2 ·       | *•#9 *1 \$9(E)  | ,        | 1411-141          | TH OF TICKALL |            |                                       |         |                                  |            |                                       |       |              |
|                | 15900           |          | 61330 -           | PM(10)=       | 123 50363  |                                       | 37950   |                                  |            |                                       |       |              |
|                |                 | PM( 2)=  | .04832            | RM(11) =      | 2.61440    | Y(2) =                                | •29837  |                                  |            |                                       |       |              |
| X ( 2) =       | _01848<br>22072 |          |                   | . – + .       | • • •      |                                       |         |                                  |            |                                       |       |              |
| X(3)=          | .33072          | RM(3)=   | .86463            | RM(12) =      | .14495     | Y(3)=                                 | -28175  |                                  |            |                                       |       |              |
| X (4 ) =       |                 |          |                   |               |            |                                       | .02013  |                                  |            |                                       | -,    |              |
| X ( 5) =       | .00445          | RM(5)=   | .01163            | • PM(14)=     | .49179     | Y(5)=                                 | .02012  |                                  |            |                                       |       |              |
| x (            | .17127          | RM(6) =  | .44777            | RM(15)=       | .31390     | VRATE=                                | .02668  |                                  |            |                                       |       |              |
| X(-7)=-        |                 |          |                   | RM(16)=       |            |                                       | •99995  |                                  | · .        |                                       |       |              |
| X( と)=         | .21575          | RM(8)=   |                   | RM(17) =      | .01231     | DY1=                                  | 00013   |                                  |            |                                       |       |              |
| X(9)=          | 0.00000         | RM(9)=   | 0.0000            | RM(18)=       | 1.11963    | 0Y=                                   | 00004   |                                  |            |                                       |       |              |
|                | -353.406        | HOUTO=   | 341.020 -         | HLOSS=2       | 10.756     | -HRXNS= 166.                          | .300 I  | HDMDT=                           | -15.599    | MDHDT=6                               | .472  |              |
|                |                 |          |                   |               |            |                                       |         |                                  |            |                                       |       |              |
|                |                 |          |                   |               |            |                                       |         |                                  |            |                                       |       |              |
|                |                 |          |                   |               |            |                                       |         |                                  |            |                                       |       |              |
| TIME= 2        | 8.00 MINUTES    | 5        | NUMBE             | R OF ITERATI  | DNS= 9     |                                       |         |                                  |            |                                       |       |              |
|                |                 | -        |                   |               |            |                                       |         |                                  |            |                                       |       |              |
|                |                 | RM(-1)-  | 42799             | ···· PM(10)=  | -123.02996 |                                       | .39825  |                                  |            |                                       |       |              |
| x(2)=          | .01753          | RM(2)=   | 04628             | PM(11)=       | 2,63967    | Y(2) =                                | \$27726 |                                  |            |                                       |       |              |
| x(2)=<br>x(3)= | .33199          | RM(2)=   | .87635            | PM(12)=       |            |                                       |         |                                  |            |                                       |       |              |
|                |                 |          |                   |               |            | Y(3)=                                 | .24365  |                                  |            |                                       |       |              |
|                |                 |          |                   | PM(13)=-      |            |                                       | u2021   |                                  |            |                                       |       |              |
| X(5) =         | .00475          | RM(5) =  | .01254            | PM(14)=       | .52284     | Y(5)=                                 | .02059  |                                  |            |                                       |       | $\mathbb{N}$ |
| X(-6) =        | .15747          | RM(*6)=  | .41566            | RM(15)=       | . 34438    | VPATE =                               | .02652  |                                  |            |                                       |       | 8            |
| × (· 7) =      | .10027          |          | .26469            |               | •950ev     | ····································· | . 40007 |                                  |            |                                       |       |              |
| X(と)=          | .22545          | ₽*4(8)=  | .59617            | PM(17)=       | .01451     | i)Y] =                                | 00012   |                                  |            |                                       |       |              |
| X( 4)=         | 0.00000         | RM(9)=   | 0.00000           | RM(19)=       | 1,22714    | 0Y ==                                 | -,00003 |                                  |            |                                       |       |              |
|                | 363.496         | HOHTO=   | 339.524 -         | HLOSS= 19     | 98.923     | -HAXNS= 152.                          |         | 220YDT=                          | -12.469    | -MD4D7=                               | .935  |              |
|                |                 |          |                   | -             |            |                                       |         |                                  |            |                                       |       |              |
|                |                 |          |                   |               |            |                                       |         |                                  |            |                                       |       |              |
|                |                 |          |                   |               |            |                                       |         |                                  |            |                                       |       |              |

- -

. ...

| · · · · · · ·          |                                        |                          |                                        |                  |        |         |                                         |
|------------------------|----------------------------------------|--------------------------|----------------------------------------|------------------|--------|---------|-----------------------------------------|
| X(4) = 0.00000         | PM(4) = 0.00000                        | PM(13) = .37296          | ¥(4) =                                 | .02017           |        |         |                                         |
| X( 5) =00495 -         | """""""""""""""""""""""""""""""""""""" | <pre>RM(14) =55140</pre> | ······································ | •05080           | •      | +       |                                         |
| X(6) = .14490          | RM( 6) = .38629                        | RM(15)= .37483           | VHATF=                                 | .02658           |        |         |                                         |
| X(7)= _09929           | PM( 7)= .26469                         | PM(16) = .02311          | SUMY=                                  | .99997           |        |         |                                         |
| X( R)=23464            |                                        |                          | =1YG                                   | 00011            |        |         |                                         |
| X(9) = 0.00000         | R'(9) = 0.00000                        | PM(18)= 1.33359          |                                        | 00003            |        |         |                                         |
| HINT = 363.496         | HOUTO= 338.142                         | HL055= 186,006           | HPXNS= 139.                            |                  | -0 446 | MOUDE   | -11 060                                 |
| Filtra an filtra and   |                                        |                          | 107.                                   | 410 60401=       |        | MOHDT=  | -11.880                                 |
|                        |                                        |                          |                                        |                  |        |         |                                         |
|                        |                                        |                          |                                        |                  |        |         |                                         |
|                        | <b>.</b>                               |                          |                                        |                  |        |         |                                         |
| TIME= 36.00 MINUTE     | 5 NUMPE                                | P OF ITERATIONS= 9       |                                        |                  |        |         |                                         |
|                        |                                        |                          |                                        |                  |        |         |                                         |
| $\times(1) = .17111$   | RM(1)= .46074                          | RM(10) = 121.95713       | Y(1)=                                  | •43722           |        |         |                                         |
| ×(-2)= .01562          | PM(2)= .04205                          | PM(11)= 2,69269          | = (S) Y                                | .23550           | •      | •       |                                         |
| X(3)= .33415           | RM( 3)= .89976                         | RM(12) = .14335          | Y(3)=                                  | .28647           |        |         |                                         |
| X( 4) = 0,00000        | RM( 4)= 0.00000                        | RM(13)= .41869           | Y(4)=                                  | .01999           |        |         |                                         |
| ×( 5)= ``.00506        | RM( 5) = "" .01363"                    | RM(14) = 57764           |                                        | .02080           |        | •       |                                         |
| x(-6) = -13353         | RM(6) = .35954                         | PM(15)= .40536           |                                        | .02661           |        |         |                                         |
| $X(7) = .09 \times 30$ | RM(7) = .26469                         | PM(16) = .02540          | SHMY=                                  | •02001<br>•99997 |        |         |                                         |
|                        |                                        |                          |                                        |                  |        |         |                                         |
| ••••                   |                                        | RM(17) = -0.01996        |                                        | 00011            |        |         |                                         |
| X(4) = 0.00000         | RM(9) = 0.00000                        | PM(1B) = 1.44039         | DY=                                    | 00003 '          |        |         |                                         |
| HINT = 343.406         | HOUTO= 337.674                         | HL055= 172.472           | HRXNS= 126.                            | 974 HDMDT=       | -5.838 | MDHDT=  | -12.927                                 |
|                        |                                        |                          |                                        | •                |        |         | • • • • • • • • • • • • • • • • • • • • |
|                        |                                        |                          |                                        |                  |        |         |                                         |
|                        |                                        |                          |                                        |                  |        |         |                                         |
| TIME= . 40.00 MINUTES  | S NUMPE                                | R OF ITERATIONS= 7       | • • • • • • • • • • • • • • • • • •    |                  |        | •       |                                         |
|                        |                                        |                          |                                        |                  | •      | •       |                                         |
| X(1) = .17579          | PM(1) = .47806                         | PM(10) = 121.39382       | Y(1)=                                  | .45655           |        |         |                                         |
| X( 2)= - ,01465        | " RM( 2) = .03954                      | RM(11) = 2.71946         | = (S) Y                                | .21545           |        |         |                                         |
| x(3) = .33507          | PM(3)= .91121                          | RM(12) = .14311          | Y(3)=                                  | .28749           |        |         |                                         |
|                        |                                        |                          |                                        |                  |        |         |                                         |
| × ( 4) = 0.00000       | RM(4) = 0.00000                        | PM(13) = .46651          | Y(4)=                                  | .01955           |        |         |                                         |
| X(5)= .00509           | RM(5)= .01383                          | RM(14)= .60176           | Y(5)=                                  | .02064           |        |         |                                         |
| $x_{1}(6) = -12327$    | PM( 6)= .33521                         | PM(15) = .43606          | VRATE=                                 | .02674           |        |         |                                         |
| X(7)= .09733           | RM(7) = .26469                         | PM(16)= .02767           | 5UVY=                                  | <u>, 44440</u>   |        |         |                                         |
| X(-n)= .240P)          | - RM( 8) = .67661 '                    | PM(17) =                 | DY1=                                   |                  |        | • • •   |                                         |
| X(4)= 0.00000          | RM(9) = 0.00000                        | PM(18) = 1.54710         | D <b>r</b> =                           | 00010            |        |         |                                         |
| HINT = 363.406         | HOUTO= 338.566                         | HL055= 158,674           | HRXNS= 115.                            | 470 HDMDT=       | -4.807 | MDHDT=  | -13.557                                 |
|                        |                                        | ···· • · ·               |                                        |                  |        |         |                                         |
|                        |                                        |                          |                                        |                  |        |         |                                         |
|                        |                                        |                          |                                        |                  |        |         |                                         |
| TIME= 44,00 MINUTES    | NUMPE                                  | R OF ITERATIONS= 7       |                                        |                  |        | <b></b> |                                         |
| 11 (1m                 | 5                                      | R DF ITCARTIONS# T       |                                        |                  |        |         |                                         |
| X ( 1) = 100/4         |                                        | DW(10)- 100 033(0        |                                        | 17550            |        |         |                                         |
| X(1)= .19046           | RM(1)= .49552                          | PM(10) = 120.83349       | Y(1) =                                 | .47559           |        |         |                                         |
|                        | RM(2) = .03760                         | RM(11) = 2.74586         |                                        | .19538           |        | •       |                                         |
| X(3)= .33592           | RM(3)≈ .92237                          | PM(12) = .14295          | Y(3)=                                  | .28833           |        |         |                                         |
| X( 4)= 0.00000 '       | RM( 4)= 0.00000                        | PM(13) = .51685          | Y(4)=                                  | .01924           |        |         |                                         |
|                        | " RM( 5) = .01385                      | PM(14) =                 | Y(5)=                                  | .02035           |        |         |                                         |
| X( 6)= .11493          | RM( 6)= .31310                         | PH(15)= ,46704           | VRATE=                                 | .02593           |        |         |                                         |
| ×1 71= .09640          | RM( 7) = .26409                        | RM(16) = .02991          | SUMY =                                 | .99996           |        |         |                                         |
|                        | R4(8)= .69872                          | RM(17)=                  | DY]=                                   |                  |        |         | • • • • • • • • • • • • • • • • • • •   |
| X(-9) = -0.0000        | · · ·                                  |                          |                                        |                  |        |         |                                         |
| -                      | $R^{H}(\Phi) = 0.00000$                | PM(1R) = 1.65440         | () Y =                                 | 00010            |        |         |                                         |
| $-11^{T} = 363.406$    | HOUTO= 340.123                         | HL099= 144.926           | HAXNS= 104.9                           | 981 HDMDT=       | -3.143 | M0401=  | -13.520 .t.·                            |
|                        |                                        |                          |                                        |                  |        |         | 80                                      |
|                        |                                        |                          |                                        |                  |        |         | NG.                                     |
|                        |                                        |                          |                                        |                  |        |         |                                         |
| TTIVE= TA8,00 NIMITES  | NUMREI                                 | R OF ITERATIONS= 7       |                                        | •                |        |         |                                         |
| -                      |                                        |                          |                                        |                  |        |         |                                         |
|                        |                                        |                          |                                        |                  |        |         |                                         |

×4 × --

1 11 11 1 1

| X ( 5) =                               | .10572                     | 요네(6)=            | .29300                                | RM(15)=                               | .49836           | VRAYE=                                 | .02718          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|----------------------------|-------------------|---------------------------------------|---------------------------------------|------------------|----------------------------------------|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ×(7)=                                  | , <u>q</u> qe=0            | 24(7)=            | .24469                                | PM(16)=                               | .03211           | S(IMY=                                 | • 3 4 9 9 1     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X( P)=                                 | .25936                     | - 주세( 온)=         | 71883                                 | <pre>RM(17)=T</pre>                   | .02557           |                                        | 00069           | · ·      | ويستهيه براعيه والإعواد والمنافية فالمستوح فالالتامية والالار المحادي المحادي المحادي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| X ( 4) =                               | 0.00000                    | RM(9)=            | 0.00000                               | PM(18)=                               | 1.76250          | СY =                                   | 00009           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HINT =                                 | 313.416                    | HOUTO=            | 342.633                               | HL055= 1.                             | 31.484           | 4RXNS= 95                              |                 | = -1.938 | M040T= -13,255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        |                            |                   |                                       |                                       |                  |                                        |                 |          | ter ben en se de la construction de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            |                   |                                       |                                       |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            |                   |                                       |                                       |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | 2.00 MINHTES               | <b></b>           |                                       | R OF ITERATIO                         | DNS=- 7          |                                        |                 |          | 18 1 10 1 - 11 1 1 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                            |                   |                                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (/// ) = 1       |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X ( 1) =                               | .18943                     | RM( ))=           | .52968                                | DM (101-                              | 119.75587        | Y())=                                  | .51051          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ×(2)=-                                 |                            | 9M( 2)=-          |                                       | RM(11) = -                            |                  |                                        | .16207          |          | a data a successive successi                                                                                                                                                                                                                                             |
| x(3) =                                 | .33742                     | RM( 3)=           | .94351                                |                                       | .14282           |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            | • • • •           | -                                     | RM(12) =                              |                  | Y(3)=                                  | .28956          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(4)=                                  |                            |                   | 0.00000                               | PM(13)=                               | .62469           | Y(4)=                                  | .01822          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ×( 5)=-                                | .00475                     | RM( 5)=           |                                       | PM(14)=                               |                  |                                        |                 | • •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X( 6)=                                 | .19353                     | RM(6) =           | .27469                                | PM(15)=                               | .53008           | VRATE=                                 | •02749          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X ( 7) =                               | • 09466                    | RM(7)=            | .26469                                | PM(16)=                               | .03428           | SUMY =                                 | • 44441         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X( f)=-                                | 26361                      | RM(8)=            | •73713 ···                            | RM(17)=                               |                  | DY1=                                   | 00065           |          | i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| X( 4)=                                 | 0,0000                     | PM( 9)=           | 0.0000                                | PM(19)=                               | 1.87194          | DY =                                   | 00009           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HIVT =                                 | 343.405                    | HOHTO=            | 345.822                               | HLOSS= 1                              | 18,503           | HRXNS= 87                              | .031 HDMDT:     | = -1.098 | MDHDT= -12,790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        | • · · · ••••               |                   |                                       | · · · · · · · · · · · · · · · · ·     |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            |                   |                                       |                                       |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            |                   |                                       |                                       |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -TINFS- 56                             | . AO -MINUTES              |                   | NHMPE                                 | R OF ITERATIO                         | JNS=7            |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            |                   |                                       |                                       |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ×(])=                                  | .19360                     | RM(1)=            | .54591                                | PM(10)=                               | 119,25193        | Y(1)=                                  | • 52633         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            | - RM( 2)=         |                                       |                                       |                  | · ·- · ×(5)=                           | .14703          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(3) =                                 | .33811                     | RM(3)=            | , 05339                               | PM(12) =                              | .14280           | Y(3)=                                  | .29001          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X ( 4) =                               |                            |                   |                                       |                                       |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | •                          | PM( 4) ±          |                                       | RM(13)=                               | .58232           | Y(4) =                                 | .01767          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | -                          | · RH( 5)=         | .01294                                |                                       | •                | · · Y(5) =                             | .01688          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X (                                    | .09143                     | RM( 6)=           | .25799                                | PM(15) =                              | .56223           | VPATE=                                 | .02794          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ¥(7)=                                  | .09327                     | RM(7)=            | .25459                                | $R^{M}(16) =$                         | .03640           | \$1JMY=                                | .99492          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            | - 무서( 원) =        | •753H3                                |                                       |                  | [Y]=                                   | 00055           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X( ~)=                                 | 0,0000                     |                   | 0.00000                               | PM(18)=                               | 1.98260          | DY=                                    | 00006           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HINT =                                 | 343.406                    | HOUTO=            | 349.466                               | HL055= 1(                             | 06.115           | HRXNS= 79.                             | .453 HDMDT      | 547      | MDHDT= -12.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        |                            |                   |                                       |                                       |                  |                                        |                 | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            |                   |                                       |                                       |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            |                   | -                                     |                                       |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60                                     | .00 MINHTES                |                   | - NUMBE                               | R OF ITERATIC                         | NS= 7 ·          |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | •                          |                   |                                       |                                       |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(l)=                                  | .19752                     | RM( 1)=           | .56136                                | RM(10) =                              | 118.77650        | Y(1)=                                  | •54074          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x+->)=                                 | -                          | RM( 2)=           | . 02903                               |                                       |                  | ····· Y(2)=                            | .13344          |          | a na ann an ann an ann an an an an ann anna an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(3) =                                 | .33876                     | RM(2)=.<br>RM(3)= | ,96278                                | RM(12)=                               |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            |                   |                                       |                                       | .14279           | Y(3)=                                  | .29039          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | A.00000                    | 요석(4)=            | 0.0000                                | RM(13)=                               | .74238           | Y(4)=                                  | .01712          |          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ······································ |                            | - RM( 5)=         |                                       | RM(14)=                               |                  | ······································ | 01823           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(6)=                                  | .08540                     | RM(6)=            | .24273                                | RM(15) =                              | .59485           | V94TE=                                 | •05850          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(7)=                                  | .09313                     | RM( 7)=           | .26469                                | RM(16) =                              | .03849           | SUMY=                                  | . 043us         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X("F)=                                 | .54061                     | - RM( R)= '       | .76909                                | " RM(17)=                             |                  | DY1=                                   | 07053           |          | ն են ու որ ապատան մեջանն լանցերություն մեծանացներներին անելներու հանցերացներու                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        | 0,10100                    | RM(9)=            | 0.00000                               | RM(18)=                               | 2.09457          | DY=                                    | <b>~</b> °00003 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HINT =                                 | 363.406                    | нонто=            | 353.374                               | HLOSS= S                              | 94,411           | HRXNS= 72                              | .710 HDMDT=     | 215      | M0H0T= -11.453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        |                            |                   |                                       |                                       |                  | ••• •                                  |                 |          | a construction of the second s |
|                                        |                            |                   |                                       |                                       |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            |                   |                                       |                                       |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TTYPE 64                               | . DO MINUTES               |                   | MUMPE                                 | R OF ITEPATIO                         | INS= 7           |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 111- 04                                | • 222 - 22 3223 (2)        |                   | · · · · · · · · · · · · · · · · · · · | a or i reenite                        | /··· · · · · · · |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ¥ / 31-                                | 00114                      |                   | 57507                                 | 0H/10+-                               | 110 22244        |                                        | C C 111.4       |          | Sector Se |
| X(1)=                                  | .20116                     | RM( 1)=           |                                       |                                       | 118.33204        | Y(])=                                  | .55385          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | .00947 -                   | PM( 2)=           | .02712                                |                                       | - 2.84302        | Y(2) =                                 | +15153          |          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 ( 3):                                | به. ۶. <sup>1</sup> . 5. 1 | awr 3)≡           | .9715 <del>6</del>                    | () 전 () 전 () 부                        | 114779           | ×(3)=                                  | •52025          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                            |                   |                                       |                                       |                  |                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| <b>~</b> TI%F≠~~8 | 30.00 MINUTES | 5         | NUMRE   | RIOF ITERATI  | 019= 7    |              |          |
|-------------------|---------------|-----------|---------|---------------|-----------|--------------|----------|
| ·×(1)=            | .21302        | RM( 1)=   | .62488  | RM(10) =      | 116.86783 | Y(])=        | .59451   |
| = (S)X -          | .00708        | RM(2)=    | .02075  | PM(11)=       | * 2,93344 | ≍ (2) ≍      | . 11443  |
| X ( 5) =          | .34169        | RM(3) =   | 1.00232 | RM(12) =      | .14271    | Y(3)=        | .29189   |
| Y ( 4) =          | 0.0000        | RM( 4)=   | 0.0000  | RM(13)=       | 1.07560   | Y (4) =      | .01479   |
| ( 5)=             |               | · PM( 5)= | .00896  | · - PM(14)=-  |           | (5) ≤ Y(5) ≤ | .01433   |
| < ( b) =          | .06235        | P4(6)=    | .18291  | ₽M(15)=       | .76479    | VRATER       | .02994   |
|                   | -             | · · ·     | r r     | Para di Santa | 0.6.9.5.5 | م کر اور ا∵  | C 10 3 7 |

TIME= -72.00 MINUTES NUMBER OF ITERATIONS= 7

| · | ۲.<br>در<br>در                                |
|---|-----------------------------------------------|
|   | any aga a any any any any any any any any any |

· · · · · ·

••

-----

| 45= 76 | ING MINUTES |                      | NUMBER   | OF ITERATI | 0NS= 7    |            |               | •          |                                        |
|--------|-------------|----------------------|----------|------------|-----------|------------|---------------|------------|----------------------------------------|
| ((1)=  | .21045      | PM( 1)=              | .61403   | RM(10) =   | 117.18836 | Y(1)=      | .58594        |            |                                        |
| (2)=   | .00759      | RM(2)=               | . 01220. | PM(11)=    | 2,91775   | ¨ Υ(2) =   | .09205        | · ·        |                                        |
| (3) =  | .34114      | RM( 3)=              | .99535   | RM(12)=    | .14274    | Y(3)=      | .29159        |            |                                        |
| (4) =  | 0.00000     | 유생( 4)=              | 0.0000   | RM(13) =   | 1.00499   | Y(4)=      | .01518        |            |                                        |
| ( 5)=  | .00332      | <sup>[]</sup> 무서(5)= | .00969   | RM(14)=    | .74720    | Y(5)=      | .01517        |            | a an an a substantia an a maganan an a |
| (      | .06617      | 유세( 6)=              | .19307   | PM(15)=    | .72993    | VRATE=     | .02962        |            |                                        |
| (7)=   | .09072      | RM(7)=               | .26469   | PM(16)=    | .04648    | SUMY=      | ~ 20093       |            |                                        |
| ( )=   | .28061      | PM(8)=               | .A1875   | - PM(17)=- | .03971    | DY1≠       | ~ * 0 0 0 5 9 | -          | ,                                      |
| (9)=   | 0.00000     | ₽M( 9)=              | 0.00000  | PM(18) =   | 2.55747   | CY=        | 01007         |            |                                        |
| INT =  | 363.406     | HOUTO=               | 368.999  | HLOSS≠     | 55.138    | HRXNS= 52. | 447 HD        | 4D7=067 MD | HDT= -9,217                            |

|                      |         | •             |                   |                   | _         |            |         |            |
|----------------------|---------|---------------|-------------------|-------------------|-----------|------------|---------|------------|
| X(1)=                | .20762  | RM(1)= .602   | 227 PM(10)=       | = 117,53842       | Y(1)=     | .57637     |         |            |
| x (-2) = -           | .00816  | RM( 2)= .021  | 368 ····· PM(11)= | : <b>5°</b> 80085 | · Y(2)= · | .10055     |         |            |
| x(3)=                | .34057  | РМ(3)= .981   | 793 RM(12)=       | .14277            | Y(3)=     | •29130     |         | ,          |
| ×i 4)=               | 0.00000 | 모네( 4)= 0.000 | )00 PM(13)=       | • 93623           | Y(4)=     | .01551     |         |            |
| X (- 5) = -          | 00359   | RM( 5) = .010 | 142 - RM(14)=     | • 73583 * * *     | Υ(5)=     | .01599     |         |            |
| X ( 5) =             | .07033  | RM( 6)= .204  | +03 RM(15)=       | ÷ \$9548          | VRATE=    | •05959     |         |            |
| x(7)=                | .09125  | RM( 7) = .264 | 469 RM(16)=       | ,04454            | SUMY=     | *önöh5     |         |            |
| X( P)=               | .27647  | RM( 8)= .80   | 780 ··· RM(17)=   | .03787            | " DY1=    | 00060      | ••      |            |
| X ( <sup>Q</sup> ) = | 0.00000 | RM( 9)= 0.000 | )00 PM(18)=       | 2.43965           | DY=       | 00008      |         |            |
| HINT =               | 763.406 | HOUTO= 365.28 |                   | 63,815 H          | RXNS= 56. | 662 HDMDT= | 005 MDH | PT= -9.025 |
|                      | •••••   |               |                   |                   | •         |            | •       |            |

| -TIME= · · 6 | 8.00 MINUTES | NUMBER               | OF ITERATIONS= 7  |                      | · · · · · · · · · · · · · · · · · · · |
|--------------|--------------|----------------------|-------------------|----------------------|---------------------------------------|
| X(1)=        | .20453       | R'(1) = .58957       | PM(10)= 117.91938 | Y(1)= \$56571        |                                       |
| x( 2)=       | 00879        | RM( 2)=02534         | RM(11)= 2.88259-  | Y(2)= .11034         |                                       |
| X(3)=        | 33409        | PM(3)= .98004        | RM(12)= .14278    | S0165 = (£) A        |                                       |
| ¥ ( 4) =     | 0.0000       | $R^{M}(4) = 0.00000$ | RM(13)= .86945    | Y(4) = .01608        |                                       |
| x1 51=       | no3H6        | PM( 5)= .01112       | RM(14) = .72353   | Y(5)= .01678         |                                       |
| x(-6) =      | 07489        | PM( 6)= .21588       | RM(15) = .66148   | V407E= .02443        |                                       |
| ×(7)=        | 09142        | RM( 7)= .26469       | PM(16)= .04256    | SUMA= *00005         |                                       |
| - X( 4)=     | 27612        | RM( 8)= .79594       | PM(17) =03595     | - · DY1= -,00061     | ,                                     |
| X ( 4) =     | 0,00000      | R4(9) = 0.00000      | RM(19) = 2.32320  | DY=00008             |                                       |
|              | 363.405      | HOUTO= 361.391       | HL055= , 73.246   | HRXNS= 61.394 HDMDT= | .012 MDHDT= -9.849                    |
|              |              |                      |                   | · · · ·              |                                       |

.

| < ( y) = 0.00000 | $P_{M}(A) = 0.00000$ | $HM(IE) = C \circ C \cup D \subseteq U$ | UT=           | 1000-  |       |                |  |
|------------------|----------------------|-----------------------------------------|---------------|--------|-------|----------------|--|
| HINT = 363.406   | HOUTO= 357.340       | HLOSS= 83.445                           | HRXNS= 55.717 | HUMDT= | -,045 | MDHDT= -10.667 |  |
|                  |                      |                                         | - ···· · ·    |        |       |                |  |

|                                  | S NUMRE                          | P OF ITERATIONS= - 7-                |                             |                                         |                    |                                       |      |
|----------------------------------|----------------------------------|--------------------------------------|-----------------------------|-----------------------------------------|--------------------|---------------------------------------|------|
| X(1)= ,21536                     | RM(1) = .63487                   | PM(10) = 116.5751                    | 0 Y(1)=                     | .60218                                  |                    |                                       |      |
|                                  |                                  | PM(11)=2.9479                        |                             | .07767                                  |                    |                                       |      |
| X(3)= .34223                     | PM(3) = 1.00887                  | RM(12)= ,1426                        |                             | .24217                                  |                    |                                       |      |
| X(4) = 0.00000                   | RM( 4)= 0.00000                  | RM(13) = 1.1479                      | • •                         | .01443                                  |                    |                                       |      |
|                                  |                                  |                                      |                             | 01347                                   | ·                  |                                       |      |
| X( 6)= .05494                    | P''(6) = .17345                  | PM(15)= .8000                        |                             | .03024                                  |                    |                                       |      |
| X(7)= .08979                     | R4(7)= .26469                    | PM(15)= .0502                        | 9 SHMY=                     | * 3A0A3                                 |                    |                                       |      |
|                                  | <b>94(8)=</b> .83836             | RM(17) =0431                         | 4 DY1= -                    | - <b>-</b> .09058                       | · •                | · · · · · · · · · · · · · · · · · · · |      |
| X(S)= 0,00000                    | RM( 9)= 0.00000                  | RM(18)= 2,7969                       | 8 DY=                       | 00007                                   |                    |                                       |      |
| HINT = 363.406                   | HOUTO= 375.753                   | HL055= 39.915                        | HRXNS= 45.                  | 313 HDMDT=                              | 243                | MDHDT= -6.706                         |      |
|                                  |                                  |                                      |                             |                                         |                    | • • • • • • • • • • • • •             |      |
|                                  |                                  |                                      |                             |                                         |                    |                                       |      |
| -TIME= - 88.00 MINUTE            | S NIMRE                          | R OF ITERATIONS= 7 ~~                |                             |                                         |                    |                                       |      |
| x(1)= .21748                     | PM( 1)= .64403                   | RM(10) = 116.3082                    | 0 Y(1)=                     | .60905                                  |                    |                                       |      |
|                                  |                                  | RM(10) = -72.9614                    |                             | •07165                                  |                    |                                       | ···  |
| ×(3)= .34275                     | $R^{-1}(3) = 1.01502$            | RM(12) = -1426                       |                             | •575+8                                  |                    |                                       |      |
| X(4) = 0.00000                   | RM(4) = 0.00000                  | RM(13) = 1.2218                      |                             | .01411                                  |                    |                                       |      |
| x(-=)= 00255                     |                                  |                                      |                             | 01262                                   |                    |                                       |      |
| X( 6)= 05560                     | PH(5) = .16466                   | PM(15) = .8355                       |                             | .03051                                  |                    |                                       |      |
| X(7)= .08435                     | PM( 7)= .26469                   | PM(16) = .0521                       | 5 511MY=                    | .99493                                  |                    |                                       |      |
|                                  | RM('8)= .84716 -                 | · RH(17) =0447.                      | 3 DY <u>1</u> = -           | 00057                                   | • ·                |                                       |      |
| x( 9)= 0.00000                   | RM(9) = 0.00000                  | PM(18) = 2,9185                      | 0 DY=                       | 00007                                   |                    |                                       |      |
| HINT = 363.406                   | HOUTO= 378.756                   | HLOSS= 33.285                        | HPXNS= 42.                  | 284 HDMDT=                              | 330                | MDHDT= -6.021                         |      |
|                                  | •                                | R OF ITERATIONS= -7                  |                             |                                         | . <del>.</del>     |                                       |      |
| ×(1)= .21939                     | RM(1)= .65244                    | RM(10) = 116.0650                    |                             | .61524                                  |                    |                                       |      |
|                                  | RM( 2)= ·· 01720                 | PM(11)=2.9738                        |                             | 06631                                   |                    |                                       |      |
| X(3) =34326                      | $R^{M}(3) = 1.02080$             | RM(12)= ,)425                        |                             | ,29279                                  |                    |                                       |      |
| X(4) = 0.00000                   | RM( 4)= 0.00000                  | PM(13) = 1.29714                     |                             | .01382                                  |                    |                                       |      |
|                                  | PM( 5)= .00689 ·                 | PM(14) =, 7850                       |                             | • 01177                                 |                    |                                       |      |
| X( 6) = .05260<br>X( 7) = .08901 | RM( 6)= .15644<br>RM( 7)= .26469 | RM(15) = -8716                       |                             | •03077                                  |                    |                                       |      |
|                                  |                                  | FM(16) = .0539<br>RM(17) =0462       |                             | .99993<br>10057                         |                    |                                       |      |
| x(9) = 0.00000                   | PM(9)= 0.00000                   | RM(18) = 3.0410                      |                             | 00007                                   |                    |                                       |      |
| · HINT = 363.405                 | HOUTO = 381.509                  | HLOSS≈ 27.245                        | HRXNS= 39.                  |                                         | 408                | MDHDT= -5.390                         |      |
|                                  |                                  |                                      |                             | 550 NOND [=                             | ~ <b>a Y</b> ( ( ) |                                       |      |
|                                  |                                  |                                      |                             |                                         |                    |                                       |      |
| -TIME= 96.00 MINUTE              | State MUNOES                     | OF ITERATIONS= 7                     | • •••••• •• • • • • • • • • |                                         |                    | و د مود د مود                         |      |
|                                  | 5 BER                            | CONTRACTORY 1                        |                             |                                         |                    |                                       |      |
| x(1)= .22113                     | RM(1) = .66014                   | PM(10) = 115,8435                    | 7 Y(1)≈                     | -6207P                                  |                    |                                       |      |
| ×(2)=00543                       |                                  | RM(11)= 2,98530                      |                             | A 17 11 A 4 1                           |                    |                                       |      |
| x(3) = .34376                    | RM(3) = 1.02624                  | RM(12)= .14248                       |                             | .29311                                  |                    |                                       |      |
| X(4) = 0.00000                   | RM(4) = 0.00000                  | PM(13)= 1.37380                      |                             | -01355                                  |                    |                                       | 43.2 |
|                                  |                                  | PM(14)79298                          |                             | • • • • • • • • • • • • • • • • • • • • | <u>.</u>           | • • • • • • • • • • • •               |      |
| ×( f) = _04942<br>×( 7) = _05866 | PM(6) = -14873                   | PM(15)= .90793                       |                             | .03100                                  |                    |                                       |      |
| X(7)=                            | RM(7)= .26469                    | RY(16)= .0554)                       |                             | •040C3                                  |                    |                                       |      |
|                                  |                                  | RM(17)= 0476                         |                             | - <b>,</b> ^0055                        |                    |                                       |      |
| YI 41~ A 86340                   | DM/ Q1- 0 00000                  | DM/181- 2 14441                      | ) nu-                       | . 0.007                                 |                    |                                       |      |
| X ( 4) = 0,00000                 | RM( 9)= 0.00000                  | PM(18) = 3,1646)<br>PM(18) = 3,1646) |                             |                                         |                    |                                       |      |

| SHE REPORTED SHED |       |
|-------------------|-------|
|                   |       |
|                   | · · · |
| •                 |       |

| INITIAL                                                                 | פאסנדדהיים                                                                         | PASED 0                                                               | N AD.                                                       | JUSTED TIME                                                                       | ·· · ·                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |                                                                         |                |         |                                       |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------|---------|---------------------------------------|
| x ( 1) =                                                                | ,15513                                                                             | -                                                                     | 1)=                                                         | .41814                                                                            | PM/101-                                                                                               | 123.57000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y(1)=                                                                    | .07353                                                                  |                |         |                                       |
| x(-2)=                                                                  | • -                                                                                |                                                                       | 2)=                                                         | .07923                                                                            | PM(11)=                                                                                               | 2.69542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                                                                         |                |         |                                       |
| X (- 3) =                                                               |                                                                                    |                                                                       | 3)=                                                         |                                                                                   |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · Y(3) =                                                         |                                                                         |                | · · · · |                                       |
|                                                                         | 0.0000                                                                             |                                                                       | 4)=                                                         | • MILLE                                                                           | PM(12)=                                                                                               | .07787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | .02095                                                                  |                |         |                                       |
| X(5)=                                                                   |                                                                                    |                                                                       | 5)=                                                         | •00353                                                                            | PM(14)=                                                                                               | .22113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | .02653                                                                  |                |         |                                       |
| x(-6) =                                                                 |                                                                                    |                                                                       |                                                             |                                                                                   |                                                                                                       | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                        |                                                                         |                |         |                                       |
| x(7)=                                                                   |                                                                                    |                                                                       | 6) =                                                        | •69147                                                                            | PM(15)=                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VPATE=                                                                   | .01887                                                                  |                |         |                                       |
| X('b)=                                                                  | -                                                                                  |                                                                       | 7)=                                                         | .28494                                                                            | $R^{M}(16) =$                                                                                         | .00549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5UMY =                                                                   | 1.00000                                                                 |                |         |                                       |
| - X(19)=                                                                |                                                                                    | •                                                                     | 8)=                                                         | .30529                                                                            | RM(17) =                                                                                              | ,00140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DY1=                                                                     | 0.00000                                                                 |                |         |                                       |
| x( 4)=                                                                  | tr• dudc∩                                                                          | 400 L                                                                 | 9)=                                                         | 0.0000                                                                            | PM(18)=                                                                                               | .43414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DY=                                                                      | 0,0000                                                                  |                |         |                                       |
|                                                                         | ••                                                                                 | ***                                                                   | -                                                           |                                                                                   |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | **** ***** ***                                                           |                                                                         | <del>.</del> . |         | · · · · · · · · · · · · · · · · · · · |
| TIME=                                                                   | 4.00 MINU                                                                          | ITFS                                                                  |                                                             | NUMBER                                                                            | OF ITERATI                                                                                            | (ONS= 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |                                                                         |                |         |                                       |
| X ( 1 ) =                                                               | .16050                                                                             | · PM (                                                                | 1)=                                                         | .43708                                                                            | PM(10)=                                                                                               | 119.92464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | " Y(1)=                                                                  | .36267                                                                  |                |         |                                       |
| X(2)=                                                                   | • · · - ·                                                                          | RM (                                                                  | 2)=                                                         | •07277                                                                            | PM(11)=                                                                                               | 2.72328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = (S) Y                                                                  | .33104                                                                  |                |         |                                       |
| x ( 3) =                                                                | .33926                                                                             | PM (                                                                  | 3)=                                                         | .92118                                                                            | PM(12)=                                                                                               | .16196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y(3)=                                                                    | .25504                                                                  |                |         |                                       |
| X(4)=                                                                   | 0.0000                                                                             | ••• РМ(                                                               | 4)=                                                         | 0.00000                                                                           | PM(13)=                                                                                               | .15061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y(4)=                                                                    |                                                                         |                |         | · · · · · · · · · · · · · · · ·       |
| x ( 5) =                                                                | .00204                                                                             | 다 M (                                                                 | 5)=                                                         | .00555                                                                            | PM(14)=                                                                                               | .26387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y(5)=                                                                    | .01107                                                                  |                |         |                                       |
| X ( б) =                                                                | .23940                                                                             | PM (                                                                  | 6)=                                                         | .45194                                                                            | PM(15)=                                                                                               | .16477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VRATE=                                                                   | ·00H74                                                                  |                |         |                                       |
| × ( 7) =                                                                | . ,10547                                                                           | ' - RM(                                                               | 7)=                                                         | .28994                                                                            | RM(16)=                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \${!MY=                                                                  | .94997                                                                  |                |         | ··· · · · · · · · · · · · · · · · · · |
| X ( 5) =                                                                | 15995                                                                              | P.M.(                                                                 | A)=                                                         | .34482                                                                            | RM(17) =                                                                                              | .00264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DY1=                                                                     | 00012                                                                   |                |         |                                       |
| X(9)=                                                                   | 0.0000                                                                             | рм (                                                                  | 9)=                                                         | 0.00000                                                                           | PM(18)=                                                                                               | .55717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DY =                                                                     | 00003                                                                   |                |         |                                       |
| HINT =                                                                  | 238.498                                                                            | HOUTO=                                                                | 111                                                         | .969 HL055                                                                        |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          | TT.723                                                                  | в монот=       | 79.478  | · · · · · · · · · · · · · · · · · · · |
|                                                                         |                                                                                    |                                                                       |                                                             |                                                                                   |                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                                         |                |         |                                       |
| <br>TIMF=                                                               | -<br>8.00 MINU                                                                     | TES                                                                   |                                                             | NIMBED                                                                            | OF ITERATI                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |                                                                         |                | •       |                                       |
|                                                                         | ÷ ,                                                                                |                                                                       |                                                             |                                                                                   |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |                                                                         |                |         |                                       |
|                                                                         | -                                                                                  |                                                                       | 1)=                                                         | .47384                                                                            |                                                                                                       | 118,95119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |                                                                         |                |         |                                       |
| x(2)=                                                                   | .02+45                                                                             |                                                                       | 5)=                                                         | .07366                                                                            | $R^{M}(11) =$                                                                                         | 2.78445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + (S) =                                                                  | .30658                                                                  |                |         |                                       |
| X(3)=                                                                   |                                                                                    |                                                                       | 3)=                                                         | .94329                                                                            | $R_{4}(15) =$                                                                                         | .16342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y(3)=                                                                    | •26655                                                                  |                |         |                                       |
|                                                                         | •                                                                                  |                                                                       | 4)=                                                         | •                                                                                 | PM(13)=                                                                                               | •15451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | ·01448                                                                  |                |         |                                       |
| X(5)=                                                                   | .00250                                                                             |                                                                       | 5)=                                                         | .00696                                                                            | $R^{(14)} =$                                                                                          | .29214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y(5)=                                                                    | .01257                                                                  |                |         |                                       |
| X( 5)=                                                                  | ,2227 <b>7</b>                                                                     | 1                                                                     | 6)=                                                         | .62030                                                                            | RM(15)=                                                                                               | 18832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VPATF =                                                                  | .01820                                                                  |                |         |                                       |
| X ( 7) =                                                                | .10413                                                                             | RW(                                                                   | 7)=                                                         | .28994                                                                            | <pre> RM(15) = "</pre>                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SIIMY=                                                                   | •94994                                                                  |                |         |                                       |
| X ( ≌) =                                                                | .13520                                                                             | ) MG                                                                  | 8)=                                                         | .37646                                                                            | PM(17)=                                                                                               | .00370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DY1=                                                                     | -,00035                                                                 |                |         |                                       |
| X(9)=                                                                   | 0.00000                                                                            | DM /                                                                  | <u> </u>                                                    | 0 00000                                                                           |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |                                                                         |                |         |                                       |
|                                                                         |                                                                                    |                                                                       | 4) =                                                        | 0.00000                                                                           | RM(18)=                                                                                               | .64517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DY =                                                                     | 00006                                                                   |                |         |                                       |
|                                                                         | 238.495                                                                            | -                                                                     | -                                                           |                                                                                   |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0Y=                                                                      |                                                                         | MOHDT=         | 7.097   | · · · · · · · · · · · · · · ·         |
|                                                                         | 238.495                                                                            | -                                                                     | -                                                           |                                                                                   |                                                                                                       | - HPXNS=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0Y=                                                                      | 00006                                                                   | MOHDT=         | 7.047   |                                       |
| HINT =                                                                  | 238.495                                                                            | HOUTO                                                                 | -                                                           | •157 HLOSS                                                                        | 5= 113,277                                                                                            | HPXNS=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0Y=                                                                      | 00006                                                                   | M0H01=         | 7.047   | · · · · · · · · · · · · · · · · · · · |
| HINT =                                                                  | 238.499                                                                            | HOUTO                                                                 | -                                                           | NUMBER                                                                            | 0F ITERATI                                                                                            | HPXNS=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0Y=                                                                      | 00006                                                                   | M0H07=         | 7.047   | · · · · · · · · · · · · · · · · · · · |
| HINT =                                                                  | 238.499                                                                            | HOUTO=<br>TES<br>RM(                                                  | 231                                                         | NUMBER                                                                            | 0F ITERATI                                                                                            | - HRXNS=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0y≃<br>147.825 Hr                                                        | 00006<br>DMDT= 34.791                                                   | MDHDT=         | 7.047   | · · · · · · · · · · · · · · · · · · · |
|                                                                         | 238.498                                                                            | HOUTO=<br>TES<br>RM(                                                  | 231<br>1)=<br>2)=                                           | •157 HLOSS<br>NUMBER<br>•50881                                                    | 5= 113.277<br>OF ITERATI<br>RM(10)=                                                                   | - HRXNS=<br>ONS= A<br>117.82029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DY=<br>147.825 Hr<br>                                                    | 00005<br>DMDT= 34.791<br>.43166<br>.27739                               | M0H0†=         | 7.047   |                                       |
| HINT =<br>TIME= ]<br>X(3)=<br>X(3)=                                     | 238.495<br>12.00 MINU<br>.17924<br>.02528<br>.33942                                | HOUTO=<br>TES<br>PM(<br>PM(<br>RM(                                    | 231<br>1)=<br>2)=<br>3)=                                    | .157 HLOSS<br>NUMHER<br>.50881<br>.07176<br>.96354                                | S= 113.277<br>OF ITERATI<br>RM(10)=<br>RM(11)=<br>RM(12)=                                             | <pre>PRXNS= PRXNS= PRS= PRS= PRS= PRSPS= PRS</pre> | DY=<br>147.825 Hr<br>Y(1)=<br>Y(2)=<br>Y(3)=                             | 00005<br>DMDT= 34.791<br>.43156<br>.27730<br>.26605                     | M0H0†=         | 7.047   |                                       |
| x ( S) =<br>x ( 1) =<br>x ( 1) =<br>HINT =                              | 238.495                                                                            | HOUTO=<br>TES<br>PM(<br>PM(<br>PM(<br>PM(<br>PM(                      | 231<br>1) =<br>2) =<br>3) =<br>4) =                         | •157 HLOSS<br>NUMBER<br>•50881<br>•07176<br>•96354<br>0.00000                     | S= 113.277<br>OF ITERATI<br>RM(10)=<br>RM(11)=<br>RM(12)=<br>RM(13)=                                  | <pre>PRXNS= PRXNS= PRS= PRS= PRS= PRS= PRS= PRS= PRS= PR</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DY=<br>147.825 Hr<br>Y(1)=<br>Y(2)=<br>Y(3)=<br>Y(4)=                    | 00005<br>DMDT= 34.791<br>.43166<br>.27730<br>.26608<br>.01163           | M0H0†=         | 7.047   |                                       |
| HINT =<br>TIME= ]<br>X(3)=<br>X(3)=<br>X(4)=<br>X(5)=                   | 238.495                                                                            | HOUTO=<br>TES<br>RM(<br>RM(<br>RM(<br>RM(<br>RM(                      | 231<br>1) =<br>2) =<br>3) =<br>4) =<br>5) =                 | •157 HLOSS<br>NUMBER<br>•50881<br>•07176<br>•96354<br>0.00000<br>•00792           | S= 113.277<br>OF ITERATI<br>RM(10)=<br>RM(11)=<br>RM(12)=<br>RM(13)=<br>RM(14)=                       | <pre>PRXNS= PRXNS= PRXN</pre> | DY=<br>147.825 Hr<br>Y(1)=<br>Y(2)=<br>Y(3)=<br>Y(4)=<br>Y(5)=           | 00005<br>DMDT= 34.791<br>.43166<br>.27730<br>.26605<br>.01163<br>.01320 | M0H0†=         | 7.047   |                                       |
| HiNT =<br>TIME= 1<br>X(1)=<br>X(2)=<br>X(3)=<br>X(4)=<br>X(4)=<br>X(5)= | 238.495<br>12.00 MINU<br>.17924<br>.02528<br>.33942<br>0.00000<br>.00279<br>.20564 | HOUTO=<br>TES<br>RM(<br>RM(<br>RM(<br>RM(<br>RM(<br>RM(<br>RM(<br>RM( | 231<br>1) =<br>2) =<br>3) =<br>4) =<br>5) =<br>6) =         | .157 HLOSS<br>NUMHER<br>.50881<br>.07176<br>.96354<br>0.00000<br>.00792<br>.59226 | S= 113.277<br>OF ITERATI<br>RM(10)=<br>RM(11)=<br>RM(12)=<br>RM(12)=<br>RM(13)=<br>RM(14)=<br>RM(15)= | - HRXNS=<br>ONS= A<br>117.82029<br>2.93974<br>.15451<br>.19438<br>.31948<br>.21309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0Y=<br>147.825 Hr<br>Y(1)=<br>Y(2)=<br>Y(3)=<br>Y(4)=<br>Y(5)=<br>Y0A7F= | 00006<br>DMDT= 34.791<br>.27739<br>.26606<br>.01163<br>.01320<br>.02171 | M0H0†=         | 7.047   | · · · · · · · · · · · · · · · · · · · |
| HINT =<br>TIME= ]<br>X(3)=<br>X(3)=<br>X(4)=<br>X(5)=                   | 238.495                                                                            | HOUTO=<br>TES<br>RM(<br>RM(<br>RM(<br>RM(<br>RM(                      | 231<br>1) =<br>2) =<br>3) =<br>4) =<br>5) =<br>6) =<br>7) = | •157 HLOSS<br>NUMBER<br>•50881<br>•07176<br>•96354<br>0.00000<br>•00792           | S= 113.277<br>OF ITERATI<br>RM(10)=<br>RM(11)=<br>RM(12)=<br>RM(13)=<br>RM(14)=                       | - HRXNS=<br>ONS= A<br>117.82029<br>2.93974<br>.15451<br>.19438<br>.31948<br>.21309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DY=<br>147.825 Hr<br>Y(1)=<br>Y(2)=<br>Y(3)=<br>Y(4)=<br>Y(5)=           | 00005<br>DMDT= 34.791<br>.43166<br>.27730<br>.26605<br>.01163<br>.01320 | ₩9H9†=         | 7.047   |                                       |

--- -- . .

. . .

....

| IT.L. TOPHA WIMALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NUMBER UF TIGRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 116.80199 Y(1):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2)= .06869 RM(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
| • -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3)= .98266 RM(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5) = .00855 RM(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6)= .56726 PM(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                |                                |                                         |                                       |
| x(-7) =10036 RM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 01048 SIMY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = .99997                                                                                                                                                                                                                                                                                                         | • • • • • • • • • •            |                                         |                                       |
| · · · • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A) = .42950 - PM(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                | •                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9) = 0.00000 RM(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 302.514 HLOSS≠ - 54.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06 HRXNS=117,47H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +0MDT= 15.874                                                                                                                                                                                                                                                                                                    | MDHOT= -17.81                  | ,R                                      |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                |                                |                                         |                                       |
| TIME= 20.00 MINUTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NUMBER OF ITERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110~5= 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
| X(-])=19551R4(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 48793                                                                                                                                                                                                                                                                                                          |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2) = .06506 RM(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3) = 1.00063 PM(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4) = 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.000000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000000 - 0.00000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = ,01149 SUMY=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8)= .45206 PM(17)<br>9)= 0.00000 RM(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
| HINT = 234,494 HOUTO=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 322.321 HLUSS= 29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 HQXNS= - 106.411 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.907                                                                                                                                                                                                                                                                                                           | MDHDT= -20.04                  | 5                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                | · · · · · · · · · · · · · · · · · · ·   |                                       |
| TIME= 24.00 MINUTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NUMBER OF ITERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TIONS= 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                | · · · · · · · · · · · · · · · · · · ·   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51168                                                                                                                                                                                                                                                                                                            |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1)= .60297RM(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = -115.09325 - Y(1)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                | · · · · · · · · · · · · · · · · · · ·   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1)= .60297 RM(10)<br>2)= .06125 RM(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = -115.09325 Y(1)=<br>= 2.97754 Y(2)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .20076                                                                                                                                                                                                                                                                                                           |                                | · · · · · · · · · · · · · · · · · · ·   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1)= .60297RM(10)<br>2)= .06125 RM(11)<br>3)= 1.01751 RM(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = -115.09325 Y(1)=<br>= 2.97754 Y(2)=<br>= .16691 Y(3)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • 20076<br>• 26597                                                                                                                                                                                                                                                                                               |                                |                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1)= .60297RM(10)<br>2)= .06125 RM(11)<br>3)= 1.01751 RM(12)<br>4)= 0.00000 RM(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = -115.09325 Y(1)=<br>= 2.97754 Y(2)=<br>= .16691 Y(3)=<br>=34225 Y(4)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • 20076<br>• 26597<br>• 00841                                                                                                                                                                                                                                                                                    |                                |                                         |                                       |
| X(1)=20251RM(<br>X(2)= .02057 RM(<br>X(3)= .34173 RM(<br>X(4)=-0.00000RM(<br>X(5)= .00306 RM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = -115.09325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20076<br>26597<br>00841<br>01314                                                                                                                                                                                                                                                                                 | <br>                           | · · · · · · · · · · · · · · · · · · ·   |                                       |
| <pre>X(1)=20251RM( X(2)= .02057 RM( X(3)= .34173 RM(</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $      1) =60297RM(10) \\       2) = .06125 RM(11) \\       3) = 1.01751 RM(12) \\       4) = .0.00000 - RM(13) \\       5) = .00910 RM(14) \\       6) = .52415 RM(15) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = -115.09325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 20076<br>- 26597<br>- 00841<br>- 01314<br>- 02645                                                                                                                                                                                                                                                              | <br>                           |                                         |                                       |
| $ \begin{array}{c} X(1) = 20251 RM( \\ X(2) = - 02057 & RM( \\ X(3) = - 34173 & RM( \\ X(-4) = - 0.00000 RM( \\ Y(5) = - 0.00006 & RM( \\ Y(5) = - 0.0006 & RM( \\ Y(6) = - 17503 & RM( \\ X(-7) = 00739 & RM( \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $      1) =60297 RM(10) \\       2) = .06125 RM(11) \\       3) = 1.01751 RM(12) \\       4) = .0.00000 - RM(13) \\       5) = .00910 RM(14) \\       6) = .52415 RM(15) \\       7) = .28994 - PM(16) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = -115.09325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 20076<br>- 26597<br>- 00841<br>- 01314<br>- 02645<br>- 99995                                                                                                                                                                                                                                                   |                                |                                         |                                       |
| $ \begin{array}{c} X(1) = 20251 RM( \\ X(2) = - 02057 & RM( \\ X(3) = - 34173 & RM( \\ X(-4) = - 0.00000 RM( \\ Y(5) = - 0.00006 & RM( \\ Y(5) = - 0.0006 & RM( \\ Y(6) = - 17503 & RM( \\ X(-7) = 00739 & RM( \\ X(-6) = - 15873 & RM( \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $      1) =60297RM(10) \\       2) = .06125 RM(11) \\       3) = 1.01751 RM(12) \\       4) = .0.00000 - RM(13) \\       5) = .00910 RM(14) \\       6) = .52415 RM(15) \\       7) = .28994 - PM(16) \\       8) = .47262 RM(17) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = -115.09325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 20076<br>26597<br>00841<br>01314<br>02645<br>99996<br>- 00044                                                                                                                                                                                                                                                  |                                | · · · · · · · · · · · · · · · · · · ·   |                                       |
| $ \begin{array}{c} X(1) = - \cdot \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $      1) =60297RM(10) \\       2) = .06125 RM(11) \\       3) = 1.01751 RM(12) \\       4) = .0.00000 - RM(13) \\       5) = .00910 RM(14) \\       6) = .52415 RM(15) \\       7) = .28994 - PM(16) \\       8) = .47262 RM(17) \\       9) = .0.00000 PM(18) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = -115.09325 Y(1) =<br>= 2.97754 Y(2) =<br>= .16691 Y(3) =<br>= .34225 Y(4) =<br>= .39318 Y(5) =<br>= .29630 VRATE =<br>= .01247 SUMY =<br>= .09909 DY1 =<br>= 1.05010 DY =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 20076<br>26597<br>00841<br>01314<br>02645<br>99946<br>- 00044                                                                                                                                                                                                                                                  |                                |                                         |                                       |
| $ \begin{array}{c} X(1) = - \cdot \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $      1) =60297RM(10) \\       2) = .06125 RM(11) \\       3) = 1.01751 RM(12) \\       4) = .0.00000 - RM(13) \\       5) = .00910 RM(14) \\       6) = .52415 RM(15) \\       7) = .28994 - PM(16) \\       8) = .47262 RM(17) \\       9) = .0.00000 PM(18) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = -115.09325 Y(1) =<br>= 2.97754 Y(2) =<br>= .16691 Y(3) =<br>= .34225 Y(4) =<br>= .39318 Y(5) =<br>= .29630 VRATE =<br>= .01247 SUMY =<br>= .09909 DY1 =<br>= 1.05010 DY =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 20076<br>26597<br>00841<br>01314<br>02645<br>99996<br>- 00044                                                                                                                                                                                                                                                  | MOHDT= -19.90                  | 9                                       |                                       |
| $ \begin{array}{c} X(1) = 20251 RM( \\ X(2) = - 02057 & RM( \\ X(3) = - 34173 & RM( \\ X(-4) = - 0.00000 RM( \\ Y(5) = - 0.0000 & RM( \\ Y(5) = - 17503 & RM( \\ X(-7) = 00739 RM( \\ X(-1) = - 15873 & RM( \\ X(-1) = - 0.0000 & RM( \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $      1) =60297RM(10) \\       2) = .06125 RM(11) \\       3) = 1.01751 RM(12) \\       4) = .0.00000 - RM(13) \\       5) = .00910 RM(14) \\       6) = .52415 RM(15) \\       7) = .28994 - PM(16) \\       8) = .47262 RM(17) \\       9) = .0.00000 PM(18) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = -115.09325 Y(1) =<br>= 2.97754 Y(2) =<br>= .16691 Y(3) =<br>= .34225 Y(4) =<br>= .39318 Y(5) =<br>= .29630 VRATE =<br>= .01247 SUMY =<br>= .09909 DY1 =<br>= 1.05010 DY =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 20076<br>26597<br>00841<br>01314<br>02645<br>99946<br>- 00044                                                                                                                                                                                                                                                  | MOHDT= -19.90                  | 9                                       | ·                                     |
| $ \begin{array}{c} X(1) = 20251 RM( \\ X(2) = - 02057 & RM( \\ X(3) = - 34173 & RM( \\ X(-4) = - 0.00000 RM( \\ Y(5) = - 0.0000 & RM( \\ Y(5) = - 17503 & RM( \\ X(-7) = 00739 RM( \\ X(-1) = - 15873 & RM( \\ X(-1) = - 0.0000 & RM( \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $      1) =60297RM(10) \\       2) = .06125 RM(11) \\       3) = 1.01751 RM(12) \\       4) = .0.00000 - RM(13) \\       5) = .00910 RM(14) \\       6) = .52415 RM(15) \\       7) = .28994 - PM(16) \\       8) = .47262 RM(17) \\       9) = .0.00000 PM(18) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = -115.09325 Y(1) =<br>= 2.97754 Y(2) =<br>= .16691 Y(3) =<br>= .34225 Y(4) =<br>= .39318 Y(5) =<br>= .29630 VRATE =<br>= .01247 SUMY =<br>= .09909 DY1 =<br>= 1.05010 DY =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 20076<br>26597<br>00841<br>01314<br>02645<br>99946<br>- 00044                                                                                                                                                                                                                                                  | MOHDT= -19.40                  | 9                                       | ·                                     |
| $ \begin{array}{c} X(1) = -20251RM( \\ X(2) = -02057 \\ RM( \\ X(3) = -34173 \\ RM( \\X(4) = -0.60000RM( \\ Y(5) = -007305 \\ RM( \\ Y(5) = -17503 \\ RM( \\X(-7) = -00739 - RM( \\ X(-1) = -15873 \\ RM( \\ X(-1) = -15873 \\ RM( \\ X(-1) = -238 + 498 - HOUTO = \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1)= .60297 RM(10)<br>2)= .06125 RM(11)<br>3)= 1.01751 RM(12)<br>4)= .0.00000 RM(13)<br>5)= .00910 RM(14)<br>6)= .52415 RM(15)<br>7)= .28994 PM(16)<br>8)= .47262 RM(17)<br>9)= .0.00000 PM(18)<br>337.546 HLOSS= 7.H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = -115.09325 Y(1) =<br>= 2.97754 Y(2) =<br>= .16691 Y(3) =<br>= .34225 Y(4) =<br>= .39318 Y(5) =<br>= .29630 VRATE =<br>.01247 CIMY =<br>= .09909 DY1 =<br>= 1.05010 DY =<br>40 HRXNS =97.216 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 20076<br>26597<br>00841<br>01314<br>02645<br>99946<br>- 00044                                                                                                                                                                                                                                                  | MOHDT= -19.90                  | 9                                       | ·                                     |
| $ \begin{array}{c} X(1) = 20251 RM( \\ X(2) = - 02057 & RM( \\ X(3) = - 34173 & RM( \\ X(-4) = - 0.00000 RM( \\ Y(5) = - 0.0000 & RM( \\ Y(5) = - 17503 & RM( \\ X(-7) = 00739 RM( \\ X(-1) = - 15873 & RM( \\ X(-1) = - 0.0000 & RM( \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $      1) =60297RM(10) \\       2) = .06125 RM(11) \\       3) = 1.01751 RM(12) \\       4) = .0.00000 - RM(13) \\       5) = .00910 RM(14) \\       6) = .52415 RM(15) \\       7) = .28994 - PM(16) \\       8) = .47262 RM(17) \\       9) = .0.00000 PM(18) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = -115.09325 Y(1) =<br>= 2.97754 Y(2) =<br>= .16691 Y(3) =<br>= .34225 Y(4) =<br>= .39318 Y(5) =<br>= .29630 VRATE =<br>.01247 CIMY =<br>= .09909 DY1 =<br>= 1.05010 DY =<br>40 HRXNS =97.216 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 20076<br>26597<br>00841<br>01314<br>02645<br>99946<br>- 00044                                                                                                                                                                                                                                                  | MOHDT= -19.40                  | 9                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1)= .60297 PM(10)<br>2)= .06125 PM(11)<br>3)= 1.01751 PM(12)<br>4)=. 0.00000 RM(13)<br>5)= .00910 RM(14)<br>6)= .52415 PM(15)<br>7)= .28994 PM(16)<br>8)= .47262 PM(17)<br>9)= 0.00000 PM(18)<br>337.546 HL055= 7.4<br>NUMBEP OF ITERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = -115.09325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = .20076<br>.26597<br>= .00841<br>= .01314<br>= .02645<br>= .99946<br>= .00044<br>= .00004<br>fDMDT= .10.237                                                                                                                                                                                                     | MOHDT= -19.90                  | 9                                       | ·                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1) = .60297 PM(10)<br>2) = .06125 PM(11)<br>3) = 1.01751 PM(12)<br>4) = .0.00000 PM(13)<br>5) = .00910 RM(14)<br>6) = .52415 PM(15)<br>7) = .28994 PM(16)<br>8) = .47262 PM(17)<br>9) = 0.00000 PM(18)<br>337.546 HLOSS= 7.H<br>NUMBEP OF ITERA<br>1) = .62964 PM(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = -115.09325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = .20076<br>.26597<br>.00841<br>.01314<br>.02645<br>.99946<br>.00044<br>                                                                                                                                                                                                                                         | MOHDT= -19.40                  | 9 · · · · · · · · · · · · · · · · · · · | ·                                     |
| $\begin{array}{c} X(1) = -20251 RM( \\ X(2) = 02057 RM( \\ X(3) = 34173 RM( \\ - X(4) = -0.00000 RM( \\ Y(5) = 0.0306 RM( \\ Y(5) = 0.0306 RM( \\ Y(6) = 17503 RM( \\ - X(7) = -00729 - RM( \\ X(4) = 15273 RM( \\ X(9) = 0.0000 RM( \\ - HINT = -238.498 - HOUTO = \\ \hline TIME = 23.00 MINUTES \\ \hline X(1) = - 20075 - RM( \\ X(2) = 01906 RM( \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1) = $.60297 PM(10)$<br>2) = $.06125 PM(11)$<br>3) = $1.01751 PM(12)$<br>4) = $.0.00000 - PM(13)$<br>5) = $.00910 PM(14)$<br>6) = $.52415 PM(15)$<br>7) = $.28994 - PM(16)$<br>8) = $.47262 PM(17)$<br>9) = $0.00000 PM(18)$<br>337.546 HL055= 7.H<br>NUMBEP OF ITERA<br>1) = $.62964 PM(10)$<br>2) = $.05749 PM(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = -115.09325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>20076</li> <li>26597</li> <li>00841</li> <li>01314</li> <li>02645</li> <li>99946</li> <li>-00044</li> <li>-00004</li> <li>DMDT= 10.237</li> <li>\$57250</li> <li>19061</li> </ul>                                                                                                                       | MOHDT= -19.90                  | 9 · · · · · · · · · · · · · · · · · · · | ·                                     |
| $\begin{array}{c} X(1) = -20251 RM(\\ X(2) = 02057 RM(\\ X(3) = 34173 RM(\\ X(3) = -34173 RM(\\ Y(5) = 0.0306 RM(\\ Y(5) = -0.0306 RM(\\ Y(6) = -17503 RM(\\ X(6) = -17503 RM(\\ X(6) = -17503 RM(\\ X(9) = 0.00729 - RM(\\ X(9) = 0.0000 RM(\\ Y(9) = 0.0000 RM(\\ - HINT = -238.498 - HOUTO = \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1) = .60297 PM(10)<br>2) = .06125 PM(11)<br>3) = 1.01751 PM(12)<br>4) = .0.00000 PM(13)<br>5) = .00910 RM(14)<br>6) = .52415 PM(15)<br>7) = .28994 PM(16)<br>8) = .47262 RM(17)<br>9) = 0.00000 PM(18)<br>337.546 HL055= 7.H<br>NUMBEP OF ITERA<br>NUMBEP OF ITERA<br>1) = .62964 RM(10)<br>2) = .05749 PM(11)<br>3) = 1.03335 PM(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = -115.09325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>20076</li> <li>26597</li> <li>00841</li> <li>01314</li> <li>02645</li> <li>99996</li> <li>-00044</li> <li>-00004</li> <li>DMDT= 10.237</li> <li>\$57250</li> <li>,14061</li> <li>,26619</li> </ul>                                                                                                      | MOHDT= −19.40                  | 9                                       | · · · · · · · · · · · · · · · · · · · |
| $\begin{array}{c} X(1) = - 20251 RM(\\ X(2) = 02057 RM(\\ X(3) = 34173 RM(\\ X(3) = - 24173 RM(\\ Y(5) = 00306 RM(\\ Y(5) = - 00738 RM(\\ Y(5) = - 17503 RM(\\ X(6) = - 17503 RM(\\ X(7) = - 00738 RM(\\ X(9) = 0.00738 RM(\\ X(9) = - 238.448 RM(\\ RM(\\ RM(\\ RM(\\ RM(\\ RM(\\ RM(\\ RM(\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1) = $.60297 PM(10)$<br>2) = $.06125 PM(11)$<br>3) = $1.01751 PM(12)$<br>4) = $.0.00000 - PM(13)$<br>5) = $.00910 PM(14)$<br>6) = $.52415 PM(15)$<br>7) = $.28994 PM(16)$<br>8) = $.47262 PM(17)$<br>9) = $0.00000 PM(18)$<br>337.546 HL055= 7.H<br>NUMBEP OF ITERA<br>NUMBEP OF ITERA<br>1) = $.62964 PM(10)$<br>2) = $.05749 PM(11)$<br>3) = $1.03335 PM(12)$<br>4) = $-0.00000 - PM(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = -115.09325 - Y(1) = 2.97754 + Y(2) = 16691 + Y(3) = 16691 + Y(3) = 34225 - Y(4) = 39318 + Y(5) = 29630 + Y(4) = 01247 - Y(4) = 01247 - Y(4) = 01247 - Y(4) = 1.05010 + Y(5) = 1.05010 + Y(5) = 1.05010 + Y(5) = 1.05010 + Y(1) = 1.05000 + Y(1) = 1.05000 + Y(1) = 1.05000 + Y(1)  | <ul> <li>20076</li> <li>26597</li> <li>00841</li> <li>01314</li> <li>02645</li> <li>99996</li> <li>-00044</li> <li>-00004</li> <li>DMDT= 10.237</li> <li>\$53250</li> <li>,14061</li> <li>,26619</li> <li>,90745</li> </ul>                                                                                      | MOHDT= −19.40                  | 9                                       | ·                                     |
| $\begin{array}{c} X(1) = -20251 RM(\\ X(2) = 02057 RM(\\ X(3) = 02057 RM(\\ X(3) = 02057 RM(\\ X(3) = 02073 RM(\\ Y(5) = 00306 RM(\\ Y(5) = 00306 RM(\\ Y(5) = 003073 RM(\\ X(7) = 00338 RM(\\ X(7) = 00338 RM(\\ X(9) = 0.0000 RM(\\ (X(9) = 0.0000 RM(\\ (X(9) = 0.0000 RM(\\ (X(3) = 0.0000 RM(\\ Y(3) = 0.0000 RM(\\ (X(3) = 0.0000 RM(\\ (X(5) = 0.0000 $ | 1) = $.60297 PM(10)$<br>2) = $.06125 PM(11)$<br>3) = $1.01751 PM(12)$<br>4) = $.0.00000 - PM(13)$<br>5) = $.00910 PM(14)$<br>6) = $.52415 PM(15)$<br>7) = $.28994 PM(16)$<br>8) = $.47262 PM(17)$<br>9) = $0.00000 PM(18)$<br>337.546 HL055= 7.H<br>NUMBER OF ITERA<br>1) = $.62964 PM(10)$<br>2) = $.05749 PM(11)$<br>3) = $1.03335 PM(12)$<br>4) = $.0.0000 - PM(13)$<br>5) = $.00912 PM(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = -115.09325 - Y(1) = 2.97754 + Y(2) = 16691 + Y(3) = 16691 + Y(3) = 34225 - Y(4) = 39318 + Y(5) = 29630 + Y(4) = 01247 - Y(4) = 01247 - Y(4) = 01247 + Y(5) = 1.05010 + Y(5) = 1.05010 + Y(1) = 1.05000 + Y(1)  | <ul> <li>20076</li> <li>26597</li> <li>00841</li> <li>01314</li> <li>02645</li> <li>99996</li> <li>-00044</li> <li>-00004</li> <li>DMDT= 10.237</li> <li>53250</li> <li>14061</li> <li>26619</li> <li>90745</li> <li>01242</li> </ul>                                                                            | MOHDT≖ -19.40                  | · · · · · · · · · · · · · · · · · · ·   |                                       |
| $\begin{array}{c} X(1) = -20251 RM(\\ X(2) = -02057 RM(\\ X(3) = -34173 RM(\\ X(3) = -34173 RM(\\ - X(-4) = -0.0000 RM(\\ Y(-5) = -00039 RM(\\ - X(-7) = -20475 RM(\\ - RM(\\ - RM(-2) = -20475 RM(\\ - RM($             | 1)= .60297 RM(10)<br>2)= .06125 RM(11)<br>3)= 1.01751 RM(12)<br>4)=.0.00000 RM(13)<br>5)= .00910 RM(14)<br>6)= .52415 RM(15)<br>7)= .28994 PM(16)<br>8)= .47262 RM(17)<br>9)= 0.00000 PM(18)<br>337.546 HL055= 7.4<br>NUMBER OF ITERA<br>NUMBER OF ITERA<br>1)= .62964 RM(10)<br>2)= .05749 RM(11)<br>3)= 1.03335 RM(12)<br>4)= .0.0000 RM(13)<br>5)= .00912 RM(14)<br>6)= .50528 RM(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = -115.09325 - Y(1) = 2.97754 Y(2) = 16691 Y(3) = 16691 Y(3) = 34225 - Y(4) = 39318 Y(5) = 29630 VRATE = 01947 - Y(1) = 01247 - Y(1) = 01247 - Y(1) = 1.05010 DY = 1.05010 Y(2) = 1.05010 Y(2 | <ul> <li>20076</li> <li>26597</li> <li>00841</li> <li>01314</li> <li>02645</li> <li>99946</li> <li>-00004</li> <li>-00004</li> <li>-00004</li> <li>-10.237</li> <li>-10.237</li> <li>-26619</li> <li>00745</li> <li>01242</li> <li>02300</li> </ul>                                                              | MOHDT= -19.40                  | · · · · · · · · · · · · · · · · · · ·   | ç. <u>1</u>                           |
| $\begin{array}{c} X(1) = -20251RM(\\ X(2) = -02057 RM(\\ x(3) = -34173 RM(\\ x(3) = -34173 RM(\\X(4) = -0.00305 RM(\\ x(4) = -0.00305 RM(\\ x(5) = -00739 RM(\\X(7) = -00739 RM(\\X(7) = -00739 RM(\\X(7) = -00739 RM(\\20475 RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\RM(\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1) = .60297 RM(10) $2) = .06125 RM(11)$ $3) = 1.01751 RM(12)$ $4) = .0.00000 - RM(13)$ $5) = .00910 RM(14)$ $6) = .52415 RM(15)$ $7) = .28994 - PM(16)$ $8) = .47262 RM(17)$ $9) = .0.00000 PM(18)$ $337.546 HL055 = 7.H$ $NUMBEP OF ITERA$ $1) = .62964 RM(10)$ $2) = .05749 RM(10)$ $3) = 1.03335 PM(12)$ $4) = .0.0000 - RM(13)$ $5) = .00912 RM(14)$ $6) = .50528 RM(15)$ $7) = .28994 PM(16)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = -115.09325 - Y(1) = 2.97754 Y(2) = 16691 Y(3) = 34225 - Y(4) = 39318 Y(5) = 29630 VRATE = 010247 - Y(4) = 00000 VRATE = 000000 VRATE = 0000000 VRATE = 00000000 VRATE = 00000000 VRATE = 0000000000 VRATE = 00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>20076</li> <li>26597</li> <li>00841</li> <li>01314</li> <li>02695</li> <li>99996</li> <li>-00004</li> <li>00004</li> <li>040T = 10.237</li> <li>53250</li> <li>19061</li> <li>26619</li> <li>00745</li> <li>01292</li> <li>02300</li> <li>99996</li> </ul>                                              | MOHDT= -19.90                  | · · · · · · · · · · · · · · · · · · ·   |                                       |
| $\begin{array}{c} X(1) = & 20251 & - & -RM(\\ X(2) = & 02057 & RM(\\ x(3) = & 34173 & RM(\\ x(3) = & 34173 & RM(\\ - & (4) = & -0.0000 & RM(\\ x(5) = & 00739 & RM(\\ - & (-7) = & 00739 & RM(\\ x(6) = & 17503 & RM(\\ - & (-7) = & -00739 & RM(\\ x(9) = & 0.0000 & RM(\\ - & (-7) = & -00739 & RM(\\ - & (-7) = & -00000 & RM(\\ - & (-7) = & -000000 & RM(\\ - & (-7) = & -00000 & RM(\\ - & (-7) & (-7) & RM(\\ - & (-7) & RM(\\ - & (-7) & (-$                     | 1) = .60297 RM(10) $2) = .06125 RM(11)$ $3) = 1.01751 RM(12)$ $4) = .0.00000 - RM(13)$ $5) = .00910 RM(14)$ $6) = .52415 RM(15)$ $7) = .28994 - PM(16)$ $8) = .47262 RM(17)$ $9) = 0.00000 PM(18)$ $337.546 HL055 = 7.H$ $NUMBEP OF ITERA$ $1) = .62964 RM(10)$ $2) = .05749 RM(10)$ $2) = .05749 RM(10)$ $3) = 1.03335 PM(12)$ $4) = .0.0000 - RM(13)$ $5) = .00912 RM(14)$ $6) = .50528 RM(15)$ $7) = .28994 PM(16)$ $8) = .49148 RM(17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = -115.09325 - Y(1) = 2.97754 Y(2) = 16691 Y(3) = 16691 Y(3) = 34225 - Y(4) = 39318 Y(5) = 29630 VRATE = 010909 VRATE = 00909 VP1 = 1.05010 VPATE = 00909 VP1 = 1.05010 VPATE = 1.05010 VPATE = 3.01630 Y(2) = 1.6747 Y(3) = 1.6 | <ul> <li>20076</li> <li>26597</li> <li>00841</li> <li>01314</li> <li>02645</li> <li>99996</li> <li>-00044</li> <li>-00004</li> <li>-00004</li> <li>-10.237</li> <li>-19061</li> <li>26619</li> <li>00745</li> <li>01242</li> <li>02300</li> <li>99496</li> <li>-00042</li> </ul>                                 | MOHDT= -19.90                  | · · · · · · · · · · · · · · · · · · ·   | 1677                                  |
| $\begin{array}{c} X(1) = -20251RM(\\ X(2) = -02057 & RM(\\ X(3) = -34173 & RM(\\ Y(3) = -34173 & RM(\\ Y(3) = -00739 & RM(\\ Y(5) = -00739 & RM(\\ Y(5) = -17573 & RM(\\ X(6) = -17573 & RM(\\ X(6) = -15273 & RM(\\ X(9) = -00739 & RM(\\ Y(7) = -00739 & RM(\\ Y(7) = -00739 & RM(\\ Y(7) = -00739 & RM(\\ Y(3) = -00000 & RM(\\ Y(5) = -0000 & RM(\\ Y(5) = -00000 & RM(\\ Y$       | 1) = .60297 RM(10) $2) = .06125 RM(11)$ $3) = 1.01751 PM(12)$ $4) = .0.00000 - RM(13)$ $5) = .00910 RM(14)$ $6) = .52415 RM(15)$ $7) = .28994 - PM(16)$ $8) = .47262 RM(17)$ $9) = .0.00000 PM(18)$ $337.546 HLOSS = 7.H$ $NIJMBEP OF ITEPA$ $1) = .62964 RM(10)$ $2) = .05749 RM(11)$ $3) = 1.03335 PM(12)$ $4) = .0.0000 - RM(13)$ $5) = .00912 RM(14)$ $6) = .50528 RM(15)$ $7) = .28994 PM(16)$ $8) = .49148 PM(17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = -115.09325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>20076</li> <li>26597</li> <li>00841</li> <li>01314</li> <li>02645</li> <li>99996</li> <li>-00044</li> <li>-00004</li> <li>-00004</li> <li>-00004</li> <li>-10.237</li> <li>-10.237</li> <li>-26619</li> <li>00745</li> <li>01242</li> <li>02300</li> <li>9496</li> <li>-00042</li> <li>-0004</li> </ul> |                                | · · · · · · · · · · · · · · · · · · ·   |                                       |
| $\begin{array}{c} X(1) = -20251RM(\\ X(2) = -02057 & RM(\\ X(3) = -34173 & RM(\\ Y(3) = -34173 & RM(\\ Y(3) = -00739 & RM(\\ Y(5) = -00739 & RM(\\ Y(5) = -17573 & RM(\\ X(6) = -17573 & RM(\\ X(6) = -15273 & RM(\\ X(9) = -00739 & RM(\\ Y(7) = -00739 & RM(\\ Y(7) = -00739 & RM(\\ Y(7) = -00739 & RM(\\ Y(3) = -00000 & RM(\\ Y(5) = -0000 & RM(\\ Y(5) = -00000 & RM(\\ Y$       | 1) = .60297 RM(10) $2) = .06125 RM(11)$ $3) = 1.01751 RM(12)$ $4) = .0.00000 - RM(13)$ $5) = .00910 RM(14)$ $6) = .52415 RM(15)$ $7) = .28994 - PM(16)$ $8) = .47262 RM(17)$ $9) = 0.00000 PM(18)$ $337.546 HL055 = 7.H$ $NUMBEP OF ITERA$ $1) = .62964 RM(10)$ $2) = .05749 RM(10)$ $2) = .05749 RM(10)$ $3) = 1.03335 PM(12)$ $4) = .0.0000 - RM(13)$ $5) = .00912 RM(14)$ $6) = .50528 RM(15)$ $7) = .28994 PM(16)$ $8) = .49148 RM(17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = -115.09325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>20076</li> <li>26597</li> <li>00841</li> <li>01314</li> <li>02645</li> <li>99996</li> <li>-00044</li> <li>-00004</li> <li>-00004</li> <li>-10.237</li> <li>-19061</li> <li>26619</li> <li>00745</li> <li>01242</li> <li>02300</li> <li>99496</li> <li>-00042</li> </ul>                                 | ЧЭНDT= -19.90<br>ЧЭР0т= -14.70 | · · · · · · · · · · · · · · · · · · ·   |                                       |

....

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          |                                                                                                                                         |                                                                                                                                                                              |                                                                  |                                                                            | •          |              |                                       |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|------------|--------------|---------------------------------------|---------------------------------------|
| IMF= 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n MINUTES                                                                                                | NUMBER OF                                                                                                                               | F ITERATIONS= 7                                                                                                                                                              |                                                                  |                                                                            |            |              |                                       |                                       |
| ×(1)≓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22338 - *** RM                                                                                           | (1)=                                                                                                                                    | PM(10) = 112.69940                                                                                                                                                           |                                                                  | .57988                                                                     |            |              |                                       |                                       |
| x( 2)= .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01526 RM                                                                                                 | (2)= .04752                                                                                                                             | RM(11) = 3.11365                                                                                                                                                             | Y(2)=                                                            | .13465                                                                     |            |              |                                       |                                       |
| x(3)= .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34534 RM                                                                                                 | (3) = 1.07528                                                                                                                           | PM(12) = .16860                                                                                                                                                              | Y(3)=                                                            | .26723                                                                     |            |              |                                       | •                                     |
| "と( 4)=" で。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000 T RM                                                                                               | ( 4) = 0.00000 -                                                                                                                        | RM(13) =                                                                                                                                                                     | Y(4)=                                                            | .00667                                                                     | ••         | · ·          | ·····                                 |                                       |
| x(5)= .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C0276 PM                                                                                                 | ( 5) = .00961                                                                                                                           | RM(14) =                                                                                                                                                                     | Y(5)=                                                            | .01152                                                                     |            |              |                                       |                                       |
| X( 6)= .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14662 24                                                                                                 | ( 6) =                                                                                                                                  | PM(15)= .42024                                                                                                                                                               | VRATE=                                                           | .03042                                                                     |            |              |                                       |                                       |
| X(7)= .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No 315 DM                                                                                                | (7)= .28994                                                                                                                             | RM(16)= .01613                                                                                                                                                               | SUMY=                                                            | .99995                                                                     | •          | • •          |                                       |                                       |
| ×( h)= .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17351 PM                                                                                                 | (8)= .54025                                                                                                                             | RM(17) = .01484                                                                                                                                                              | DY1=                                                             | 00040                                                                      |            |              |                                       |                                       |
| X(9) = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00000 84                                                                                                 | (9) = 0.00000                                                                                                                           | RM(18)= 1,51382                                                                                                                                                              | 0Y=                                                              | 00004                                                                      |            |              |                                       |                                       |
| HINT = 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.498 " HOUTO:                                                                                          | = 378.069 HLOSS=                                                                                                                        | -57.847 HRXNS= 7                                                                                                                                                             | 2.147 HDMDT                                                      | r= 4 <b>.</b> 316                                                          | MOHOT= -13 | .893         | • - •••••••                           |                                       |
| • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                                                                                                         |                                                                                                                                                                              |                                                                  |                                                                            |            |              |                                       |                                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                         |                                                                                                                                                                              |                                                                  |                                                                            |            |              |                                       |                                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                         |                                                                                                                                                                              |                                                                  |                                                                            |            |              |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          |                                                                                                                                         | - · · · · · · · · · · · · · · · · · · ·                                                                                                                                      |                                                                  |                                                                            |            |              |                                       | nga diana diana dia kaominina dia kao |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C MINUTES                                                                                                | NUMBER OF                                                                                                                               | F ITERATIONS= 7                                                                                                                                                              |                                                                  |                                                                            |            | . <b>.</b> . | ,                                     |                                       |
| (₩F= 44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                                                                                                         | F ITERATIONS= 7<br>RM(10)= 112.25833                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                            | <b>.</b> 59153                                                             |            |              | · · · · · · · · · · · · · · · · · · · |                                       |
| wF= 44.0<br>X(-1)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22711 RM                                                                                                 | (1)= ,71329                                                                                                                             |                                                                                                                                                                              | Y(1)=<br>Y(2)=                                                   | •59153<br>•12329                                                           | <br>       |              |                                       |                                       |
| MF= 44.0<br>X(~1)=~~<br>X(~?)= •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22711 PM<br>01425 PM                                                                                     | (1)= ,71329                                                                                                                             | RM(10) = 112.25833                                                                                                                                                           | • • •                                                            |                                                                            | <br>       |              |                                       |                                       |
| MF= 44.0<br>X(-1)=<br>X(-2)=<br>X(-3)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22711 PM<br>01425 PM<br>34531 PM                                                                         | (1)= .71329<br>(2)= .04474                                                                                                              | RM(10) = 117.25833<br>RM(11) = 3.14069                                                                                                                                       | Y(2)=                                                            | •18386                                                                     | <br>       |              | · · · · · · · · · · · · · · · · · · · |                                       |
| MF= 44.0<br>X(~1)= ~~<br>X(~2)= .<br>X(~3)= .<br>X(~3)= .<br>X(~4)= .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22711 RM<br>01425 RM<br>34531 RM                                                                         | (1) = .71329<br>(2) = .04474<br>(3) = 1.08764<br>(4) = 0.00009                                                                          | RM(10) = 112.25833<br>RM(11) = 3.14069<br>RM(12) = .16883                                                                                                                    | Y(2) =<br>Y(3) =                                                 | .18325                                                                     | <br>       | . <b>.</b>   | · · · · · · · · · · · · · · · · · · · |                                       |
| MF= 44.0<br>X(7)=<br>X(7)=<br>X(3)=<br>X(3)=<br>X(4)=<br>0<br>X(5)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22711 RM<br>01425 RM<br>34531 RM<br>00000 RM<br>00255 RM                                                 | (1)= .71329<br>(2)= .04474<br>(3)= ].08764<br>(4)= 0.00000<br>(5)= .00832                                                               | RM(10) = 112.25833<br>RM(11) = 3.14069<br>RM(12) = .16883<br>RM(13) =                                                                                                        | Y(2) =<br>Y(3) =<br>Y(4) =                                       | .12325<br>.25757<br>.00539                                                 | · · ·      | . <b>.</b>   | · · · · · · · · · · · · · · · · · · · |                                       |
| <pre>MF = 44.0 X(-1) =  X(-2) =  X(-3) =  X(-3) =  X(-4) = 0 X(-5) =  X(-5)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22711 RM<br>01425 RM<br>34531 RM<br>00000 RM<br>00255 RM<br>14043 RM                                     | (1) = .71329 $(2) = .04474$ $(3) = 1.08764$ $(4) = 0.00000$ $(5) = .00832$ $(6) = .44231$                                               | RM(10) = 112.25833<br>RM(11) = 3.14069<br>RM(12) = .16883<br>RM(13) = .67063<br>PM(14) = .48516                                                                              | Y(2) =<br>Y(3) =<br>Y(4) =<br>Y(5) =<br>VRATE=                   | .12325<br>.25757<br>.00539<br>.01104                                       | · · ·      | · · ·        | · · · · · · · · · · · · · · · · · · · |                                       |
| MF= 44.0<br>X(7)=<br>X(3)=<br>X(3)=<br>X(4)=<br>X(4)=<br>X(4)=<br>X(4)=<br>X(7)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22711 RM<br>01425 RM<br>34531 RM<br>00000 RM<br>00255 RM<br>14043 RM<br>09232 RM                         | (1)= .71329<br>(2)= .04474<br>(3)= 1.08764<br>(4)= 0.00000<br>(5)= .00832<br>(6)= .44231<br>(7)= .28994                                 | RM(10) = 112.25833<br>RM(11) = 3.14069<br>RM(12) = .16883<br>RM(13) = .67063<br>PM(14) = .48516<br>RM(15) = .45326                                                           | Y(2) =<br>Y(3) =<br>Y(4) =<br>Y(5) =<br>VRATE=<br>SIIMY=         | 12325<br>25757<br>00539<br>01104<br>03105                                  | · · ·      | · · ·        | · · · · · · · · · · · · · · · · · · · |                                       |
| (MF= 44.0<br>X(7)=<br>X(7)=<br>X(3)=<br>Y(4)=<br>Y(4)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(4)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22711 RM<br>01425 RM<br>34531 RM<br>00000 RM<br>00255 RM<br>14043 RM<br>14043 RM<br>14043 RM<br>14054 RM | (1) = .71329 $(2) = .04474$ $(3) = 1.08764$ $(4) = 0.00000$ $(5) = .00832$ $(6) = .44231$ $(7) = .28994$ $(8) = .55446$                 | RM(10) = 112.25833<br>RM(11) = 3.14069<br>RM(12) = .16883<br>RM(13) = .67063<br>PM(14) = .48516<br>RM(15) = .45326<br>PM(16) = .01699                                        | Y(2) =<br>Y(3) =<br>Y(4) =<br>Y(5) =<br>VR4TE=<br>SIIMY=<br>D*1= | .12329<br>.25757<br>.00539<br>.01104<br>.03105<br>.99995                   | · · ·      | · · ·        | · · · · · · · · · · · · · · · · · · · |                                       |
| IMF= 44.0<br>X(7)=<br>X(7)=<br>X(3)=<br>Y(4)=<br>Y(5)=<br>X(5)=<br>X(6)=<br>X(6)=<br>X(6)=<br>X(6)=<br>X(6)=<br>X(6)=<br>X(6)=<br>X(6)=<br>X(6)=<br>X(6)=<br>X(6)=<br>X(6)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)=<br>X(7)= | 22711 RM<br>01425 RM<br>34531 RM<br>00000 RM<br>00255 RM<br>14043 RM<br>14043 RM<br>14043 RM<br>14054 RM | (1) = .71329 $(2) = .04474$ $(3) = 1.08764$ $(4) = 0.00000$ $(5) = .00832$ $(6) = .44231$ $(7) = .28994$ $(8) = .55446$ $(9) = 0.00000$ | RM(10) = 112.25833<br>RM(11) = 3.14069<br>RM(12) = .16883<br>RM(13) = .67063<br>PM(14) = .48516<br>RM(15) = .45326<br>PM(16) = .01699<br>RN(17) = .01624<br>PM(18) = 1.63692 | Y(2) =<br>Y(3) =<br>Y(4) =<br>Y(5) =<br>VR4TE=<br>SIIMY=<br>D*1= | .12325<br>.25757<br>.00539<br>.01104<br>.03105<br>.99595<br>00340<br>00064 | MDHDT= -12 | •401         | · · · · · · · · · · · · · · · · · · · |                                       |

=(S)M9 .05057 X(5) =.14782 = (S) X .01440 RM(11) =3.08408 PM(3) = 1.06216RM(12) =.16831 Y(3) =.25683 X(-3) =.34440 PM(4)= PM(13)= ~52885 Y(4) = 0.00000 .00700 RM( 5)= .00885 .45227 Y(5)= .01199 ¥ ( 5) = .00287 PM(14) =.02972 ,47165 PM(15) =.38797 VPATE= X ( わ) = .15293 RM( 6)= .01525 SUMY= २५(7)= - ----.99996 X(7) = ..., 09401.28994 RM(16) = \_\_\_\_ X ( H) = .17027 RM(8)= .52511 FM(17) =.01342 DY1 =-.00040  $R^{M}(18) =$ 1.39331 -.30004 X(9)= 0.00000 PM(9) = 0.00000DY= HINT = 238.498 HOUTO= 369.883 HL055= -44.202 HRVNS= 77.110 HOMDT= 5.419

- - -

TIME= 36.00 MINUTES

--- x( 1)= ·-- 21912

. . . . .

----

.

----- PM('1)=

. . . . .

.67579

. . . . .

•••• ••• • • •

NUMBER OF ITERATIONS= 7

.....

PM(10) = 113.19515

. . . . .

Y(3)= 3434A PM(3) = 1.04820PM(12)= .16793 Y(3) =•5664B .00739 X(5)= .00206 PM(5) =.00903 RM(14)= .43399 Y(5)= .01243 .15985 ,48785 RM(15) =.35651 VPATE = .02442 X(6) =DM( 6)= .94096 .28994 PM(16) = - - .01435 -- SHMY= X ( F)= .16676 R'(R) = .50891RM(17)= .01193 DY1= -.00041 0,000,0 = (P)X PM(9) = 0.00000PM(1R) =1,275.66 {\Y≓ -.00004 MOHDT= -17,139 -----

. . . .

. . . .

Y(1)=

.56632

. .

MOHDT= -15.492

| Y1 41-                              | 1 25 5 0                              |         | (), m        | 4 3 8 0 3        | 01(15)-              | 6.1.0.0.0.1<br>6.1.0.0.0.1 | 11.275                                          | • '' 4 '' <del>''</del> '' |        |           |            |           |                                       |
|-------------------------------------|---------------------------------------|---------|--------------|------------------|----------------------|----------------------------|-------------------------------------------------|----------------------------|--------|-----------|------------|-----------|---------------------------------------|
| x( + ) = x( -7) = x( -7) = x( -7) = | .13550<br>                            |         | 6)=<br>7)=   | .42892<br>.28994 | PM(15) =             | • 48595<br>0170/ ·         | VRATE=                                          | •03152                     |        |           | <b>.</b> . |           |                                       |
| ×(ト)=                               | .17939                                |         | 7) -<br>8) = | .56784           | PM(16)= -<br>PM(17)= |                            | - S(IMY=<br>DY]=                                | .99796<br>00040            |        |           |            |           |                                       |
| ×(9)=                               | 0.00000                               | -       |              | 0.00000          | RM(18)=              | ,01759<br>1.76235          | DY=                                             | 09004                      |        |           |            |           |                                       |
|                                     | •                                     |         |              |                  |                      |                            |                                                 |                            | VOUDT- | -11 020   |            |           |                                       |
|                                     | · · · · • • · · · ·                   | 10010-  | 371          | • (0) FL(1)      |                      |                            | 107 107 107                                     | MDT= 2.547                 | *9H01= | -11.038   |            |           |                                       |
|                                     |                                       |         | -            |                  |                      |                            |                                                 | •                          |        |           |            |           |                                       |
|                                     |                                       |         |              | •                |                      |                            |                                                 |                            |        | • •       |            |           |                                       |
| TIME= 5                             | 5.00 MINU                             | JTES    |              | NUMPEP           | OF ITERATI           | 0NS= 7                     |                                                 |                            |        |           |            |           |                                       |
|                                     | .23321-                               |         | 1)="         | .74351           | RM(10)=              | 111.51398                  |                                                 | .51040                     |        |           |            |           |                                       |
| x(2)=                               | .01254                                |         | 2)=          | .03999           | $P^{M}(11) =$        | 3,18817                    | Y(2) =                                          | 10493                      |        |           |            |           |                                       |
| x(3) =                              | 34826                                 | -       | 3)=          |                  | PM(12)=              | .16911                     | Y(3) =                                          | 25464                      |        |           |            |           |                                       |
| + ( 4)=                             | 0.00000                               |         | 4) =         | 0.00000          |                      |                            | ····· Y(4) =                                    | .00594                     | •      |           |            | . <u></u> |                                       |
| ×(5)=                               | .00240                                |         | 5) =         | .00766           | RM(14)=              | .51394                     | Y(5) =                                          | .01005                     |        |           | •          |           |                                       |
| X( 6)=                              | ,13056                                | PM (    | 6)=          | .41526           | PM(15)=              | .52129                     | VRATE=                                          | .03212                     | •      |           |            |           | •                                     |
| x ( 7) = -                          |                                       |         | 7)="         | 28994            | PM(16) =             |                            | SUMY=                                           |                            |        | · · ····· |            |           |                                       |
| ¥(B)=                               | 14208                                 |         | 8)=          | .58050           | RM(17) =             | .01891                     | DY1=                                            | 00037                      |        |           |            |           |                                       |
| X(9)=                               | 0.00000                               |         |              | 0.00000          | $R^{M}(18) =$        | 1.89987                    | DY=                                             | 00004                      |        |           |            |           |                                       |
|                                     | • •                                   |         |              | .533 HLOSS       |                      |                            |                                                 |                            | монрт= | -9,810    |            |           |                                       |
|                                     |                                       |         |              |                  |                      |                            |                                                 |                            |        |           |            |           |                                       |
|                                     |                                       |         |              |                  |                      |                            |                                                 |                            |        |           |            |           |                                       |
|                                     | · · · · · · · · · · · · · · · · · · · |         | ••           | · · · · ·        |                      |                            |                                                 |                            |        |           |            |           |                                       |
| TIME= 5                             | 6.00 MINU                             | HES     |              | FILMRER          | DF ITERATI           | 0MS= 7                     |                                                 |                            |        | •         |            |           |                                       |
|                                     |                                       | RM (    | 11-          | .75634           | DM(10)-              | -111.19958                 | V(1)-                                           | .61796                     |        |           |            |           |                                       |
| X(5)=                               | .01183                                |         | 2)=<br>2)=   | • 13034          | RM(11)=              | 3.20904                    | Y(1) = Y(2) =                                   | .09750                     |        |           |            |           |                                       |
| x( 3)=                              | .24924                                |         | 21=<br>3)=   | 1.12072          | RM(12)=              | .16917                     | Y(2)=<br>Y(3)=                                  | .26417                     |        |           |            |           |                                       |
| ······ X( 4)= ·                     | -                                     | •       | 3)=<br>4)=   | 0.00000          | · RM(12)=            | •16917<br>- ···•90317      | • (3)=<br>• • • • • • • • • • • • • • • • • • • | •20917                     |        |           |            |           |                                       |
| X ( - ) =                           | .00228                                |         | +/-<br>5)=   | .00731           | RM(13)=              | .52705                     | Y(5)=                                           | •0095H                     |        |           |            |           |                                       |
| x( 6)=                              | 12597                                 |         | 6) =         | 40425            | RM(15)=              | .55620                     | VRATE=                                          | .03257                     |        |           |            |           |                                       |
|                                     | - 09035                               |         | 7)≕          | 24994 -          | RM(16) = -           | • • 01947                  | SUMY=                                           | .99996                     |        |           |            |           |                                       |
| x(+)=                               | 19464                                 |         | 8)=          | 59251            | PM(17) =             | .02018                     | DY1 =                                           | -,00039                    |        |           |            |           |                                       |
|                                     | 0.00000                               |         |              | 0.00000          | RM(18) =             | 2.01928                    | 071-<br>07-                                     | 00004                      |        |           |            |           |                                       |
|                                     |                                       |         |              |                  |                      | HRXNS=                     |                                                 | 1-221 = TOM                | MOHDT= | -5.713    |            |           |                                       |
|                                     |                                       |         |              |                  |                      |                            | •                                               |                            |        |           |            | •         |                                       |
|                                     |                                       |         |              |                  |                      |                            |                                                 |                            |        |           |            |           |                                       |
| TIVE= 6                             | 0.00 MINU                             | TEC     |              | NUMEED (         | F ITERATIO           |                            |                                                 |                            |        |           | • •        |           | · · · · · · · · · · · · · · · · · · · |
| (1)24 0                             | A 4 0 0 1 10 10                       | 91 C 29 |              |                  | - IICHAIL            | 1                          |                                                 |                            |        |           |            |           |                                       |
|                                     | - :23785                              | 841     | 1) = ~       | 76785            | - PM(10) =           | -110.91744                 |                                                 |                            | · ·    | -         |            |           |                                       |
| ×(2)=                               | 01120                                 | RM (    |              | .03615           | $R^{M}(11) =$        | 3.55856                    | Y(2)=                                           | 06105                      |        |           |            |           |                                       |
| ¥(3)=                               | 35022                                 |         |              | 1.13060          | RM(12)=              | .16920                     | Y(3) =                                          | .25973                     |        |           |            |           |                                       |
|                                     | •                                     | RM (    |              |                  | - RM(13)=-           |                            | Y(4)=                                           |                            |        |           |            |           |                                       |
| X (5) =                             | 00216                                 | RM (    |              | .00597           | PM(14)=              | 53942                      | Y(5) =                                          | .00911                     | •      |           |            |           |                                       |
| X(-6) =                             | 12169                                 | PM (    |              | .39282           | PM(15) =             | 59163                      | VPATE=                                          | ,03297                     |        |           |            |           |                                       |
| × ( 7)=                             |                                       | DM (    |              |                  | RM(16)=              | 02027 -                    |                                                 | 100000                     |        |           | ,          |           |                                       |
|                                     |                                       |         | - '          |                  | PM(17) =             | .02141                     | DY1=                                            |                            |        |           |            |           |                                       |
|                                     | 0.00000                               |         |              | 0.00000          | RM(18) =             | 2.15038                    | DY=                                             | 00004                      |        |           |            | •         |                                       |
|                                     | 238.498                               |         |              | 220 HL055        |                      |                            |                                                 |                            | монрт≃ | -7.737    | · ··-··    |           |                                       |
|                                     |                                       |         |              |                  |                      |                            |                                                 |                            | - •• • |           |            |           |                                       |
|                                     |                                       |         |              |                  |                      |                            |                                                 |                            |        |           |            |           |                                       |
| TIVF= 60                            | 4                                     | 760     |              |                  |                      |                            |                                                 |                            |        |           |            |           | 964                                   |
| 17.65 0                             | 4.n0 MINU                             | 167     |              | WUMHER (         | F ITERATIO           | DNS= 7                     |                                                 |                            |        |           |            |           | ι,<br>L                               |
| × ( 1)=                             | 23474                                 | PM (    | i)=          | .77819           | DM()01=              | 110.66356                  | · Y(1)=                                         | .43023                     |        |           |            |           |                                       |
| ×( 2)=                              | .01063                                | 유석 (    |              | .03450           | PM(11)=              | 3.24501                    | Y(2) =                                          | • 18533                    |        |           |            |           |                                       |
| · · · · · -                         | •01000<br>0_1-0                       |         |              | 1 12408          | P*(12)=              | .16010                     | V(?)~                                           | .27030                     |        |           |            |           |                                       |
|                                     |                                       |         |              |                  |                      |                            |                                                 |                            |        |           |            |           |                                       |

|          |                     |           |              | •• •     |                 |            | <b></b> .         | •          |        |        | <br> |
|----------|---------------------|-----------|--------------|----------|-----------------|------------|-------------------|------------|--------|--------|------|
| TIME=    | 72.00 YINU          | TFS       |              | NUMB     | ER OF ITERATI   | ONS = 7    |                   |            |        |        |      |
|          | = 24585.            | ·- рм (   | 1)='         |          |                 | -110.22716 |                   | .63952     |        |        | <br> |
| X ( 2)   | ± .00946            | RM (      | 2)=          | .03157   | $R^{M}(11) =$   | 3.27765    | Y (?) =           | .07585     |        |        |      |
| ¥( 3)    |                     | RH (      | 3)=          | 1.15742  | RM(12) =        | .16909     | Y(3)=             | .27148     |        |        |      |
|          | -                   | -         | 4)=          | 0.00000  | . PM(13)=       |            | Y(4)=             | -00255     |        |        | <br> |
| X( 5)    |                     | 무서 (      | 5)=          | .00597   | PM(14) =        | .57281     | Y(5)#             | .00780     |        |        |      |
| X( ~)    |                     |           | 6)=          | .36150   | RM(15)=         | .70070     | VPATE=            | *63304     |        |        | •    |
| X(7)     | •                   | . · при ( | 7)=          | .28994   | RM(16)=         |            | <pre>S!!%X=</pre> | .94946     |        |        | <br> |
| X( P)    | = <u>19382</u>      | PM (      | 8)=          | •t3526   | PM(17) =        | .02491     | = [YG             | 00039      |        |        |      |
| ×( 9)    | = 0.00000           | PM(       | 9)=          | 0.0000   | PM(18) =        | 2.55214    | 0Y=               | -,00004    |        |        |      |
| HINT     | = 7238,4997         | HOUTO=    | 418          | .163 HL  | 055= -125.763   | - HRXNS=   | 47.985 40         | MDT=485    | MOHDT= | -5.432 | <br> |
|          |                     |           |              |          |                 |            |                   |            |        |        |      |
|          |                     |           |              |          |                 |            |                   |            |        |        |      |
|          | 77                  |           | •            |          |                 |            |                   | •          |        | ·      | <br> |
| TIME=    | 76.00 MINU          | 1-5       |              | NUMB     | EP OF ITERATI   | DN5= 7     |                   |            |        |        |      |
| x ( 1)   | = <u>.</u> 24408    |           | 1)=          | .80347   | PM(10)=         | 110.03894  | ····              | .64343     |        |        | <br> |
| X ( 2)   | -                   |           | 2)=          | .03044   | RM(11)=         | 3,29182    | + Y(5) ≠ Y(1) =   | •07188     |        |        |      |
| X (3)    |                     |           | 3)=          | 1.16553  | RM(12)=         | •16900     | Y(3)=             | .27208     |        |        |      |
|          | =                   |           | 3) =<br>4) = | 0.00000  |                 | ·18900     | Y(3) = Y(4) = 0   |            |        |        | <br> |
| ×(5)     | -                   | -         | 5)=          | .00567   | RM(14)=         | *24540     | Y(5)=             | .00740     |        |        |      |
| X( 6)    |                     | •         | 6) =         | .35191   | RM(15)=         | .73785     | VRATE =           | .03420     |        |        |      |
| ×( 7)    | •                   | -         | 7)=          | .22094   | RM(16)=-        |            | SUM/=             | .999996    |        |        | <br> |
| X ( P)   |                     |           | 8)=          | 64485    | RM(17)=         | .02545     | 0Y]=              | 00039      |        |        |      |
| X(4)     |                     |           | 9)=          | 0.00000  | R*(18)=         | 2.69841    | DY=               | 00004      |        |        |      |
|          | = 238,409           | <br>      |              | -        | 055 = -130, 874 |            |                   | MDT=764    | MOHDT= | -4.836 | <br> |
| 141 41   | - 720. <b>.</b> 4-0 | 10010-    | 461          | • 001 CL | 000             | 08202-     | ₩0a0000 mg        | NUT = +104 | *104C# | m4.030 |      |
|          |                     |           |              |          |                 |            |                   |            |        |        |      |
|          |                     | -         |              | •        |                 |            | ·                 |            |        |        | <br> |
| TIME=    | 80.00 MINU          | TFS       |              | NUMB     | EP OF ITERATI   | 0NS= 7     |                   | •          |        | •      |      |
|          |                     |           |              | L.       |                 |            |                   |            |        |        |      |
|          | = .24518            | R14 (     | 1)=          | ,81033   | RM(10)=         | 109.86751  | Y(l)=             | .64691     |        |        | <br> |
| x ( - S) |                     |           | 2)=          | .02932   | RH([1])=        | 3.30503    | Y(2) =            | -06831     |        |        | N.S. |
| X ( 3)   | -                   |           | 3)=          | 1.17329  | PY(12) =        | ,16889     | Y(3) =            | .27269     |        |        | -33  |
| X( 41    | = 0,0000            | PM(       | 4)=          | 0.00000  | RM(13) =        |            | Y(4) =            | .10573     |        |        | <br> |
| ×( ~)    | •                   |           | 5)=          | .00538   | R*(14)=         | \$ 41250   | YISIA             | .09703     |        |        |      |
|          | - ,                 |           |              |          |                 |            |                   |            |        |        |      |

| TIME=          | 68.00 MINH   | TFS             | NUMBER O     | F ITERATIONS= 7        |             |         |               |                                         |
|----------------|--------------|-----------------|--------------|------------------------|-------------|---------|---------------|-----------------------------------------|
| · x (· 1)      | =24138       | - · · · RM( 1)= |              | · =M(10) = - 110,43449 | Y(1)=       | .53523  | · ·           | · • • • • • • • • • • • • • • • • • • • |
| X( 2)          | = .01015     | RM(2)=          | .03302       | RM(11)= 3.26242        | Y(2)=       | .0F030  |               |                                         |
| X (3)          | .35216       | 요네(3)=          | : 1.14891    | PM(12)= .16915         | Y(3)=       | .27036  |               |                                         |
| — · · · X ( 4) | l≃ 0.00000 T | ∵ ⊋अ(4)≃        | 0.00000      | PM(13)= 1.15355        | Y(4)=       | .00533  | · ··          | · · · · · · · · · · · · · · · · · · ·   |
| x ( 5)         | .00193       | RM(5)=          | • 00629      | PM(14)= .56224         | Y(5) ≠      | ·00855  |               |                                         |
| x( 6)          | .11347       | RM(6)=          | .37149       | RM(15)= .66392         | VPATE=      | 03365   |               |                                         |
| ×( 7)          | 1= .08897 ·  | RM(7)=          | .28994       | RM(16) =               | SHMY=       | 100006  | •             |                                         |
| X ( ?)         | = .19165     | PM( 9)=         | .62527       | RM(17)= .02372         | DY1=        | 00039   |               |                                         |
| X ( 5)         | = n,00000    | RM( 9)=         | 0.0000       | RM(18) = 2.41696       | DY =        | -,00004 |               |                                         |
| HINT           | = 222,495    | " HOUTO= 41     | 4.921 PL055= | -120.114 HRXNS=        | 1750.048 HD | MDT=154 | MDHDT= -5.107 |                                         |

-------

X(-3) = 0.00000 BA(-3) = 0.00000 BA(-1) = 2.28299 DY = -.00004HINT = 238.498 HOUTO = 411.290 HLOSS = -113.853 HPXNS = 52.302 HDMDT = .235 YDHDT = -6.872 

•

|                | · · · · · · · · · · · · · · · · · · ·  |                                       |             |                                       |                                                |            |           |                                                           |                                       | -                                                                                                     |       |
|----------------|----------------------------------------|---------------------------------------|-------------|---------------------------------------|------------------------------------------------|------------|-----------|-----------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|-------|
| TIME= 8        | 54.00 MINUTES                          |                                       | NUMBER      | OF ITERATIO                           | NS= 7                                          |            |           |                                                           |                                       | •                                                                                                     |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                | •C00352                                |                                       |             |                                       |                                                |            |           | ;;;;;;;;;;;;;-                                            |                                       |                                                                                                       |       |
| =(S)×<br>=(E)× |                                        | • • •                                 | .02828      | ₽ <sup>M</sup> (11)=                  | 3.31738                                        | = (S) Y    | .06510    | •                                                         |                                       |                                                                                                       |       |
|                | .35592                                 | P!4(3) =                              |             | RM(12) =                              | ,16977                                         | Y(3)=      | .27330    |                                                           |                                       |                                                                                                       |       |
|                | -0.0000                                |                                       |             |                                       |                                                | Y(4)=      |           |                                                           |                                       |                                                                                                       |       |
| X(5)=          | .00154                                 |                                       | .00511      | RM(14)=                               | .60177                                         | Y(5)=      | .00667    |                                                           |                                       |                                                                                                       |       |
| X(6) =         |                                        |                                       | .33381      | PM(15)=                               | .81320                                         | VPATE=     | .03464    |                                                           |                                       |                                                                                                       |       |
|                | CH740                                  |                                       |             |                                       |                                                |            |           | te mit na unter le franze e una                           |                                       | والمراجع مراجع مرجع معامينا والباران والمراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع |       |
| ۲(۶)=          | .19204                                 | RM( 8)≔                               | .66295      | RM(17)=                               | · • 02779                                      | DY1=       | 00039     |                                                           |                                       |                                                                                                       |       |
|                |                                        | . PM( 9)=                             |             | RM(18)=                               | 2.95379                                        | DY=        | 0004      |                                                           |                                       |                                                                                                       |       |
| ·              |                                        | UT0= 425.                             | ,978 HLOS   | S=-+139.733-                          | 4RXNS=4                                        | NCH 407.54 | DT= -1.19 | 3 - MOHDT=                                                | -3.846                                |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           | -                                     |                                                                                                       |       |
| TINF= 8        | 8.00 MINUTES                           |                                       | NUMBER      | OF ITERATIO                           | N5= 7                                          |            |           | . ,                                                       |                                       |                                                                                                       |       |
|                |                                        | - 24(1)= -                            | 82224       | PM(101=                               | 109:55718                                      |            | 65265     |                                                           |                                       |                                                                                                       |       |
| X(2)=          | 00821                                  | RM(2) =                               |             | PM(11) =                              | 3.32896                                        | Y(2)=      | .06218    |                                                           |                                       |                                                                                                       |       |
| X(3)=          | 35442                                  | RM(3)=                                |             | RM(12) =                              | 15854                                          | Y(3) =     | .27390    |                                                           |                                       |                                                                                                       |       |
|                | -0.00000                               |                                       |             |                                       |                                                |            | 00488 -   | a an than à sua — thè dans nan managan arangka manjanjada |                                       |                                                                                                       |       |
| ×( 5)=         | .00146                                 |                                       | .00486      | RM(14) =                              | .61063                                         | Y(5) =     | .00534    |                                                           |                                       |                                                                                                       | •     |
|                | .09770                                 | RM(6) =                               | 32525       | RM(15)=                               | .85134                                         | VPATE=     | .03492    |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
| X(S)=          |                                        | PM( A)=                               | .67151      | RM(17)=                               | .02570                                         | DY1=       | 00039     | •                                                         |                                       | 1                                                                                                     |       |
| · •            | 0.00000                                | R4(9)=                                | · · -       | RM(18) =                              | 3.10272                                        | DY=        |           |                                                           |                                       |                                                                                                       |       |
|                | -238.448 HO                            |                                       |             |                                       |                                                |            |           | 3 · WOHDT= ·                                              | -3. 436                               |                                                                                                       |       |
| •              |                                        |                                       |             |                                       |                                                |            |           | u (19710) -                                               | 0.00                                  |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           | ٠                                                         |                                       | •                                                                                                     |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       | · .                                                                                                   |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       | •                                                                                                     |       |
|                |                                        |                                       | ~           |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                | • ••                                   |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       | • .         |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             | , , , , , , , , , , , , , , , , , , , |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           | 1                                                         |                                       |                                                                                                       |       |
|                | ······································ |                                       |             |                                       |                                                |            |           | ar en                 | · · · · · · · · · · · · · · · · · · · |                                                                                                       |       |
|                |                                        |                                       |             | r.                                    |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                | •          |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           | • an a • • • • • • • • • • • • • • • • •                  |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           | ·····                                                     |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       |                                                |            |           | •                                                         |                                       |                                                                                                       |       |
|                |                                        |                                       |             |                                       | nya di kala mana kanda amin'na mandani na mand |            | •         | · ··· ·                                                   | , <b>.</b> ,                          | ,                                                                                                     |       |
|                |                                        |                                       |             |                                       |                                                |            |           | •                                                         |                                       |                                                                                                       | 5-    |
|                |                                        |                                       |             |                                       |                                                |            |           | •                                                         |                                       |                                                                                                       | · (.) |
|                |                                        | · · · · · · · · · · · · · · · · · · · | • • • • • • |                                       |                                                | •          |           |                                                           |                                       |                                                                                                       |       |
|                | ·                                      |                                       |             |                                       |                                                |            |           |                                                           |                                       |                                                                                                       |       |

.

|                  |                    |              | PM(13)= .(1409           |                 | .02787       |                |        |                                         |         |
|------------------|--------------------|--------------|--------------------------|-----------------|--------------|----------------|--------|-----------------------------------------|---------|
| x(5) = 0.0000    |                    |              | PM(14)= .0950            |                 | .01254       |                |        |                                         |         |
| X( 4)= -2816     |                    | •            | - PM(15) = ······ • 0450 | O TTT VPATE=    | .05010       |                |        |                                         |         |
| X(7)= ,086P      | 13 RM(7            | )= .24791    | PA(16) = .0035           | 6 SUMY=         | 1.00000      |                |        |                                         |         |
| X( H)= .07H3     |                    | )= .2236A    | RM(17)= .0010            | 7 DY1=          | 0.0000       |                |        |                                         |         |
| x( 9) = 0.0000   | н) <sup></sup>     | )= 0.00000   | RM(18) =,1856            | 0 DY=           | 0.0000       |                | • • •  |                                         | ******* |
|                  |                    |              |                          |                 |              |                |        |                                         |         |
|                  |                    |              |                          |                 |              |                |        |                                         |         |
|                  |                    |              |                          |                 | *            | :              |        | · ··· · • • • • • • • • • • • • • • • • |         |
| TIME= 4,00 MI    | NUTES              | NUMBER       | OF ITERATIONS= 10        |                 |              |                |        |                                         |         |
|                  |                    |              |                          |                 |              |                |        |                                         |         |
| x(1) =1624       | 0 RM(1             | )= .46524    | PM(10)=" 116.8064        | 9 · · · · Y(1)= | .36341       |                |        |                                         |         |
| X(2)= .0398      | • -                | •            | RM(11) = 2.8648          |                 | .35588       |                |        |                                         |         |
| X(3) = .35) P    |                    |              | RH(12) = .1755           |                 | .25953       |                |        |                                         |         |
|                  |                    |              |                          |                 | .01645       | •              |        | · ·····                                 |         |
| X(5) = .0007     |                    | •            | PM(14) = .1390           |                 | .00415       |                |        |                                         |         |
| X(6) = .2691     |                    |              | PM(15)= .0757            |                 | .01790       |                |        |                                         |         |
| X(-7)'= 0865     |                    |              | RM(15) =                 |                 | 99994        |                |        | -                                       |         |
| X(B)= .0895      |                    |              | PM(17) = .0013           |                 | 00030        |                |        |                                         |         |
| X(-9) = 0.0000   |                    |              | PM(18) = .3036           |                 | 00006        |                |        |                                         |         |
| HINT = 307.27    |                    |              | S= 148.900 HPXNS=        |                 |              | MOHDT=         | 67.502 |                                         |         |
|                  | + (0))(0-          |              | 3= 140.400 (8-2/83-      | 1910101         | 101 I I 012  | *9501 <b>+</b> | 01,002 |                                         |         |
|                  |                    |              |                          |                 |              |                |        |                                         |         |
| <u> </u>         | ·*··               | <b>.</b>     |                          | ••••••• · · ·   |              |                |        |                                         |         |
| TIME= 8.00 MT    | MITCO              | NUMPER       | OF ITERATIONS= 9         |                 |              |                |        |                                         |         |
|                  | 10155              | NUMPER       | OF TIERALIONSE A         |                 |              |                |        |                                         |         |
|                  | 7 <sup></sup> PM() | )= .48161    | RM(10)= 115.5979         | 9: Y(1)=        | .38435       |                | • •    | ··· · · ·                               |         |
| X(2)= .0367      |                    |              | RM(11)= 2.8861           |                 | .33213       |                |        |                                         |         |
| X(2)= .03572     |                    |              | RM(12) = .1743           |                 | *Se335       |                |        |                                         |         |
|                  |                    |              |                          |                 | +01351       |                |        |                                         |         |
|                  |                    |              |                          |                 |              |                |        |                                         |         |
| X(5)= .0012      |                    |              | PM(14)= .1759            |                 | .00656       |                |        |                                         |         |
| X( 5)= .2564     |                    |              | PM(15) = .1039           |                 | .02275       |                |        |                                         |         |
| X ( 7) = .0859   |                    |              | PH(16) =                 |                 | .94997       |                | -      |                                         |         |
| X(F)= _0996      |                    |              | RM(17) = -0019           |                 | 00011        |                |        |                                         |         |
| X(9)= 0.0000     | •                  |              | RM(18)= .4106            |                 | 00003        |                |        |                                         |         |
| HINT = 307.27    | 4 HOUTO=           | 287.068 HLOS | S= 141.295 - HRXNS=      | 147.913 -       | 1.913 -1.913 | MOHDT=         | 28.737 |                                         |         |
|                  |                    |              | •                        |                 |              |                |        |                                         |         |
|                  |                    |              |                          |                 |              |                |        |                                         |         |
|                  |                    | · ·          |                          | · · ·           |              |                |        |                                         |         |
| TIME= 12.00 MI   | NUTES              | NUMBER       | OF ITERATIONS= 8         |                 |              |                |        | ·                                       |         |
|                  |                    |              |                          |                 |              |                |        |                                         |         |
| x(-1)= .1708     |                    | • • •        | RM(10) = -115,3544       |                 | .40235       |                |        |                                         |         |
| x(2)= .0340      | S) WA S            | )= .09887    | RM(11) = 2,9052          | 4 Y(2)≍         | .31033       |                |        |                                         |         |
| X(3,= .3545      | 2 RM(3             | )= 1.03033   | RM(12)= .1732            | 1 Y(3)=         | .26633       |                |        |                                         |         |
| x(:4) = - e.eeco | 0 <sup></sup>      | )= 0.00000   | PM(13) = .1663           | 7 TY(4)=        | .01259       |                |        |                                         |         |
| ×( 5)= .0017     | 3 \$4(5            | )= .00503    | PM(14) = .2107-          | 4 Y(5)=         | .00K36       |                |        |                                         | 654     |
| ×( 6)= +2443     | 5 PM( 6            | )= .71014    | PM(15)= .1326            | e VPATE=        | .02512       |                |        |                                         | Ū.      |
|                  |                    |              | RM(16) =, 075            |                 | . 44965      |                |        |                                         |         |
| x ( F)= ,1092    |                    |              | PM(17) = .06.24          |                 | ··· 19927    |                |        |                                         |         |
|                  |                    |              |                          |                 | • • • •      |                |        |                                         |         |

. . .

Y(1) =

≠(2)=

Y(4) =

.

.21140

.44945

.30024

.02587

. .

10 - . IO I ALVINE DANIE INCO CALVA MUL

R4( 1)=

PM( 2)=

RM(4) = 0.00000

-

.45307

.12761

. ......

RM(10)= 118.03000

RM(11) =

PM(13) =

· · · · ·

2.85516

.04096

. . ....

X( +)= 0.00000

.15869

.04469

----

X(1)=

=(5)X

INITIAL CONDITIONS BASED ON ADJUSTED TIME

.

....

. . .

| ×(·))=      | 17445          | RM('))=            | 51036                                   | - · PM(1))=                           | -115.10323 | ·Y(1)=      | .41859        |            |                                       |     |                     |
|-------------|----------------|--------------------|-----------------------------------------|---------------------------------------|------------|-------------|---------------|------------|---------------------------------------|-----|---------------------|
| X(2)=       | .03171         | 무제(2)=             | .09277                                  | PM(11)=                               | 2.92562    | Y(2) =      | .29069        |            |                                       |     |                     |
| x(3)=       | .35575         | PM(3)=             | 1.04080                                 | рм(12)=                               | .17216     | Y(3)=       | .26885        |            |                                       |     |                     |
| × (4),=     | n.nnnn0        | RM( 4)=            | · 0.00000 ····                          |                                       | 21129      | ·· · Y(4)=  |               | · ·        | · · · · ····                          | • · |                     |
| ×(5)=       | .00212         | PH(5)=             | .00620                                  | RN(14) =                              | .24348     | Y(5)=       | .00956        |            |                                       |     |                     |
| x(-6) =     | • •            | RM(6) =            | 68134                                   | RM(15)=                               | .16182     | VRATE=      | .02632        |            |                                       |     |                     |
| x (-7) =    | -              | 8**(7)=            | .24791                                  |                                       |            | SUMY=       | . 49997       |            |                                       |     |                     |
| X( H)=      | •              | R4(8)=             | .34524                                  | PM(17)=                               | .10379     | DY1=        | 00015         |            |                                       |     |                     |
| x( 9)=      | -              | RM(9)=             |                                         | RM(18)=                               | .62760     | DY=         | 00003         |            |                                       |     |                     |
|             |                | • •                | -                                       |                                       |            |             | DMDT= -12.928 | YOHOT=     | 1.310                                 |     |                     |
|             |                | 10. 010            | ••••••••••••••••••••••••••••••••••••••• |                                       |            |             |               | . 20.001 - | 1.010                                 |     |                     |
|             |                | ·                  |                                         |                                       | ·          |             |               |            |                                       |     | *** ** * ** * ***** |
| TIME= 50    | .00 MINUTES    |                    | NUMBER                                  | OF ITERATI                            | 10NS= 7    |             |               |            |                                       |     |                     |
|             |                | ੨ਅ("])=``          | .52342                                  |                                       |            | ····· Y(])= | .43339        |            | · · · · · · · · · · · · · · · · · · · |     |                     |
| =(S)X       | -              | RM(2)=             | .08750                                  | RM(11) =                              | 2.94452    | Y(2) =      | .77295        |            |                                       |     |                     |
| X(. 3)=     |                |                    | 1.05090                                 | RM(12) =                              | .17118     | Y(3) =      | .27098        |            |                                       |     |                     |
| x (- 4) =   | · · · · · ·    | RM( 4)=            | 0.00000                                 |                                       | 2580A      |             | .01217        | • -        |                                       |     |                     |
| X(5) =      |                | RM( 5)=            | .00720                                  | PM(14)=                               | .27434     | Y(5) =      | .01044        |            |                                       |     |                     |
| X(-6) =     | •              | RM( 6)=            | 65365                                   | RH(15)=                               | .19143     | VPATE=      | .02594        |            |                                       |     |                     |
|             | 08419          |                    |                                         |                                       |            | SliwY=      | .99995        | -          |                                       | ,   |                     |
| X(P)=       |                | RM( H)=            | .37393                                  | PM(17) =                              | .00490     | 0Y1=        | 00050         |            |                                       |     |                     |
| X(9) =      |                | 유제( A)=<br>유제( 9)= | • - · · ·                               | RM(18)=                               | .73697     | DY=         | 00005         |            |                                       |     |                     |
|             | -              |                    | -                                       |                                       |            |             | CMDT= -13.785 | MOHOT=     | -3.070                                |     |                     |
|             |                |                    |                                         |                                       |            |             |               |            |                                       |     |                     |
|             |                |                    |                                         | · · · · · · · · · · · · · · · · · · · |            |             |               |            |                                       |     |                     |
| TIME= 24    | .CO MINUTES    | •                  | NUMBER                                  | OF ITERATI                            | [NNS= 7    |             |               |            |                                       |     |                     |
| × ()) =     | 18086          | RM( 1)=            | .53590                                  | -RM(10) =                             | 115.58641  | Y(1)=       | .44705        | · · · · ·  | ··- · ·                               |     |                     |
| x(2)=       | -              | =(S)MQ             | 08291                                   | PM(11) =                              | 2.96305    | Y(2)=       | .256B7        |            |                                       |     |                     |
| X(3)=       |                | RM( 3)=            | 1.06069                                 | RM(12)=                               | .17028     | Y(3)=       | .27280        |            |                                       |     |                     |
|             | -              | QM( 41=            | 0.00000                                 |                                       | 30653      | Y(4)=       | .01215        |            |                                       |     |                     |
| x ( 5) =    |                | RM(5)=             | .00805                                  | RM(14) =                              | .30345     | Y(5) =      | .01107        |            |                                       |     |                     |
| x(6) =      | -              | PM( 6)≃            | .62709                                  | RM(15)=                               | .22137     | VPATE=      | 02725         |            |                                       |     |                     |
|             | -              | PM( 7)= ·          | .24791                                  |                                       |            | CIIMY=      |               |            |                                       |     |                     |
| x(3) =      |                | P4(8)=             | .40050                                  | PM(17)=                               | .00609     | DY1=        | 00047         |            |                                       |     |                     |
| X(9)=       |                | RM(9)=             |                                         | RM(18) =                              | .84676     | DY=         | 00005         |            |                                       |     |                     |
|             | 307.274 HOU    |                    |                                         |                                       |            |             | MDT= -13.605  | MOHDT =    | -5.217                                |     |                     |
| –           |                |                    |                                         |                                       | <u>n</u>   |             |               | 1200 a =   |                                       |     |                     |
|             |                |                    |                                         |                                       |            | <del></del> |               |            |                                       |     |                     |
| TIME= 28    | ON MINUTES     |                    | NUMBER                                  | OF ITERATI                            | 0NS= 7     |             |               |            |                                       |     |                     |
|             | - 18380;       | PM(1)=             |                                         | PM(10) = -                            | .115.32404 | Y(1) =      | .45974        |            |                                       |     |                     |
| x(2)=       |                | рм(2)=             | .07883                                  | RM(11) =                              | 2,98125    | Y(2)=       | .24215        |            |                                       |     |                     |
| X(3)=       | .35298         | PM( 3)=            | 1.07020                                 | RM(12)=                               | .16945     | Y(3)=       | .27435        |            |                                       |     |                     |
| X ( · 4 ) = | 0°00000 1      | RM( 4)= -          | 0.00000 -                               | RM(13)=-                              |            | Y(4) ≃      | .01215 -      |            | · · · ·                               |     |                     |
| X( 5)=      | .00295         | RM(5)≈             | .00878                                  | RM(14) =                              | .33097     | Y(5)=       | .01153        |            |                                       |     |                     |
| X(6)=       |                | R'(6) =            | .60166                                  | PM(15)=                               | .25159     | VRATE=      | . 02749       |            |                                       |     |                     |
|             |                | RM(7)=             | .24791                                  | EM(16)=                               |            | S11:4Y=     | _quaaq        |            | ,                                     |     |                     |
| X ( +) =    |                | RM( 8)=            | 42592                                   | RM(17) =                              | .00734     | 0Y) =       | 00045         |            |                                       |     | 044                 |
| x ( 4) =    |                | RM( 9)=            |                                         | P*(18)=                               | 95595      |             |               |            |                                       |     | õ                   |
|             | 307.274 - HOIL |                    |                                         |                                       |            |             | MDT= -12.962  | 40HDT=     | -6 227                                |     |                     |
| · · · · - · |                |                    | ne de l'infiné i                        | - <b>- - - - - - - - - -</b>          |            | 1019350 4   | 921           | * 7001#    | -6.237                                |     |                     |

TTIMES 48,00 VINUTES

TIME= 40.00 MINUTES

x(1)= .19188

RM(1)= .58214

PM( 2)= .06870

NUMBER OF ITERATIONS= 7

NUMBER OF ITERATIONS= 7

RM(10) = 114.53804

PM(11)= 3.03385

| ¥(3)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |                                                             |                                                              |                                                                                           |               |                                                                           |                                                                                |                                                                    |                                                                     |                |                |                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------|----------------|-----------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .36166                                                             | RM (                                                        | 3) =                                                         | 1.0972:                                                                                   | 3             | RM(12)=                                                                   | .16733                                                                         | Y(3)=                                                              | .27796                                                              |                |                |                                               |
| x(4) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00000                                                            | RM(                                                         | 4)=                                                          | 0.0000                                                                                    | )             | $P^{M}(13) =$                                                             | .51623                                                                         | Y(4)=                                                              | .01207                                                              |                |                |                                               |
| x( 5)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 00340                                                            |                                                             | 5)=                                                          | .0103                                                                                     | 1             | PM(14) = -                                                                | 40517                                                                          | Y(5)=                                                              | .01221                                                              |                |                |                                               |
| X(-6) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .17537                                                             | D14 (                                                       |                                                              | .5320                                                                                     | -             | PM(15)=                                                                   | . 34382                                                                        |                                                                    | .02789                                                              |                |                |                                               |
| X(7)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09171                                                              | DM (                                                        | -                                                            | 24791                                                                                     |               | RM(16)=                                                                   | .01749                                                                         |                                                                    | 04045                                                               |                |                |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16777                                                              |                                                             | B) =                                                         | 4955                                                                                      | •             | RM(17)= -                                                                 |                                                                                |                                                                    | 00045                                                               |                | -              | a an and analy service and any and any and an |
| X(4)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000                                                             | PM (                                                        |                                                              | 0.0000                                                                                    | -             | RM(18) =                                                                  | 1.24949                                                                        |                                                                    | 00005                                                               |                |                |                                               |
| HINT =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 307.274                                                            | HOUTO=                                                      | •                                                            |                                                                                           | LOSS=         | R2.392                                                                    |                                                                                |                                                                    | MDT= -10.499                                                        | MOHDT=         | -6.872         |                                               |
| · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    | 1100104                                                     | 540                                                          | • = 20                                                                                    |               |                                                                           |                                                                                |                                                                    |                                                                     |                | 0.012          |                                               |
| TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4100 MINU                                                          | TFS                                                         |                                                              | · · NUM                                                                                   | BER OF        |                                                                           | 0NS= 7 -                                                                       |                                                                    |                                                                     |                |                |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | • •                                                         |                                                              |                                                                                           |               |                                                                           |                                                                                |                                                                    |                                                                     |                |                |                                               |
| × (1) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .19438                                                             | RM (                                                        | 1)=                                                          | ,5930(                                                                                    | )             | RM(10)=                                                                   | 114.28168                                                                      | Y(1)=                                                              | .50340                                                              |                |                |                                               |
| × { 1} =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .19438<br>02157                                                    |                                                             |                                                              |                                                                                           |               | RM(10) =<br>PM(11) =                                                      | 114.28168                                                                      |                                                                    | •50340<br>•19337                                                    |                |                |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •                                                                | RM (                                                        | = (S                                                         | ,5930(                                                                                    | }             |                                                                           |                                                                                |                                                                    |                                                                     |                |                |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02157                                                              | RM (                                                        | 2) =<br>3) =                                                 | .5930(<br>.0658)                                                                          | )<br>5        | PM(11)=                                                                   | 3.05069                                                                        | Y(?)=                                                              | .19337                                                              |                |                |                                               |
| ×(-2)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02157<br>.36246                                                    | 유제 (<br>유제 (<br>유제 (                                        | 2) =<br>3) =<br>4) =                                         | .5930<br>.0658<br>1.10576                                                                 | )<br>)        | PM(11) = RM(12) =                                                         | 3.05069<br>.16672<br>.57218                                                    | Y(2)=<br>Y(3)=                                                     | .19337                                                              |                |                |                                               |
| × ( ?) =<br>× ( 3) =<br>× ( 4) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02157<br>.36246<br>.00000                                          | RM (<br>                                                    | 2) =<br>3) =<br>4) =<br>5) =                                 | \$930(<br>•0658(<br>1•10574<br>0•0000                                                     | )<br>;<br>•   | PM(11) =<br>RM(12) =<br>PM(13) =                                          | 3.05069<br>16672<br>57218                                                      | Y(2) =<br>Y(3) =<br>Y(4) =                                         | .19337<br>.27890<br>.0120]                                          |                |                |                                               |
| $ \begin{array}{c} \hline x (2) = \\ x (3) = \\ x (4) = \\ \hline x (5) = \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02157<br>.36246<br>0.00000<br>.00349                               | RM (<br>                                                    | 2) =<br>3) =<br>4) =<br>5) =<br>6) =                         | .5930(<br>.0658(<br>1.10576<br>0.0000(<br>.01064                                          | )<br>;<br>• · | PM(11)=<br>RM(12)=<br>PM(13)=<br>RM(14)=                                  | 3.05069<br>.16672<br>.57218<br>.42744                                          | Y(2) =<br>Y(3) =<br>Y(4) =<br>Y(5) =                               | .19337<br>.27690<br>.01201<br>.01223                                |                |                |                                               |
| $ \begin{array}{c} \hline & X(2) = \\ & X(3) = \\ & X(4) = \\ \hline & X(5) = \\ & X(5) = \\ & X(5) = \\ & X(5) = \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                             | 02157<br>.36246<br>0.08000<br>.00349<br>.15750                     | RM(<br>RM(<br>RM(<br>PM(<br>PM(<br>PM(<br>RM(               | ?) =<br>3) =<br>4) =<br>5) =<br>6) =<br>7) =                 | .5930<br>.06580<br>1.10577<br>0.00000<br>.01064<br>.51099                                 | )<br>)<br>    | PM(11) =<br>RM(12) =<br>PM(13) =<br>RM(14) =<br>RM(15) =                  | 3.05069<br>.16672<br>.57218<br>.42744<br>.37504<br>.01893                      | Y(2)=<br>Y(3)=<br>Y(4)=<br>Y(5)=<br>VPATE=<br>SUMY=                | .19337<br>.27890<br>.01291<br>.01222<br>.02802                      |                |                | · · · · · · · · · · · · · · · · · · ·         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02157<br>.36246<br>0.00000<br>.00349<br>.15750<br>.04126           | RM(<br>PM(<br>PM(<br>PM(<br>PM(<br>PM(<br>RM(               | 2) =<br>3) =<br>4) =<br>5) =<br>6) =<br>7) =<br>8) =         | .5930<br>.0658<br>1.1057<br>0.0000<br>.01064<br>.51099<br>.24791                          | )<br>)<br>    | PM(11)=<br>RM(12)=<br>PM(13)=<br>RM(14)=<br>RM(15)=<br>PM(16)=            | 3.05069<br>.16672<br>.57218<br>.42744<br>.37504<br>.01893                      | Y(2)=<br>Y(3)=<br>Y(4)=<br>Y(5)=<br>VPATE=<br>SUMY=                | .19337<br>.27890<br>.01291<br>.01222<br>.02802<br>.99995            |                | . <sup>.</sup> |                                               |
| $ \begin{array}{c} & - x \left( \begin{array}{c} 2 \end{array} \right) = \\ & x \left( \begin{array}{c} 3 \end{array} \right) = \\ & x \left( \begin{array}{c} 4 \end{array} \right) = \\ & x \left( \begin{array}{c} 5 \end{array} \right) = \\ & x \left( \begin{array}{c} 5 \end{array} \right) = \\ & x \left( \begin{array}{c} 5 \end{array} \right) = \\ & x \left( \begin{array}{c} 7 \end{array} \right) = \\ & x \left( \begin{array}{c} 2 \end{array} \right) = \\ & x \left( \begin{array}{c} 2 \end{array} \right) = \end{array} $ | 02157<br>.36246<br>0.00000<br>.00349<br>.15750<br>.04126<br>.16934 | RM(<br>RM(<br>RM(<br>PM(<br>PM(<br>PM(<br>RM(<br>RM(<br>RM( | 2) =<br>3) =<br>4) =<br>5) =<br>6) =<br>7) =<br>8) =<br>9) = | .5930(<br>.0658(<br>1.1057(<br>0.0000(<br>.01064<br>.51099<br>.2479)<br>.51659<br>0.0000( | )<br>)<br>    | PM(11)=<br>RM(12)=<br>PM(13)=<br>RM(14)=<br>RM(15)=<br>PM(16)=<br>RM(17)= | 3.05069<br>.16672<br>.57218<br>.42744<br>.37504<br>.01893<br>.01271<br>1.40174 | Y(?)=<br>Y(3)=<br>Y(4)=<br>Y(5)=<br>VPATE=<br>CUMY=<br>DY1=<br>DY= | .19337<br>.27890<br>.01291<br>.01222<br>.02802<br>.99995<br>.999495 | <b>₩DHDT</b> = | <b>~</b> 5,785 |                                               |

Y(1) =

Y(2) =

.49339

.20432

| <b>-</b> | INE | - 3   | 36.00 MINU | ITES   |       | - NUMBI        | ER OF ITERATI | 0NS= 7    |             |          |           |       | •      |         |           | <br>  |
|----------|-----|-------|------------|--------|-------|----------------|---------------|-----------|-------------|----------|-----------|-------|--------|---------|-----------|-------|
|          | хı  | 1)=   | 18029      | Р.Ч. ( | 1)=   | .57102         | $R^{M}(10) =$ | 114.79423 | Y(1         | )= .48   | 1585      |       |        |         |           |       |
|          | X ( | 2)=   | .05380     | RM (   | 2)=   | .07180         | PM(11)=       | 3.01669   | 2) Y - 7 (2 | )= .21   | 604       |       |        |         | ••• ••••• | <br>  |
|          | X ( | 3)=   | .340HS     | PM (   | 3)=   | 1.08846        | RM(12)=       | .16798    | Y(3         | 1= .27   | 7691      |       |        |         |           |       |
|          | X ( | 4)=   | 0.00000    | PM(    | 4') = | 0.00000        | RM(13) =      | .46165    | Y (4        | ) = .01  | 211       |       |        |         |           |       |
|          | X ( | 5)=   | .00328     | RM (   | 5)=   | .00990         | FM(14)=       | .38173    | Y(5         | )= .01   | 208       |       | • •    | · · · · |           | <br>  |
|          | X ( | h) =  | 14370      | R14 (  | 6)=   | <b>.</b> 55418 | RM(15) =      | .31283    | VRAT        | 5= .02   | 2777      |       |        |         |           |       |
|          | xi  | 7) =  | 08218      | PM (   | 7)=   | .24791         | RM(16) =      | .01604    | SHM         | Y= .9°   | 9995      |       |        |         |           |       |
|          | ~×( | ×) =  | 15693      | ) Mg   | 8)=   | .47341         | PM(17) =      | .00998    | י י איס     | 1=00     | 045       |       | -      |         |           | <br>  |
|          | X ( | 4) =  | 0.00000    | RM (   | 9)=   | 0.0000         | PM(18)=       | 1.17549   | D           | Y=00     | 005       |       |        |         |           |       |
|          | чт  | ν.Τ.= | 307.274    | HOUTO= | 34    | 7.106 HL       | 055= A9.506   | HRXNS=    | 111.165     | - TCMOH- | -11.309 M | 2401= | -6.864 |         |           |       |
|          |     | -     |            |        |       |                |               |           |             |          |           |       | •      |         | · • •     | <br>• |

|         |      | -            |            | <b>.</b>          |     |         |       |                     | -       |         |       |           |        | • ·    |   | <br> |   | -    |
|---------|------|--------------|------------|-------------------|-----|---------|-------|---------------------|---------|---------|-------|-----------|--------|--------|---|------|---|------|
| HI.     | IT = | 307.2        | 74         | HOUTO=            | 345 | .890 H  | LOSS= | 96.721              | HRXNS=  | 115.490 | HOMDT | = +12,151 | MDHDT= | -6.696 |   |      |   |      |
| X (     | °)=  | n.000        | 0 <b>0</b> | PM (              | 9)= | 0.0000  |       | $R \neq (1\beta) =$ | 1.06752 |         | DY =  | -,00005   |        |        |   |      |   |      |
| <br>Χ(  | A) = | 150          | 1?         | PM(               | 8)= | .45022  |       | RH(17)= "           | .00854  | · · n   | Y1=   | 00045     |        |        |   | <br> | • | •••• |
| X (     | 7)=  | • 085        | 66         | RM (              | 7)= | .24791  |       | R∀(16)=             | .01460  | 51      | IMY = | .qoqq5    |        |        |   |      |   |      |
| X (     | f)=  | .192         | 51         | ₽ <sup>14</sup> ( | 6)= | • 57736 | 1     | PM(15)=             | ,28209  | A 5 V   | *==   | •02754    |        |        |   |      |   |      |
| <br>X ( | 5)=  | <b>-</b> 003 | 13 -       | RM(               | 5)= | .00939  | •     | ₽M(14)= ```         | .35703  | · Y(    | (5) = | .01186    |        |        | • | <br> |   | - •  |
| × (     | 4)=  | 0.000        | 0.0        | 요생 (              | 4)= | 0.0000  | 1     | PM(13)=             | .40H4H  | Y (     | 4)=   | .01214    |        |        |   |      |   |      |
| χţ      | 1) = | • 324        | 92<br>     | 2M (              | 3)= | 1.07946 | •     | = (51) MS           | • 15858 | Y (     | (3) = | 161716    |        |        |   |      |   |      |

.. ..

................

| X( ()=     | .16006               | P4 (        | 6)=   | .49092        | p,          | M(15)=         | .40550                                  | VRA                                     | TE =   | .02814                                |              |        |                                         |                 |
|------------|----------------------|-------------|-------|---------------|-------------|----------------|-----------------------------------------|-----------------------------------------|--------|---------------------------------------|--------------|--------|-----------------------------------------|-----------------|
| x(7) =     | .04083               |             | 7) =  | .24791        |             | M(16) =        | .02037                                  |                                         | 14Y=   | 94995                                 |              |        |                                         |                 |
| -=(5)X     |                      |             | A) =  |               |             | M(17) =        |                                         |                                         | vi=    | 00045                                 |              |        |                                         |                 |
|            | 0,0000               | •           |       | 0.00000       |             | M(1H) =        | 1.51404                                 |                                         | 0Y=    | 00005                                 |              |        |                                         |                 |
| • •        | 307.274              | -           |       | 0.638 HL      |             | 61.598         | HRXNS=                                  |                                         |        | 4DT= -9.065                           | MOHDT=       | -5.639 |                                         |                 |
|            | ······               |             |       |               | 0.921-      |                |                                         | -                                       | • • •  | 01                                    | 101014       | -3.031 |                                         |                 |
|            |                      |             |       |               |             |                |                                         |                                         |        |                                       |              |        |                                         |                 |
|            |                      |             |       |               |             |                |                                         |                                         |        |                                       |              |        |                                         |                 |
|            | 2 00 117 11          |             |       |               |             | ****           | 0N5=7                                   |                                         |        |                                       |              |        |                                         |                 |
| 105- 0     | <b>2 • 00 • 1</b> 80 | 1175        |       | 1413111       | CF UC 1     | IICHAII:       | 0.42- 1                                 |                                         |        |                                       |              |        |                                         |                 |
|            | 10010                |             | ••-   | (1200         | -           |                | 110 70500                               | <b>.</b>                                | • •    | <b>531</b> 07                         |              |        |                                         |                 |
| X ( 1) ≐   | 10015                |             |       | , ,61389      |             |                | 113,78532                               |                                         | 1)=    | •52186                                |              |        |                                         |                 |
| =(2 ) +    | •                    | •           |       | • • • 6049    |             | 4(11)=         | -3.08303                                | · · • • • • • • • • • • • • • • • • • • |        | .17345                                | • •          |        |                                         |                 |
| X(3)=      | .36396               |             |       | 1.15510       |             | 4(]?)=         | .16562                                  |                                         | 3) =   | .24054                                |              |        |                                         |                 |
| X(4)=      | 0,00000              | R 4 (       | 4 } = | 0.0000        | Þ           | ∽(13) <i>=</i> | .68807                                  | Y (                                     | 4)=.   | •01185                                |              |        |                                         |                 |
| X( 5)=     | .00354               | P*! (       | 5)=   | .01106        | PM          | 네(14) = …      | .46876                                  | ····· Y(                                | 5)=    | •01225                                |              | · · ·  |                                         |                 |
| X ( f) =   | .15303               | 무너 (        | 6) =  | ·47180        | PY          | 4(15)=         | .43820                                  | ۸nd                                     | T E =  | .02H27                                |              |        |                                         |                 |
| X(7)=      | ,08041               | RM (        | 7)≈   | .24741        | PM          | 4(16)=         | .02181                                  | 51                                      | MY≂    | .99995                                |              |        |                                         |                 |
| x ( · H) = | -,1×027              | · Q'4 (     | 8)=   | .55579        | PA          | *(17)=**       | 01549                                   | D                                       | Y]=    | 01044                                 | · •          |        | · · - · · · · · · · · · · · · · · · · · |                 |
| x( 9)=     | 0.0000               | P.4 (       | 9)=   | 0.00000       |             | *(18)=         | 1.62592                                 |                                         | DY=    | 00005                                 |              |        |                                         |                 |
| HINT =     | 307.274              | HOUTO=      |       |               |             | 61.971         | HRXNS=                                  |                                         | ่นกา   | •                                     | MOHDT=       | -6.452 |                                         |                 |
|            |                      |             |       |               |             |                |                                         |                                         |        |                                       | · 2· · 0/ =  |        |                                         |                 |
| •          |                      |             |       |               |             |                |                                         |                                         |        |                                       |              |        |                                         |                 |
|            |                      |             | •     |               |             |                |                                         |                                         |        |                                       |              |        |                                         |                 |
|            | 6 63 47300           |             |       |               |             | TEDATT         |                                         |                                         |        |                                       |              |        |                                         |                 |
|            | 0.00 MINO            | UF5         |       |               | ER VE I     | TICHPIIC       |                                         |                                         |        |                                       |              |        |                                         |                 |
|            |                      |             | • •   | < > 2 ( ) )   |             |                |                                         |                                         | • •    |                                       |              |        |                                         |                 |
| X(1)=      | .20136               |             | 1)=   | .62391        |             |                | 113,54721                               |                                         | 1)=    | .53037                                |              |        |                                         |                 |
|            | .01473               |             | 2)=   | .05804        |             | (11)=          |                                         | <b>Y(</b>                               |        | .16439                                |              |        |                                         |                 |
| X(3)=      | .36465               |             | 3)=   | 1.12005       |             | (12)=          | .16512                                  |                                         | 3)=    | -28127                                |              |        |                                         |                 |
| X( 4)=     | 0.00000              | RM (        | 4)=   | 0.0000        |             | *(13)=         | .74793                                  | ¥ (                                     | 4)=    | .01176                                |              |        |                                         |                 |
|            | 00360                | RM (        | 5)=   | .01116        | R*          | *(14)=…        | 44743                                   | ·········· Y (                          | 5)=    | .01217                                | · · ·        |        |                                         |                 |
| X ( F) =   | .14638               | ₽v(         | 6)=   | <b>4</b> 5358 | P M         | *(15)=         | .47013                                  | VPA                                     | TE=    | •02H41                                |              |        |                                         |                 |
| x(7)=      | .06001               | RM (        | 7)=   | .24791        | RM          | 1(16) =        | .02324                                  | S11                                     | MY≍    | .94495                                |              |        |                                         |                 |
| X(-H)= ·   | 18525                | 941         | 8)=   | .57401        | <b>с</b> и  | (17)=          | 01688                                   | · Ŋ                                     | Y]=    | 00044                                 |              |        |                                         |                 |
| . X( 9)=   | 0.0000               | ₽M (        | 9)=   | 0.0000        | PM<br>A     | (18) =         | 1.74028                                 |                                         | DY=    | 00005                                 |              |        |                                         |                 |
| HINT =     | 307.274              | HOUTO=      | 353   | .262 HL       | 0SS=        | 55.551         | HRXNS=                                  | 87.401                                  | ноч    | DT= -7.901                            | MOHDT=       | -6.235 |                                         |                 |
|            |                      |             |       |               |             |                |                                         |                                         | -      | · · · · · · · · · · · · · · · · · · · |              |        |                                         |                 |
|            |                      |             |       |               | •           |                |                                         |                                         |        |                                       |              |        |                                         |                 |
|            |                      |             |       | -             |             |                |                                         |                                         |        |                                       |              |        |                                         |                 |
|            | 0.00 MTNH            | TES         |       | - NUMB        |             | TEPATTO        | NS=7                                    |                                         |        |                                       |              |        |                                         |                 |
| 11.0- 00   |                      |             |       | ,             |             |                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                         |        |                                       |              |        |                                         |                 |
| ×/ 11-     | 20251                | 5.4.4       |       | 62262         |             |                | 112 21671                               |                                         |        | c 2 2 4 2                             |              |        |                                         |                 |
| X(1)=      | ,20351               |             | 1)=   | .63363        |             |                | 113.31671                               |                                         | 1)=    | .53842                                |              |        |                                         |                 |
| ×(-2)= -   | -                    |             |       |               |             |                | 3,11353                                 | -                                       |        | ,15586                                |              |        | · · · · · · · · · · · · · · · · · · ·   |                 |
| X(3)=      | .36534               |             |       | 1.13750       |             | +(12)=         | .16465                                  |                                         | 3)=    | ·58194                                |              |        |                                         |                 |
| X(4)=      | -                    | -           |       | 0.0000        |             | (13)=          | *80 <u>305</u>                          | Y (                                     | 4)=    | •01155                                |              |        |                                         |                 |
|            |                      | RM (        | 5)=   |               | PM          | *(14)=         | 50620                                   | Y(                                      | 5)=    | .01206                                |              |        |                                         |                 |
| X( 6)=     | .14010               | РМ <b>(</b> | 6)=   | .43621        | RM          | (15)=          | .50229                                  | VPA                                     | 7E=    | .02854                                |              |        |                                         |                 |
| X(7)=      | .07962               | PM (        | 7)=   | .24791        | рм          | (16) =         | .02467                                  | SU                                      | \:Y=   | .99495                                |              |        |                                         |                 |
| ×(·+)= ··  |                      |             |       | .59137        |             |                |                                         |                                         |        |                                       |              |        |                                         |                 |
|            | 0,0000               | DM (        | 9)=   | 0.00000       | R M         | 1(18) =        | 1,85419                                 |                                         | DY=    | 00005                                 |              |        |                                         |                 |
|            |                      |             |       |               |             |                |                                         |                                         |        | H)T= -7.409                           |              | -6.001 |                                         |                 |
|            |                      |             | J ,4  | 1942 AF       |             |                |                                         | -0-0 <b></b> 00000000                   | 1.11.4 |                                       | - 14 (A. 194 | -0.001 |                                         |                 |
|            |                      |             |       |               |             |                |                                         |                                         |        |                                       |              |        |                                         |                 |
|            |                      |             |       |               |             |                |                                         |                                         |        |                                       |              |        |                                         | <b>•</b> ••     |
|            |                      |             |       |               | -           |                |                                         |                                         |        |                                       |              |        |                                         |                 |
| -T[MF= 64  | +.00 MINU            | TES         |       | NUMB          | EP OF I     | TERATIC        | 1NS= 7                                  |                                         |        |                                       |              |        |                                         | 35              |
|            | •                    |             |       |               |             |                |                                         |                                         |        |                                       |              |        |                                         | ~ ~             |
| X(])=      | .20557               | P.4 (       | 1)=   | .64303        | ₽v          | (10) =         | 113.09427                               | ¥ (                                     | 1)=    | .54504                                |              |        |                                         |                 |
|            | .01710               | . 0.4(      | 5) =  | .05348        | <b>₽</b> ∿' | (11) =         | 3.12805                                 | YE                                      | 21=    | .14785                                |              |        |                                         | · · · · · · · · |
| x ( 2) =   | .36594               |             |       | 1.14484       | £ M         | (122)=         | .14427                                  | YC                                      | 3) =   | 201759                                |              |        |                                         |                 |
|            | •                    | •           |       |               |             |                |                                         |                                         |        |                                       |              |        |                                         |                 |

|            | 3.00 MINUTE | S ·           | NUMBE                 | R OF ITERATIONS                       | = 7      |            |                |             |             |                                                                            |
|------------|-------------|---------------|-----------------------|---------------------------------------|----------|------------|----------------|-------------|-------------|----------------------------------------------------------------------------|
| ×(1)=      | .20754      | RM(-1)=       | 65212                 | $R^{M}(10) = -11$                     | 2.88017  | Y(1)=      | .55323         |             |             |                                                                            |
| · x( ?)=·· | -           | RM( 2)=       |                       |                                       |          | = (S)Y     | 14032          |             |             |                                                                            |
| x (3) =    | 36562       | PM( 3)=       | = 1.15195             | =(S1)MA                               | .16378   | Y(3)=      | .28318         |             |             |                                                                            |
| X ( 4) =-  | 0.0000      | PH( 4)=       | = 0.00000             | RM(13)=                               | ,93475   | Y(4)=      | .01145         |             |             |                                                                            |
|            | .00355      | RM( 5)=       | = .01115 <sup>·</sup> | PM(14) =                              | .54020 - | - Y(5)=    | .01176         | • •         | • • • • • • | · · · · · · · · · · · · · · · · · · ·                                      |
| X( 6)=     | .12054      | RM( 6)=       | .40387                | RM(15) =                              | .56731   | VPATE=     | .02492         |             |             |                                                                            |
| ×(7)=      | .07890      | RM(7)=        | - 24791               | PM(16)=                               | .02752   | S11MY =    | .99995         |             |             |                                                                            |
| X(F)=      | .19850      | - РМ(В) =     | e .62371              |                                       | . 05100  |            | 00044          |             | • •         | , <u>.</u>                                                                 |
| x ( ♀) =   | -           |               | = 0.00000             |                                       | 2.08366  | DY =       | 00005          |             | ·           |                                                                            |
| HINT =     | 307.274     | HOUTO= 35     | 37.485 HLO            | SS= 37.455                            | HRXNS=   | 75.792 HDM | DT= -6.578     | MOHDT= -    | 5,497       |                                                                            |
|            |             | -             | • -                   | · · · · · · · · · · · · · · · · · · · |          | -          |                |             |             |                                                                            |
| 1          |             |               |                       |                                       |          |            |                |             |             |                                                                            |
| -TIVE=72   | 2.00 MINHER | S 😳 👘         | HUMBE                 | P OF ITERATIONS                       | = 7 -    |            |                |             |             |                                                                            |
| ¥(1)=      | .20943      | RM(1)=        | = <b>.</b> 66088      | $P^{M}(10) = 11$                      | 2.67455  | Y(1)=      | .56001         |             |             |                                                                            |
| x ( 7) =   |             |               |                       | RM(11)=                               |          | = (S) Y    | .13324         |             | · ·         |                                                                            |
| x(3)=      |             |               | 1.15882               | =(12)=                                | .16337   | Y(3) =     | .28375         |             |             |                                                                            |
| X ( 4) =.  |             | PM(4)=        |                       | PM(13) =                              | .99930   | Y(4) =     | .01135         |             |             |                                                                            |
| *( 5)= "   |             | PM( 5)=       |                       | PM(14) =                              | .55604   | Y(5)=      | .01159         |             |             |                                                                            |
| X( 6)=     | .12321      | 무색( 6)=       |                       | RM(15)=                               | .60016   | VRATE =    | .02845         |             |             |                                                                            |
| x ( 7)=    | 07856       | RM(7)=        |                       | $P^{w}(16) =$                         | .02493   | SHMY =     | .94995         |             |             |                                                                            |
| X( A)=     | 20243       | ··· RM( 8)=   | 63877                 | RM(17)=                               | .05536   |            | 00144          |             |             | a cinana ara canananan manananan ara cinana cinana ana ana ana ana ana ana |
| x ( 4) =   | 0.0000      | P4( 9)=       | = 0.00000             | PM(18)=                               | 2+19922  | DY =       | -,00005        |             |             |                                                                            |
| HINT =     |             |               | 58.914 HLO            | SS= 32.164                            | 42XNS=   | 72.342 HDM | DT= -6.226     | MOHDT= -    | 5.237       |                                                                            |
|            | ~-          |               |                       |                                       |          |            |                |             |             |                                                                            |
|            | 5.00 MINUTE | ۶ <sup></sup> | NUMBE                 | R OF ITERATIONS                       | = 7      |            |                |             |             |                                                                            |
| X(1)=      | .21123      | RM( 1)=       | 66931                 | PM(10) = 11                           | 2.47746  | Y(1) =     | •56641         |             | ,           |                                                                            |
|            | 01496       | 유생(2)=        | • -                   |                                       | 3.16859  |            | .12650         |             |             |                                                                            |
| x ( 3) =   | .36782      |               | = 1.16547             | RM(12)=                               | .16298   | Y(3) =     | .28431         |             |             |                                                                            |
|            | 0.000.0     | DM(4)=        |                       | · ·                                   | 1.05493  | Y(4)=      | .01.126        |             |             |                                                                            |
|            | .00345      |               |                       | PH(14)=                               | .57115 - | Y(5)=      | .01138         | • • • • • • | •           |                                                                            |
| .X( 6)=    | .11817      | PM( 6)=       | 37443                 | RM(15)=                               | .63323   | VPATER     | .02910         |             |             |                                                                            |
| X(7)=      | 07H24       | RM(7)=        |                       | PM(16)=                               | .03034   | SHMY =     | , 94935        |             |             |                                                                            |
|            | - 20613 -   | 7 RM( 8)=     | • 65315               | RM(17) =                              |          | DY1=       | ►.()îî)≪4      |             |             | · · · · · · · · · · · · · · · · · · ·                                      |
| 7 ( 4) =   | 0.00000     | RM(9)=        | - <b>0.</b> 0000      |                                       | 5.31233  | 0Y =       | 00005          |             |             |                                                                            |
| HINT =     | 307.274     | HOUTO= 36     | 50.333 HLO            | SS= 26.912                            | HRXNS=   | 69.086 904 | 612.409        | MOHOT= -    | 4.976       |                                                                            |
|            |             |               |                       |                                       |          |            |                |             |             |                                                                            |
|            |             | ~             |                       |                                       |          |            |                |             |             |                                                                            |
|            | . CO MINUTE | 5             | NUMRE                 | R OF ITERATIONS                       | = 7      | · · ·      |                |             |             |                                                                            |
| ×( ])=     | .21295      | RM( 1)=       |                       | RM(10)= 1)                            |          | Y(1)=      | . 37244        |             |             | P~~_                                                                       |
| ×( 2)=     | .01432      | ₽4(2)≓        | . 04555               | RM(1))=                               | 3.18111  | Y(2)=      | .12035         |             |             |                                                                            |
| X( 3)=     | .36839      | RM( 3)=       | = 1.17190             | = (S1) MA                             | ,16261   | Y(3)=      | <b>,</b> 2∃484 |             |             | Ű.                                                                         |
| X ( 4) =   | 0.0000      | P4( 4)=       | = 0.00000             | PM(13)=                               | 1.13159  | Y(4)=      | .01116         |             |             |                                                                            |
|            | 10334       | RM( 5)=       | .01076                | PM(14) =                              | 53557    | - M(5)=    | .01117         |             | •••         |                                                                            |
| ギモチリニ      | .11739      | RM( 5)=       | .34049                | RM(15)=                               | 1+4552   | 1450TE=    | .02923         |             |             |                                                                            |
|            | 1 7         | <u></u>       | · · · · · ·           | mana di second                        | ウィングド    | 12.1M.11.  | 03365          |             |             |                                                                            |

HINT = 307,274 HOUTO= 356,058 HLOSS= 43,385 HRXNS= 79,446 HOMDT= -6,970 MOHDT= -5,753

\_\_\_\_\_

.

|               |                 |                                        |       |                            |        | ۰.                   |                |             |                  |                                       |                        |                                                                                                                 |
|---------------|-----------------|----------------------------------------|-------|----------------------------|--------|----------------------|----------------|-------------|------------------|---------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|
|               | 36 (00 W7 M     |                                        | -     |                            |        | TTEOATT              | ONS=7          |             |                  |                                       |                        | المنافع المراجع |
| TIVE= - 8     | 24 • 0.0 × 1.01 | 115                                    |       | (VI) 4F                    | NEH UP | TICHALI              | 0.05 - 1       |             |                  |                                       |                        |                                                                                                                 |
| x ( 1) =      | ,21458          | DM (                                   | 1)=   | .68515                     |        | PM(10)-              | 112.11045      | Y(1) =      | .57811           |                                       |                        |                                                                                                                 |
| X(-2)=-       |                 |                                        |       | .04378                     |        |                      |                | Y(2)=       |                  |                                       |                        | ,                                                                                                               |
| x(3) =        | 36845           |                                        |       | 1.17808                    |        | RM(17)=              | 16224          | Y(3) =      |                  |                                       |                        |                                                                                                                 |
|               | 0,0000          | -                                      | 4)=   | 0.00000                    |        | RM(13) =             | 1.10920        | Y(4) =      | • =              |                                       |                        |                                                                                                                 |
|               |                 | -                                      |       | 01056                      |        |                      |                | ·           |                  |                                       |                        |                                                                                                                 |
| x(-6) =       | 10545           |                                        | 6) =  | .34756                     |        | 유사(15) =             | .70005         | VRATE=      |                  |                                       |                        |                                                                                                                 |
| x(7) = x(7) = | .07764          |                                        | 7)=   | .24791                     |        | $R^{M}(16) =$        | +03314         | SUMY=       |                  |                                       |                        |                                                                                                                 |
|               |                 |                                        | ()=   | .68002                     |        | RM(10)=-             |                | 0Y1=        | -                | -                                     |                        |                                                                                                                 |
| -             | • • - •         |                                        |       | 0.00000                    |        | RM(18)=              | 2.54925        | DY=         |                  |                                       |                        |                                                                                                                 |
| -             | 307.274         | HOUTO=                                 | •     |                            |        | 16.910               |                |             | 04DT= -5.378     | MOHDT=                                | -4.243                 |                                                                                                                 |
| ·····         |                 |                                        | 505   |                            |        | 10.010               |                |             | 5 101 5 6 5 1 5  | · · · · · · · · · · · · · · · · · · · | ····                   |                                                                                                                 |
|               |                 |                                        |       |                            |        |                      |                |             |                  |                                       |                        |                                                                                                                 |
|               |                 |                                        |       |                            |        |                      |                |             |                  |                                       |                        |                                                                                                                 |
|               | 18.00 MINI      | TES                                    |       | - NHME                     | ER OF  | TTEPATT              | 0NS=- 7        |             |                  |                                       |                        |                                                                                                                 |
|               |                 |                                        |       | 1                          |        |                      |                |             |                  |                                       |                        |                                                                                                                 |
| X())=         | .21612          | RM (                                   | 1)=   | .69259                     |        | RM(10) =             | 111.93934      | Y(1)=       | .58344           |                                       |                        |                                                                                                                 |
|               | •               |                                        |       | 04209                      |        |                      | 3.20458        | Y(2)=       |                  |                                       | · •·                   |                                                                                                                 |
| x(3)=         | .36949          |                                        |       | 1.18406                    |        | RM(12)=              | .16189         | Y(3) =      |                  |                                       |                        |                                                                                                                 |
|               | 0.00000         |                                        | 4)=   | 0.00000                    |        | RM(13)=              | 1.26792        | Y(4) =      |                  |                                       |                        |                                                                                                                 |
| x(-5)=-       |                 |                                        | -     | 01035                      |        | RM(14)=-             |                | Y(5) =      |                  |                                       | • •• • <del>•</del> •• |                                                                                                                 |
| X ( 6) =      | 10454           | •                                      | 6) =  | 33500                      |        | PM(15) =             | 73377          | VPATE=      |                  |                                       |                        |                                                                                                                 |
| X(7)=         | 07735           | -                                      | 7)=   | .24791                     |        | PM(16)=              | .03454         | SHMY=       |                  |                                       |                        |                                                                                                                 |
| x (- H) =     | • ·             | + RM (                                 | ,     |                            |        | RM(17)=              |                | DY1=        |                  |                                       | ••                     |                                                                                                                 |
| -             | 0.00000         | •                                      | -     | 0.00000                    |        | RM(18) =             | 2.66701        | DY=         |                  |                                       |                        |                                                                                                                 |
|               | 307.274         | .HOUTO=                                | •     | -                          | 055=   | 12.451               |                |             | OMDT= -5.136     | MOHDT=                                | -4.126                 |                                                                                                                 |
|               |                 |                                        | -     | -                          |        |                      |                |             |                  |                                       |                        |                                                                                                                 |
| •             |                 |                                        |       |                            |        |                      |                |             |                  |                                       |                        |                                                                                                                 |
|               |                 |                                        |       |                            |        |                      |                |             |                  |                                       |                        |                                                                                                                 |
| -TINE= -9     | 2.00 MTNI       | TES                                    |       | NHME                       | ER OF  | ITERATI              | 0NS= 7         |             |                  |                                       |                        |                                                                                                                 |
|               |                 |                                        |       |                            |        |                      |                |             |                  |                                       |                        |                                                                                                                 |
| X(1)=         | .21760          | 24(                                    | ])=   | .69972                     |        | RM(10)=              | 111.77548      | Y(1)=       | .58847           |                                       |                        |                                                                                                                 |
|               | 01254           | PM (                                   | S) =  | 04049                      | •      | RM(11)=              | 3.21565        | X(S)=       |                  |                                       | -                      |                                                                                                                 |
| X(3)=         | .37001          | РМ (                                   | 3)=   | 1.16934                    |        | =(12) MA             | .16155         | Y(3)=       |                  |                                       |                        |                                                                                                                 |
| X(4)=         | 0.00000         | RM (                                   | 4)=   | 0.00000                    |        | FM(13)=              | 1.33744        | Y(4)=       |                  |                                       |                        |                                                                                                                 |
| X (5) = -     | ,00314          | RM (                                   | 5)=   | .01011                     |        | PM(14) = -           | <b>.</b> 62515 | - · · Y(5)= |                  |                                       |                        |                                                                                                                 |
| X( 6)=        | .10044          | · PM(                                  | 6)=   | .32599                     |        | ₽*(15)=              | .76769         | VRATE=      |                  |                                       |                        |                                                                                                                 |
| X(7)=         | ,07709          | PM (                                   | 7)=   | .24791                     |        | RM(16)=              | .03592         | S(1MY=      |                  |                                       |                        |                                                                                                                 |
|               |                 | қм(                                    | 8)=   | •70459                     |        | •                    | • 02845·       | DY1=        | 00044            | · • · · · ·                           |                        |                                                                                                                 |
| X( 4)=        | 0.00000         |                                        | 93 =  | 0.00000                    |        | Рм(]9)=              | 2.78523        | DY =        |                  |                                       | _                      |                                                                                                                 |
| HINT =        | 307.274         | H0177=                                 | 365   | .737 HL                    | 055=   | 8.186                | HPXNS=         | 57.810 H    | DMDT= -4.907     | M0HDT=                                | -3.932                 |                                                                                                                 |
|               |                 | ······································ |       |                            |        |                      |                |             |                  |                                       |                        |                                                                                                                 |
|               |                 |                                        |       |                            |        |                      |                |             |                  |                                       |                        |                                                                                                                 |
|               |                 |                                        | •     |                            |        |                      | <b>.</b>       |             |                  |                                       |                        |                                                                                                                 |
| 9             | 16.00·MINU      | TF.S-                                  |       | - NUMP                     | ER OF  | ITERATI              | 015= 7         |             |                  |                                       |                        | a to you and a state of a second state  |
|               |                 |                                        | • .   |                            |        |                      |                |             | ····             |                                       |                        |                                                                                                                 |
| /(])=         | \$51000         | •                                      | 1)=   | .70657                     |        |                      | 111.61877      | Y(1)=       |                  |                                       | •                      |                                                                                                                 |
| ×(-2)=-       |                 | •                                      |       | .03896                     |        |                      | 3.22630        |             |                  |                                       |                        |                                                                                                                 |
| ×(3)=         | .37052          | •                                      | 3)=   | 1.19542                    |        | PM(12)≃              | .16122         | Y(3)=       |                  |                                       | •                      |                                                                                                                 |
| X(4)=         |                 |                                        | 4)=   | 0.0000                     |        | PM(13) =             | 1.40781        | Y(4) =      |                  |                                       |                        |                                                                                                                 |
| X( 5)=-       | -               |                                        | 5)=   | .00986                     |        | PM(14)=              | .63720         | Y(5)=       |                  |                                       | •                      |                                                                                                                 |
| X( h)=        | .09655          | •                                      | 6) =  | •31148                     |        | PM(15)=              | .80180         | VPATE =     |                  |                                       |                        | 社                                                                                                               |
|               | . 17684         | PM (                                   | 71.#  | .24791                     | 1      | $R^{(15)} =$         | .03731         | SUMYS       | , ५०७०७          |                                       |                        | -t-                                                                                                             |
| ¥ ( 7) =      | -               |                                        |       |                            |        |                      |                |             |                  |                                       |                        |                                                                                                                 |
| Y ( 7) =      | .22146          |                                        | A ! = | .71610                     |        | P4(17)=              | .03008         | 0Y1=        | 00 <sup>44</sup> |                                       | •                      | anal a series and the second statement of the                                                                   |
| ゲ(7)=<br>     | -               | 0 V 1                                  | 9)#   | .71610<br>0.00000<br>.44 H | 1      | P4(17) =<br>PM(14) = | 5.43343        | [) ¥ z      |                  |                                       | ·                      | aran in dan ann an an an an an ann an an an an an                                                               |

| •               |                                |         |                            |            | · · · · · · · · · · · · · · · · · · · |                  |                                        |                                         |                         |                                       |
|-----------------|--------------------------------|---------|----------------------------|------------|---------------------------------------|------------------|----------------------------------------|-----------------------------------------|-------------------------|---------------------------------------|
|                 | • • • • • • • •                |         |                            |            | -                                     |                  | <u></u>                                |                                         | •                       |                                       |
| INITIAL C       | CONDITIONS                     | S RASED | ON AD.                     | JUSTED TIM | ١E                                    |                  |                                        |                                         |                         |                                       |
| <b></b>         |                                |         |                            |            |                                       |                  |                                        |                                         |                         |                                       |
| ×(1)=           | .13013                         |         | ( 1)=                      |            |                                       | 119.46000        | Y(1)=                                  | .11159                                  |                         |                                       |
| X(2)=           | .04457                         |         | = (:2:)                    |            | PM(11) =                              | 2.57020          | Y(2)=                                  | .65267                                  |                         |                                       |
|                 |                                |         | (3)=                       | .H7426     | : = (12) = :                          |                  | ``Y(3)=                                | .19508                                  |                         |                                       |
|                 | 0,0000                         |         | (4)=                       |            | $R^{M}(13) =$                         | .04344           | Y(4)=                                  | .02520                                  |                         |                                       |
| X ( 5) =        | •                              |         | (5)=                       |            | RM(14)=                               | .10302           | Y(5)=                                  | .01535                                  |                         |                                       |
|                 | .24773                         |         | ( 6)=                      | .76524     | RM(15)=                               |                  | VRATE=                                 | .01655                                  |                         | · · · · · · · · · · · · · · · · ·     |
| ¥( 7)=          | .10249                         |         | (7)=                       | .26341     | RM(16) =                              | .00276           | SUMY =                                 | 1.00000                                 |                         |                                       |
| X( 5)=          | .08493                         |         | (8)=                       | •S1430     | RM(17)=                               | .00055           | DY!=                                   | 0.0000                                  |                         |                                       |
| x( 9)=          | .0.00000                       | QM      | (9)=                       | 0.00000    | • · · РМ(]Н)= ·                       | .20044           | 0Y=                                    | 0.00000                                 | · · · · · · ·           |                                       |
|                 | 120                            |         |                            |            | <b>x</b>                              |                  | <b>.</b>                               |                                         |                         |                                       |
| TIME=           | 4.00 MINU                      | ITES    |                            | NHMF       | ER OF ITERATI                         | 0NS= 3           |                                        |                                         | · · · •                 |                                       |
|                 | _ · • • •                      | - **    |                            |            |                                       |                  |                                        |                                         |                         |                                       |
| x ( · ] ) =     | ,14147-                        | RM      | ( 1)=                      |            | PM(10)=                               | -119.49185       | ······································ | .28442                                  |                         |                                       |
| ×( 2)=          | 04299                          |         | ( ?)=                      | .11315     | RM(11) =                              | 2.63221          | Y(2)=                                  | .44866                                  |                         |                                       |
| ×(3)=           | .34100                         | RM      | (3)=                       | .84760     | RM(12)=                               | .16347           | Y(3;=                                  | ,24993                                  |                         |                                       |
| ×( 4) ±         | 0.00000                        |         | -                          | 0.00000    | PM(13) = -                            |                  | ······································ | .01190                                  |                         |                                       |
| <b>ズ ( う) =</b> | 00085                          | PM      | (5)=                       | .00215     | RM(14) =                              | .13643           | Y(5)=                                  | .09505                                  |                         |                                       |
| X(6)=           | .27766                         |         | ( 6)=                      | .73086     | $R^{M}(15) =$                         | 06551            | VRATE=                                 | .02507                                  |                         |                                       |
| x t 7) =        | - 10007                        | RM      |                            | .26341     | - RM(16) = -                          |                  | - SUMY=                                | .94495                                  |                         |                                       |
| Y( +)=          | 04549                          |         | (8)=                       | 25267      | PM(17) =                              | .00077           | DY1=                                   | .00655                                  |                         |                                       |
|                 | 0,0000                         |         | ( 9)=                      |            | FM(18)=                               | 27285            | 0Y=                                    | -,00004                                 |                         |                                       |
|                 |                                |         | • •                        |            | .055= 213.198                         |                  |                                        | MDT= -15.228                            | 97055-072 MOHOR         |                                       |
| TIME=           | 8.00 MINU                      | ITES    |                            | -<br>MIME: | ER OF ITERATI                         | 0NS= 7           |                                        |                                         |                         |                                       |
|                 | 15073                          | RM1     | (1)=                       | .40355     | RM(10)=                               | -119.60892 -     |                                        | .31877                                  |                         |                                       |
| ×( 7)=          | .13073                         |         | ( 2)=                      | .10540     | PM(11)=                               | 2.67736          | Y(2) =                                 | .40725                                  |                         |                                       |
| X(3) =          | .34223                         |         | $(2)^{-1}$                 | •10040     | RM(12)=                               | .16351           | Y(2) = Y(3) =                          | .25308                                  |                         |                                       |
|                 | - C.04000                      |         | (3) = (4) =                | 0.00000    |                                       |                  | - Y(4)=                                | • • • • • • • • • • • • • • • • • • • • |                         |                                       |
| ×(5)=           | .00147                         |         | ( 4) =                     | .00394     | $R^{m}(14) =$                         | .17410           | - + (4)=<br>Y(5)=                      | .00807                                  |                         | ···· ··· -                            |
| x(-6) =         | .26053                         |         | (6)=                       | •69755     | RM(14)=                               | .09085           | VPATE=                                 | .02351                                  |                         |                                       |
|                 | -                              |         |                            |            | нм(15)=<br>Рм(16)=                    |                  | SUMY=                                  | •02351                                  | · · · · · · · · · · · · | •                                     |
| ×( ⊱)=          | .10642                         |         | (7) = (8) =                | •28599     | ph(17) =                              | .00137           | S()MY=                                 | 00055                                   |                         |                                       |
|                 | 0.00000                        |         | (8)=<br>(9) <sup>°</sup> = |            | PM(18)=                               | .09137<br>.35119 | 0Y=                                    | 00022                                   |                         |                                       |
| • •             | - 0,00040<br>201,812 -         |         | •                          |            | P∾(18)=<br>.055= 191,067              |                  |                                        | 00003<br>)4D1≂ -7₀099                   | MOHDI= -35.785 -        |                                       |
| -1              | 510 ¥ 1 016                    | 0010    | 2012                       |            |                                       |                  | A A CHAINE AND A HU                    |                                         | - Colece - 23*(Cole -   |                                       |
| <b></b>         |                                |         |                            |            |                                       |                  | _                                      |                                         |                         |                                       |
| TIME= 12        | 2.00 MTNH                      | TES     | -                          | NUMRI      | ER OF ITERATIO                        | 0NS= 7           | • • • •                                |                                         |                         |                                       |
|                 |                                |         | _                          |            |                                       |                  |                                        |                                         |                         |                                       |
|                 | .15914                         |         | (1)=                       | .43279     |                                       | -117.42740-      |                                        | .35075                                  |                         |                                       |
| =(S)×           | .03675                         |         | ( 2)=                      | .09993     | RM(11) =                              | 2,71953          | Y(2)=                                  | .37023                                  |                         |                                       |
| x(3)=           | .34361                         |         | (3)=                       | .93445     | RN(12) =                              | .15350           | Y(3)=                                  | <b>*</b> 25597                          |                         |                                       |
| X(4)=           | 0.00000                        |         | (4)=                       | 0.00000    | RM(13)=                               | •15053           | ¥(4)=                                  | .01304                                  |                         | · · · · · · · · · · · · · · · · · · · |
| X ( 5) =        | •00103                         | RM (    | ( 5)≂                      | .00542     | PM(14)=                               | ,20554           | Y(5)=                                  | 00495                                   |                         | た<br>                                 |
| X( +)=          | 24499                          |         | ( 6)=                      | .66626     | PM(15)=                               | .11435           | VRATE=                                 | -02377                                  |                         | 4-<br>5                               |
| > { 7}=         | <u>, 64485</u>                 |         | (7)=                       | .20341     | RM(16)=                               | .00649           | <1144 m                                | , 94494                                 |                         |                                       |
| 11=             | .11647                         |         | (8)=                       | .31727     | RM(17)=                               | .04221           | D71-                                   | - 01034                                 |                         |                                       |
|                 | • 1 1 1 1 1 1<br>r = 1 1 1 1 1 |         | ( ())=<br>( ())=           | 0 66300    | DM(19)=                               | 145257           | ) : <del>.</del>                       |                                         |                         |                                       |
|                 |                                |         |                            |            |                                       |                  |                                        |                                         |                         |                                       |

The store with one with o business the cherry with

| 1.1.C- TOPEO - TADEC2                  | 1413(.CU () () CUHIT()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
|                                        | $1) = .46016  PM(10) = 117.11975  Y(1) = .38020 \\ 20270  PM(10) = .27500  Y(1) = .27700 \\ PM(10) = .27700  Y(1) = .27700 \\ PM(10) = $ |                                                                                                                 |
|                                        | 2) = .09379 PM(11) = $2.75891$ Y(2) = .33706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |
| · · ·                                  | 3)= .95139 PM(12)= .16344 Y(3)= .25852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |
|                                        | 4) = 0.00000 PM(13) = .15487 Y(4) = .01299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |
| •                                      | 5) = .00663 RM(14) = .24281 Y(5) = .01119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                                        | 6) = .63691 PM(15) = .13845 VPATE .02414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
|                                        | 7)= .26341 RM(16)=007P2 SUMY= .99995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |
| · -                                    | $B_{1} = .34662$ $RM(17) = .00321$ $DY1 =00039$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
|                                        | 9) = 0.00000 RM(18) = .54679 UY = .00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
| · HIMT = 201.812 · HOUTO=              | 305.245 HL05S= 151.684****HPXNS= 139.913 HDMDT= -3.173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MOHDT= ~22.031                                                                                                  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
| TIME= 20.00 MINUTES                    | NUMBER OF ITERATIONS= 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
| 11 C- 20+00 MINULES                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
| ···· x( 1) = ····.17374 ··· ₽4(        | 1)=' .48575 '' .RM(10)=''116,47030 '''' Y(1)= .40709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |
| -                                      | $P^{(1)} = 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^{0} + 0^$                                                                       |                                                                                                                 |
|                                        | $3) = .96744$ $R^{M}(12) = .16336$ $Y(3) = .26074$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                           |
|                                        | 5) = .00762 RM(14) = .27346 Y(5) = .01198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                                        | 6) = .60940 RM(15) = .16364 VRATE = .02462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |
|                                        | 7)= .26341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |
| • • •                                  | 8) = .37414 RM(17) = .00435 DY1 = .60041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
|                                        | 9) = 0.00000 $RM(18) = .64360$ $DY =00005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |
|                                        | 310.511 HLOSS= 134.343 THRXNS= 131.179 HDMDT= -2.690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MOHDT= -19.172                                                                                                  |
| 61.0 - CAT+AIS 10010-                  | 210-211 UF022- 104-042 UK442- 1014142 URAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
| ······································ | a a second of the second of th                                                                       |                                                                                                                 |
| TIME= 24.00 MINUTES                    | NUMBER OF ITERATIONS= 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
| •                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
| X(1)= .18007 RM(                       | 1)= .50967 R <sup>M</sup> (10)= 115.87025 Y(1)= .43152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |
|                                        | 2)= .08267 RM(11)= 2.82035 Y(2)= .28073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|                                        | 3) = .98266 RM(12) = .16327 Y(3) = .26256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                                        | 4)= 0.00000 T PM(13)= 23501 Y(4)= .01256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | te i e to                                                                   |
|                                        | 5) = .00841 RM(14) = .30310 Y(5) = .01248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                                        | 6)= .58360 PM(15)= .18967 VRATE= .02513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|                                        | 7) = .26341 RM(16) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |
|                                        | $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)^{-1}$ $(17)$                                                                       | · · · ·                                                                                                         |
|                                        | $(17)^2$ $(17)^2$ $(17)^2$ $(17)^2$ $(17)^2$ $(17)^2$ $(17)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |
|                                        | 316.184 HLOSS= 118.314 THE HEXES= 123.005 HOMDT -2.455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MOHDT= -17.226                                                                                                  |
|                                        | 2104104 UPASSA TIO4014 ULANSA TESAND ULUDI- 40403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
| TIME= 28.00 MINUTES                    | NUMBER OF ITERATIONS= 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
|                                        | 1)= .53201 PM(10)= 115.31383 Y(1)= .45363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
| X(2)= .02714 RM(                       | 2)= .07771 RM(11)= 2.86282 Y(2)= .25095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
| X(3)= .34830 RM(                       | 3)= .99713 PM(12)= .16317 Y(3)= .26332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |
|                                        | 4)= 0.00000 RM(13)= .28010 Y(4)= .01228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tin titte makens savening berendenskansen and termine det same det same det same det same setter same titte tit |
| X( 5) = .00316 RM(                     | 5)= .00904 RM(14)= .33034 Y(5)= .0)277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |
|                                        | 6)= .55941 RM(15)= .21645 VRATE= .02563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|                                        | 7)= .26341 PM(16)= .01186 SUMY= .44995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                           |
|                                        | <pre>R) = .42412 RM(17) = .00655 DY1=00043</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 644<br>64                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ó.                                                                                                              |
| X(↔)=+0,000000 ¤//{                    | 9)= 0.00000 PM(13)= .84418 DY= ~.00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>.</b>                                                                                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VOHDT= -15.723                                                                                                  |

|                                             |                                      | 1 1 J 1 - Elle / J 1                   |                                                                                                                  |
|---------------------------------------------|--------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------|
| X(4)= 0.00000 RM                            | (4) = 0.00000 RM(13) = .32829        | Y(4)= .01199                           |                                                                                                                  |
|                                             | 5)= .00452 PM(14)= .35580            | -··· Y(5)= +01290                      |                                                                                                                  |
|                                             | $6) = .53671$ $R^{M}(15) = .24394$   | VRATE= .02611                          |                                                                                                                  |
| · · · · · ·                                 | 7)= .26341 PM(16)= .01321            | SI1HY= .99995                          | •                                                                                                                |
|                                             |                                      |                                        |                                                                                                                  |
| · -                                         | ·····                                | · · · · · · · · · · · · · · · · · · ·  |                                                                                                                  |
|                                             | 9) = 0.00000 RV(18) = .94752         | DY=00005                               |                                                                                                                  |
| HINT = 291.412 HOUTO:                       | : 327.186 HLOSS= 89.651 HRXNS=       | 108.350 -DVDT= -5.539                  | MOHDT= -14.457                                                                                                   |
|                                             |                                      |                                        | t a state of three to be determined to be a determined to be the state and the state and the state and the state |
|                                             |                                      |                                        | •                                                                                                                |
|                                             |                                      |                                        |                                                                                                                  |
| TIME=- 36.00 MINUTES                        | NUMBER OF ITERATIONS= 7              | - · · ·                                |                                                                                                                  |
|                                             |                                      |                                        |                                                                                                                  |
| X(1) = 19586 RM                             | 1) = .57231 $RM(10) = 114,31694$     | Y(1) = .49158                          |                                                                                                                  |
| X (- 2) = RM                                | S = -506891                          | Y(2)= .21571                           |                                                                                                                  |
|                                             | 3)= 1.0239A RM(12)= .16294           | • Y(3) = .26704                        | •                                                                                                                |
| · · · · · · · · · · · · · · · · · · ·       | 4) = 0.00000 $PM(13) = .37936$       | Y(4) = -01170                          |                                                                                                                  |
| X(-5)=00338                                 |                                      |                                        |                                                                                                                  |
|                                             |                                      |                                        |                                                                                                                  |
|                                             | 6)= •51539 · ₽M(15)= •27209          | VPATE= .02657                          | ·                                                                                                                |
|                                             | 7) = .26341 $RM(16) = .01454$        | SUMA= •68882                           |                                                                                                                  |
| X(-H)=BM(                                   |                                      |                                        |                                                                                                                  |
|                                             | $9) = 0.00000$ $R^{M}(18) = 1.05297$ | DY=00005                               |                                                                                                                  |
| HINT = 241.812 HOUTO=                       | 332.315 HLOSS= 76.432 HRXNS=         | 101.807 HDMDT= -2.193                  | MDHDT= -13.333                                                                                                   |
| And a second of the second of the second of |                                      | • • • • •                              |                                                                                                                  |
|                                             |                                      |                                        |                                                                                                                  |
|                                             |                                      |                                        |                                                                                                                  |
| -TIME= 40.00 MINUTES                        | NUMBER OF ITERATIONS= 7              |                                        |                                                                                                                  |
|                                             |                                      |                                        |                                                                                                                  |
| X(1)= .20022 RM                             | 1) = .59044 $RM(10) = 113.87093$     | Y(1)= .50776                           |                                                                                                                  |
| -                                           |                                      |                                        |                                                                                                                  |
| x(-2)= 02205 RM(                            |                                      |                                        |                                                                                                                  |
|                                             | 3) = 1.03645 RM(12) = .16282         | Y(3) = .25818                          |                                                                                                                  |
|                                             | 4) = 0.00000 RM(13) = .43314         | Y(4) = .01141                          |                                                                                                                  |
| X(-5)=,00343RM(                             |                                      | •••••••••••••••••••••••••••••••••••••• |                                                                                                                  |
| λ(,6)= .16797 RM(                           | 6)= .49534 RM(15)= .30083            | VRATE= .02701                          |                                                                                                                  |
| X(7) = _03332 ₽4(                           | 7)= .26341 PM(16)= .01587            | SHMY= .99995                           |                                                                                                                  |
|                                             | R) = - +48820 RM(17) =,01094         |                                        | , e , p                                                                                                          |
| X(P)= 0,00000 PM                            | 9) = 0.00000 $FM(18) = 1.16013$      | DY= -,00005                            |                                                                                                                  |
| HINT = 291.912 (HOUTO=                      | 337.173 HLOSS= 54.927 HRXNS=         | 95.800 HOMDT= -2.178                   | MDHDT= -12.309                                                                                                   |
|                                             |                                      |                                        |                                                                                                                  |
|                                             |                                      |                                        |                                                                                                                  |
| , , ,                                       | · .                                  |                                        |                                                                                                                  |
|                                             | NUMBER OF ITEPATIONS= 7              |                                        |                                                                                                                  |
| 1740                                        | TITERITOR OF TITERITORIA 1           |                                        |                                                                                                                  |
|                                             |                                      | M(1) - 50000                           |                                                                                                                  |
|                                             | 1) = .60732 RM(10) = 113.45583       | Y(1)= +52232                           |                                                                                                                  |
|                                             | 2)= .06146 PM(11)=2.97431-           | Y(2)= ,18458                           |                                                                                                                  |
|                                             | 3) = 1.04834 $PM(12) = .16269$       | Y(3) = -20420                          |                                                                                                                  |
|                                             | 4) = 0.00000 RM(13) = .48944         | Y(4) = -01113                          | •                                                                                                                |
|                                             | 5)=01025 RM(14)=42285-               |                                        |                                                                                                                  |
| X( h)= .16019 R4(                           | 6)= .47645 RM(15)= .33016            | Abaien '05145                          |                                                                                                                  |
|                                             | 7)= .26341 PM(16)= .01718            | SHAA= 000002                           |                                                                                                                  |
|                                             | 8) = .50708 ···· RM(17) =01234 ·     |                                        |                                                                                                                  |
| · · · · · · · · · · · · · · · · · · ·       | 9)= 0.00000 RM(18)= 1,26898          | DY= ~.00905                            | • · · ·                                                                                                          |
|                                             | 341.759 HLOSS= 53.877 HRXNS=         |                                        | MDHDT= -11.359                                                                                                   |
|                                             |                                      |                                        |                                                                                                                  |
|                                             |                                      |                                        |                                                                                                                  |
|                                             |                                      |                                        |                                                                                                                  |
|                                             |                                      |                                        | _                                                                                                                |
| -TIME 48,00 MINUTES "                       | NUMBER OF ITERATIONS# 7              | •                                      | a part to service and an                                                     |
|                                             |                                      |                                        |                                                                                                                  |

Y ) - 20770 - 687 11- 62296 - 6871016 113,07681 - 27115 - 52641

| x ( 7) =               | .08785<br>.17508 |          | 7) =<br>8) = | .26341<br>.52490       | RM(16)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .01¤48            | si);<br>ra                            | ×Y±<br>Y1= | _94996<br>          |          |            | · - ··································  |
|------------------------|------------------|----------|--------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------|------------|---------------------|----------|------------|-----------------------------------------|
| X( 9)=                 | 0.00000          |          | 9)=          | 0.00000                | PM(18)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.37955           |                                       | ) Y =      | 00004               | _        |            |                                         |
| HINT =                 | 201.815          | H0U10=   | 346          | .916 HLOSS             | = 43.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HRXNS=            | 85,233                                | 40 M       | DT= -2.458          | MDHDT=   | -10.499    |                                         |
|                        |                  | - •      |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                       |            |                     |          |            | · · · -                                 |
|                        |                  |          | -            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                       |            |                     |          |            |                                         |
| -TIME= - 5             | SS. NO WIND      | TES      | ·            | - NUMBER (             | DF ITEPATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ONS= 7            | •-                                    |            |                     | · ·      |            |                                         |
|                        |                  |          |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                       |            |                     |          |            |                                         |
| ×(1)=                  | .21107           |          | 1)=          | .63747                 | PM(10)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112.72363         | Y(1                                   |            | .54715              |          |            |                                         |
| x( 2)=                 | .01825           |          | 2)=          | .05512                 | PM(11) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ··· 3.02023       | · Y(2                                 |            | .15883<br>          |          |            |                                         |
| x (3) =                | .35441           |          | 3)=          | 1.07041                | $RM(12) = RM(1^2) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .16238<br>.60909  | Y (3                                  |            | .27105<br>.01051    |          |            |                                         |
| ×(4)=<br>X(⊃)=         | 0.00000          |          | 4)=<br>5)=   | .01029                 | RM(14)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .46101            | Y ( 4<br>Y ( 5                        |            | •01535              |          |            |                                         |
| Y(-5) =                | .14528           |          | 6) =         | .44179                 | PM(15)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .39048            | VPAT                                  |            | .02821              |          |            |                                         |
| x(7) =                 | .08721           |          | 7)=          | .26341                 | RM(16)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .01977            | SUM                                   |            | 99996               |          |            |                                         |
|                        | 17937            |          | 8)=          | .54174                 | RM(17)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .01514            |                                       | (1=        | 00043               |          |            |                                         |
| x( 9)=                 | 0.0000           |          | 9)=          | 0.00000                | RM(18) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.49166           |                                       | )Y=        | 00004               |          |            |                                         |
| HIMT =                 | 291.812          | , HOUTO= |              | .636 HL055             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 80,602                                |            | DT= -2.404          | MOHOT=   | -9.629     |                                         |
|                        |                  |          | 2.0          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • • • • •         | •                                     |            |                     | -        | , <u> </u> |                                         |
|                        |                  |          |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                       |            |                     |          |            |                                         |
|                        |                  |          |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | -                                     |            |                     |          |            |                                         |
| TT*F=``5               | 6.00 MT-NU       | TFS      |              | NUMBER (               | OF ITERATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ON5= 7            |                                       |            |                     |          |            |                                         |
|                        | 23/04            |          | 11-          | .65098                 | DM(10)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112.39481         | Y(]                                   | 3 -        | •55771              |          |            |                                         |
| X(1)=<br>X(2)=         | .21406<br>.01721 |          | 1)=<br>2)=   | •05233                 | RM(11) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.04117           |                                       |            | .14793              |          |            |                                         |
| x(3) =                 | .35536           |          | 3)=          | 1.08070                | RM(12)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16555             | Y (3                                  |            | .27197              |          |            |                                         |
| X(-3) = X(-4) =        | 0.00000          |          | 4) =         | 0.00000                | RM(12)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .67201            | Y ( 4                                 |            | .01039              |          |            |                                         |
|                        | .00336           |          | +/-<br>5)=   | .01022                 | RM(14) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .47442            | Y (5                                  |            | .01205              |          |            |                                         |
| X( £)=                 | 14003            |          | 6) =         | 42585                  | PM(15) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .42137            | VPAT                                  |            | .02853              |          |            |                                         |
| x(7)=                  | 08661            |          | 7) =         | .26341                 | PM(16) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .02105            | SUM                                   | 4Y =       | .99995              |          |            |                                         |
| ×( +)=                 | 18339            |          | 8)=          | .55768                 | PM(17)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .01653            | DY                                    | (]=        | 00044               |          | -          |                                         |
| X ( ∿) =               | 0.00000          | RM (     | 9)=          | 0.0000                 | $R^{\mu}(18) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.50511           | D                                     | )Y=        | 00005               |          |            |                                         |
| HINT =                 | 201.812          | HOUTO=   | 354          | ,204 HL055:            | = 25,189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H2XV5=            | 76.331                                | ואניא      | 0T= -2.390          | MOHOT=   | -8.859     |                                         |
|                        |                  | •        |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                       |            |                     |          |            |                                         |
|                        |                  | ·        |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                       |            |                     |          |            |                                         |
| TIVE= '6               | 0,00 MINU        | TES      |              | NUMBED (               | OF ITERATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ONS= 7            |                                       |            |                     |          |            | · · · · · · · · · · · · · · · · · · ·   |
| (1), <b>–</b> (        |                  | 4 5 et   |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                       |            |                     |          |            |                                         |
| ×(1)=                  | .21678           | RM (     | 1)=          | •66355                 | PM(10) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.08992         | Y(1                                   | ) =        | .56723              |          |            |                                         |
| ×(-?)≓                 |                  |          | 2)=          | .04977                 | RM(11)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,06090           | . Y (S                                | ?) =       | .13813              |          | • • •      |                                         |
| x(3)=                  | 35628            | PM (     | 3)=          | 1.09055                | PM(12)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .16205            | Y(3                                   | ;)=        | ,27254              | ·        |            |                                         |
| X(4)=                  | 0,0000           | RM (     | 4)=          | 0.00000                | PM(13) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .736/9            | Y ( 4                                 |            | +01015              |          |            |                                         |
| ×( 5)=                 | .00330           |          | 5)=          | .01009                 | $P^{M}(14) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ····· ··· ··· ··· ··· ··· ··· ··· ··· |            | .01179              |          |            |                                         |
| X( 6)=                 | .13419           |          | 6)=          | •41075                 | RM(15) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .45259            | VQAT                                  |            | .02454              |          |            |                                         |
| ×(7)=                  | 08606            |          | 7)=          | .26341                 | PM(16) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .02231            | C11.7                                 |            | .94995              |          |            | · ··· ································  |
| ×( b)=                 |                  | H - (    | 8)=          | .57279                 | RM(17) = 0M(18) = 0 | 1 71044           |                                       | ']=<br>)v- |                     |          |            |                                         |
|                        |                  |          |              | 0.00000<br>.596 HLOSS: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.71044<br>HPYNS= |                                       |            | 00005<br>DT= -2.401 | монот=   | -8,160     |                                         |
| ·                      | r41+*1C          | -        | 351          | • Jan 1022             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 1 - 1 3 7 3                           |            |                     | 59431A F | -0.100     |                                         |
|                        |                  |          |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                       |            |                     |          |            |                                         |
|                        |                  |          | •            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                       |            |                     |          |            | hu_                                     |
| TTIVE= 6               | 4. nn MINH       | TFS      |              | NUMPER (               | DF ITERATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ONS= 7            |                                       |            |                     |          |            | \$************************************* |
|                        |                  |          |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                       |            |                     |          |            | <u>.</u>                                |
|                        | ,21427           | P.M. (   | 1)=          | • 67525                | PM(10)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111,40446         | Y (1                                  | ) =        | .57593              |          |            |                                         |
| ×(1)=                  |                  |          |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                       |            |                     |          |            |                                         |
| x(1)=<br>x(2)=<br>(3)= |                  | 1 1:5    |              | .04741<br>1.09996      | FM(11)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.07940<br>.16188 | Y (2<br>Y (3                          |            | •12930<br>•27:37    |          |            |                                         |

| A ( - 7) -                             | יייירי <b>ט</b> ∙יי      | ~~~~ (   | 71-          | Ve00000               | -\011MH                                                                                                         | 1+00010           | 01                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . <b>.</b> |                    |                                                                                                                 |
|----------------------------------------|--------------------------|----------|--------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|-----------------------------------------------------------------------------------------------------------------|
| HINI =                                 | 501.615                  | HOUTO=   | 360          | 1.794 HLOS            | S= 9.718                                                                                                        | H 7 X N S =       | 68,760              | -10MDT= -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.426 40   | HDT=               | -7.515                                                                                                          |
| ·                                      |                          |          | •            | •                     |                                                                                                                 |                   | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        |                          |          |              |                       |                                                                                                                 |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        |                          |          |              |                       |                                                                                                                 |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| TIVE=6                                 | 8.00 MIND                | TEST     |              | NIMBER                | OF ITERATI                                                                                                      | ONS= 7            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        | 22155                    |          | • • -        |                       | <b>D1 1 1 1 1</b>                                                                                               |                   |                     | <b>5n</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>F</b> 0 | •                  |                                                                                                                 |
| × (1)=                                 | .22155                   |          | 1)=          | .68614                |                                                                                                                 | 111.53998         | Y(1):               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        | •                        | -        | 2)=          |                       |                                                                                                                 | 3,09701           | Y(2):               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| X ( 3) =                               | .35808                   |          | 3)=          | 1.10898               | = (S1) MA                                                                                                       | .16170<br>.87140  | Y(3):               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                    |                                                                                                                 |
| X ( 4) =<br>T ( 5) =                   | 0,0000                   |          | 4}=<br>51=   | 0.00000               | PM(13)=<br>PM(14)=                                                                                              |                   | ۲(4):<br>۲(5): ۲(۲) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -                  |                                                                                                                 |
|                                        |                          | (        | 5)=          | .0,0972<br>.38277     |                                                                                                                 |                   | VRATE               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| メ( 6)=<br>メ( 7)=                       | •12 C 3 3 3<br>•0 A 50 5 |          | 6) =<br>7) = | •26341                | ₽₩(15)≓<br>₽₩(16)=                                                                                              | •51655<br>•02480  | SUMY:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        |                          | RM(      |              |                       | PM(17)=                                                                                                         |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    | a a c c c c c c c c c c c c c c c c c c                                                                         |
|                                        | 0.00000                  |          |              | 0.00000               | RM(18)=                                                                                                         | 1,95279           | DY                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        | 201.812                  | -        | -            | 3.795 HLOS            |                                                                                                                 |                   |                     | -0000<br>-0MDT= -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | H0T=               |                                                                                                                 |
|                                        |                          |          | 5.05         |                       |                                                                                                                 |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        |                          |          |              |                       |                                                                                                                 |                   |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                    |                                                                                                                 |
|                                        |                          |          |              |                       |                                                                                                                 |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| -TIVE=7                                | 2.00 MTNU                | TES      | · -          | - NUMBER              | OF ITERATI                                                                                                      | ONS= 7            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | •                  |                                                                                                                 |
|                                        |                          |          |              |                       |                                                                                                                 |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          |                    |                                                                                                                 |
| X(1)=                                  | .22363                   | RM (     | 1)=          | .69627                | $R^{M}(10) =$                                                                                                   | 111.29407         | Y(1)                | ± .590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62         |                    |                                                                                                                 |
|                                        | •                        |          |              |                       |                                                                                                                 |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| X(3)=                                  | 35295                    | •        |              | 1.11761               | PM(12)=                                                                                                         | .16152            | Y(3):               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| X ( 4) =                               | 0.00000                  | PM (     | 4)=          | 0.0000                | PM(13) =                                                                                                        | .94099            | Y(4):               | = .009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59         |                    |                                                                                                                 |
| x ( -5) = -                            | .00305                   | ···· RM( | 5)=          | .00449                | PM(14)=                                                                                                         |                   | Y(5):               | 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57         | • .                | print a dage der transstanden der Berlinde stellenden verbenden der bereiten verberen der streite an der debetr |
| X( 6)=                                 | .11877                   | 5 M G    | 6)=          | .36979                | RM(15)=                                                                                                         | .54905            | VPATE               | = .029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55         |                    |                                                                                                                 |
| ×(7)=                                  | .08460                   | R∾ (     | 7)=          | .26341                | PM(16)=                                                                                                         | .02603            | SUMY                | = ,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95         |                    |                                                                                                                 |
| X (- ~) =-                             | 19712-                   | PM (     | 8)=          | 61374                 | ····· PM(17)=                                                                                                   | .02189-           | DYl:                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43         |                    |                                                                                                                 |
| X ( 4) =                               | 0.00000                  | PM (     | 9)=          | 0.00000               | PH(18)=                                                                                                         | 2.07088           | DY                  | =000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | С <b>5</b> |                    |                                                                                                                 |
| HINT =                                 | 561.615                  | HOUTO=   | 36.6         | 601 HLOS              | 5= -3.638                                                                                                       | HRXNS=            | 65.299              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.490 00   | HDT≃               | -5.361                                                                                                          |
|                                        |                          |          |              |                       |                                                                                                                 |                   |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | -                  |                                                                                                                 |
|                                        |                          |          |              |                       |                                                                                                                 |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        | 6 . n n                  | *EC.     |              | ALL MARKED            | 05.7750177                                                                                                      | 000- 7            |                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                    |                                                                                                                 |
| -TIVF=7                                | C#00. MIN0               | 1-2      |              | NIMPER                | OF ITERATI                                                                                                      | UNN               |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | -                  |                                                                                                                 |
|                                        | 3955 °                   |          |              | 70E70                 | DH (10)                                                                                                         | 111 04530         | ·                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0        |                    |                                                                                                                 |
| X ( 1) =                               | .22553                   |          | 1)=          | .70570                |                                                                                                                 | 111.06538         | Y(1):               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    | · · · · · · · · · · · · · · · · · · ·                                                                           |
| -                                      | • · ·                    |          | •            | -                     |                                                                                                                 |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| X(3)=                                  | .35981                   | -        |              | 1.12588               | RM(12) =                                                                                                        | .16133            | Y(3)=               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| X(4) =                                 | 00000.0<br>- 20500,      | -        | 4) =<br>5) - |                       | RM(13) =                                                                                                        | 1.01196<br>55218- | Y(4):               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| X( 5)=<br>X( 5)=                       | .11422                   | ) M.Q    |              | .35742                | PM(15)=                                                                                                         | •5×190            | VDATE:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| ×(7)=                                  |                          | -        | 6)=<br>7)-   | .26341                | PM(15) = PM(16) =                                                                                               | •37190<br>•3725   | STIMA:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| ······································ | 08418<br>20009           | PM(      | 7)=<br>8)-   | .62612                |                                                                                                                 | .02317            |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |                    |                                                                                                                 |
| _                                      | 00000                    |          |              | 0.00000               | RM(17)=-                                                                                                        | 2.18995           | DY:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        | 201.815                  |          |              | 0.00000<br>1.218 HLOS |                                                                                                                 |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 4DT=               | ~5.84B                                                                                                          |
|                                        | ·····                    |          |              | ·•••••                |                                                                                                                 | * C, V' A F I I   | J * 9 ** 2 . 3 *    | ·()·()·()·()··························                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ر ۱۹ دعد ۱ | - · · <b>·</b> · - |                                                                                                                 |
|                                        |                          | , .      |              | •                     |                                                                                                                 |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        |                          |          |              |                       |                                                                                                                 |                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| -TIM5=8                                | 0                        | TES      |              | NIMAFO                | OF ITERATI                                                                                                      | 0NS= - 7          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        |                          |          |              |                       | the second se | .,                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| X(1)=                                  | . 22727                  | DM /     | 1)=          | 71449                 | BM/101-                                                                                                         | 110.65259         | Y(1)=               | .602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H('        |                    | . ``                                                                                                            |
| X (- 2) = -                            |                          | •        | 2)=          | .03961                |                                                                                                                 | - 3.14382 ·       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| ×(3)=                                  | .36045                   |          |              | 1.13380               | RM(12) =                                                                                                        | .15113            | Y(3)=               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        | 0,0000                   |          | 4)=          |                       | PM(12)=                                                                                                         | 1.08450           | Y(4):               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        | •                        |          | 5)=          | .00897                |                                                                                                                 | 56474             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
| (X + A) =                              | 10443                    |          | 6)=          | .34561                | RM(15)=                                                                                                         | .61509            | YOATE -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                                                                                                 |
|                                        | • • • •                  |          |              |                       | Res (13) =                                                                                                      | 0.00 x            | 99411               | e de la companya de l |            |                    |                                                                                                                 |
|                                        |                          | ••••     |              |                       |                                                                                                                 |                   | 111 C               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          |                    |                                                                                                                 |

| TTIVE= 84.00 MINUTES                  | · NUMBER C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F ITERATIONS= 7                                        |               | . <u>.</u>                                                                                                                                                                                                                         |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X(1)= .22846 R                        | M(1)= .72268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RM(10) = 110:65445 Y(1) = .60808                       |               |                                                                                                                                                                                                                                    |
| -                                     | M( 2)= .03799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $R^{M}(11) = 3.15771$ $Y(2) = .09615$                  |               |                                                                                                                                                                                                                                    |
|                                       | M(3) = 1.14141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RM(12) = ,15093 Y(3) = .27659                          |               |                                                                                                                                                                                                                                    |
|                                       | M(4) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PM(13) = 1.15763 $Y(4) = .00914$                       |               |                                                                                                                                                                                                                                    |
|                                       | M( 5)= .00869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PM(14) =                                               |               |                                                                                                                                                                                                                                    |
| •                                     | M( 6)= .33432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM(15)= .64858 VPATE= .03031                           |               | ,                                                                                                                                                                                                                                  |
| • • •                                 | M( 7)= .26341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM(16)= 02965 SHMY= 09996                              |               |                                                                                                                                                                                                                                    |
| _                                     | M(B) = -64921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM(17) = .02564 DY1 =00043                             |               | -                                                                                                                                                                                                                                  |
|                                       | M(9) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PM(1H) = 2.43077 DY =00004                             |               |                                                                                                                                                                                                                                    |
| •••••                                 | 0= 373.918 HL055=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | MOHDT= -4.936 |                                                                                                                                                                                                                                    |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |               | ···· · · · · · · · · · · · · · · · · ·                                                                                                                                                                                             |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |               |                                                                                                                                                                                                                                    |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |               |                                                                                                                                                                                                                                    |
| TIME= 88.00 MINUTES .                 | NUMBER O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F ITERATIONS= 7                                        |               |                                                                                                                                                                                                                                    |
| X(1)= .23032 R                        | M(1) = .73031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM(10) = 110.46981 $Y(1) = .61289$                     |               |                                                                                                                                                                                                                                    |
|                                       | M(2)= .03548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RM(11)= 3.17084 Y(2)= .09117                           |               |                                                                                                                                                                                                                                    |
| -                                     | M(3) = 1.14870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PM(12) = .16073 Y(3) = .27731                          |               |                                                                                                                                                                                                                                    |
|                                       | M(4) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RM(13) = 1.23215 $Y(4) = .00901$                       |               |                                                                                                                                                                                                                                    |
| •                                     | M(5) = 0.0841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $P^{(14)} = 52812^{-1} + (4)^{-1} + (4)^{-1} + 0.0957$ |               |                                                                                                                                                                                                                                    |
|                                       | M(-6) = -32352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PM(15) = .68237 VPATE = .03050                         |               |                                                                                                                                                                                                                                    |
| · · · · · · · · · · · · · · · · · · · | M(7) = -26341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM(16)= .03083 SHMY= .99945                            |               |                                                                                                                                                                                                                                    |
|                                       | M(8) = .66001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM(17)= .02583 . DY1=00043                             |               | usan usan                                                                                                                                                                                                                          |
|                                       | M(9) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RM(18) = 2.55240 $DY =00004$                           |               |                                                                                                                                                                                                                                    |
| •                                     | 0= 376.019 HLOSS=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | MOHDT= -4.532 |                                                                                                                                                                                                                                    |
|                                       | 2= 010+017 11E033#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | 2000 - 740JUC | n and along of samples and samples and samples and a survey of a same                                                                                                                                                              |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |               |                                                                                                                                                                                                                                    |
| TIVE=92.00 MINUTES                    | NIMEFO O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F ITERATIONS= 7                                        |               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                              |
| 11 C= 15 100 - 10015 2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |               |                                                                                                                                                                                                                                    |
| X(1)= .23166 R                        | M(1)= .73744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RM(10) = 110.29756 $Y(1) = .61730$                     |               |                                                                                                                                                                                                                                    |
|                                       | M(2)= .03507 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PM(11) = "3.18327" Y(2) = .03660                       | •             |                                                                                                                                                                                                                                    |
|                                       | M(3) = 1.15571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RM(12)= .16052 Y(3)= .27792                            |               |                                                                                                                                                                                                                                    |
|                                       | M(4) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RM(13) = 1.30769 Y(4) = .00889                         |               |                                                                                                                                                                                                                                    |
|                                       | M(5) = .00811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PM(14)'= '                                             |               |                                                                                                                                                                                                                                    |
|                                       | M(6) = .31317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PM(15)= .71645 VEATE= .03058                           |               |                                                                                                                                                                                                                                    |
|                                       | M(7) = .26341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PM(16)= .03201 SUMY= .49996                            |               |                                                                                                                                                                                                                                    |
|                                       | M( B) =67036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PH(17) = 02798 DY1= 00043                              |               |                                                                                                                                                                                                                                    |
|                                       | 4(9) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $R^{(18)} = 2.67477$ DY=00003                          |               |                                                                                                                                                                                                                                    |
|                                       | 0= 377.968 HLOSS=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | MDHDT= -4.161 |                                                                                                                                                                                                                                    |
|                                       | a a construction de la construct |                                                        |               |                                                                                                                                                                                                                                    |
| · · ·                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |               |                                                                                                                                                                                                                                    |
| TIVE= 96.00 MINUTES                   | NUMPER O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F ITERATIONS= 7                                        | • • •         |                                                                                                                                                                                                                                    |
|                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |               |                                                                                                                                                                                                                                    |
|                                       | M(1)= .74410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RM(10) = 110.13569 $Y(1) = .62134$                     |               |                                                                                                                                                                                                                                    |
|                                       | M(2)≓ .03375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RM(11) = 3.19505 $Y(2) = .08239$                       |               | anna an an an an an ann an Anna an Anna<br>Anna an Anna an |
| X(3)= ,36383 ₽                        | v( 3)= 1.14244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PM(12) = .15031 Y(3) = .27353                          |               |                                                                                                                                                                                                                                    |
| X( 4) = 0,00000 R                     | 4(4)= 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM(13)= 1,38+17 Y(4)= .00478                           |               |                                                                                                                                                                                                                                    |
| TY(5)= .00245 P                       | M( 5)= .00782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PM(14) = .60943 Y(5) = .00892                          |               |                                                                                                                                                                                                                                    |
|                                       | M( 6) = .30325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RM(15)= .75079 V0475= .03085                           |               | <u>Ur</u>                                                                                                                                                                                                                          |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |               | 0                                                                                                                                                                                                                                  |
| く(7)= _0R244 P                        | 4(7)= .26341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PM(16)= .03318 SHMY= .09996                            |               | -                                                                                                                                                                                                                                  |
| -                                     | H( 7) = .26341<br>M( 8) = .65028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | -             |                                                                                                                                                                                                                                    |
| ×(-3)≖ -21292 P                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | -             |                                                                                                                                                                                                                                    |

.

10 - 10 CACYCHAMINEC DERIMIC CACYG MUC

. .

,12105

. . . .

> ( '+)=

. . .

.23100

RM( R)=

----- 0 6.000h

.32144

PM(16)=

中行(17)=

-344 / 1 · · · · ·

.00659

,09217

20011

S114Y=

0Y1#

° 6030H

DV- - 00002

| •                                      |                                         |          |            |                         |                                                      |                  |                |                  |         |          |       |                                        |
|----------------------------------------|-----------------------------------------|----------|------------|-------------------------|------------------------------------------------------|------------------|----------------|------------------|---------|----------|-------|----------------------------------------|
| INITIAL C                              | CONDITIONS                              | BASED O  | N AD.      | JUSTED TIM              | Æ                                                    |                  |                |                  |         |          |       |                                        |
| ······································ |                                         |          | <br>• .    | 22540                   | ~                                                    |                  | · · · · · ·    | -                |         | -        |       | ······································ |
| ×(1)=                                  | .12405                                  |          | 1)=        | .31540                  |                                                      | 118.85000        | Y(1)=          | .14382           |         |          |       |                                        |
| =(?)X                                  | .04745                                  |          | 2)=        | .11048                  | RM(11) =<br>PM(12) =-                                | 2.54249          | = (2) Y        | •58870           |         |          |       |                                        |
| ×( 3)=                                 |                                         |          | 3)=        | · "R5860                |                                                      |                  |                | .24719           |         |          |       |                                        |
| X ( 4) =<br>X ( 5) ≃                   | 0,00000                                 |          | 4)=<br>5)= | 0.00000<br>.00393       | PM(13)=<br>PM(14)=                                   | .04300<br>.10165 | Y(4)=<br>Y(5)= | .01935<br>.00094 |         |          |       |                                        |
| X( +)=                                 |                                         |          | 6)=        | .80702                  |                                                      |                  | - VRATE=       | .01624           |         |          |       |                                        |
| ×( 7)=                                 | .09086                                  | -        | 7)=        | .23100                  | PM(16) =                                             | .00258           | SUMY=          | 1.00000          |         |          |       |                                        |
| X(P)=                                  | 08498                                   |          | 8)=        | .21606                  | RM(17) =                                             | 0.00000          | DY1=           | 0.00000          |         |          |       |                                        |
|                                        | - 0.00000                               |          | •          | 0.00000                 | PM(18)=-                                             |                  |                | 0.00000          |         |          |       |                                        |
|                                        | • • • • •                               |          |            | :                       |                                                      |                  | 0,1-           | •••••••          |         |          |       |                                        |
| TIVF=                                  | 4.00 MINUT                              | ES       | •          |                         | SER OF ITERATI                                       | 0NS= 5           |                |                  |         |          |       | ·····                                  |
|                                        |                                         |          | _          |                         | •                                                    |                  |                | _                |         |          |       |                                        |
|                                        | -                                       | -        |            | -                       | RM(10)=-                                             |                  | Y(1)=          | .24374           |         |          |       |                                        |
| =(?)×                                  | :04611                                  | •        | 2)=        | •11975                  | $P^{M}(11) =$                                        | 2,59720          | Y(2)=          | .49005           |         |          |       |                                        |
| X(3)=                                  | .33845                                  |          | 3)=        | .87903                  | RM(12) =                                             | .16485           | Y(3)=          | .23951           |         |          |       |                                        |
|                                        | - 0.00000                               |          |            | 0.0000                  |                                                      |                  | Y(4)=          | .01625           |         |          |       |                                        |
| X ( ~)=                                | .00214<br>.20734 -                      |          | 5)=        | •00555                  | RM(14)=                                              | .12508           | Y(5) =         | .01040           |         |          |       |                                        |
| X ( +)=                                |                                         |          | 6)=<br>7∖- | - 77225                 | PM(15) =                                             | .06980<br>       | VRATE=         | ,01958<br>,99995 |         | -        |       |                                        |
| - ×( ィ)=-<br>×( ド)=                    | 08894<br>.09659                         |          | 7)=<br>8)= | .25082                  | $= - \cdot PM(16) = - RM(17) = - RM(17) = RM(17) = $ | .00044           | ()Y]=          | .00660           |         |          |       |                                        |
|                                        | • • • • • • • • • • • • • • • • • • • • |          |            | 0.00000                 | RM(18)=                                              | .25405           | DY=            | 00005            |         |          |       |                                        |
|                                        | - 247.222                               | •        |            |                         | .055= 221.510                                        |                  |                | MDT= -20.164     | MDHDT=  | -24.809  |       |                                        |
|                                        | 8 <b></b>                               | 1100105  |            | •000 NC                 |                                                      | 1                |                | avi- Forior      |         | -2.4.004 |       |                                        |
|                                        |                                         |          |            |                         |                                                      |                  |                |                  |         |          |       |                                        |
| TIVE=                                  | 8.00 MINUT                              | FC       |            | NUMP                    | SEP OF ITERATI                                       | 0NS= 6           |                |                  |         | -        |       |                                        |
|                                        |                                         |          |            |                         |                                                      |                  |                |                  |         |          |       |                                        |
| - · x (··])=                           | 13435 -                                 | - PM(    | 1)=        | · • 35288               | RM(10)=                                              | -119.63731 -     | ···· Y(1)=     | •25882<br>•      |         | •        |       |                                        |
| X( Ż)=                                 | <u></u> 04532                           | RM (     | 5)=        | .11903                  | RM(]])=                                              | 2.62548          | Y(2)=          | .47069           |         |          |       |                                        |
| X(3)=                                  | .3401A                                  | ₽M (     | 3)=        | <b>.</b> 89347          | RM(12) =                                             | .16417           | Y(3)=          | .24127           |         |          |       |                                        |
| x ( ·4) =                              | n,nnnnn -                               | RM(      | 4)=        | 0.00000                 | PM(13)=                                              | .07236           | Y(4)=          | .01724           |         |          |       | unnun aus sum niculars au .            |
| X( 5)=                                 | .0026A                                  | , 5A(    | 5)=        | .00703                  | RM(14) =                                             | <u>,15987</u>    | Y (5) =        | .01190           |         |          |       |                                        |
| X{ 6)≓                                 | ·28018                                  |          | 6)=        | .73589                  | RM(15)=                                              | .08722           | VRATE=         | •01×43           |         |          |       |                                        |
|                                        | .08795                                  |          |            | .23100                  | PM(16)=-                                             |                  | SIIMY=         | •00005           |         | ••       |       |                                        |
| X( =)=                                 | .10934                                  | •        | 8)=        | .28719                  | PM(17)=                                              | .00126           | PY1=           | 00055            |         |          |       |                                        |
| ×( 4)=                                 | •                                       |          |            | 0.00000                 | RM(18)=                                              | .32650           | DY=            | 00005            |         |          |       |                                        |
| HINT =                                 | 241.222                                 | - HOUTO= | 236        | 619 HL                  | .055= 216.616                                        | - H5XN2=         | 173.056 HD     | MDT= -15.501     | NOHOT = | -17.455  |       |                                        |
|                                        |                                         |          | -          |                         |                                                      |                  |                |                  |         |          |       |                                        |
| TIME= 1                                | 5.00 MINUT                              | FS       |            | NUMF                    | FR OF ITERATI                                        | 0NS= 8           |                |                  |         |          |       |                                        |
|                                        | 13854                                   |          | 1)=        | .36791                  |                                                      | 119.14126 -      |                | .27513           |         |          | · · · |                                        |
| X(2)=                                  | .04427                                  |          | 5)=        | <ul><li>11757</li></ul> | RM(]])=                                              | 2.(5557          | = (S) Y        | .45093           |         | •        |       | 5 P                                    |
| x(3)=                                  | .34181                                  | ) MQ     | 3)=        | .90770                  | PM(12)=                                              | .16355           | Y(3)=          | .24343           |         |          |       | •                                      |
| - X(4)=                                | 0,00000                                 | ₽М(      | 4)=        | 0.0000                  | PM(13)=                                              | .09184           | Y (4) =        | .01751           |         |          |       |                                        |
| x( _)=                                 | .00313                                  |          | 5)=        | .00431                  | PM(14)=                                              | .19339           | Y (b) =        | .01247           |         |          |       |                                        |
|                                        | 26/21                                   | D.4 /    | 6)=        | .70164                  | ₽M(15)=                                              | ▶]048P           | V=ATE=         | .01936           |         |          |       |                                        |
| X( +) =                                | .26421                                  |          |            | • 1010 <del>4</del>     | PH(1)+                                               | 00450            | V=412.4        | 00000H           |         |          |       | •                                      |

| TIME= 16.00 MINUTES                      | NUMRER OF TIFAVITONS# R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(1)=                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(2) = .04300 PM(2)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(3)= .34337 PM(3)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(5)= .00351 R4(5)<br>X(5)= .24936 R4(6) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(h) =, 24936 RM(6)<br>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(H) = -13143 RM(R)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(9)= 0.00000 PM(9)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                              |
|                                          | 36,324 HLOSS= 190,549 HPXNS= 154,383 HPMDT= -12.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MDHDT= -13.184                                                                                                 |
| -1-1 +41.020 - 0010- C                   | 202014 UE0324 1-0204 148/424 1040000 UE-0159004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| <u> </u>                                 | en an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |
| TIME= 20.00 MINUTES                      | NUMBER OF ITERATIONS= 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(1)= .14720 PM(1)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(2)= .04152 PM(2)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X ( 3) = .344AA RM( 3)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .,                                                                                                             |
| x(4) = 0.00000 PM(4)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| x(5)= .00384 RM(5)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| $X(6) = .23^{-55}$ RM(6)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , a construction and and a second |
| X(7) = .08520 PM(7)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(P) = -, 14181 PM(R)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
|                                          | = 0.00000 PM(18)= .54749 DY=00009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND407- 12 343                                                                                                  |
| HINT = 247.222 HOUTO= 2                  | +2.596 HLOSS= 176.111 THRXNS= 146.433 HDMDT= ~12.668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MDHDT= -12.383                                                                                                 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| manana an a sama " a sama" s             | a a a magnitude of a constraint of a second s |                                                                                                                |
| TIME= 24,00 MINUTES                      | NUMBER OF ITERATIONS= 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · ·                                                                                                            |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(1)= ,15145 RM(1)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(2)= .03988 RM(2)                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |
| x(3)= .34634 RM(3)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| x(4) = 0.00000 PM(4)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(5) = .00412 RM(5)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(6) = .22230 RM(6)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| x(7) = .08440 PM(7)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(8) = .15111 RM(8)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| $y(9) = 0.00000 \Rightarrow M(9)$        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
|                                          | +4.160 HLOSS= 165.284 <sup></sup> HRXNS= 139.158 HDMDT= -11.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MDHDT= -11.361                                                                                                 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
|                                          | , <b></b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |
| TIME= 28,00 MINUTES                      | NUMBER OF ITERATIONS= 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
|                                          | = .42981 *** PM(10) = 117.44398 *** Y(1) = .34329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |
| X(2)= .03821 RM(2)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>F</b> <sub>2</sub>                                                                                          |
| x(3)= .34773 RM(3)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| ×(-4) = 0,00000 · ₽₩( 4)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5)<br>()                                                                                                       |
| X ( ゔ) = _000435                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| X(6) = .21067 RM(6)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| $ \times (7) = .04364 - 94(7)$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                          |
| X(H)= .15977 PM(B)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
|                                          | = 0.00000 PM(18)= ,70037 DY= -,00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
| HINT = 247.222 HOUTO= 2                  | 6.195 FL055= 154.942 F HRYNEF 132.282 HOMDIE -10.935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOHDT= -10.696                                                                                                 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |

| ~ ~ ~ ~ ~ ~ ~         | \$J4-117   | * * (  | 51-  | <b>▲ 7 / C 4 /</b> | rm(12)-       | #10V4D             | * \ \$1                               | ب تۍ ټې د ع€ تې          |         |         |                                        |
|-----------------------|------------|--------|------|--------------------|---------------|--------------------|---------------------------------------|--------------------------|---------|---------|----------------------------------------|
| X ( 4) =              | e.00000    | PM (   | 4)=  | 0.00000            | R∀(13)=       | .21316             | Y(4)                                  | = .01753                 |         |         |                                        |
| *( 5)=-               | .00454     | RM(    | 5)=  | .01266             | · PM(14)=     | 34542              | Y(5)                                  | = .01530                 |         |         | ··· · ································ |
| ¥( 6)=                | .19940     | RM (   | 6)=  | .55552             | RM(15)=       | 19978              | VRATE                                 | = .01951                 |         |         |                                        |
| X(7)=                 | .08292     | PM (   | 7)=  | .23100             | RM(16) =      | .01370             | SUMY                                  | 99998                    |         |         |                                        |
| ×(·+)=                | 16793      |        | 8)=  | ,46756             | · RM(17)=     | " . C0758          | · DY1                                 | =00013                   | •       | -       |                                        |
| ×( 9)=                | 0.00000    | RM (   | 9)=  | 0.0000             | RM(18)=       | <b>,</b> 778HB     | DY                                    | =0000S                   |         |         |                                        |
| HINT =                | 247.222    | HOUTO= | 24   | 8.399 HLOSS:       | = 145.016     | HPXNS=             | 125.743                               | +7MDT= -10.264           | MDHDT=  | -10,185 |                                        |
|                       |            |        |      |                    | • ••          |                    |                                       |                          |         |         |                                        |
|                       |            |        |      |                    |               |                    |                                       |                          |         |         |                                        |
|                       |            |        |      |                    |               |                    |                                       |                          |         |         |                                        |
| TIME= - 3             | 36.00 MINI | JTES   |      | NUMPER (           | OF ITERATI    | 0N2= 8             | -                                     |                          |         | -       | ,                                      |
| X(1)=                 | ,16366     | PM (   | 1)=  | .45976             | RM(10)=       | 116.70797          | Y(1)                                  | <b>=</b> .37595          |         |         |                                        |
| x( 2)=-               | - 034HR    | PM (   | 2)=  | .09799             | $R^{M}(11) =$ | 2.80924            | - · · Y(2)                            |                          |         | -       | · · · · · · · · · · · · · · · · · · ·  |
| X(3)=                 | ,35034     | ` RM ( | 3)=  | .98420             | PM(12) =      | .15987             | Y(3)                                  |                          |         |         |                                        |
| X(4) =                | 0.0000     | RM (   | 4) = | 0.00000            | RM(13) = .    | 24228              | Y(4)                                  |                          |         |         |                                        |
| x ( 5) = ·            | -          | PM(    | 5)=  | .01322             | RM(14) =      |                    | Y(5)                                  |                          | •       | ł       |                                        |
| X ( f) =              | 19995      |        | 6) = | 53053              | PM(15) =      | .22005             | VPATE                                 |                          |         |         |                                        |
| x(7) =                | .04223     | -      | 7) = | .23100             | RM(16) =      | .01518             | SUMY                                  |                          |         |         |                                        |
| - x ( H) = -          | 17533      |        |      |                    |               |                    |                                       |                          |         |         |                                        |
|                       | r.00000    |        |      | 0.00000            | PM(18)=       | .85774             | DY                                    |                          |         |         |                                        |
|                       | 247.222    | HOUTO= |      |                    | 135.495       |                    |                                       | HOMDT= -9.632            | MOHDT=  | -9.729  |                                        |
|                       |            |        | •    |                    |               |                    |                                       |                          |         |         |                                        |
|                       |            |        |      |                    |               |                    |                                       |                          |         |         |                                        |
|                       |            |        |      |                    |               |                    |                                       |                          |         |         |                                        |
| TIVE= 4               | 0.00 MINL  | ITES   | • .• | NUMBER C           | F ITERATI     | 0NS= 8 -           |                                       |                          |         |         |                                        |
|                       |            |        |      |                    |               |                    |                                       |                          |         |         |                                        |
| X(1)=                 | .16749     | RM (   | 1)=  | .47430             | PM(10)=       | 116.36123          | Y(1)                                  | 39159                    |         |         |                                        |
| x t - ¿) = -          |            | 2M(    | 2)=  | 09416 ·            | RM(11)=-      |                    | · ·· ·· · · · · · · · · · · · · · · · | - 31557                  | · • · · |         |                                        |
| X ( 3) =              | .35156     | RM (   | 3)=  | .99555             | = (S1) MQ     | <b>.</b> 15932     | Y(3)                                  | - 25953                  |         |         |                                        |
| X(4)=                 | 0,0000     | RM (   | 4)=  | 0.0000             | PM(13) =      | .27299             | Y(4)                                  | <ul><li>•01755</li></ul> |         |         |                                        |
| ×( ∱)=                | .00443     | PM (   | 5)=  | •01369 ·           | ₽M(14)=       | 39832              | · · Y(5)                              | 01553                    |         |         |                                        |
| x( 6)=                | .17595     | RM (   | 6)=  | .50678             | RM(15)=       | ,24071             | VDATE                                 | e .02003                 |         |         |                                        |
| X(7)=                 | .08157     | PM (   | 7)=  | .23100             | PM(16)=       | .01669             | SUMA                                  | ≠ •0A036                 |         |         |                                        |
| ×(- ⊬) =              | 14232      | RM(    | 9)=  |                    | - PM(17) =    | • 01013·           | DY1                                   | =00013                   | • •     |         |                                        |
| X ( C) =              | 0.00000    | •      |      | 0.0000             | RM(18) =      | •93744             | DY                                    |                          |         |         |                                        |
| HI-11 =               | 242.255    | HOUTO= | 252  | 2.782 HLOSS=       | 126.366       | HRXNS=             | 113.597                               | +DMDT= +9.029            | MOHDT=  | -9.300  |                                        |
| - · -                 |            |        |      |                    | ····          |                    |                                       |                          |         |         |                                        |
|                       |            |        |      |                    |               |                    |                                       |                          |         |         |                                        |
|                       | 4 00 MTNH  | TEC    |      |                    | E TTEDATT     | ONS=- 8            |                                       |                          |         |         | · · · ·                                |
| 4 I * . * * · · · · · |            | 1113   |      |                    | a. TICARIT    | () ( <b>3</b> = () |                                       |                          |         |         |                                        |
| ×(1)=                 | .17119     | RMI    | 1)=  | .48951             | PM(10) =      | 115.02799          | Y(1)                                  | - 40679                  |         |         |                                        |
| -                     |            |        |      |                    |               | 2.85356            |                                       |                          |         |         |                                        |
| x(3)=                 | .35273     |        |      | 1.00654            | RM(12) =      | .15879             | Y(3)                                  |                          |         |         |                                        |
|                       | 0.00000    |        | •    | 0.00000            | PM(13) =      | .30525             | Y(4)                                  |                          |         |         |                                        |
| × ( 5)=               |            |        |      | .01408             |               |                    |                                       |                          |         |         | · · · · · · · · · · · · · · · · · · ·  |
| 7 ( 5) =              | 15969      |        | 6) = | 48422              | RM(15)=       | .26174             | VPATE                                 |                          |         |         |                                        |
| x(7)=                 | 04095      |        | 7) = | .23100             | $P^{M}(16) =$ | .01820             | SUMY                                  | •••••                    |         |         |                                        |
|                       | - 18884    | -      |      | .53386             | DH(17)=-      |                    | CY1                                   |                          |         |         |                                        |
| X( 9)=                | 0.00000    |        |      | 0.0000             | $R^{M}(18) =$ | 1.01797            | DY                                    |                          |         |         |                                        |
| HINT =                |            |        |      | .912 HLOSS=        |               |                    | 107,959                               |                          | MOHOT=  | -8.891  | 1-                                     |
| <b>-</b> .            |            |        |      |                    |               |                    |                                       |                          | ••••    | ••••    | 5.<br>                                 |
|                       | •          |        |      |                    |               |                    |                                       |                          |         |         |                                        |
|                       |            |        |      |                    |               |                    |                                       |                          |         |         |                                        |
| ▼14円= 4               | H. AA HINU | 185 -  |      | NUMBER O           | F ITERATIO    | JNS≈ B             |                                       |                          |         |         | an an an an an ann anns anns anns anns |
| -                     |            |        |      |                    |               |                    |                                       |                          |         |         |                                        |

| x(7)= .08036 RM(7)= .23100 RM(16)= .01473 SUMY= .99998                                           |           |                                                                                                                |
|--------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                  | ••        |                                                                                                                |
| X(9)= 0,00000 RM(9)= 0.00000 PM(18)= 1.09930 DY=000C2                                            |           |                                                                                                                |
| HINT = 247.222 HOUTO= 257.001 HLOSS= 109.228 HPXNS= 102.597 HOMDT= -7.91                         | 0 MDHDT=  | ~ 9 • 4 9 9                                                                                                    |
|                                                                                                  |           |                                                                                                                |
|                                                                                                  | •         |                                                                                                                |
| TTIME= 52.00 MINUTES NUMBER OF ITERATIONS= 8                                                     | -         |                                                                                                                |
|                                                                                                  |           |                                                                                                                |
| X( 1)= .17818 RM( 1)= .51581 RM(10)= 115.40029 Y(1)= .43516                                      |           |                                                                                                                |
|                                                                                                  |           | −a                                                                                                             |
| x(3) = .35493 $RM(3) = 1.02747$ $RM(12) = .15781$ $Y(3) = .26524$                                |           |                                                                                                                |
| x(4) = 0.00000 RM(4) = 0.00000 RM(13) = .37433 Y(4) = .01755                                     |           |                                                                                                                |
|                                                                                                  |           |                                                                                                                |
| X(6)= 15282 RM(6)= 44241 RM(15)= 30489 VRATE= 02053                                              |           |                                                                                                                |
| x(7)= .07980 RM(7)= .23100 RM(16)= .02128 SUMY= .999958                                          |           |                                                                                                                |
|                                                                                                  |           |                                                                                                                |
| X(-9) = 0,00000 RM(-9) = 0,00000 RM(18) = 1,18141 DY = -,00002                                   |           |                                                                                                                |
| HINT = 247.222 HOUTO= 259.051 HLOSS= 101.191 HRXNS= 97.500 HDMDT= -7.39                          | 8 MDHDT=  | -8.123                                                                                                         |
|                                                                                                  |           |                                                                                                                |
|                                                                                                  | ·         |                                                                                                                |
| TTIME= 56.00 MINUTES NUMBER OF ITERATIONS= 8                                                     |           |                                                                                                                |
| LINE DOPOD LINDLES NORDER OF TERMITONIE C                                                        |           |                                                                                                                |
| x(l)= .18146 PM(l)= .52886 PM(l0)= 115.10503 Y(l)= .44848                                        |           |                                                                                                                |
|                                                                                                  |           |                                                                                                                |
| x(3) = .35595 $RM(3) = 1.03742$ $RM(12) = .15736$ $Y(3) = .26690$                                |           |                                                                                                                |
| X(4) = 0.00000 RM(4) = 0.00000 PM(12) = .41108 Y(4) = .01749                                     |           |                                                                                                                |
| X(5)= .00508                                                                                     |           |                                                                                                                |
| X(6)= .14516 RM(6)= .42306 RM(15)= .32599 VRATE= .02082                                          |           |                                                                                                                |
| X(7)= .07926 RM(7)= .23100 RM(16)= .02283 SUMY= .99998                                           |           |                                                                                                                |
|                                                                                                  |           |                                                                                                                |
| X(9) = 0.00000 $RM(9) = 0.00000$ $RM(18) = 1.26431$ $DY =00020000$                               |           |                                                                                                                |
| HINT = 247.222 HOUTO = 261.067 HLOSS = 93.492 HRXNS = 92.658 HOMDT = -5.91                       | 8 MOHDT=  | -7.760                                                                                                         |
|                                                                                                  |           |                                                                                                                |
|                                                                                                  |           |                                                                                                                |
|                                                                                                  | ,         |                                                                                                                |
| TIME= 60,00 MINUTES NUMBER OF ITERATIONS= 8                                                      |           |                                                                                                                |
| X(1) = .18460 RM(1) = .54149 RM(10) = 114.82168 Y(1) = .46118                                    |           |                                                                                                                |
|                                                                                                  |           | · · · · · · · · · · · · · · · · · · ·                                                                          |
| X(-3) = .35694 RM(-3) = 1.04705 PM(12) = .15693 Y(-3) = .268+6                                   |           |                                                                                                                |
| X(4) = 0.00000 RM(4) = 0.00000 RM(13) = .44926 Y(4) = .01742                                     |           |                                                                                                                |
| $\frac{1}{1} \times (-5) =00509^{} = PM(-5) =01492^{} = PM(-14) =51115^{} \times (-5) =01533^{}$ |           | a survey of an and a state state states and a                                                                  |
| X(-5) = .13795 $PM(-6) = .40467$ $PM(15) = .34944$ $VPATE = .02101$                              |           |                                                                                                                |
| X(7) = .07875 RM(7) = .23100 RM(16) = .02439 SUMY = .399998                                      |           |                                                                                                                |
|                                                                                                  |           |                                                                                                                |
| X(4) = 0.00000 RM(9) = 0.00000 PM(18) = 1.34795 DY =00002                                        |           |                                                                                                                |
| , HINT = 247.222 HOUTO= 263.050 HLOSS= 26.120 HRXNS= 88.065 HOMOT= +5.47                         | 3 M0H07=  | -7.410                                                                                                         |
|                                                                                                  | 0 0001012 |                                                                                                                |
|                                                                                                  |           |                                                                                                                |
|                                                                                                  |           |                                                                                                                |
| "TIME= 64.00 MINUTES NUMBER OF ITERATIONS= 8                                                     |           |                                                                                                                |
|                                                                                                  |           | <b>+</b>                                                                                                       |
| X(1) = .18760 $RM(1) = .55370$ $RM(10) = .114.54992$ $Y(1) = .47325$                             |           |                                                                                                                |
| TY (121= T,02455 T, RM(2)= ,07246 RM(11)= 2,95356 Y (2)= ,22427                                  |           | ing a management to be a subscription and the part of the subscription of the subscription of the subscription |
| X 2*= 15749 RM(3)= 1.05634 RM(12)= 15652 Y(3)= 26497                                             |           |                                                                                                                |
| >> = + = > + + + + + + + + + + + + + +                                                           |           |                                                                                                                |

| HINT =            | 247.222          | HOUTO=           | 265       | .001 HLOSS=      | = 79.063           | 1 48X144=         | 83,769 40                             | 1907= -6.062               | MOHDT=  | -7.072   |                                         |
|-------------------|------------------|------------------|-----------|------------------|--------------------|-------------------|---------------------------------------|----------------------------|---------|----------|-----------------------------------------|
|                   |                  |                  |           |                  |                    |                   |                                       |                            |         |          | • • • • • • • • • • • • • • • • • • • • |
|                   |                  |                  |           |                  |                    |                   |                                       |                            |         |          |                                         |
|                   | 58.00 MTNU       | ITES             |           | · ULMAER (       | DE ITERATI         | DNS= - 8          | -                                     |                            |         |          |                                         |
| ×(1)=             | .19946           |                  | 1)=       | .56548           |                    | 114.28942         | Y(2)=                                 | .48470                     |         |          |                                         |
| ×(-2)=            |                  | R.4 (            |           |                  |                    | 2,95908-          |                                       | ,21168                     |         |          | · · · · · · · · · · · · · · · · · · ·   |
| X(3)=             | .35441           |                  |           | 1.06533          | P*(12)=            | .]5613            | Y(3)=                                 | .27137                     |         |          |                                         |
| X ( 4) =          | -                |                  | 4)=       | 0.0000           | RM(13)=            | .52974            | Y(4) =                                | .01723                     |         |          |                                         |
| ×(5)=             | -                | -                | 5)= -     |                  |                    |                   |                                       | .01500                     |         |          | · ···· · · · · · · · · · · · · · · · ·  |
| x (               | .12482<br>.07780 | РМ (<br>РМ (     | •         | .37059           | RM(15)⇒            | .39530            | VRATE =                               | •02137                     |         |          |                                         |
|                   |                  | ) אים<br>ייי פאו |           | .23100<br>.65249 | PM(16)=<br>PM(17)= | .02753<br>01908   | <u>DY</u> ]=                          | • 00011<br>• 00011         |         |          |                                         |
|                   |                  |                  |           | 0,00000          | PM(18)=            | 1.51747           | DY=                                   | 00011                      |         |          |                                         |
| •                 | 247.222          | HOUTO=           | •         |                  |                    |                   |                                       | MDT= -5.684                | MDHDT=  | -6.744   |                                         |
|                   |                  | · ~ ·            | 2.7.1     |                  |                    |                   | i i i i i i i i i i i i i i i i i i i |                            |         | ። ሆይ በጥጥ |                                         |
|                   |                  |                  |           | ×.               |                    |                   |                                       |                            |         |          |                                         |
| î I ~E =7         | 72.00-MINU       | TES              |           | NUMBER C         | F-TTERATI          | 0NS=- 8           |                                       |                            |         |          |                                         |
| X(1)=             | .19319           | RM (             | 1)=       | .57682           | RM(10) =           | 114,03989         | Y(1)=                                 | .49555                     |         |          |                                         |
|                   |                  |                  |           |                  |                    | 2.94593           |                                       | .19980                     |         |          |                                         |
| X(3)=             | 35969            | RMI              |           | 1.07400          | RV(12)=            | .15576            | Y(3)=                                 | .27270                     |         |          |                                         |
| X(4)=             | 0.00000          |                  |           | 6.0000           | RM(13) =           | ,57195            | Y(4) =                                | .01712                     |         |          |                                         |
|                   | •                | ·- P4(           | -         |                  | PM(14)=            | ,55538            | ···· Y(5)=                            | .01481                     |         |          | ··· · · · · · · · · · · · · · · · · ·   |
| X ( 5) =          | .11863           | PM4              | 6)=       | .35440           | PM(15) =           | .41970            | VPATE =                               | .02155                     |         | •        |                                         |
| X(7)=             | .07736           | ФМ (             | •         | .23100           | RM(16)=            | .02911            | SUMY=                                 | " 0 0 0 0 k                |         |          |                                         |
|                   |                  | PM (             |           | .66827           |                    |                   | -                                     | 00010                      | • • • • |          |                                         |
|                   | 0.0000           | -                |           | 0.00000          | PM(18)=            | 1.60331           | = ۲٦                                  | 00005                      |         |          |                                         |
| HINT =            | 247,222          | HOUTO=           | 268       | .804 HLOSS=      | 65 <b>.</b> 859    | 4RXN5=            | 75.677 HD                             | MDT= -5.338                | MOHDT=  | -6.426   |                                         |
|                   |                  |                  |           |                  |                    |                   |                                       | •                          |         |          |                                         |
|                   | 76.00-MINU       | TFS              | · - · • • | NUMBER 0         | FITERATI           | 0NS= 8            | ·····                                 |                            |         |          |                                         |
|                   |                  |                  |           | •                |                    |                   |                                       |                            |         |          |                                         |
| × (1) =           | .19577           | RM (             | ۰.        | .58773           |                    | 113.80104         | Y(1)=                                 | .50580                     |         |          |                                         |
| X(·2)=            |                  | PM(              |           | .06311           |                    | - 3.00213         | Y(2)=                                 | .18851                     |         |          |                                         |
| = (E) X           | .36053           | · PM (           |           | 1.08237          | PM(12)=            | .15540            | Y(3)=                                 | .27395                     |         |          |                                         |
| ¥(4)=             | 0,00000          | RM (             |           | 0.00000          | PM(13)=            | .61542            | Y(4)=                                 | +01701                     |         |          |                                         |
|                   | -                | ) MA             | •         | •01484 ·         | ₽M(14)=            |                   | Y(5)=                                 | .01452                     |         |          |                                         |
| X ( h) =          | .11319           | 유서 (<br>마서 (     |           | .33979           | PM(15) = DM(14) =  | .44241            | VAATEE                                | +02172<br>0-002            |         |          |                                         |
| X ( 7) =          | .07695           |                  |           | .23100<br>.68328 | $R^{M}(16) =$      | .03069            | SUM (=<br>0×1 -                       | - 000))<br>1940 <u>3</u> 8 |         |          |                                         |
|                   | 0.00000          |                  |           | 0.00000          | PM(17)="           |                   | = (NY)<br>- עמ                        | -*00019<br>-**00019        |         |          |                                         |
| HINT =            |                  | HOUTO=           |           |                  | PM(18)=<br>59.691  | I.68984<br>HRXNS= | DY=<br>71.981 - 40                    | -52025<br>MOT= -10M        | M2HDT=  | -6 117   |                                         |
| ······            |                  |                  |           |                  |                    |                   | ·····                                 | ಂತ್ರಿ ಇಂತ್ರೀನ್ನಂತ್ರಿ       |         | -6.117   |                                         |
|                   |                  |                  |           |                  |                    |                   |                                       |                            |         |          |                                         |
| -TIME= 8          | 30.00 MINU       | TES              |           | NUMBER D         | F ITFRATI          | 0NS= 5            |                                       |                            |         |          |                                         |
| x ( ]) =          | .19823           | <b>PM</b> (      | 1)=       | .59819           | RM(10)=            | 113.57115         | Y(])=                                 | .51544                     |         |          | 4Th                                     |
| - ×(2)=           | 01997            | PM (             |           | .06026           | PM(11) =           | 3.01767           | Y(2)=                                 | .17808                     |         |          | · · · · · · · · · · · · · · · · · · ·   |
| X(3)=             | .36135           | RM (             |           | 1.09045          | $R^{M}(12) =$      | .15506            | Y(3) =                                | .2/512                     |         |          |                                         |
| X(4)=             | 0.05006          | RM (             |           | 0.00000          | PM(13)=            | +66112            | Y (4) =                               | .01686                     |         |          |                                         |
|                   | 00497            | 2.1 (            |           | .01470           | RM(14)=            | ້ອບປີມ            | Y(3)=                                 | .01440                     |         |          | سرد بسین د دیده د                       |
| y( <u>n</u> =<br> | . 10747          | 44(              |           | . 32552          | R** (1%) =         | . 444.61          | VOATE                                 | -02141                     |         |          |                                         |
|                   |                  |                  | -         |                  | - · · · _          |                   | Cr L v.                               | 2 V                        |         |          |                                         |

X 91 = 1,40,000 RW( 9) = 0,0000 RW(18) = 1,40,000 DKA HP00005

|                                           |                                       |                                                              | •                                 |                                      |        |        |                                       |
|-------------------------------------------|---------------------------------------|--------------------------------------------------------------|-----------------------------------|--------------------------------------|--------|--------|---------------------------------------|
| -TIME=                                    | NUMBER OF IT                          | ERATIONS= 6                                                  |                                   |                                      |        |        |                                       |
|                                           |                                       | 10)= 113.35327<br>11)= - 3.03261                             | Y(1)=                             | •52455<br>•16819                     |        |        |                                       |
| X(4)= 0.00000 PM                          | ( 4) = 0.00000 PM(                    | 12)= .15473<br>13)= .70597                                   | Y(3)=<br>Y(4)=                    | .27525<br>.01673                     |        |        |                                       |
| X(6)= .10286 RM                           | ( 6)= .31194 PM(                      | 14)='' .61493<br>15)= .49070<br>16)= .03385                  | Y (5) =<br>VPATE=<br>SUMY=        | .01417<br>.02209<br>.99991           |        |        |                                       |
|                                           | ( 8)= .71114 TH RM(                   | 17)=                                                         | DY1=<br>DY=                       | 00085<br>00009                       |        |        | · · · · · · · · · · · · · · · · · · · |
| HINT = 247.222 HOUTO                      | = 274.680 HLOSS= 41                   | 8.170 HPXNS=                                                 | 65,182 HDM                        | DT= -4.603                           | MDHDT= | -5.842 |                                       |
| TINE= "88.00 MINUTES                      | NUMBER OF IT                          | EPATIONS= 5                                                  | <b>.</b> .                        |                                      |        |        |                                       |
| X(-2)=01803 RM                            | (2)= .05493 PM(                       | 10) = 113.14449<br>11) = 3.04693                             | Y(1)=<br>Y(2)=<br>Y(3)=           | .53313<br>.15890<br>.27732           |        |        |                                       |
| X ( 4) = 0.00000 PM<br>X ( 5) = .00470 PM | (4)= 0.00000 PM()<br>(5)= .01431 PM() | 12) = .15442<br>13) = .75295<br>14) = .62942<br>15) = .51527 | Y(3)=<br>Y(4)=<br>Y(5)=<br>VRATE= | .27732<br>.01652<br>.01393<br>.02223 |        |        |                                       |
| X(7)= .07581 RM<br>X(R)= .23764 RM        | (7)= .23100 PM(<br>(8)= .72407 RM(    | 16) = .03543<br>17) = .02541<br>18) = .95355                 | SUMY=<br>DY1=<br>DY=              | .99991<br>-,00085<br>~.00009         |        |        |                                       |
|                                           | = 276.099 HLOSS= 42                   |                                                              | 62.054 HDM                        |                                      | MOHDT= | -5,329 |                                       |
| <u> </u>                                  | •                                     |                                                              |                                   |                                      |        |        |                                       |
|                                           | · · · · · · · · · · · · · · · · · · · | ,                                                            |                                   |                                      |        |        |                                       |
|                                           | · · · · · · · · · · · · · · · · · · · |                                                              |                                   |                                      |        |        |                                       |
| · · · · · · · · · · · · · · · · · · ·     | •                                     |                                                              |                                   |                                      |        |        |                                       |
|                                           |                                       |                                                              |                                   |                                      |        | -      |                                       |
|                                           |                                       |                                                              | ···· · · · · ·                    |                                      |        |        |                                       |
|                                           |                                       | •                                                            |                                   |                                      |        |        |                                       |
|                                           | · · · · · · · · · · · ·               |                                                              |                                   |                                      |        |        |                                       |
|                                           |                                       | -                                                            |                                   |                                      |        |        |                                       |
|                                           |                                       |                                                              |                                   |                                      |        |        |                                       |

· .

-----

| <br>······································ |  |
|--------------------------------------------|--|
|                                            |  |

| INITIAL CONDITIONS BAS | ED ON ADJUSTED TIME                      |                                        |                   |                            |                                                                                                                 |
|------------------------|------------------------------------------|----------------------------------------|-------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|
| ×(1)= .12454           | RM(1)= .31602                            |                                        | · · · ·           |                            |                                                                                                                 |
| x ( 2) = _03454        | $R^{M}(1) = .08763$                      | PM(10) = 118.34000<br>PM(11) = 2.53738 | Y(1)=<br>Y(2)=    | •12502<br>•61585           |                                                                                                                 |
|                        | RM(-3) =90523 · ·                        |                                        |                   | •01000<br>•24043           |                                                                                                                 |
| x(4) = 0.00000         | RM(4) = 0.00000                          | RM(12) = .05334                        | Y(4)=             | •01034                     |                                                                                                                 |
| X(5)= .00097           | RM(-4) = 0.00000<br>RM(-5) = .00246      | RM(14) = 18656                         | Y(5)=             | .00836                     |                                                                                                                 |
| X( A)=                 | FM( 6) = 73809                           |                                        | VPATE=            | •01284                     |                                                                                                                 |
| X(7)= 08265            | PM(7) = .20972                           | RM(16) = .00287                        | SUMY=             | 1.00000                    |                                                                                                                 |
| x( H) = .10965         | PM( 8)= .27824                           | PM(17) = .00159                        | DY1=              | 0.00000                    |                                                                                                                 |
|                        |                                          | - RM(18)=33001                         | ĐY=               | 0.00000                    |                                                                                                                 |
|                        | an a | · · · · · · · · · · · · · · · · · · ·  |                   |                            |                                                                                                                 |
|                        |                                          | · · · · · · · · · · · · · · · · · · ·  | -                 |                            |                                                                                                                 |
| TIME= 4.00 MINUTES     | NUMPER                                   | OF ITERATIONS= 7                       |                   |                            |                                                                                                                 |
|                        | "RM(1)= .33H88 -                         | RM(10) =119:38584                      | $ \gamma(1) =$    | .26048                     |                                                                                                                 |
| x(2) = .04164          | RM(2) = .10851                           | PM(11) = 2.60628                       | Y(2)=             | .43557                     |                                                                                                                 |
| X(3) = .35620          | RM(3)= .92835                            | PM(12)= 15849                          | Y(3) =            | .25712                     |                                                                                                                 |
| -                      | "RM( 4)=""0,00000                        |                                        | ······ Y(4)=      | .03764                     | an a                                                                        |
| x(5)= .00172           | PM( 5)= .00449                           | PM(14) = .19920                        | Y(5)=             | .00H15                     |                                                                                                                 |
| x ( K) = .26049        | RM( 6)= .70234                           | PM(15)= .09323                         | VPATE=            | .00959                     |                                                                                                                 |
| ·*( 7)=,08047          | RM(7)= .20972                            | PM(16)= .00445                         | SUMY=             | .99997                     |                                                                                                                 |
| X(P) = .12047          | RM( 8)= .31399                           | PM(17)= .00178                         | 0 1 =             | 00918                      |                                                                                                                 |
| X ( 4) = 0.00000       | RM(9) = 0.00000                          | PM(18)= .36023                         | 0Y=               | 00003                      |                                                                                                                 |
| HINT # 202.501 HO      | UTO= 119,611 HLOSS                       | 5= 239.703 - HRXN5= 18                 | 10.020 HUM        | DT= 21.947                 | MDKDT= 10.260                                                                                                   |
|                        |                                          |                                        |                   |                            |                                                                                                                 |
| · ·                    |                                          |                                        |                   |                            | وي و محمد معرفين من ي محمد المعالي من المحمد المعالي المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد ال |
| TINE= 8.00 MINUTES     | NUMBER                                   | OF ITERATIONS= 8                       |                   |                            |                                                                                                                 |
|                        |                                          |                                        |                   |                            |                                                                                                                 |
| x(-))=13325            | •                                        |                                        | · ··· Y(1)= ·     | •S4188                     |                                                                                                                 |
| Y(2) = .04544          | RM(2)= .12054                            | PM(11)= 2.65255                        | x(5)=             | .43690                     |                                                                                                                 |
| X ( 3) = .35666        | RM(3)= .94605                            | RM(12) = .15955                        | Y(3)=             | .25478                     | · ·                                                                                                             |
|                        |                                          |                                        | Y(4) =            | .02510                     |                                                                                                                 |
| X(5) = 00243           | RM(5)= .00645                            | PM(14) = .22179                        | Y(5)=             | 01020                      |                                                                                                                 |
| X( 6)= .25081          | RM( 6) = .66527                          | RM(15) = .10642                        | VRATE=            | •01337                     |                                                                                                                 |
| X(-7)=,07906           |                                          | PM(16)=00595                           | - SUAA=           | •99965<br>•99965           |                                                                                                                 |
| X(A)= .13234           | RM(8) = .35105                           | PM(17) = .00227                        | DY1=<br>0v=       | <b>≈</b> •00025            |                                                                                                                 |
| X( 4) = 0.00000        | RM(9)= 0.00000                           | PM(18) = .41159                        |                   | 00003                      |                                                                                                                 |
| HINT =202,501 HO       | UT0= 170.070 HLOSS                       | 226.773 HRXNS= 17                      | 3.428 404         | JT= 5.317                  | 42h01= -56*535                                                                                                  |
|                        | <b></b>                                  |                                        |                   |                            |                                                                                                                 |
| TIME= 12.00 MINUTES    |                                          | OF JTERATIONS= 8                       |                   |                            |                                                                                                                 |
| X(1)=                  | DM/ 11- 37157                            | $R^{(10)} = -117.57141$                | Y(1)=             | .28643                     |                                                                                                                 |
| X(2) = .04740          | RM(2)= .12783                            | PM(11) = 2.69552                       | Y(2)=             | • < 0 5 4 3<br>• 4 2 5 5 5 |                                                                                                                 |
| X(3)= .35719           | RM(3)= .96320                            | RM(12)= .16041                         | Y(3)=             | •42725                     | بلا<br>ح                                                                                                        |
|                        | RM(-3) = - 0.00000                       | PM(13)= .08950                         | Y(4) =            | • 02435                    | -1                                                                                                              |
| X(5) = 00295           | RM(-4) = -0.0799                         | RM(14)= .24506                         | Y(5)=             |                            |                                                                                                                 |
| X( 6) = .23458         | RM(6) = -63257                           | RM(13)= .12009                         | VP17E=            | •01135<br>•01357           |                                                                                                                 |
| x(7) = .07777          | PM(7)= ,20972                            | - PM(15) = .12004                      | 20105             | •01377<br>•94946           |                                                                                                                 |
| Y( )= .14231           | RM( 8)= .38375                           | - HW(13)= -005H2<br>- HW(10)= -00012W  |                   |                            | ann a shaan ar shaan  |
|                        |                                          |                                        | DY)=              |                            |                                                                                                                 |
| •                      |                                          | 04/1514 _115551                        | 5) Y <del>2</del> |                            |                                                                                                                 |

| 11.5~ 10°00 wY.a011.                                    | 3 NU                                               | UL TIERHITON2- 0                                      |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-----------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | - DK( 1) - 20216                                   | BW(10) - 116 80272                                    | V / 1 \ -       | 20204                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x(1) = .14314                                           | $= R^{M}(1) = .39216$                              | PM(10) = 116.89273                                    |                 | .30394                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(2) = .04824                                           | RM(2) = .13217                                     | PM(11) = 2.73965                                      |                 | .41020                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x(3)= .35773                                            | RM(3)= .98005                                      | RM(12) = .16120                                       |                 | .25102                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x ( 4) = ``0,00000 ``                                   | PM(4) = 0.00000                                    | PM(13)= .10595                                        |                 | .02273                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(5) = .00337                                           | RM(5) = .00924                                     | PM(14) = .26815                                       | • • •           | .01207                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(6) = ,22020                                           | PM(6) = .60326                                     | PM(15)= .13399                                        | · •             | .01405                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - X( 7) = .07655                                        | = P4(7)= .20972                                    | RM(16) =                                              |                 | ,99997                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(E) = 15077                                            | RM( 8)= .41306                                     | PM(17)= .00531                                        |                 | 00050                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(9) = 0.00000                                          | RM(9) = 0.00000                                    | RM(18)= .52069                                        | DY=             | 00003                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HINT = 202.501                                          | HOUTO= 177,963 HLOS                                | 5= 179.853 HRXN5=                                     | 137.946 HDMDT:  | = 6.745 MDH             | HDT= -24.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                                                       |                                                    |                                                       |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         | -                                                  |                                                       |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TIME= 20.00 MINUTE                                      | S NUMPER                                           | OF ITERATIONS= 8                                      |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         |                                                    |                                                       |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         | PM( 1)= .41392                                     | RM(10) = 116.00722                                    | Y(1)=           | •35561                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(2)= .04820                                            | RM( 2) = .13403                                    | PM(11) = 2.78058                                      |                 | .39271                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(3)= .35832                                            | RM( 3) = .99634                                    | RM(12)= .16186                                        |                 | .25055                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         | = RM(4) = 0.00000                                  | PM(13) =                                              |                 | .02125                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x(5)= .00369                                            | RM( 5)= .01025                                     | RM(14) = .29121                                       |                 | .01254                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X( 6)= .20737                                           | PM( 6) = .57661                                    | RM(15)= .14841                                        | VPATE=          | .01469                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ×( 7)=07542                                             | RM( 7)= .20972                                     |                                                       |                 | .94997 ***              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(H) = -15814                                           | RM( 8)= .43971                                     | RM(17) = .00422                                       |                 | 00018                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(P) = 0.00000                                          | RM(9) = 0.00000                                    | PM(18)= .57813                                        |                 | 00003                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         |                                                    |                                                       | 125,873 HOMDT:  |                         | HDT= -22.383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                         |                                                    | ······································                |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         |                                                    |                                                       |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         |                                                    |                                                       | -               |                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TIME= 24.00 MINUTES                                     | 5 NIMBEP                                           | OF ITERATIONS= 8                                      |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         |                                                    |                                                       |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X('1)= .15468                                           | RM(1)= .43602                                      | PM(10) = 115.28151                                    |                 | •34236                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (2) = .04748                                            | PM(2)= .13385                                      | RM(11) = 2.81893                                      | Y(2)=           | .37415                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(3)= .35898                                            | RM(3) = 1.01193                                    | RM(12)= .16237                                        | Y(3)=           | ·25065                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X('4)= '0,00000                                         | PM( 4)=~0.00000                                    | RM(13) = .14411                                       | Y(4)=           | .01998                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(5)= _00393                                            | RM(5)= .01108                                      | QM(14) = .31427                                       | Y(5)=           | .01293                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X( 6)= .19587                                           | RM( 6) = .55213 ·                                  | RM(15) = .16350                                       | VRATE=          | .01539                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X( 7)= .07440 ···                                       | RM(7)= .20972                                      | RM(16) =                                              | SUMY=           | .9997                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X( 4)= .16467                                           | RM(8) = .46419                                     | PM(17)= .00498                                        | DY1= -          | 00016                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(9) = 0.00000                                          | RM(9) = 0.00000                                    | RM(18)= .63828                                        | DY= ~           | 00003                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         | OUTO= 194.210 HLOS                                 | S= 140,400 HRXNS=                                     | 115.951 HOMOT:  | = 4,492 MDH             | HDT= ~20.561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                         |                                                    |                                                       |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         |                                                    | · ·                                                   |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TIME= 28,00 MINUTES                                     | NIMBED                                             | OF ITERATIONS= 8                                      |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         |                                                    | 0. 1.1                                                |                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ×(-1)= .16042                                           | P 94 47 P P 701 71                                 | RM(10) = 114.51110                                    | Y(1)=           | .36164                  | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| X(2)= .04529                                            | RM(2) = .13214                                     | RM(11) = 2.85475                                      | + (2) +         | .35510                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Y(3)= .35969                                            | RM(3)= 1.02683                                     | RM(12) = .16274                                       | Y(3)=           | .25106                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X(4) = 0.00000                                          | RM( 4)= 0.00000 "                                  | " RM(13) = " 16530"                                   | Y(4) ≂          | .01910                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         | RM(5) = .01176                                     | PM(14)= .33716                                        | Y(5)=           | .01300                  | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| x(5)= .004]2                                            |                                                    |                                                       |                 | 1                       | No. a state of the |
| ×(5)= .004]?<br>×(6)= .18547                            | PM(6) = .52947                                     | RM(15) =, 17928                                       | VPAT-=          | .01591                  | ( h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                         |                                                    |                                                       |                 | .01591<br>.99597        | 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| X(-6) = .18547<br>X(-7) = .07346                        | PM( 6) = .52947<br>PM( 7) = .20972                 | RM(16)= .01270                                        | SUMY =          | • 660 9 A               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X ( f) = .16547<br>→ X ( 7) = .07346<br>X ( P) = .17054 | PM( 6)= .52947<br>PM( 7)= .20972<br>PM( 8)= .48686 | RM(16)= .01270<br>RM(17)= .00580                      | SUMY=<br>∩Y!= - | ,99397<br>00019         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| メ( 4)= 16547<br>                                        | PM( 6) = .52947<br>PM( 7) = .20972                 | RM(16) = .01270<br>RM(17) = .00580<br>RM(18) = .70106 | SUMY=<br>∩Y!= - | .99397<br>00019<br>0003 | 10T= -18,834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

.

| ~                  | ******     | 1 <b>1</b>  |       | T # 11-4 7 11 12 |         | H . (IC) -    | ● 1 (CO / G    | 115                   | /~              | ※ ひち ちょうく           |        |         |                                       |      |
|--------------------|------------|-------------|-------|------------------|---------|---------------|----------------|-----------------------|-----------------|---------------------|--------|---------|---------------------------------------|------|
| X(4)=              | 0.00000    | 구년 (        | 4)=   | 0.00000          |         | PM(13)=       | .10059         | Y ( 4                 | ) =             | .01813              |        |         |                                       |      |
| x(5)=              | 00426      | рия (       | 5)=   | •01530           |         | `PM(14)=      | ··· · 3595A    | Y(5                   | ) =             | .01308              |        |         | •• •• •                               |      |
| X( 6)=             | .17501     | 무세 (        | 6)=   | .50537           |         | PM(15)=       | .19569         | VRAT                  | E =             | .01565              |        |         |                                       |      |
| X(7)=              | -07261     | RV4 (       | 7)=   | .20972           |         | PM(16) =      | .01398         | SUM                   | Y =             | * <b>&gt;</b> 33333 |        |         |                                       |      |
|                    | .17587     | <b>ন</b> গ( | 8)=   | .50795           | • • • • | PM(17) = 1    | .00665         | DY                    | 1 =             | 00014               |        | •       |                                       |      |
| X(9)=              | 0.00000    | RM (        | 9)=   | 0.00000          |         | ₽M(18)=       | .76625         | D                     | Y≃ <sup>*</sup> | -,00002             |        |         |                                       |      |
| HINT =             | 202,501    | HOUTO=      | 205   | 9.232 H          | LOSS=   | 108.654       | HRXNS=         | 100.316               | HOME            | 2.134               | MOHDT= | -17.203 |                                       |      |
|                    |            |             |       |                  | -       |               |                | -                     |                 |                     |        |         | · · ···· ·· ···                       |      |
|                    |            |             |       |                  |         |               |                |                       |                 |                     |        |         |                                       |      |
|                    |            |             |       |                  |         |               |                |                       |                 |                     |        |         |                                       |      |
| -TIME=             | 36.00 MTNI | 17FS        | -     | NUM              | RFR O   | E ITERATI     | 0NS= -8 -      |                       |                 |                     |        |         | · · · ·                               |      |
|                    |            |             |       |                  |         |               |                |                       |                 |                     |        |         |                                       |      |
| X(1)=              | .17135     | PM (        | 1)=   | .50018           |         | PM(10)=       | 113.46348      | Y (1                  | ۱ =             | .39878              |        |         |                                       |      |
| ×( 2)=             |            |             | 2)=   | 12554            |         | PM(11)=       | 2,91906        | X ( 5                 | -               | .31794              |        |         |                                       |      |
| X(3)=              | .36127     |             | 3)=   | 1.05456          |         | RM(12)=       | .16312         | Y (3                  |                 | .25279              |        |         |                                       |      |
| X ( 4) =           | •          |             |       |                  |         |               |                |                       |                 |                     |        |         |                                       |      |
|                    | -          |             | 4)=   |                  |         | PM(13)=       | .21717         | Y (4                  |                 | ,01737              |        |         |                                       |      |
| X( 5)=             | -          |             |       | .01273           |         | PM(14)=       |                | Y(5                   |                 | .01309              |        |         |                                       |      |
| X(6)=              | ,16739     |             | 6) =  | ,48861           |         | RM(15)=       | .21286         | VRATI                 |                 | .01731              |        |         |                                       | . ·  |
| ×(7) =             | .07184     |             | 7)=   | .20972           | •       | RM(16) =      | .01526         | S()M.                 |                 | . 99498             |        |         |                                       |      |
|                    | *18078-    |             |       |                  | •       | PM(17)=1      | .00754-        | DY                    | 1 =             | 00013               |        | • •     | ,<br>,                                |      |
|                    | 0.00000    | -           |       | C,00000          |         | RM(18) =      | <b>.</b> 83418 | יח                    | Y =             | -*00005             |        |         |                                       |      |
| HINT =             | 202.501    | HOUTO=      | 217   | 7.176 HL         | _055=   | 94.103        | HRXNS=         | 94,118                | намо            | T= .791             | MDHDT= | -15.451 |                                       |      |
|                    |            |             | ••••• | · -·             | ••••    |               |                |                       |                 |                     |        | •       |                                       |      |
|                    |            |             |       |                  |         |               |                |                       |                 |                     |        |         |                                       |      |
|                    |            |             |       |                  |         |               |                |                       |                 |                     |        |         |                                       |      |
| - TIME = 4         | 40.00 HINL | JTFS ·      | -     | NUM              | RER OF  | - ITERATI     | 0NS= 8         |                       |                 |                     | •      |         |                                       |      |
|                    | _          |             |       |                  |         |               |                |                       |                 |                     |        |         |                                       |      |
| X(1)=              | .1763A     | RM (        | 1)=   | .51985           |         | PM(10) =      | 112.97702      | Y(1)                  | ) =             | .41610              |        |         |                                       |      |
| x(·?)=-            |            |             |       |                  |         |               |                |                       |                 | .30011              |        |         | · · · · · · · · · · · · · · · · · · · |      |
| x(3)=              | .36212     |             |       | 1.06733          |         | $R^{*}(12) =$ | .16314         | Y (3)                 |                 | .25395              |        |         |                                       |      |
|                    | 0.00000    | •           | -     | 0.00000          |         | $R^{M}(13) =$ | .24600         | Y ( 4                 |                 | .01676              |        |         |                                       |      |
|                    |            |             |       |                  |         | PM(14)=-      |                |                       |                 | •01305              |        |         |                                       |      |
| x(-6) =            | 15947      |             | 6)=   | .47001           |         |               | .23074         |                       |                 | •                   |        |         |                                       |      |
| x(7) = -           | •          |             |       | -                |         | RM(15) =      |                | VRATE                 |                 | .01791              |        |         |                                       |      |
|                    |            |             | 7)=   | .20972           |         | RM(16)=       | .01654         | SIM                   |                 | .99998              |        |         |                                       |      |
| ········×(·∩·)=··· |            | QM (        |       |                  | -       |               |                | 0Y]                   |                 | 00012               |        |         |                                       |      |
|                    | 0.00000    | •           |       | 0.0000           |         | RM(18)=       | • 90464        |                       | Y =             | 00005               |        |         |                                       |      |
| HILL #             | 202.501    | HOUTO=      | 224   | •344- HL         | _05S=   | 81.029        | HRXNS=         | 88,726                | чомо            | T=343               | MDHDT= | -13,804 |                                       |      |
|                    |            |             | •     | •                | •       | -             |                |                       |                 |                     |        |         |                                       |      |
|                    |            | •           |       |                  |         |               |                |                       |                 |                     |        |         | -                                     |      |
|                    |            |             |       |                  |         |               |                |                       |                 |                     |        |         |                                       |      |
| TIMF=4             | 4:00 MINU  | TES         |       | ··· NUMF         | BER OF  | F ITERATJ     | 0NS= -8        | • •                   |                 |                     |        |         |                                       |      |
|                    |            |             |       | •                |         |               |                |                       |                 |                     |        |         |                                       |      |
| X(1)=              | .18108     | PM (        | 1)=   | •53944           |         | PM(10) =      | 112.54168      | Y(1)                  | ) =             | .43245              |        |         |                                       |      |
| X1 2)=             |            |             |       | 11630            |         |               | 2.97351        |                       |                 | 28301               |        |         |                                       |      |
| x (3) =            | .36301     |             | -     | 1.07942          |         | PM(12) =      | .16306         | Y (3)                 |                 | 15255               |        |         |                                       |      |
|                    | 0.0000     |             |       | 0.00000          |         | RM(13) =      | .27698         | Y (4)                 |                 | -01527              |        |         |                                       |      |
| x( 5)=-            | -          |             |       |                  |         | RM(14)=       |                | " Y(5)                |                 | 101268              |        |         |                                       |      |
| X(-6) =            | .15216     |             | 6) =  |                  |         |               |                |                       |                 |                     |        |         |                                       |      |
|                    |            |             |       | .45244           |         | RM(15) =      | .24930         | VPATE                 |                 | •01846              |        |         |                                       | •    |
| X ( 7) =           | .07053     |             |       |                  |         | PM(16)=       | .01782         | 5(14)                 |                 | .99998              |        |         |                                       |      |
| X( 8)=             |            | RM (-       |       | .56389           |         | PM(17) =      | .00041         | . IYI                 |                 | 0012                |        |         |                                       |      |
|                    | 0.00000    |             |       | 0.00000          |         | PM(1H) =      | .97739         | ר <u>ה</u><br>הבי הבי |                 | 00002               | _      |         |                                       | L.   |
|                    | 202.501    |             | 230   | 1.756 HL         | 055=    | 69.305        | - HRXNS=       | 83.979                | HOND            | 7= -1.276           | монот≠ | -12,305 |                                       |      |
|                    |            | · ·         |       |                  |         |               |                |                       |                 |                     |        |         |                                       | · \Ú |
| l                  |            |             |       |                  |         |               |                |                       |                 |                     |        |         |                                       |      |
| l                  |            |             |       |                  |         |               |                |                       |                 |                     |        |         |                                       |      |
|                    | A.no MYNH  | TES         |       | 4113ME           | ER OF   | TTERATI       | 0N<= 8         |                       |                 |                     |        |         |                                       |      |
| 1                  |            |             |       |                  |         |               |                |                       |                 |                     |        |         |                                       |      |

| X(7) = .06996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R'4(7)=            | .20972         | PM(16)=       | 01910              | SIMY=       | -00018                                |            |         |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|---------------|--------------------|-------------|---------------------------------------|------------|---------|----------------------------------------|
| = - x(P) =19368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RM( 8)=            | .58056         | PM(17)=       | .01038             | DY1=        | -,00011                               |            |         |                                        |
| X( 5)= 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P'4( 9)=           |                | PM(18) =      | 1.05220            | DY=         | 50000                                 | 115 IS # - | 10.040  |                                        |
| HINT = 202,501 HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NTU= 536           | .451 HLOSS=    | 58,794        | H⊇XNS=             | 19.153 H    | 040T= -2.023                          | MDHOT=     | -10.968 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                  | •              |               |                    |             |                                       |            |         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |               |                    |             |                                       |            |         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                | -             |                    |             |                                       |            |         |                                        |
| TIME= 52.00 MINUTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | NUMBER O       | F ITERATI     | 0NS= 8             |             |                                       |            | •       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                  |                |               |                    |             |                                       |            |         |                                        |
| X(1)= .18950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RM( ])=            | <b>.</b> 57229 |               | 111,80151          | Y(1)=       | ,46222                                |            |         |                                        |
| x( ?)= `.03517 `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PM( ?)=            | .10620         | $P^{M}(11) =$ | 3.01991            | = (S) Y     | .25133                                |            |         |                                        |
| X(3)=36484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | рм(3)=             | 1.10177        | PM(12)=       | .16269             | Y(3)=       | .25813                                |            |         |                                        |
| X(4)= 0,00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM(4)=             | 0.00000        | RM(13)=       | .34205             | Y(4)=       | .01556                                |            |         |                                        |
| x(⊕)= _00451 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RM(5)=             | .01361         | RM(14)=       | •46525             | Y(5)=       | .01275                                |            |         |                                        |
| X( 6)= .13404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM(6)=             | .41990         | RM(15)=       | •2882 <del>6</del> | VRATE=      | .01937                                |            |         |                                        |
| x(7) = .06944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM( 7)=            | .20972         | RM(16) =      | .02038             | SUMY =      | .99998                                |            |         |                                        |
| X( P)= .19750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ₽석( 8) = 1         | ,59642         | PM(17) =      | .01137             | LAJ=        | 00011                                 |            |         |                                        |
| X(9)= 0,00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 모생( 9)=            | 0.00000        | RM(18)=       | 1.12894            | CY≃         | 00005                                 |            |         |                                        |
| HINT = 202.501 HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UTO= 241           | .486 HLOSS=    | 49.359        | HPXNS=             | 75,950 H    | DMD1= -2.605                          | MOHDT=     | -9.790  |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |               |                    |             |                                       |            |         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |               |                    |             |                                       |            |         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |               |                    |             |                                       |            |         |                                        |
| TIME= "56,00" MINUTES"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | NUMBER O       | F ITERATI     | 0NS= 6             | • • •       |                                       |            |         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |               |                    |             |                                       |            |         |                                        |
| x(1)= .19323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 모세( 1)=            | .58750         | PM(10) =      | 111.48591          | Y(1)=       | .47550                                |            |         |                                        |
| x(2) = -03326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM(2)=             | .10112         | RM(11) =      | 3.04040            | Y(2)=       | .23679                                |            |         |                                        |
| $\chi(3) = -36576$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RM(3)=             | 1.11206        | RM(12)=       | 16243              | ¥(3)=       | .25953                                |            |         |                                        |
| X(-3) = -34479<br>X(-4) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QM( 4) =           | 0.00000        | RM(13) =      | .38195             | Y(4)=       | .01528                                |            |         | · · ·                                  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RM( 4)=            | .01367         | PM(14)=       |                    |             | .01260                                |            |         | ····· ·                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                | PM(15)=       | .30851             | VPATE=      | .01979                                |            |         |                                        |
| X(6) = .13313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PM(-6) =           | .40477         | -             |                    | SUMY=       |                                       |            |         |                                        |
| X(7)= .06898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RM(7)=             | .20972         | $P^{M}(16) =$ | .02167             |             | • • • • • • • • • • • • • • • • • • • |            |         |                                        |
| x(9) = .20114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PM( 8)=            | .61155         | RM(17)=       | .01236             | EY1=        | 0075                                  |            |         |                                        |
| x(9) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RM(9)=             | 0.00000        | PM(1H) =      | 1.20733            | DY=         |                                       |            | 0 407   |                                        |
| HINT = 202.501 HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UTO= 246           | .325 HL055=    | 40.339        | HQXN3=             | 12.507 H    | DMDT= -3.160                          | MDHDT=     | ~8.497  |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | •              |               |                    |             |                                       |            |         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |               |                    |             |                                       |            |         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | •              |               |                    |             |                                       |            |         | ······································ |
| TIME 60.00 MINUTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | NUMBER C       | F ITERATI     | ONS= 6             |             |                                       |            |         |                                        |
| · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                |               |                    |             |                                       |            |         |                                        |
| x(1)= .19667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 요세( ])=            | .60172         |               | 111.20688          | Y(1)=       | 49809                                 |            |         |                                        |
| X(P) = .03144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM(2)=             | •09620         | RM(11) = "    | 3.05955            | Y(2)=       | ·55312                                |            |         |                                        |
| X(2)= .36668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RM(3)=             | 1.12188        | ¤™(]S)=       | .16214             | Y(?)=       | .26113                                |            |         |                                        |
| X ( 4) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PM(4)=             | 0.00000        | RM(13)=       | .42955             | Y (A) #     | .01605                                |            |         |                                        |
| X(5) = -,00447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PM( 5)=            | .01369         | PM(14) =      | - <b>-</b> 50276   | ° (5)≓      | .01245                                |            |         |                                        |
| X( 6)= ,12757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM(6)=             | .39031         | PM(15)=       | ·35945             | V P 4 7 5 = | .02616                                |            |         |                                        |
| X(7)= _06854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RM(7)=             | ·50925         | RM(16) =      | •05588             | 5114X =     | • 64049                               |            |         |                                        |
| (R) = -20451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>₽4(8) =</pre> | • 62602        | PM(17) =      | .01337             | 0Y1=        | -,00075                               |            |         |                                        |
| X(9) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PM( 9)=            | 0.00000        | PM(18) =      | 1.26718            | ΟY=         | 00010                                 |            |         |                                        |
| HINT = 202.501 HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                |               | HOXNS=             | 69.361 .    | DMDT= -3.572                          | MOHDT=     | -8,025  |                                        |
| The second secon |                    |                |               |                    | - · •       | · · · · · ·                           |            |         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |               |                    |             |                                       |            |         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |               |                    |             |                                       |            |         | 24                                     |
| TIME= 64.00 MINUTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | NUMBED C       | F ITERATI     | 0115= 6            |             |                                       |            |         |                                        |
| ereca catton stants2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | WUTDER U       | 0 1125501     | 0.3- 0             |             |                                       |            |         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | (1500          | DH ( ) C) -   | 110 64014          | V(1).       | 50070                                 |            |         |                                        |
| X(1)= .19985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RM( 1)=            | .61502         |               | 110.94915          | Y())#       |                                       |            |         |                                        |
| x(2)= .02973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RA( S)=            | ,04149         | PH(1))=       | 3.07747            | ¥(2)=       | .21043                                |            |         |                                        |
| × (~~)= 36754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EM( 3)=            |                | PM(12)=       | .14183             | < ( ) ) =   | ·25263                                |            |         |                                        |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | A 44.30A       |               | 4.5775             | V/63 -      | 13640                                 |            |         |                                        |

X(6)= •14537

X(7)= .06996

RM( 6)= •435/6

RM( 7)= .20972

Pw(12)=

PM(16)=

\*<044

,01910

V · · · I C -

SHMY=

+ V + '2 7 \*\* •00098

| HINT =                 | 202.501            | HOUTO=                                   | 254.027            | HL055=          | 26.088                 | HRXNS=                | 66 <b>.</b> 430  | HDMDT= | -3,789          | MDHQT≈ | -7.396         |                                       |
|------------------------|--------------------|------------------------------------------|--------------------|-----------------|------------------------|-----------------------|------------------|--------|-----------------|--------|----------------|---------------------------------------|
| T f 4E=                | 68.00 MINU         | TFS                                      | · -                | NUMBER O        | F ITEPATIO             | )NS= 6                |                  |        |                 |        |                |                                       |
| ×(1)=                  |                    | RM (                                     |                    | 2745            |                        | 110.71215             | Y(1              |        | 51045           |        |                |                                       |
|                        |                    |                                          |                    | 4024            | RM(11) = ~<br>RM(12) = | •16151                | · Y(2<br>Y(3     |        | 19853<br>26404  |        |                |                                       |
| ×(4)=<br>×(5)=         | •                  | ₽14(<br>₽4(                              |                    | 1362            | PM(13) =<br>PM(14) =   | .50241                | · Y(4)           | •      | 01476<br>01211  |        |                |                                       |
| ×( 6)=                 | .11733             | PM (                                     | 6)= .3             | 0.55.71         | RM(15)=                | .37243                | VRAT             | F= .   | 02069           |        |                |                                       |
|                        |                    |                                          | 8)= .6             | 20972<br>5312   | PM(16)=<br>PM(17)=     | .02555<br>01538       |                  | 1=     | 44991<br>00075  |        |                |                                       |
|                        | 0.00000<br>202.501 | •                                        | 9)= 0.0<br>256.645 | 10000<br>HL055= | PM(18)=<br>19.831      | 1.45051<br>HRXNS=     | D'<br>63.680     |        | 00009<br>-3.797 | MOHDT= | -6,499         |                                       |
| · -                    |                    |                                          |                    |                 |                        |                       |                  |        |                 |        |                |                                       |
| TINE                   | 72.00 MINUT        |                                          |                    | NUMBER OF       | - TTEDATIC             | NS= 6 -               |                  |        |                 |        |                |                                       |
|                        |                    |                                          |                    |                 |                        |                       |                  |        |                 |        |                | · · ·                                 |
| =(1) ¥<br>=(?) ¥·~~~   | .20548             | 무석(<br>···· 유석(                          |                    | 3908<br>19274   |                        | 110.49402<br>3.11023- | Y(1)<br>Y(2)     |        | 52046<br>18744  |        |                |                                       |
| ×(   3)=<br>×(   4)=   |                    | 무석 (<br>무색 (                             |                    | 4883            | PM(12)=<br>PM(13)=     | •16118<br>•54543      | Y(3)<br>Y(4)     |        | 26543<br>01454  |        |                |                                       |
| y( 5-)=<br>X( 5)=      | .00435 -           | · - 54(                                  | 5)= .0             | 1354            |                        | 55319<br>.39451       | Y (5)<br>VPAT    | ) = .  | 01193           |        |                |                                       |
| ×(7)=                  | .06743             | RM (                                     | 7)= .2             | 0972            | PM(16)=                | \$02F8A               | CI IN.           | Y= .   | 30001           |        |                |                                       |
| X(F)=<br>X(G)=         | -                  | EM(<br>PM(                               |                    | 5555<br>10000   | RM(17)= -<br>PM(18)=   | 01638<br>1.53372      | 0Y<br>D'         | -      | 00076<br>00009  |        |                |                                       |
| HI*T =                 | 202.501            | HOUTO=                                   | 259,203            | HLOSS=          | 14.110                 | HRXVS=                | 61.106           | HOMDT= | -3.823          | MDHOT= | -5.884         |                                       |
|                        |                    |                                          |                    |                 |                        |                       |                  |        |                 |        |                |                                       |
| TIME=                  | 76.00 MTNU1        | res-                                     |                    | NUMBER OF       | FITEPATIO              | INS= 6                |                  |        |                 | ·      |                | · · · · · · · · · · · · · · · · · · · |
| x(1)=                  |                    | RM (                                     |                    | 4998            |                        | 110.29207             | Y(1)             |        | 52973           |        |                |                                       |
| =(?:)×<br>=(::)×       |                    | RM(<br>- RM(                             |                    | 17973<br>5708   | PM(12)= -              | 3.12525<br>.16085     | · Y(2)           | ) = •  | 17712<br>26677  |        |                | · · · · · · · · · · · · · · · · · · · |
| ×(4)=<br>×(-5)=        | 0.00000<br>        | PM (                                     | •                  | 1343            | PM(13)=<br>PM(14)=…    | .58973                | Y(4)<br>Y(5)     |        | 01454<br>01175  |        |                |                                       |
| x(-6) = x(-7) =        | .10824             | 유서 (<br>무서 (                             | 6)= .3             | 3827            | RM(15) =<br>RM(15) =   | •41594<br>•02817      | VRATE            | E= •   | 02113           |        |                |                                       |
| x ( s) =               | .21596             | RM (                                     | 8)= .6             | 7906 -          | RM(17) =               | •0173H                | 0Y:              | l=     | 00075           |        |                |                                       |
| HINT =                 | •                  | •                                        | 9)= 0.0<br>261.564 |                 | RM(18)=<br>P,824       | 1.61782<br>HRXNS=     | 58.676           |        | 00009<br>-3+H25 | MDHDT= | <b>∽5,3</b> 86 |                                       |
|                        | ···· - · ···       | معمر والمراجع والمراجع والمراجع والمراجع |                    |                 |                        |                       |                  |        |                 |        |                |                                       |
| TIMF=                  | 80.00 41007        |                                          |                    |                 | F ITEPATIO             | NS# 6                 |                  |        |                 |        |                |                                       |
|                        | •                  |                                          | ••• •              |                 | •                      |                       |                  |        |                 |        |                |                                       |
| =(1)×<br>=(2)×         |                    | RM (<br>RM (                             |                    | 6019<br>7497    | RM(10) = RM(11) =      | 110.10421<br>3.13949  | Y ( 2)<br>Y ( 2) | )= .   | 53834<br>16752  |        |                |                                       |
| ×( 3)=                 |                    |                                          | 3) = 1.1           |                 | $R^{M}(12) =$          | .16053                | Y(3)             |        | 25305           |        |                |                                       |
| X ( 4) =<br>- X ( 5) = | 0,000,0<br>55400,  | RM(<br>RM(                               | ,                  | 0000<br>1329    | RM(13)=<br>RM(14)=     | .63522<br>.58315      | Y(4)<br>Y(5)     |        | 01444<br>01156  |        |                |                                       |
| κι ε. =                | .10461             | 241                                      | 6)= .3             | 2554            | PM(15)=                | -4397A                | VPLTE            | ÷ .    | 02133           |        |                |                                       |
| 1 * * * m              | 16 . G             | DMI                                      | 71= .2             | 0472            | DM(]()=                | * U 2 9 4 8           | < Hinn           | (* *   | 09683           |        |                |                                       |

| x(4) = 0,00000 F(4) =                                 |                                                                            | ;9                      |
|-------------------------------------------------------|----------------------------------------------------------------------------|-------------------------|
|                                                       | .01314 PN(14) = .59712 Y(5) = .0113                                        |                         |
|                                                       | •20972 RM(16)= •03080 SUMY= •9999<br>•70105 RM(17)= •01935 PY1= ••0007     | 6                       |
| x( °) = 0.00000 RM( 9) =<br>HINT = 202.501 HOUTO= 265 | 0.00000 PM(18)= 1.78840 DY=0000<br>5.682 HLOSS=651 HRXNS= 54.187 HDMDT= -3 | 9<br>•753 #DHDT= -4.591 |
|                                                       |                                                                            |                         |
|                                                       | ·<br>• · · · • • · · · · · · · ·                                           |                         |
|                                                       |                                                                            |                         |
|                                                       | · · · · · · · · · · · · · · · · · · ·                                      |                         |
|                                                       |                                                                            |                         |
| · · · · · · · · · · · · · · · · · · ·                 | ,                                                                          |                         |
| ·                                                     | · · · · · · · · · · · · · · · · · · ·                                      |                         |
|                                                       |                                                                            |                         |
|                                                       |                                                                            |                         |
|                                                       |                                                                            |                         |
|                                                       |                                                                            |                         |
| -                                                     | · · · · · · · · · · · · · · · · · · ·                                      |                         |
| · · · · · · · · · · · · · · · · · · ·                 |                                                                            |                         |
|                                                       | · · · · · · · · · ·                                                        |                         |
|                                                       |                                                                            |                         |
|                                                       |                                                                            |                         |
| · · · · · · · · · · · · · · · · · · ·                 |                                                                            |                         |
|                                                       | · · · · · · · · · · · · · · · · · · ·                                      | 4<br>6<br>12-           |

TIME= -- 84,00 MINUTES NUMBER OF ITERATIONS= 6

| INITIAL (            | CONDITIONS    | BASED O      | N AD.       | JUSTED TI        | ME                        |                      |           |            |                  |        |         |       |       |
|----------------------|---------------|--------------|-------------|------------------|---------------------------|----------------------|-----------|------------|------------------|--------|---------|-------|-------|
| ·- ·- ·              |               | · · ·        |             | 22(0)            |                           |                      |           |            | 107/0            |        |         |       |       |
| X(1)=                | .1744P        |              | 1) = 2      | .33481           |                           | 120.77000<br>2.68972 |           |            | .13740           |        |         |       |       |
| = (5) X              | .04719        | -            | 2)=         | •12693<br>•94154 | PM(11)=<br>PM(12)="       |                      |           |            | •56852<br>•15404 |        |         |       |       |
| ×(3)=<br>X(4)=       | •             |              | 3)=<br>4)=  |                  | RM(12)=                   | .05261               |           |            | .01955           |        |         |       |       |
| x(5)=                | 08180         |              | 5)=         | .00484           | PM(14)=                   | 15498                |           |            | .02048           |        |         |       |       |
| x(6) =               | .26563        |              | 6) =        | •71446           | PM(15)=                   |                      |           |            | .01650           |        |         |       |       |
| ×(7)=                | 10397         |              | 7)=         | .27964           | R*(15)=                   | .00421               |           |            | .00000           |        |         |       |       |
| × ( と) =             | 10449         | -            | 8)=         | .28751           | RM(17)=                   | .00077               |           | -          | .00000           |        |         |       |       |
|                      |               | -            | 9)=         | -                | RM(18)=                   |                      |           |            | .00000           |        |         | ••    |       |
|                      |               |              |             |                  |                           |                      |           |            |                  |        | ,       |       |       |
|                      |               |              |             |                  |                           |                      | • • • • • |            |                  |        |         | · · · |       |
| TIME=                | 4.00 MINU     | TES          |             | VII IN           | FR OF ITERATI             | ON2≡ 8               |           |            |                  |        |         |       |       |
|                      | 13216         | - R4(        | 1)=         | .36016           | RM(10)=                   | 119.34712            | Υ (       | 1) =       | .25495           |        |         | -     |       |
| = (S) X              | 04363         | R 11 (       | 5)=         | .11991           | PM(11)=                   | 2,72522              | Υ (       |            | .44905           |        |         |       |       |
| x(3)=                | .35151        | <i>२</i> भ ( | 3)=         | <u>95795</u>     | PH(12)=                   | .16408               |           |            | •25323           |        |         |       |       |
|                      | _0.00000      | - RM(        | 4)=         | 0.00000          | PM(13)=                   | .07529               |           |            | •05511           |        |         |       |       |
| x(5)=                | .00242        | RM (         | 5)=         | .00659           | PM(14)=                   | .19706               |           |            | ,01059           |        |         |       |       |
| X( F)=               | .24870        |              | 6)=         | .67775           | PY(15)=                   | .12705               |           |            | .01637           |        |         |       |       |
| ×(7)=                | .10261        |              | 7)=         | .27964           | PM(16) =                  | .005B1               |           |            | .49993           |        |         |       |       |
| X ( ۲) =             | .11097        | -            | 8)=         | .32422           | PM(17)=                   | .00165               |           |            | .00040           |        |         |       |       |
|                      | 0.0000        | •            | -           | 0.00000          | PM(18)=                   | .40535               |           |            | .00007           |        | 10.070  |       |       |
| HINT =               | 320.473       | "H0JI0=      | 506         | 9 <b>.</b> 828 н | 055= 253.369              | HPXNS=               | 170.368   | HUNDI=     | 14.766           | MOHOT= | 12.879  |       |       |
|                      |               |              |             |                  |                           |                      |           |            |                  |        |         |       | ·     |
|                      |               |              |             |                  |                           |                      |           |            |                  |        |         |       |       |
| TIME=                | 8.00 MINU     | TES          |             | NEM              | REP OF ITERATI            | 0NS= 8               |           |            |                  |        |         |       |       |
| x(-1)=               | .14012        |              | 1)=         | .38778           | PM(10) =                  | 118.70994            | Υ (       | 1)=        | .29509           |        |         |       |       |
| =(S)X                | .04124        | PM (         | 2') =       | .11413           | R > (11) =                | 2.76738              | Υ(        | 2)=        | .41699           |        |         |       |       |
| X(3)=                | .35259        | PM (         | 3)=         | .97575           | ₽M(12)=                   | .16403               | Υ (.      | 3)=        | .25714           | •      |         |       |       |
|                      | 0.00000       |              | 4)=         | 0.00000          | RM(13)=                   | .09880               | Y (-      | 4)=        | .01875           |        |         | -     | ····· |
| x ( 5) =             | .00293        | . PH (       | 5)=         | .00812           | PM(14)=                   | •53315               | Y (       | 5)=        | -01197           |        |         |       |       |
| X ( ^) =             | .23271        | PM (         | 6)=         | .64400           | PM(15)=                   | .14837               | VPA       |            | +02123           |        |         |       |       |
|                      | .10105 -      | R4(          | 7)=         | •27964           | ···· PM(16)=··            | .00739               |           |            | 100000           |        | · · · · |       |       |
| X ( と) =             | .12935        | -            | 8)=         | .35797           | R™(17)=                   | .00260               |           | -          | .00.128          |        |         |       |       |
|                      | r,nnnn        | •            | 9) =        | • •              | RM(1B) =                  | ·48948               |           |            | . 10005          |        |         |       |       |
| = TriH               | 320.473       | - HOUTO=     | 257         | 1.953 HL         | .055= 234.036             | - HAXNe=             | 161.055   | HCMDT≓     | .267             | MOHDT= | -10.725 |       |       |
|                      | <u>.</u>      |              |             |                  |                           |                      |           |            |                  |        |         |       |       |
| TIME= 1              | 15'00 WINNI   | res          |             | NUMP             | EP OF ITERATI             | 0NS= 8               |           |            |                  |        |         |       |       |
| V / 1 \              | 1.7.0         |              | • • •       |                  | ·                         |                      |           |            |                  |        |         |       |       |
| X ( 1) =             | .14749        |              | <b>.</b>    | .41385           |                           | 113.05345            |           | <b>.</b> . | .32306           |        |         |       |       |
|                      | 03973         |              | 2)=         | .10869           | RM(11) =                  | 2.0597               |           |            | • 34543          |        |         |       | ÷.    |
| X(3)=                | .35367        |              | 3)=         | .99239           | PM(12) =                  | .16385               |           |            | •25016           |        |         |       | 463   |
| × ( 4)=              |               |              | 4)=         | 0.00000          | PM(13)=                   | 12581                |           |            | .01800           |        |         |       | Bet i |
| X ( ->) =            | .00335        |              | 5) <b>≈</b> | • 0 0 9 4 3      | RM(14) =                  | .25/94               |           |            | .01292           |        |         |       |       |
| Y ( 6) =             | .21318        |              | 6) =        | .61222           | PM(15)=                   | .17083               |           |            | .02170           | -      | -       |       |       |
|                      |               |              |             | ··· •27964       | PM(16)= 1                 |                      |           |            | -999997<br>00015 |        |         |       |       |
| 7 ( H) H<br>7 ( K) H | .1390U        |              | 8)≕<br>0\-  | .38975           | $\frac{2W(17)}{2W(17)} =$ | ,01359<br>677.35     |           |            | .00015           |        |         |       |       |
|                      | • • • • • • • | L /          | 41-         | 0,0000           | P*(14)=                   | . 57525              | !         | אל אין     | •63363           |        |         |       |       |

| X(1) = .15434 PM(1) =                         | .43863 $RM(10) = 117.44119$       |                                       |                |                                                                 |
|-----------------------------------------------|-----------------------------------|---------------------------------------|----------------|-----------------------------------------------------------------|
| X(2)= .03628 PM(2)=                           | .10312 RM(11) = 2.84201           |                                       |                |                                                                 |
| X(3)= ,35473 PM(3)=                           | 1.00817 PM(12)= .16362            |                                       |                |                                                                 |
| X(4) = -0,00000 = 00000 = 000000 = 0000000000 | 0.00000 RM(13) = 15603            | 3 Y(4) = .01771                       |                | · · · · · · · · · · · · · · · · · · ·                           |
| X(5)= _00371 PM(5)=                           | .01055 RM(14)= .30109             | Y(5)= ,01357                          |                |                                                                 |
| X( 6)= 20489 RM( 6)=                          | .58232 RM(15)= .19430             | VPATE= .02250                         |                |                                                                 |
| X( 7)= РЯЗАР РМ( 7)=                          | .27964 PM(16)=                    |                                       |                |                                                                 |
| X(P)= ,14765 PM(8)=                           | .41965 RM(17) = .00489            |                                       |                |                                                                 |
|                                               | 0.00000 PM(18)= .66558            |                                       |                |                                                                 |
| HINT =- 320.473 - HOUTO= 284                  | •                                 | 142.643 HDMDT= -4.551                 | MDHDT= -16.439 |                                                                 |
|                                               | •                                 |                                       |                |                                                                 |
| ·                                             |                                   |                                       |                |                                                                 |
|                                               | · · · · ·                         |                                       | · -            |                                                                 |
| TIME= 20.00 MINUTES                           | NUMBER OF ITERATIONS= 7           |                                       |                |                                                                 |
|                                               |                                   |                                       |                |                                                                 |
|                                               | .46219 RM(10)'= 116.P6184         | • • • • • • • • • • • • • • • • • • • | • •            |                                                                 |
| Y( 2)= .03794 RM( 2)=                         | .09762 PM(11) = 2.87610           |                                       |                |                                                                 |
|                                               | 1.02318 RM(12) = .15337           |                                       |                |                                                                 |
|                                               | 0.00000 PM(13) =18930             |                                       |                |                                                                 |
| X(5)= .00400 RM(5)=                           | .01150 RM(14)= .33246             |                                       |                |                                                                 |
| x(-6) = .19270 RM(-6) =                       | •55423 RM(15)= •21851             |                                       |                |                                                                 |
|                                               | .27464 - RM(16)=01243             |                                       |                | and a fact many sectors to sector a state of the sector sectors |
| X(P) = .15568 RM(8) =                         | .44774 PM(17)= .00516             |                                       |                |                                                                 |
|                                               |                                   |                                       |                |                                                                 |
| · · · · · · · · · · · · · · · · · · ·         |                                   |                                       |                |                                                                 |
|                                               | +010 PL055= 183+475 PRXN5=        | 134.075 PDMDT= -4.690                 | MDHDT= -15.849 |                                                                 |
|                                               |                                   |                                       |                |                                                                 |
| · · · · · · · · · · · · · · · · · · ·         | •                                 |                                       |                |                                                                 |
|                                               |                                   | · - ·                                 | ·              |                                                                 |
| TIME= 24.00 MINUTES                           | NUMBER OF ITERATIONS= 7           |                                       |                |                                                                 |
|                                               |                                   |                                       |                |                                                                 |
| X(: 1)=, 16663 ····· R4( 1)=                  | •48460 PM(10) = 116.31457         |                                       | -              |                                                                 |
| X(2)= .03173 RM(2)=                           | -2.90828 RM(11) = 2.90828         |                                       |                |                                                                 |
|                                               | 1.03749 PM(12) = .16312           |                                       |                |                                                                 |
| $ \times (4) = -0.00000 + RM(4) =$            | 0.00000 RM(13) = .22550           |                                       |                | · · · · · · · · · · · · · · · · · · ·                           |
| x(5)= .06423 R4(5)=                           | •01229 PM(14)= .36206             |                                       |                |                                                                 |
| x( 6)= .18150 RM( 6)=                         | .52784 PM(15)= .24343             | VRATE= .02357                         |                |                                                                 |
|                                               | .27964 · · · PM(16) = ·· · .01417 | SIIMY= .99105                         |                |                                                                 |
| X( A) = .16303 RM( 8) =                       | .47413 PM(17)= .00749             | DY1=000044                            |                |                                                                 |
| X( 4) = 0.00000 RM( 9) =                      | 0.00000 RM(18)= .85053            | DY=00005                              |                |                                                                 |
| HINT = - 320.473HOUTO= 297                    |                                   |                                       | MOHOT= -14.976 |                                                                 |
|                                               |                                   |                                       |                |                                                                 |
|                                               |                                   |                                       |                |                                                                 |
|                                               |                                   |                                       |                | ·····                                                           |
| TIME= 28.00 MINUTES                           | NUMBER OF ITERATIONS= 7           |                                       |                |                                                                 |
|                                               |                                   |                                       |                |                                                                 |
|                                               | -,50587 RM(10)=-115,81073         |                                       |                |                                                                 |
| ×(2)= ,02967 RM(2)=                           | 0.8719 PM(11) = 2.93877           |                                       |                |                                                                 |
|                                               | 1.05116 $PM(12) = .16288$         |                                       |                |                                                                 |
|                                               | 10.00000 ···· PM(13)=25450        |                                       |                |                                                                 |
| X(5) = .00440 $= W(5) =$                      |                                   |                                       |                | · _                                                             |
|                                               |                                   |                                       |                | 5.                                                              |
|                                               | .50306 PN(15)= .26901             |                                       |                |                                                                 |
| <b>X(7)=</b> .09515 PM(7)=                    | •27964 PM(16)= •01592             |                                       |                |                                                                 |
| X(M)= .16977 RM(A)=                           | .49891 RM(17)= .00886             |                                       |                |                                                                 |
| X(G)= 0.00000 · RM(G)=                        |                                   |                                       |                |                                                                 |
|                                               | .896 HLOSS= 195.232 **HaxVe=      | 118,356 HOMOTE -4,247                 | MOHDT= -14,052 |                                                                 |
| ·                                             |                                   |                                       | •              |                                                                 |
|                                               |                                   |                                       |                |                                                                 |
|                                               |                                   |                                       |                |                                                                 |

A STREET OF THE STREET AND A STREET

RM(10)=1117.44119 (1)=

.34933

PM(1)= .43863

| TTIVE= | 48.00 MTMUTES" | • | NUMBER C | ٦F             | ITERATIONS=  | 7   |  |
|--------|----------------|---|----------|----------------|--------------|-----|--|
| TIME=  | 48.00 MINUTES  |   | NUMBER C | ) <del> </del> | I LEBATIONS= | - 7 |  |

. . .

x(3)=

-x ( 5)=-

X( 5)=

×(7)=

---- x( F)=

TIMF=

. .

X(4) = 0,00000

.35HA1

.00453

.16167

.04423

17596

40.00 MINUTES

. . .

· p4( 5)=

- RM( 8)=

PM( 6)=

PM( 7)=

 $R^{M}(3) = 1.06423$ 

PM( 4)= 0.00000

.01346

.47978

.27964

.52219

| X(])=      | .19040  | ¤M(               | 1)=  | •57966       | RM(1.0) = | 114.10126 | ·Y(])=     | .44545     | •              |  |
|------------|---------|-------------------|------|--------------|-----------|-----------|------------|------------|----------------|--|
| X( 2)=     | .02272  |                   | 5)=  | .06918       | RM(11)=   | 3.94446   | = (S) Y    | .2053H     | • **           |  |
| X(3)=      | .36121  | GM (              | 3) = | 1.09970      | PM(12)=   | .16191    | Y(3)=      | .21453     |                |  |
| X(4)=      | 0.00000 | RM (              | 4)=  | 0.0000       | RM(13) =  | .44550    | Y(4)=      | .01613     |                |  |
| X(5)=      | .00470  | <u></u>           | 5)=  | .01431       | RM(14) =  | .48595    | Y(5)=      | .01435     |                |  |
| X( +) =    | 13725   | RM (              | 6) = | .41788       | PM(15)=   | .37752    | VRATE=     | .02559     |                |  |
| X(7)=      | 09195   | R'4 (             | 7)=  | .27464       | PM(16)=   | +05528    | SH**Y=     | · 44434    |                |  |
| `x ( ⊬) =` | 19145   | ) Ма              | 8)=  | <u>58409</u> | RM(17)=   | .01455    |            | -,00046    | •              |  |
| x ( ~) =   | 0,00000 | ₽ <sup>,4</sup> ( | 9)=  | 0.00000      | PM(1A) =  | 1.34376   | 0Y=        | 00005      |                |  |
| -1 T * T = | 320.473 | ноито=            | 319  | .321 HLOSS=  | 107.911   | HRXNS=    | 92.824 404 | DT= -3.453 | MOHDT= -10.482 |  |

| x       | ( )    | ) =   | .]8634  | PM (   | 1)=   | .56277      | DM(10)=   | 114,48983 |       | Y(1)=  | .47306      |        |         |       |  |
|---------|--------|-------|---------|--------|-------|-------------|-----------|-----------|-------|--------|-------------|--------|---------|-------|--|
| x       | ( 2)   | ) =   | 02425   | · RM ( | 2) =  | .07325      | ₽M(11)=   | 3.02014   | • - • | Y(2)=  | •55563      |        |         |       |  |
| . X     | ( 3)   | ) =   | .36038  | RM (   | 3)=   | 1.08838     | RM(12)=   | .16214    |       | Y(3)=  | .27342      |        |         |       |  |
| x       | ( 4)   | ) =   | 0.00000 | PM (   | 4)=   | 0.0000      | RM(13)=   | .39749    |       | Y(4)=  | .01535      |        |         | •     |  |
| ····· x | ( 5)   | ) =   | .0046P  | + PM ( | 5)=   | .01413      | RM(]4)=   | .46413    |       | Y(5)=  | .01445      |        |         |       |  |
| x       | ( .    | ) =   | .14479  | P.4 (  | 6)=   | .4372B      | PM(15)=   | .34958    |       | VRATE= | .02526      |        |         |       |  |
| ×       | ( 7    | ) =   | .04259  | PM (   | 7)=   | .27964      | PM(16) =  | .02125    |       | SHMY=  | .99994      |        |         |       |  |
| —- x    | ( "    | ) = ` | 19507   | P.M.   | B') = | .56469      | PM(17)=   | .01317    |       | DY1=   | 00046       |        |         | ·•• · |  |
| · 🗴     | ( 4    | ) =   | 0.00000 | Q M (  | 9)=   | 0.00000     | PM(18)=   | 1.24204   |       | UY =   | 00006       |        |         |       |  |
| ч<br>Ч  | 41 M T | z     | 320.473 | HOUTO= | 319   | 5.728 HLOSS | = 118.104 | HRXNS=    | 98.   | 561 40 | MDT= -3.750 | MOHDT= | -11.049 |       |  |

| TIME 36.00 MINUTES NUMBER OF ITERATIONS= 7                                               | ····· |
|------------------------------------------------------------------------------------------|-------|
| X(1) = .18197 RM(1) = .54493 RM(10) = 114.90041 Y(1) = .45630                            |       |
|                                                                                          |       |
| X(3) = .35951 RM(3) = 1.07658 PM(12) = .16239 Y(3) = .27206                              |       |
| X ( 4) = 0,00000                                                                         |       |
| TTTX(5)= -00462 TT PM(5)= -01385 TT PM(14)= 44088 Y(5)= -01453                           |       |
| x( f)= .15240 PM( 6)= .45789 PM(15)= .32212 VPATE= .02490                                |       |
| X(7)= .09338 RM(7)= .27964 RM(16)= .01945 SUMY= .99996                                   |       |
|                                                                                          |       |
| X(4) = 0.00000 $PM(9) = 0.00000$ $PM(1B) = 1.14152$ $DY =00004$                          |       |
| HINT = 320.473 HOUTO= 311.862 HLOSS= 128.890 HRXNS= 104.683 H9MDT= -4.052 M9HDT= -11.543 |       |

Y(3)=

Y(4)=

Y(5)=

VOATE =

SHMY=

0Y]=

.27050

.01689

.01453

.02442

.94445

-.00045

---- -

. . . .

.16265

.30517

-41513

.29520

.0176P

.01027

. . . .

PV(14)= -

= (S1) MA

RM(13) =

RM(15) =

PM(16)=

P\*\*(17)=

NUMBER OF ITERATIONS= 7

.

| X ( f) =                               | .13027                     | RM (    | 6)=       | .39961                | P>(15)=               | .40583            | VPATE         |            | .02540           |        |                | •             |
|----------------------------------------|----------------------------|---------|-----------|-----------------------|-----------------------|-------------------|---------------|------------|------------------|--------|----------------|---------------|
| ¥(7)=                                  | .09115                     | -       | 7) =      | .27464                | RM(16)=               | .02475            | SUMY          |            | .99994           |        |                |               |
|                                        |                            |         | 8) =      | .60236                | RM(17)="              |                   |               |            | 00045            |        | • • • • •      |               |
| X( 9)=                                 | 0_10000                    | PM (    | 9)=       | 0.0000                | R4(18)=               | ],64574           | DY            | <b>*</b> = | 00006            |        |                |               |
| HINT =                                 | 320.473                    | HOUTO=  | 322       | .733 HLOSS=           | - 94.242              | 42245=            | 87.465        | 47V[       | )T= -3.187       | монот≖ | <b>~9.</b> 889 |               |
|                                        |                            |         |           | -                     |                       |                   |               |            |                  |        |                |               |
|                                        |                            |         |           |                       |                       |                   |               |            |                  |        |                |               |
|                                        |                            |         |           |                       |                       |                   |               |            |                  |        |                |               |
|                                        | >C'UU WIAA                 | TES -   |           | NUMBER O              | H. ITERATI            | 015=7             |               |            |                  | •      |                |               |
| × ( 1) =                               | 19769                      | 041     | 1)=       | .61075                | DV(10) -              | 113.32692         | v / 1 .       |            | -1654 -          |        |                |               |
| =(S : X                                |                            |         |           | •01075<br>•06187      | PM(11) =              | -3.08460          | (1)Y<br>(2)Y  |            | •51558<br>•17805 |        |                |               |
| X (.3) =                               | .36281                     | •       |           | 1.12095               | RM(12)=               | .16148            | Y(3)          |            | •27669           |        |                |               |
| X(4) =                                 | 0,00000                    |         | $(3)^{-}$ | 0.00000               | RM(13)=               | 55110             | Y(4)          |            | •01563           |        |                |               |
| - ×( 5)=                               |                            | -       | 5)=       | .01443                |                       | 52570             | - Y(5)        |            | .01400           | -      |                |               |
| ¥( 6)=                                 | 12376                      |         | 6)=       | 38238                 | R <sup>14</sup> (15)= | .43479            | VRATE         |            | .02520           |        |                |               |
| Y (7) =                                | .04051                     |         | 7) =      | .27464                | RM(16)=               | 02551             | SUMY          |            | .00004           |        |                |               |
| × ( +)=                                | -                          |         | •         | .61959                | RM(17) = -            | 01759             | DY1           |            | ~.0004h          |        |                |               |
|                                        | 0.00000                    |         |           | 0.00000               | RM(18)=               | 1.55094           | DY            |            | 00005            |        |                | •             |
|                                        | 320.473                    | HOUTO=  |           |                       |                       | HRXNS=            |               | ้างงา      |                  | MOHDT= | -9.248         |               |
| •••••••••••••••••••••••••••••••••••••• |                            |         |           |                       |                       |                   |               | _          |                  |        |                |               |
|                                        |                            |         |           |                       |                       |                   |               |            |                  |        |                |               |
|                                        |                            |         |           |                       |                       |                   |               |            |                  |        |                |               |
| TI*F=5                                 | 6.00 MINH                  | TFS     |           | NIIMBER O             | F ITERATIO            | ONS= - 7 ····     |               |            |                  |        | • •            |               |
|                                        |                            |         |           |                       |                       |                   |               |            |                  |        |                |               |
| ¥ ( 1) =                               | .20N04                     | RM (    | 1)=       | <b>.</b> 62502        | RM(10) =              | 113.05989         | Y(1)          | ÷          | .52748           |        |                |               |
| x( S)=.                                | 01PP3                      | QM(     | 5)=       | •0 <u>5858</u> ······ | RM(11) = -            | 3.11050           | X(S)          | =          | .16573           | • ·    |                |               |
| X(3)=                                  | <u>.36354</u>              | RM (    | 3)=       | 1.13095               | PM(12) =              | .16128            | Y(3)          | =          | ·27758           |        |                |               |
| · · ·                                  | 0,00000                    | -       | 4)=       | 0.0000                | RM(13) =              | \$60626           | Y(4)          |            | •0153H           |        |                |               |
| ×t 5)=                                 | -                          | т рм(   |           | .01437                |                       | .54382            |               |            | .01378           | •      |                | . / /         |
| ×( +)=                                 | .11771                     |         | 6)=       | .36614                | RM(15)=               | .46406            | VPATE         |            | •02549           |        |                |               |
| X ( 7)=                                | .04940                     |         | 7;=       | .27964                | PM(16)=               | 92420             | SUMY          |            | .99995           |        |                |               |
| ¥ţ ×)=-                                |                            |         | 8)≂       | 63583                 |                       | 01906             | · DY]         |            | 00946            |        |                |               |
| X ( 9) =                               |                            |         |           | 0.0000                | RM(18) =<br>80.635    | 1.65632<br>H7XNS= | אנו<br>בבפ דד |            | 00005            |        | -0.701         |               |
|                                        | 720.473                    | HOUTO=  | 369       | .173 HLOSS=           |                       | LA V 2 =          | 77.833        |            | T = -2.781       | MDHDT= | -8,721         |               |
|                                        |                            |         |           | •                     |                       |                   |               |            |                  |        |                |               |
|                                        |                            |         |           |                       |                       |                   |               |            |                  |        |                |               |
|                                        | 0.00 MTM                   | TFS     |           | MUMBER O              | F ITERATIO            | 015= 7            | <b>.</b>      |            |                  |        | -              |               |
|                                        | 1997 - 1998<br>1997 - 1998 | •       |           | . 2 0                 |                       |                   |               |            |                  |        |                |               |
| × (1) =                                | 20397                      | RM(     | 1)=       | .63R48                | RM(10) =              | 112.75200         | Y(1)          | 2          | .53B39           |        |                |               |
|                                        |                            |         | 2)=       | .05552                |                       | 3.13034           |               |            | .154.99          |        |                |               |
| ×( 3)=                                 | 36433                      |         | 3)=       | 1.14047               | RM(12)=               | +16109            | Y(3)          |            | .27840           |        |                |               |
|                                        | 0.00000                    |         | 4) =      | 0.00000               | PM(13)=               | .65324            | Y(4)          |            | .01513           |        |                |               |
|                                        | -                          | R14 (   |           | .01425                |                       |                   | *(5)          |            | -01354           |        |                |               |
| X( f)=                                 | .11206                     | 24(     | 6)=       | ·350A0                | RM(15)=               | .49375            | VRATE         | =          | .02676           |        |                |               |
| X(7)=                                  | .08033                     |         | 7)=       | .27964                | RM(16) =              | .03000            | CUNA          |            | .99945           |        |                |               |
| ×(                                     | 20805                      |         |           | • • 65117             | RM(]7)=-              | .02052            |               |            | -,00045          |        |                |               |
|                                        | 0.00000                    |         |           | 0.0000                | PM(18)=               | 1.75232           |               | ' =        |                  |        |                |               |
| HINT =                                 | 320.473                    | HOUTO=  | 335       | .217 HLOSS=           | 72.580                | HOXNSH            | 73.524        | - 2 MU     | )T= -2.637       | MDHDT≃ | -8,162         | <u>ب</u><br>۲ |
|                                        |                            |         |           | •                     | -                     |                   |               |            | •                |        |                | о́,           |
|                                        |                            |         |           |                       |                       |                   |               |            |                  |        |                |               |
|                                        |                            | • • • • |           |                       | C                     | 04r = 7           |               |            |                  |        |                |               |
| T175= 6                                |                            | 125     |           | MIWHEN ()             | E TIERATIC            | 0NS= 7            |               |            |                  |        |                | · · · ·       |
| ¥/ 1)=                                 | 20170                      | 5.47    | 11-       | 65117                 | DH(10)-               | 112 64260         |               | _          | 5,430            |        |                |               |
| X(1)=                                  | .2067H                     | - RM (  |           | .65117                |                       | 112,46249         | Y(1)          |            | -54839           |        |                |               |
| ・・キ( 2)=・<br>( 5)=                     | .36506                     |         |           | .05257<br>1.14962     | PM(11)=               | 3.14915<br>.16090 | Y(2)<br>Y(3)  |            | .14623           |        |                |               |
| 1                                      | • 3 C T C T                | ×       |           | 1 + 1 ** 7 ** 2       |                       | • 100.40          | 1(3)          |            | . 27.02.7        |        |                |               |

| <b>X(</b> L              | •) =                           | 0,00000                     | P 9                    | (9)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                | P*(18)=                       | 1.87940                     | DY=                                                      | -,00000p                   |          |        |                                        |
|--------------------------|--------------------------------|-----------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|-----------------------------|----------------------------------------------------------|----------------------------|----------|--------|----------------------------------------|
| -TNT                     |                                | 320.473                     | HOUTO                  | = 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -141 PLOSS=                           | 65.008                        | コッスタンニ                      | 49.525 PD                                                | MDT= -2.525                | M0HD1=   | -7.626 |                                        |
|                          | ·                              |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                     | • •                           |                             |                                                          |                            |          |        |                                        |
|                          |                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                               |                             |                                                          |                            |          |        |                                        |
|                          |                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | T ITERATI                     | 0NC- 7                      |                                                          |                            |          |        |                                        |
| TIME=                    | r 68                           | 3. 10 MINH                  | TES                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOWHEN O                              | 1 11242411                    | 0.55                        |                                                          |                            |          |        |                                        |
|                          |                                | <u></u>                     | P5 14                  | ( })=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .66312                                | PM(10)=                       | 112.19052                   | Y(1)=                                                    | ,55755                     |          |        |                                        |
| X()                      |                                | .20939                      |                        | ( 2)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .05001                                | PM(11)=                       | 3.16098                     | ¥(2)=                                                    | .13485                     |          |        |                                        |
| X ( 2                    |                                | .01579                      |                        | (3) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.15840                               | RM(12)=                       | .15071                      | Y(3)=                                                    | .27949                     |          |        |                                        |
| X ( 3                    |                                | .36577                      |                        | (3) = (4) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00000                               | RM(13)=                       | .78220                      | Y (4) =                                                  | .01454                     |          |        |                                        |
| X ( 4                    | •                              | 0,00000                     |                        | ( 5)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .01345                                | RM(14)=                       | . 59712                     | ¥(5)=                                                    | .01301                     |          |        |                                        |
|                          | •                              | .00437                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .32259                                | RM(15)=                       | 55426                       | VOATE =                                                  | .02728                     |          |        |                                        |
| X ( f                    | •                              |                             |                        | (6) = (7) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .27964                                | RM(16)=                       | .13344                      | SUMYE                                                    | .94995                     |          |        |                                        |
| X(7                      |                                | _08431<br>_21452            |                        | (8) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67938                                 | PH(17)=                       | - 02340                     | DY]=                                                     |                            |          |        |                                        |
| - x ( F                  |                                | 0,00000                     |                        | (9) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | RM(18)=                       | 1.97903                     | DY=                                                      | 00005                      |          |        |                                        |
| ¥( 오<br>편[N1             | •                              | 320.473                     | Нонто                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .940 HLOSS=                           |                               |                             | 65.815 HD                                                | MDT= -2.438                | MOHDT=   | -7.112 |                                        |
|                          | · <b>-</b>                     | 120.415                     |                        | - 557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                               |                             |                                                          |                            |          |        |                                        |
|                          |                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                               |                             |                                                          |                            |          |        |                                        |
|                          |                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                               |                             |                                                          |                            |          |        |                                        |
| TIVES                    | . 77                           | 2.00 MINU                   | TES                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NHMBER O                              | F ITERATI                     | 0NS= 7                      |                                                          |                            |          |        |                                        |
|                          |                                |                             | -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                               |                             |                                                          | a 1 - 2 i                  |          |        |                                        |
| x ( )                    | () =                           | ,21180                      | 2M                     | (1)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,67436                                | RM(10)=                       | 111,93526                   | Y(1) =                                                   | ,56594                     |          |        |                                        |
| - ×( 2                   |                                | 01493                       | . PM                   | (2) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .04753                                | PM(11)=                       | 3,18388                     | Y (2) =                                                  | .12629                     |          |        |                                        |
| X C                      |                                | 36647                       | DM                     | (3)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.16680                               | PM()2)=                       | .16052                      | Y(3)=                                                    | .24058                     |          |        |                                        |
| x ( 4                    |                                | r,00000                     | D V                    | (4)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00000                               | RM(13)=                       | .94400                      | Y(4)=                                                    | .01442                     |          |        |                                        |
| X (                      |                                | 00427                       | ייב 1                  | ( 5)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .01358                                | RM(14)=                       | .60644                      | Y(5)=                                                    | .01272                     |          |        | •                                      |
| x ( 4                    |                                | 09724                       | DY                     | ( 6)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .30960                                | PM(15)=                       | .54507                      | VRATE=                                                   | .02752                     |          |        |                                        |
| × (                      | 7) =                           | .04793                      | 5 V                    | (7)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .27964                                | RM(16) =                      | .03515                      | !!!?=</td <td>. 99995</td> <td></td> <td></td> <td></td> | . 99995                    |          |        |                                        |
| x ( )                    | 4) =                           | .21746                      | 5.4                    | ( 8)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .69237                                | RM(17)=                       | .02481                      | DY1=                                                     | 00045                      |          |        |                                        |
| 2. ( )                   |                                | 0,00000                     | D */                   | 11 9)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | RM(18)=                       | 2.05854                     | 5Y=                                                      | 00005<br>S75-S- =TCM       | монот=   | -6.622 |                                        |
| HIN.                     | T =                            | 320.473                     | HOUTC                  | = 34(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,610 HLOSS=                          | 51.228                        | HRXNS=                      | 62.371 -0                                                | MJ1C+J16                   | -151101- | 0.01   | - <i></i> –                            |
|                          |                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                               | •                           | •                                                        |                            |          |        |                                        |
|                          |                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                               |                             |                                                          |                            |          |        |                                        |
|                          |                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | F ITERATI                     | ONS= 7                      |                                                          |                            |          |        | ··· ···· ···· ···· ··················· |
| TI 45 =                  | 7                              | 6.00 MIN                    | ITES                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COMPLET N                             | a Illaamit                    | 0.1.1-                      |                                                          |                            |          |        |                                        |
|                          | • .                            |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | PM(10) =                      | 111.69583                   | Y())=                                                    | .57353                     |          |        |                                        |
| × (                      |                                | .21465                      |                        | =(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .04522                                | RM(1))=                       | 3.19995                     | Y (2) =                                                  | .11346                     |          |        |                                        |
| - x (                    |                                | .01413                      |                        | (-2) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = |                                       | RM(1())=                      | .13033                      | Y(3)=                                                    | .24124                     |          |        |                                        |
| ¥ ( )                    |                                | . 36715                     |                        | (3) = (4) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00000                               | PH(13)=                       | .90722                      | Y (4) =                                                  | .0:420                     |          |        |                                        |
| ×(                       |                                | 0.00000                     |                        | f( 4)=<br>f( 5)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .01328 T                              | GN(14)=                       | .61598                      | ° Y(5)≈                                                  | .01242                     |          |        |                                        |
|                          |                                | .00615<br>.00615            |                        | (6) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .29729                                | PV(15)=                       | .61623                      | VD479=                                                   | .62775                     |          |        |                                        |
| Х()<br>Х(                |                                | 04739<br>04739              |                        | *( 7)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .27464                                | PM(16)=                       | .13645                      | S. CMY +                                                 | .99095                     |          |        |                                        |
| x ( )                    |                                | 55055                       |                        | 1(8)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .70465                                | $P^{M}(17) =$                 | .02520                      | ()Y]=                                                    |                            | ••       |        |                                        |
| X (                      |                                | 0,00000                     |                        | (1 9) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | RM(15)=                       | 2,19920                     | Б <b>Ү</b> =                                             |                            |          |        |                                        |
| a i N                    |                                | 320,473                     |                        | )= 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                               | HRXNS=                      | 59.172 -0                                                | S26+2~ =TGM                | =TGHCM   | -6.157 |                                        |
|                          |                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                               |                             |                                                          |                            |          |        |                                        |
|                          |                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                               |                             |                                                          |                            |          |        |                                        |
|                          |                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                               |                             |                                                          |                            |          |        |                                        |
| ·····                    | - R                            | 0.00 VIN                    | ITES                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MUMBER (                              | )6 1759011                    | 0.95= 7                     |                                                          |                            | •        | •      | 2<br>(5)                               |
| 11,225                   |                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                               |                             |                                                          | N 364 D                    |          |        |                                        |
| 11455                    |                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                               | 111.47134                   | Y(1)=                                                    | <u> </u>                   |          |        |                                        |
| × (                      | 1)=                            | .21613                      | D,                     | 4( 1)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                               | • • •                       |                                                          |                            |          |        |                                        |
|                          |                                | .21613                      |                        | 4( <u>1)</u> =<br>4( 2)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .04306                                | PV(11) =                      | 3.21504                     | = (S) Y                                                  | +11128                     |          |        |                                        |
| ¥ (                      | 2) =                           |                             | 5<br>1<br>1<br>1       | 4( 2)=<br>4( 3)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .04306<br>1.18257                     | рм(1)) =<br>нм(12) =          | 3.21504                     | =(S)Y<br>=                                               | -11128<br>-28187           |          |        |                                        |
| У(<br>X(<br>Х(           | 2) =<br>3) =                   | .01339                      | 0 ×<br>5 ×<br>5 ×      | 4( 2)=<br>41 3)=<br>4, 4)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .04306<br>1.18257<br>0.00000          | PV(1))=<br>HM(12)=<br>PM(13)= | 3.21504<br>.16014<br>.97178 | = (S) Y<br>= (S) Y<br>Y (4) =                            | -11128<br>-28187<br>-02600 |          |        |                                        |
| > (<br>X (<br>X (<br>X ( | 2) =<br>3) =<br>4) =<br>5) = 7 | .01339<br>.36722<br>p.00000 | , b.<br>G:<br>5,<br>3, | 4( 2)=<br>4( 3)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .04306<br>1.18257<br>0.0000<br>.01294 | рм(1)) =<br>нм(12) =          | 3.21504<br>.16014<br>.97178 | =(S)Y<br>=                                               | -11128<br>-28187           |          |        |                                        |

| TINE= 84.00 MIN                       | UTES -        | - NUMBER OF ITE | RATIONS= 7                             |            |             |               |                                                               |
|---------------------------------------|---------------|-----------------|----------------------------------------|------------|-------------|---------------|---------------------------------------------------------------|
| X(1)= .21805                          | RM(1) =       | •70420 · RM(1   | 0) = 111.26093                         | Y(1) =     | .58717      |               |                                                               |
|                                       |               | .04104 PM(1     |                                        |            | .10470      |               |                                                               |
| X(3) =36448                           |               | 1.18996 RM(1    |                                        |            | 28248       |               |                                                               |
| X(4) = 0,00000                        |               | 0.00000 PM(1    |                                        |            | .013H1      |               |                                                               |
| x(-5) =00390                          |               | .01259 PM(1     | 4)=                                    |            | .01179      | • · · · •     |                                                               |
| X( 6)= 08500                          |               | .27449 PM(1     |                                        |            | .02818      |               |                                                               |
| X(7)= 04659                           |               | .27964 DN(1     |                                        |            | .99495      |               | ·                                                             |
| x(-P)= 22527                          | = (8) high    | -72748 - PH(1   |                                        |            | 00045       |               |                                                               |
| x(9)= 0,0000                          | RM( 9)=       | 0.00000 PM(1    |                                        |            | 00005       |               |                                                               |
| HINT = 320.473                        | HOUTO= 347    | 7.832 HLOSS= 33 | .626 HPXNS=                            | 53,431 40  | MDT= -2.251 | MOHDT= -5.302 |                                                               |
|                                       | , .           |                 |                                        |            |             |               |                                                               |
| -TIME=88.00 MIN                       | UTES          | NUMBER OF ITE   | RATIONS= 7                             | /* m:      |             |               | ······································                        |
| x(1)= .21965                          | RM(1)=        | .71297 PM(1     | 0) = 111.06374                         | Y(1)=      | .59312      |               |                                                               |
|                                       |               |                 | 1) =3.24298                            |            | .09856      |               |                                                               |
| x(3) = .36912                         |               | 1.19705 PM(1    |                                        |            | .28307      |               |                                                               |
| X(4) = 0.00000                        | RM(4)=        | 0.00000 PM(1    | 3) = 1.10457                           | Y(4)=      | .01353      |               |                                                               |
| x () =00376                           | RM( 5)=-      |                 | 4) =55645                              | Y(5)=      | .01147      | · •           |                                                               |
| X( 6)= .08138                         | RM( 6)=       | .26392 PM(1     | 5)= .71153                             | VPATE =    | ·02H37      |               |                                                               |
| X(7)= .08423                          | RM(7)=        | .27964 RM(1     | 6)= .04187                             | SUMY=      | .94495      |               |                                                               |
| x(· +)=·22759                         | RM( 8)=       | .73905 RM(1     | 7)=03024                               | · DY1=     | 00945       |               |                                                               |
| X( 9) = 0.00000                       | RM(9)=        | 0.00000 PM(1    | 9)= 2,53608                            | DY=        | 00005       |               |                                                               |
| HINT = 320.473                        | HOUTO= 349    | 9.977 HL055= 28 | .485 HRXNS=                            | 50.852 HD  | -2.225 =TO  | MDHDT= -4.912 |                                                               |
| -TIVE= 92.00 MIN                      | UTFS          | NUMBER OF ITE   | RATIONS=- 7                            |            |             |               |                                                               |
| (1) = .22151                          | RM( 1)=       | .72120 PM()     | 01 = 110.87892                         | Y(1)=      | .59859      |               |                                                               |
| ×(2)=01149                            |               |                 | 1) = 3.25585                           |            | .09311      |               | A V III I I MARGANISH AND |
| x(3)= 35975                           |               | 1.20385 RM(1    |                                        |            | .28355      |               |                                                               |
| X(4) = 0.00000                        | 요석(4)=        | 0.00000 04(1    | 3) = 1.17266                           | Y(4)=      | .01345      |               | ·                                                             |
| x { 5) =00363                         | RM( 5)=       |                 | 4) =66738                              | ···· Y(5)= | .01115      | •             |                                                               |
| X( 6)= .07797                         | - RM(6)=      | .25346 RM(1)    | 5)= .743HA                             | VPATE=     | .02455      |               |                                                               |
| X(7)= .08589                          | RM(7)=        | .27964 RM(1)    | 6)= ,04353                             | S11MY =    | .49495      |               |                                                               |
| X( +)=22977                           | R¥(8)=        | .74H11 PM(1     | 7) =03153                              | ()Y]=      | 00045       |               |                                                               |
| X( 9)= 0.00000                        | $P^{**}(9) =$ | 0.00000 PM(1    | $R_{1} = 2.64995$                      | () Y =     | 00005       |               |                                                               |
| HINT = 320.473                        |               |                 | .670 HRXNS=                            | 48.445 HD  | 40T= -2.801 | 40807≈ -4.546 |                                                               |
|                                       |               |                 |                                        |            |             |               | · · · · · · · · · · · · · · · · · · ·                         |
|                                       | ' .           | <b></b>         | ···· · · · · · · · · · · · · · · · · · |            |             |               |                                                               |
| · · · ·                               |               |                 |                                        |            |             |               |                                                               |
|                                       | ·             |                 |                                        |            |             |               | 4.6                                                           |
|                                       | • · · · ·     |                 | · · · · · ·                            |            |             | -             |                                                               |
| · · · · · · · · · · · · · · · · · · · | 1             |                 |                                        |            |             |               | · · · · · · · · · · · · · · · · · · ·                         |

| 0 | DINATE INCOME CALLER OUT |  |
|---|--------------------------|--|
|   |                          |  |

| •••                                     |                                       |                |            |               |                 |          |                  |               | ,                                            |
|-----------------------------------------|---------------------------------------|----------------|------------|---------------|-----------------|----------|------------------|---------------|----------------------------------------------|
|                                         |                                       |                |            |               | •• ·            |          |                  |               |                                              |
|                                         |                                       |                |            |               |                 |          |                  |               |                                              |
| INITIAL                                 | CONDITIONS P                          | ASED ON AD.    | JUSTED TIM | E .           |                 |          |                  |               |                                              |
| ···· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· · | ··· · · · · · · · · · · · · · · · · · | · · · - ·      |            |               |                 |          |                  |               |                                              |
| ×(])=                                   | .11773                                | QM( 1)=        | .30682     | PM(10)=       | 115.71000       | Y(1):    | -10835           |               |                                              |
| X(?)=                                   |                                       | ₽М( 2) =       | .14651     | $R^{M}(11) =$ | 2,60603         | Y(2)Y    |                  |               |                                              |
| =(€`)×```                               | .33719 -                              | PM( 3)=        | .86828     | RM(12)=       | .16586          |          |                  |               | ······································       |
| X ( 4) =                                |                                       | <b>२५(4)</b> = | 0.00000    | PM(13)=       | .03278          | Y(4):    |                  |               |                                              |
| X(5)=                                   | .00069                                | RM(5)=         | .00180     | PM(14)=       | .08622          | Y(5):    | .01246           |               |                                              |
| — - X( F)=                              | . 29384 -                             | RM(6)=         | .76575     | RM(15) =      | .01058          | VRATE    | sa020.           |               | يوريون والمراجع والمستمر منته المعرب المراجع |
| X(7)=                                   | .10434                                | RM(7)=         | .28234     | PM(16)=       | .00346          | SLIMY:   | 1.00000          |               |                                              |
| X( H)=                                  | *UK000                                | PM( 8)=        | .23453     | PM(17)=       | 0.00000         | DY1:     | = 0.0000         |               |                                              |
| X(                                      | 0.00000 -                             | =(P)Mq `       | 0.00000    | PM(18)=       | .13304          | . DY:    | = 0.00000        |               |                                              |
|                                         | <b>'</b> ,                            |                |            |               |                 |          |                  |               |                                              |
|                                         |                                       |                |            |               |                 |          |                  |               |                                              |
|                                         |                                       | •••••          |            | ••• ••        |                 |          |                  |               |                                              |
| TIME=                                   | 4.00 MINUTE                           | S              | NUMB       | ER OF ITERATI | ONS= 4          |          | ,                |               |                                              |
|                                         |                                       |                |            |               |                 |          |                  |               |                                              |
|                                         | •••                                   | =([)Mq         | .32035     |               | 118.03739       |          |                  |               |                                              |
| x(2)=                                   | .06066                                | RM(2)=         | .16141     | RM(11) =      | 2,66098         |          |                  |               |                                              |
| X(3)=                                   | -                                     | RM(3)=         | .89176     | RM(12) =      | 16692           |          |                  |               |                                              |
| X(4)=                                   |                                       | RM('4)=        | 0.00000    | PM(13)=       | .04287          | Y(4):    |                  |               |                                              |
| X ( 5) =                                | +00182 ·                              | · PM ( 15) =   | .00484     | RM(14)=       | • 11426         |          | -                |               |                                              |
| X( 6)=                                  |                                       | 무색(6)=         | •71944     | PM(15)=       | .02156          | VRATE    |                  |               |                                              |
| X( 7)=                                  |                                       | RM(7)=         | .28234     | PM(16)=       | .00515          | - S')MY÷ | - 1.00004        |               |                                              |
| =(A)X                                   | .10554                                | RM( 8)=        |            | RM(17) =      | .00033          | 0Y1=     | • <b>•</b> 00188 |               |                                              |
| , X(9)=                                 | -                                     | RM(9)=         | 0.0000     | PM(18)=       | .18675          | 9 Y =    |                  |               |                                              |
| HINT =                                  | 246.337                               | HOUTO= 536     | ,782 HL    | 05S= 301.731  | H2XN2=          | 241.395  | 10MDI= -21.153   | MOHDT= 20.943 |                                              |
|                                         |                                       |                |            |               |                 |          |                  |               |                                              |
|                                         | <u>_</u>                              |                |            |               |                 |          |                  |               |                                              |
| TIVE=                                   | 8.00 MINUTE                           | c              | NUMP       | ER OF ITERATI |                 |          |                  |               |                                              |
| 11-6-                                   | 0.00 MT 4016                          | 5              |            | ER OF LICRALI |                 |          |                  |               |                                              |
| × ( 1) =                                |                                       | PM(1)=         | .32043     | RM(10)=       | 117.88885       | Y(1)=    | .20154           |               |                                              |
| ×(2)=                                   | .06114                                | RM(2)=         | .16410     | RM(11)=       | 2.68411         | A (S) =  |                  |               |                                              |
| ×(3)=                                   | 33463                                 | RM(3) =        | 90892      | RM(12)=       | .16522          | Y(3) =   |                  |               |                                              |
| X('4)=                                  |                                       | RM(4)=         | 0.00000    | RM(13) =      | .05948          | Y(4)=    |                  |               | an a     |
| X ( 5) =                                | 00299                                 | RM(5)=         | .00803     | PM(14) =      | ,15993          | Y(5)=    |                  |               |                                              |
| X(-6) =                                 | 24888                                 | RM(6)=         | .66802     | PM(15)=       | 03962           | VPATE    |                  |               |                                              |
| ×(7)=                                   | .10519 ***                            | "RM(7)=        | 28234      | RM(16) =      | .00910          | SUMY=    | • •              | · ·           |                                              |
| X( H)=                                  | 12379                                 | RM(8)=         | •33226     | RM(17) =      | .00119          | 0Y1=     |                  |               |                                              |
| <i>F</i> ( ),-                          |                                       |                |            |               | • • • • • • • • | UT14     |                  |               |                                              |

X(9)= 0.00000 RM(9)= 0.00000 RM(18)= .26944 DY= -.00002 HINT = 245.337 HOUTO= 255.523 HLOSS= 315.838 HRXNG= 243.566 HDMDT= -25.782 MDHDT= -2.676 

TIVE= 12,00 MINUTES . NUMBER OF ITERATIONS= 8

| <u> </u> | x ( 1) =  | 12021   | RM( 1)=    | .32603  | PM(10) =      | 117.53982 | • Y(1) = | .20851   |
|----------|-----------|---------|------------|---------|---------------|-----------|----------|----------|
|          | ≍( ?)=    | .06115  | RM(2)=     | .16583  | $R^{M}(11) =$ | 2.71210   | Y(2)=    | .52363   |
|          | X ( 3) =  | .34175  | RM( 3)=    | .92686  | PM(12)=       | .15395    | Y(3)=    | .21937   |
|          | X ( 4) =  | 0,00000 | R'4(4)=    | 0.0000  | RM(13)=       | .07553    | Y(4) ≃   | ,03546   |
|          | X ( 5) =  | .00396  | 요새(5)=     | .01075  | $R^{M}(14) =$ | .20043    | Y (5) =  | -01325   |
|          | X ( fi) = | .25001  | PM( 6)≂    | .62109  | RM(15)=       | .05674    | VPATE=   | .01903   |
| -        | ン(7)=     | .10411  | ГГ РМ( 7)= | 28234   | RM(16) =      | .01201    | SHMY=    | . 99993  |
|          | Y (       | .13942  | D4( H)=    | , 37920 | PP(17) =      | .00514    | 1)Y]=    | 00031    |
|          |           |         | · • •      | A 00610 | EX. (1.1.) m  | 34770     | DV-      | - 01°00? |

Ō

and can have an an an an and many second

| X ( ])=              | ,12245          |                       | 1)=             | .33602                  |               | 117.09798 |           |         | .21857                 |         |         |         |                                                                   |
|----------------------|-----------------|-----------------------|-----------------|-------------------------|---------------|-----------|-----------|---------|------------------------|---------|---------|---------|-------------------------------------------------------------------|
| X(2)=                | .06040          |                       | 2)=             | .16684                  | RM(11)=       | 2.74404   | • -       |         | .50867                 |         |         |         |                                                                   |
| X ( 3)=              | .34454          |                       | 3)=             | .94543                  | PM(12)=       | .16307    |           |         | .22154                 |         |         |         |                                                                   |
| x('4)=               |                 | R11 (                 |                 | 0.0000                  | PM(13)=       |           |           |         | .03672                 |         |         |         |                                                                   |
| ¥ (5)=               | .00478          |                       | 5) =            | •01315                  | PM(14)=       | ·23998    |           |         | .01433                 |         |         |         |                                                                   |
| Y( 6)=               | .210-8          |                       | • 6) =          | .57412                  | PM(15) =      | •07321    |           |         | .01830                 |         |         |         |                                                                   |
| >( 7)=               | • • • •         | PM(                   |                 | .24234                  | -             | ·••1489   |           |         | .90033                 |         | • •••   |         |                                                                   |
| X(2)=                | .15385          |                       | 8)=             | .42216                  | PM(17)=       | •00355    |           | 1= -    | -00031                 |         |         |         |                                                                   |
|                      | 0.00000         |                       |                 | 0.0000                  | $R^{M}(18) =$ | •45530    |           | Y= -    | •00007                 |         |         | •       |                                                                   |
| HIVI =               | - 206, 337      | HOUTO=                | 533             | 3.393 HL055             | 5= 293.333    | HRXNS=    | 203.644   | -10NDT= | -15.786                | MOHDT=  | -10.959 |         |                                                                   |
|                      |                 |                       |                 |                         |               |           |           |         |                        |         |         |         |                                                                   |
| ••••                 |                 |                       |                 |                         | •             |           |           |         |                        |         |         |         |                                                                   |
| TJME= 2              | 20.00 4140      | TES                   |                 | NUMREP                  | OF ITERATI    | 0N5= 8    |           |         |                        |         |         |         |                                                                   |
|                      |                 |                       |                 |                         |               |           |           |         |                        |         |         |         |                                                                   |
|                      | .12573          | PM(                   | 1)=             | • 34931                 | PM(10)=       | 116.63315 | ····· Y() | )= .    | .53550                 |         |         | ··· ·   |                                                                   |
| Y( ?)=               | 06005           | RM (                  | 5)=             | <ul><li>16675</li></ul> | RM(11)=       | 2.77815   | Y ( 2     | )=      | 49148                  |         |         |         |                                                                   |
| x( 3)=               | .34764          |                       | 3)=             | • 95425                 | RW(15)=       | .16242    | Y (3      | )= .    | 22412                  |         |         |         |                                                                   |
| × ( 4)=              | 0.00000         | · - ·· RM(            | 4)=             | 0.00000                 | PM(13) = "    | 10792     | Y (4      | )= .    | 03711                  | •       |         |         |                                                                   |
| = ( h ) ×            | .00548          | Rv4 (                 | 5)=             | .01522                  | PM(14)=       | .27535    | ¥ (5      | )= .    | 01507                  |         |         |         |                                                                   |
| X( f)=               | .19340          | R~: (                 | 6)=             | •53867                  | PM(15)=       | .08943    | VRAT      | E= .    | 01825                  |         |         |         |                                                                   |
| X (- 7) = -          | 10163 -         | ·· РМ (               | 7)=             | ·28234 ···              | RM(16)=       | .01777    | · <11M    | Y= .    | ,94,94                 |         |         |         |                                                                   |
| X ( 21) =            | .16616          | R*1 (                 | 8)=             | .44161                  | RM(17)=       | .00429    | ÐY        |         | .00014                 |         |         |         |                                                                   |
| ≯( <sup>(</sup> )=   | ი.იიიიი         | RM (                  | 9)=             | 0.00000                 | PM(19) =      | .49498    |           |         | 50000                  |         |         |         |                                                                   |
|                      | 295.337         |                       |                 | 2.245 HLOSS             |               |           | 187.466   |         | -13.104                | MDHDT=  | -11.889 | • • • • |                                                                   |
|                      |                 |                       |                 |                         | •             |           |           | • •     |                        |         |         |         |                                                                   |
|                      |                 |                       |                 |                         |               |           |           |         |                        |         |         |         |                                                                   |
|                      | ·               |                       |                 |                         |               |           | • •       |         |                        |         |         |         |                                                                   |
| T1YE= 2              | 24.00 MTYU      | TFS                   |                 | NIMBER                  | OF ITERATIO   | 0NS= 8    |           |         |                        |         |         |         |                                                                   |
| x ( ] )              | 12969 -         |                       | 11-             | .36477                  | PN(101-       | 116,12457 | - Y()     | ۱       | 24755                  |         |         |         |                                                                   |
| x(2)=                | .05475          | •                     | 2)=             | .16524                  | RM(11)=       | 2.81256   |           |         |                        |         |         |         |                                                                   |
| x(3) =               | .34947          |                       | (7) = (3) = (3) | .98295                  | RM(12)=       | •16197    |           |         | 47210                  |         |         |         |                                                                   |
| x (                  |                 | -                     | •               | 0.0000                  | RM(12)=       | .12538    |           |         | 22672                  |         |         |         |                                                                   |
| x ( 2) =<br>X ( 5) = | .60607          | · •                   | 4)=<br>5)-      |                         |               |           |           |         | 03796                  |         |         |         |                                                                   |
|                      | -               |                       | 5)=             | •01709<br>51220         | PM(14)=       | +3102A    |           |         | 01558                  |         |         |         |                                                                   |
| × ( - 6) =           | .17⊬5£          |                       | 6)=<br>7)-      | .50228                  | PM(15)=       | .10540    | VOAT      |         | 01801                  |         |         |         |                                                                   |
| ···· ×( 7)=          | .10038<br>1770/ |                       | 7)=             | .28234                  | PM(16)=-      | 12057     |           |         | ,9-993                 |         |         | -       |                                                                   |
| X( 4)=               | .17706          |                       | 8)=             | .49401                  | $R^{M}(17) =$ | .00541    | ĐY        |         | .00030                 |         |         |         |                                                                   |
| =(2)X                | 00000.0         |                       |                 | 0,0000                  | RM(18)=       | .55746    |           |         | 00007                  |         |         |         |                                                                   |
| HIVL =               | - 248. 111.     | .ыййто=               | 228             | 4.611 HLOSS             | 5= 263.452    | - HaxNS=  | 172.892   | HDM[)T= | -9-548                 | MUHDT=  | -13.146 | • •-    | . Tanana aki a tangkap dana akin Kangapan ana apan ay nanya ya ta |
|                      |                 |                       |                 |                         |               |           |           |         |                        |         |         |         |                                                                   |
|                      |                 |                       |                 |                         |               |           |           |         |                        |         |         |         |                                                                   |
| TI~F= 2              | 58°UU WINI      | TES                   |                 | NUMPER                  | OF ITERATIO   | DNS= 8    |           |         |                        |         |         |         |                                                                   |
|                      | 13420-          |                       | 11-             |                         |               | 115.59411 |           | ۰       | 25453                  |         |         |         |                                                                   |
| ×( 2)=               | .13420          |                       | 2)=             | .16281                  | GM(11)=       | 2.84799   |           |         |                        |         |         |         |                                                                   |
| $\lambda(3) =$       | .35170          |                       |                 | 1.00163                 |               |           |           |         | 45149                  |         |         |         |                                                                   |
|                      |                 |                       |                 | 0.00000                 | PM(12) =      | .16146    |           |         | c22935                 |         |         |         |                                                                   |
|                      |                 |                       |                 |                         | PM(13) = -    |           |           |         | 03455                  |         |         |         | 4                                                                 |
| ×( ∱)=               | 16/6P           |                       | 5)=             | .01973                  | PV(14)=       | .34347    |           |         | 01592                  |         |         |         |                                                                   |
| Y(f) =               | .16458          |                       | 6) ≈<br>7       | 46473                   | PH(15)=       | 15551     |           |         | 01793                  |         |         |         |                                                                   |
| x ( 7) =             | .04414          |                       | 7)=             | .28234                  | PM(16)=       | .02351    | SIM       |         | , <del>3</del> 4 9 4 3 |         |         |         |                                                                   |
| x ( 4) =             | .146.4          |                       | 8)=             | .53155                  | PM(17)=       | • 10554   | ŋγ        |         | .00030                 |         |         |         |                                                                   |
| ¥ ( 4) =             | 0,08030         |                       |                 | 0.0000                  | PV(}4)=       | .67930    |           |         | .00007                 |         |         |         |                                                                   |
| U1.57 -              | 2000 33         | سال، شر، دری ایر<br>س | ·~~7            | 131 PLOUS               | = 244,49]     | HOX15=    | 159.450   | HUNDIS  | -1.155                 | *"DHDT= | -13,913 |         |                                                                   |
|                      |                 |                       |                 |                         |               |           |           |         |                        |         |         |         |                                                                   |
|                      |                 |                       |                 |                         |               |           |           |         |                        |         |         |         |                                                                   |

Y(1)=

.21857

.

•

NUMBER OF ITERATIONS= R

RM(10) = 117.09798

TIME= 16.00 MINUTES

,12246

•

R4(1)=

.33602

|                                                          | .00700           | · RM(         | 5)=        | .0201B                 | RM(]4)=          | .37512    | Y(5)=      |                |         |         |                                                                                                                |
|----------------------------------------------------------|------------------|---------------|------------|------------------------|------------------|-----------|------------|----------------|---------|---------|----------------------------------------------------------------------------------------------------------------|
| X( 6)=                                                   | <b>.</b> 151×3   | RM (          | 6)=        | .43780                 | PM(15)=          | .13881    | VPATE=     | • • •          |         |         |                                                                                                                |
| (7)=                                                     | .09792           | RM (          | 7)=        | .28234                 | PM(16)=          | .02557    | 511MY =    | • 66469        |         |         |                                                                                                                |
| : *)= -                                                  | 19507            | RM (          | 8)=        | .56248                 | RM(17)=          | 00770     | 0Y1=       | 00030          |         |         |                                                                                                                |
| 9) =                                                     | 0.00000          | RM (          | 9)=        |                        | PM(14)=          | .71112    | DY=        | -,00005        |         |         |                                                                                                                |
| งร์ =                                                    | 296.337          | HOUTO=        | 227        | 7.239 HLOSS            | = 235.689        | HRXNS=    | 147.137 н  | DMDT= -5.203   | M0HD1=  | -14.251 |                                                                                                                |
| -                                                        |                  |               |            |                        |                  |           |            |                |         |         |                                                                                                                |
| E= 3                                                     | 6.00 MINE        | ITES          |            | NUMBER                 | OF ITERATIO      | )NS= 8    | <b>.</b> . |                |         |         |                                                                                                                |
| ( ))=                                                    | .14422           | DM/           | 1)=        | .42095                 | RM(10)=          | 114.51532 | Y(1)=      | .30199         |         |         |                                                                                                                |
| (?)=                                                     | ,05321           | ) M 🖓 🗥 T     |            |                        | PM(11) =         | 2.91879   | (S) =      |                |         |         |                                                                                                                |
| (3)=                                                     | 35578            |               | 3)=        |                        | PM(12)=          | .15090    | Y(3)=      |                |         |         |                                                                                                                |
|                                                          | 0.00000          |               | 4)=        |                        | $R^{M}(13) =$    | .18479    | Y(4) =     |                |         |         |                                                                                                                |
| (4)=                                                     |                  |               |            |                        |                  | • -       | Y(4)=      |                |         |         |                                                                                                                |
| (15)=                                                    | 00735            |               | 5)=        |                        | PM(14)= "        | .40538    | 1(5)-      |                |         |         | · ·                                                                                                            |
| ( 6)=                                                    | .14021           | •             | 6) =       | .40925                 | RM(15) =         | .15569    | VRATE =    |                |         |         |                                                                                                                |
| (7)=                                                     | .09673           |               | 7)=        | .28234                 | PM(15) =         | .02957    | SIMY=      |                |         |         |                                                                                                                |
| (``P)=``                                                 | .20249           |               | 8)=        | .59103                 | PM(17)=          | .00887    |            |                |         |         |                                                                                                                |
| ( 4)=                                                    | n.nonnn          | PM4           | 9)=        | 0.0000                 | PM(18)=          | •78334    | DY=        |                |         |         |                                                                                                                |
| INT =                                                    | 246.337          | HOUTO=        | 556        | 3.519 HLOSS            | = 221.715        | HRXNS=    | 135.865 H  | DMDT= -3,772   | MOHDT=  | -14.261 |                                                                                                                |
| •                                                        |                  |               | ·          |                        |                  |           |            |                |         |         |                                                                                                                |
| E= 4                                                     | 0.00 VINU        | TES           |            | NUMBED                 | OF ITERATIO      |           |            |                |         |         |                                                                                                                |
|                                                          | -                |               |            | •                      |                  |           |            |                |         |         |                                                                                                                |
| (1)=                                                     | .14948           |               | 1)=        |                        |                  | 113.98669 | Y(1)=      |                |         |         |                                                                                                                |
| ( 2)=                                                    | 05093            |               | S) =       | .15041                 | RM(11)=          | 2.95349   | ~ Y(2)=    |                |         |         |                                                                                                                |
| (3)=                                                     | .35768           | RM (          | 3)=        | 1.05639                | PM(12)=          | 16069     | Y(3)=      |                |         |         |                                                                                                                |
| (4)=                                                     | 0.00000          | RA (          | 4)=        | 0.00000                | RM(13) =         | .20762    | Y(4)=      | .03904         |         |         |                                                                                                                |
| (~5)=~                                                   | .00764           | RM (          | 5)=        | . 02258                | P4(14)=          | .43433    | Y(5)=      | .01635         |         | •       |                                                                                                                |
| (6) =                                                    | 12964            | RM (          | 6) =       | .38289                 | PM(15)=          | .17293    | VPATE=     | ∎01834         |         |         |                                                                                                                |
| (7)=                                                     | 09560            |               | 7) =       | .28234                 | RM(16) =         | .03261    | SUMY=      | <b>,</b> 94994 |         |         |                                                                                                                |
| ( )=                                                     | 20904            |               | 8)=        | .61739                 | $P^{M}(17) = $   | .01007    | -[Y0       | 00028          |         |         | · · · · · · · · · · · · · · · · · · ·                                                                          |
| (9) =                                                    | 0.00000          |               |            | 0.00000                | PM(1H) =         | .85628    | DY =       | 00006          |         |         |                                                                                                                |
| INT =                                                    | 296.337          | HOUTO=        | -          |                        | = 207,986        | -         |            | 007.5- =TOMG   | MOHDT=  | -14.020 |                                                                                                                |
| 1.91                                                     |                  |               | 250        | 72001 NE033            |                  |           |            |                |         | 1.0020  |                                                                                                                |
| -                                                        |                  |               |            |                        |                  |           |            |                |         |         |                                                                                                                |
| E= 4                                                     | 4.00 MINE        | ITES          |            | NUWHER                 | OF ITERATIO      | JNS= 8    |            |                |         |         |                                                                                                                |
| (1)=                                                     | .15477           | RM (          | 1)=        | .46235                 | RM(10)=          | 113.47431 | Y(1)=      | .34091         |         |         |                                                                                                                |
| (2)=                                                     | 04 1             |               | 2) =       |                        | RM(11) =         | 2.98739   | = (S) Y    | .36407         |         |         |                                                                                                                |
| (3) =                                                    | 35950            |               | 3)=        |                        | RM(12)=          | .16050    | Y(3) =     |                |         |         |                                                                                                                |
| (4) =                                                    | 0.00000          | •             | 4)=        |                        | PM(13) =         | .23219    | Y(4)=      |                |         | •       |                                                                                                                |
| (                                                        | .007º8           |               | -,-<br>5)= | .02353                 | DM(14)=          | 46203     | Y(5)=      |                |         |         |                                                                                                                |
| • • / -                                                  | 15005            |               | 6)=        |                        | RM(15)= /        | 19058     | VRATE=     |                |         |         |                                                                                                                |
| 1 21-                                                    |                  |               |            | •28234                 | PM(16)=          | .1305B    | SUNX=      |                |         |         |                                                                                                                |
|                                                          |                  | •             | 7)=        |                        | RM(17) = "       |           | DY1=       |                |         |         | میں اور                                                                    |
| (7)=                                                     | .09451           |               | 8)=        | .64175                 |                  |           | DY=        |                |         | •       | the second s |
| ( 7) =<br>( 7) = -                                       | 21482            |               |            | n nnnn                 |                  |           |            |                |         |         |                                                                                                                |
| ( 7) =<br>( 7) =<br>( 7) =<br>( 7) =                     | -21482<br>0.0000 | р. <b>н</b> ( | 9)=        | 0.00000                | $P^{M}(1^{H}) =$ | .93016    |            |                | 1401 mm | 10 000  | لاستر                                                                                                          |
| ( 7)=<br>( 7)=<br>( 7)=<br>( 7)=                         | 21482            | р. <b>н</b> ( | 9)=        | 0.10000<br>3.308 PLOSS |                  |           |            | DNDT= -1.840   | MOHDT=  | -13.596 | الحسو                                                                                                          |
| ( 7)=<br>( 7)=<br>( 7)=<br>( 7)=                         | -21482<br>0.0000 | р. <b>н</b> ( | 9)=        |                        |                  |           |            |                | M0H0T=  | -13,596 | <del>د ما</del>                                                                                                |
| ( ) =<br>( 7) =<br>( 7) =<br>( 4) =<br>( 4) =<br>( 1MT = | -21482<br>0.0000 | р. <b>н</b> ( | 9)=        |                        |                  |           |            |                | M0H0T=  | -13.596 | <del>د .</del>                                                                                                 |

X(3)=

- 7 ( 5)=

X(4) = 0.00000

.35379

.00700

PM(3) = 1.02016

PM( 4)= 0.00000

.0201B

· RM( 5)=

= (51) MR

RM(13)=

RM(14)=

.15115

.16359

.37512

Y(3)=

Y(4)=

Y(5)=

.23197

.03849

.01615

. . . . . - - -. . . . . . . . . . . . . .

| TIME= 52.00 MINUTES           | - NI:324 D E         | R OF ITERATIONS= P -     |            |          |                |                                         |
|-------------------------------|----------------------|--------------------------|------------|----------|----------------|-----------------------------------------|
| 11/24 02.00 0100(25           | in terraria C        | R 07 1108411005- C       |            |          |                |                                         |
| x(1) = .16514                 | RM( ))= .50405       | PM(10) = 112.51390       | ) Y(1)=    | .37943   |                |                                         |
| x(-?)=04347                   | · PM( 2)= · · .13267 |                          | = (S) Y    | .32118   | • • •          |                                         |
| X( 3)= "26295                 | PM( 3)= 1.10784      | PM(12)= .16016           | y(3)=      | .24463   |                |                                         |
| X( 4)= 0,00000                | PM(4)= 0.00000       | RM(13)= .28696           |            | .03948   |                |                                         |
|                               | PM( 5)= .02501       | PM(14) = .51373          | Y(5) =     | .01671   | · • ···-       |                                         |
| X( 6)= .10324                 | RM( 6)= ,314:2       | RM(15)= .22725           |            | .01919   |                |                                         |
| X(7)= _0025]                  | RM(7)= ,2823+        | PM(16)= .04192           |            | •99994   |                |                                         |
| X('2)=22448                   | RM( R)= ,64516 "     |                          |            | 00025    | •              |                                         |
| X( 5)= 0.00000                | RM( 9) = 0.00000     | RM(15) = 1.05126         |            | 00005    |                |                                         |
| HIMT = 296,337 HO             | UTO= 239,591 HLC     | 55= 169.646 HPXNS=       | 99.711 404 | 1DT =773 | MDHDT= -12.416 |                                         |
|                               |                      |                          |            |          |                |                                         |
|                               |                      |                          |            |          |                |                                         |
| TIY: =56.00 MINUTES-          | - NUMBE              | P OF ITEPATIONS = 8 ···· |            |          |                |                                         |
|                               |                      |                          |            |          |                |                                         |
| ×(1)= ,17013                  | PMI 11= +52450       | RM(10)= 112.06992        | Y(1)=      | .39801   |                |                                         |
| x ( 2) = 64003                | 924 2112619          | ·· PM(11)=3.08297        | ' Y(2)= '  | .30062   |                |                                         |
| × ( 3) = .354F.1              | 94( 2)= 1.12409      | RM(12)= .16001           | Y(3)=      | .24706   |                |                                         |
| X( A)= 0.00000                | RM( 4)= 0,00000      | PM(13)= .31706           | Y(4)=      | .03819   | ς.             |                                         |
| Yt typ                        | · PM( 5)= .02556     | RM(14)=53777             | Y (5) =    | .01508   | · ·            |                                         |
| ×1 6)= .09503                 | RM( 6)= →29576       | PM(15)= .24631           | VRATE=     | •01949   |                |                                         |
| x(7)= .09158                  | PM( 7)= ,28234       | RM(15) = .04508          |            | • 99995  |                |                                         |
| \$2855                        | RM( 8)= .70452       |                          |            | 00024    |                |                                         |
| x = 5 = 0.0000                | PM( 9)= 0.00000      | RM(18) = 1.15862         |            | 00005    |                |                                         |
| FINT = 296.337 HO             | UTO= 242,933 HLC     | SS= 158.069 HRYNS=       | 92,546 40% | DT=374   | MOHDT= -11.745 |                                         |
|                               |                      |                          |            |          |                |                                         |
|                               |                      |                          |            |          |                |                                         |
|                               | NUMBE                | R OF ITERATIONS= 8       | · -        |          |                |                                         |
| 11 ( a - 00 ( 00 - 1 10 ) - 3 |                      |                          |            |          |                |                                         |
| X(1) = .17492                 | RM(1)= .54447        | PM(10) = 111.65039       | Y())=      | •41595   |                |                                         |
|                               |                      | WM (11) #** 3.11261      |            | .28080   | • -            |                                         |
| X(3) = -3-621                 | PV( 3)= 1,13498      | FM(12)= -15946           |            | 24940    |                |                                         |
| X(4) = 0.00000                | $R^{M}(4) = 0.00000$ | RM(13)= .34517           | Y(4)=      | .03787   |                |                                         |
| x(-+)=,00435                  | PM( 5)= - (2599      | - RM(14)=                | Y(5)=      | .01593   |                |                                         |
| X( 6) = .08925                | PM( 6)= ,27779       | PM(15)= .28585           | VRATE=     | .01980   |                |                                         |
| X(7)= ,04071                  | RM( 7)= ,24234       | PM(16) = .0427           | 511WY =    | .99995   |                |                                         |
| x( +)=53515                   | 94(E)= 73249         | RM(17)01626              |            | -*00053  | · · · ·        |                                         |
| X( 4) = 0.00000               | RM(9) = 0.00000      | RW(18) = 1,23150         |            | 00005    |                |                                         |
| HINT = 295,337 HO:            | UT0= 246,294 HL0     | 55= 147.141 HPYNS=       | 85.994 HDM | DT=040   | MDHDT= -11.063 | 2                                       |
|                               |                      | · · · ·                  | •          |          | •              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|                               |                      |                          |            |          |                | ้งั่                                    |
|                               |                      |                          |            |          |                |                                         |
| -TIME= - 64,00 MINHTES        | ~ NUMBE              | R OF ITEPATIONS= B       |            |          |                |                                         |
|                               |                      |                          | • •        |          |                |                                         |
| x(1) = 17451                  | PM(1)= .56347        | PM(10)= 111.25643        |            | ,43315   |                |                                         |
|                               | • • • • • • •        | R*(11)= 3,14112          |            | .26182   |                |                                         |
| X ( 7) #                      | 24( 3)= 1.15519      | 54(12)± 10472            |            | .25159   |                |                                         |
|                               |                      | 161)                     | 141-       | 61754    |                |                                         |

. . . . . . . . . . . . .

X(7)= .71124 PM(6)= .22234 PM(16)= .23578 V0772 .01859 X(7)= .09388 PM(7)= .22334 PM(16)= .03878 SUMY= .999994  $= \frac{1}{x(r)} = \frac{1}{2} \frac{1994}{r} = \frac{1}{RM(8)} = \frac{1}{6} \frac{1}{6} \frac{1}{29} = \frac{1}{RM(17)} = \frac{1}{1} \frac{1}{2} \frac{1094}{r} = \frac{1}{RM(8)} = \frac{1}{2} \frac{1}{2} \frac{1}{29} \frac{1}{1} = \frac{1}{2} \frac{1$ 

----

HINT = 240.327 HOUTO= 236.346 HLOSS= 181.896 HPXNS= 107.555 HOMDT= -1.266 MDHDT= +13.045

| $\begin{array}{c} X(4) = 0.00000 \\ X(5) = .00835 \\ Y(4) = 0.00835 \\ Y(5) = .02668 \\ PM(14) = .62200 \\ Y(5) = .01535 \\ Y(5) = .02059 \\ X(5) = .0207 \\ Y(5) = .02059 \\ Y(5) = .02059 \\ Y(5) = .220234 \\ PM(6) = .29234 \\ PM(15) = .02007 \\ Y(5) = .00020 \\ Y(5) = .00020 \\ Y(5) = .00000 \\ PM(9) = 0.00000 \\ PM(15) = 1.46023 \\ DY = .00005 \\ PY = .00005 \\ PMDT = .20207 \\ PMDT = .20207 \\ PMDT = .00005 \\ PMDT = .000005 $ |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| X(5)= ,24075 RM(8)= ,76918 RM(17)= .02007 DY1=00020<br>X(5)= 0.00000 RM(9)= 0.00000 RM(15)= 1.46023 DY=00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| TIME= 75.00 MINUTES NUMBER OF ITERATIONS= 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| X(1) =.19190 $PM(1) =$ .61794 $PM(10) =$ .11021013 $Y(1) =$ 4797H $X(2) =$ .02932 $RM(2) =$ .09440 $PM(11) =$ 22005 $Y(2) =$ 21045 $X(3) =$ .37215 $PM(3) =$ 1.19435 $PM(12) =$ 15935 $Y(3) =$ 25H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| X(4) = 0.00000 $PM(4) = 0.00000$ $PM(13) =49631$ $Y(4) =03650$ $X(5) =06830$ $PM(5) =02673$ $PM(14) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •         |
| MINT = 296.337 HOUTO= 259.175 HLOSS= 109.586 HRXXS= 64.778 HOMOT= .898 MDHDT= +8.544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| TITYE= "60.00 NINUVES NUMBER OF ITERATIONS= 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>ر</u> نې |
| X(1)=       .19557       PM(1)=       .63447       PM(10)=       .109,00256       Y(1)=       .49357         X(2)=       .02/31       PM(2)=       .03861       PM(11)=       3.24425       Y(2)=       .19926         X(3)=       .47353       PM(3)=       1.21184       PM(12)=       .15924       Y(3)=       .25009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3           |
| X(4) = 0,00000       RM(4) = 0.00000       RM(13) = .53756       X(4) = .03613         TX(TY) = 1,00000       RM(15) = .02571       RM(16) = 1.45730       X(5) = .01460         TX(TY) = 1,00000       RM(16) = 1.45730       X(5) = .01460       .01460         TX(TY) = 1,00000       RM(16) = 1.45730       X(5) = .01460       .01460         TX(TY) = 0.0000       RM(17) = .37003       V(0016= .02126         TX(TY) = 0.0000       RM(17) = .0550       RM(17) = .0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |

| TTMES    | 68.00 MTH | UTES       |      | NUMPER     | OF ITERATI | 0745 - B  |        |         |          |       |        |       |           |          |                 |         |   |
|----------|-----------|------------|------|------------|------------|-----------|--------|---------|----------|-------|--------|-------|-----------|----------|-----------------|---------|---|
| ×( ])    | 1830A     | RM (       | 1)=  | ,58261     | an(10)=    | 110.80564 | ۲ (    | 1)=     | .44955   |       |        |       |           |          |                 |         |   |
| Y( 7)    | .03367    | рм(        | 2)=  | .10669     | PM(11)=    | 3,15892   | - Y (  | 2) =    | .24374   | •     | -      |       | • • • • • | · ·•• •  |                 |         | - |
| X ( 3)   | .36927    | PM (       | 3) = | 1.17004    | PM(12)=    | ,1-956    | ¥ (    | 3) =    | \$25390  |       |        |       |           |          |                 |         |   |
| X ( 4)   | = 0.00000 | RM (       | 4)=  | 0.00000    | RM(13)=    | .41907    | × 1    | 4) =    | .03720   |       |        |       |           |          |                 |         |   |
| T X ( 5) | .00238    | - · · PM ( | 5)=  | ,02655     | P*(14)=    | .60269    | · Y(   | 5)=     | .01555   | •     |        |       |           | · ·      |                 | ·       | - |
| X( ٢)    | .07750    | RM (       | 6)=  | .24556     | RM(15)=    | .30642    | VRA    | 15 =    | .02040   |       |        |       |           |          |                 |         |   |
| ×(7)     | .02411    | P.4 (      | 7)=  | .28234     | RM(16)=    | .05471    | SU     | 147 =   | , 999995 |       |        |       |           |          |                 |         |   |
| · ¥( ₽)  | e .23819  | PM (       | 8)=  | .75472     | R*(17)= -  | .01679    | ·      | Y1= -   | 15000    |       |        | •     | ····      |          |                 |         | - |
| X(4)     | = 0.00000 | PM (       | 9)=  | 0,00000    | RM(1A)=    | 1.39863   |        | DY=     | .00405   |       |        | ٠     |           |          |                 |         |   |
| HINT     | = 296.337 | ROUTO=     | 252  | .991 HLOSS | = 127.145  | HRX VS=   | 74.490 | -+OMDT= | .492     | монот | ·= −9, | 742   | •         |          |                 |         |   |
|          | • •       |            |      |            |            |           |        |         |          |       |        | • • • | •         | <b>-</b> | • • • • • • • • | ···· ·· | · |

NUMBER OF ITERATIONS= 8

TIVE= 72.00 MINUTES

| x( 9)= | 6.00000 | 201    | $A_{1} = 0.000$ | 000     | P⊲(1¥)≡ | 1,3(10) | 1      | ノイニー ニュレッ | 0.002 |        |         |      |     |
|--------|---------|--------|-----------------|---------|---------|---------|--------|-----------|-------|--------|---------|------|-----|
| HINT = | 246.337 | ΗΟυτό= | 249.624         | HL 055= | 176.853 | HPXNS=  | 79.994 | 40401=    | .245  | MJH01= | -10.391 |      |     |
|        |         |        |                 |         | •       | - •     |        |           |       |        |         | <br> | · · |
|        |         |        |                 |         |         |         |        |           |       |        |         |      | •   |
| •      |         |        |                 |         |         |         |        |           |       |        |         |      |     |
|        |         |        |                 |         |         |         |        |           |       |        |         |      |     |
|        |         |        |                 |         |         |         |        |           |       |        | •       |      |     |

.

- -

- -----

. . •

|                                                                                                                                                                        | UMBER OF ITERATIONS= 8                             |                                                |               |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|---------------|------|
| X(3) = .37618 RM(3) = 1.237                                                                                                                                            | 88 ···· PM(11) = ··· 3.28966<br>50 PM(12) = .15905 | Y(1)= .51855<br>- Y(2)= .16740<br>Y(3)= .26380 |               |      |
| $\begin{array}{rcl} X(4) = & 0.00000 & RM(4) = & 0.000 \\X(5) = & - & .00404 \\X(5) = & - & .00404 \\ & PM(5) = & .026 \\X(6) = & .05543 & RM(6) = & .132 \end{array}$ | 46 PM(14) =68846                                   | Y(4)= .03539<br>Y(5)= .01442<br>VPATF= .02177  |               |      |
| X(7)= .04593 RM(7)= .242<br>X(A)= .24464 PM(A)= .817<br>X(9)= 0.00000 RM(9)= 0.000                                                                                     | 94 PM(17) =                                        | 5114Y= .99996<br>DY1=00017<br>DY=00004         |               |      |
| HINT = 296.337 HOUTO= 267.913                                                                                                                                          | HL055= 26.994 HPXNS=                               | 52.860 HOMDT= 1.313                            | MOHDT= -7.023 |      |
| and the second                                                       | • • • • • • • • • • • • • • • • • • •              |                                                | · -           |      |
|                                                                                                                                                                        |                                                    |                                                |               |      |
| -TIME= 92.00 MINUTES · · · N                                                                                                                                           | IMBER OF ITERATIONS = 8                            |                                                |               |      |
| X(1)= .20520 RM(1)= .679<br>                                                                                                                                           | 95 PM(11) = 3.31094 -                              | Y(1)= .52977<br>Y(2)= .15547                   |               |      |
| X(3) = .37745 RM(3) = 1.249                                                                                                                                            |                                                    | Y(3)= .25553                                   |               |      |
| X(4) = 0.00000 PM(4) = 0.000                                                                                                                                           |                                                    | Y(4) = +03501                                  |               |      |
| x(5) =00793 - RM(5) = .026                                                                                                                                             |                                                    | Y(5) = .01418                                  |               |      |
| X(6) = .05198 $RM(6) = .172$                                                                                                                                           |                                                    | VRATE .02202                                   |               | •    |
| X(7)= .08528 PM(7)= .262                                                                                                                                               |                                                    | SUMY= .99995                                   |               |      |
| x(k) = -25014 + - RM(k) = -828                                                                                                                                         |                                                    | • 0Y1= • 00016                                 | ·             |      |
| ¥(9)= 0.00000 RM(9)= 0.000<br>HINT = 2°6.337 HOUTO= 270.647                                                                                                            |                                                    | DY=00004<br>49.471 HDMDT= 1.404                | YDHOT= -6.582 |      |
|                                                                                                                                                                        |                                                    | 4.4*417 µDa(i= 1*40a                           | -04212 -0.002 |      |
|                                                                                                                                                                        |                                                    |                                                |               |      |
|                                                                                                                                                                        |                                                    |                                                |               |      |
|                                                                                                                                                                        | UMBER OF ITERATIONSE B                             |                                                |               |      |
| ×(1)= .20799 RM(1)= .692                                                                                                                                               | H9 RM(10)= 108,84390                               | Y(1)= .54019                                   |               |      |
|                                                                                                                                                                        | 32 PM(11) = - 3.73130                              | Y(2)= .14404                                   | . ~           |      |
| X(3)= .37848 PM(3)= 1.241                                                                                                                                              | 43 RM(12) = .15389                                 | Y(3)= .26718                                   |               |      |
| Y( ()= 0.00000 RM( 4)= 0.000                                                                                                                                           | 00 RM(13)= .7)855                                  | Y(4) = .03453                                  |               | 47   |
| x( H1= .00740 RM( 5)= .025                                                                                                                                             | 97 PM(14)= ,71585                                  | Y(5)= ,01393                                   |               |      |
| У(б)= "04H7R RM(б)= "162                                                                                                                                               | 50 PM(15)= .45248                                  | VRATE= .02225                                  |               | •4 ~ |
| x(7)= .08475 PM(7)= .282                                                                                                                                               | 34 RM(16)= .07767                                  | SUMY= .99997                                   |               |      |
| > + +)= .25]49 · · AH( H)= .837                                                                                                                                        | 78 · RM(17)→ ,02754 ·                              | DY1=00015                                      |               |      |
| r Si- 2,00000 RM(9)= 0,000                                                                                                                                             | 00 PH(IH)= 1,00-21                                 | DY= ++00003                                    |               |      |
| 4 T - 316 107 HOUTDE 277,294                                                                                                                                           | 10055= 70.076 Hox/15= 4                            | 5.332 SOMOTE 1.472                             | 40H05= #6.171 |      |

x())= ,19900 SS066. =(1)MR PM(10) = 109.61354Y(1)≓ .50649 ---- x( 2)=: --. 02543 --- RM( 7)= . ,08310 RM(11)= 3.26745 TY(2)= .18105 .2619A ×(3)= .37487 PM(3) = 1.22488HM(12)= .15914 Y(3)= X(4) = 0.00000.03575 PM(4) = 0.00000RM(13)= .58047 Y(4)= .01457 X(-6) = .05916PM( 6) = .19331 PM(15) = .39320 VHATE= .02121 X(7) = .08641RM( 7) = ,28234 PM(16) =.0677R SUMY= .99996 PM( 9)= 0.00000 DY= X( 9)= 0.00000 RM(1B) = 1.73354-.00004 HINT = 296.337 HOUTO = 265.091 HLOSS = 94.064 HAXNS = 56.523 HOMDT = 1.199 MDHDT = -7.495 ·· · . . . . . . . . -----

TIME= 84.00 MINUTES NUMBER OF ITERATIONS= B

·-- ·· ·

|                      | COURTTONS D      |              | D WOTED TIME     | _             |             |                |             |                 |                                       |
|----------------------|------------------|--------------|------------------|---------------|-------------|----------------|-------------|-----------------|---------------------------------------|
|                      | CONDITIONS P     | ASED ON A    | DUDIED ITME      |               |             |                |             |                 |                                       |
| X(1)=                | .15837           | RM( 1)       | 44740            | PM(10)=       | 110.80000   | Y(1) =         | .25624      |                 |                                       |
| X(2)=                | •                | R1( 2)       |                  | PM(11)=       | 2.92511     | Y(2)=          | .56995      |                 |                                       |
| ···· × (3)=          | •                | PM( 3)       |                  | - CM(12)=     | -           | Y(3)=          | .15032      |                 |                                       |
| X ( 4) =             | -                | RM( 4)       |                  | PM(13) =      | .04207      | Y(4) =         | .01111      |                 |                                       |
| X { <del>-</del> } = |                  | RM( 5)       |                  | PM(14)=       | .12265      | Y(5)=          | .01237      |                 |                                       |
| X( h)=               |                  | PM( 6)       | -                | ¤×(15) =      | 06898       | VPATE=         | .01750      |                 |                                       |
| ×(7)=                | • -              | 94(7)        |                  | чм (16) =     | .00251      | SHAAT          | 1.00000     |                 |                                       |
| ×( +)=               |                  | PM( B)       |                  | PM(17) =      | .00052      | DY1 =          | 0.00000     |                 |                                       |
|                      | • n.nnnn         | PM( 9)       | -                | PH(18)=       |             | DY=            | 0.00000     | <b>.</b>        |                                       |
|                      | ·                | ,            |                  |               | • • • •     | -              |             |                 | •                                     |
|                      |                  | <del>.</del> |                  | ····· •       |             |                |             | · · · · · · · · |                                       |
| TIME=                | 4. no viviite    | S            | NUMBE            | P OF ITERATI  | 0N5= 10     |                |             | •               |                                       |
| x ( 1)=              |                  | · ¤4(1)      | = ,48561         | PH(10)=       | 111.84853 · | Y(1)=          | .31092      |                 |                                       |
| X(2)=                |                  | PM(2)        | = .18349         | PM(11)=       | 2.93146     | Y(2)=          | .40906      |                 |                                       |
| x(3)=                | . 32857          | PM( 3)       | <b>- .</b> 96349 | PM(12)=       | .19039      | Y(3)=          | ·50003      |                 |                                       |
| · X ( 4) =           | ··· n.nenee ···· | R'4 (4)      | = 0.00000        | ··· RM(13)= · |             | · · · · Y(4) = | +07189      | · -             |                                       |
| X(5)=                | .00172           | PM( 5)       | ₽ .00505         | RM(14)=       | .13240      | Y(5)=          | .00798      |                 |                                       |
| X( ()=               | .23350           | RM( 6)       | = <b>.</b> 68449 | PM(15)=       | .07376      | VRATE=         | .00390      |                 |                                       |
| X(7)=                | . 09778          | RM( 7)       | = .28663         | RM(16)=       | .00431      | SUMY=          | .99994      | ·               |                                       |
| X ( ド) =             | .10074           | PM(8)        | = .32170         | RM(17)=       | .00077      | DY1=           | 00023       |                 |                                       |
| X(4)=                | 0.00000          | PM(9)        | = 0.00000        | PM(18)=       | .26181      | DY=            | 00006       |                 |                                       |
| HINT =               | - 45.057 I       | HOUTO=       | 46.754 HLC       | 955= 151.781  | HPXNS=      | 214.124 40'    | 4DT= 63.655 | MDHDT= 46.992   |                                       |
|                      |                  |              |                  |               |             |                |             |                 |                                       |
|                      |                  |              |                  |               | •           |                |             |                 | · · · · · · · · · · · · · · · · · · · |
| TI 4E=               | 8.00 MINUTES     | 5.           | NUMBE            | R OF ITEPATI  | 0NS= 6      |                |             | ,               |                                       |
|                      |                  |              |                  |               |             |                |             | •               |                                       |
| ×(1)=                | -                | PM( 1)       |                  |               | 111.98112   | Y(1)=          | .33698      |                 |                                       |
| X( 7)=               |                  | RM( 2)       |                  | PM(11)=       | 3.02635     | X (S) =        | .42230      |                 |                                       |
| ×(3)=                |                  | PM(3)        |                  | PM(12)=       | .18450      | Y(3)=          | .20442      |                 |                                       |
|                      | ····             | RM(4)        |                  | RM(13)=       | .06014      | Y(4)=          | .02545      |                 |                                       |
| ) ( <sup>(</sup> ) = | -                | RM(5)        |                  | RM(14) =      | .14646      | Y(5)=          | .01080      |                 |                                       |
| X( 6)=               |                  | FM( 6)       |                  | PM(15)=       | .08059      | VPATE          | .01233      |                 |                                       |
| ¥.(* 7) =            | -                | D4(7)        |                  | RM(16)=       | .00550      | S(IMY=         | ,99995      |                 |                                       |
| X( H)=               | -                | RM( 8)       |                  | R*(17) =      | .00110      | 071=           | 00029       |                 |                                       |
|                      | . 0.0000         |              | = 0.00000        | PM(18)=       | .29525      | DY=            | 00005       |                 |                                       |
| HINT =               | 95.057           | HOUTO= 1     | 54.147 HLC       | )SS= 174.221  | HRXNS= 0    | 228.546 HO     | ADT= 27.557 | MOHDT= -32.321  |                                       |
|                      |                  |              |                  | •             |             |                |             |                 |                                       |
| TIMF=                | 12.00 MINUTES    | s .          | NUMBE            | R OF ITERATI  | 0NS= 8      |                |             |                 |                                       |
| · · · · -            |                  | , <b>,</b>   |                  |               |             |                |             |                 |                                       |
| ` "≯( <b>1</b> )=    |                  | ° ₽4(1)      | • •              |               | 110,80169   | Y(1)=          | .35137      |                 |                                       |
| Y( ?)=               |                  | RM(2)        |                  | RM(11)=       | 3.10761     | Y(2)≠          | .41095      |                 | 24                                    |
| ×( 3)=               | •                | DM( 3)       |                  | PM(12)=       | ·18745      | Y(3)=          | •50025      |                 |                                       |
| - X(4)=              | -                | QM( 4)       | = 0.00000        | RM(13)=       | .07649      | Y(4)=          | .02459      |                 |                                       |
| x( =)=               |                  | RM(5)        |                  | RM(14) =      | .16624      | Y(5)=          | • 01197     |                 |                                       |
| Y( 6)=               | ,19125           | RM( 6)       | - ,59433         | ₽м(15)≍       | .09020      | VPATE=         | -01151      |                 |                                       |

,

. . . . . . . . . . . . . . .

.

| ILVE= TO'UN ALVOLFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MIMPLE OF LIERALI                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ()\S= B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                        |                                       |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 109.67272 Y(1) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .37072                                                                                                                                                                                 |                                       |                                       |
| X(2)= .07797 RM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.19068 Y(2)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .39524                                                                                                                                                                                 |                                       |                                       |
| X(3)= ,33139 RM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •19053 Y(3)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .19879                                                                                                                                                                                 |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4)= 0.00000 ~ ~ PM(13)=                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .02259                                                                                                                                                                                 |                                       |                                       |
| ×(5)= .00375 P4(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5)= .01196 PM(14)=                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .18%62 Y(5)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .01254                                                                                                                                                                                 |                                       |                                       |
| X( 6)= .17502 RM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6)= •55842 RM(15)=                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0994] VP&TF=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .01153                                                                                                                                                                                 |                                       |                                       |
| X( 7) = ,08043 DM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7)= .28663 ···· * ##(16)=*                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99997                                                                                                                                                                                  |                                       |                                       |
| x(ド)= .14134 PM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B) = .44777 PM(17) =                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =1Y0 15500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00015                                                                                                                                                                                  |                                       |                                       |
| X(4)= 0.00000 RM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9) = 0.00000 $PM(18) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .38676 DY=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00003                                                                                                                                                                                  |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        | HDT= -34.731                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                       |                                       |
| TIME= 20.00 MINUTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NUMBER OF ITERATI                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0NS= 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                        |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108-61203 Y(1) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .39212                                                                                                                                                                                 |                                       |                                       |
| X(2)= .07926 R4(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.27243 Y(2)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .37744                                                                                                                                                                                 |                                       |                                       |
| x(3)= .33235 RM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .19353 Y(3)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .19742                                                                                                                                                                                 |                                       |                                       |
| x( +)= - 0,00000 PM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .02021                                                                                                                                                                                 |                                       |                                       |
| X(5)= .00408 PM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •20325 Y(5)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .01278                                                                                                                                                                                 |                                       |                                       |
| x(6)= ,16116 RM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .10888 VPATE=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .01231                                                                                                                                                                                 |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7)= .28663 PM(16)=.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00901 SUMY=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 49497                                                                                                                                                                                |                                       |                                       |
| X(H)= .14631 PM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8)= .47830 PM(17)=                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •00585 UAI=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00015                                                                                                                                                                                  |                                       |                                       |
| X(9)= 0,00000 PM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9)= 0.00000 PM(1A)=                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .43552 DY=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0003                                                                                                                                                                                   |                                       |                                       |
| HINT = 05.057 HOUTO=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 153.872 HLOSS= #3.743                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1HRXNS= 144.290 HD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MDT= 35.505 MD                                                                                                                                                                         | HDT= -33.773                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥                                                                                                                                                                                      | , , <u>, ,</u>                        |                                       |
| TIME 24.00 MINUTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NUMBER OF ITERATI                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 = 2!40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ž                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · ·     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥                                                                                                                                                                                      | · · · · · · · · ·                     |                                       |
| ×(-1)=19714 PM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1)= .66062 RM(10)=                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ··107.62519 ··· · Y(1)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • 41357                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |                                       |
| X(-1)= 19714 PM(<br>X(Z)= .07939 RM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1)= .66062 RM(10)=<br>2)= .26504 RM(11)=                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.62619 Y(1) =<br>3.35103 Y(2) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .35883                                                                                                                                                                                 |                                       |                                       |
| X(7)= .19714 PM(<br>X(7)= .07939 PM(<br>X(3)= .33337 PM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1)= .66062 - RM(10)=<br>2)= .26604 RM(11)=<br>3)= 1.11714 RM(12)=                                                                                                                                                                                                                                                                                                                                                                                                         | 107.62619 Y(1) =<br>3.35103 Y(2) =<br>.19630 Y(3) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •35883<br>•19654                                                                                                                                                                       |                                       |                                       |
| $\begin{array}{c} & \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                      | 107.62619 Y(1) =<br>3.35103 Y(2) =<br>.19630 Y(3) =<br>13215 Y(4) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •35883<br>•19654<br>•01782                                                                                                                                                             |                                       | · · · · · · · · · · · · · · · · · · · |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \times (-1) = & & & 19714 \\ \times (-1) = & & & 19714 \\ \times (-1) = & & & & 0.07939 \\ \times (-1) = & & & & & 0.07939 \\ \times (-1) = & & & & & & 0.03337 \\ \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \times (-1) = & & & & & 0.07939 \\ \times (-1) = & & & & & & 0.0337 \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1) = .66062 $RM(10) =$ 2) = .26604 $RM(11) =$ 3) = 1.11714 $RM(12) =$ 4) = 0.00000 $RM(13) =$ 5) = .01441 $RM(14) =$                                                                                                                                                                                                                                                                                                                                                      | 107.62619 Y(1) =<br>3.35103 Y(2) =<br>.19630 Y(3) =<br>13215 Y(4) =<br>.22206 Y(5) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .35983<br>.19654<br>.01782<br>.01282                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · |                                       |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \times (-1) = & & & 19714 \\ \times (-1) = & & & 19714 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.07939 \\ \times (-1) = & & & 0.33337 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.33337 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1) = $.66062$ $RM(10) =$ 2) = $.26604$ $RM(11) =$ 3) = $1.11714$ $RM(12) =$ 4) = $0.00000$ $RM(13) =$ 5) = $.01441$ $RM(14) =$ 6) = $.50020$ $RM(15) =$                                                                                                                                                                                                                                                                                                                   | 107.62619 Y(1) =<br>3.35103 Y(2) =<br>.19630 Y(3) =<br>13215 Y(4) =<br>.22206 Y(5) =<br>.11896 VPATE =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .35983<br>.19654<br>.01782<br>.01282<br>.01330                                                                                                                                         | · · · · · · · · · · · · · · · · · · · |                                       |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \times (-1) = & & & 19714 \\ \times (-1) = & & & 19714 \\ \times (-1) = & & & 0.07939 \\ \times (-1) = & & & & 33337 \\ \end{array} \begin{array}{c} \begin{array}{c} \\ \times (-1) = & & & & & 0.00000 \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array}$ | 1) = $.66062$ $RM(10) =$ 2) = $.26604$ $RM(11) =$ 3) = $1.11714$ $RM(12) =$ 4) = $0.00000$ $RM(13) =$ 5) = $.01441$ $RM(14) =$ 6) = $.50020$ $RM(15) =$ 7) = $.28663$ $RM(16) =$                                                                                                                                                                                                                                                                                          | 107.62619 Y(1) =<br>3.35103 Y(2) =<br>.19630 Y(3) =<br>13215 Y(4) =<br>.22206 Y(5) =<br>.11896 VPATE =<br>.01003 - SUMY =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .35883<br>.19654<br>.01782<br>.01282<br>.01330<br>.99998                                                                                                                               | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1) = $.66062$ $RM(10) =$ 2) = $.26604$ $RM(11) =$ 3) = $1.11714$ $RM(12) =$ 4) = $0.00000$ $PM(13) =$ 5) = $.01441$ $PM(14) =$ 6) = $.50020$ $RM(15) =$ 7) = $.28663$ $RM(16) =$ 8) = $.50599$ $RM(17) =$                                                                                                                                                                                                                                                                 | 107.62619 Y(1) =<br>3.35103 Y(2) =<br>.19630 Y(3) =<br>13215 Y(4) =<br>.22206 Y(5) =<br>.11896 VPATE =<br>.01003 - SIMY =<br>.00348 PY1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .35983<br>.19654<br>.01782<br>.01282<br>.01330<br>.99998<br>00013                                                                                                                      | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} x(-1) = & .19714 \\ x(-1) = & .19714 \\ \hline x(-1) = & .07939 \\ x(-1) = & .33337 \\ \hline x(-1) = & .33337 \\ \hline x(-1) = & .00000 \\ \hline x(-1) = & .000000 \\ \hline x(-1) = & .0000000 \\ \hline x(-1) = & .00000000 \\ \hline x(-1) = & .000000000 \\ \hline x(-1) = & .0000000000 \\ \hline x(-1) = & .0000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1) =       .66062 $RM(10) =$ 2) =       .26604 $RM(11) =$ 3) =       1.11714 $RM(12) =$ 4) =       0.00000 $PM(13) =$ 5) =       .01441 $PM(14) =$ 6) =       .50020 $RM(15) =$ 7) =       .28663 $RM(16) =$ 8) =       .50599 $RM(17) =$ 9) =       0.00000 $PM(18) =$                                                                                                                                                                                                   | 107.62619 Y(1) =<br>3.35103 Y(2) =<br>.19630 Y(3) =<br>13215 Y(4) =<br>.22206 Y(5) =<br>.11896 VPATE =<br>.01003 - SIMY =<br>.00348 PY1 =<br>.48768 DY =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .35883<br>.19664<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002                                                                                                             | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1) =       .66062 $RM(10) =$ 2) =       .26604 $RM(11) =$ 3) =       1.11714 $RM(12) =$ 4) =       0.00000 $PM(13) =$ 5) =       .01441 $PM(14) =$ 6) =       .50020 $RM(15) =$ 7) =       .28663 $RM(16) =$ 8) =       .50599 $RM(17) =$ 9) =       0.00000 $PM(18) =$                                                                                                                                                                                                   | 107.62619 Y(1) =<br>3.35103 Y(2) =<br>.19630 Y(3) =<br>13215 Y(4) =<br>.22206 Y(5) =<br>.11896 VPATE =<br>.01003 - SIMY =<br>.00348 PY1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .35883<br>.19664<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002                                                                                                             | HOT= -3?.174                          |                                       |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \times (-1) = & & & 19714 \\ \times (-1) = & & & 19714 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.07939 \\ \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} $ \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.000000 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.000000 \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.000000 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.000000 \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.000000 \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.00000000 \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.00000000 \\ \end{array}  \\ \bigg  \\ \end{array}  \\ \bigg                                                                                                                                                                                            | 1) =       .66062 $RM(10) =$ 2) =       .26604 $RM(11) =$ 3) =       1.11714 $RM(12) =$ 4) =       0.00000 $PM(13) =$ 5) =       .01441 $PM(14) =$ 6) =       .50020 $RM(15) =$ 7) =       .28663 $RM(16) =$ 8) =       .50599 $RM(17) =$ 9) =       0.00000 $PM(18) =$                                                                                                                                                                                                   | 107.62619 Y(1) =<br>3.35103 Y(2) =<br>.19630 Y(3) =<br>13215 Y(4) =<br>.22206 Y(5) =<br>.11896 VPATE =<br>.01003 - SIMY =<br>.00348 PY1 =<br>.48768 DY =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .35883<br>.19664<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002                                                                                                             | HOT= -3?.174                          | · · · · · · · · · · · · · · · · · · · |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} x(-1) = & .19714 \\ x(-1) = & .19714 \\ \hline x(-1) = & .07939 \\ x(-1) = & .33337 \\ \hline x(-1) = & .33337 \\ \hline x(-1) = & .00000 \\ \hline x(-1) = & .000000 \\ \hline x(-1) = & .0000000 \\ \hline x(-1) = & .00000000 \\ \hline x(-1) = & .000000000 \\ \hline x(-1) = & .0000000000 \\ \hline x(-1) = & .0000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1) =       .66062 $RM(10) =$ 2) =       .26604 $RM(11) =$ 3) =       1.11714 $RM(12) =$ 4) =       0.00000 $RM(13) =$ 5) =       .01441 $RM(14) =$ 6) =       .50020 $RM(15) =$ 7) =       .28663 $RM(16) =$ 8) =       .50599 $RM(17) =$ 9) =       0.00000 $PM(18) =$                                                                                                                                                                                                   | 107.62619 Y(1) =<br>3.35103 Y(2) =<br>.19630 Y(3) =<br>13215 Y(4) =<br>.22206 Y(5) =<br>.11896 VPATE =<br>.01003 - SIMY =<br>.00348 PY1 =<br>.48768 DY =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .35883<br>.19664<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002                                                                                                             | HOT= -3?.174                          | · · · · · · · · · · · · · · · · · · · |
| $\begin{array}{c} & \begin{array}{c} & (-1) = & & & & 19714 \\ & \begin{array}{c} x (2) = & & & 07939 \\ & \begin{array}{c} x (3) = & & & 33337 \\ \end{array} \\ \hline & \begin{array}{c} x (3) = & & & & 00000 \\ \end{array} \\ \hline & \begin{array}{c} x (3) = & & & 00430 \\ \end{array} \\ \hline & \begin{array}{c} x (5) = & & & 00430 \\ \end{array} \\ \hline & \begin{array}{c} x (6) = & & & 14627 \\ \end{array} \\ \hline & \begin{array}{c} x (6) = & & & 14627 \\ \end{array} \\ \hline & \begin{array}{c} x (6) = & & & & 15100 \\ \end{array} \\ \hline & \begin{array}{c} x (6) = & & & & 09553 \\ \end{array} \\ \hline & \begin{array}{c} x (6) = & & & & & 0000 \\ \end{array} \\ \hline & \begin{array}{c} x (6) = & & & & & & 0000 \\ \end{array} \\ \hline & \begin{array}{c} x (6) = & & & & & & & & & & & \\ \end{array} \\ \hline & \begin{array}{c} x (6) = & & & & & & & & & & & & \\ \end{array} \\ \hline \end{array} \\ \hline & \begin{array}{c} x (6) = & & & & & & & & & & & & & \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                      | 107.62619 Y(1) =<br>3.35103 Y(2) =<br>.19630 Y(3) =<br>13215 Y(4) =<br>.22206 Y(5) =<br>.11896 VPATE =<br>.01003 - SUMY =<br>.00348 DY =<br>.48768 DY =<br>.48768 DY =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .35883<br>.19664<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002                                                                                                             | HOT= -3?.174                          |                                       |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \times (-1) = & & & 19714 \\ \times (-1) = & & & 19714 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.07939 \\ \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} $ \\ \begin{array}{c} \times (-1) = & & & 0.0000 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.000000 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.00000 \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.000000 \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.000000 \\ \end{array} \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.000000 \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.000000 \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.00000000 \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \times (-1) = & & & 0.00000000 \\ \end{array}  \\ \bigg  \\ \end{array}  \\ \bigg                                                                                                                                                                                            | 1) =       .66062 $RM(10) =$ 2) =       .26604 $RM(11) =$ 3) =       1.11714 $RM(12) =$ 4) =       0.00000 $RM(13) =$ 5) =       .01441 $RM(14) =$ 6) =       .50020 $RM(15) =$ 7) =       .28663 $RM(16) =$ 8) =       .50599 $RM(17) =$ 9) =       0.00000 $PM(18) =$                                                                                                                                                                                                   | 107.62619 Y(1) =<br>3.35103 Y(2) =<br>.19630 Y(3) =<br>13215 Y(4) =<br>.22206 Y(5) =<br>.11896 VPATE =<br>.01003 - SUMY =<br>.00348 DY =<br>.48768 DY =<br>.48768 DY =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .35883<br>.19664<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002                                                                                                             | HOT= -3?.174                          |                                       |
| $\begin{array}{c} \begin{array}{c} & \times (-1) = & \cdots & 19714 & \cdots & PM(\\ & \times (-1) = & \cdots & 19714 & \cdots & PM(\\ & \times (-1) = & \cdots & 0.00000 & \cdots & PM(\\ & \times (-1) = & \cdots & 0.00000 & \cdots & PM(\\ & \times (-1) = & \cdots & 0.00000 & \cdots & PM(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000 & 0.000(\\ & \times (-1) = & \cdots & 0.0000(\\ & \times (-1) = & \cdots & 0.000(\\ & \times (-1) = & \cdots & 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                      | 107.62619 (1) =<br>3.35103 (2) =<br>.19630 (3) =<br>13215 (4) =<br>.22206 (76) =<br>.11896 (VPATE =<br>.01003 - SUMY =<br>.00348 (DY =<br>.48768 (DY =<br>.487 | .35983<br>.19654<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002<br>MDT= 33.410 MD                                                                                           | HOT= -32.174                          |                                       |
| $\begin{array}{c} \begin{array}{c} & \times (-1) = & \cdots & 19714 & \cdots & PM(\\ & \times (-1) = & \cdots & 19714 & \cdots & PM(\\ & \times (-1) = & \cdots & 0.00000 & \cdots & PM(\\ & \times (-1) = & \cdots & 0.00000 & \cdots & PM(\\ & \times (-1) = & \cdots & 0.00000 & \cdots & PM(\\ & \times (-1) = & \cdots & 0.00000 & \cdots & PM(\\ & \times (-1) = & \cdots & 0.0000 & PM(\\ & \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>107.62619</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .35983<br>.19654<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00000<br>MDT= 33.410 MD                                                                                           | HOT= -3?.174                          |                                       |
| $\frac{x(-1)}{x(-1)} = \frac{19714}{x(-1)} = \frac{19714}{x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 107.62619 & & & & & & \\ 3.35103 & & & & & \\ 19630 & & & & & & \\ & & & & & & 19630 \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & &$                                                                                                                                                                      | .35983<br>.19654<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00000<br>MDT= 33.410 MD                                                                                           | HOT= -3?.174                          |                                       |
| $\frac{x(-1) = - \cdot \cdot 19714}{x(-2) = \cdot \cdot 07939} $ RM(<br>$\frac{x(-1) = - \cdot \cdot 07939}{x(-3) = \cdot \cdot 33337} $ RM(<br>$\frac{x(-1) = - \cdot \cdot 000000}{x(-1) = \cdot 00000} $ RM(<br>$\frac{x(-1) = - \cdot 00000}{x(-1) = \cdot 00000} $ RM(<br>$\frac{x(-1) = - \cdot 09553}{x(-1) = \cdot 0953} $ RM(<br>$\frac{x(-1) = - \cdot 09503}{x(-1) = \cdot 05007} $ RM(<br>$\frac{x(-1) = - \cdot 20504}{x(-1) = - \cdot 20504} $ RM(<br>$\frac{x(-2) = - \cdot 07962}{x(-3) = - \cdot 094} $ RM(<br>$\frac{x(-3) = - \cdot 33450}{x(-3) = - \cdot 094} $ RM(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 107.62619 & & & & & & & \\ 3.35103 & & & & & & \\ 19630 & & & & & & & \\ & & & & & & & & \\ 19630 & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & &$                                                                                                                                                                       | .35983<br>.19654<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002<br>DMDT= 33.410 MD<br>.43501<br>.34015<br>.19634                                                            | HOT= -32.174                          |                                       |
| $\frac{x(-1)}{x(-1)} = \frac{19714}{x(-2)} = \frac{19714}{x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 107.62619 & & & & & & \\ 3.35103 & & & & & \\ 19630 & & & & & & \\ & & & & & & 19630 \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ &$                                                                                                                                                         | .35983<br>.19654<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002<br>DMDT= 33.410 MD<br>.43501<br>.34016<br>.19634<br>.01575                                                  | HOT = -37.174                         |                                       |
| $\frac{1}{x(2)} = \frac{19714}{00000} = \frac{19714}{0000} = \frac{19714}{00000} = \frac{19714}{00000} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 107.62619 & & & & & & \\ 3.35103 & & & & & \\ 19630 & & & & & \\ & & & & & 19630 & & & \\ & & & & & & & \\ & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .35983<br>.19654<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002<br>DMDT= 33.410 MD<br>.43501<br>.34016<br>.19634<br>.91575<br>.01273                                        | HOT= -3?.174                          |                                       |
| $\frac{1}{x(2)} = \frac{19714}{00000} \text{PM}(\frac{1}{x(2)}) = \frac{19714}{00000} \text{PM}(\frac{1}{x(3)}) = \frac{19714}{00000} \text{PM}(\frac{1}{x(5)}) = \frac{19714}{0000} \text{PM}(\frac{1}{x(5)}) = \frac{19714}{0000} \text$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1)= .66062 PM(10)=<br>2)= .26604 PM(11)=<br>3)= 1.11714 PM(12)=<br>4)= 0.00000 PM(13)=<br>5)= .01441 PM(14)=<br>6)= .50020 PM(15)=<br>7)= .28663 PM(15)=<br>8)= .50599 PM(15)=<br>9)= 0.00000 PM(17)=<br>9)= 0.00000 PM(18)=<br>165.891 HL055= 54.909<br>NUMBER OF ITERATI<br>1)= .70237 PM(10)=<br>2)= .26930 PM(11)=<br>3)= 1.14583 PM(12)=<br>4)= 0.00000 PM(13)=<br>.01522 PM(14)=<br>5)= .01522 PM(14)=<br>5)= .47507 PM(15)=                                        | $\begin{array}{c} 107.62619 & & & & & & & \\ 3.35103 & & & & & & \\ 19630 & & & & & & & \\ 19630 & & & & & & & \\ 19630 & & & & & & & \\ & & & & & & & & \\ 13215 & & & & & & & & \\ & & & & & & & & & \\ 22206 & & & & & & & & \\ & & & & & & & & & \\ 1896 & & & & & & & & \\ & & & & & & & & & \\ 1896 & & & & & & & & \\ & & & & & & & & & \\ 1896 & & & & & & & & \\ & & & & & & & & \\ 1896 & & & & & & & \\ & & & & & & & & \\ 1896 & & & & & & & \\ & & & & & & & \\ 19879 & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ 19879 & & & & & & & \\ & & & & & & & & \\ 19879 & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ 19879 & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .35983<br>.19664<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002<br>DMDT= 33.410 MD<br>.43501<br>.34015<br>.19534<br>.91575<br>.01273<br>.01443                              | HOT= -3?.174                          | 774                                   |
| $\frac{x(-1) = \cdots \cdot 19714}{x(-2) = \cdot \cdot \cdot 07939} \text{ PM}($ $\frac{x(-1) = \cdots \cdot 019714}{x(-2) = \cdot \cdot \cdot 07939} \text{ PM}($ $\frac{x(-3) = \cdot \cdot 33337}{x(-1) = \cdot \cdot \cdot 01000} \text{ PM}($ $\frac{x(-5) = \cdot \cdot 01000}{x(-5) = \cdot \cdot 0100} \text{ PM}($ $\frac{x(-5) = \cdot \cdot 0100}{x(-5) = \cdot 0100} \text{ PM}($ $\frac{x(-5) = \cdot \cdot 0100}{x(-5) = \cdot 0100} \text{ PM}($ $\frac{x(-1) = \cdot \cdot 01000}{x(-5) = \cdot 0100} \text{ PM}($ $\frac{x(-1) = \cdot \cdot 01000}{x(-5) = \cdot 01000} \text{ PM}($ $\frac{x(-1) = \cdot \cdot 01000}{x(-5) = \cdot 01000} \text{ PM}($ $\frac{x(-1) = \cdot \cdot 01000}{x(-5) = \cdot 01000} \text{ PM}($ $\frac{x(-5) = \cdot 01000}{x(-5) = \cdot 00000} \text{ PM}($ $\frac{x(-5) = \cdot 01000}{x(-5) = \cdot 00000} \text{ PM}($ $\frac{x(-5) = \cdot 01000}{x(-5) = \cdot 00000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 00000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 00000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 00000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 00000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 00000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 00000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 00000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 00000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 0000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 0000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 0000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 0000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 0000} \text{ PM}($ $\frac{x(-5) = \cdot 00000}{x(-5) = \cdot 0000} \text{ PM}($ $\frac{x(-5) = \cdot 0000}{x(-5) = \cdot 0000} \text{ PM}($ $\frac{x(-5) = \cdot 0000}{x(-5) = \cdot 0000} \text{ PM}($ $\frac{x(-5) = \cdot 0000}{x(-5) = \cdot 0000} \text{ PM}($ $\frac{x(-5) = \cdot 0000}{x(-5) = \cdot 0000} \text{ PM}($ $\frac{x(-5) = \cdot 0000}{x(-5) = \cdot 0000} \text{ PM}($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 107.62619 & & & & & & \\ 3.35103 & & & & & & \\ 19630 & & & & & & \\ & & & & & & & \\ 19630 & & & & & & & \\ & & & & & & & \\ 19630 & & & & & & & \\ & & & & & & & & \\ 22706 & & & & & & & \\ & & & & & & & & \\ 22706 & & & & & & & \\ & & & & & & & & \\ 1896 & & & & & & & \\ & & & & & & & & \\ 1896 & & & & & & & \\ & & & & & & & & \\ 1896 & & & & & & & \\ & & & & & & & \\ 1896 & & & & & & & \\ & & & & & & & \\ 1896 & & & & & & & \\ 1896 & & & & & & & \\ 0N5 = & & & & \\ 0N5 =$                                                                                                                                                                      | .35983<br>.19654<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002<br>DMDT= 33.410 MD<br>.43501<br>.34016<br>.19634<br>.91575<br>.01273                                        | HOT= -3?.174                          | 9.247                                 |
| $\frac{1}{x(2)} = \frac{19714}{00000} \text{PM}(\frac{1}{x(2)}) = \frac{19714}{00000} \text{PM}(\frac{1}{x(3)}) = \frac{19714}{00000} \text{PM}(\frac{1}{x(5)}) = \frac{19714}{0000} \text{PM}(\frac{1}{x(5)}) = \frac{19714}{0000} \text$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1)= .66062 $PM(10)=$<br>2)= .26604 $PM(11)=$<br>3)= 1.11714 $PM(12)=$<br>4)= 0.00000 $PM(13)=$<br>5)= .01441 $PM(14)=$<br>6)= .50020 $PM(15)=$<br>7)= .28663 $PM(16)=$<br>8)= .56599 $PM(16)=$<br>9)= 0.00000 $PM(18)=$<br>165.891 $HL055=$ 54.909<br>NUMBER OF ITERATI<br>1)= .70237 $PM(10)=$<br>2)= .26930 $PM(11)=$<br>3)= 1.14583 $PM(12)=$<br>4)= 0.00000 $PM(13)=$<br>5)= .01522 $PM(14)=$<br>5)= .47607 $PM(15)=$<br>7)= .26663 $PM(15)=$<br>7)= .26663 $PM(15)=$ | $\begin{array}{c} 107.62619 & & & & & & & \\ 3.35103 & & & & & & \\ 19630 & & & & & & & \\ 19630 & & & & & & & \\ 19630 & & & & & & & \\ & & & & & & & & \\ 13215 & & & & & & & & \\ & & & & & & & & & \\ 22206 & & & & & & & & \\ & & & & & & & & & \\ 1896 & & & & & & & & \\ & & & & & & & & & \\ 1896 & & & & & & & & \\ & & & & & & & & & \\ 1896 & & & & & & & & \\ & & & & & & & & \\ 1896 & & & & & & & \\ & & & & & & & & \\ 1896 & & & & & & & \\ & & & & & & & \\ 19879 & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ 19879 & & & & & & & \\ & & & & & & & & \\ 19879 & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ 19879 & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .35983<br>.19664<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002<br>DMDT= 33.410 MD<br>.43501<br>.34015<br>.19534<br>.91575<br>.01273<br>.01443                              | HOT = -3?.174                         | 4776                                  |
| $\frac{(-1)_{\pm}}{(2)_{\pm}} = \frac{(-1)_{\mp}}{(-1)_{\pm}} = \frac{(-1)_{\mp}}{(-1)_{\mp}} = (-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>107.62619</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .35983<br>.19654<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00002<br>MDT= 33.410 MD<br>.43501<br>.34015<br>.19534<br>.01575<br>.01273<br>.01443<br>.99998<br>~.00011<br>00002 | HOT= -3?.174                          | 4476                                  |
| $\frac{1}{x(2)} = \frac{19714}{00000} PM($ $\frac{x(3)}{x(3)} = \frac{33337}{00000} PM($ $\frac{x(3)}{x(3)} = \frac{33337}{00000} PM($ $\frac{x(4)}{x(5)} = \frac{00430}{00053} PM($ $\frac{x(6)}{x(6)} = \frac{14627}{0000} PM($ $\frac{x(6)}{x(6)} = \frac{15100}{0000} PM($ $\frac{x(6)}{x(6)} = \frac{15100}{0000} PM($ $\frac{x(7)}{x(6)} = \frac{05057}{0000} PM($ $\frac{x(7)}{x(6)} = \frac{07962}{0000} PM($ $\frac{x(3)}{x(6)} = \frac{33450}{0000} PM($ $\frac{x(7)}{x(6)} = \frac{00444}{0000} PM($ $\frac{x(7)}{x(6)} = \frac{13496}{00044} PM($ $\frac{x(7)}{x(6)} = \frac{15476}{000} PM($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 107.62619 & & & & & & & & \\ 3.35103 & & & & & & & \\ 19630 & & & & & & & & \\ & & & & & & & & & \\ 19630 & & & & & & & & \\ & & & & & & & & & \\ 13215 & & & & & & & & & \\ & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .35983<br>.19654<br>.01782<br>.01282<br>.01330<br>.99998<br>00013<br>00000<br>DMDT= 33.440 MD<br>.34016<br>.19634<br>.01575<br>.01273<br>.01443<br>.99998<br>00011<br>00002            | HDT= -30.126                          |                                       |

NUMBER OF ITERATIONS= 5

| X(3)= .33573 P                        | 4( 3)= 1.17357 PM(12)= .200         | 97 Y(3)= .19643         |                                       |      |
|---------------------------------------|-------------------------------------|-------------------------|---------------------------------------|------|
| X ( 4) = 0,00000 R                    | 4( 4) = 0,00000 RM(13) = .182       | 64 Y(4) = .01402        |                                       |      |
| X(5)= 00452 R                         | 4( 5)= .01582 " 'PM(14)=" .251      | 29 Y(5)= .01254         | · · · · · · · · · · · ·               |      |
| X( 6) # .13000 ₽'                     | 1( 6)= .45443 FM(15)= .141          | 69 ·VRATE= .01565       |                                       |      |
|                                       | A( 7) = .28563 RM(16) = .013        |                         |                                       |      |
| X( 8)= .15785                         | A( B)= .55176 PM(17)= .004          | 95                      |                                       |      |
| X(4)= 0.00000 R                       | 4( 9)= 0,00000 R4(19)= .603         | 25 DY=00010             |                                       |      |
| HINT = 45,057 HOUT                    | )= 194.490 HLOSS= 2.911 HPXNS       | = 101.684 HOMDT= 27.366 | 40HDT= -28.026                        |      |
|                                       |                                     | -                       |                                       |      |
|                                       |                                     |                         | ,                                     |      |
| · . · ·                               |                                     |                         | •                                     |      |
| TIME= 36.00 MINUTES                   | NUMPER OF ITERATIONS= 6             | ·                       |                                       |      |
|                                       |                                     |                         |                                       |      |
|                                       | A(1) = .78377 RM(10) = 105.145      |                         |                                       |      |
| -                                     | $A(2) = .26783$ $R^{M}(11) = 3.561$ |                         |                                       |      |
|                                       | PW(12) = 1.20035 $PW(12) = (E) V$   |                         |                                       |      |
|                                       | A(4) = 0.00000 PM(13) = .2120       |                         |                                       |      |
| · · · · ·                             | 4(5) = .01624 RM(14) = .2913        |                         |                                       |      |
|                                       | 4(6) = .43484 PM(15) = .154         |                         |                                       |      |
|                                       | 4(7)= .28663 RM(16)= .012           |                         |                                       |      |
|                                       | 4( 8) =                             |                         |                                       |      |
|                                       | 4( 9) = 0.00000 PM(18) = .669       |                         |                                       |      |
| HINT = 95.057 HOUT                    | )= 207.760 HL055= -19.490 H2XN5     | = 92.299 HOMDT= 24.547  | MDHDT= -25.461                        |      |
|                                       |                                     |                         |                                       | •    |
|                                       |                                     |                         |                                       | •    |
| TIME= 40.00 MINUTES                   | NUMBER OF ITERATIONS= 6             | · ·                     |                                       |      |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | NUMBER OF INTARITORSE O             |                         |                                       |      |
| ×(1)= .22706 R*                       | 1( 1)= .82246 RM(10)= 104.473       | 41 $Y(1) = .49118$      |                                       |      |
|                                       | 1( 2)= .26415 PM(11)= 3.622         |                         |                                       |      |
|                                       | (3)= 1.22619 RM(12)= .204           |                         |                                       |      |
| -                                     | 1( 4) = 0.00000 PM(13) = .245       |                         |                                       |      |
| •                                     | 1( 5) = .01652 FM(14) = .301        |                         |                                       |      |
|                                       | 1( 6) = .41695 PH(15) = .168        |                         |                                       |      |
|                                       | (7)= .28663 PM(16)= .013            |                         |                                       |      |
|                                       | 1( 8) = .58924 - PM(17) = 006       |                         | · · · · · · · · · · · · · · · · · · · |      |
|                                       | ( 9) = 0.00000 RM(18) = .737        |                         |                                       |      |
| HIME = 95.057 HOUT                    | = 220.949 HLOSS= -40.008 HRXNS      | = 84,507 HDMDT= 21,720  | MDH01= -23.097                        |      |
|                                       |                                     |                         |                                       |      |
|                                       |                                     |                         |                                       |      |
|                                       |                                     |                         |                                       |      |
| TIVE= 44:00 MINUTES                   | NUMBER OF ITERATIONS= 6             |                         |                                       |      |
|                                       |                                     |                         |                                       |      |
|                                       | R(1) = .85939 $RM(10) = 103.871$    |                         |                                       |      |
|                                       | N(2) = .25906 $PM(11) =3.6791$      |                         |                                       |      |
| -                                     | (3) = 1.25109 RM $(12) = .205$      |                         |                                       |      |
|                                       | ( 4) = 0.00000 RM(13) = .2433       |                         |                                       |      |
|                                       | (5)= .01667 RM(14)=                 |                         |                                       |      |
|                                       | ( 6) = .40049 PM(15) = .182         |                         |                                       |      |
|                                       | I(7) = .28663 RM(16) = .914         | 51 SIMY= .99994         |                                       |      |
|                                       | ( 8) = .60570 RM(17) = .0074        |                         |                                       |      |
|                                       | P(9) = 0.00000 RM(18) = .810        |                         |                                       |      |
| HINT = 95.057 HOUT                    | HE 233,495 HLOSS= -54.691 HRXNS:    | = 77.960 HOMOT= 19.063  | MDHDT= -20,850                        |      |
|                                       | ·····                               |                         | · · · · · · · · · · · · · · · · · · · |      |
|                                       |                                     |                         |                                       |      |
|                                       |                                     |                         |                                       | - ni |

| X ( h) =       | • 10320           | אם)                      | 6)=        | • 38523  | PM(15)=        | .19817       | VPATE=     | .01947          |                |                                                |
|----------------|-------------------|--------------------------|------------|----------|----------------|--------------|------------|-----------------|----------------|------------------------------------------------|
| ¥ ( 7) =       | .075×0            | RM (                     | 7)=        | .28663   | ¤∨(16)=        | .01546       | SUMY =     | .99995          |                |                                                |
| X( F) =        | -16639            | RM(                      | 8)=        | .62096   | PY(17)=        | .00836       | DY1=       | -,00045         | • •            |                                                |
| X( Y)=         | 0.00000           | P.M.(                    | 9)= 0      | 1.00000  | PM(18)=        | .88825       | DY=        | 00005           |                |                                                |
| HINT =         | 95,057            | HOUTO≠                   | 245.1      | 179 HLO: | 35= -75.605    | 5 HRYNS=     | 72.404 HO  | MDT= 16.643     | MOHDT= -18.755 |                                                |
|                |                   |                          |            |          |                |              |            |                 |                |                                                |
| 4              |                   |                          |            |          |                |              |            |                 |                |                                                |
|                |                   |                          |            |          |                |              |            |                 |                |                                                |
| -TIME=52       | 2.00 MINU         | TESTT                    | • ••       | NUMBER   | R DF ITERATI   | IONS= 16     |            | -               | • 10 At 10 100 |                                                |
|                | :                 |                          |            |          |                |              |            |                 |                |                                                |
| ×(1)=          | .24528            | PM (                     | 1)=        | ,92744   | PM(10)=        | 102.45313    | Y(1)=      | .53570          |                |                                                |
| ×( ?)= -       | 06505             | THR                      | 2)=        | .24547 - | · · · RM(11)=  | 3.78115      | Y(2)=      | .24254          |                |                                                |
| Y( 3)=         | . 34 3 34         | RM (                     | 3)= 1      | *50851   | RM(12)=        | .20802       | Y(3)=      | .20155          |                |                                                |
| X(4)=          | 0.00000           | ₽M (                     | 4)= 0      | 00000    | RM(13) =       | .36632       | Y(4)=      | .00948          |                |                                                |
|                | .00442-           | PM(                      | 5)=        | .01671   | RM(14)=        | .35324       | Y(5)=      | .01102          | • · ·          |                                                |
| x( 6)=         | .0441S            | RM (                     | 6)=        | .37100   | ₽¥(15)=        | .21+51       | VRATE=     | .02077          |                |                                                |
| x(7)=          | .07580            | PM (                     | 7)=        | .28663   | RM(16) =       | .01631       | S11MY =    | .99995          |                |                                                |
| ×( +)=         | - 16749 -         | R*1 (                    | 8)=        | .63519   | ····· RM(17) = |              | DY1=       | 00044           |                |                                                |
|                | 0.0000            |                          | 9)= 0      |          | PM(1B) =       | 46955        | DY=        | 00004           |                |                                                |
| HINT =         | 95.057            | HOUTO=                   | -          |          | 55= -40.464    |              |            | ADT= 14.484     | MOHDT= -16.837 |                                                |
|                |                   |                          |            |          |                |              |            |                 |                |                                                |
|                |                   |                          |            |          |                |              |            |                 |                |                                                |
|                |                   |                          |            |          |                |              |            |                 |                |                                                |
| - TIMF=56      | .00 MINUT         | TFS                      |            | - NUMBER | R OF - ITERATI | 0NS= - 6     |            |                 | · ···· ··      |                                                |
|                |                   |                          |            |          | · · · ·        |              |            |                 |                |                                                |
| x(1) =         | .25046            | 241                      | 1)=        | .95850   | PM(10) =       | 102.42329    | Y(1)=      | .54824          |                |                                                |
| Xt 2)=         |                   | <b>- - - - - - - - -</b> | <b>-</b> · | 23850    |                | - 3.82693    | -·· Y(S)=  | .22925          |                |                                                |
| X(3)=          | 34505             |                          |            | .32051   | RM(12) =       | .20981       | Y(3)=      | .20275          |                |                                                |
| -              | 0.00000           |                          |            | .00000   | PM(13)=        | .41240~      |            | .00902          |                |                                                |
|                |                   |                          |            |          |                |              | Y(5)=      | .01058          |                |                                                |
| X(f) =         | 09346             | FM (                     |            | .35766   | PM(15)=        | .23166       | VPATE=     | .02150          |                |                                                |
| x ( 7) =       | 07490             | <b>әч</b> (              |            | .28663   | PM(16)=        | .01714       | SUWAE      | 94996           |                |                                                |
| X ( ->) =      | -                 | PM (                     | -          |          |                |              | - 0Y1=     | 00043           |                | · · · · · · · · · · · · · · · · · · ·          |
| ×( 9)=         |                   |                          |            | .00000   | RM(18) =       | 1.05432      | DY=        | 00004           |                |                                                |
| HINT =         | 45.057            | HOUTO=                   |            |          | 55 = -104.602  | • •          |            | 4DT= 12.584     | MDHDT= -15.107 |                                                |
|                |                   |                          |            |          | ·······        |              |            | 101- 10-004     | 406714 -19.107 |                                                |
|                |                   |                          |            |          | -              |              |            |                 |                |                                                |
|                |                   |                          |            |          |                |              |            |                 |                |                                                |
| -TIME=60       |                   | TES                      | · •· .     | NUMBER   | OF ITERATI     | ONS= 2       |            |                 |                |                                                |
| , <b>4</b> u = | - 1 V J V J V J V | r <b>.</b> , J           | •          |          | OF TICHMIT     | U. 1- C      |            | •               |                |                                                |
| ( ) x          | .25523            | b. DM/                   | 1)=        | .98765   | DM (10) -      | 102.04090    | V/11-      | 550L4           |                |                                                |
|                |                   |                          |            |          |                |              | Y(1)=      | -559H4<br>21641 |                |                                                |
|                | •                 |                          |            |          |                |              |            | .21651          |                |                                                |
| X(3)=          | ,34620            |                          | 3) = 1     |          | RM(12)=        | .20947       | Y(3)=      | .21444          |                |                                                |
|                | 0.00000           | -                        |            | .00000   | RM(13)=        | .46121       | Y (4) =    | .00839          |                |                                                |
| X( E)=         | •                 | DM (                     |            | .01650   |                | .40279       | * Y(5)=    | .01035          |                |                                                |
| × (            | <u>.08918</u>     | F 14 (                   |            | •34508   | PM(15)=        | -24-15-4     | VPATE=     | .02243          |                |                                                |
| X(7)=          | .07407            | 오세 (                     |            | .28663   | PH(16)=        | .01707       | SHMY=      | 1.00005         |                |                                                |
|                |                   |                          |            | .66111   |                | .61111       | D~1=       |                 | • •            |                                                |
|                |                   |                          |            |          |                |              | DY=        |                 |                |                                                |
| HINT =         |                   |                          | 5.9.5      | 40 HLOS  | 5S = -117.004  |              | 59.883 HDV | 10.473          | MDHDT= -14.769 |                                                |
|                |                   | - • - •                  |            | •        |                |              |            |                 |                |                                                |
|                |                   |                          |            |          |                |              |            |                 |                |                                                |
|                |                   |                          |            |          |                | ·            |            |                 |                | -t                                             |
|                | .00 MINUT         | r=s                      | •          | NUMBER   | OF ITERATI     | 0NS= 7       | •••        |                 |                |                                                |
|                |                   |                          |            |          |                |              |            |                 |                | с<br>С                                         |
| X(1)=          | 25960             | R'1(                     | 1) = 1     | .01442   | PM(10)=        | 101.69270    | Y(1)=      | .57042          |                |                                                |
|                |                   | 04(                      |            |          |                | 5, 25254     |            | .20507          |                | n na han an a |
| X ( 51,#       | 36250             |                          | 3;= 1      |          | 44(12)=        | 20000        | Y(3)=      | 20515           |                |                                                |
|                | r_0r.00           |                          | 41= 0      |          | pv(13)=        | <b>E</b> 1 - | Y(0)=      | 100841          |                |                                                |
|                |                   |                          |            |          |                |              |            | - · · · · · · · |                |                                                |

|   | Тм£= 8   | 0.00 HINUTES | • -   |       | NUMBER OF ITERATIONS= 7 |          |           |           |        |  |  |  |
|---|----------|--------------|-------|-------|-------------------------|----------|-----------|-----------|--------|--|--|--|
|   | x( 1)=   | .27374       | RM (  | 1)=   | 1.10753                 | RM(10)=  | 100,60828 | Y(1)=     | .60530 |  |  |  |
| - | X( 2)=   | .04720       | ₽M (  | 2) =  | .19097                  | RM(11)=  | 4.04538   | X(S)=     | .16488 |  |  |  |
|   | - 1      | .35572       | Q M ( | 3) =  | 1.43920                 | PM(12)=  | .21113    | Y(3)=     | .21353 |  |  |  |
|   | X ( 4, = | 10000        | DM (  | 4)=   | 0.00000                 | PM(13)=  | .74090    | Y(4)=     | .00749 |  |  |  |
|   |          | I            | > 1.0 |       | - 115 17                | P1(14) - | .44294    | Y ( 5 ) = | .00878 |  |  |  |
|   |          | • •          | · • ! | M 1 = | • ↓ ↓ ↓ ↓ ↓ ↓ ↓         | 5111-1   | . 144 75  | VCDT: =   | -02014 |  |  |  |

TIME= 72.00 MINUTES NUMBER OF ITERATIONS= 7

. .

| . <del></del> | · · • |     |    |
|---------------|-------|-----|----|
| ,             |       | · . | 47 |
|               |       |     | 22 |
| •             | •     |     |    |
|               |       |     |    |

-----

- - -

| TIME= 76.00 VINUTES NUMBER OF ITERATIONS= 7                                                                           |                               |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                                                                                                                       | •59759<br>•17401<br>•21165    |
| X( 5)= .003A9 RM( 5)= .01563 RM(14)= .47607 Y(5)= .                                                                   | • 00755<br>• 00905<br>• 02459 |
| X(7) = .07139 PM(7) = .28663 PM(16) = .02117 SUMY = .<br>Y(8) = .17565 PM(8) = .70519 PM(17) =                        | .00955                        |
| x(9)= 0.00000 RM(9)= 0.00000 PM(18)= 1.51988 DY=<br>HINT = 45.057 HOUTO= 302.072 HL055= -155.417 HaxNS= 48.912 HaMDT= | .00002<br>6.326 NDHOT= -9.011 |

|         |        |           |           |           |               |          |            |         |           | 4 |
|---------|--------|-----------|-----------|-----------|---------------|----------|------------|---------|-----------|---|
|         |        | .58925    | Y(])=     | 101.09809 | PM(10)=       | 1.06432  | QM( 1)=    | ,26729  | ×( ])=    |   |
|         | • •    | .18372    | - Y(2)=   | 3,98189   | RM(11)=       | .20662   | RM( 2)=    | .04183  | x (" ?) = |   |
| <br>· . |        | .20980    | Y(3)=     | .21071    | RM(12)=       | 1.40224  | RM( 3)=    | 35216   | ×( 3)≃    |   |
|         |        | .00783    | Y(4)=     | .62261    | RM(13) =      | 0.0000   | PM(4)=     | 0,00000 | X ( 4)=   |   |
| <br>•   |        | .00938    | Y(5)=     | .45859    | RM(14) =      | .01588   | RM(5)=     | .ra399  | ¥( ~)=    |   |
|         |        | .02420    | VRATE=    | .30766    | RM(15) =      | .31122   | RM( 6)=    | .07916  | X ( f)=   |   |
|         |        | • 9994B   | 5UMY =    | .02036    | ₽M(16)=       | .28563   | R'4(7)=    | .07198  | ×(7)=     |   |
|         | · ·    | 00021     | DY1=      | .01387    | RM(17)=       | .69497   |            | .17453  | X( P)=    |   |
|         |        | 00002     | DY =      | 1.42212   | PM(18) =      | 0.00000  | ₽M( 9)=    | 0.00000 | ¥(9)=     |   |
| -9.997  | MOHDT= | DT= 7.201 | 51.255 -0 | HRXNS=    | 055= -147.200 | 6.309 HL | HOUTO= 290 | 95.057  | HINT =    |   |
|         |        |           |           |           |               |          | ł          |         |           |   |

| 14E= - 68   | 1.00 MINUT | 'ES    |      | MIIMF   | ER O | F ITERATI | 1013= 7   | • • |         |            |                                       |
|-------------|------------|--------|------|---------|------|-----------|-----------|-----|---------|------------|---------------------------------------|
| X(1)=       | .26361     | PM (   | 1)=  | 1.04045 |      | RM(10)=   | 101.38041 |     | Y(1)=   | .58021     | •                                     |
| - * ( -2) = | 05438 ~    | RM(    | 5)=  | .21464  |      | RM(11)=-  | 3.94687   |     | - Y(2)= | .19495     |                                       |
| x(3)=.      | .35036     | 241    | 3)=  | 1.38284 |      | PM(12)=   | .21039    |     | Y(3)=   | •50136     |                                       |
| X ( 4) =    | 0.00000    | RM (   | 4)=  | 0.0000  |      | RM(13)=   | .56652    |     | Y(4)=   | .00905     |                                       |
| x( 5)= =    | .00498     | RM (   | 5)=  | .01612  |      | PM(14)=   |           |     | Y(5)=   | .00970     |                                       |
| X ( 5)=     | .05157     | PM (   | 6)=  | .32194  |      | ₽M(15) =  | 28763     |     | VRATE=  | 02355      |                                       |
| X(7)=       | .072-2     | RM (   | 7)=  | .28663  |      | RM()5)=   | .01955    |     | SUMY    | , 9490B    |                                       |
| x( H)= "    | .17337     | PM(    | 8)=  | .68425  | •-   | PM(17) =  | .01296    |     | ' DY1=  | 00021      | · · · · · · · · · · · · · · · · · · · |
| X( →)=      | 0.0000     | RM (   | 9)=  | 0.00000 |      | RM(18)=   | 1.32646   |     | DY=     | 00002      |                                       |
| HIVT =      | 05.057     | HOUTO= | 249. | .973 HL | 055= | -138.127  | HaxNS=    | 53. | 833 HDM | S12.8 = TC | MOHDT= -11.166                        |

X(9)= 0.00000 PM(9)= 0.00000 PM(18)= 1.23313 DY= -.00002 HINT = 05.057 HOUTO= 283.085 HLOSS= -129.091 HRYNS= 56.692 HDMDT= 0.355 MDHDT= -12.600

```
C.3.1 Program List for Program CHEMACT
                                                                       480
       CHEMACT
                                                     PAGE
                                                            1
                         CDC
                                     77/01/29
   PPOGRAM CHEMACT (INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT)
   COMPON K.N.MG.X (60.7) .XLAMDA (5.5) . UN. NCOMP.SUM(60.5) .KK
   COHMON /G1/ Y(240), YCAL(240), IBCODE(24), BMAX(24), BMIN(24), B(25),
  1PHT+FNU+FLAMDA+TAU+EPSILM+PHIMIN+INDEX+KODE+ITER+STDEVS
   DIMENSION DEV(240) (TITLE(20)
   RFAD(5,103) (TITLE(I), I=1,20)
103 FORMAT(2044)
50 READ(5.9) K.N.IDUMMY.MG.NCOMP.NSET.KK
 9 FORMAT(815)
   NH=N*YG
    00 10 I=1,KK
    BHAX(I)=10000.
10 BMIN(I)=0.
    IF (KK.EQ.K) GO TO 60
    KK]=KK+]
    DO 31 I=KK1.K
    BMIN(1) = -100.
31 BMAX(J)=1000.
60 READ(5+14) (B(J)+I=1+K)
    B(k+1)=0.
    NCOMP1=NCOMP-1
70 DO 1000 1=1.N
000 RFAD(5+14) (X(I+J)+J=1+NCOMP1)+Y(I)+Y(I+N)+Y(I+2*N)+Y(I+3*N)
    DU 05 1=1+N
    XS=0.
    DO 83 J=1.NCOMP1
83 XS=XS+X(1.J)
 62 X(IXRCOMP)=1.-XS
    1F(JDUMMY.EO.NCOMP) GO TO 80
    NCOWPS=ACOWP+1
    DO 63 J=NCOMP2+IDUMMY
 63 RFAD(5+14) (X(1+J)+I=1+N)
    DO 64 I=1.N
    DO 64 J=NCOMP2.IDUMMY
 64 X(I \cdot J) = X(I \cdot J) + 273 \cdot 16
 14 FORMAT(8F10.0)
 80 DO 81 1=1.NN
 81 Y(I) = ALOG(Y(I))
    READ(5.14) STDEVS
    FIGU=0.
    FL4M04=0.
    TAU=0.
    LPSILN=0.
    PHIMIN=0.
    INDEX=0
    D0 15 1=1+K
 18 18C005(I)=-1
    WPITE(6+100)
100 FORMAT(1H1///2X.5HINDEX.1X.4HKODE.8X.5HSTDEV.11X.2HB1.11X.2HB2.11X
   1+2HR3,11X+2H84,11X,2HR5,11X+2HR6,11X,2HB7/)
 30 CALL RSOLVE
    STDEV=SORT(PHI/FLOAT(MN-1))
    IF(INDEX.GE.NSET ) KODE=-1
    wPITE(6+102) INDEX+KODE+STDEV+(B(I)+J=1+K)
102 FORMAT(2X,215,5F13.5+/+(25X+7F13.5))
```

|          |                             |                |                 |                     | 481                    |
|----------|-----------------------------|----------------|-----------------|---------------------|------------------------|
|          | CHEMACT                     | CDC            | 77/01/29        | PAGE 2              | -                      |
| -        | IF(KODF) 40,40.             |                | •               | ···· ··· ··· · ·    |                        |
|          | IF (INDEX.LT.NSE            | T) GO TO 30    |                 | •                   |                        |
|          | 00 25 I=1•NN                | V ( 1 )        |                 |                     | • · ··· · · ·          |
|          | DEV(I)=YCAL(I)-<br>Continue | 1(1)           | ·               |                     |                        |
|          | vFITE(6,203) (T             | TTLE(T) T= 1.  | 201             |                     |                        |
|          | FORMAT(1H1//1X+             |                | 207             | · · · · · · · · · · |                        |
|          | WRITE (6+104)               |                |                 |                     |                        |
| 104 F    | FORMAT(//)X.5HP             | OINT.9X.2HX1   | •9X•2HX2•9X•2HX | 3,9X,2HX4,9X,2H     | 4X5,                   |
|          | 7X+4HTSYS+7X+4H             |                |                 | and the second      |                        |
|          | WRJTE(6,106) (I             |                | •7) • I=1 • N)  |                     |                        |
|          | FODMAT(1x,15,7F             |                |                 |                     |                        |
| <b>k</b> | WRITE (6.120)               |                |                 |                     |                        |
| 120 F    | FOPMAT(1H1///1X             | +5HPOINT,7X,   | 4HLNG1+6X,5HLNG | C1.8X,3HDEV,7X      | ,4HLNG2,               |
|          | 6x.5HLNGC2.8X.3             |                |                 |                     |                        |
| ĩ        | D0 92 I=1+N                 | ·              |                 |                     |                        |
| i        | L 1 = I + N                 |                |                 |                     |                        |
| 92 1     | WPITE(6,94) I.              | Y(I) * YCAL(I) | •DEV(I)•Y(L1)•Y | CAL(L1) + 0EV(L1)   |                        |
| 94 F     | FORMAT(1X,15,6F             | 11.5)          |                 |                     |                        |
| t        | MEILE(0+155)                |                |                 |                     | 6 1 1 1 <b>1 . 7</b> / |
|          |                             |                | 4HLNG3.6X.5HLNG | C3.8X, SHUEV. TX    | 1411LNG45              |
|          | 6¥•5HLNGC4•8X•3             | SHDEV/)        |                 |                     |                        |
|          | DQ 96 J=1•N                 |                |                 |                     |                        |
|          | LS=I+S*N                    |                |                 |                     |                        |
|          |                             |                |                 |                     |                        |

L3=I+3\*N WRITE(6,94) I.Y(L2).YCAL(L2).DEV(L2).Y(L3).YCAL(L3).DEV(L3) 46 DO 82 I=],NN Y(T) = F X P(Y(T))

B2 YCAL(I) = EXP(YCAL(I))EPTTE(6,129)

129 FORMAT()H1///1X,5HPOINT,9X,2HG1,8X,3HG1C,9X,2HG2,8X,3HG2C,9X, 12H63+6X,3H63C,9X,2H64+8X3H64C/) Do 84 1=1.N

L1=I+N L2=I+2#N L3=I+3#N 84 WRITE(6,90) I.Y(I), YCAL(I), Y(L1), YCAL(L1), Y(L2), YCAL(L2), Y(L3), 1YC4L(L3)

98 FORMAT(1X:15:8F11.5) WRITE(6+108) STDEV 108 FORMAT(1H1//20X+19HSTANDARD DEVIATION=+F10.5//20X+ 116HFITTED CONSTANTS) WRITE(6,114) (I,B(I),I=1,K) 114 FORMAT(22x, 2HB(, 12, 2H) =, E13, 5)

77. RF4D(5,9) IDT GO TO (50.60,70,80,90),1DT 90 STOP END

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                         |               |          | -10 <i>1</i> - |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------|---------------|----------|----------------|
| •     | CHEMACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDC                       | 77/01/29                | PAGE          | 3        |                |
|       | SUPPOUTINE BSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                         | • .           | <b>.</b> | · • •          |
|       | COMMON KANPOIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 • MG • X (60 • 7 ) • X | LAMDA (5,5) . N. NO     | COMP + SUM (6 | 0•5)•KK  |                |
|       | COMMON ZG1Z YO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 240) •7(240) • I+         | CODE(24) . BMAX(2       | 24) . HMIN(2  | 4),B(25  | ),             |
| 1     | PHT. FULLE FLAMDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +TAU + EPSILN + PH        | IIMIN+INDEX+KODE        | E+ITEP+STD    | EVS      | · ·            |
|       | DIMENSION 7ETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (240) . ALPHA (24         | ) + A JA COB ( 240 + 24 | 4)•G(24)•A    | (24,24)  | 9              |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LE(24,25),DELT            | A(24)                   |               |          |                |
|       | KP1=K+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | . 1                     |               |          |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0) FLAMDA=0.0           | 11                      |               |          |                |
|       | IF(INDFX.GT.0)<br>IF(FNU.LE.0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | •                       |               | •        |                |
|       | IF (TAU.LE.0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                         |               |          |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0) EPSILN=0.0            | 0002                    |               |          |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0) PHIMIN=0.0            |                         |               | <u>ب</u> |                |
|       | KEY=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                         |               |          |                |
|       | DO 100 J=1.K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                         | <u>_</u>      |          |                |
| 100   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VE.0) KEY=KEY+]           |                         |               |          |                |
|       | JF(KEY.G1.0) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50 10 101                 |                         |               |          |                |
|       | KONE=-3<br>GO TO 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · <u> </u>                | ·                       |               |          |                |
| 101   | IF(N.GE.KEY) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SO TO 102                 |                         |               |          |                |
| ~ U L | KODE=~5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                         |               |          |                |
|       | GO TO 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                         | - ·           |          |                |
| 105   | JF(INDEX.GT.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60 TO 300                 |                         |               |          |                |
|       | D0 500 7=1•K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                  |                         |               |          |                |
| 200   | ALPHA(J)=B(J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                         |               |          |                |
| 200   | GO TO 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | ST.1) GO TO 400         |               |          |                |
| 500   | D() 307 J=1.K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -UI * MIAD * THOU Y * (   | //•1/ 00 /0 /00         |               | ·· ··    |                |
|       | IF(IKCODE(J))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 301,307,303               |                         |               |          |                |
| 30)   | CALL DERIV(J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                         |               |          |                |
|       | N.1=1 S08 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                         |               | ,        | -              |
| 302   | AJACO!!(1+J)=Z!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                         |               |          |                |
|       | IF (JTEST.NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1) GO TO 307              |                         |               |          |                |
| 202   | IFCODF(J)=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.1.1.1                  |                         |               |          |                |
| 303   | DEL=0.001*ABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LT.1.0E~04) DEL           | =0.00001                |               |          |                |
|       | $\frac{1}{1} = \frac{1}{1} = \frac{1}$ | E.BMAX(J)) GO             | ro 304                  |               |          | · ·            |
|       | ALPHA(J) = B(J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                         |               |          |                |
|       | DEL=-DEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                         |               |          |                |
|       | Gn 10 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                         |               |          |                |
|       | ALPHA(J)=B(J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                         |               |          |                |
| 305   | CALL FUNC (ALP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HA = ZETA)                |                         |               | · -      | · -            |
|       | ALPHA(J) = B(J)<br>D(1 306 I=1.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                         |               |          |                |
| 306   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ZETA(I)-Z(I))/            | DEL                     |               |          |                |
|       | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | • • • • •               | · · · ·       |          |                |
| 400   | UG 406 LL=1.K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                         |               |          |                |
|       | IF (IBCODE(LL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) 401,404,401             |                         |               |          | • .            |
| 401   | G(1,L) = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                         |               |          |                |
| 4.05  | Dn 402 JJ=1,N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JACOR(JJ+LL)*(            | Y (.1.1) = 7 ( 1.1) )   |               |          |                |
| 402   | 0(LL)=6(LL)+A<br>00 403 JJ=1•K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | 11007-710071            |               |          |                |
|       | A(LL,JJ)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                         | ·*•           |          |                |
|       | DO 403 MM=1.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                         |               | -        |                |
| 403   | A(LL,JJ) = A(LL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + JJ) + AJACOB (MM        | +LL) #AJACOB(MM,        | JJ) -         |          |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                         |               |          |                |

```
IF(A(LL+LL).GT.1.0E-20) GO TO 406
04 DO 405 JJ=1.K
05 A(LL + JJ) = 0.0
   A(LL,LL)=1.0
   G(LL) = 0.0
06 CONTINUE
   GNORM=0.0
   Do 407 I=1.K
07 GNORM=GNORM+G(I)**2
   Do 500 I=1.K
500 OMEGA(I)=SOFT(A(I+I))
   00 501 I=1+K
   G(T) = G(I) / OMEGA(I)
   Do 501 J=1+K
501 A(I,J) = A(I,J) / (OMEGA(I) * OMEGA(J))
   FI AM=FL AMDA/FNU
   ITFP=]
   60 TO 503
DOS FLAM=FLAM#FNU
503 DO 504 I=1.K
504 A(I,I)=A(I,I)+FLAM
   00 506 I=1,K
   DO 505 J=1.K
505 ASCALE(I+J) = A(I+J)
506 ASCALE(1+KP1)=G(1)
   DO 603 L=1.K
   11=1+1
   DO 600 M=LL.KP1
600 ASCALF(L,M)=ASCALE(L,M)/ASCALE(L,L)
   DO 603 M=1.K
    IF(L-M) 601,603,601
001 D0 005 7=FF•kb1
602 ASCALE(M,J)=ASCALE(M,J)-ASCALE(L,J)*ASCALE(M,L)
603 CONTINUE
    DLNORM=0.0
    Depp00=0.0
    DO 701 I=1.K
    DELTA(I)=ASCALE(I,KP1)/OMEGA(I)
    IF (IBCGDE(I).E0.0) GO TO 700
    ALPHA(I)=AMAX)(RMIN(I),AMIN)(BMAX(I),R(I)+DELTA(I)))
700 DLNORM=DLNORM+DELTA(I) **2
    DGPROD=DGPROD+DELTA())*G(I)*OMEGA(I)
701 DFLTA(I) = ALPHA(I) - B(I)
    COSGAM=DGPPOD/(SURT(DLNOP''*GNORM))
    JOUAD=1
    IF(COSGAM) 800,801,801
S=DAUOF 003
    COSGAM=-COSGAM
BOI COSGAM=AMINI(COSGAH+1.0)
    GAMMA=ARCO (COSBAM) >140.0/3.14159265
    IF (JOUAD.GT.1) GAMMA=180.0-GAMMA
900 CALL FUNC (ALPHA+7ETA)
                                                  8.
    XPHI=0.0
    DO 401 I=1+N
    XPHI=YPHI+(Y(I)-ZETA(I))**2
```

| 1 <u>1</u> | CONTINUE                                 |                                                                                                                  |
|------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| *          | STDEV=SORT(XPHI/FLOAT(N-1))              |                                                                                                                  |
|            | IF (STDEV.LT.STDEVS) GO TO 1400          |                                                                                                                  |
|            | IF (INDFX.GT.0) GO TO 1000               |                                                                                                                  |
|            | KODE=K                                   |                                                                                                                  |
|            | GO TO 1404                               |                                                                                                                  |
| 000        | IF (XPHI.GE.PHI) GO TO 1300              | · · · · · · ·                                                                                                    |
|            | KODE=0                                   |                                                                                                                  |
|            | DO 1100 I=1.K                            |                                                                                                                  |
| 1.00       | IF (AHS (DELTA(I)) / (TAU+ABS (ALPHA (I) | ))).GT.EPSILN) KODE=KODE+1                                                                                       |
|            | IF (KODE.E0.0) GO TO 1200                |                                                                                                                  |
|            | 1F(FLAM.GT.1.0.AND.GAMMA.GT.90.0)        | KODE=-1                                                                                                          |
|            | GO TO 1401                               | - ·                                                                                                              |
| 1200       | IF (FLAM.GT.1.0.AND.GAMMA.LE.45.0)       | KODE=-4                                                                                                          |
|            | GO TO 1401                               |                                                                                                                  |
| 1300       | IF(FLAM.GE.1.0E+08) GO TO 1301           |                                                                                                                  |
|            | ITER=JTER+1                              |                                                                                                                  |
|            | Gn TO 502                                |                                                                                                                  |
| 301        | KODE=-1                                  |                                                                                                                  |
|            | GN TO 1500                               | •                                                                                                                |
| 400        | KODE=0                                   | ••••••••••••••••••••••••••••••••••••••                                                                           |
|            | IF(INDEX.EQ.0) GO TO 1402                |                                                                                                                  |
| -          | FLAMDA=FLAM                              |                                                                                                                  |
|            | Dn 1403 I=1•K                            |                                                                                                                  |
|            | B(I) = ALPHA(I)                          |                                                                                                                  |
|            | Do 1405 J=1,N                            |                                                                                                                  |
| 1405       | Z(J) = 7ETA(J)                           |                                                                                                                  |
| E 0.0      | PHI=XPHI                                 |                                                                                                                  |
| 1200       | IMDEX=INDEX+1<br>RETURN                  |                                                                                                                  |
|            | END                                      | • • · ·                                                                                                          |
|            |                                          |                                                                                                                  |
|            |                                          |                                                                                                                  |
|            | · · · · · · · · · · · ·                  | ·· <u>-</u> · · · ·                                                                                              |
|            | •                                        | •                                                                                                                |
|            |                                          | · ·                                                                                                              |
|            |                                          | · · · · · · · · ·                                                                                                |
|            |                                          |                                                                                                                  |
|            |                                          |                                                                                                                  |
|            | · · · · ·                                |                                                                                                                  |
|            |                                          |                                                                                                                  |
|            | · · · · · ·                              |                                                                                                                  |
|            | •                                        |                                                                                                                  |
|            |                                          |                                                                                                                  |
|            | ·                                        | · · · · · · · · · · · · · · · · · · ·                                                                            |
|            |                                          | `                                                                                                                |
|            |                                          | · · · · · ·                                                                                                      |
|            |                                          | · · · · · · · · · · ·                                                                                            |
|            |                                          |                                                                                                                  |
|            | •                                        |                                                                                                                  |
|            | · ···                                    | and the second |
|            |                                          | , e.                                                                                                             |
|            | _                                        |                                                                                                                  |
|            | •                                        |                                                                                                                  |
|            | · .                                      |                                                                                                                  |
|            |                                          |                                                                                                                  |

|          |                                                                                          |             |                                        |                                       | 485       |
|----------|------------------------------------------------------------------------------------------|-------------|----------------------------------------|---------------------------------------|-----------|
| •        | CHEMACT                                                                                  | CDC         | 77/01/29                               | PAGE 6                                |           |
|          | FUNCTION ARCO(Z)<br>X=7<br>KEY=0<br>IF(X.LT.(-1.0))                                      | X=-1.0      | •                                      | · · · · · · · · · · · · · · · · · · · | ••••      |
| 50       | IF(X.GT.1.0) X=<br>IF(X.GF.(-1.0).A<br>EPS=1.E-12<br>IF(ABS(X)-EPS) A<br>ARCO=1.57079633 | ND.X.LT.0.0 | ) KEY=1                                |                                       | ····- · · |
|          | GO TO 40<br>X=465(X)<br>APCO= ATAN( SQRT<br>IF(KEY.EQ.1) ARC<br>RETURN<br>END            |             |                                        |                                       | <b>.</b>  |
| -        |                                                                                          | •           | ······································ |                                       |           |
|          |                                                                                          | <u></u>     |                                        |                                       |           |
|          |                                                                                          |             | <b>.</b>                               |                                       |           |
| <b>.</b> | . <b>.</b>                                                                               | <b></b> .   | · · · ·                                |                                       |           |
|          |                                                                                          | ·           | • • •                                  | <u> </u>                              |           |
|          |                                                                                          |             | <u></u>                                | · · ·                                 |           |
|          | •<br>• •                                                                                 |             | <b></b>                                |                                       |           |
|          |                                                                                          |             |                                        | - ••                                  | · ·       |
|          |                                                                                          |             |                                        |                                       |           |
|          |                                                                                          |             |                                        |                                       |           |
| •        |                                                                                          |             |                                        |                                       |           |
| _        |                                                                                          |             | <b>.</b>                               |                                       |           |
|          |                                                                                          | •           |                                        | ر <b>د.</b>                           |           |
|          | ·                                                                                        |             |                                        |                                       | ; · · ·   |

PAGE CDC 77/01/29 7 CHEMACT SUBROUTINE LAMDA(B) COMMON K . N . MG . X (60 . 7) , XLAMDA (5 . 5) . NN . NCOMP . SUM (60 . 5) . KK DIMENSION B(1) DO 70 J1=1+NCOMP DO 70 J2=1,NCOMP IF(J1-J2) 40,42,44 40 J = (J1-1) + (NCOMP-1) + J2-160 TO 46 J=(J]-])\*(NCOMP-1)+J2 44 46 XLAMUA(J1,J2)=B(J)GO TO 70 42 XLAMDA(J1.J2)=1.0 70 CONTINUE DO 10 I=1.N DO 10 IS=1.NCOMP SUP(I.TS)=0. IF (IS.EQ.5. AND.KK.LT.K) GO TO 20 DO 25 J=1.NCOMP 25 SUM(I+IS)=SUM(I+IS)+X(I+J)\*XLAMDA(IS+J) GO TO 10 20 DO 30 J=1+NCOMP 30 SUM(I+IS)=SUM(I+IS)+X(I+J)\*XLAMDA(IS+J)\*EXP(B(J+KK)\*(1000+/  $1 \times (1,7) - 1000 \cdot / \times (1,6))$ 10 CONTINUE RETURN END ج.

SUBROUTINE FUNC(B,YCAL) COMMON K, N, MG, X (60, 7) + XLAMDA (5, 5) , NN, NCOMP, SUM (60, 5) , KK DIMENSION H(1) . YCAL(1) . SUM(60,5) CALL LAMDA(B) 00 20 J=1.N DO 20 M=1.MG J=(M-]) \*V+I SUMT=0. DO 30 KS=1,NCOMP F=1. IF(KS.E0.5.AND.KK.LT.K) F=EXP(B(KS+KK)\*(1000./X(I.7)-1000./X(I.6))

1)

> SUMT=SUMT+X(I,KS)\*XLAMDA(KS,H)/SUM(I,KS)\*F

YCAL(J)=1.-ALOG(SUM(I,M))-SUMT ٦

RETURN END

. .

e.,

```
9
                                                  PAGE
                                  77/01/29
                       CDC
     CHEMACT
  SURPOUTINE DERIV(J.JTEST.B.ZETA)
  COMMON K.N.MG.X(60.7), XLAMDA(5.5), NN, NCOMP.SUM(60.5), KK
  DIMENSION B(1) .ZETA(1) .SUM(60.5)
  IF(J.GT.KK) G0 T0 30
  J]=FLOAT(J-1)/FLOAT(NCOMP-1)+1
  J2=J-(J1-1)*(NCOMP-1)
  IE(15.0E.11) 75=75+1
  Gn TO 35
30 J]=5
  J2=J-KK
35 D0 20 M=1•MG
  D0 50 1=1+N
  L=(M-1)*N+I
  F=1.
   IF(J1.EQ.5.AND.KK.LT.K) F=EXP(B(J)*(1000./X(I.7)-1000./X(I.6)))
   IF (J.GT.KK) GO TO 50
   IF (JI.NE.M .AND.JZ.NE.M ) GO TO 40
   JJ=J1
   1E(1)*E0*W ) 11=15
   ZETA(L)=(-X(I,JJ)/SUM(I,J1)+X(I,J1)*X(I,J2)*XLAMDA(J1,M)/SUM(I,J1)
  1**2*F)*F
   GO TO 20
40 ZETA(L)=X(I+J1)*X(I+J2)*XLAMDA(J1+M)/SUM(I+J1)**2*F**2
   Gn TO 20
50 G=1000./X(I,7)-1000./X(I,6)
   IF(J2.NE.M) GO TO 60
   ZETA(L)=X(I•J1)*XLAMDA(J1•M)*E*G/SUM(I•J1)*(-1•*X(I•M)*F/SUM(I•J1)
  1)
   CO TO 20
60 FM=EXP(B(KK+M)*(1000./X(I.7)-1000./X(I.6)))
   ZETA(L)=X(I,J1)*XLAMDA(J1,M)*X(I,J2)*F*FM*G/SUM(I,J1)**2
20 CONTINUE
   JTFST=0
   RETURN
   END.
```

| 2 I        | input Data f      | or Program     | CHEIGACT           | _             |                |                | 489            |
|------------|-------------------|----------------|--------------------|---------------|----------------|----------------|----------------|
|            | SPESSIONS FO      |                |                    | DEFFICIENT    | BY WILSON      | •S EQUATION    | 1              |
| ()         | 50 5<br>0.        | 4 5 5<br>0.    | 68 20              | •486          | • 0            | . 4 ]          | 0.             |
|            | 9°5               | 11.            | 6.05               | 0.            | 0.             | .028           | 0.             |
|            | 0.                | 4.]            | 6.73 .             | 10.           | -10.           | 10.            | -10.           |
| <u>6</u> . | .03357            | .3324          | .003773            | •6595         | 7.0727         | .2878          | 22.53          |
| 4          | 02583             | .3428          | .00383             | .7080         | 7.370          | .3520          | 22.95          |
| 0          | .0177             | .3516          | .005088            | .7810         | 8.06           | •4118          | 19.15          |
| 1          | .01187            | .3561          | .005278            | .8347         | 9.2835         | .4470          | 17.28          |
| 1          | .01007            | .3602          | .00478             | .9173         | 7.496          | .4757          | 15.66          |
| 5          | .007505           | .3637          | .004006            | •9944         | 5.944          | .4867          | 12.29          |
| 7          | .05530            | .3437          | .001594            | .6503         | 8.837          | .3726          | 57.87          |
| 7          | .01648            | •3584          | .0020              | •9740         | 5.405          | •4824          | 39.03          |
| J          | .01524            | .3630          | •005550            | 1.0208        | 3.944          | .5404          | 32.69          |
| 1          | .009457           | •3647          | •001683            | •9969         | 4.369          | .6128          | 40.95          |
| 1          | .00815            | .3621          | .001631            | .9611         | 4.024          | 47228          | 42.30          |
| 7          | .0358             | .3503          | .0026              | •4772         | 7.91           | .502           | 29.53          |
| 1          | .0314             | .3507          | .00372             | •5625         | 7.64           | •511           | 55.13          |
| 1          | .0345             | •352           | .00527             | •719          | 4.565          | £531           | 18.51          |
| 2          | .0195             | •3536          | .00758             | •7546         | 6.63           | -5614          | 14.53          |
|            | .0203             | •3533          | •00474             | .8785         | 5.01           | · 5507         | 29.42          |
| þ          | .0172`            | .354           | ·005844            | •9404         | 4.34           | .687           | 26.7           |
| 3          | .01237            | .3533          | .003961            | .9804         | 3.497          | •7301          | 44.44          |
| <u>В</u>   | .03559            | .3461          | .00317             | •4655         | 9,165          | .3931          | 32.73          |
| F.         | .0157             | •3544          | .004517            | •6696         | 11.73          | •479           | 25.78          |
| 1.<br>4    | .0119             | • 359          | 00466<br>00365     | •7856<br>•875 | 10.99          | •498<br>•660   | 23.69          |
| ,,<br>,    | .00855            | .3539<br>.3708 | .00334             | •9962         | 11.36<br>10.72 | •4969<br>•4742 | 26.67          |
| 1<br>5     | .006256<br>.03172 | •3436          | •00356             | •5467         | 11.0           | .3778          | 21.94<br>17.57 |
| J          | .0205             | •3524          | .00599             | •7214         | 10.49          | .385           | 18.17          |
| h          | .01982            | •3593          | .00752             | .8135         | 10.99          | • 4 3 5 6      | 17.73          |
| i,         | .01807            | .3635          | .006432            | .865          | 8.744          | .531           | 25.13          |
| 6          | .01615            | .3633          | .005306            | .8569         | 7.502          | .615           | 25.7           |
| 5          | .01249            | .3574          | .003333            | .8261         | 6.968          | .7536          | 37.15          |
| 4          | ,03999            | .3587          | .002033            | .5444         | S.018          | .3784          | 24.68          |
| ć          | .0242             | •3633          | •00323             | .6813         | 12.05          | 391            | 16.64          |
| 1          | .01538            | .3697          | .003848            | .8363         | 14.63          | .4256          | 15.35          |
| 2          | .01313            | .3764          | .003504            | 1.023         | 11.26          | •478           | 18.51          |
| 0          | .008465           | .3801          | .002824            | 1.145         | 10.61          | .5315          | 24.73          |
| 3          | .60582            | .3817          | .002435            | 1.24          | 7.81           | •579           | 29.75          |
| ö          | .04246            | •3594          | .003487            | •6433         | 7.085          | .3015          | 24.24          |
| 7          | .03578            | .3673          | .003213            | •8495         | 5,584          | •3688          | 21.81          |
| Ľ.         | .02994            | .3732          | .0028              | .9726         | 4.846          | •423           | 21.55          |
| 4          | .01943            | .3802          | .00238             | 1.087         | 4.38           | • 484          | 20.19          |
| 4          | .01723            | •3844          | .00197             | 1.167         | 3.19           | •5166          | 19.9           |
| 3          | .00847            | .3874          | .001696            | 1.181         | 4.478          | 541            | 18.89          |
| 5<br>-     | .0525             | •3357<br>3370  | .002982            | •517          | 6.63           | •531           | 26.87          |
| 3          | .0513             | .3378          | .004247<br>.004818 | .7067<br>.870 | 5.892<br>5.434 | •544<br>•5529  | 20.05          |
|            | .046<br>.03818    | •3402<br>•343  | .004815            | •9932         | 5.148          | •5535          | 18.71<br>19.63 |
| +<br>7     | .02659            | •3552          | •00435             | 1.2657        | 3.03           | •5075          | 22.42          |
| Ļ          | .0429             | .3375          | .002563            | .6506         | 10.02          | •4192          | 31.94          |
| ł          | .0411             | •3443          | .00325             | •847 <u>9</u> | 8.327          | •524           | 31.94          |
| F<br>F     | .03535            | •3487          | .004493            | .9898         | 7.79           | •5757          | 26.45          |
|            | .02601            | .3537          | .004164            | 1.117         | 8.05           | •596           | 35.79          |
| Γ          |                   |                |                    |               |                |                |                |
| D.         |                   |                |                    |               | ۰.             |                |                |
|            |                   |                |                    |               |                |                |                |
|            |                   |                |                    |               |                |                |                |
|            |                   |                |                    |               |                | -              |                |
| 1          |                   |                |                    |               |                |                |                |

· · · · ·

C.3.3 Results from Program CHEMACT

This program correlates liquid activity coefficient under the frame work of Wilson's Equation. The BSOLVE technique is used for data regression. The terms in the computer outputs are explained as follows.

Pages 1 to 3 -

INDEX = number of iterations

KODE = an indication for program convergence

- 0 = Program converges to a preset accuracy.
  - -1 = Program converges but does not converge to a preset accuracy after certain number of iterations. The final standard deviation represents the accuracy that the selected function can get at this point.

positive numbers = Program requires more

iterations

STDEV = standard deviation B1 = constants  $B_1$ ,  $B_8$ , and  $B_{15}$ B2 = constants  $B_2$ ,  $B_9$ , and  $B_{16}$ B3 = constants  $B_3$ ,  $B_{10}$  and  $B_{17}$ B4 = constants  $B_4$ ,  $B_{11}$  and  $B_{18}$ B5 = constants  $B_5$ ,  $B_{12}$  and  $B_{19}$ B6 = constants  $B_6$ ,  $B_{13}$  and  $B_{20}$ 

B7 = constants 
$$B_7$$
 and  $B_{14}$ 

Page 4 -

X1 to X5 = liquid mole fraction for components 1 to 5

Page 5 and 6 -LNGi =  $\ln \gamma_i$ , i = 1, ..., 4 LNGCi = calculated  $\ln \gamma_i$ DEV = LNGCi - LNGi

Page 7 -

 $G_i = \gamma_i, i = 1, \dots, 4$ GiC = Calculated  $\gamma_i$ 

Page 8 -

|         | Wilson's        |         | Wilson's       |
|---------|-----------------|---------|----------------|
|         | Constant        |         | Constant       |
| B(1) =  | $\wedge_{12}$   | B(11) = | $\Lambda_{34}$ |
| B(2) =  | $\wedge_{13}$   | B(12) = | A 35           |
| B(3) =  | 入 14            | B(13) = | $\Lambda_{41}$ |
| B(4) =  | $\Lambda_{15}$  | B(14) = | A 42           |
| B( 5) = | Λ <sub>21</sub> | B(15) = | Λ43            |
| B(6) =  | Λ <sub>23</sub> | B(16) = | Λ 45           |
| B(7) =  | ∧ 24            | B(17) = | $\bigwedge 51$ |
| B(8) =  | Λ 25            | B(18) = | $\bigwedge 52$ |
| B( 9) = | ∧ <sub>31</sub> | B(19) = | A 53           |
| B(10) = | A 32            | B(20) = | ∧ 54           |

|         | .05                                   | · · · · ·                               | i. / 🎪                  |                |                                          | 114                 | · · · ·               |                    |          |                                       |
|---------|---------------------------------------|-----------------------------------------|-------------------------|----------------|------------------------------------------|---------------------|-----------------------|--------------------|----------|---------------------------------------|
| 1       | Su                                    | .24753                                  | .10000                  | 0.0000         | 0.00000                                  | +68000              | .49600                | 0.00000            | .41000   |                                       |
| ·       | <i></i>                               |                                         |                         | 1.45000        | 9.20000                                  | 11,00000            | - 6.05000             | 0.00000            |          |                                       |
|         |                                       |                                         | .02800                  | 0.00000        | 13.10000                                 | 0.00000             | 4.10000               | 6.73000            |          |                                       |
| 2       | 12                                    | .24745                                  | .10345                  | 0.0000         | 0.00000                                  | . 4973P             | 444402                | 0,10000            | .29744   |                                       |
|         |                                       |                                         |                         |                | · 9.21373                                | 10.00300            | 6.02411               |                    | C.00000  |                                       |
|         |                                       |                                         | .02790                  | 0.00000        | 13.14269                                 | 0.00000             | 4,03170               | 6.75986            |          |                                       |
| Э       | 12                                    | .24715                                  | .10076                  | 0.00000        | 0.00000                                  | .68761              | .45442                | 0.00000            | .37329   |                                       |
|         |                                       |                                         | 0.00000                 | 1.45628        | 9.20397                                  | 10.97905            | C 6.02855             | 00000.0            |          |                                       |
|         |                                       |                                         | .02781                  | 0.00000        | 13.20183                                 | 0.00000             | 4.03019               | 6.75658            |          |                                       |
| 4       | 12                                    | .24698                                  | ,09453                  | 0.00000        | 0.00000                                  | .63765              | _489]4                | 0.00000            | .37041   |                                       |
|         |                                       |                                         |                         | 1.45009        | - 9.195×1 -                              | 10.95545            | 5.03162               | 0.0000             | 0.00000  |                                       |
| -       |                                       |                                         | .02774                  | 0.0000         | 13.21520                                 | 0.00000             | 4.02203               | 6.75120            |          |                                       |
| 5       | 12                                    | .24697                                  | 64657                   | 0.00000        | 0.00000                                  | .68753              | . 44243               | 0.0000             | .36452   |                                       |
|         |                                       |                                         |                         | 1.46033        | - 9.18496                                | 10.95749            | 6.03342               | . 0.00000          |          |                                       |
|         | •                                     |                                         | .02769                  | 0.00000        | 13.22590                                 | 0.00000             | 4.02545               | 6.74573            |          |                                       |
| ĸ       | 12                                    | .24679                                  | .09509                  | 0.00000        | 0.0000                                   | .54740              | - 44442<br>-          | 0.00000            | .35939   |                                       |
|         | <b></b>                               |                                         | 0.00000                 | 1.46044        | 9.14313                                  | 10.95045            | 6.03434               | 0.0000             | 0.0000   |                                       |
| -       |                                       | <b></b>                                 | .02764                  | 0.00000        | 13.23483                                 | 0.00000             | 4.02260               | 6.74441            |          |                                       |
| 7       | 12                                    | .24674                                  | .04372                  | 0.0000         | 0.00000                                  | .68715              | .44475                | 0.0000             | .35458   |                                       |
|         |                                       |                                         | 0.00000                 | 1.45975        | 9.17810                                  | 10.94444            | 6.03474               | 0.00000            |          | •                                     |
| Ą       | ۰.                                    | 3/1 70                                  | .02760                  | 0.00000        | 13.24068                                 | 0.00006             | 4.01957               | 6.74370            | 25001    |                                       |
|         | 11                                    | .24670                                  | .09252<br>0.000.0       | 0.00000        | 0.00000<br>- 9.17370                     | • 64567<br>10.96924 | .44573                | 0.0000             | .35091   |                                       |
|         |                                       |                                         | .02757                  | 0.00000        | 13.24493                                 | 0.00000             | 6.03457<br>4.01543    | 6.74418            | 0.0000   | · · ·                                 |
| 9       | 11                                    | .24667                                  | .09145                  | 0.00000        | 0.00000                                  | • * * * * * *       | .48573                | 0.0000             | .34736   |                                       |
| · · ·   | • :<br>                               | • • • • • • • • • • • • • • • • • • •   |                         | 1.45592        | 9,16979                                  | 10.43550            | 6.03431               | - 0.00000          | 0.00000  |                                       |
|         |                                       |                                         | 02754                   | 0.00000        | 13.24747                                 | 0.00000             | 4.01324               | 5.74555            | 0.00000  |                                       |
| 10      | 12                                    | .24665                                  | 09049                   | 0.00000        | 0.00000                                  | .64521              | 44576                 | 0.0000             | .34413   |                                       |
|         |                                       |                                         |                         |                | 9.16627 -                                | - 10.92330          | 5,03374               | 0.00000            |          | -                                     |
|         |                                       |                                         | .02752                  | 0.00000        | 13.25007                                 | 0.00000             | 4.01004               | 6.74758            |          |                                       |
| 11      | 12                                    | .24663                                  | 08951                   | . 0.00000      | 0.00000                                  | 54525               | .44442                | 0.00000            | .34115   |                                       |
|         |                                       |                                         | 0.00000                 | 1.4530A        | 9.16308                                  | 10.93053            | - 6.03304             | 0.00.000           | 0.0000   |                                       |
|         |                                       |                                         | .02749                  | 0.00000        | 13.25144                                 | 0,0000,0            | 4.00684               | 6.75011            |          |                                       |
| 12      | 12                                    | . 2465]                                 | .08879                  | 0.0000         | 0.00000                                  | • 66551             | • 4 h h H H           | 0.00000            | .33837   |                                       |
|         |                                       |                                         | 0.00000                 | 1.45102        | 9,14015                                  | 10.42407            | 6.03227               | 0.0000             | 0.0000   |                                       |
|         |                                       |                                         | .02747                  | 6.00000        | 13.25224                                 | 0,00000             | 4.00353               | 6.75302            |          |                                       |
| 13      | 12                                    | .24659                                  | .04803                  | 0.0000         | 0.0000                                   | . 49515             | .44897                | 0.0000             | .33574   |                                       |
|         | • • •                                 | ••••                                    | 0,00000                 | -].44R03       | 9.15744                                  | 10.45246            | 6.03145               | 0.00000            | 0.00000  |                                       |
|         |                                       |                                         | .02745                  | 0.00000        | 13.25257                                 | 0.00000             | 4.00055               | 6.75623            |          |                                       |
| 14      | 11                                    | .24658                                  | .08731                  | 0.0000         | 0.0000                                   | .68481              | .48405                | 0.0000             | •33323   |                                       |
|         |                                       |                                         | 0.00000 -               | - 1.44644      | 9,15492                                  | 10.023#3            | 6.03051               | 0.00000            |          |                                       |
|         | • -                                   |                                         | .02744                  | 0.00000        | 13.25252                                 | 0.00000             | 3.99747               | 6. / 5955          |          |                                       |
| - 15    | 12                                    | .24656                                  | .08562                  | 0.00000        | 0.00000                                  | . 65445             | 4491                  | 0.00000            | .33083   |                                       |
|         |                                       |                                         | 0.0000                  | - 1.44490      | 9.15254                                  | 10.02194            | 6.02477               | 0.00000            | 0.00000  |                                       |
| 14      | . 1 .                                 | 54 ( <b>FF</b>                          | .02742                  | 0.00000        | 13.25217                                 | 0.00000             | 3.99443               | 6.10325            | •        |                                       |
| 16      | 17                                    | .24555                                  | •08597<br>• •0•0000 ··· | 0.00000        | 0-00000                                  | +64413              | .45927                | 0.00000            | .32852   |                                       |
|         |                                       |                                         | .02740                  | 0.00000        | - 9.15030<br>13.25156                    | 10.92015            | 6.02595<br>3.94145    | 0.00000            | 0.0000   |                                       |
| 17      | 12                                    | .24654                                  | 08535                   | 0.00000        | 0.00000                                  | U                   | * 4863H               | n.75553            | 226.20   |                                       |
| <i></i> | • • • • • • • • • • • • • • • • • • • | • C 4 U 3 4                             |                         | - 1.44087 .    |                                          | 10.91844            | 5.02815               | 0,0000             | .32528   |                                       |
|         |                                       |                                         | .02739                  | 0.00000        | 13.25074                                 | 0.00000             | 0.44363<br>0.445010   | 0.00000<br>6 770H2 |          | 264                                   |
| 15      | 12                                    | .24653                                  | .08474                  | 0.00000        | 0,00000                                  |                     |                       | 6.770H2<br>0.00000 | .32411   | 2°                                    |
| <b></b> |                                       | • • • • • • • • • • • • • • • • • • • • |                         | 1.43901        | 9.14516                                  | 10,41540            | 6.02733               |                    |          | ····· ···· ···· ···· ···· ··· ··· ··· |
|         |                                       |                                         | .02737                  | 0.00000        | 13,24472                                 | 0.00000             | 3.48555               | 6,77+75            |          |                                       |
| 10      | 17                                    | .74652                                  | .08416                  | 0,00000        | 13+24472                                 | .66317              | *44,023<br>6,002,254  | 0,00000            | .32149   |                                       |
| ·       | • •-                                  |                                         | - 0,00000               |                | 9,14493                                  | 10.41521            | 6,02555               | 0,00000<br>        |          | · · · · · · · · · · · · · · · · · · · |
|         |                                       |                                         | 0 735                   | 0.41000        | 17.24354                                 | 0.010.0             | 14,04,044<br>1940,040 | 5,77975            | 2.600000 |                                       |
| 1       |                                       |                                         | • • • •                 | 14 🖷 - 1 👘 - 1 | 1.1.4.1.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | Q 6 1 1 1 1         | •                     | 1 C I - 1 D        |          |                                       |

|                                   |                  |                                        | .02732                | 0.00000     | 13,24575              | 0.00000            | 3.47736            | 5,78594        |                 |    |
|-----------------------------------|------------------|----------------------------------------|-----------------------|-------------|-----------------------|--------------------|--------------------|----------------|-----------------|----|
| 22                                | 12               | .24649                                 | .08252                | 0.0000      | 0.00000               | • 64229            | .49003             | 0.00000        | .31593          |    |
|                                   |                  |                                        | 0.00000               | 1.43234     | 9.13889               | 10,01054           | 6.02467            | ···· 0.00000   |                 |    |
|                                   |                  |                                        | .02731                | 0.00000     | 13.244}7              | 0.0000             | 3.97459            | 6.79110        |                 |    |
| 23                                | 12               | .24649                                 | .08199                | 0.0000      | 0.00000               | .68201             | .49017             | 0.00000        | .31399          |    |
|                                   |                  |                                        |                       | 1.43037     | 9.13725               | 10.90915           | 6. 17409           |                | 0.00000         |    |
|                                   |                  |                                        | 02729                 | 0.00000     | 13.24248              | 0.00000            | 3.97207            | 5.74524        |                 |    |
| 24                                | 12               | .24647                                 | .03149                | 0,00000     | 0.00000               | .64175             | ,42031             | 0.00000        | .31508          |    |
|                                   |                  | ······································ | 0.00000               | - 1.42047   | 9.13566               | 10,90771           | 5.02355            | ····· 0.00000- | 0.00000         |    |
|                                   |                  |                                        | 02728                 | 0.00000     | 13.24069              | 0.0000             | 3.94450            | 6.79953        |                 |    |
| 25                                | 12               | .24646                                 | 08009                 | 0.00000     | 0.0000                | . 68149            | .49045             | 0.00000        | .31055          |    |
|                                   |                  | ·····                                  | 0 <b>.</b> 00000      | - 1.42414   | 9.13413               | 10 20529           | 6.02304            | 0.00000        | 0.00000         |    |
|                                   |                  |                                        | .02726                | 0.00000     | 13.23991              | 0,00000            | 3.95547            | K.40379        |                 |    |
| 26                                | 12               | .24645                                 | 08050                 | 0.00000     | 0.00000               | 68124              | .49051             | 0.00000        | .30338          |    |
|                                   | · • -            | ······································ | 0.00000               | 1.42489     | 9.13264               | 10,01435           | 6.02257            | 0.00000        | 0.00000         |    |
|                                   |                  |                                        | .02725                | 0.00000     | 13.23554              | 0,00000            | 3.96444            | 6.50508        |                 |    |
| 27                                | 12               | .24644                                 | .08003                | 0.00000     | 0.00000               | .54100             | 40075              | 0.00000        | .30558          |    |
|                                   |                  |                                        | 0.00000               |             | 9.13120               | - 10.90344         | 6.02214            |                |                 |    |
|                                   |                  |                                        | .02724                | 0.0000      | 13,23478              | 0.00000            | 3.95203            | 6.41240        | 0.100000        |    |
| 28.                               | 12               | .24643                                 | .07955                | 0.00000     | 0.00000               | .62075             | _4404]             | 0.00000        | .30480          |    |
|                                   |                  | • • • • • • • •                        | 0.00000               | 1.42454     | 9.12931               | 10,90204           | 6.02174            | 0.00000        |                 |    |
|                                   |                  |                                        | .02722                | 0.00000     | 13.23255              | 0.00000            | 3.95962            | 6.31574        | 0.00000         |    |
| 29                                | 12               | .24642                                 | .07910                | 0.00000     | 0.00000               | 59054              | .49105             | 0.00000        | .30305          |    |
| · · · · · · · · · · · · · · · · · |                  | • 2 • 0 • C                            | 0.00000               | 1.42352     | 9,12545               | 10.90068           | 6,02137            |                |                 |    |
|                                   |                  |                                        | .02721                | 0.00000     | 13.23045              | 0.00000            | 3.95724            | 6.42110        | 0               |    |
| 30 •                              | 10               | .24642                                 | .07865                | 0.0000      | 0.00000               | .43032             | .49121             | 0.00000        | ,30133          |    |
|                                   | ···· · · · · · · | •                                      | 0.00000               | 1.42252     | 9.12715               | 10.00631           | 6.02104            | · 0.00000      |                 |    |
|                                   |                  |                                        | .02719                | 0.00000     | 13.22419              | 0.00000            | 3,45490            | 6.82548        | 0               |    |
| 31                                | 12               | .24641                                 | 07820                 | 0.00000     | 0.00000               | .65010             | .49137             | 0.0000         | 29953           |    |
|                                   | ^ • ^            |                                        |                       | 1.42157     | 9.12587               | 10,20705           | 6,02073            | 0.00000        |                 |    |
|                                   |                  |                                        | .02718                | 0.00000     | 13.22556              | 0.00000            | 3.95260            | 6.32944        | V • 0 0 1 1 0 0 |    |
| 32                                | 12               | .24640                                 | .07777                | 0.00000     | 0,0000                | +744Q              | .49152             | 0.00000        | .29795          |    |
|                                   |                  | •••••••••••••••••••••••••••••••••••••• | · 0.00000             | 1.42059     | 9,12453               | 10.29550           | 5.02046            | 0.00000        | 0.00000         |    |
|                                   |                  |                                        | .02717                | 0.00000     | 13.22347              | 0.00000            | 3.95032            | 6.23429        | V • 0 0 0 0 0   |    |
| 33                                | 12               | .24639                                 | .07734                | 0.00000     | 0.00000               | .67969             | .49169             | 0.00000        | .29530          |    |
|                                   | •••              |                                        | 0.00000               | - 1.41985   | 9.12343               | 10.29525           | 6.02021            | 0.00000        | 0.00000         |    |
|                                   |                  |                                        | .02715                | 0.00000     | 13°55105              | 0.00000            | 3.94804            | 5.43572        | V. (11000       |    |
| 34                                | 12               | .24639                                 | .07692                | 0.00000     | 0.00000               | .67950             | .49]84             | 0.10000        | . 29467         |    |
|                                   |                  |                                        | - · · o.ooooo - · · · | 1.41907     | 9.12225               | 10,89392           | 6.01999            | 0.00000        |                 |    |
|                                   |                  |                                        | .02714                | 0.00000     | 13.21452              | 0.00000            | 3,94586            | 4.84317        | 0.00000         |    |
| 34                                | 12               | .24638                                 | .07650                | 0.00000     | 0.00000               | •67931             | _492m0             | 0.00000        | .29306          |    |
|                                   |                  | • 2 • 0 0 0                            | 0.00000               |             | -0-1-111<br>0-0-10111 | - 10,23285 T       |                    | 0.00000<br>    | 0.00000         |    |
|                                   |                  |                                        | .02713                | 0.00000     | 13.21547              | 0.65900            | 3.94367            | 6.54752        | 0.00000         |    |
| 35                                | 12               | .24637                                 | .07609                | 0.00000     | 0.00000               | 57412              | 2. 4423 A          | 0,00000        | 20140           |    |
| ·                                 |                  | • C 4 9 2 1                            |                       | - 1.41764 - | · 9.11499             | 10.89147           | 6.1903             | 1 10,00000     | .29148          |    |
|                                   |                  |                                        | .02711                | 0.00000     | 13.21336              | 0,00000            | 3,94151            | 5145209        | 0.00000         |    |
| 37                                | 12               | 24626                                  | .07569                |             | 0.00000               | .67494             | .49232             |                | 20001           |    |
|                                   |                  | .24636                                 |                       | 0.0000      |                       |                    |                    | 0.00000        | .28991          |    |
|                                   |                  |                                        | 0,0000                | 1.41.599    | 9.11891               | 10.28444           | 5,01948<br>3,93933 | ^_00000<br><   | 0,00000         |    |
| 38                                | 12               | 24424                                  | .02710<br>.07524      | 0.0000      | 13-21072              | C.000C0<br>.67377  | .44209             | 6345657        | 2               |    |
| · · - ··                          | 1                | .24636                                 |                       | 0.0000      | 0.00000               | . 10 . APA43 .     |                    | 0,00000        | .24835          |    |
| ,                                 |                  |                                        | 0,0000                | 1.41633     | 9.11785               |                    |                    | 0.00000        | 0.0000          |    |
| 30                                | 1.               | 2/425                                  | .02709                | 0.0000      | 13,20403              | 0.00000            | 3.43725            | 4.85106        | 204.02          |    |
|                                   | 11               | •24635                                 | .07490                | 0.00000     | 0.00000               | .67350<br>10 88755 | .49265             | 0.0000         | .29582          |    |
|                                   |                  |                                        | 0.00000               | 1.41531     | 9.11681 -             | 10.84735           | 6,01925            | 0.0000         | 0.00000         | 57 |
| 4.6                               |                  | 51131                                  | •02707<br>•07461      | 0.0000      | 13.20530              | 0.00000            | 3.03513            | 6.55555        | 04 <b>5</b> 5 6 |    |
| <u> </u>                          | 11               | .24634                                 | .07451                | 0.00600     | 0.00000               |                    | .44282             | 0.00400        | .28530          |    |
|                                   |                  |                                        | 0.0000                | 1.41528     | 9.11580               |                    | 6,01917            | 0,00700        |                 |    |
| •                                 |                  |                                        | _ () 2705<br>0741 2   | 0.00000     | 17,20234              | 0.00000            | 3243311            | 5.47007        |                 |    |
|                                   |                  |                                        |                       |             | 1 1 0 0 0             |                    |                    | 0 ( 0 0 ) (    |                 |    |

|                                                   |        | .02704      | 6.00000   | 13.19590      | 0.0000          | 3.92904            | 5.97910    |         |       |
|---------------------------------------------------|--------|-------------|-----------|---------------|-----------------|--------------------|------------|---------|-------|
| 43 11                                             | .24532 | .07339      | 0.0000    | 0.0000        | . 67795         | .49332             | 0.00000    | .28085  |       |
|                                                   |        | 0.00000     | 1.41380   | 9.11291       | 10.48218        | 6.01904            | n.nooco    |         |       |
|                                                   |        | .02702      | 0.0000    | 13.10443      | 0.00000         | 3.92703            | 6.88363    |         |       |
| 44 ]]                                             | .24632 | .07301      | 0.0000    | 0.0000        | •67780          | .44 <u>3</u> 43    | 0.00000    | .27939  |       |
|                                                   |        | <u> </u>    |           | 0.11198       | 10.88900 -      | 6.01903            | 0,0000     | 0,00000 |       |
|                                                   |        | .02701      | 0.00000   | 13.19113      | 0.00000         | 3.42505            | 6.45515    |         |       |
| 45 11                                             | .24631 | .07264      | 0.0000    | 0.0000        | .67745          | . 46365            | 0.00000    | .27795  |       |
|                                                   |        |             | 1.41314   |               | - 10.87462 ···· |                    |            |         |       |
|                                                   |        | .02700      | 0.0000    | 13.18820      | 0.0000          | 3.92303            | 6.99269    |         |       |
| 46 - 11                                           | .24630 | .07228      | 0.0000    | 0.00000       | .57751          | . 49382            | 0.0000     | .27652  | •     |
|                                                   |        | 0.00000     | 1.41280   | 9.11019 -     | - 10,37835      | 5.01405            | 0.00000    |         |       |
|                                                   |        | .02699      | 0.0000    | 13.18525      | 0.00000         | 3.42112            | 6.99723    |         |       |
| 47 11                                             | .24630 | .07192      | 0.00000   | 0.0000        | .67737          | • 6 9 3 9 9 9<br>9 | 0.00000    | .27511  |       |
|                                                   |        | - 0.00000   |           | ··· 9.10933 · | 10.27705 -      | 5.01910 -          | 0.0000 ··- | 0.0000c |       |
|                                                   |        | .02697      | 0.00000   | 13.18227      | C.00000         | 3.91019            | 5.20178    |         |       |
| 44 ]]                                             | .24629 | .07157      | 0.00000   | 0.0000        | . 57723         | .49416             | 0.00000    | .27370  |       |
|                                                   |        | 0.00000     | i . 41221 | 9.10R4P -     | 10.27591        | 6.01915            |            |         |       |
|                                                   |        | 02696       | 0.00000   | 13.17926      | 0,00000         | 3.91727            | 6.90632    |         |       |
| 44 ]]                                             | .24628 | .07122      | 0.00000   | 0.00000       | .67709          | .49433             | 0.00000    | .27231  |       |
|                                                   |        | - 0.00000   |           | 9.10754       | - 10.37455      |                    | 0.000000   |         | ····· |
|                                                   |        | ,02695      | 0.00000   | 13.17524      | 0.00000         | 3.91535            | 6.41047    |         |       |
| 50 ~1                                             | .24628 | .07087      | 0,00000   | 0.00000       | . 67695         | .49450             | 0.00000    | 27093   |       |
|                                                   |        |             |           |               |                 | 6.01930            | ·· 0.00000 |         |       |
|                                                   |        | 02694       | 0.00000   | 13.17319      | 0,00000         | 3,91347            | 6.91542    | 0.00000 |       |
| •                                                 |        | • 0 £ 0 + + | 0.000     | 12011217      |                 | 2971241            | 0.71046    |         |       |
| ·                                                 |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         | •     |
|                                                   |        |             |           | • •           |                 |                    |            |         |       |
| •                                                 |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           | •             |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
| • • <del>• • • • • • • • • • • • • • • • • </del> |        |             |           |               |                 | ··                 |            |         |       |
|                                                   | •      |             |           |               |                 |                    |            |         |       |
|                                                   | 1      |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         | •     |
|                                                   | •      |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |
|                                                   |        |             |           | - ,           |                 |                    |            |         |       |
|                                                   |        |             |           |               |                 |                    |            |         |       |

| POINT    | ×1       | ×2       | X 3      | X4             | ×5             | TSYS    | TSUR                 | · · | ·                                      |
|----------|----------|----------|----------|----------------|----------------|---------|----------------------|-----|----------------------------------------|
| · 1      | .14860   | .03357   | .33240   | .00377         | .48166         | 0.0000  | 0.00000              |     |                                        |
| 5        | .14980   | .02543   | .34280   | .00383         | .45774         | 0.00000 | 0.00000              | •   |                                        |
| i3       | 19669    | 01770    |          |                | 43901          | 0.00000 | 0.0000               |     |                                        |
| 4        | .19710   | .01187   | .35610   | .00528         | .42065         | 0.00000 | 0.00000              |     | • •                                    |
| 5        | .20210   | •01077   | .36020   | .00478         | .42285         | 0.00000 | 0.00000              |     |                                        |
|          | ,26450   | 00751    | 36370    |                | .42029         | 0.0000  | 0.00000              |     |                                        |
| 7        | .20690   | .02239   | .34370   | .00159         | .42542         | 0.00000 | 0.00000              |     |                                        |
| я        | .22870   | .0164B   | .35840   | .00200         | •39442         | 0.00000 | 0.00000              |     | ,                                      |
|          |          | .01524   |          |                | .34864         | 0,0000  |                      |     |                                        |
| 10       | .23410   | .00946   | .36470   | .00168         | .33606         | 0.00000 | 0.00000              |     |                                        |
| 11       | .24110   | .00815   | .36210   | .00163         | .38702         | 0.00000 | 0.00000              |     |                                        |
| 15       | .17970   | 03580 -  | .35030 - | 00260          | .43160         | 0.00000 | 0.0000               |     |                                        |
| 13       | .19910   | .03140   | .35070   | .00372         | .41608         | 0.00000 | 0.00000              | · · |                                        |
| 14       | .21510   | .03450   | .35200   | .00527         | ,39313         | 0.0000  | 0.00000              |     |                                        |
| 15       | .23?20   | .01950   | .35360   | .00758         | .39712         | 0.00000 | 0,00000              |     |                                        |
| 16       | .24100   | .02030   | .35330   | .00474         | ,38066         | 0.00000 | 0.00000              |     |                                        |
| 17       | 24350    | .01720   | .35400   | <u>, 00584</u> | .37945         | 0.00000 | 0.00000              |     |                                        |
| 1s       |          | .01237   | .35330   | .00396         | .38007         | 0.00000 | - n.00000            |     |                                        |
| 14       | 15830    | .03559   | .34610   | .00317         | .45684         | 0.00000 | 0.00000              |     |                                        |
| 20       | 20520    | .01570   | .35440   | .00452         | .42018         | 0.00000 | 0.00000              |     |                                        |
| 51       |          | .01120   | .35900   | .00465         | .40934         | 0.00000 | 0.00000              |     |                                        |
| 22       | . 22240  | .00055   | .36390   | .00365         | .40150         | 0.00000 | 0.00400              |     |                                        |
| 23       | .22210   | .00626   | .37080   | .00334         | .39750         | 0.0000  | 0.00000              |     |                                        |
| 24       | .)504n T | .03172   | .34360   | ,00356         | .47032         | 0.0000  | 0.00000              |     | ······································ |
| 25       | .16500   | .02520   | .35240   | .00599         | .45041         | 0,0000  | 0.00000              |     |                                        |
| 25 %     | .17550   | .0)982   | .35930   | .00752         | .43786         | 0.00000 | 0.0000               |     |                                        |
| 27       | 18450    | .01307.5 | .36360   | .00543         | .42740         | 0.00000 |                      |     |                                        |
| 22       | .19150   | .01615   | .36330   | .00531         | .42374         | 0.00000 | 0.00000              |     |                                        |
| 29       | .20250   | .01249   | .35740   | .00333         | .42398         | 0.00000 | 0.00000              |     |                                        |
| 30       | .13040   | .03999   |          |                | <b>.</b> 45958 | 0.0000  | 0.00000              |     |                                        |
| 31       | .16960   | .02420   | .36330   | .00323         | .43957         | 0,00000 | 0.00000              |     |                                        |
| 32       | .18710   | .01538   | .36470   | .00345         | .42397         | 0.00000 | 0.0000               |     |                                        |
| 33       | .19420   | ••••1313 | .37640   | .00350 "       | .41277         | 0.00000 | 1 0.00000            |     |                                        |
| 34       | .20100   | .00947   | .39010   | •00242         | .40761         | 0.00000 | 0.00000              |     |                                        |
| 35       | .20480   | •005H2   | .38170   | .00249         | .40520         | 0.0000  | 0.00000              |     |                                        |
| 35       | 14750    |          | .35940   | .00349         | .44715         | 0.00000 | 0.00000              |     |                                        |
| 37       | .16770 . | .03678   | •36730   | .00321         | .42501         | 0.00000 | 0.00000              |     |                                        |
| 38       | .18180   | .02337   | • 37320  | ●002H0         | .41226         | 0.00000 | 0.00000              |     |                                        |
| <u> </u> | 19540    | .01943   | .39050   | .00238         | .40259         | 0.00001 | ti ( <b>.</b> 000re) |     |                                        |
| 4.0      | •1964N   | .01723   | .38440   | .00197         | .40000         | 0.0000  | 0.00000              |     |                                        |
| 41       | .20230   | .00347   | .38749   | .00170         | .40013         | 0.00000 | 0.00000              |     | 1                                      |
| 4?       |          | .05250   |          | 00298          | .48002         | 0+00000 | 0.00000              |     |                                        |
| 43       | •13630   | .05130   | .33780   | .00425         | .47035         | 0.00000 | 0 <b>-</b> 00000     |     |                                        |
| 44       | .14900   | ,64590   | .34020   | .00482         | • 4 2 3 4 4    | 0.00000 | 0.04009              |     |                                        |
| 45       | .16440   |          | .34300   | ,00498         | .46944         | 0.00000 | 0.00000              |     |                                        |
| 46       | .18570   | .02559   | .35520   | .00435         | .42815         | 0.00000 | 0.00000              |     |                                        |
| 47       | -18790   | .04270   | .33750   | •00SH6         | .42=64         | 0.00000 | 0.00000              |     |                                        |
|          | • •      | .04110   | .34430   |                | .30555         | 0.00000 | 0.00000              |     |                                        |
| 49       | .23590   | •03535   | .34470   | .00449         | .37555         | 0.0000  | 0,0000               |     | 64                                     |
| 59       | .25910   | •02601   | .35370   | .00416         | <b>.</b> 35703 | 0.00000 | 6.10000              |     | No.                                    |
|          |          |          |          |                |                |         |                      |     | ······································ |

**.** .

|              |                  |                |                   |                    |                      |                  | •                                                         | ÷ |
|--------------|------------------|----------------|-------------------|--------------------|----------------------|------------------|-----------------------------------------------------------|---|
|              | .11045           |                |                   | 2.08567            | 1.63523              | - 44044          |                                                           |   |
| 64           | <b>~</b> ,01925  | 04758          | 03733             | 2.05244            | 1.55275              | 40009            |                                                           |   |
| 45           | -,18499          | 13177          | .03322            | 2:11450            | 1.64542              | 43309            |                                                           |   |
| 47           |                  |                | .13722            |                    |                      |                  |                                                           |   |
| 46           | .235-3           | - 21683        | 45245             | 1.10855            | 1.94524              | .83672           |                                                           |   |
| 45           | 00682            | -,36758        |                   | 1.63661            | 1.92440              | -235HC           |                                                           |   |
| 44 44        | 13424            |                |                   |                    |                      | .10010           |                                                           |   |
| 4 7          |                  | - 56492        | 21777             | 1.77360            | 1.27947              | 10489            |                                                           |   |
| 42           | - (597)          | - 64334        | .01637            | 1.89160            | 1.89651              | .00491           |                                                           |   |
|              |                  |                |                   |                    | 1.09828              |                  |                                                           |   |
| 40           | 1-444            | 07173          | 22617             | 1.16002            | 1.90525              | .74624           |                                                           |   |
| 39           | ,08342           | 08926          | - 17268           | 1.47705            | 1.49723              | .42019           |                                                           |   |
| ، ن<br>ابلان |                  |                |                   | - · · ·            | 1.44323              | .24567           |                                                           |   |
| 35           | 16311            | -,25154        | •04771<br>••08743 | 1.71041            | 1.83749              | -11758           |                                                           |   |
| 35<br>3r     | 44114            | 04459<br>39393 | .04721            | - 1.95798          | 1.87470              | - 05322          |                                                           |   |
| 34<br>35     | •13540           | 05350          | 19900             | 2.36180<br>2.05540 | 2.03883<br>- 2.05378 | 32297            |                                                           |   |
| 33           | .02274           | 10109          | -,12383           | 2.42126            | 2.01702              | 40424            |                                                           |   |
| 35           | •••              | •••            | 02391             |                    | 2.04813              | 53444 -          |                                                           |   |
| 31           | 39375            | 26708          | .11667            | 2.48099            | 2.02516              | 46473            |                                                           |   |
| 30           | - <u>.</u> 60407 | 46496          | .14311            | 5.16655            | 1.94449              | 25474            |                                                           |   |
|              | ,14104 +         |                |                   |                    | 2.05241              | .12104           |                                                           |   |
| 74           | - 15443          | 15407          | .00036            | 2.01517            | 2.03435              | .02318           |                                                           |   |
| 27           | -14503           | 17584          | 03086             | 2,16837            | 2.04251              | 12586            |                                                           |   |
|              | 20541 -          | - 22450        |                   |                    | 2.17742              | 31957            | · · · · · · · · · · · · · · · · · · ·                     | • |
| 25           | - 32454          | 32208          | .00443            | 2.35042            | 2.05696              | 29346            |                                                           |   |
| 24           | 60346            | - 45400        | 13985             | 2 30760            | 2.07186              | - 32504          |                                                           |   |
|              | • ·              |                |                   |                    | 1.04505              | 377(5            | ا<br>من القرب محمد من |   |
| 25           | 13353            | 04754          | .04599            | 2.43010            | 1.95922              | 4408H            |                                                           |   |
| 21           | - 24131          | 08140          | .15991            | 2.39699            | 1.99344              | 40355            |                                                           |   |
|              | 75464<br>40107   | 40394<br>13936 | .36071            | 2.21539            | 1.97415              | 24123<br>44968   |                                                           |   |
| 14           | - 01979          | 00297          | -01682            | 1.25101            | 1.43979              | -5878X           |                                                           |   |
| 1 7          |                  | 500982         |                   | 1.45787            | 1.40710              | 33922            |                                                           |   |
| 16           | 12954            | 02393          | .10561            | 1.61144            | 1.78352              | .17204           |                                                           |   |
| 15           | 28157            | 03441          | .24715            | 1.89160            | 1.93197              | 05974            |                                                           |   |
| ·] 4··       | • • •            |                |                   | - 1.51842          |                      | .21284           |                                                           |   |
| 13           | -, -7536         | -•]#530        | .39306            | 2.03340            | 1.54469              | 13870            |                                                           |   |
| 12           | -,73442          | 27106          | .46876            | 2.04813            | 1.86705              | 20107            |                                                           |   |
|              | 13068            |                |                   | 1.39228            | 1.00391              | .51164           |                                                           |   |
| 10           | -,00310          | 00937          | 00627             | 1.47453            | 1,89919              | .41466           |                                                           |   |
| 9            | 02059            | -,03345        | 05454             | 1.37220            | 1.85399              | 48170            |                                                           |   |
|              | 02634-           | 05744          |                   | · · •              | 1.95870              | .19138           |                                                           |   |
| 7            | - 43032          | - 19937        | 23995             | 2.17845            | 1.95409              | - 22484          |                                                           |   |
| 6            | 00562            | 10591          | -10030            | 1.78234            | 2.10539              | .32401           |                                                           |   |
|              | 04632            | L 12545'-      |                   | 2.01437            | ~ 2.09198            | .07761           |                                                           |   |
| 4            | - 18068          | 15901          | .02168            | 2.22824            | 2.10586              | 12139            |                                                           |   |
| • •          |                  |                |                   |                    |                      |                  |                                                           |   |
| 2<br>· 3     | 24719            | ····           |                   | 1.99742<br>2.08691 | 2.07402              | .08061<br>.00025 |                                                           |   |

-----

|                                        | C 1997 J           | ູ່ອາດປະກ              | (*****           | F 10(3#                |         | υ., <b>γ</b>                |                                       |
|----------------------------------------|--------------------|-----------------------|------------------|------------------------|---------|-----------------------------|---------------------------------------|
| ,                                      | 1                  | 00011                 | ~ 1 7 7 7        | <b>D J J J J J D G</b> | 2 14400 | 0700/                       |                                       |
|                                        | -1.24549           | 92911                 | .31737           | 3.11485                | 3.14490 | .03006                      |                                       |
|                                        | -1.04412           |                       | 21545            | 3.13375                | 3.17123 | •0374R                      |                                       |
| ,<br>,                                 | - <u>88722</u>     | 75473                 | .13249<br>.09349 | 2.95387<br>2.84955     | 3.03188 | .07802<br>.16460            |                                       |
|                                        |                    | 71172                 | .09343           |                        | 3.01415 | .30874                      |                                       |
| -<br>-                                 | 74207<br>72011     |                       | • 05577          | 2.50879                | 3.13697 | .62818                      |                                       |
| ÷<br>۲                                 | -102725            | 70289                 | .28436           | 4.05820                | 3.58183 | +.47637                     |                                       |
| ······································ |                    |                       | .12158           | - 3.66433 ·            | 3,47016 | - <b>.</b> 19117            |                                       |
| a                                      | - <1545            |                       | .02276           | 3.48707                | 3.41711 | 06996                       |                                       |
| 3 ń                                    | - 49972            |                       | 07602            | 3.71260                | 3.49308 | 21952                       |                                       |
| 11                                     | - +24+2            | - 56232               |                  | 3.74479                | 3.51843 | 22636                       |                                       |
| iz                                     | - 66915            | +.77536               | - 08720          | 3.38541                | 3.34248 | 04273                       |                                       |
| 13                                     | - 67133            | 71964                 | 04726            | 3,09964                | 3.23017 | 13052                       |                                       |
| 14                                     | - 43299            | + NEST4               | - 03 175         | 2. 21931               | 3.07977 | .15146 "                    |                                       |
| 15                                     | - 47732            | - 61561               | 03828            | 2.67622                | 2.85296 | .14674                      | · · · · · · · · · · · · · · · · · · · |
| 16                                     | - 42971            | - 58439               | - 15838          | 3.38167                | 3,15684 | - 22484                     |                                       |
| 17                                     |                    | ···                   |                  | 3.29466                | 3.03567 | - 54800                     |                                       |
| 10                                     | - 31457            | - 55035               | 24531            | 3.79414                | 3.25227 | 54187                       |                                       |
| r I                                    | - 43347            | +.85955               | .07413           | 3.46420                | 2.21541 | -,27289                     |                                       |
|                                        | - 73605            | 68958 -               | .04648           | - 3.24960              | 3.12221 | 12739                       |                                       |
| 51                                     | 69716              | +.64690               | .05025           | 3,16505                | 3.10180 | 06325                       |                                       |
| 22                                     | 49937              | +.61622               | .08315           | 3.28354                | 3.20529 | 07825                       |                                       |
| 2:                                     | 74613              | 60190                 | .14432           | 3.08831                | 3.20807 | .11975                      |                                       |
| 24                                     | 07339              | <b>-</b> ,49342       | .07997           | 5.86910                | 3.14347 | .27729                      |                                       |
| 25                                     |                    | <b>-</b> .92511       | •12940           | 2.89977                | 2.85185 | 01742                       |                                       |
| 75 -                                   | - <u>-</u> -3103   | · ••77569 ·           | .05534           | 2.87526                | 2.74201 | 13325                       |                                       |
| 27                                     | -**3500            | 73526                 | 10327            | 3.00603                | 2.84507 | 25186                       |                                       |
| 26                                     | <b>~.</b> 48613    | 71369                 | 22756            | 3.24649                | 2.97219 | 27430                       |                                       |
| 24                                     | <b>*</b> 58586     | -                     |                  | 3.61495                | 3.24825 | 34661                       |                                       |
| (' כ                                   | - <u>971</u> 20    | - 89595               | , 97495          | 3,20599                | 3.26420 | . 15220                     |                                       |
| 31                                     | - 93905            | 74230                 | •15675           | 2.81141                | 3.16775 | .35595                      |                                       |
| 32                                     | ·····              | - 71190               | •14236           | 2.73112                | 3.00000 | .36877                      |                                       |
| 33                                     | 73814              | 67449                 | .06365           | 2.01531                | 3.12363 | .20532                      |                                       |
| 34                                     | 63205              | 64430                 | 01224            | 3.20802                | 3.20141 | 00660                       |                                       |
|                                        | -1 10-00           |                       |                  |                        |         | 14961                       |                                       |
| 37                                     | -].19+99<br>c9750  | -,96663<br>-,77879    | •33235           | 3.18800                | 3.09613 |                             |                                       |
|                                        | - PK038 -          | 71953                 | .21871           | 3.08237<br>- 3.07084 - | 3.15422 | -07585<br>-14478 ·          |                                       |
| 30                                     | 72547              | 56103                 | • 1 4 1 5 6      | 3.00519                | 3.25785 | .25256                      |                                       |
| 40                                     | - 65049            | 64308                 | •01241           | 2.99072                | 3.29473 | • २२४२२<br>• २१४ <b>० १</b> |                                       |
| 41                                     |                    | -•64506<br>·****      |                  |                        | 3.2279  | .3-416 -                    |                                       |
| 42                                     | - K35nn<br>- L1454 |                       | -35045           | 3.29101                | 3.17402 | 11599                       |                                       |
| 43                                     | - FORK1            | 95912                 |                  | 2.99823                | 3,03518 | .03695                      |                                       |
|                                        |                    |                       |                  | - 2.92006 "            | 3,00567 | .07761 -                    |                                       |
| 45                                     |                    | -,84672               | 25522            | 2.97706                | 3.02632 | -04926                      |                                       |
| 46                                     | 47824              | -,74872               | 07147            | 3.19995                | 3.10380 | 00615                       |                                       |
|                                        | ····F694]····      | ··· <b>-</b> •77799·· |                  | 3.46346                | 3,38572 | - 07°14 "                   |                                       |
| 44                                     | - 44676            | 67-34                 | 03207            | 3,43399                | 3.35358 | -,07031                     |                                       |
| 44                                     | = 5217             | 61310                 | 06193            | 3.27525                | 3.21408 | 05118                       |                                       |
| = n                                    |                    | 53763                 |                  | 3.57767                | 3,24446 | 33321                       |                                       |
| -                                      | ·                  | •••••                 |                  |                        |         |                             | 64                                    |
|                                        |                    |                       |                  |                        |         |                             | 2                                     |
| • - · · ·                              |                    | · ·                   |                  | -                      |         |                             |                                       |
|                                        |                    |                       |                  |                        |         |                             |                                       |

• -

- - --

----

| ~9184      | 91               | 910                        | 62          | 670         | 50               | <b>0.5C</b>      | (14                   | (*+6                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|------------------|----------------------------|-------------|-------------|------------------|------------------|-----------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          |                  | - 59651                    | 7.07270     | 8.11034     | .20720           | .39530           | 22.53000              | 23.21745             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 70800            | 70105                      | 7:37000     | - 7.98867   | .35200           | .43563           | 22.25000              | 23.47679             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Э          | .76100           | ,79251                     | 8,06000     | 8.06205     | .41180           | .47014           | 19.12000              | 20.73525             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4          | 43471            | . 45209                    | 9.24350     | 8.22237     | .44700           | .44050           | 17.28000              | 20.37174             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 01731 -          |                            | 7.49600     | 8.10095 -   | - 47570          | .50324           | 15.55000              | 21.32429             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6          | 94440            | . 49950                    | 5.94400     | 8 21852     | .49670           | \$1137           | 12.20000              | 23.03385             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7          | 65630            | . 82565                    | 8.83700     | 7.15744     | .37260           | . 4 - 515        | 57.87000              | 35.43021             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                  | 94419                      | 5.40500     | - 4.47900 . | .45,240          | . 5444?          | 39.03000              | 32.23442             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9          | 1.02080          | .95652                     | 3.94400     | 6.38465     | .54040           | .55339           | 32.54000              | 30.43110             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10         | . 40601          | .99067                     | 4.36910     | 6.61401     | .61280           | .55794           | 40.96000              | 32.83595             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 04+10 -          | 491162                     | 4.02400     | - 6.71212 - |                  | <u>.</u> 50044   | 42.30000              | 33.73143             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12         | .47720           | .76257                     | 7.91000     | 6.45920     | .50200           | .40008           | 20.53000              | 28.22420             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13         | . 44250          | .43335                     | 7,64000     | 6.32617     | .51100 .         | .44741           | SS°14000              | 25.24345             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| }4         | 71900 -          |                            | - 4.56500 - | - 5.64775   | .53100           | 51238            | 14.51000              | 21.75342             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15         | ,75460           | .96617                     | 6.63000     | 6.24553     | .55140           | .54031           | 14.53000              | 17.51324             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15         | . 47450          | .97535                     | 5.01000     | 5.95075     | .65070           | .55534           | 29.42000              | 23.44617             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                  | · 04923-                   | 4.34000     |             | 69700            | 55945            | 25.70000              | 20.31501             | n har stall a stall a stall and a stall and a stall a st |
| 18         | 68049            | ,94703                     | 3.40700     | 6.24521     | .73010           | .57128           | 44.44600              | 25.84895             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19         | 44550            | 66769                      | 9.16500     | 7.20059     | .29310           | 42335            | 32.73000              | 24.91742             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                  | 95992                      | 11.73000 -  |             |                  | .50179           | 25.78000              | 22.59540             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 51         | 78560            | 92182                      | 10.99000    | 7.34072     | 40210            | .52364           | 23.59000              | 22.23795             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 55         | £7500            | 95357                      | 11.36000    | 7.30914     | 20400            | <b>43</b> 348    | 26.57000              | 24.55254             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 44620 -          | 47552 -                    |             |             | 47420            | .54792           | 21.94000              | 24.73128             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24         | . 44570          | .62876                     | 11.00000    | 7.43455     | .37780           | 40925            | 17.57000              | 23.15415             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25         | . 72140          | .72464                     | 10,40000    | 7.82215     | 28500            | 43414            | 18.17000              | 17.44723             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                  | 79573                      | - 10.44000  |             | .43560           | 46039            | 17.73000              | 15.51813             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 27         | .55500           | 83871                      | 8.74400     | 7.70994     | .53100           | 47540            | 22.13000              | 17.20283             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24         | F5690            | .85721                     | 7.50200     | 7.67795     | .61500           | .44983           | 25.70000              | 19.53463             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ·          | 42610            | 86683                      | 6.96800     | -           | - 75360 -        | 50221            | 37.15000              | 25.74745             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 30         | =444P            | .62816                     | 9.01400     | 6,99002     | .37840           | .40781           | 24.54000              | 26.26397             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 31         | .FR130           | 76561                      | 12,06000    | 7.57733     | .39100           | 45735            | 15.54000              | 23.75409             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | • •              | 45654                      | 14.63000    |             | 42560            | .49071           | 15.35000              | 22.19540             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23         | 1.02300          | 90385                      | 11.25000    | 7.51585     | 47800            | 50942            | 19.51000              | 22.72477             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 34         | 1.14500          | 93834                      | 10.61000    | 7.68153     | 53150            | 52503            | 24.73000              | 24.55725             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 1.24000          | -                          | 7.81000 -   | -           | .57900           | .53337           |                       | - 25.51509           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 36         | £4330            | .67440                     | 7.08500     | 6.518+6     | .30150           | .42037           | 24.24000              | 22.11215             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 37         | 44450            | 77839                      | 5.54400     | 6.28074     | .35880           | 45895            | 21.81000              | 23.52862             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                  | • • • •                    | 4.84600     |             | 42300 -          | - 48698          | 21.56000              | 24.41865             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 39         | 1.04700          | .91461                     | 4.38000     | 6.66743     | .48400           | .51632           | 50.19000              | 25,49347             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.0        | 1.16700          | •93078                     | 3.19000     | 6.72786     | .51550           | .52305           | 19.90000              | 25.37642             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                  |                            | -           | - 7.37633 - | 54100            | .53454           | 14.20000 -            | - 27,7075° -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 42         | 51700            | .52553                     | 6,63000     | 6.66263     | •3139            | 37052            | 26.37000              | 23.41743             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 43         | 70670            | • 55841                    | 5.84200     | 6.54350     | .54400           | .39323           | \$0.05000<br>25.05000 | 50°×071a             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 44         | 270970<br>270970 | • 52569-                   |             |             |                  | •3~3~3<br>•40380 | 14.71000              | 20.22000             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 45         | .09320           | • 69241                    | 5.14800     | 6.85107     |                  | .40300<br>.42862 | 19,63000              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 45         | 1.26570          | •09241<br>•90507           | 3.03000     | 6.99560     | •55350<br>•50750 | 47297            | 22.42000              | 20.60100<br>22.20245 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | <u>**</u>        |                            |             | ·· 6.02033  |                  | - 45023 -        | -                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| + L<br>4 L | . 4700           | .87654                     | 8.32700     | 5.40009     | .4,920           | 145023<br>1507Ch | 31.94000<br>31.00000  | 24.49525             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4 C<br>4 C | , crayo          | • 7 ( 0 7 4<br>• 9 5 3 5 4 | 7.79000     | 5,22130     | .57570           | + 76767          | 24,45000              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sp -       | 1.11700          |                            |             |             | .59500           |                  |                       | 24. 44035            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 4 + F 1 7 1911   | T. 05.248                  | 0.00000     | - 5:13577   | • UUC P F •      | · ~ ~ ~ *        | 35.79000              | 25.64754             | 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |                  |                            |             |             |                  |                  |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

•

00 70

----

----

-

. . . .

• •

.

|   | FITTED CONSTANTS              |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|-------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | P(1) = .708725 - 01           |   | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | - P(2)= 0.                    |   | a ba a a a a a a a a anna an anna anna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | B(3) = 0.                     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | P(4)= .67696E+00              |   | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | = R(5) = 49450E+00            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 8(-5) = 0.                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | R(7)= 27093E+00               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                               |   | 8 4 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - |
|   | R(9) = .141175+01             |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | E(10) = .91068F+01            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | TT B(11)= .108737+02 TT TT    | • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | . P(12) = .601935+01          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | B(13) = 0                     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • |                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | B(15)= .269375-91             |   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | - $H(15) = 0.$                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | . P(14) = 0.                  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | $P(1^{\circ}) = .39135E + 01$ |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

\_\_\_\_\_

·

```
-500
   C.4.1 Frogram List for Program RXNRATE
                                                          PAGE
                                                                 ì
                                        77/01/29
                           CDC
       RXNRATE
   PROGRAM RXNPATE (INPUT.OUTPUT.TAPE5=INPUT, TAPE6=OUTPUT)
   DIMENSION NSET(10), SETID(7.10), X(7.10), Y(7.10), XSUM(10), YSUM(10)
  1.YCAL(7.10).DELT(7.10).FKM(10).TITLE(20)
 1 PFAD(5+10) L+ICONTD
10 FORMAT(1615)
   REPD(5.10) (NSET(I) (I=1.4L)
   READ(5.16) (TITLE(I).I=1.20)
16 FORMAT(20A4)
   XYS=0.
   XXS=0.
   1+1=F 02 00
   NC=NSET(J)
   X S (M (J) = 0.
   Y_{S(M(J))} = 0.
   DO 20 1=1.NS
   READ(5,30) SETID(I,J),X(I,J),Y(I,J)
   Y(I,J) = ALOGIO(Y(I,J))
   X \in UM(J) = X \in UM(J) + X(I \cdot J)
   Y_{SUM}(J) = Y_{SUM}(J) + Y(I_{,J})
   (U \bullet I) Y^{a} (U \bullet I) X + 2Y X = 2Y X
   S##(L+I)X+2XX=2(X
20 CONTINUE
30 FORMAT(A8,2X,2F10.0)
   XSYS=0.
    XSYS=0.
    Dn 50 J=1+L
    XC)S=XSXS+XSUM(J)**2/FLOAT(NSET(J))
    X < Y S = X S Y S + X S UM ( J ) * Y S UM ( J ) / F LOAT ( N S E T ( J ) )
50 CONTINUE
    STDEV=0.
    NSUM=0
    E = (XYS - XSYS) / (XSXS - XXS)
    DO 70 J=1.L
    FKM(J) = (XSUM(J) *E+YSUM(J))/FLOAT(NSET(J))
    NS=NSET(J)
    00 80 1=1.NS
    Y(\Delta L(J,J) = FKM(J) - X(I,J) *E
    DFLT(I \cdot J) = YCAL(I \cdot J) - Y(I \cdot J)
80 STDEV=STDEV+DELT(I,J)#DELT(I,J)
    NSHMENSUM+NS
    F \times (J) = 10 = 4 \oplus (F \times M(J))
 70 CONTINUE
    STDEV=SOPT(STDEV/FLOAT(NSUM-1))
    wf TTE (6+116) (TITLE (1)+I=1+20)
115 FODMAT(1H1///1X,2044)
    WEITE (6.100) E
100 FORMAT(/1X+28HUNIVERSAL ACTIVATION ENFROY=+F7+2+12H KCAL/6 MOLE//)
    * 1111 (6・102)
102 FORMAT(1x+6HSET ID+4x+16HFRFOUENCY FACTOR+5X+10H1000/2.3PT+10X+
   15HLOG K.5X.10HCALC LOG K.6X.9HDEVIATION/)
    DO 104 J=1+L
    NS=NSFT(J)
    DO 104 1=1.NS
104 WPITE(6+105) SETID(I+J)+FKM(J)+X(I+J)+Y(I+J)+YCAL(I+J)+DELT(I+J)
106 FORMAT(1X+AP+2X+E16+4+4F15+6)
```

WPITE(6.110) STDEV 10 FOPMAT(//2X.20HSTANDARD DEVIATION =.F11.5) IF(ICONTD.E0.1) GO TO 1 STOP END

| •4eZ       | Input Dat       | a for | Progr | `am | RXNRA | .TE |    |   |  |      |
|------------|-----------------|-------|-------|-----|-------|-----|----|---|--|------|
| y .        | 1               |       |       |     |       |     |    |   |  | 502  |
| 5          | 5 5             | 5     | 5     | 5   | 4     | 5   | .4 |   |  | 10.0 |
| JEI(       | CATION          |       |       |     | •     | .,  | -  |   |  |      |
| 01-1       | <b>,</b> °48285 | 6.11  | 54    |     |       |     |    |   |  |      |
| 01-S       | .551398         | 5.45  | 63    |     |       |     |    |   |  |      |
| 01-3       | .554659         | 4.45  |       |     |       | •   |    |   |  |      |
| 1)-4       | .556001         | 3.68  |       |     |       |     |    |   |  |      |
| 51-5       | .560118         | 3.10  |       |     |       |     | ,  |   |  |      |
| 12-1       | •E20858         | e.s0  |       |     |       |     |    |   |  |      |
| 5-20       | .554912         | 4.55  |       |     |       |     |    |   |  |      |
| 15-3       | .558301         | 3.52  |       |     |       |     |    |   |  |      |
| 12-4       | <b>.</b> 564342 | 2.55  |       |     |       |     |    |   |  |      |
| )2-5       | .568437         | 1.68  | 3     |     |       |     |    |   |  |      |
| 13-1       | .558629         | 3.85  | 35    |     |       |     |    |   |  |      |
| 13-5       | .560305         | 3.33  | 51    |     |       |     |    |   |  |      |
| 13-3       | .561832         | 2.92  | 75    |     |       |     |    |   |  |      |
| 13-4       | •563785         | 2.48  | 03    |     |       |     |    |   |  |      |
| 13-5       | ,566052         | 1.87  | 20    |     |       |     |    |   |  |      |
| 4-1        | .556594         | 5.18  | 34    |     |       |     |    |   |  |      |
| )4-2       | .558800         | 4.03  | 79    |     |       |     |    |   |  |      |
| 4-3        | •562P15         | 2.56  | 50    |     |       |     |    |   |  |      |
| 4-4        | .565027         | 2.15  | 42    |     |       |     |    |   |  |      |
| 4-5        | .566624         | 1.74  | 12    |     |       |     |    |   |  |      |
| 5-1        | .557446         | 4.79  | 06    |     |       |     |    |   |  |      |
| 5-2        | .560391         | 3.89  | 65    |     |       |     |    |   |  |      |
| 5-3        | .562309         | 3.52  | 90    |     |       |     |    |   |  |      |
| 5-4        | . 46421         | 3.15  | 74    |     |       |     |    |   |  |      |
| 5-5        | •565F03         | 5.69  | 52    |     |       |     |    |   |  |      |
| 6-1        | •558)86         | 5.23  | 94    |     |       |     |    |   |  |      |
| 6-2        | .560376         | 4.54  | 06    |     |       |     |    |   |  |      |
| 6-3        | •562989         | 3.23  | 33    |     |       |     |    |   |  |      |
| 6-4        | •566345         | 2.47  |       |     |       |     |    |   |  |      |
| <b>6-5</b> | •569444         | 1.86  | 21    |     |       |     |    |   |  |      |
| 7-1        | .554743         | 7.47. |       |     |       |     |    |   |  |      |
| 7-2        | .557361         | 5.554 |       |     |       |     |    |   |  |      |
| 7-3        | .561081         | 3.952 |       |     |       |     |    |   |  |      |
| 7-4        | •564342         | 2.71  |       |     |       |     |    |   |  |      |
| 8-1        | .561962         | 8.022 |       |     |       |     |    |   |  |      |
| 8-2<br>-   | .563077         | 6.550 |       |     |       |     |    |   |  |      |
| ۲⊷3        | .56529          | 5.55  |       |     |       |     |    |   |  |      |
| ×-4        | .567419         | 4.272 |       |     |       |     |    |   |  |      |
| r=5        | .569148         | 2.998 |       |     |       |     |    |   |  |      |
| 5-1        | • 569148        | 5.042 |       |     |       |     |    |   |  |      |
| 9-2        | .572623         | 3.712 |       |     |       |     |    | , |  |      |
| 9-3        | •577877         | 2.698 | 31    |     |       |     |    |   |  |      |

**,** .

.

.

.

9-3 .577877 2.6981 9-4 .581568 1.9791

•

.

....

| F                       | 1                   |             |         |     |   |   |   |   |   |   |  | 503 |
|-------------------------|---------------------|-------------|---------|-----|---|---|---|---|---|---|--|-----|
| PATI                    |                     | 5           | 5       | 5   | 5 | 4 | 5 | 4 |   |   |  |     |
| ]~)                     | •54h                | 285         | •53     | 70  |   |   |   |   |   |   |  |     |
| 1~2                     | ,551                |             | .37     |     |   |   |   |   |   |   |  |     |
| 1-3                     | .554                |             | .24     |     |   | - | • |   |   | • |  |     |
| 1-4                     | .558                |             | .16     |     |   |   |   |   |   |   |  |     |
| 1-5                     | 560                 |             | .13     |     |   |   |   |   |   |   |  |     |
| 2-1                     | .550                |             | .36     |     |   |   |   |   |   |   |  |     |
| 55                      | .554                |             | .19     |     |   |   |   |   |   |   |  |     |
| 2-3                     | .558                |             | .12     |     |   |   |   |   |   |   |  |     |
| 2-4                     | .564                |             | .08     |     |   |   |   |   | • |   |  |     |
| 2-5                     | .568                |             | .05     |     |   |   |   |   |   |   |  |     |
| 3-1                     | .556                | 629         | .45     |     |   |   |   |   |   |   |  | •   |
| 3~2                     | .560                | 305         | .29     | 63  |   |   |   |   |   |   |  |     |
| 3-3                     | .561                | 832         | •50     | 095 |   |   |   |   |   |   |  |     |
| 3-4                     | .563                | 788         | .11     | 84  |   |   |   |   |   |   |  |     |
| 3-5                     | .566                | 052         | .08     | 87  |   |   |   |   |   |   |  |     |
| 4-1                     | .556                | 594         | .60     | 49  |   |   |   |   |   |   |  |     |
| 4-2                     | .5581               | 80 <b>0</b> | .48     | 21  |   |   |   |   |   |   |  |     |
| 4-3                     | .5628               | 815         | .31     |     |   |   |   |   |   |   |  |     |
| 4 - 4                   | , 5651              | 027         | .26     | 46  |   | - |   |   |   |   |  |     |
| 4 - 5                   | .566                | 624         | .22     | 39  |   |   |   |   |   |   |  |     |
| 5-1                     | .557                | 446         | .51     | 64  |   |   |   |   |   |   |  |     |
| 5-2                     | ,560                |             | •35     | 94  |   |   |   |   |   |   |  |     |
| 5-3                     | •5623               |             | •52•    |     |   |   |   |   |   |   |  |     |
| 5-4                     | .564                |             | .210    |     |   |   |   |   |   |   |  |     |
| 5-5                     | •5658               |             | •189    |     |   |   |   |   |   |   |  |     |
| $t \cdot 2$             | .5600               |             | •55     |     |   |   |   |   |   |   |  |     |
| 6-3                     | .5629               |             | •17     |     |   |   |   |   |   |   |  |     |
| € m û                   | .566                |             | .140    |     |   | ٠ |   |   |   |   |  |     |
| 5.5                     | .5694               |             | • 1 1 9 |     |   |   |   |   |   |   |  |     |
| 5-5                     | .5712               |             | .090    |     |   |   |   |   |   |   |  |     |
| 7-1                     | .554                |             | •47     |     |   |   |   |   |   |   |  |     |
| 7-2                     | .5573               |             | .28     |     |   |   |   |   |   |   |  |     |
| 7-3<br>7-4              | .561(               |             | •189    |     |   | • |   |   |   |   |  |     |
| / 4<br>⊱ ]              | .5543               |             | -142    |     |   |   |   |   |   |   |  |     |
|                         | .5619               |             | .9]2    |     |   |   |   |   |   |   |  |     |
| 8 <b>-</b> 2<br>8-3     | .5630               |             | . É9(   |     |   |   |   |   |   |   |  |     |
| N=3<br>X=4              | .5652               |             | .567    |     |   |   |   |   |   |   |  |     |
|                         | • <del>~ 6</del> 74 |             | .418    | -   |   |   |   |   |   |   |  |     |
| გ <del>ო</del> 5<br>ს_1 | .569]               |             | •296    |     |   |   |   |   |   |   |  |     |
| 4-1<br>5-2              | •569]               |             | •170    |     |   |   |   |   |   |   |  |     |
| 9-2<br>9-3              | .5726               |             | • 108   |     |   |   |   |   |   |   |  |     |
| 9-3<br>9-4              | .6778               |             | •07(    |     |   |   |   |   |   |   |  |     |
| 9⊷4                     | .5815               | 100         | •05)    | 51  |   |   |   |   |   |   |  |     |
|                         |                     |             |         |     |   |   |   |   |   |   |  |     |

| . (           | ,                                 |     |                |   |   |   |    |
|---------------|-----------------------------------|-----|----------------|---|---|---|----|
|               |                                   | 5   | 5              | 5 | 4 | 5 | .4 |
| SSIVE         | -                                 |     |                | 2 | · | 0 | •  |
| ] - ]         | .548285                           |     | 4.4            |   |   |   |    |
| 1-2           |                                   |     | 5.0            |   |   | • |    |
| 13            | 554659                            |     | 5.4            |   |   |   |    |
| 1-4           | .58001                            | 12  | 3.6            |   |   |   |    |
| 1-5           | .: 00118                          | 95  | . ]            |   |   |   |    |
| 2-1           | +550828                           | 10  | 9.3            |   |   |   |    |
| c - 2         | +224915                           | 79  | .51            |   |   |   |    |
| 6.43          | .58301                            | 65  | .96            |   |   |   |    |
| 2-4           | .564342                           | -5¤ | •40            |   |   |   |    |
| 2-5           | . 568437                          |     | •56            |   |   |   |    |
| 5-1           | .558629                           |     | 3.7            |   |   |   |    |
| 3~2           | .550305                           |     | 1.6            |   |   |   |    |
| 3-3           | •261335                           |     | •30            |   |   |   |    |
| 3-4           | • 563758                          |     | •51            |   |   |   |    |
| 3-5           | .566052                           |     | .85            |   |   |   | •  |
| 4-1           | •556594                           |     | 9.1            |   |   |   |    |
| 4-2           | .558800                           |     | 0.6            |   |   |   |    |
| 4-3           | .562815                           |     | •03            |   |   |   |    |
| 4 - 4         | .50203.                           |     | •32            |   |   |   |    |
| 4 5           | .566624                           |     | • 94           |   |   |   |    |
| 51            | .557445                           |     | 4.3            |   |   |   |    |
| 5-2           | .4-60391                          |     | 8.8            |   |   |   |    |
| 5-3           | . 462309                          |     | 8.7            |   |   |   |    |
| 5-6           | 15421                             |     | 5.1            |   |   |   |    |
| 5-5           | ,565803                           |     | .27            |   |   |   |    |
| 6-1           | .558186                           |     | 9,1            |   |   |   |    |
| 6-2           | .560376                           |     | 0.6            |   |   |   |    |
| 6 <b>~</b> 3  | .562989                           |     | •52            |   |   |   |    |
| 6-4           | •566345                           |     | -02            |   |   |   |    |
| 6-5           | .569444                           |     | .31            |   |   |   |    |
| 7-1           | ,554743                           |     | 7.6            |   |   |   |    |
| 7-2<br>7-3    | .557361                           |     | 4.2            |   |   |   |    |
|               | .561081                           |     | •60<br>•54     |   |   |   |    |
| 17-4<br>U 1   | •564342<br>•561962                |     | • 5 4<br>8 • 0 |   |   |   |    |
| -2-2          | .501902                           |     | 3.7            |   |   |   |    |
| ా=ం<br>జ⊶3    | .56529                            |     | 5.8<br>-       |   |   |   |    |
| 8-4           | .50529                            |     | 2.4            |   |   |   |    |
| 0-4<br>B=5    | .569148                           |     | ÷55            |   |   |   |    |
| 19 <b>-</b> 1 | -509140<br>-569148                |     | 1.0            |   |   |   |    |
| 9-1           | .572623                           |     | •51            |   |   |   |    |
| 14-3          | .577877                           |     | • C 1<br>• 34  |   |   |   |    |
| 9-5           | .581568                           |     | .75            |   |   |   |    |
|               | • • • • • • • • • • • • • • • • • |     | • • •          |   |   |   |    |

.

.

•

504

I.

C.4.3 Results from Program RXNRATE

The program is used to fit reaction rate constants into the Arrhenious equation. The terms shown on the printouts are explained as follows:

Pages 1 to 3 -

1000/2.3RT = see definition shown in Section C.1.3
K = rate constants, units being the same as those
for ACR RCONST, ROR RCONST, and PRO RCONST
given in Section C.1.3

STANDARD DEVIATION = .03689

| CET | 01-1           | .2591F+21               | • 548285                  | • / MD427   |                       |                  |
|-----|----------------|-------------------------|---------------------------|-------------|-----------------------|------------------|
|     | 01-2           | ,2591E+21               | .551398                   | .736898     | .755538               | .019640          |
|     | r1-3           | .2591E+21               | .554659                   | .648584     | •640285               | 008299           |
|     | 01-4           | .2591F+21               | .558001                   | .566826     | •521145               | 045681           |
| -   | 01-5           | 2591F+21                | .560118                   | . 492425    | •445675               | 046750           |
|     | 07-1           | .2433F+21               | 550828                    | .793022     | .830615               | .037593          |
|     | 02-2           | 2933F+21                | 554912                    | • 458584    | .595023               | .026439          |
| -   | 02-3           | 2933E+21                | 558301                    | .546987     | .564207               | .012550          |
|     | 02-4           | .2433F+21               | . 564342                  | .406891     | -34884Q               | 058032           |
|     |                | .29335+21               | 568437                    | .226084     | .202864               | 073220           |
|     | ()2-5<br>()2-1 | 30795+21                | 558629                    | .589223     | .573640               | <b>-</b> ,015583 |
|     | 02-1           | -3079E+21               | 550305                    | .523109     | .513892               |                  |
|     | 03-2           | 30795+21                | .561832                   | .466497     | • 4 5 9 4 5 5         | 007042           |
|     | 03-3           | -3079E+21               | 563788                    | . 394592    | .389725               | 004457           |
|     | • •            | .30795+21               | 566057                    | .272306     | .309015               | .036709          |
|     | 03-5           | .3116F+21               | 556504                    | .714515     | .051303               | 053312           |
|     | 04-1           | +31165+21               | <u>554800</u>             | .606156     | .572660               | 033495           |
| •   | 06-5           | .3]16E+21               | 562215                    | 409087      | .429528               | .020441          |
|     | (14+3          | -3116E+21               | .565027                   | 327195      | .350671               | .023475          |
|     | 04-4           | +3119F*61<br>+3116E+21  | .566624                   | .240849     | .293739               | .052891          |
|     | 04-5           | .3A53E+21               | .557445                   | .680390     | .713208               | .032819          |
|     | 05-1           | .3853E+21               | 560391                    | 590675      | .608221               | .017546          |
|     | 65-2           | .3853E+21               | .562309                   | 547652      | .539845               | <b>-</b> ,007805 |
|     | (15- <u>3</u>  | 3853F+21                | .564210                   | 449330      | .472076               | 027254           |
| -   | (144           | .3+32F+21               | 565803                    | 430591      | .415286               | 015305           |
|     | (·~            | .30-3-461<br>.30552-461 | 558186                    | .719282     | .698143               | 021138           |
|     | 06-1           | ,3853F+21               | 560376                    | .657113     | .620071               | 037042           |
|     | 06-2           | .39555+21               | 562989                    | .509646     | ,526919               | -017273          |
|     | 06-3           |                         | .565345                   | .393171     | .407280               | .014108          |
|     | 06-4           | .3955E+21<br>.3955E+21  | .549444                   | .270003     | .295802               | .025799          |
|     | 06-5           | .4020E+21               | .554743                   | .873524     | .827953               | 045571           |
|     | 07-1           | • • •                   | .557361                   | .744545     | .734623               | 010025           |
| -   | 07-2           | .40205+21               | .561081                   | .597936     | .612907               | .004071          |
|     | 07-3           | .4020F+21               | .564342                   | 434233      | 485755                | .051521          |
|     | 07-4           | .40205+21               | .561962                   | .904310     | .835280               | 068030           |
| '   | 01             | .7411E+21               | .563077                   | .816274     | .796531               | 019743           |
| ••  | () トー?         | .74115+21               | .565290                   | .745044     | .717639               | 027405           |
| • • | 1) H = 3       | .74115+21               | .567419                   | 630552      | .541741               | .011080          |
| •   | 0 <b>- - 4</b> | .7411F+21               | .557419                   | .476005     | 5H0103                | .104998          |
|     | 0              | •7411E+21               | • 75 71 40<br>• 56 9 ] 48 | ,702655     | .719419               | .016765          |
| -   | 0 % = 1        | +1021E+22               | • • •                     | 569566      | 545538                | ,025471          |
|     | 0              | .10215+55               | .572623                   | .421058     | 408236                | 622822           |
| •   | . Cri+3        | .1021E+22               | •577877<br>FRVF48         | .295468     | .276654               | - 010914         |
| 551 | 04             | •105JE+55               | .581568                   | • * * 34 99 | una de la caracteria. |                  |
|     |                |                         |                           |             |                       |                  |

DEVIATION

.081090

·· -

505

CALC LOG K

.867515

L06 K

.786425

. INIVERSAL ACTIVATION ENERGY= 35.65 KCAL/G MOLE

.2591F+21

EPEDUENCY FACTOR

1000/2.3PT

.548285

-- -ESTEPIFICATION

SET ID

SET 01-1

## DEHYDPATION

\_UNIVERSAL ACTIVATION ENERGY= \_47.97 KCAL/G MOLE

| SET           | IC      | _ FREQUENCY FACTOR .          | 1000/2.3PT     | LOG K     | CALC LOG K.       | . DEVIATION  | <u> </u>   |   |   |     |                                   |
|---------------|---------|-------------------------------|----------------|-----------|-------------------|--------------|------------|---|---|-----|-----------------------------------|
| SET           | 01-1    | .10135+27                     | .548285        | 270026    | 297721            | 027696       |            |   |   |     |                                   |
| SET           | 0:-S    | .1012E+27                     | .551398        | 423774    | 447064            | 023290       |            |   |   |     | ·                                 |
| SET           | 01-3    | .1013E+27                     | .554659        | 619789    | 603506            | .016283      |            |   |   |     |                                   |
| SET           | 61-4    | .10135+27                     | .558001        | +.781202  | 743434            | .017368      |            |   |   |     |                                   |
| トモエ           | 01-5    | .1012E+27                     | .560118        | 842729    | 865394            | .017334      |            |   |   |     |                                   |
| ĨSĘT          | 07-1    | .9127F+35                     | .550828        | 433001    | -,454942          | 031851       |            |   |   |     |                                   |
| SET           | 07-2    | .91275+26                     | -54012         | 711974    | 659867            | .051108      |            |   |   |     |                                   |
| SET           | 02-3    | .9127F+26                     | .554301        | - "RORO41 | 823450            | .075491      | <u>.</u> . |   |   |     | • . •                             |
| 557           | 07-4    | .91275+26                     | .564342        | -1.022494 | -1-113259         | 030764       |            |   |   |     | •                                 |
| SET           | 07-5    | .9127E+25                     | .568427        | -1.245728 | -1.309711         | 063983       |            |   |   | •   |                                   |
| SET           | 07-1    | .1807E+27                     | ,558629        | 346787    | 542605            | 195417       |            |   |   |     |                                   |
| SET :         | 01-2    | .18075+27                     | .560305        | 528268    | 623009            | 094740       |            |   |   |     |                                   |
| . SET         | ·:-3    | .1P07E+27                     | •541P32        | 696412    | 696265            | .000447      |            |   |   |     |                                   |
| SET           | 11-4    | ,19075+27                     | •5637H8        | 926648    | 740101            | .136547      | <b>-</b>   |   |   |     |                                   |
| 557           | 03-5    | .1807E+27                     | .556052        | -1.052076 | 893714            | .153363      |            |   |   |     |                                   |
| SET           | 01-1    | *350EE+S2                     | .556594        | 218315    | 196036            | 055580       |            |   |   |     |                                   |
| SET           | ()4-2   | .32055+27                     | <u>-558800</u> | 315863    | 301966            | .014997      |            |   |   |     |                                   |
| - 1=1         | (.4-3 - | -3205E+27                     | .562815        | 507659    | - 494481          | .013178      | • • • •    | • |   |     |                                   |
| SCT           | 04-4    | .32055+27                     | .545027        | 577410    | 600598            | 023188       |            |   |   |     |                                   |
| SET           | 04-5    | -3205F+27                     | .566624        | - 649945  | 677212            | 027267       |            |   | • |     |                                   |
| -<br>557 -    | 05-1    | .2601E+27                     | .557446        | 287014    | 32760A            | 040594       |            | • |   |     |                                   |
| SET           | 05-2    | ·2601E+27                     | .560391        | 482276    | 458891            | .013386      |            |   | • |     |                                   |
| SFT           | 05-3    | ·P601E+27                     | .562309·       | 586533    | 560904            | .025628      |            |   |   |     |                                   |
| -<br>S=7      | 04-4    | .P601E+27                     | .554210        | 45 9358   | 652102            | .007255      |            | • |   | ·   |                                   |
| SET           | 05      | -2401E+27                     | .565803        | - 722849  | 723524            | 005675       |            |   |   |     |                                   |
| SET           | 66-2    | -2108E+21                     | .560376        | 644740    | - <u>- 55°512</u> | .085228      |            |   |   |     |                                   |
| 5=7           |         | .21085+27                     | .562989        | 752027    | 684867            | .067160      |            |   |   |     |                                   |
| SET           | 11t4    | -21085+27                     | .565345        | 832974    | 845567            | 012968       |            |   |   |     |                                   |
| 577           |         | -2108E+27                     | 569444         | 922269    | 994537            | 072255       | •          |   | • |     | •                                 |
| 557           |         | -21025+27                     | .571829        | -1.041723 | -1.108954         | 067232       |            | · |   | • • |                                   |
| 557           | 07-1    | -1687E+27                     | .554743        | 320754    | 395977            | 065123       |            |   |   |     | •                                 |
| SET           |         | -1687E+27                     | .557361        | 542421    | 511472            | .030549      |            |   |   |     |                                   |
| - CFT         |         | 16875+27                      | .561081        | 723079    | 599934            | .033145      | • • •      |   | • |     |                                   |
| SFT           | · •     | 16875+27                      | 554342         | 847406    | - 845376          | .001029      |            |   |   |     |                                   |
| SET           |         | .71125+27                     | .561962        | 039815    | 107408            | 067593       |            |   |   |     | •                                 |
| - 5FT         |         | .7112E+27                     | .563077        | 160773    | - 160899          | 000125       | • · · •    |   |   | ••• |                                   |
| SET           |         | 71125+27                      | .565290        | - 251185  | 267065            | 015276       |            |   |   |     | •                                 |
| SET           | -       | .71125+27                     | .567419        | 378408    | 369201            | .009208      |            |   |   |     |                                   |
| SET           |         | •7112E+27                     | 559148         | 527536    | 452147            | .075389      |            |   |   |     | · · · · · · · · · · · · · · · · · |
| SET           | -       | ·3598E+27                     | .559148        | 768275    | 749102            | .020174      |            |   |   |     |                                   |
| SET           | -       | -3598F+27                     | .572623        | 964170    | 914810            | 049350       |            |   |   |     |                                   |
| - <u>55</u> - |         | .35966+27                     | •577877        | -1.153663 | -1.156854         | 013201       |            |   |   |     |                                   |
| SET           | -       | • 35995 • 51<br>• 35995 • 27  | •5P1568        | -1.287603 | -1.343935         | 056332       |            |   |   |     |                                   |
| 57.1          | ······  | • 2 1 7 · · · · · · · · · · · | • • • • • • •  |           | 1-0.0107          | ÷ 0 2 , 20t. |            |   |   |     |                                   |

•

· · ·

. • ·····

STANDARD DEVIATION =

- -

.06085 •. (

,563788 .5351E+32 . 1.793191 .566052 1.747023 .5351F+32 2.265497 2.517328 .5018F+32 .556594 2.148534 .558800 2.280123 -F01PE+32 1.436504 1.4755?4 .562815 .5018E+32 1.819524 1.701741 .565027 .5018F+32 1.735058 1.530712 .566624 .5018F+32 2.315902 2.288473 .557446 .6252E+32 2.160158 2.172603 .560391 .6252E+32 2.058726 .562309 2.109579 .6252E+32 1.958193 2.009026 .564210 .6252E+32 1.273449 1.787248 .565203 +6252F+32 2.050005 2.173478 .558186 .37095+32 1.934189 2.043755 .560376 .3709E+32 1.795002 1.781849 .562989 .37095+32 1.618522 .5463/5 1.563435 .3709E+32 1.285792 1.454634 .540444 . 3709E+32 2.190057 2.375846 .554743 **3367E+32** 2.051606 2.094122 .557361 .33€7E+32 1.854876 .561081 1.796574 -3367E+32 1.582421 1.512418 .564342 .33675+32 2.420708 .551962 2.502427 .13795+33 . 2.348459 2.361742 .563077 +1379E+33 SFT PH-2. 2.244704 .565290 2.271377 .1379F+33 SET 08-3 2.132116 2.12188A .557419 .1379E+33 SET 08-4 2.040681 1.435608 .569148 .1379E+33 SET 08-5 2.155025 2.179977 .569148 .17955+33 SFT 09-1 1.971252 1.930491 .572623 1795F+33 SET 04-2 1.693348 1.693100 .577877 SFT 04-3 .1795E+33 1.498202 1.515211 .541568 .1795E+33 SET 09-4

- 026568

.010230

.105073

.040752

,000199

508

-.017009

-,023952

DEVIATION CALC LOG K 1000/2.3RT LOG K FREQUENCY FACTOR SET IN 2.549894 .095964 .548285 2.453930 .35125+32 SET 01-1 .019777 2.385265 .551398 2.365428 .35125+32 STT 61-2 -.005725 5.515805 2.218536 .554659 .3512E+32 SET 01-3 . 155448 5.002018 2.035070 .558001 SET 01-4 +3512E+32 -.054066 1.924114 .550118 1.978181 .3512E+32 SET 01-5 .262699 2.301319 2.038520 .550828 SET 02-1 .27015+32 .185560 2.085340 1.892720 .554912 SET 02-2 -.2701F+32 .086934 1-905115 1.819281 .558301 SFT 02-3 .27015+32 -.179772 1.585641 .564342 1.766413 .2701E+32 SET 02-4 -.356321 1.370080 .568437 1.726401 SFT 02-5 -2701E+32 -.07835H 2.185751 .554629 2.264109 ,53515+32 SET 03-1 -.022139 2.697117 2.119256 .560305 SET 03-2 .53515+32 .019413 2.014353 .561×32 1.995949 **.**5351F+32 SFT 03-3 .034916 1.912921 1.878004 SET 02-4 .046168 SET 03-5 -.251831 SET 04-1 -.131258 SFT 04-2 .061940 SFT 04-3 .117783 SFT 04-4 .204356 SET 04-5 .027430 SFT 05-1 -.012445 SET 05-2 -.050852 SET 65-3 -.050833 SFT 05-4 .086701 SET US-5 -.123473 SET 06-1 -.109567 SET 05-2 .014103 SET 05-3 .050095 SET C6-4 .158851 SFT 116-5 -.185790 SFT 67-1 . -. 042516 SET 07-2 .058302 SFT (:7-3 .170003 SFT 07-4 -.081719 SET 06-1 -. 006917

INIVERSAL ACTIVATION ENERGY= 52.88 KCAL/G MOLE

SUCCESSIVE PEACTION

```
509
   C.5.1 Program List for Program BSOLFIT
                                                        PAGE
                                                              1
                                       10/50/77
                          CDC
      BSOLFIT
   PPOGRAM BSOLFIT (INPUT.OUTPUT.TAPE5=INPUT.TAPE6=OUTPUT)
   COMMON K.N.X (40,4) . STDEVS
   COMMON /61/ Y(60) *YCAL(60) + IBCODE(7) * EMAX(7) * PMIN(7) * R(7) * PHI * FNU *
  +FLAMDA.TAU.EPSILN.PHIMIN.INDEX.KODE.ITEP
   DIMENSION DEV(60) + PCTDEV(60) + XX(60+4) + YY(60) + YYCAL(60) + XNAME(4)
   DATA XNAME/2HX1+2HX2+2HX3+2HX4/
50 READ(5.9) K.N.IDUMMY.IXE.IYE
 9 FOPMAT(615)
   READ(5,14) STDEVS
   READ(5.14) (BMAX(I))I=1.0K)
   REAU(5,14) (BMIH(I)+I=1+K)
60 RFAD(5.14) (B(I).1=1.K)
70 DO 1000 J=1.IDU44Y
000 RFAD(5+]4)(XX(I+J)+I=1+N)
    ITER] = 100
    DO 1020 J=1, IDU 44Y
    Do 1020 I=1.N
(\Gamma^{\bullet}I) \times X = (\Gamma^{\bullet}I) \times 0.00
80 READ(5,14) (YY(I) + I=1 + N)
    1F(1YF.E0.2.0P.IYF.E0.3.0R.IYF.E0.4) PEAD(5.14) Bb
    CALL NEWFUNC(Y . YY . N . IYF . BB)
14 FORMAT(8F10.0)
    FNU=0.
    FLAMDA=0.
    TL1=0.
    EPSILN=0.
    PHIMIN=0.
    IVDEX=0
    DO 12 I=1.K
 12 1 \times CODE(1) = -1
100 FOPMAT(151///.2X.5HINDEX.1X.4HKODE. 8X.4HPHIN.10X.2H31.10X.2H32.
    WRITE(6,100)
   110x,2H-3,10X,2H34,10X,2HB5,10X,2HB6)
 30 CALL PSOLVE
    STDEV=SORT(PHI/FLUAT(N-1))
    IF (INDEX.GE.ITER1) KODE=-1
    WPITE(6:102) INVEX.KODE:STDEV.(B(I):I=1.K)
102 FORMAT (2X+215+8512.5)
     1F(KOSF) 40.40.27
 27 1F(INDFX-ITEP1) 30+40+40
 40 PCTM=0.
     Un 25 J=1.4
     \hat{U} \in V(\mathbf{I}) = YC \land U(\mathbf{I}) - Y(\mathbf{I})
 SP CONTINIT
     W= JTF (6.104)
104 FORMAT()H1///3X+#MODIFIED VARIAHLES#//5X+5HPDIWT+15X+2HYM+12X+
    15+++CALM+13×+4+5544)
     ₩=ITE(5+105) (I+Y(I)+YCAL(I)+OEV(I)+I=1+N)
105 FODMAT(110+3E17.5)
     CALL PEVELNC(YCAL + YYCAL + N + IYE + HB)
     UG 55 1=1+M
     DEA(I) = AACYF(I) = AA(I)
     IF (AHS(YY(I)).ST.1.05-08) 60 TO 56
     PCTDFV(I)=0.
     Gn TO 57
```

56 PCTDFV(I)=DEV(I)/YY(I)/.01 57 PCTM=PCTM+ABS(PCTDEV(I)) 55 CONTINUE PCTM=PCTM/FLOAT(N) WGITE(6+207) (XNAME(J)+J=1+IDUMMY) 207 FORMAT(1H1///,3X,#ORIGINAL VARIABLES#,//15X,1HY,12X,4HYCAL,13X, 13HHEV, 4(14X, A2))UO 700 I=1.N 700 WPITE(6+208)YY(I)+YYCAL(I)+DEV(I)+(XX(I+J)+J=1+IDUMMY) 208 FOPMAT(7E16.5) WPITE(6.108) PCTM.STDEV 108 FORMAT(///20X22H4EAN PERCENTAGE ERROR=+F8+3/20X+22HSTANDARD DEVIAT =,F10.5//20X.16HFITTED CONSTANTS) 1ION WPITE(6,114) (I,B(I),I=1,K) 1]4 FORMAT(22X+2HB(+12+2H)=,E13.5) 77 READ(5.9) IDT GO TO (50,60,70,80,90), IDT 90 STOP

END

```
SUBPOUTINE BSOLVE
  COMMON K.N.X (40.4) .STDEVS
                         7(60) • IPCODE (7) • RMAX(7) • RMIN(7) • B(7) • PHI • FNU •
  COMMON /61/ Y(60).
 +FLAMDA.TAU.EPSILN.PHIMIN.INDEX.KODE.ITER
  DIMENSION 7ETA(60), ALPHA(7), AJACOB(60,7), G(7), A(7,7), OMEGA(7),
 LASCALE (7.8) + DELTA (7)
  KP1=K+1
  IF (FLAMDA.LE.0.0) FLAMDA=0.01
  IF(INDEX.GT.0) 60 TO 300
  IF(FNU.LE.0.0) FNU=10.0
  IF (TAU.LE.0.0) TAU=0.001
   IF (EPSILN.LE.0.0) EPSILN=0.00002
   IF (PHIMIN.LT.0.0) PHIMIN=0.0
   KFY=0
   Do 100 J=1,K
00 IF(IRCODE(J).NE.0) KEY=KEY+1
   IF (KEY.GT.0) GO TO 101
   KODE=-3
   GO TO 1500
01 1F(N.GE.KEY) GO TO 102
   KUDE=-5
   60 TO 1500
02 1F(1NDFX.GT.0) GO TO 300
   DO 200 J=1.K
(L) 8= (L) AHAJA 00
   GO TO 900
00 IF (PHIMIN.GT.PHI.AND.INDEX.GT.1) GO TO 400
   DO 307 J=1.K
   IF(IRCODE(J)) 301,307,303
101 CALL DERIV(J, JTEST, B, ZETA)
   00 302 I=]•N
(I) ATAZS=(L+I) 803AUA S08
   1F (JTEST.NE.-1) GO TO 307
   I = (U) \exists 0 0 D E
303 DFL=0.001*ABS(B(J))
   IF (ARS(B(J)).LT.1.0E-04) DEL=0.00001
   1F(B(J)+DEL.LE.BMAX(J)) GO TO 304
   A \cup D + A (J) = P (J) - D E L
   1)+1 == 0FL
   GO TO 305
304 ALPHA(J)=+(J)+DEL
305 CALL FINC (ALPHA+ZETA)
   ALDHA (J) =- (J)
   LO 304 I=1+K
306 AJACO-(I+J)=(ZETA(I)-7(I))/DEL
307 COLTINUE
400 UN 405 LL=1.K
    IF (IRCOUF (LL)) 401.404.401
401 G(LL)=0.0
    Un 402 JJ=1+N
402 6(LL)=#(LL)+AJACOA(JJ+LL)*(Y(JJ)-7(JJ))
    Dn 403 JJ=1+K
    A(LL \cdot JJ) = U \cdot 0
    DO 403 MM=1+N
403 A(LL+JJ)=A(LL+JJ)+AJACOB(MM+LL)*AJACOP(MM+JJ)
```

```
IF (A(LL+LL).GT.1.0E-20) 60 TO 406
404 DO 405 JJ=1•K
405 A(LL+JJ)=0.0
    A(LL \cdot LL) = 1.0
    G(LL) = 0 \cdot 0
406 CONITINUE
    GNORM=0.0
    00 407 I=1.K
407 CNORM=GNORN+G(I)**2
    Dn 500 I=1.K
500 OMEGA(I)=SQRT(A(I,I))
    Do 501 I=1.K
    G(I) = G(I) / OMEGA(I)
    DO 501 J=1.K
501 A(I,J)=A(I,J)/(OHEGA(I)*OHEGA(J))
    FLAM=FLAMDA/FNU
    ITFP=1
    Gn TN 503
502 FLAM=FLAM#FNU
503 DA 504 I=1,K
504 A(I,I)=A(I,I)+FLAM
    DO 506 I=1.K
    00 505 J=1.K
505 ASCALE(I+J)=A(I+J)
506 ASCALE(I+KP1)=G(I)
    DO 603 L=1,K
    11=1+)
    D0 600 M=LL+KP1
600 ASCALE(L+M) =ASCALE(L+M)/ASCALE(L+L)
    UO 603 M=1.K
    IF(L-M) 601,603.601
601 DO 602 J=LL+KP1
602 ASCALE(M.J) =ASCALE(M.J) -ASCALE(L.J) *ASCALE(M.L)
603 CONTINUE
    DEPORM=0.0
    0.0=0.00
    00 701 1=1•K
    DELTA(I)=ASCALE(I.KP1)/OMEGA(I)
    IF(IHCODE(I).E0.0) 60 TO 700
    ALDHA(J)=AMAX1(HMIN(I),AMIN1(HMAX(I),H(I)+DELTA(1)))
700 ULNORM=DLNORM+DELTA(I)**2
    DCPROD=DGPROD+DELTA(I)*G(I)*OMEGA(I)
701 UFLTA(I)=ALPHA(I)-3(I)
    CICCRMEDSPOOL/(SIRT(DLNOUV#GDODM))
     JOHAD=1
     IF (COSGAM) 800.501.401
べり() しつけんしゃく
     COSGAM=-COSGAM
HO1 COSHAMEAMIN1 (COSPAM+1.0)
     GARMA=APCO (COSGAM)#180.073.14159265
     1F (JOUAD.GT.1) - 53MMA=180.0-GAMMA
900 CALL FUNC (ALPHA+ZETA)
     入口1:1=0.0
     UO 901 I=1.N
    .XPHI=XPHI+(Y(I)-ZETA(I))##2
```

CONTINUE 1 STDEV=SORT(XPHI/FLOAT(N-1)) IF (STDEV.LT.STDEVS) GO TO 1400 IF(INDFX.GT.0) GO TO 1000 KODF=K GO TO 1404 000 IF (YPHI.GE.PHI) GO TO 1300 KODE = 0DO 1100 I=1.K 100 IF (ARS(DELTA(I))/(TAU+ARS(ALPHA(I))).GT.EPSILN) KODE=KODE+1 JF(KODE.E0.0) GO TO 1200 IF (FLAM.GT.1.0.AND.GAMMA.GT.90.0) KODE=-1 Gn TO 1401 200 IF (FLAM.ST.1.0.AND.GAMMA.LE.45.0) KODE=-4 GO TO 1401 300 IF(FLAM.GE.1.0E+08) GO TO 1301 ITER=ITER+1 Gn TO 502 301 KODF=-1 GO TO 1500 400 KODF=0 IF (INDEX.E0.0) GO TO 1402 401 FLAMDA=FLAM 402 DO 1403 I=1+K 403 B(I)=ALPHA(I) 404 DO 1405 J=1+N 405 Z(J) = 75TA(J)PHI=XPHI 1500 INDEX=INDEX+1 RETURN END

SUPPOUTINE NEWFUNC(Z+7Z+N+IFUNC+A) DIFFNSION Z(1), ZZ(1) GO TO (10,20,30,40,50,60,70,80), IFUNC 10 DO 15 I=1+N 15 Z(I) = 77(I)RETURN 50 DO 52 I=1+N 25 Z(I)=77(I)+A RETURN 30 UG 35 J=1.N 35 Z(I)=(7Z(I)+A)/100. RETURN 40 DO 45 I=1.N 45  $Z(I) = 1 \cdot Z(Z(I) + A)$ RETURN 50 DO 55 I=1.N 55 Z(I) = A L OG 10 (ZZ(I))RETURN 60 DO 65 J=1.N 65 Z(1) = 4 LOG(7Z(I))

- RETURN
- 70 DO 75 I=1•N
- 75 Z(1)=10.\*\*(ZZ(I)) RETURN
- 80 DO 85 I=1.N
- 85 Z(I)=EXP(ZZ(I)) PETURN END

```
SUBROUTINE PEVEUNC(7.72.N.IFUNC.A)
   DIMENSION Z(1) +ZZ(1)
   60 TO (10.20.30.40.50.60.70.80) . IFUNC
10 DO 15 I=1+N
15 \ 77(1) = 7(1)
   PETURM
20 DO 25 I=1. M
25 Z7(I)=7(I)~A
   RETURN
30 DO 35 I=1.N
35 77(I)=100.*Z(J)-A
   RETURN
40 DO 45 I=1+N
45 Z7(I)=1./7(I)-A
   RETURN
50 DO 55 I=1+N
55 Z7(I)=10.**(Z(I))
   RETURN
60 DO 65 I=1+N
65 Z_7(I) = FXP(Z(I))
   RETURN
70 Do 75 I=1.1
75 Z7(I)=ALOG10(7(I))
   RETURN
50 DO 85 I=1.N
85 \ Z7(1) = ALOG(Z(I))
   RETURN
```

```
END
```

FUNCTION APCO(7)

DOUBLE PRECISION X.7.EPS X=7 KFY=0 IF(X.LT.(-1.0)) X=-1.0 IF(X.GT.1.0) X=1.0 IF(X.GF.(-1.0).AND.X.LT.0.0) KEY=1 EPS=1.00-12 IF(DABS(X)-EPS) 20.20.30 20 ASCO=1.570796325 60 TO 40

- 30 X=DARS(X) AP(O=DATAN(DSORT(1.0-X\*X)/X) IF(KEY.E0.1) ARC0=3.14159265-APC0
- 40 RETURN END

| RSOLFIT          | CDC          | 77/02/01        | PAGE 9            |       |
|------------------|--------------|-----------------|-------------------|-------|
|                  |              |                 |                   |       |
| SUPPOUTINE FUNC  | (B.YCAL)     | •               |                   |       |
| COMMON K.N.X (40 | (4) STDEVS   |                 |                   |       |
| DIMENSION B(1),  | YCAL(1)      |                 |                   |       |
| Dr. 10 I=1+N     |              |                 |                   |       |
| YC&L(])=3(])*AL  | 0610(X(I+1)+ | 8(2))+B(3)*ALO0 | 610(¥(I,2)+B(4))+ | B(5)* |
| 1AL()G10(X(]+P   | (6))+8(7)    |                 |                   |       |
| 10 CONTINUE      |              |                 |                   |       |
| RETURN           |              |                 |                   |       |

END

.

,

•

RETURN

```
SHEROUTINE DERIV(J.JTEST. S.ZETA)
   COMMON K, N, X (40.4) . STDEVS
   DIMENSION H(1) .7ETA())
   Go TO (10.20.30.40.50.60.72).J
10 DO 15 I=1.N
15 ZFTA(I)=4L0G10(X(I+1)+B(2))
   Gr TO 70
20 DO 25 I=1.N
25 2FTA(I) = B(I)/(X(I \bullet I) + B(C))
   GO TO 70
30 Do 35 I=1.N
35 ZFTA(I) = 4LOG1O(X(I+2)+B(4))
   GO TO 70
40 DO 45 I=1.N
45 ZFTA(I) = B(3) / (X(I+2) + B(4))
   60 TO 70
50 DO 55 I=1.N
55 ZETA(I) = AL(GIO(X(I,3) + B(6)))
   60 TO 70
60 DA 65 J=1.N
65 ZETA(I) = B(5)/(X(I+3)+B(6))
   GO TO 70
72 00 74 1=1+N
74 ZE_{1} \wedge (I) = 1.
70 JTEST=0
```

```
519
   C.6.1 Program List for Program POLYFIT
                                     77/01/29
                                                     PAGE
                         000
                                                          1
       POLYFIT
   PROGRAM POLYFIT (INPUT, ONTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
   UIMENSION X (70) + Y (70) + YY (70) + XX (70) + YYCAL (70)
   COMMON C(6), JJJ, YPN(70), YCAL(70), PCT(70), PERR, STDEV
20 RE/D(5.10) NoIX.IY.JJJ
10 FOUMAT(615)
    READ(5,12) XF,YF
12 FOPMAT(8F10.0)
22 READ(5+12) (XX(I)+I=1+N)
    IF(IX.FO.2.OR.IX.E0.3.OR.IX.E0.4) READ(5.12) A
    CFEL FUNC(X+XX+N+IX+A)
24 RE4D(5.12) (YY(I) +I=1.N)
    IF(IY.E0.2.0P.IY.E0.3.0R.IY.E0.4) READ(5.12) B
    CALL FUNC(Y+YY+N+IY+B)
26 READ(5.10) K
    K_{1}=K+1
    CALL LETSOF (N+K+X+Y+YF+YF)
    CALL REVEUNC (YCAL, YYCAL, N, IY, B)
    VPITE (6,100)
100 FORMAT(1H)///+8X,6HORIG X+8X+6HORIG Y+5X+9HORIG YCAL+7X+7HMODIF X+
   17x.7HMODIF Y.4X.10HMODIF YCAL.7X.7HPCT ERR.4X.10HDERIVATIVE/)
    wrITE(6,102) (XX(I),YY(I),YYCAL(I),X(I),Y(I),YCAL(I),PCT(I),YPU(I)
   1 + T = 1 + N
102 FOPMAT(8E14.5)
    WRITE(6,104) PERR.STDEV
104 FORMAT(///3X,19H4BS, PERCENT ERPOR=,F6.3/3X,19HSTANDARD DEVIATION=
   1, F 8.5//3/, 16HFITTED CONSTANTS)
    WRITE(6+120) (J+C(I)+I=1+K1)
120 FORMAT(5X, 2HC(, 12, 2H) = + E13.5)
    REAU(5.10) IDT
    GO TO (20.22,24,26,28), IDT
 28 STOP
    END
```

```
SUPPOUTINE LSTSOR (N+K+XA+YA+XF+YF)
   UIMENSION XA(1), YA(1), YCAL(70), XSUH(70), A(6,6)
   COMMON CA(b), JJJ, YPN(70), YCAL(70), PCT(70), PERR, STDEV
   00 \ 10 \ 1=1.0
   XA(I) = XA(I) * XF
10 Y_{\Lambda}(I) = Y_{\Lambda}(I) * Y_{F}
   CA(1) = 0.
   N+1=C S1 00
12 CA(1) = CA(1) + YA(J)
   XSHM(1) = N
   K]=K+]
   D0 14 I=2+K1
   CA(I)=0.
   DO 14 J=1.N
14 CA(J) = CA(I) + YA(J) * (XA(J)) * * (I-1)
   KK=2*K+1
   DO 16 I=2+KK
   XSUM(I)=0.
   Do 16 J=1•N
16 XCUM(1)=XSUM(I)+XA(J)**(I-1)
    DO 18 I=1.K1
   DO 18. J=1+K1
   L=I+J-1
18 A(I \cdot J) = XSUM(L)
    DO 20 J=1,K1
    DO 24 J=1.Kl
    DFT=A(J,I)
    CA(J) = CA(J) / A(J \cdot I)
    Do 24 L=1.K1
24 A(J+L) = A(J+L) / DET
    DU 50 7=1.K1
    IF (J.E0.1) GO TO 20
    CA(J) = CA(J) - CA(I)
    DO 26 L=1+K1
26 \quad A(J \cdot L) = A(J \cdot L) - A(I \cdot L)
20 CONTINUE
    D0 58 1=1+K1
SS CA(I) = CA(I) \setminus A(I \cdot I)
    C_{L}(1) = C_{L}(1) / Y_{F}
    UN 30 1=2.K1
30 CA(I)=CA(I)/YF*XF**(I-1)
    Un 32 I=1+M
    X \land (I) = X \land (I) / X =
    YL(I) = YA(1) / YF
    Y(AL(I) = CA(I)
    DN 32 J=2+K1
 32 YCAL(I)=YCAL(I)+CA(J)*XA(I)**(J-1)
    UN 34 1=1+N
    YPN(])=(+(>)
    IF(K1.LT.3) GO TO 34
    0n 36 J=3•K1
 25 YPH(1)=YPM(I)+FLOAT(J-1)*CA(J)*XA(I)**(J-2)
    60 TG (38+34)+JJJ
 38 IF(YPN(I).LT.0.) YPN(I)=0...
```

```
34 CONTINUE
```

PFPR=0. STDEV=0. NM=N DO 42 I=1.M DELY=YCAL(I)-YA(I) IF(AKS(YA(I))\*YF-.001) 44.46.46 44 NM=NM-1 GO TO 42

46 PEPR=PERP+ABS(DELY/YA(I))
PCT(I)=DELY/YA(I)\*100.
STDEV=STDEV+DELY\*DELY

42 CONTINUE STDEV=SORT(STDEV/FLOAT(NM-1)) PEPR=PER=/FLOAT(NM)\*100. RETURN END

-

SUFFOUTINE FUNC(Z+ZZ+N, IFUNC+A) DIMENSION 7(1)+27(1) 60 TO (10,20,30,40,50,60,70,80) + IFUNC 36 UO 15 I=1.N 15 2(1)=77(1) RETURN 20 DO 25 1=1.N 25 Z(1)=77(1)+A RETURN 30 DO 35 I=1.N 35 Z(J)=(ZZ(J)+A)/100. PETURN 40 UO 45 I=1+N 45 Z(I)=1./(77(I)+A) RETURN 50 DO 55 J=1.N

- 55 Z(I)=ALOG10(ZZ(I)) RETURN
- 60 DO 65 1=1+N
- 65 Z(I)=ALOG(ZZ(I)) RETURN
- 70 Do 75 I=1+N
- 75 2(I)=10.\*\*(ZZ(I)) PETURN
- 80 DO 85 J=1+M
- 85 Z(1) 55XP(ZZ(1)) RETURN END