URSTEADYMSTADE DTETIETATICN
 ACCOGPANTED EY GHEUICAJ REACTION

A Dissertation
Fresented to

The Froulty of the Departhent of Chemiond Eiginecrine
University of Houston University of Houston

In Partial Filfillment
of the Reguiremants for the Degree Doctor of Philusophy in Chemical Enginetring

by
 Ting*-Long Wu

Avgust. 1977

The author is deepiy indebted to Dr. C. Je Huang: the faculty advisor, for his guidance and advice during this research. The encoungement received from otien faculty members in the University of Houston is also appreciatad.

He is grateful for the financiel assjstance provided by Naticral Science Foundation and American Chemical Society, He also extends his thanks to the Uriveraity of Houston Computer Center, the Culien College of Engineering Computer Centex, and the Computer Center of Hydrocarbon Research, Ind., Mimi, for the use of their respectire facilities.

TABLE OF CONTENTS

Chapter Page

1. Introduction 1
2. Literature Survey in the Related Fields 9
2.1 Vapor-Liquid Equilibria Accompanied by Chemical Reaction 9
2.2 Unsteady-State Distillation 25
3. Mathematic Model for Unsteady-State Distijiation with Chemical Reaction 43
3.1 General Hathenatic Rodel for bastendy-State Distillation with Chemicel Reaction 43
3.2 Unsteady-State Distillation without Chemical Reaction 49
3.3 Steady-State Distillation with Cnemical Reaction 51
3.' Steady-State Distillation without Cheriasil Reaction 52
3.5 Semi-batch Distillation with Chemical Reaction 52
4. Theoretical Model for Semi-baton Distillation Accompanied by Chemical Reaction 55
4.1 Besic Mathematicel Model and Reaction 55
4.2 Reaction Hechanisrus 60
4.3 Reaction Rate Expressions 73
4.4 Individual Rates of mass Appearance and/or Disappearance 79
4.5 Nass Pransfer Effects on Reaction Rates 84
4.6 Reactionship between the Vapor and Liquid Composition 103
4.7 Numericai hethod for Solution of Unsteady- State Distillation Accompanied by Chemical Reaction 110
5. Experimental Investigation 124
5.1 Experimental System 124
5.2 Chemicals 132
5.3 Major Experimental Units of the System 140
5.4 Equipment Calibration 176
5.5 Experimental Procedures 192
6. Analysis of Experimental Data and Correlation of Operating Parameters 198
6.1 Treatment of Experimental Data 198
6.2 Correlations of Parameters 208
7. Verification of Theoretical Model and Parametric Evaluation 241
7.1 Theoretical Solutions 241
7.2 Effect of Sys'tem Farameters on Theoretical Solution 253
7.3 Comparison of Theoretical and Experimental Results 279
8. Conclusions 303
Nomenclature 309
References 314
Chapter Page
Appendix A Thermophysical Data 319
Appendix B Calibration Data 359
Appendix C Computer Programs 366

LIST OF RABLES

Table
Page

Table, 2.1	Comparison of Liquid Fugacities Determined
by (C-S) Correlation and the Grayson Streed	

Table.6.1 Arrhenius Constants 230
Yable 6.2 Operation Parameters 232
Table 6.3 Largest Independent Effect of Operating Conditions on the Frequency Factor 239
Table 7.1 Liquid Enthalpses and Heat Capacities 244
Table 7.2 Vapor Enthalpies at 1 Atm. 247
Table 7.3 Heats of Formation 250
Table 7.4 Heats of Reaction 250
Table 7.5 Effect of Integration Step Size on Cal- culated TotaJ. Molar Vapor Condensate 252 l
Table A. 1 Normal Boiling Points 324
Table A.2 Critical Temperatures 32.7
Table A. 3 Critical Pressures 329
Table A. 4 Liquid Densities 334
Table A. 5 Antonine Constants for Vapor Pressure 336
Table A. 6 Acentric Factor 337
Tabie Page
Table A.7 Liquid Enthalpies and Heat Capacities 343
Table A. 8 Vapor Enthalpies at 1 Atm. 347
Table A. 9 Heats of Formation 353
Table A. 10 Heats of Reaction 356
Table A. 11 Constants for Fugacity Coefficient of 357
Pure Liquid Represented by Equation (2-6)
Table: B. 1 Calibration Table for Iron-Constantan Thermocouples 365

LIST OF FIGURES

Figure Page
2.1 Comparison of ν_{i}^{0} for Hethane between Chao- Seader Correlation and Grayson-Streed Correla- tion 19
2.2 Unsteady-State Distillation of Holland's Model 27
3.1 Naterial and Energy Balance Around a Distilla- tion Tray with Chemical Reactions 43
3.2 Inter-Relations Among Theories of Distillation54
4.1 Semi-Batch Distillation with Chemical Reaction 56
4.2 Gas Absorption Accompanied by Chemical Reaction 86
4.3 Fraction of Unreacted Reactant Entering the Liquid Bulk 86
4.4 Concentration Gradient for a Very Fast ReactiorDuring Gas Absorption86
4.5 Concentration Gradient for Liquid Evaporation with Chemical Reaction 90
4.6 Concentration Gradient for a Very Fast Reaction During Iiquid Evaporation 90
4.7 Concentration Gradient for a Moderate FastReaction with Reactant Coming from both GasBubble and Liquid Bulk92
4.8 Concentration Gradient for a lloderate Slow Reaction with Reactant Coming from both Gas Bubble and Liquid Bulk 92
4.9 Flow Diagram for Integration Procedures by Trial-and-Error 119
Figure page
5.1 Flow Scheme 128
5.2 Reaction-Distillation Tray and Its Accessories 141
5.3 Teflon Grease Holder 146
5.4 Thermocouples 146
5.5 Feed Fump 154
5.6a Feed Preheater for Low Relative Ratio of Vapor to Total Feed 157
5.63 Feed Preheater for High Relative Ratio of Vapor to Total Feed 157
5.7 Vapor Sample Bottle 159
5.8 Device for Gas flow Shift 162
5.9 Liquid-Sample Bottle 165
5.10 Device for Column Packing 169
5.11 Gas Chromagraphical Analysis of A Typical Vapor Sample 173
5.12 Gas Chromagraphical Analysis of A Typical Liquid Sample 175
6.Ia Inoividual Vapor Nolal Condensates for Five Volatile Components 201
6.1b Liquid Iemperature and Total Vapor Molal Condensate Vs. Real Time, Runs 1 \&2 202
6.2 Liquid Temperature and Total Vapor Molal Condensate Vs. Real Time, Runs 3,4, 85 203
6.3 Liquid Temperature and Total Vapor Molal Condensate Vs. Real Time, Runs $6 \& 7$ 204
6.4 Liquid Pemperature and Total Vapor Nolal Condensate Vs. Real lime, Runs $8 \& 9$ 205

Figure		page
6.5	Comparison of Calculated Activity Coefficient by the Wilson's Equation To Experimental Activity Coefficients	217
6.6	Esterification Rate Constant k_{1} Vs. Reciprocal of Temperature	226
6.7	Comparison of Frequency Factor for Esterification	235
6.8	Comparison of Frequency Factor for Dehydration	236
6.9	Comparison of Frequency Factor for Successive Reaction	237
7.1	Liquid Temperature-Effect of Heat of Reaction	250
7.2	Ethyl Acrylate Vapor Condensate-Effect of Heat of Reaction	2.59
7.3	Total Vapor Molal Condensate-Effect of heat of Reaction	261
7.4	Liquid Temperature-Effect of Overail Heat Transfer Coefficient	262
7.5	Liquid Temperature-Effect of Overall Heat Transfer Coefficient	264
$7 \cdot 6$	Ethyl Acrylate Vapor Holal Condensate-Effect of Overall Heat Transfer Coefficient	266
7.7	Total Vapor Condensate-Effect of Overall Heat Transfer Coefficient	267
7.8	Liquid Temperature-Effect of initial and Surroundine Temperature	269
7.9	Ethyl Acrylate Vapor Condensate-Effect of Initial and Surrounding Temperature	270
7.10	motal Vapor Molal Condensate-Effect of initia and Surrounding Temperature	272

rigure Page
7.11 Liquid Temperature - Effect of Feed Rate 273
7.12 Ethyl Acrylate Vapor Molal Condensate - Effect of Feed Rate 275
7.13 Total Vapor Molal Condensate - Effect of Feed Rate 277
7.14 Liquid Temperature - Effect of Feed Vapor Fraction 278
7.15 Ethyl Acrylate Vapor Molal. Condensate - Effect of Feed Vapor Fraction 280
7.16 Total Vapor Molal Condensate - Effect of Feed Vapor Fraction 281
7.17 Comparison of Theoretical Model and Experimental Results -Vapor Molal Condensate, Run 1 284
7.18 Comparison of Theoretical Model and Experimentil Results - Vapor Molal Condensate, Run 2 255
7.19 Comparison of Theoretical Model and ExperimentalResults - Vapor Molal Condensate, Run 3280
7.20 Comparison of Theoretical Model and Experimentel Results - Vapor Molal Condensate, Run 4 287
7.21 Comparison of Theoretical Model and Experimental Results -Vapor Molal Condensate, Run 5 288
7.22 Comparison of Theoretical Model and ExperimentalResults - Vapor Molal Condensate, Run 6289
7.23 Comparison of Theoretical Model and Experimental. Results - Vapor Molal Condensate, Run 7 290
7.24 Comparison of Theoretical Model and Experimental Results - Vapor Miolal Condensate, Run 8 291
7.25 Comparison of Theoretisal Model and Experimental Results - Vapor Molal Condensate, Run 9 292
7. 26 Comparison of Theoretical Model and Experimental Results - Liquid Temperature, Run 1 to Run 3294
7.27 Comparison of Theoretical Model and Experimental Results - Liquid Temperature, Run 4 to Run 6 295
7.28 Comparison of Theoretical Model and ExperimentalResults - Liquid Temperature, Run 7 to Run 9256
7.29 Comparison of Theoretical Model and Experimental Results - Liquid Mole Fractions, Run 7 300
7.30 Comparison of Theoretical Model and Experimental Results - Liquid Mole Fractions, Run 9 301
B. 1 Calibration Curve for Helium Flow Rate 360
B. 2 Calibration Curve for the Flow Rate of $86 \mathrm{Wt} \%$ byWeight Aqueous Ethyl Alcohol Solution 361B. 3 Calibration Curve for Weight Ratios of Vola-tile Components to 1-Propanol in the CasChromatography362
B. 4 Interelations among Volume of Liquid Holdup, Inside Wall Surface Area, Liquid Height on the Reaction-Distillation Tray 363
B. 5 Calibration Curves for Vapor Weight Fraction in Feed Stream as a Function of Feed Rate 364

Chapter 1 Introduction

Most chemical processes involve two majur operations, namely chemical reaction and componenc separation. Distillation is one of the most widely used unit operations for separating components of a mixture. Distilzation can be carried out under steady-state conditions or under unsteady-state conditions. Furthermore, a chemical reaction may or may not accompany distillation. The combination of these operational modes yields the following four categories of distillation operations
(1) Steady-State Distillation without Chemical Peaction
(2) Unsteady-State Distillation without Clemical Rem action
(3) Steady-State Distillation with Shemioel Reaction
(4) Unsteady-State Distillation with Chemical Reaction

The operation belonging to the first category has been almost thoroughly investigated anc the chemical enginearing literature is full of articles on this subject. The second eategory, the uncteadymstate distillation without chemical reaction, has become the subject of many investigations during tine last tiwo decedes. The availability of modem electronic somputecs as the tools for Gtudying the unsteady-state behavion has certainly con-
tributed to the advance in this field. The nost comprehensive treatinent of unsteady-state distililation without chemicsl reaction is provided by Holland (36).

Comparing with the first and second categories, the technical papers on the subjocts belonging to the third and fourth categories are so few that they can be counted on the fingers cf both hands. Experimental investigation of unsteady-state distillation accompanied by chemical reaction started from a series of batch distillation experiments in a distillation colum performed by Backhaus ir 1921 for esterification of ethy: alcohol and acetic acid. Since the theoretical analysis cf an unsteady-state distilation accompanied by chemical reaction, i. e., Category Four, is so difficult that Othmer in 1043 shifted to a series of experimental investigations on steady-state reaction distillation systems, i. e., Category Three (3,4,17,18,28,19). However, a theoretical model for a steady-state reactiondistillation column to treat the experimental results such as obtained by Othmer was not developad until Warek (45) in 1954 presented a NcCabe-Thiele graphical method to study the efrect of chemival reaction on distillation.

A theoretical model for the unsteady-state distil-

Lation accompanied by chemical reaction, i. e., Category Four, nas not been reported in the literature. Therefore, the purpose of thin study is to develop such a mathematical model and also to obtain experimental data which will then be used to demonstrate the application of the theoretical model proposed. It is hoped that this work serves as the first attempt to remove the last unknown, represented by Category Four, in the total system of distillation operations. Since the system to be treated is very complex, this first theoretical and experimental study deals with a distillation column of a single perfect tray. This approach enables a better understanding of. the fundamental concepts and at the same time provides building blocks for a more complicated colum of multiple distillation trays.

Nathematically, methods for solving a steady-state reaction-distillation system, Category Three, are much simpler than those for solving an unsteady-state distillation system, Category two. However, thermodynamics, reaction kinetics and mass transfer problens involved in a system of Category Three are much more complicated. Two different types of reaction are usually associated in the reaction-distillation systems treated in the literatuce. One of them is the nonpolar hydrocarbon system represented nj the work of Grayson and Streed in hydro-
cracking gas oil (25) and the work of Saito in alkylating meta-para xylene complex with an aluminum chloride catalyst (56). The other is the polar system typically represented by esterifications between alcohols and carboxylic acids.

It is rather astonishing that a close examination on all these known reaction-distillation systems including the most recent work of Babcock (3), reveals no fundamental concepts in describing the effects of chemical reaction on thermoaynamic vapor-liquid equilibria, nor the effect of mass transfer on chemical reaction rate expressions.

According to Hougen, Watson and Ragatz (37), lack of ideal-solution behavior is attributed to chemical reaction and to differences in molecular size and polarity among the different components present. Therefore, the liquid activity coefficients with the effects of chemical reaction should be different fron those without the effects of chemical reaction. However, Davies and Jeffreys (11) correlated a set of van Laar constants for liquid activity coefficient from "physical" vaporliquid equilibrium data and then applied them into a systam with chemical reaction, where the reaction can only occur at the presence of a catalyst (12). The tern. "physical" is used to indicate that the equili-
brium data are measured without the effects of chemical reaction. Therefore, the term "chemical" can be used to represent the vapor-liquid equilibrium data measured with the effects of chemical reaction as well as to distinguish it from the above-mentioned "physical" vapor-liquid equilibrium data. The approach made by these researchers is then not appropriate.

A correlation or "chemical" vapor-liquid equilbrium data has been attempted by Hirata and Komatsu ($32,33,34$) for esterification between alcohols and carboxylic acids. However, the effects of chemical reaction on vapor-liquid equilibrium data were not mentioned. Grayson and Streed (25) correlated the vapor-liquid equilibria of the reaction products of hydrocracking gas.oil, but they treated them only from the point of view of "physical" vapor-liquid equilibria. However, since their data for the correlation were obtained from "chemical" vapor-liquid equiiibrium, their correlation nay be properly reapplied to similar reaction systems. Their correlation may be used with care for a hydrocracking system which differs greatly from the system used by Grayson and Streed, for example, coal liquefaction systems. Different reaction systems exert different reaction effects on vapor-liquid equilibrium data.

The Grayson and Streed correlation has exactly the same framework as that used by the well known Chao and Seader (9) correlation, which is based on "physical" vapor-liquid equilibrium data. Therefore, a comparison between the two correlations may provide some useful information about the chemical effects. In order to gain a better understanding of the reaction effects on vapor-liquid equilibrium, a reaction-distillation system of esterification between acrylamide sulfate and ethyl alcohol is experimentally investigated in this work.

The major difference between this reaction system and the previously investigated esterification systems is that this has a much larger heat of reaction. It is selected in this work because it is anticipated that a large heat of reaction may promote the evaporation of immediately produced volatile compounds, and thus may provide some useful information about the reaction effects on vapor-liquid equilibrium. Correlations will also be made on the "chemical" vapor-liquid equilibrium data which are experimentally obtained in this study. The data and correlations should be new additions to chemical engineering literature.

The effects of mass transfer and reaction kinetics on the distillation with chemical reaction has been
completely ignored by previous authors. Therefore, some fundamental concepts about interface rass transfer with chemical reaction will be incorporated into the theoretical model. The application of Hatta's film theory $(28,29,30,31)$ will be extended to the absorption of reactants as well as the evaporation of volatile products. Since the interface properties such as interface concentration, film thickness, interface area, etc., can not be measured directly, these effects will be correlated as a function of operating parameters.

It is found that Holland's recommended methods for solving Category Two problems are not suitable for solving an unsteady-state distillation problem with chemical reaction. New techniques are therefore developed in this study. Holland's techniques require three to four initially guessed values for obtaining convergent solutions fur the bubble point (or the dew point) and the outlet vapor flow rate. The techniques developed by this study, however, require only one initially guessed vailue to cbtain all the convergent solutions.

Therortical solutions with respect to different system variables for the mathematical model of a semibatch distillation accompanied by chemical reaction will be attempted first. Their qualitative characteristics
are analyzed. A good quantitative evaluation of the theoretical model can be made only if all the values of system parameters are accurately obtained from existing experimental data, or predicted from reliable correlation methods. Approaches for getting all the required data for a complicated reaction system such as the one used in this study, are presented and discussed. Finally, the applicability of the proposed theoretical model is tested with the experimental data obtained in this study.

Chapter 2 Literature Survey in the Related Fields

As mentioned in the previous chapter, this study is the first attempt at developing the mathematical model of unsteady-state distillation accompanied by chemical reaction (Category Four), there is no direct reference nor previous work in the literature which is related to this subject.

However, the proposed study requires knowledges in the following three major fields:

1. Vapor-liquid equilibria in presence of chemical reaction
2. Effects of mass transfer on reaction rate and vice versas
3. Mathematical methods for solving the problems of unsteady-state distillation.

Therefore, the literature survey has been made for the above three fields. Since the second item shown above will be presented in details later in Chapter 4, only literature on the other two items will be discussed in this chapter.
2.1 Vapor-Liquid Equilibria Accompanied by Chemical
Reactions

The "chemical" vapor-liquid equilibria is that measured in the presence of chemical reaction. The conventional "physical" vapor-liquid equilibria does not involve any chemical reaction between components of the mixture.

There are onily two types of correlations reported in the literature for "chemical" vepor-liquid equilibrium data. The first is represented by the Grayson and Streed correlation (25) which is developed for the vapor-liquid equilibrium data of hydrocracking heavy gas oil. The second type is represented by the Hirata and Komatsu correlation (32) which is based on the aata of esterjfication between ethyl alcohol and acetic acid. The methods of correlations betweeir the two systems are different because the Grayson-Streed correlation is for nomplar hydrocarbon systems while the Hirata and Konatsu's correlation is for polar organic compounds. However, both methods have a similar basis in correlation of vapor-liquid equilibrium data, i.e., the correlation was made from multicomponent vapor-liquid equilibrium data experimentally obtained.

It is well known that a conventional correlation for "physical" vapor-liquid equilibrium data of a muiticomponent system starts with the constituent binary systems and then applies appropriate mixing rules and
interaction parameters to combine these binary systems to a multicomponent system. For a system in the presence of chemical reaction, binary vapor-liquid equilibrium data for the two reactants can not be obtained because as soon as two reactants are mixed, the reaction products . will immediately appear in the system. As reaction progresses, the molal quantity of a reactant changes from time to time if it is a batch process. For a continuous steady-state process a residence time of a reactant changes. These situations are different from "physical" vaporliquid equilibrium, where combination of vapor and liquid molal quantities of a component is always equal to its original molal quantity.

In order to demonstrate the difference between the "physjeal" vapor-liquid equilibria and the "chemical" vapor-liquid equilibria, and the difference between the above two types of "chemical" vapor-Iiquia equilibria, the work of Grayson and Streed and that of Hirata and Komatsu are discussed briefly as follows.
2.1.1 Vapor-Liquid Equilibria Accompanied by Chemical Reaction for Nonpolar Hydrocarbon Systems

Grayson and Streed employed a steady-state continuous flow scheme to obtain vapor-liquid equilibrium data of
the heavy gas oil hydrocracking system. According to Grayson and Streed, the hydrocracking conditions must be at temperatures above $600^{\circ} \mathrm{F}$ and presure above 1000 psia (25). Although their equilibrium data are obtained in the presence of chemical reactions, they treated them as "physical" vapor-liquid equilibrium data by utilizing the framework of the well known Chao and Seader correlation (9). The Chao and Seader correlation is developed from the vapor-liquid equilibrium data of hydrogen and pure hydrocarbons. However: the hydrocarbon mixtures used by Grayson and Streed are the products obtained from hydrocracking heavy gas oil at different reaction conversions. Since the two correlations have the same framework, the difference between the two correlations may provide useful information on the effects of chenical reactions on the vapor-liquid equilibrium. Before comparing for the difference between the two correlations, it is necessary to present briefly the correlation methods employed by the above researchers.

Under the framework of Chao and Seader, or Grayson. and Streed, the vapor-liquid equilibrium ratio, herein defined as equilibrium K-value for convenience, is calculated through a combination of three factors:

$$
\begin{equation*}
K=y / x=\frac{\nu_{i}^{0} \gamma_{i}}{\phi_{i}} \tag{2-1}
\end{equation*}
$$

where

$$
\begin{aligned}
\nu_{i}^{0}= & \text { fugacity coefficient of component } i \text { in the } \\
& \text { liquid phase } \\
\gamma_{i}= & \text { activity coefficient of component } i \text { in the } \\
& \text { liquid phase } \\
\phi_{i}= & \text { vapor fugacity coefficient of component } i \\
& \text { in the vapor mixture. }
\end{aligned}
$$

The quantity ν_{i}^{0} is a well-defined thermodyramic property under conditions where the component actually exists as a liquid. At conditions where the componert cannot exist as a pure liquid but is dissolved in the Iiquid phase of a system, the quantity ν_{i}^{0} becomes hym pothetical. This hypothetical region exists when the system temperature is above the critical tenperature of the component or when the system pressure is below the vapor pressure of the component. A Iiquid fugacity coefficient correlation for this hypothetical regior in addition to the existing subcritical region was first developed by Chao and Seader from experimental "physical" vapor-liquid equilibrium data at moderate temperatures, i.e.. the reduced temperatures of from 0.5 to 1.3 or temperatures from $-100^{\circ} \mathrm{F}$ to $500{ }^{\circ} \mathrm{F}$ as cited in their paper (9). Their correlations give an average error of 8.7% for 2696 data points.

Grayson and Streed employed the same correlation
methods to correlate their high temperature "chemical" vapor-liquid equilibrium data in addition to the Chao and Seader's low temperature data. The average error of their correlation is 7.0%.

Determination of the liquid fugacity coefficient involves solving Equation (2-1) in the form:

$$
\begin{equation*}
\nu_{i}^{0}=\frac{K_{i} \phi_{i}}{\tau_{i}} \tag{2-1a}
\end{equation*}
$$

As mentioned previously, K_{i} are experimental data, so ν_{i}^{o} can be calculated only when ϕ_{i} and γ_{i} can be detera mined by other methods. The above authors computed ϕ_{i} from the Redlich-Kwong correlation (54) and γ_{i} from the Hildebrand correlation (37). The Redich-Kwong equation requires only two constants for each component. They are critical temperature, $\mathbb{T}_{c_{i}}$ and critical preasure, $P_{c_{i}}$. Any two-constant equation of state cannot be expected to yield great accuracy. Therefore, usage of the Chao and Seader correlation is limited to the following conaitions:

Pressures: up to 2000 psia

Temperatures:

Hydrogen and Methane: -100 to $500{ }^{\circ} \mathrm{F}$

$$
\left.\begin{array}{l}
\text { All hydrocarbons } \\
\text { except methane }
\end{array}\right\}: T_{r}=0.5 \text { to } 1.3
$$

Hildebrand correlation for liquid activity coefficient
is derived from the regular solution theory (37). According to the regular solution theory, the a气tivity coefficient of component i in a multicomponent mixture is given by $\quad \ln N_{i}=v_{i}\left(\delta_{i}-\bar{\delta}\right)^{2 / R T}$
where v_{i} is the liquid molar volume, δ_{i} is the solubility parameter (the square root of the cohesive energy density), and $\bar{\delta}$ is the volume-fraction average solubility parameter for the solution.

Since regular solutions are characterized by the absence of any specific physical interactions between molecules, the theory should apply only to solutions of nonionic, nonpolar, or slightly polar molecules. According to Hougen, Watson and Ragatz(37), liquid activity coefficient is affected by molecuiar size and polarity as well as chemical reaction. Therefore, this theory does not apply to a system which involves any chemical interactions in producing new molecules from reactant molecules. Simply using the regular solution theory to estimate liquid activity coefficient for the reaction system of hydrocracking of heavy gas oil does not take into the account of the effects of chemical reaction on liquid activity coefficient. However, the calcuiated liquid fugacity coefficient, μ_{i}^{0} using the GraysonStreed "chemical." vapor-liquid equilioriun data and Equation (2-1a) includes the effects of chemical reaction. After the liquid fugacity coefficients ν_{i}^{0} are calculated
from Equation (2-1a) based on the experimental data, they are then correlated within the frame work of Pitzer's modified form of the principle of corresponding states. Accordingly, ν_{i}^{0} is given by

$$
\begin{equation*}
\log \nu_{i}^{0}=\log \nu_{i}^{(0)}+\omega \log \nu_{j}^{(1)} \tag{2-5}
\end{equation*}
$$

The first term on the right-hand side gives the fugacity coefficient of simple fluids characterized by a zero value of the acentric factor. The second term accounts for departure of properties of real filuids from those of the simple fluids.

The two quantities $\nu_{i}^{(0)}$ and $\nu_{i}^{(1)}$ are dependent only on reduced temperature and reduced pressure. They are fitted with approximating functions. The quanticy $\nu_{i}^{(0)}$ is given by

$$
\begin{align*}
\log \gamma_{i}^{(0)}= & A_{0}+A_{1} / I_{r}+A_{2} T_{r}+A_{3} T_{r}^{2}+A_{4} T_{r}^{3}+\left(A_{5}+\right. \\
& \left.A_{6} T_{r}+A_{7} T_{r}^{2}\right) P_{r}+\left(A_{8}+A_{9} T_{r}\right) P_{r}-\log P_{r} \tag{2-6}
\end{align*}
$$

where A_{0} through A_{9} are empirically fitted constants. The quantity $\nu_{i}^{(1)}$ is given by

$$
\begin{gather*}
\log V_{i}^{(1)}=-4.23898+8.65808 T_{r}-1.2206 / T_{r}-3.15224 \\
T_{r}^{3}-0.025\left(P_{r}-0.06\right) \tag{2-7}
\end{gather*}
$$

The coefficients in Equation (2-6) for the Chao and Seader correlation are different from those for the Grayson and Streed correlation, while Equation (2-7) is applicable to both correlations except that T_{r}
must be set equal to unity whenever it exceeds one for the Grayson and Streed correlation. The constants for Equation (2-6) for the two correlations are given in Appendix A.11.

The "chemical" vapor-liquid equilibrium data by Grayson and Streed were obtained at temperatures greater than the upper temperature limits of the Chao-Seader correlation, and at pressures from 1000 psia to 3000 psia. The suitable checining points to compare the two correlations are then at temperatures close to $500{ }^{\circ} \mathrm{F}$ or the reduced temperature of 1.3, and at pressures between 1000 psia and 2000 psia. As the two correlationa for C_{2+} hydrocarbons are gencralized functions, a properly selected compound can be used to represent the general behavier of the two correlations. It is found that isobutane is an appropriate compound because at $500^{\circ} \mathrm{F}$, it has a reduced temperature very close to 1.3.

For hydrogen and methane, both correlations are obtained on the basis that the acentric factors for the two components are equal to zero. Each of the two components has its individual constants for Equation (2-6). Thus, the comparisons are made for the three compounds, namely hydrogen, methane and isobutane.

Table 2.1 lists the comparison between the two
correlations for the liquid fugacity coefficients, \mathcal{V}_{i}^{0} of hydrogen, methane and isobutane at $500{ }^{\circ} \mathrm{F}$.

Table 2.1 Comparison of Licuid Fugacities determined by (C-S) Correlation and the Grayson Streed Correlation for ψ_{i}° at $500{ }^{\circ} \mathrm{F}$ for Hydrogen, Methane and Isobutane

	at 1000 psia			at 2000 psia			
	C-S	G-S	\% Dev.	C-S.	G-S	$\%$	Dev.
Hydrogen	4.3	5.0	16	2.5	2.8	12	
Methane	3.05	5.0	64	1.51	2.75	80	
Isobutane	0.626	1.02	63	0.265	0.68	157	

Small deviation between the two correlations is observec. for hydrogen. However, for methane and isobutane, the Grayson-Streed correlation gives much higher liquid fu. gacity coefficients than those by the Chao-Seader corre.lation. For an even clearer illustration of these discrepancies, the liquid fugacity coefficients for methane at 1000 psia and 2000 psia are plotted as a function of temperature and shown in Fig. 2.1.

As mentioned previously, the Grayson-Streed correlation is obtained on the basis of both their own high tomperature data and the Chao and Seader low temperature data. Therefore, it is natural that the two correlations

Fig. 2.1 Comparison of V_{i}^{0} for Methane between Chao-Seader Correlation and GraysonStreed Correlation
have good agreements at low temperature. However, at, higher temperatures near the upper limit of the ChaoSeader correlation, ν_{i}^{o} calculated by Grayson and Streed correlation is appreciably higher than that obtained by the Chao-Seader correlation, implying a positive effect of chemical reaction on the vapor-liquid equilibrium K-values for methane. Further discussion on this positive effect of chemical reaction on the vapor-liquid equilibrium K-values will be presented later in Chapter 6 along with the experimental results obtained by this work.

2.1.2 Vapor--Liquid Equilibria Accompanied by Chemical Reaction for Polar System

The other available correlation for "chemical" vapor-liquid equilibria was reported by Hirata ard Konatsu (32) in 1966 for the following esterification reaction between ethyl alcohol and acetic acid:

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} \tag{2-8}
\end{equation*}
$$

Their experiments were performed in an Othmer Still at atmospheric pressure. Thus, their system is a batch process. Like the conventional measurement for "physical" vapor-liquid equilibrium data, a vapor sample is obtained as condensate by using a small overhead condenser while the liquid sample is directly obtained from the liquid
holdup. When a vapor sample is not taken, the vapor condensate is returned to the liquid holdup as a reflus stream.

This technique is good for measurement of "physical" vapor-liquid equilibrium data because of the continuous refluxing which enables both the liquid and vapor compositions to reach at their steady-state values as well as to be in equilibrium. However, for obtaining "chemical" vapor-liquid equilibrium data, this technique requires a special attention because the liquid compcsition changes continuously until chemical equilibrium is reached. The vapor sample in the condensate trap is actually in equili. brim with the liquid mixture of sometime ago when the condensed vapor just left the liquid surface. In other words, there is a time lag between vapor sampling and liquid sampling. If the heat flux of the Othmer Still is snall, the vapor flow rate will be small which induces a large time lag between the vapor sample and the liquid sample obtained. This time-inconsistent-vapor and liquid samples will, of course, give erroneus results. In general, the faster the reaction or the smaller the vapor flow rate. the greater the effects of the time lag. Since the heat flux to their Othmer Still was not given, and since consideration of reaction kinetics was not made in their paper, it is impossible to cheek the effect of time lag on their vapor-liquid equilibrium data.

In a batch "chemical" vapor-liquid equilibriun system, the liquid composition changes continuously as the reaction proceeds. Thus, the bubble point of the liquid mixture also varies as a function of time at isobaric operation. The instantaneous reaction rate of the system depends not only on the concentrations of reactants but also on the temperature. A conventional batch measurement of reaction rate in the liquid phase can be made isothermally at a subcooled temperature. At a subcooled temperature, an isothermal condition may be nechanically controlled by adding heat into or removirag heat from the system. However, in a "chemical" vaporliquid equilibrium system, temperature varies as the composition is changed by chemical reaction. Thermal control over a boiling reaction system can change the vapor flow rate but can not adjust the liquid composition to reach the exactly desired bubble point of a batch inixture.

In correlating their "chemical" vapor-liquid equilibrium data, Hirata and Komatsu did not use standard thermodynamic procedures such as the van Laar Equation, the Margules equation, etc., for liquid activity coefficient for polar organic compourds. Instead, for the least volatile component, acetic acid, they correlate its K-value as a linear function of the bubble point:

$$
\begin{align*}
& K_{1}=0.0225 t-1.666, \quad t>74^{\circ} \mathrm{C} \\
& K_{1}=0.001, \quad t \leq 74^{\circ} \mathrm{C} \tag{2-9}
\end{align*}
$$

where t is the bubble point in ${ }^{\circ} \mathrm{C}$. The above equation implies that the K-value of acetic acid is not sensitive to the variation in the liquid composition.

For the other three volatile components, ethyl alcohol, water and ethyl acetate, their K-values are experimentally proven to be dependent on both temperature and liquid composition in a peculiar way.

The measured instantaneous "chemical" vapor-liquid equilibrium K-values for the three volatile components are all linearly proportional to the reciprocal of the absolute temperature of the instantaneously measured liquid bubble point. The initial composition of a mixture must satisfy the hypothetical zero conversion which means that at least one product, water or ethyl acetate, should not be present initially. Moreover, their results show that slopes for the these linear equations are same not only for all zero hypothetical conversions but also for all three volatile components. The correlating equation for the K-values of ethyl alcohol, water and ethyl acetate can then be given as follows:

$$
\begin{equation*}
\log K_{i}=-\frac{2300}{T}+B_{i} \tag{2-10}
\end{equation*}
$$

where B_{i} is only a function of the initial composition of a
volatile component. For example, for a mixture of which the initial liquid composition is:
$x_{1}($ acetic acid $)=0.49$
$x_{2}($ ethyl alcohol $)=0.44$
x_{3} (water) $=0.07$
$x_{4}($ ethyl acetate $)=0$.
the corresponding B_{i} 's are

$$
\begin{aligned}
& B_{2}=6.492 \\
& B_{3}=6.438 \\
& B_{4}=6.704
\end{aligned}
$$

Each calculated B_{i} is then plotted as a function of liquid mole fraction. : For example, B_{2} is plotted as a function of x_{2} for each constant x_{4} for all the experimental runs with $x_{3}=0$. Such plots can be seen very arbitrary because \bar{B}_{2} can also be piotted as a function of any combinations of x_{1}, x_{2}, x_{3} and x_{4}. Furthermore, to convert such a graphical representation into a computer progran, requires tedious curve fittings and. interpolations between any two constant $x_{i}{ }^{\circ} s$. There. fore, the correlation used by these authours for $\mathrm{K}_{2}, \mathrm{~K}_{3}$ and K_{4} are impractical for computer application.

In this study, the reaction system is also composed of polar compounds . However, a different method based on the standard thermodynamic procedures will be used to
correlate the vapor-liquid equilibrim data. The details are discussed in Chapte: t.

2.2 Unsteady-State Distillation

The beginning of the quantitative analysis of the unsteady-state operation of a distinlation column was marked by the work of Marshall and Pigford in 1947 (47), who formulated the differential equations that describe the transient behavior of a plate of a distillation column. These authors demonstrated the use of Laplace transforms for solving various types of distillation problems. The following simplifying assumptions were made in order to obtain analytical solutions.
(1) linear vapor-liquid equilibrium relationship of the form $y=m x+b$, where m and b depend only upon the identity of a compenent
(2) total liquid and vapor flow rates are independent, of time
(3) liquid holdup on a tray is independent of time
(4) vapor holdup is negligible
(5) a complete liquid mixing on a tray
(6) a binary system

In 1950, Lapidus and Amindson (40) extended the method of Marshall and Pigiord to obtain transient response of an absorber. A single volatile component was
transferred between two inert phases. The carrier liquid phase was taken to be nonvolatile and the carrier gas was taken to be insoluble in the liquid phase. Also, a linear equilibrium relationship that was independent of temperature was employed. Later in 1953. Acrivos and Amundson (1) obtained solutions to this same problem by use of an analog computer. In addition to linear equilibrium relationships, they also employed norilinear equilibrium relationship for their analog computex simulation.

Since then many workers had proposed different methuds for solving various types of distillation problems, but the number of assumptions made above were not reduced until 1964 when Waggoner applied a combined scheme of the Thiele and Geddes method with Holland's θ method of convergence (59).

In Waggoner's method, any type of vapor-liquid equilibrium relationship can be used and the total molal vapor or the total liquid flow rate is not necessary to be constant. The variation of total flow rates reflects the effect of the energy balance on each tray representing a more realistic situation. However, the following simplified assumptions are still required:
(1) Constant liquid holdup
(2) Negligible vapor holdup
(3) $X_{i}=K_{i} x_{i}$ for an ideal tray

$$
Y_{i}=E_{i}^{0} K_{i} x_{i} \text { for a non-ideal tray }
$$

where $E_{i}^{0}=$ yapor tray efficiency as defined by Holland.

In 1966, Holland compiled major unsteady-state distillation problems in his texbook (36) and recommended the uses of an implicit method for integration and his $\hat{\theta}$ method for convergence. Since his method is the most general approach for solving an unsteady-state distillation problem, it is briefly reviewed here. It is noted, however, that the problems treated by him are the distillation in absence of chemical reaction.

A system of unsteady-state distillation with the above three assumptions can be illustrated by ris. 2.2.

Fig. 2.2. Holland's Model for Unsteady-State Distillation

The unsteady-state component material balance equation can be represented by Equation (2-11)

$$
\begin{gather*}
\frac{d M_{i}}{d t} \\
{\left[\begin{array}{l}
\text { Rate of } \\
\text { Accumulation } \\
\text { of Mass in } \\
\text { Liquid Holdup }
\end{array}\right]=\left[\begin{array}{l}
\text { Inlet } \\
\text { Liquid } \\
\text { Flow } \\
\text { Rate }
\end{array}\right]+\left[\begin{array}{l}
V_{i, I N}-L_{i, O U T}-V_{i, \text { OUT }}, \\
\text { vapor } \\
\text { Flow } \\
\text { Rate }
\end{array}\right]-\left[\begin{array}{l}
\text { Outlet } \\
\text { Liquid } \\
\text { Flow } \\
\text { Rate }
\end{array}\right]+\left[\begin{array}{l}
\text { Outlet } \\
\text { Vapor } \\
\text { Flow } \\
\text { Rate }
\end{array}\right] .} \\
i=1, \cdots, n \tag{2-11}
\end{gather*}
$$

where

$$
\begin{aligned}
n= & \text { number of components } \\
L_{i}= & \text { molal liquid flow rate for component } i \\
V_{i}= & \text { molal vapor flow rate for component } i \\
\mathrm{~m}_{\mathrm{i}}= & \text { molal quantity of component } i \text { in the liquid } \\
& \text { holdup }
\end{aligned}
$$

The overall material balance is written as
$\frac{d M}{d t}$
$\left[\begin{array}{l}\text { Rate of } \\ \text { Accumulation } \\ \text { of total } \\ \text { MaNs In the } \\ \text { Liquid Holdup }\end{array}\right]=\left[\begin{array}{l}\text { Total } \\ \text { Inlet } \\ \text { Liquid } \\ \text { Flow } \\ \text { Rate }\end{array}\right]+\left(\begin{array}{l}\text { Total } \\ \text { Inlet } \\ \text { Vapor } \\ \text { Flow } \\ \text { Rate }\end{array}\right]-\left(\begin{array}{l}\text { Total } \\ \text { Outlet } \\ \text { Liquid } \\ \text { Flow } \\ \text { Rate }\end{array}\right)-\left(\begin{array}{l}\text { Total } \\ \text { Outlet } \\ \text { Vapor } \\ \text { Flow } \\ \text { Rate }\end{array}\right]$
where

$$
\begin{aligned}
& L_{\text {IN }}=\text { Total liquid inlet molal flow rate } \\
& V_{\text {IN }}=\text { Total vapor inlet molal flow rate } \\
& L_{\text {OUT }}=\text { Total liquid outlet molal flow rate } \\
& V_{\text {OUT }}=T o t a l \text { vapor outlet molal flow rate } \\
& M=\sum_{i=1}^{n} M_{i}=\text { Total molal liquid holdup on the tray }
\end{aligned}
$$

In his applications, Holland assumed that the liquid holdup (either molal or volumetric) is constant. If taking constant molal holdup case as example, the term, $\mathrm{d} k / \mathrm{dt}$, is equal to zero, and Equation (2-12) is reduced to

$$
\begin{equation*}
L_{I N}+V_{I N}-L_{\text {OUT }}-V_{\text {OUT }}=0 \tag{2-13}
\end{equation*}
$$

The unsteady-state overall energy balance can be expressed by

$$
\begin{align*}
& \frac{d}{d t}\left[\mathrm{Mh}_{S}\right]=L_{I N} h_{I N}+V_{I N} h_{I N}-I_{C U T} h_{O U T} \\
& {\left[\begin{array}{l}
\text { Rate of } \\
\text { Accumulation } \\
\text { Of Energy } \\
\text { in the } \\
\text { System }
\end{array}\right]=\left[\begin{array}{l}
\text { Rate of Inlet } \\
\text { Energy } \\
\text { with } \\
\text { Inlet Iiquid } \\
\text { Flow }
\end{array}\right]+\left[\begin{array}{l}
\text { Rate of } \\
\text { Inlet } \\
\text { Energy } \\
\text { with } \\
\text { Inlet } \\
\text { Vapor } \\
\text { Flow }
\end{array}\right]-\left[\begin{array}{l}
\text { Rate of } \\
\text { Outlet } \\
\text { Energy } \\
\text { with } \\
\text { Outlet } \\
\text { Iiquid } \\
\text { Flow }
\end{array}\right]} \\
& -V_{\text {OUT }}{ }^{H_{\text {OUP }}} \quad-Q_{L} \tag{2-14}
\end{align*}
$$

$$
-\left(\begin{array}{l}
\text { Rate of Out-} \\
\text { let Energy } \\
\text { with Outlet } \\
\text { Vapor Flow }
\end{array}\right)-\left(\begin{array}{l}
\text { Rate of } \\
\text { Heat Loss } \\
\text { to the } \\
\text { Surrounding }
\end{array}\right]
$$

where:

$$
\begin{aligned}
& n_{I N}=\text { Inlet liquid enthalpy per mole } \\
& n_{\text {OUT }}=\text { Outlet liquid enthalpy per mole } \\
& H_{I N}=\text { Inlet vapor enthalpy per mole } \\
& n_{S}=\text { Enthalpy of holdup on the tray (assuming } \\
& \quad \text { negiigible vapor holdup) per mole } \\
& Q_{I}= \\
& \text { Net heat transfer rate from the system to } \\
& \quad \text { the surrounding }
\end{aligned}
$$

It is noted that no heat of solution is considered in Holland's model. No analytical methods have been available for solving an unsteady-state distillation, with variable total flow rates and exact vapor-liquid relationships. Thus, they have been solved by numerical methods.

According to Holland, the following numerical methods can be applied to solve an unsteady-state distillation problem. They may be divided into three general classes:
(1) Predictor methods
(a) Euler's method
(b) Runge- Kutta method
(2) Predictor-Corrector Method
(a) Two-points Formulas
(b) Milne's Methods
b.1. Milne's Method I (Three-point Formulas)
b.2. Milne's Method II (Five-point Formulas)
(3) Implicit and Corrector Methods
(a) Implicit Methods
(b) Corrector Methods

Detailed discussions on the above methods are given in Holland's book (36). Since this study deals with an unsteady-state distillation accompanied by chemical reaction for a single distillation tray, the following discussion will be limited to Holland's method for a single distillation tray without chemical reaction. His method will be compared later to the methods developed by this work.

Since there are no differential equations which can represent the outlet vapor rate, $V_{\text {OUT }}$, and the system temperature, T, these two quantities are solved by trial-and-error for each integration step. Holland's method employs two θ 's for such an unsteady-state distillation system. They are defined as follows.

$$
\begin{equation*}
\left(\frac{L_{i}, \text { OUT }}{V_{i, O U T}}\right)_{c o}=\theta_{-1}\left(\frac{L_{i}, \text { OUT }}{V_{i, O U T}}\right)_{c a} \tag{2-15}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{M_{i}}{V_{i, \text { OUT }}}\right)_{c o}=\theta_{0}\left(\frac{M_{i}}{V_{i, O U T}}\right)_{c a} \tag{2-16}
\end{equation*}
$$

where
() ca :calculated value
()$_{c o}:$ corrected value after multiplication of θ 's
$\theta-1$ and θ_{0} are two assumed values. Hethods of selecting these two θ 's for convergent solutions will be discussed later in this section. The formulation for the two calculated quantities, $\left(I_{i, \text { OUT }} / V_{i, \text { OUT }}\right)_{c a}$ and $\left(M_{i} / V_{i, \text { OUT }}\right)_{c a}$: showm in the above two equations is discussed first as follows.

The integrated form of Equation (2-11) can be expressed by

$$
\begin{align*}
\int_{t_{n}}^{t_{n}}+ & \Delta t \\
& \left(L_{i, I N}+v_{i, I N}-L_{i, \text { OUT }}-v_{i, \text { OUP }}\right) d t \tag{2-17}\\
& =\left.M_{i}\right|_{t_{n}}+\Delta t-\left.M_{i}\right|_{t_{n}}
\end{align*}
$$

If the integration is approximated by the implicit method, as recommended by Holland, Equation (2-17) is reduced to $L_{i, I N}+V_{i, I N}-L_{i, \text { OUT }}-V_{i, \text { OUT }}+\sigma\left(L_{i, I N}^{0}+V_{i, I N}^{0}-i_{i, \text { OUT }}^{0}\right.$ $\left.-V_{i, O U T}^{0}\right)=\frac{1}{\mu \Delta t}\left(k_{i}-M_{i}^{0}\right)$
which may be solved for v_{i}, our to give

$$
\begin{align*}
v_{i, \text { OUT }}= & \left\{L_{i, I N}+v_{i, I N}+\sigma\left(L_{i, I N}^{0}+v_{i, I N}^{0}-L_{i, \text { OUT }}^{0}\right.\right. \\
& \left.\left.-v_{i, \text { OUT }}^{0}\right)+\left(M_{i}^{0} / V_{i, O U T}\right)\right\} /\left\{1+\left(L_{i, \text { OUT }} / v_{i, \text { OUT }}\right)\right. \\
& \left.+(1 / \mu \Delta t)\left(M_{i} / v_{i, O U T}\right)\right\} \tag{2-18}
\end{align*}
$$

where

$$
\begin{aligned}
\mu & =\text { multiplier for the implicit method }(0 \leq \mu \leq 1) \\
\Delta t & =\text { size of an integration step } \\
\sigma & =(1-\mu) / \mu \\
t_{n} & =\text { time at the end of nth integration step }
\end{aligned}
$$

By the definitions, the following relationships can be established.

$$
\begin{equation*}
\frac{L_{i}, \text { OUT }}{V_{i, \text { OUT }}}=\frac{x_{i} L_{\text {OUT }}}{y_{i}{ }^{V} \text { OUT }}=\frac{L_{\text {OUT }}}{K_{i}{ }^{V} \text { OUT }} \tag{2-19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{M_{i}}{V_{i, \text { OUT }}}=\frac{x_{i} M}{y_{i} V_{\text {OUT }}}=\frac{M}{K_{i} V_{\text {OUT }}} \tag{2-20}
\end{equation*}
$$

where

$$
\begin{aligned}
x_{i} & =\text { liquid mole fraction of component } i \\
y_{i} & =\text { vapor mole fraction of component } i \\
k_{i} & =y_{i} / x_{i}=\text { vapor-liquid equilibrium ratio of con- } \\
& \text { ponent } i
\end{aligned}
$$

It is noted that only an ideal tray will be discussed here, therefore the vaporization efficiency E_{i}^{0} is set to unity. For an assumed outlet vapor flow rate, ($\left.\mathrm{V}_{\text {OUT }}\right)_{\mathrm{a}}$,
the corresponding assumed outlet liquid flow rate, ($\left.L_{\text {OUP }}\right)_{a}$, can be calculated from Equation (2-13). Substituting Equations (2-19) and (2-20), and the above two assumed values into Equation (2-18) gives the calculated outlet vapor flow rate of component i as follows:

$$
\begin{align*}
\left(V_{i, \text { OUT }}\right)_{c a}=\{ & I_{i, I N}+V_{i, I N}+\sigma\left(I_{i, I N}^{0}+V_{i, I N}^{0}\right. \\
& \left.\left.-L_{i, \text { OUT }}^{0}-V_{i, \text { OUT }}^{0}\right)+\left(M_{i}^{0} / \mu \Delta t\right)\right\} \\
& /\left\{1+\left(L_{\text {OUP }} / V_{\text {OUIP }}\right)_{a}\left(1 / K_{i}\right)+\right. \\
& \left.(1 / \mu \Delta t)\left(M / V_{\text {OUM }}\right)_{a}\left(1 / K_{i}\right)\right\} \tag{2-21}
\end{align*}
$$

The corresponding values of L_{i}, our and M_{i} can be calculated by use of the following relationships, after $\left(\mathrm{V}_{\mathrm{i}, \text { OUP }}\right)_{\text {ca }}$ has been determined.

$$
\begin{align*}
& L_{i, O U T}=V_{i, O U T}{ }^{A} i \tag{2-22}\\
& M_{i}=\left(M / I_{\text {OUT }}\right) I_{i, \text { OUT }} \tag{2-23}
\end{align*}
$$

where

$$
\begin{equation*}
A_{i}=I_{\text {OUT }} / K_{i}=\text { absorption factor } \tag{2-24}
\end{equation*}
$$

The above calculated values can now be used to determine the two corrected molal ratios, $\left(L_{i, \text { OUT }} / V_{i, O U T}\right)_{c o}$ and $\left(M_{i} / N_{i, \text { OUT }}\right)_{c o}$, by Equations $(2-15)$ and $(2-16)$. If these two molal ratios are substituted into Equation (2-18), a corresponaing corrected outlet vapor flow rate, $\left(v_{i}, \text { oux }\right)_{c o}$ can be calculateà. If Equations $(2-15)$ and
(2-16) are substituted into Equation (2-18), the corrected value, $\left(\mathrm{V}_{\mathrm{i}, \text { our }}\right)_{\text {co' }}$ can then be directly expressed as a function of all the calculated values determined from Equations (2-21) through (2-24) as follows.

$$
\begin{align*}
\left(v_{i, \text { OUT }}\right)_{C O}= & \left\{I_{i, \text { IN }}+v_{i, \text { IN }}+\sigma\left(I_{i, I N}^{0}+v_{i, \text { IN }}^{0}-I_{i, \text { OUT }}^{0}\right.\right. \\
& \left.\left.-v_{i, \text { OUT }}^{o}\right)+\left(M_{i}^{0} / \mu \Delta t\right)\right\} /\{1+ \\
& \theta_{-1}\left(L_{i, \text { OUP }} / v_{i, \text { OUP }}\right)_{C a}+\theta_{0}(1 / \mu \Delta t)(\\
& \left.\left.M_{i} / v_{i, \text { OUT }}\right)\right\} \tag{2-25}
\end{align*}
$$

Again, the corrected $L_{i, O U T}$ and M_{i} can be determined from Equations (2-22) and (2-23). These corrected valuess $\left(\mathrm{V}_{\mathrm{i}, \text { OUT }}\right)_{c o},\left(\mathrm{I}_{\mathrm{i}, \text { OUT }}\right)_{c o}$ and $\left(\mathrm{M}_{\mathrm{i}}\right)_{c o}$ can be considered as convergent solutions if and only if they can satisfy the criteria for a specified set of operating conditions. If the operating pressure is assumed to be constant throughout an unsteady-state operation, the criterion for a convergent solution is established on the basis of temperature requirement. The criterion can be an isothermal or a nonisothermal operation.

a. Isothermal Distillation Tray

There are two \mathbf{B}^{\prime} 's to be determined. Therefore, two criteria are required for testing convergent solutions. For an isothermal distillation tray, the first
criterion is that the vapor leaves at its dew point, which is constant throughout an unsteady-state operation. Mathematically, this criterion can be represented by

$$
\begin{equation*}
\frac{\sum_{i=1}^{n}\left(V_{i, \text { OUT }}\right)_{c o} / K_{i}}{\sum_{i=1}^{n}\left(V_{i, \text { OUT }}\right)_{c o}}=1 \tag{2-26}
\end{equation*}
$$

The second criterion is that the summation of all the corrected molal quantities of individual component in the liquid hold-up must be equal to the specified constant total holdup:

$$
\begin{equation*}
\sum_{i=1}^{n}\left(M_{i}\right)_{c o}=M \tag{2-27}
\end{equation*}
$$

Define the difference between both sides of Equation $(2-26) \mathrm{ss}$

$$
\begin{equation*}
g_{-1}\left(\theta_{-1}, \theta_{0}\right)=\sum_{i=1}^{n}\left(V_{i, \text { OUT }}\right)_{c o}\left[1-\frac{1}{k_{i}}\right) \tag{2-28}
\end{equation*}
$$

and that of Equation (2-27) as

$$
\begin{equation*}
g_{0}\left(\theta_{-1}, \quad \theta_{0}\right)=\sum_{i=1}^{n}\left(M_{i}\right)_{c o}-M \tag{2-29}
\end{equation*}
$$

The two θ^{\prime} 's having convergent solutions are then the values which can satisfy $g_{-1}=g_{0}=0$, simultaneously. The values of θ_{-1} and θ_{0} are found by use of the NewtonRaphson Method. In this method, the following equations are solved repeatedly for θ_{-1} and θ_{0} until a set of values for θ_{-1} and θ_{0} of the dersired accuracy is ubtained.

$$
\begin{equation*}
g_{-1}+\frac{\partial \sigma_{-1}}{\partial \theta_{-1}} \Delta \theta_{-1}+\frac{g_{-1}}{\partial \theta_{0}} \Delta \theta_{0}=0 \tag{2-30}
\end{equation*}
$$

$$
\begin{equation*}
g_{0}+\frac{\partial g_{0}}{\partial \theta_{-1}} \Delta \theta_{-1}+\frac{\partial g_{0}}{\partial \theta_{0}} \Delta \theta_{0}=0 \tag{2-31}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Delta \theta_{-1}=\theta_{-1, z+1}-\theta_{-1, z} \text { and } z \text { denotes the trial number, } \\
& \text { and }
\end{aligned}
$$

$$
\Delta \theta_{0}=\theta_{0, z+1}-\theta_{0, z}
$$

To initiate the calculational procedure, three values must be assumed by utilizing Holland.'s method. They are $V_{O U 1}: \theta_{-1}$ and θ_{0}. For every assumed value of $V_{\text {OUT }}$, there is a corresponding value of $L_{\text {OUT }}$ found by Equation (2-13) to give ($\left.\mathrm{I}_{\text {OUT }} / V_{\text {OUT }}\right)_{a}$. Then, the scoresponging values of (L_{i}, OUT $/ V_{i, \text { OUT }}$) $c a$ and ($\left.h_{i} / V_{i, \text { OUT }}\right)_{c a}$ are found by use of Equations (2-15) and (2-17). These quantities are held fixed at these values throughout the succession of trials required to find the 0 's for the given time period. Let $\theta_{-1, z}$ and $\theta_{0, z}$ be the two θ 's at the iteration number equal to z , The functions g_{-1} and g_{0} and their derivatives are then evaluated at this iteration step. The partial derivatives may be evaluated at the assumed $\operatorname{set}\left(\theta_{-1, z}, \theta_{0, z}\right)$ by use of analytical expressions for these quantities. For example,

$$
\begin{aligned}
\frac{\partial g_{-1}}{\partial \theta-1}= & -\sum_{i=1}^{n}\left\{(L _ { i , O U T } / v _ { i , O U T }) _ { c a } \left[L_{i, I N}+v_{i, I N}+\sigma\left(L_{i, I N}^{0}\right.\right.\right. \\
& \left.\left.\left.+v_{i, I N}^{o}-v_{i, \text { OUT }}^{o}-L_{i, O U T}^{0}\right)+\left(M_{i}^{0} / u \Delta t\right)\right]\right\} /
\end{aligned}
$$

$$
\begin{equation*}
\left\{1+\theta_{-1}\left(L_{i, \text { OUT }} / v_{i, \text { OUT }}\right)_{c a}+\theta_{0}\left[(1 / \mu \Delta t)\left(M_{i} / v_{i, \text { OUT }}\right)_{c a}\right]\right\} \tag{2-32}
\end{equation*}
$$

After θ_{-1} and θ_{0} have been determined, the θ 's to be assumed for the next trial are given by

$$
\begin{align*}
& \theta_{-1, z+1}=\theta_{-1, z}+\Delta \theta_{-1} \tag{2-33}\\
& \theta_{0, z+1}=\theta_{0, z}+\Delta \theta_{0} \tag{2-34}
\end{align*}
$$

The above procedures are repeated until $\left|g_{-1}\right|$ and $\left|g_{0}\right|$ are both less than allowable error limits.: The finally corrected values of V_{i}, oUT,I_{i}, our and f_{i} are then the convergent solutions for this integration step. These convergent solutions become the initial conditions of the next integration step. Solutions for the next integration step can be obtained by following exactly the same trial-and-error procedures stated above.

The solution for an unsteady-state isothermal distillation has been discussed as above. Now, let's discuss the case for a nonisothermal distillation tray.

b. Nonisothermal Distillation Tray

For a nonisothermal distillation tray two criteria are also required for convergent solution because the same two θ 's are unknowns. One of the two criteria is the same as Equation (2-23) and repeated as follows:

$$
\begin{equation*}
g_{0}\left(\theta_{-1}, \theta_{0}\right)=\sum_{i=1}^{n}\left(m_{i}\right)_{c o}-N \tag{2-23}
\end{equation*}
$$

The other must be setup from the eriergy balance, Equation (2-14), because temperature is an unknown. In an integrated tion form, Equation (2-14) can be expressed as

$$
\begin{aligned}
& \int_{t_{n}^{*}}^{t_{n}+\Delta t}\left(L_{I N} h_{I N}+v_{I N}{ }^{H} I N-L_{\text {OUT }} h_{\text {CUT }}-V_{\text {OUP }}{ }^{H_{\text {OUY }}}-Q_{L}\right) d t \\
& \quad=\left.M h_{S}\right|_{t_{n}+\Delta t}-\left.M h_{S}\right|_{t_{n}}
\end{aligned}
$$

When the integral appearing on the left-hand side of this equation is approximated by use of the implicit method. the following result is obtained.

$$
\begin{align*}
& \left(I_{I N} h_{I N}+V_{I N} H_{I N}-L_{\text {OUT }} h_{\text {OUT }}-V_{\text {OUT }}{ }^{H} H_{\text {OUT }}-Q_{L}\right)+C\left[I_{I N}^{O} h_{I N}^{o}\right. \\
& \left.+V_{I N}^{0} H_{I N}^{O}-L_{\text {OUT }}^{0}{ }^{\circ}{ }_{O U T}-V_{O U T}^{O} H_{O U T}^{O}-Q_{L}^{0}\right] \\
& =\frac{1}{\mu \Delta t}\left[\operatorname{lin}_{s}-\mathrm{M}^{0} \mathrm{~h}_{\mathrm{S}}^{0}\right] \tag{2-35}
\end{align*}
$$

The instantaneous temperature of the system is then the temperature that can satisfy the above energy balance equation. Let $g_{-1}\left(\theta_{-1}, \theta_{0}\right)$ be the difference between both sides of Equation (2-35) with outlet vapor and liquid rates expressed as corrected values of ($\mathrm{V}_{\text {OUTI }}$) and ($\left.\mathrm{I}_{\text {OUT }}\right)_{c o .}$ Then,

$$
\begin{gathered}
g_{-1}\left(\theta_{-1}, \theta_{0}\right)=L_{I N} h_{I N}+V_{I N} H_{I N}-\left(L_{\text {OUT }}\right)_{C O}^{h_{\text {OUT }}}-\left(V_{\text {OUT }}\right)_{c O} \\
H_{\text {OUT }}-Q_{I}+\sigma\left[I_{I N}^{0} h_{I N}^{0}+V_{I N}^{0} H_{I N}^{O}-I_{\text {OUT }}^{0} h_{\text {OUT }}^{0}-V_{O U T}^{O} H_{O U T}^{O}\right.
\end{gathered}
$$

$$
\begin{equation*}
\left.-Q_{L}^{0}\right]-\frac{1}{\mu \Delta t}\left[\operatorname{lin} h_{S}-M^{0} h_{S}^{0}\right] \tag{2-36}
\end{equation*}
$$

The two corrected values, $\left(V_{\text {CUT }}\right)_{c o}$ and ($\left.L_{\text {OUT }}\right)_{c o}$ can be calculated by following exactly the same procedures as those used for the isothermal case as described previously. The system temperature at the elapsed time of an integration step is then obtained by trial-and-error until the following criterion is satisfied.

$$
\begin{equation*}
g_{-1}\left(\theta_{-1}, \theta_{0}\right)=0 \tag{2-37}
\end{equation*}
$$

The trial-and-error procedures are described below. For an assumed set of $\theta_{-1}, \theta_{0}, V_{\text {OUT }}$ and T, there are the corresponding set of $\left(\mathrm{Bi}_{i}\right)_{c o}$ and $\left(\mathrm{V}_{\mathrm{i}, \text { OUT }}\right)$ co. The corrected vapor and liquid mole fractions can then be determined by the following definitions:

$$
\begin{equation*}
\left(x_{i}\right)_{c o}=\frac{\left(\mathrm{H}_{\mathrm{i}}\right)_{\mathrm{CO}}}{\mathrm{M}} \tag{2-38}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(y_{i}\right)_{c o}=\frac{\left(v_{i, O U T}\right)_{c O}}{\Sigma\left(v_{i, \text { OUT }}\right)_{c O}} \tag{2-39}
\end{equation*}
$$

From these corrected vapor-liquid relationships, a corresponding temperature can then be determined from the vapor-liquid equilibrium relationship of the system. This newly determined temperature becomes the assuned temperature for the next trial-and-error calculations. As soon as two convergent θ 's are found, the latest ($\mathrm{V}_{\text {OUT }}$) co,
$\left(M_{i}\right)_{c o}$ and assumed temperature become the convergent soiutions for this integration step for a nonisothermal operation. If the heat loss term, σ_{L} is zero, the nonisothermal distillation tray is reduced to an adiabatic distillation tray. For an unsteady-state adiabatic distillation tray, its criteria of convergence and the method of solution are exactly the same as those for an unsteady-state nonisothermal distillation tray as presented here.

Although fiolland's θ method is applicable for solving an unsteady-state distillation without chemical reaction, it can not be used to solve a general problem of unsteary state distillation accompanied by chemical reactions. According to Equation (2-18), the basic concept of Hollana's method is to obtain vapor-liquid molal ratio for each component so that the θ method can be used according to the definitions of Equations (2-15) and (2-16). In order to obtain such a molal ratio, all the molal quantities which are dependent variables must be liner. Otherwise, a form of $\frac{M_{i} M_{j}}{V_{i, \text { OUT }}}$, $\frac{\left(L_{i, \text { OUT }}\right)^{n}}{V_{i, \text { OUT }}}$, or $\frac{\left(M_{i}\right)^{m}}{V_{i, \text { OUT }}}$ will be obtained, where n and m are integers unequal to unity, and i and j are different component idenitity numbers. The above nonlinear forms are some of the possible reaction rate terms. Therefore, only unsteady-state distillation system with first-order reaction can be solved
by the θ method. However, all the known practical distillation accompanied by chemical reaction systems have reaction orders equal to two or higher and Holland's θ metnod is then not applicable. In Chapter 4 a new method is developed to solve a general problem of un-steady-state distillation accompanied by chemical reaction. Furthermore, Holland's θ method requires four initially guessed values. They are outlet vapor flow rate, $V_{\text {OUT }}$, temperature, T, θ_{0} and θ_{-1}. The new method developed here will require only one initially guessed value, which is the outlet vapor flow rate, $\mathrm{V}_{\mathrm{OUT}}$.

Chapter 3 Mathematic Model for Unsteady-State Distillation with Chemical Reaction
3.1 General Mathematic Model for Unsteady-State Djstillation with Chemical Reaction

As discussed earlier folland (36) has made an intensive investigation on unsteady-state distillation. However, his study has limited to those systems where no chemical reaction takes place. Therefore, it is believed that this study is the first attempt to de.. velop a general mathematic model for unsteady-state distillation accompanied by chemical reaction.

A system of unsteady-state distillation acconfanied by chemical reaction is best illustrated by Fig. 3.1.

Fig. 3.1 Material and Energy Balance Around a Distillation Tray with Chemical Reactions

The following assumptions are made for developing the mathematic model.
(1) The liquid phase is completely mixed.
(2). The vapor holdup on the tray is negligibly small.
(3) The reactions occur only in the liquid film or the bulkphase liquid.

The unsteady-state material balance for component i can be expressed as

$$
\frac{d M_{i}}{d t}=L_{i, I N}+V_{i, I N}-L_{i, O U T}
$$

$$
\begin{align*}
{\left[\begin{array}{l}
\text { Rate of } \\
\text { Accumulation } \\
\text { of Mass in } \\
\text { Liquid Holdup }
\end{array}\right] } & =\left[\begin{array}{l}
\text { Inlet } \\
\text { Liquid } \\
\text { Flow } \\
\text { Rate }
\end{array}\right]+\left[\begin{array}{l}
\text { Inlet } \\
\text { Vapor } \\
\text { Flow } \\
\text { Rate }
\end{array}\right]-\left[\begin{array}{l}
\text { Outlet } \\
\text { Liquid } \\
\text { Flow } \\
\text { Rate }
\end{array}\right] \\
& -\left[\begin{array}{l}
V_{i, 0 U T} \\
\end{array}\right] \\
& -\left[\begin{array}{l}
\text { Outlet } \\
\text { Vapor } \\
\text { Flow } \\
\text { Rate }
\end{array}\right]+\left[\begin{array}{l}
\text { Net Rate of Mass } \\
\text { Generated by } \\
\text { Chemical Reactions }
\end{array}\right]
\end{align*}
$$

where
n =number of components

$$
\begin{aligned}
L_{i}= & \text { molal liquid flow rate for component } i \\
V_{i}= & \text { molal vapor flow rate for component } i \\
R_{i}= & \text { net rate of component } i \text { produced } \\
& \text { and/or consumed by reaction } \\
M_{i}= & \text { Molal quantity of component } i \text { in the liquid } \\
& \text { holdup } \\
v= & T o t a l \text { volume of liquid holdup. }
\end{aligned}
$$

The overall material balance can be written as

$$
\frac{d M}{d t}=L_{I N}+V_{I N}-L_{O U T}
$$

where
$\mathrm{I}_{\text {IN }}=$ Total liquid inlet rate, molal quantity

$$
\begin{aligned}
L_{\text {OUT }} & =\text { Total liquid outlet rate, molal quantity } \\
V_{\text {IN }} & =\text { Total vapor inlet rate, molal quantity } \\
V_{\text {OUT }} & =\text { Total vapor outlet rate, molal quantity } \\
M & =\sum_{i=1}^{n} M_{i} \text {, Total molal holdup on the tray } \\
\sum_{i=1}^{n} R_{i}= & \text { Total net rate of mass produced and/or } \\
& \text { consumed by chemical reactions }
\end{aligned}
$$

Holland (36) assumed that all the trays have constant holdup, implying that $d M / d t$ is equal to zero for a constant molal holdup, or $\sum \mathrm{M}_{\mathrm{i}} / \bar{\rho}_{i}$ is a fixed value, where $\bar{\rho}_{i}$ is molal liquid density, for a constant volumetric holdup. However, the Holland assumption is not necessarily valid for the problem in hands where chemical reactions occur. Thus, for the present development a more realistic postulation of the liquid holdup being a time-dependent function is adopted.

The unsteady-state cverall energy balance can be expressed as follows:

$$
\begin{align*}
& -I_{\text {OUT }}{ }^{h_{\text {OUT }}} \quad-V_{\text {OUT }}{ }^{H} \text { OUT } \\
& -\left[\begin{array}{l}
\text { Rate of } \\
\text { Outlet } \\
\text { Energy } \\
\text { with Liquid } \\
\text { Flow }
\end{array}\right]-\left[\begin{array}{l}
\text { Rate of } \\
\text { Outlet } \\
\text { Energy } \\
\text { with Vapor } \\
\text { Flow }
\end{array}\right] \\
& -Q_{L} \quad+\sum_{j=1}^{n_{r} R_{j}\left(-\Delta H_{R, j}\right)} \tag{3-3}\\
& -\left[\begin{array}{l}
\text { Rate of } \\
\text { Heat Loss } \\
\text { to the } \\
\text { Surrounding }
\end{array}\right]+\left[\begin{array}{l}
\text { Rate of } \\
\text { Heat } \\
\text { Generated } \\
\text { by Reaction }
\end{array}\right]
\end{align*}
$$

where:
$n_{I N}=$ Inlet liquid enthalpy
$h_{\text {OUT }}=$ out liquid enthalpy
$H_{I N}=$ Inlet vapor enthalpy
$H_{\text {OUT }}=O u t l e t$ vapor enthalpy
$h_{S} \quad$ Enthalpy of holdup on the tray
(assuming negligible vapor holdup)
$Q_{L_{~}} \quad=$ Net heat transfer rate form the system to the surrounding
$R_{j}=$ Rate of reaction for reaction j
$-\Delta H_{R, j}=$ heat of reaction of Reaction j
$N_{r} \quad=$ Number of reactions
It is noted that heat of solution is assumed neglisible
and thus not chow in the above equation. All the enthalpy terms shown above represent the molal enthalpies for the mixture.

The rate of accumulation of energy, ie, the lefthand side of Equation (4-3), can be rewritten in terms of temperature change as follows.

$$
\begin{equation*}
\frac{d}{d t}\left(\mathrm{Mh}_{s}\right)=h_{s} \frac{d M}{d t}+M \frac{d h_{s}}{d T} \frac{d T}{d t} \tag{3-4}
\end{equation*}
$$

Since the term $d h_{S} / d T$ is equivalent to heat capacity C_{p} at temperature \mathbb{T}, Equation (3-4) can now be rewritten as

$$
\begin{equation*}
\frac{d\left(\mathrm{M}_{\mathrm{S}}\right)}{d t}=h_{S} \frac{d M}{d t}+C_{p} \frac{d T}{d t} \tag{3-5}
\end{equation*}
$$

where:
T is the temperature of liquid holdup. Equation (3-5) is substituted into Equation (3-3), and the term $h_{S} \frac{d M}{d t}$ shifted to the right-hand side of the equation. The temerature change with time can then be expressed as

$$
\begin{align*}
M_{p} \frac{d T}{d t}=I_{I N} h_{I N} & +V_{I N} H_{I N}-I_{O U T} h_{O U T}-V_{O U T} H_{O U T} \\
& -Q_{L}+\sum_{j=1}^{\sum_{j=1}} R_{j}\left(-\Delta H_{R_{1}, j}\right)-h_{S} \frac{d M}{d t} \tag{3-6}
\end{align*}
$$

Equation (3-2) is introduced to Equation (3-6) and a proper algebraic rearrangement will yield the following equation where the $\frac{d r}{d t}$ disappers.

$$
\begin{align*}
\frac{d T}{d t} & =\frac{1}{M C_{p}}\left(L_{I N} h_{I N}+V_{I N} H_{I N}-L_{\text {OUT }} h_{O U T}-V_{O U T}{ }^{H I_{O U T}}\right. \\
& -Q_{L}+\sum_{j=1}^{n_{r}} R_{j}\left(-\Delta H_{R, j}\right)-h_{s}\left(I_{I N}+V_{I N}-L_{\text {OUT }}-\right. \\
& \left.\left.V_{\text {OUT }}+V \sum_{i=1}^{n} R_{i}\right)\right] \tag{3-7}
\end{align*}
$$

Thus, the unsteady-state distillation accompanied by chemical reaction can be mathematically formulated into Equations (3-1), (3-2), and (3-7). It should be noted that since the liquid on the tray is assumed to be completely mixed, the variation of local temperatures and concentrations within the liquid bulk is considered to be negligible. The proposed general model, i. e., Equations (3-1), (3-2), and (3-7) are the basic working equations from which analytical or numerical solutions can be obtained for a given specific reaction-distillation system.
3.2 Unsteady-State Distillation withcut Chemical Reaction (Category Two Froblems).

In the case, the distillation is not accompanied by chemical reaction, the reaction terms in Equation (3-1), (3-2), and (3-3) can be equated zero. Then, the following equations are obtained.

$$
\begin{equation*}
\frac{d M_{i}}{d t}=L_{i, I N}+V_{i, I N}-L_{i, O U T}-V_{i, O U T} \tag{3-8}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d M}{d t}=L_{I N}+V_{I N}-L_{\text {OUT }}-V_{\text {OUT }} \tag{3-9}\\
& \frac{d}{d t}\left(M h_{S}\right)=L_{I N} h_{I N}+V_{I N} H_{I N}-L_{O U T} h_{O U T}-v_{\text {OUT }} H_{O U T} \\
& -Q_{L} \tag{3-10}
\end{align*}
$$

The above equations are identical to those developed ty holland (36) for unsteady -state distillation without chemical reaction. Since no temperature term is show in Equation (3-10), temperature should be obtained by trial-and-error. The iteration procedure is proposed by Holland (36). If the rate of accumulation of energy in Equation (3-10) is changed into the rate of temperature change, the resulting equation is Equation (3-7) without the reaction term. It can be written as follows:

$$
\begin{gather*}
\frac{d T}{d t}=\frac{1}{M C_{p}}\left[L_{I N} h_{I N}+V_{I N} H_{I N}-I_{O U T} h_{O U T}-v_{O U T} H_{O U T}-h_{S}(\right. \\
\left.\left.L_{I N}+V_{I N}-L_{\text {OUT }}-V_{\text {OUT }}\right)\right] \tag{3-11}
\end{gather*}
$$

The above equation can five the instantaneous temperatore without trial-and-error on the temperature term. Also if Holland's method is used to solve the above rate equations, as stated before the tray must have constent liquid holdup implying the steady inlet and outlet streams:

Equation (3-10) is then reduced to

$$
\begin{align*}
& 0=L_{I N}+V_{I N}-L_{\text {OUT }}-V_{\text {OUT }} \\
& \text { or } L_{I N}+V_{I N}=I_{\text {OUT }}+V_{\text {OUT }} \tag{3-12}
\end{align*}
$$

3.3 Steady-State Distillation with Chemical Reaction (Category Three Problems).

On the other hand, if the distillation is accompanied by chemical reaction but it is operated at steadystate conditions, the derivative terms in Equation (3-1), (3-2), (3-7) can be set to zero:

$$
\begin{aligned}
& \frac{d M_{i}}{d t}=0 \\
& \frac{d M}{d t}=0 \\
& \frac{d T}{d t}=0
\end{aligned}
$$

Substituting the above to Equations (3-1), (3-2), and (3-7) yields the following sets of equations.

$$
\begin{align*}
& I_{i, I N}+V_{i, I N}-L_{i, O U T}-v_{i, O U T}+v R_{i}=0 \tag{3-13}\\
& I_{I N}+v_{I N}-L_{\text {OUT }}-V_{\text {OUT }}+v \sum_{i=1}^{n} R_{i}=0 \tag{3-14}\\
& I_{I N} h_{I N}+V_{I N} H_{I N}-I_{\text {OUT }} h_{\text {OUT }}-V_{\text {OUT }} H_{\text {OUT }}-Q_{L} \\
& +\sum_{i=1}^{n_{r}} R_{j}\left(-\Delta H_{R_{0}, j}\right)=0 \tag{3-15}
\end{align*}
$$

The above equations are identical to those proposed by Marek (45) and Belck (5) and utilized by Davies and Jeffreys (12) for anaiysis of their steady-state
experimental data.
The methods of solution for above algebraic equations can be obtained by graphical procedures or analytical solutions for distillation with a single and simple chemical reaction.
3.4 Steady-State Distillation without Chemical Reaction (Category One Problems).

Equations (3-13), (3-14), and (3-15) can be reduced to the mathematical model for the steady-state distillation without chemical reaction. This can be accomplishea by substituting $R_{i}=0$ into Equation (3-13), (3-14), and (3-15). The following equations are then obtained.

$$
\begin{align*}
& L_{i, I N}+V_{i, I N}-L_{i, O U T}-V_{i, O U T}=0 \tag{3-16}\\
& L_{I N}+V_{I N}-I_{O U T}-V_{O U T}=0 \tag{3-17}\\
& L_{I N} h_{I N}+V_{I N} H_{I N}-L_{O U T} h_{O U T}-V_{O U T} H_{O U T}-Q_{L}=0 \tag{3-18}
\end{align*}
$$

The above are the familiar model to represent the steadystate distillation without chemical reaction. Many articles have been published about the solutions for those equations.
3.5 Seni-Batch Distillation with Chemical Reaction When the outlet liquid flow is not present, the gen-
eral system shown in Figure 3.1 is reduced to a semibatch distillation accompanied by chemical reaction. For this case,

$$
\begin{equation*}
L_{i, \text { OUT }}=L_{\text {OUT }}=0 \tag{3-19}
\end{equation*}
$$

and the general model is reduced to the following set of equation:

$$
\begin{align*}
\frac{d M_{i}}{d t}= & L_{i, I N}+V_{i, I N}-V_{i, O U T}+V R_{i} \tag{3-20}\\
\frac{d M}{d t}= & L_{I N}+V_{I N}-V_{O U T}+v_{i=1}^{n} R_{i} \tag{3-21}\\
\frac{d T}{d t}= & ={ }_{i L C_{p}}^{1}\left[L_{I N} h_{I N}+V_{I N} H_{I N}-V_{O U T} H_{O U T}-Q_{L}\right. \\
& +\sum_{j=1}^{n_{r}} R_{j}\left(-\Delta H_{R, j}\right)-h_{s}\left(L_{I N}+V_{I N}-V_{O U T}\right. \\
& \left.\left.+v \sum_{i=1}^{n} R_{j}\right)\right] \tag{3-22}
\end{align*}
$$

The simultaneous solution of the above equations for a complex system including several simultaneous reactions will be given in the next chapter.

Summarizing, generality of the proposed model can be best illustrated in Fig. 3.2

Fig. 3.2. Intex-Reletions Anong
Theories of Distillation

$$
\begin{aligned}
\text { Chapter } 4 & \text { Theoretical Model for Semi-Batch } \\
& \text { Distillation Accompanied by Chemical } \\
& \text { Reaction }
\end{aligned}
$$

4.1 Basic Nathematical Model and Keactions

The mathemetical model for a semi-batch distillation accompanied ky chemical reaction can be obtained by reducing the general model as shown in the previous chapter. These are repeatea below.

$$
\begin{align*}
& \frac{\partial M_{i}}{d t}=I_{i, I N}+V_{i, I N}-V_{i, \text { OJI }}+R_{i}(3-20) \\
& \frac{d M}{d t}=I_{I N}+V_{I N}-V_{O U 11}+\sum_{i=1}^{n} R_{i}(3-21) \\
& \frac{d T}{d t}=\frac{1}{\operatorname{MCD}}\left(L_{I N} h_{I N}+V_{I N} H_{I N}-V_{\text {OUT }} H_{\text {OUT }}\right. \\
& -Q_{L}+\sum_{j=1}^{n_{r}} R_{j}\left(-\Delta H_{R_{i j}}\right)-h_{s}\left(I_{I N}+\right. \\
& \left.\left.V_{I N}-V_{\text {OUT }}+\sum_{i=1}^{n} R_{i}\right)\right] \tag{3-22}
\end{align*}
$$

The simultaneous solution for the above model now will be given in this chapter. The system for which the solutions are developed is the esterification of acrylamide sulfate and ethyl alcohol. The product; namely ethyl acrylate, is discilied into the vapor phase. The proposed system is best illustrated in Figure 4.1.

Fig. 4.1 Semi-Batch Distillation
With Chemical Reaction
solution containing acrylamide, sulfuric acid, acrylamide sulfate is prepared and charged to the reactiondistillation tray. The equilibrium relationship can be represented as

Equilibrium Reaction
$\mathrm{CH}_{2} \mathrm{CHCONH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4} \quad(4-1)$
acrylamide sulfuric acid acrylamide sulfate. The method of preparing the above solution and other experimental set-ups and procedures for this study are described in more details in the following chapter. The continuous feed, liquid and vapor, of ethyl alcohol and water, are charged to the reaction-distillation tray. The tray is a micro-sieve tray, with perforations of $60-75 \mu$. As soon as ethyl alcohol comes into contact with acrylamide sulfate, the following three chemical reactions occur.
a. Major Reaction - Esterification
$\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ acrylamide sulfate ethyl alcohol

$$
\begin{equation*}
=\underset{\text { ethyl acrylate }}{\mathrm{CH}_{2} \mathrm{CHCOOC}_{2} \mathrm{H}_{5}}+\underset{\text { ammonium bisulfate }}{ } \mathrm{NH}_{4} \mathrm{HSO}_{4} . \tag{4-2}
\end{equation*}
$$

b. Minor Side Reaction - Dehydration
$\underset{\text { ethyl alcohol }}{2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}} \xrightarrow[\text { diethyl ether }]{\mathrm{H}_{2} \mathrm{SO}_{4}} \underset{\text { water }}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}}+\underset{\text { dich }}{\mathrm{H}_{2} \mathrm{O}} \quad$ (4-3)

The catalyst for the reaction is $\mathrm{H}_{2} \mathrm{SO}_{4}$ which is present in the solution.
c. Minor Successive Reaction

Another by-product, β-ethexy-ethyl propionate is produced from two successive reaction routes. One of them is the addition of ethyl alcohol into the main product, ethyl acrylate. The other is the reaction between ethyl alconol and the intermediate complex, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}$, whose formation will be discussed later in this chapter. The combined reaction may be represented by the following third-order reaction with respect to acrylamide sulfate and ethyl alcohol:

$$
\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}+2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

acrylamide sulfate ethyl alcohol

$$
=\underset{\beta \text {-ethoxy-ethyl propionate }}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}}+\underset{\substack{\text { ammonium } \\ \text { bisulfate }}}{\mathrm{NH}_{4} \mathrm{HSO}_{4}} \quad(4-4)
$$

From the above three equations, it is obvious that the system is a complex mixture including the following nine separate chemical species.

Ioentifying Subscripts	Compound Mames	Chemical 1
2	Ethyl Alcohol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
3	Ethyl Acrylate	$\mathrm{CH}_{2} \mathrm{CHCOOC} 2_{5} \mathrm{H}_{5}$
4	Water	$\mathrm{H}_{2} \mathrm{O}$
4	Diethyl Ether	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$

5	B-Ethoxy-ethyl Propionate	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}$
6	Acrylamide Sulfate	$\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH})_{\mathrm{NH}_{2} \mathrm{HSO}_{4}}$
7	Sulfuric Acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$
8	Ammonium Bisulfate	$\mathrm{NH}_{4} \mathrm{HSO}_{4}$
9	Acrylamide	$\mathrm{CH}_{2} \mathrm{CHCONH}_{2}$

It is noted that at the time of the initial introduction of the ethyl alcohol-water mixture to the system, the reaction moves slowly and a negligitle amount of vapor containing ethyl acrylate is produced. The heat of reaction and the heat of condensation of the feed vapor provide the energy to raise the system temperature rapidly until it reaches the bubble point of tine liquid mixture. With the continuous feed of the volatile ethyl alcohol-water mixture, the reactions proceed, yielding the vapor products which include ethyl acrylate. In addition to ethyl acrylate, the outlet vapor contains four other components, namely ethyl alcohol, water, diethyl ether and β-ethoxy-ethyl propionate. The semibatch distillation system to be dealt in this investi-gation does not have an outgoing liquid stream. The Iiquid holdup on the tray contains all the nine components which are listed earlier.

The fundamental equations, i. e., Equations (3-20), (3-21), (3-22), derived in the previous chapter are readily applicable where the component subscript i (from 1 to 9) represents for each compound respectively. There are basically four reactions occuring in the system and the reaction subscript j (from 1 to 4) represents the four reactions, i. e., Equations (4-1), (4-2), (4-3). (4-4), as follows.

Reaction Identifi- cation Subscript i	Reaction	Reaction Equation
1	Esterification	$(4-2)$
2	Dehydration	$(4-3)$
3	Successive Reactior	$(4-4)$
4	Equilibrium Reaction	$(4-1)$

4.2 Reaction Mechanisms
4.2.1 Structural Formula of Molecular Conplex, Acrylamide Sulfate

Before discussing the kinetics and mechanisms of the reaction system, a complex reactant, acrylamide sulfate, should be understood first. Three formulas ($38,57,60$) have been proposed to represent acrylamide sulfate, They are:

$$
\begin{array}{ll}
\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4} & \text { [A] } \\
\mathrm{CH}_{2} \mathrm{CHCONH}_{2} \mathrm{H}_{2} \mathrm{SO}_{4} & \text { [B] } \\
\mathrm{CH}_{2} \mathrm{CHCONH}_{3} \mathrm{HSO}_{4} & \text { [C] } \tag{C}
\end{array}
$$

Among them, formula [A] is a better representation on the basis of the electron affinity theory and the structure of the reaction by-product, i. e., (-etioxyethyl propionate. When acrylamide is added into the aqueous sulifuric acid solution to form acrylamide sulfate, the proton H^{+}is dissociated first from the sulfuric acid. It attaches immediately onto the most electronegative carboxyl oxygen. Then the electron in the double bond of the carbcxyl group will shift to the oxygen to neutralize the proton. A positive carbonyl ion is then formed as shown below.

The electron shifts further from the unsaturated carbon to the positive carbonyl ion and leads to the following ionic resorance form:

The overall chemical reaction for yielding the main product, ethyl acrylate, from the mixture of
acrylamide, sulfuric acid and ethyl alcohol can be shown as

The reaction shows the addition of high electronegative cxygen of ethyl alcohol onto the carboxyl carbon of acrylamide. Therefore, this carbon is an electron acceptor.

A further reaction of ethyl acrylate with ethyl alcohol gives the by-product, β-ethoxy-ethyl propionate:

The addition of ethoxyl oxygen onto the β-carbon of ethyl acrylate also indicates the β-carbon is an electron acceptor.

The above discussion justifies the ionic resonance form (4-6). Except a strong acid, a strong base or their salts, a compound seldom dissociates completely to its ionic forms. Acrylamide sulfate is no exception and, therefore, there exists a structural formula with
covalent bond for acrylamide sulfate:

Of course, the covalent bond should be in equilibrium with the ionic bond, which can be expressed as follows:

$$
\begin{equation*}
\left.\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}_{-}^{-\mathrm{OH}}+\underset{\mathrm{NH}_{2}}{ }\right]\left[\mathrm{HSO}_{4}^{-}\right] \tag{4-10}
\end{equation*}
$$

During the alcoholysis, electrophilic ethoxyl oxygen should first attack the ionic molecules, then the covalent bond dissociates instantaneously into ionic bond to supply the ionic reactant for further alcohom lysis.
4.2.2 Preparation of Acrylamide Sulfate

Three methods have been reported in literature for preparing acrylamide sulfate. A different reactant is used to react with sulfuric acid in an aqueous solution.

1. Starting with acrylamide (57):

$$
\begin{equation*}
\mathrm{CH}_{2} \mathrm{CHCONH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4} \tag{4-1}
\end{equation*}
$$

2. Starting with acrylonitrile (27):

$$
\begin{equation*}
\mathrm{CH}_{2} \mathrm{CHCN}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4} \tag{4-11}
\end{equation*}
$$

3. Starting with ethylene cyanohydrin (57):

$$
\begin{equation*}
\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CN}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4} \tag{4-12}
\end{equation*}
$$

It was reported that the reactions starting with acrylonitrile or ethylene cyanohydrin are accompanied by side reactions and consequently not all the reactants are converted to the sulfate. On the other hand, the reaction starting with acrylamide is not accompanied by a competitive side reaction. Therefore, for this study, acrylamide sulfate is prepared by reacting acrylamide with sulfuric acid in an aqueous solution as represented in Equation (4-1).

4.2.3 Esterification of Acrylamide Sulfate and Etinyl Alcohol

Two different reaction mechanisms can be postulated depending on the concentration of water in the mixture. If a large amount of water is presented in the acrylainide sulfate solution (5.7.2), most of acrylamide sulfate will be hydrolysed to produce acrylic acid first,

$$
\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}+\mathrm{H}_{2} \mathrm{O}=\underset{\text { acrylic acid }}{\mathrm{CH}_{2} \mathrm{CHCOOH}+\mathrm{NH}_{4} \mathrm{HSO}_{4}}
$$

Then acrylic acid reacts with ethyl alcohol to yield the desired product, ethyl acrylate:

$$
\mathrm{CH}_{2} \mathrm{CHCOOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=\mathrm{CH}_{2} \mathrm{CHCOOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \quad(4-14)
$$

The mechanisms of the above reactions are best explained from the structural point of view as presented in section 4.2.1. In the ionic resonance form $\left[\begin{array}{|c|}\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C} \\ \mathrm{NH}_{2}\end{array}\right.$
$\leftrightarrow \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}+\underset{\mathrm{NH}_{2}}{-\mathrm{OH}}$, the structure $\left[\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}+\underset{\mathrm{NH}_{2}}{-\mathrm{OH}}\right]$
is much more stable than $\left[\stackrel{\mathrm{CH}}{2}^{+} \mathrm{CH}=\mathrm{C} \underset{\mathrm{NH}_{2}}{\mathrm{OH}}\right]$ because
hydroxyl group -OH and amine group $-\mathrm{NH}_{2}$ have very high electron-negativity, which will suppress the electron of unsaturated carbon from moving to the positive carboxyl carbon. Therefore, the hydrolysis is proceeded mostly with the stable ion $\left[\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}+\mathrm{NH}_{2}\right]$:

Then, the proton is released from the hydroxyl oxygen and shifted to amine group:

Sirce $-\mathrm{NH}_{3}$ is an electron acceptor, the electrons on hydroxyl oxygen will shift to the adjacent carbon and the proton is then released from it. The shift oi
electrons to the carboxyl carbon expels the electrons in C-N bond. Free ammonia is then released and combined together with protron to form ammonium ion:

The mechanism for the consecutive alcoholysis of acrylic acid is initiated also by the proton which is abundant in the dilute sulfuric acid solutions

$$
\begin{equation*}
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}=\mathrm{CH}_{\mathrm{CH}}^{\mathrm{O}}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}_{\mathrm{OH}}^{-\mathrm{CH}} \tag{4-18}
\end{equation*}
$$

Both the hydroxyl oxygens with high electronegativity suppress the electron of unsaturated carbon from coming to the positive carboxyl carbor and give the stable structure of the ionic resonance form $\left[\stackrel{+}{\mathrm{CH}_{2}}-\mathrm{CH}=\mathrm{C}_{-}, \stackrel{\mathrm{OH}}{\mathrm{OH}}\right.$ $\left.\leftrightarrow \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Ct}_{\mathrm{OH}}^{\mathrm{OH}}\right]$.

Then the carbonyl ion reacts with ethyl alcohol

The proton is then released and attached onto the hydroxyl oxygen

The group $\stackrel{+}{-\mathrm{OH}_{2}}$ will attract the eiectron from another hydroxyl oxygen. The proton is then released from the oxygen. Also the addition of electrons on the carboxyl carbon will expel the water molecule. The water molecule is then combined with proton to form hydronium ion $\mathrm{H}_{3} \mathrm{O}^{+}$

The above reaction in a dilute sulfate solution yields acrylic acid as intermediate by-product, and hence substantially reduce the yield of the desired product, ethyl acrylate.

Thus, the other reaction in the solution having small anount of water should be investigated to determine the preferrable reaction conditions. With a small amount of water, the water is used mostly to dissociate protons from the sulfuric acid which in turn initiates the formation of acrylamide sulfate. The esterification of acrylamide sulfate and ethyl alcohol can be represented by

$$
\begin{array}{r}
\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH})_{\mathrm{NH}_{2} \mathrm{HSO}_{4}}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
\mathrm{CH}_{2} \mathrm{CHCOOC}_{2} \mathrm{H}_{5}+\mathrm{NH}_{4} \mathrm{HSO}_{4} \tag{4-2}
\end{array}
$$

Its reaction mechanism can be explained starting with
the stable ionic structure
 lamide sulfate. It reacts with ethyl alcohol in the following manner.

The rest of steps leading to the product, ethyl acrylate, are similar to those of hydrolysis leading to the acrylic acid:

$$
\begin{equation*}
\rightarrow \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}_{-}^{\mathrm{O}} \mathrm{OC}_{2} \mathrm{H}_{5}+\mathrm{NH}_{4}^{+} \tag{4-23}
\end{equation*}
$$

From the above analysis, appropriate amount of water is then selected here according to the previous worker (27) so that the yield of acrylic acid becomes negligible while enough protons can be produced to inim tiate the esterification.
4.2.4 Side Reactions

As mentioned in Section 4.1, there are two important side reactions which produce volatile by-products, namely diethyl ether and β-ethoxy-ethyl propionate.

a. Production of Diethyl Ether:

The mechanism of forming diethyl ether from ethyl alcohol in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ as catalyst can be thought of a series of the following successive reactions:

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OSO}_{3} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OSO}_{3} \mathrm{H}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{SO}_{4}(4-25) \\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OSO}_{3} \mathrm{H}=\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}(4-26) \\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{SO}_{2}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OSO}_{3} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5} \\
& (4-27)
\end{aligned}
$$

The overall results of the above reactions can be given by the fcllowing equation:

$$
\begin{equation*}
2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \tag{4-28}
\end{equation*}
$$

b. Production of β-Ethoxy-Ethyl Propionate:

The formation of β-ethoxy-ethyl propionate is obtained from two successive reaction routes. They are:

$$
\begin{gather*}
{\left[\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}+\mathrm{NH}_{2}\right]+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \text { fast } \mathrm{CH}_{2} \mathrm{CHCOOC}_{2} \mathrm{H}_{5}+\mathrm{NH}_{4}^{+}} \\
{[\mathrm{D}]} \\
{\left[\begin{array}{l}
+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
\text { Slow } \\
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5},
\end{array}\right.} \tag{4-29}
\end{gather*}
$$

and

$$
\left.\begin{array}{c}
{\left[\stackrel{+}{\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C}} \underset{\mathrm{NH}_{2}}{-\mathrm{OH}}\right]+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\mathrm{slow}}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{C}_{ \pm}^{+}{ }_{\mathrm{NH}}^{2}\right.}
\end{array}\right]
$$

The first step of Equation (4-29) is formation of the desired product, ethyl acrylate. It is a fast reaction. Its mechanism has keen discussed in Section 4.2.3. The last step of this successive reaction is formation of the by-product, β-ethoxy-ethyl propionate. Its mechanism begins from the formation of carbonyl ion by the addition of proton into ethyl acrylate.

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \geqslant \underset{\mathrm{OC}_{2} \mathrm{H}_{5}}{\mathrm{O}}+\mathrm{H}^{+} \rightarrow\left[\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CX}_{\mathrm{OC}} \mathrm{OC}_{2} \mathrm{H}_{5} \mathrm{OH}\right.
$$

Since the ethoxyl group, $-\mathrm{OC}_{2} \mathrm{H}_{5}$, is much less electronegative than amine group, $-\mathrm{NH}_{2}$, as in the previous case, the other resonance form $\left[ڭ_{2} \mathrm{H}_{2}-\mathrm{CH}=\mathrm{C} \int_{\mathrm{OC}_{2} \mathrm{H}_{5}}^{\mathrm{OH}}\right]$ will be comparably more stable than $\left[\stackrel{+}{\mathrm{CH}}_{2}-\mathrm{CH}=\mathrm{C}{\underset{\mathrm{NH}}{2}}^{\mathrm{OH}}\right]$. Also, the steric effect of larger molecular groups $O H$ and $\mathrm{OC}_{2} \mathrm{H}_{5}$ prevent alcohol from adding to the carboxyl carbon of formula [G]. Therefore, the mechanism for this side reaction can be represented as follows:

$$
\begin{align*}
& \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cf}{ }_{-\mathrm{OC}_{2} \mathrm{H}_{5}}^{\mathrm{OH}} \longrightarrow \stackrel{+}{\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}}<\mathrm{OC}_{2} \mathrm{H}_{5} \tag{4-32}
\end{align*}
$$

$$
\begin{align*}
& \rightarrow \underset{\substack{\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C}}}{\mathrm{OC}_{2} \mathrm{H}_{5}}-\underset{\mathrm{OC}_{2} \mathrm{H}_{5}}{\beta}+\mathrm{H}^{+} \tag{4-33}
\end{align*}
$$

The proton released in the above equation then attaches on the unsaturated α-carbon because it has much less steric hinderance than carboxyl carbon:

The positive carbonyl ion then attracts the electron from hydroxy? oxygen and then proton is released again to give the by-product, β-ethoxy-ethyl propionate:

The proton is then a catalyst for the above addition reaction.

Equation (4-30) is an altemate reaction route leading to the by-product, β-ethoxy-ethyl propionate. Since formula [E] is much less stable than formula [D] as mentioned in Section 4.2.1, the following addition reaction is then a very slow reaction,

Following the same mechanisms given in Equations (4-33), and ($4-34$), the product of the above reaction proceeds to the intermediate complex ion, $\left[\begin{array}{l}\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C} \pm \\ \mathrm{OC}_{2} \mathrm{H}_{5}\end{array} \mathrm{NH}_{2}\right]_{\mathrm{NH}}$.

$$
\begin{equation*}
\rightarrow \underset{\substack { \mathrm{OC}_{2} \mathrm{H}_{5} \\
\begin{subarray}{c}{\mathrm{CH}_{2} \\
\mathrm{CH}_{2}-\mathrm{C干}{ \mathrm { OC } _ { 2 } \mathrm { H } _ { 5 } \\
\begin{subarray} { c } { \mathrm { CH } _ { 2 } \\
\mathrm { CH } _ { 2 } - \mathrm { C干 } } } \\
{\mathrm{NH}_{2}}\end{subarray}}{\mathrm{OH}} \tag{4-37}
\end{equation*}
$$

Formula (Flwith bisulfate ion, HSO_{4}^{-}gives the interne. diate complex, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{C}(\mathrm{CH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}$ as mentioned in Section 4.1.

As soon as the above positive carbonyl ion is formed and more ethyl alcohol is added, the hydroxyl oxygen in ethyl alcohol will attach onto the carboxyl carbon.

Shifts of proton and formation of ammonium ion are similar to those show m in Equation (4-23).

Since the reaction rate for this stage is much faster than the previous stage, the yield of the intermediate complex, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}$ is then essentially negligible. Summerizing the mechanisms described above, the formation of β-ethoxy-ethyl propionate can then bs represented by the following overall reaction.

$$
\begin{align*}
\mathrm{CH}_{2} \mathrm{CiHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4} & +2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
& \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NH}_{4} \mathrm{HSO}_{4} \tag{6-4}
\end{align*}
$$

4.3 Reaction Rate Expressions

4.3.1 Esterification of Acrylamide Sulfate

Sirce the amount of water presented in the systen is small, the reaction mechanism of esterification is best expressed by Equations ($4-22$) and (4-23). Since the transient electron shifts can be considered to be. instantaneous and since the ionic structure of
 reaction may be represented by its equilivalent, molecular formula as shown in Equation (4-40).

$$
\begin{aligned}
\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}+ & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\mathrm{k}_{1}} \\
& \mathrm{CH}_{2} \mathrm{CHCOOC}_{2} \mathrm{H}_{5}+\mathrm{NH}_{4} \mathrm{HSC}_{4} \quad(4-40)
\end{aligned}
$$

As most of product. $\mathrm{CH}_{2} \mathrm{CHCOOC}_{2} \mathrm{H}_{5}$ is distilled and leaves the system, the above reaction can be considered as a second-order irreversible reaction. Then, the rate expression of producing ethyl acrylate by the above overall reaction can be expressed as

$$
\begin{equation*}
R_{1}^{\prime}=k_{1} C_{1} C_{6} \tag{4-41}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{1}^{\prime}= & \text { reaction rate yielding ethyl acrylate }, \\
& \text { g-mole/l-min } \\
\mathrm{k}_{1}= & \text { reaction rate constant, } 1 / g-m o l e-m i n \\
C_{i}= & \text { concentration for component } i, g-m o l e / l
\end{aligned}
$$

The Arrhenius equation states that

$$
\begin{equation*}
k=k_{o} e^{-E_{0} / 1.987 T} \tag{4-42}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{k}_{0}=\text { irequency factor } \\
& \mathrm{E}_{0}=\text { activation energy, cal/g-mole } \\
& T=\text { absolute temperature, } O_{K}
\end{aligned}
$$

Substituting Equation (4-42) into Equetion (4-4i) with the corresponding subscript gives

$$
\begin{equation*}
R_{1}^{\prime}=k_{01} e^{-E_{01} / 1.987 T} C_{1} C_{6} \tag{4-43}
\end{equation*}
$$

where

$$
\begin{aligned}
& E_{O 1}=\text { activation energy for the rate constant } k_{1} \\
& k_{o 1}=\text { frequency factor for the rate constant } k_{1}
\end{aligned}
$$

4.3.2 Froduction of Diethyl Ither

The reaction forming diethyl ether as represented by Equation (4-3) can be written as a second-order reversible reaction:

$$
\begin{equation*}
2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow[\mathrm{k}_{-2}]{\mathrm{k}_{2}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \tag{4-44}
\end{equation*}
$$

However, the product, diethyl ether, is very volatile and thus the concentration of diethyl ether in the iiquid phase is negligibly small. Under this condition, the backward reaction may be neglected and the reaction treated as a second-order irreversible reaction. The rate of producing diethyl ether is then expressed by

$$
\begin{equation*}
R_{2}^{\prime}=k_{2} C_{1}^{2} \tag{4-45}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{2}^{\prime}=\text { production rate of diethyl ether } \\
& k_{2}=\text { forward reaction rate constant }
\end{aligned}
$$

4.3.3 Formation of β-Ethoxy-ethyl propionate

The overall reaction expressed by Equation (4-4) has been shown in Section 4.2 .5 as a combination of two consecutive reactions. It is repeated below

$$
\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}+2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

$$
\begin{equation*}
\xrightarrow{\mathrm{k}_{3}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NH}_{4} \mathrm{HSO}_{4} \tag{4-46}
\end{equation*}
$$

Since the reactant, ethyl alcohol, is supplied continuously and the product, β-ethoxy-ethyl propionate is partly vaporized and removed from the reacting mixture, the reaction can be considered as an irreversible thirdorder reaction. The rate equation is, then, written

$$
\begin{equation*}
R_{3}^{\prime}=k_{3} C_{1}^{2} C_{6} \tag{4-47}
\end{equation*}
$$

where
$R_{3}^{\prime}=$ production rate of β-ethoxy-ethyl propionate $\mathrm{k}_{3}=$ rate constant for Reaction 3 .
4.3.4 Equilibrium Reaction Forming Acrylamide Sulfate Complex

The acrylamide sulfate is not continuously charged to the reaction mixture, but is formed instead in the reaction mixture by the following reaction:

$$
\begin{equation*}
\mathrm{CH}_{2} \mathrm{CHCONH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4} \tag{4-1}
\end{equation*}
$$

When acrylamide is dissolved in the aqueous sulfuric acid at a ratio of about $1: 1.2$, as used in this work, acrylamide crystal can be seen in equilibrium with the brown product, acrylamide sulfate in the mixture at the temperature below the melting point of acrylamide, $84.5^{\circ} \mathrm{C}$. However, when the temperature is increased to the ranse of $90-130^{\circ} \mathrm{C}$ as used in this study, acrylamice sulfate is formed almost instantaneously. Accord-
ing to American Cynamid Company (2), moliten acrylamide polymerizes vigorously with evolution of heat. Since no polymerization (viscous material) has been found in any of the acrylamide sulfate solutions prepared in this experimental system, it is evident that acrylamide is stabilized in the form of molecular complex, acrylamide sulfate. Amount of free acrylamide in the sulfate solution is then negligible. Thus, it may be assumed that all the added acrylamide is converted into acrylamide sulfate for the experiments being inm vestigated. When the temperature exceeds $135^{\circ} \mathrm{C}$.-acrylamide sulfate may be decomposed because strong odors can be detested from the liquid. To avoid such a deconposition at high temperatures, and to avoid the equilibrium reaction at low temperatures, the moderate temperature of $90-130^{\circ} \mathrm{C}$ is chosen as an appropriate range for this study.

The molal quantity of the acrylamide sulfate complex can be represented in terms of initial molal quantity of acrylamide and its consumptions by the reactions. All the added acrylamide is consumed to produce acrylamide sulfate while acrylamide sulfate is consumed to produce two components, namely ethyl acrylate and $\beta^{\text {-ethoxy-ethyl }}$ propionate as follows.
(i) For producing acrylamide sulfate

$$
\mathrm{CH}_{2} \mathrm{CHCONH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}(4-1)
$$

(ii) For producing ethyl acrylate Equations (4-1) and (4-2) can be combined together stochiometrically:

$$
\begin{array}{r}
\mathrm{CH}_{2} \mathrm{CHCONH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4} \\
\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{CH}_{2} \mathrm{CHCOOC}_{2} \mathrm{H}_{5}+\begin{array}{c}
(4-1) \\
.
\end{array} \\
\hline
\end{array}
$$

$$
\mathrm{CH}_{2} \mathrm{CHCONH}_{2}+\mathrm{H}_{2} \mathrm{SC}_{4}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{CHCOOC}_{2} \mathrm{H}_{5}+\mathrm{NH}_{4} \mathrm{HSO}_{4}
$$

$$
(4-48)
$$

(iii) For producting β-ethoxy-ethyl propionate $\mathrm{CH}_{2} \mathrm{CHCONH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4} \quad(4-1)$ $\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}+2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}$ $+\mathrm{NH}_{4} \mathrm{HSO}_{4}$

$$
\begin{align*}
\mathrm{CH}_{2} \mathrm{CHCONH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5} \tag{4-4}\\
& +\mathrm{NH}_{4} \mathrm{HSO}_{4} \tag{4-49}
\end{align*}
$$

Now, let A_{i} represent the total molal quantities of component i in botin liquid and vapor phases. Stochiometric consideration of Equations (4-1), (4-48) and (4-49) then lead to the following expressions:

$$
\left.\begin{array}{l}
\text { Moles of initial acrylamide sulfate }=A_{6,0} \\
=\text { Moles of total added acrylamide }=A_{9,0} \\
\text { Moles of acrylamide sulfate consumed }=A_{2}+A_{5}
\end{array}\right\}
$$

Mhus, the amounts of acrylamide and sulfuric acid remained in the reaction mixture at any tine can be represented by

$$
\begin{align*}
& M_{7}=M_{7,0}-M_{9,0} \tag{4-51}\\
& M_{9}=0 \tag{4-52}
\end{align*}
$$

where $M_{7,0}$ is the molal quantity of sulfuric acid presented in the initial mixture. Since acrylamide sulfate is very nonvolatile.

$$
\begin{equation*}
A_{6} \cong M_{6} \tag{4-53}
\end{equation*}
$$

Equation (4-53) can be incorporated with the relationships given in Equation (4-50) to give

$$
\begin{equation*}
M_{5}=M_{9,0}-\left(A_{2}+A_{5}\right) \tag{4-54}
\end{equation*}
$$

4.4 Individual Rates of Hass Appearance and/or Disappearance

4.4.1 Ethyl Alcohol

Ethyl alcohol is involved in three chemical reactions, i.e., Reactions (1), (2) and (3). The molal rate of ethyl alcohol consumptions by the reactions is

$$
v\left(R_{i}+2 R_{2}+2 R_{3}\right)
$$

Substituting the above into Equation (3-20) for ethyl alcohol yields

$$
\frac{d M_{1}}{d t}=L_{1, I N}+V_{1, I N}-V_{1, \text { OUN }}-v\left(R_{1}+2 R_{2}+\underset{(4-55)}{\left.2 R_{3}\right)}\right.
$$

4.4.2 Ethyl Acrylate

Both liquid and vapor feeds to the system contain no ethyl acrylate. Therefore,

$$
L_{2, I N}=V_{2, I N}=0
$$

It is the main product of the esterification and leaves the system as a part of the exit vapor. It may be consumed by addition of ethyl alcohol to give β-ethoxyethyl propionate. However, the formation of $\beta-e t h o x y-$ ethyl propionate is a very slow reaction and has been proved to be more dependent on the concentrations of ethyl alcohol and acrylamide sulfate. Thus, the nolsi reaction rate of ethyl acrylate is mostly attributed to Reaction (1), vR_{1}. Substituting this quantity into Equation (3-20) gives the equation for rate of appearance of ethyl acrylate in the system.

$$
\begin{equation*}
\frac{\partial M_{2}}{d t}=-V_{2, O U T}+\mathrm{VR}_{1} \tag{4-56}
\end{equation*}
$$

4.4.3 Na.ter

All the streans entering and leaving the system contain water. It is also formed as a by-product by Reaction (2) of which main product is diethyl ether. Its rate of fomation is $v R_{2}$ and Equation (3-20) can be written in the following form for water.

$$
\begin{equation*}
\frac{d N_{3}}{d t}=L_{3, I N}+V_{3, I N}-V_{3, O U T}+V R_{2} \tag{4-57}
\end{equation*}
$$

4.4.4 Diethyl Ether

The feeds contain no ether and it is produced by Reaction (2). Thus, the rate of mass change of diethyl ether is expressed as

$$
\begin{equation*}
\frac{\mathrm{dM}_{4}}{d t}=-\mathrm{v}_{4, \mathrm{oUT}}+\mathrm{vR}_{2} \tag{4-58}
\end{equation*}
$$

4.4.5 6-Ethoxy-Ethyl Propionate

The source of β-ethoxy ethyl propionate is Reastion (3). It is volatile and leaves the system in the exit vapor. Thus,

$$
\begin{equation*}
\frac{\partial \mathrm{H}_{5}}{d t}=-\mathrm{v}_{5, \text { OUT }}+\mathrm{vR}_{3} \tag{4-59}
\end{equation*}
$$

4.4.6 Acrylamide Sulfate

Acrylamide sulfate does not enter and leave the system. It is only consumed by chemical reactions within the system. Differentiation of Equation (4-54) gives the rate of consumption of acrylamide sulfate as a function of production rates of ethyl acrylate and β-ethoxy-ethyl propionate as follows:

$$
\begin{equation*}
\frac{\mathrm{dM}_{6}}{d t}=-\left(\frac{\mathrm{dA}_{2}}{d t}+\frac{\mathrm{dA}_{5}}{d t}\right) \tag{4-60}
\end{equation*}
$$

Now, the rate of production of ethyl acrylate can be expressed as

$$
\begin{equation*}
\frac{d A_{2}}{d t}=v R_{1} \tag{4-61}
\end{equation*}
$$

where v is the volume of total liquid in the system. The production rate of β-ethoxy ethyl propionate can be expressed by Equation (4-47) which can be rewritten as follows:

$$
\begin{equation*}
\frac{d A_{5}}{d t}=v R_{3} \tag{4-82}
\end{equation*}
$$

Equations (4-61) and (4-62) can be introduced into Equation (4-60) to yield

$$
\begin{equation*}
\frac{d M_{6}}{d t}=-v\left(R_{1}+R_{3}\right) \tag{4-63}
\end{equation*}
$$

4.4.7 Sulfuric Acid

Sulfuric acid is charged to the system only once before the system operation. It is very nonvolatile. Its presence in vapor condensate can not be detected by titration with barium chloride solution. Since sulfuric acid is also not generated or consumed by chemical reactions, it has a zero molal rate of change obtained from diffecentiation of Equation (4-52) with respect to
time.

$$
\begin{equation*}
\frac{\mathrm{dM}_{2}}{\mathrm{dt}}=0 \tag{4-64}
\end{equation*}
$$

4.4.8 Amnonium Bisuifate

The sources for ammonium busulfate are Reactions (1) and (3). Thus,

$$
\begin{equation*}
\frac{d n_{8}}{d t}=v\left(R_{1}+R_{3}\right) \tag{4-65}
\end{equation*}
$$

Ammonium bisulfate is a very nonvolatile solid. The outlet vapor contajns no trace of it.
4.4.9 Acrylamide

Similar to sulfuric acid, the expression for $\frac{d M_{9}}{d t}$
can be obtained by dirferentiating Equation (4-53).

$$
\begin{equation*}
\frac{d M_{9}}{d t}=0 \tag{4-66}
\end{equation*}
$$

4.4.10 Overall Rates of Mass and Energy Changes

Summation of Equations (4-55) to (4-59) and (4-63)
to ($4-66$) gives the overall mass change rate as follows:

$$
\begin{equation*}
\frac{d r i}{d t}=V_{I N}+I_{I N}-V_{O U T}-v R_{3} \tag{4-67}
\end{equation*}
$$

where

$$
\begin{aligned}
& L_{I N}=L_{1, I N}+L_{3, I N} \\
& V_{I N}=v_{1, I N}+v_{3, I N} \\
& V_{\text {OUT }}=\sum_{i=1}^{5} v_{i, O U T}
\end{aligned}
$$

The heat loss from the system to the surrounding can be represented by the heat transfer rate equation.

$$
\begin{equation*}
Q_{L}=U_{i} i_{i}\left(T-T_{0}\right) \tag{4-6.3}
\end{equation*}
$$

where

$$
\begin{aligned}
\dot{a}_{i}= & \text { inside heat transfer area } \\
U_{i}= & \text { overall heat transfer coefficient in terms } \\
& \text { of inside heat transfer area }
\end{aligned}
$$

Substituting this equation into Equation (3-14a) yjades the following expression for temperature change in the system

$$
\begin{align*}
\frac{d T}{d t}= & \frac{1}{M C p}\left(L_{I N} h_{I N}+V_{I N} H_{I N}-V_{O U T} H_{O U T}+V \sum_{j=1}^{3} R_{j}(\right. \\
& \left.\left.-\Delta H_{R, j}\right)-U_{i} a_{i}\left(T-T_{0}\right)-h_{S} \frac{d M}{d t}\right](4-69) \tag{4-69}
\end{align*}
$$

4.5 Mass Transfer Effects on Reaction Rates

> 4.5.1 Hatte's Film Theory

The reaction rates as discussed in the previous sections are affected by mass transfer of molecular
species at the interface. The mass transfer effects are very complex, but its characteristics can be analyzed and discussed by the use of Hatta's film theory (28,29,30,31). Though actual reactions involved in the present study are the pseudo-high-order reactions the film theory will be initially considered for a firstorder irreversịble chemical reaction. A basic mathematical model developed will then be modified and extended to the present system. Let the reaction be

$$
A \xrightarrow{k} P
$$

where

$$
\begin{aligned}
& A=\text { reactant } \\
& P=\text { product } \\
& K=\text { reaction rate constant }
\end{aligned}
$$

In this study, the reactant enters the system through both gas and liquid feed streams. The case with only gas feed stream will be discussed first. Its liquidgas interface can best be postulated by Fig. 4.2.

According to Hatta's film theory, for any given moment, the rate of change of mass flux by diffusion was set equal. to the chemical reaction rate, assuming the rate of accumulation in the thin film is comparable very small and negligible. The relationship can be expressed as

Gas

Pig. 4.2 Gas Absorption Accompanied by Chemical Keaction

Fig. 4.3 Fraction of Unreacted Reactant Entering the Liquid BuIk

Fig. 4. 4 Concentration Gradient for a Very Fast Reaction During Gas Absorption
where

$$
\begin{equation*}
\mathscr{\infty} \frac{\mathrm{a}^{2} \mathrm{C}}{\mathrm{dx}}=\mathrm{kC} \tag{4-71}
\end{equation*}
$$

$$
x=\text { axial distance }
$$

$\mathrm{k}=$ reaction rate constant
$C=$ concentration of dissolved gas reactant in liquid film
$\theta=$ diffusivity of dissoived gas reactant through liquid film

The corresponding boundary conditions are
(1) $\mathrm{x}=0$
$C=C_{i}$
(2) $x=\delta$
$c=c_{b}$
where

$$
\begin{aligned}
& \delta=\text { film thickness } \\
& C_{i}=\text { interface concentration of reactant } A \\
& C_{b}=\text { concentration of reactant } A \text { in liquid bulk } \\
& C_{i}>C_{b}
\end{aligned}
$$

A solution for Equation (4-71) can be obtained readily in the form of

$$
\begin{equation*}
C=A_{1} \sinh \alpha x+A_{2} \cosh \alpha x \tag{4-74}
\end{equation*}
$$

where

$$
\alpha=\sqrt{\mathrm{k} / \Phi}
$$

The bourdary conditions (4-72) and (4-73) can be substituted in Equation ($4-74$) yielding the following
expression for the concentration of reactant A within the liquid film,

$$
\begin{equation*}
c=\frac{c_{b} \sinh \alpha x+c_{i} \sinh \alpha(\delta-x)}{\sinh \alpha \delta} \tag{4-75}
\end{equation*}
$$

The rate of diffusion of solute A into the liquid is obtained from

$$
\begin{equation*}
N_{A}=-\left.Q \frac{d C}{d x}\right|_{x=0}=\frac{Q\left(-c_{b}+c_{i} \cosh \alpha \delta\right)}{\sinh \alpha \delta} \tag{4-76}
\end{equation*}
$$

Also the rate of diffusion of solute A into the bulk of the liquid is obtained by substitutirg $x=S$;

$$
\begin{equation*}
N_{A}^{\prime}=-\left.\theta \frac{d C}{d x}\right|_{x=\delta}=\frac{\theta\left(C_{j}-C_{b} \cosh \alpha \delta\right)}{\sinh } \tag{4-77}
\end{equation*}
$$

Of the solute A entering the liquid phase, the fraction E reaching the liquid bulk without reacting is given by

$$
\begin{equation*}
\epsilon=\frac{c_{j}-c_{b} \cosh \alpha \delta}{c_{i} \cosh \alpha \delta-c_{b}} \tag{4-78}
\end{equation*}
$$

The reacted fraction \Leftrightarrow of solute A for C_{b} equal to zero is shown in Fig. 4.3.

For a very slow reaction, i.e., $\delta \sqrt{\mathrm{k}^{/} \mathscr{\infty}} \rightarrow 0$, all the absorbed reactants enter the liquid bulk without reaction, For a fast reaction, the solute disappears very quickly as it noves across the liquid film. For a very fast reaction, the dissolved A is entirely consumed by the reaction within the liquid film as shown in Fig. 4.4.

The boundary conditions for such a situation are
(1.) $\mathrm{x}=0$
$C=C_{i}$
(2) $x=\beta \delta$
$C=0, \quad 0<\beta \leq 1$

The solution of Equation (4-71) with the above boundary conditions is

$$
\begin{equation*}
c=\frac{c_{i} \sinh \alpha(\beta \delta-x)}{\sinh \alpha \beta \delta} \tag{4-80}
\end{equation*}
$$

Next, consider the case where a liquid reactant A diffuses through the liquid film toward the gas phase. Its gas-liquid interface can be illustrated by fig. 4.5. The rate equation, boundary conditions, and solution for this case are identical to Equations (4-71), (4-72), and (4-73) for gas-absorption accompanied by chemical reaction except that the concentration in liquid bulk, C_{b} is greater than that at the gas-ijquid interface, C_{i}. For a very slow reaction, i.e., $\delta \sqrt{k / \theta} \longrightarrow 0$, all the reactants diffused from the liquid bulk are evaporated into the gas bubble without reaction. For a fast reaction, the solute disappears very quickly as it moves across the liquid film. For a very fast reaction, the dissolved A is entirely consumed by the reaction within the liquid film as shown in Fig. 4.6. The boundary conditions for such a case will be

$$
\begin{equation*}
\text { (1) } x=p \delta \quad C=0 \tag{4-79}
\end{equation*}
$$

Fig. 4.5 Concentration Gradient for Liquid Evaporation with Chemical Reaction

Fig. 4.6 Concentration Gradient for A Very Fast Reaction During Liquid Evaporation

$$
\begin{equation*}
\text { (2) } x=\delta \quad c=c_{b} \tag{4-73}
\end{equation*}
$$

The solution of Equation ($4-71$) with the above boundary conditions can be solved readily:

$$
\begin{equation*}
c=\frac{C_{b} \sinh \alpha(x-\beta \delta)}{\sinh \alpha \delta(1-\beta)} \tag{4-81}
\end{equation*}
$$

There is no reactant A entering the gas bubble and Equation (4-81) can be obtained from a more general solution of Equation ($4-75$) by proper substitution.

Finally, consider a combined case in which the reactant A is supplied from both gas bubble and liquid bulk. For a very fast reaction, the reactant A coming from the gas bubble completely disappears in the film at $x=\beta \delta$ and that coming from the liquid bulk disappears at $x=\xi \delta$ as shown by Fig 4.7. Since this is a combination of Fig 4.3 and Fig 4.5, the solutions for the concentration gradients are identical to Equations (4-80) and (4-81) except that the fraction β shown in Equation ($4-81$) should be replaced by ξ. The complete solution for this case are as follows:

$$
\begin{cases}c=\frac{c_{i} \sinh \alpha(\beta \delta-x)}{\sinh \alpha \beta \delta} & 0 \leq x \leq \beta \delta \tag{4-82a}\\ c=0 & \beta \delta \leq x \leq \xi \delta \\ C=\frac{c_{b} \sinh (x-\xi \delta)}{\sinh (1-\xi)} & \xi \delta \leq x \leq \delta\end{cases}
$$

A special case for the above equations is applied when

Fig. 4.7 Concentration Gradient for A Moderate Fast Reaction with Reactant Coming from both Gas Bubble and Liquid Bulk

Fig. 4. 8 Concentration Gradient for A Woderate Slow Reaction with Reactant Coming from both Gas Bubble and Liquid Bulk
the two concentration curves become zero at the same point, i.e., $\xi=\beta$. The solutions become

$$
\begin{cases}c=\frac{c_{i} \sinh \alpha(\beta \delta-x)}{\sinh \alpha \beta \delta} & 0 \leq x \leq \beta \delta \tag{4-83a}\\ C=\frac{c_{b} \sinh \alpha(x-\beta \delta)}{\sinh \alpha \delta(1-\beta)} & \beta \delta \leq x \leq \delta\end{cases}
$$

For moderate reaction rate, the two concentration curves will intersect at a point $\beta \delta$ and have same concentration, C_{m} as shown by Fig. 4.8. The boundary conditions for such a situation include the following two sets:

$$
\begin{align*}
& \text { Set } 1 \begin{cases}x=0 & c=c_{i} \\
x=\beta \delta & c=c_{m}\end{cases} \tag{4-72}\\
& \text { Set } 2 \begin{cases}x=\beta \delta & c=c_{m} \\
x=\delta & c=c_{b}\end{cases} \tag{4-8i4}
\end{align*}
$$

The solution of Equation (4-86) and the above boundary conditions can be obtained readily as

$$
\left\{\begin{array}{l}
c=\frac{c_{m} \sinh \alpha x+c_{i} \sinh \alpha(\beta \delta-x)}{\sinh \alpha \beta \delta}, \quad 0 \leq x \leq \beta \delta(4-85 a) \\
C=\frac{c_{m} \sinh \alpha(\delta-x)+c_{b} \sinh \alpha(x-\beta \delta)}{\sinh \alpha \delta(1-\beta)}
\end{array}\right.
$$

$\beta \delta \leq x \leq \delta(4-85 b)$
Again, if C_{m} is equal to zero, Equations (4-85a) and (4-85b) can then be reduced to a special case whose
solutions are represented by Equations (4-83a) and (4-83b).

Now, if the interface area of all the bubbles in the system is a $\mathrm{cm}^{2} / \mathrm{cm}^{3}$ clear liquid volume, the rate of mass produced and/or consumed by reaction in the liquid film surrounding the bubbles will be

$$
\begin{equation*}
W_{f}=\int_{0}^{\delta} \operatorname{aitc} d x \tag{4-86}
\end{equation*}
$$

A more general form of the reactant concentration gradient, ie., Equation ($4-85 \mathrm{a}$) and ($4-85 \mathrm{~b}$), is substituted into Equation ($4-36$) to yield the rate oi mass generation or consumption within the liquid films.

$$
\begin{aligned}
& W_{f}=\int_{0}^{\delta} a k C d x=a k \int_{0}^{\beta \delta}\left[\frac{c_{m} \sinh \alpha x+c_{i} \sinh (\beta \hat{\delta}-x)}{\sinh \alpha \beta \delta}\right] d x \\
& +\int_{\beta \delta}^{\delta}\left[\frac{c_{\mathrm{m}} \sinh \alpha(\delta-x)+c_{b} \sinh \alpha(x-\beta \delta)}{\sinh \alpha \delta(1-\beta)}\right] d x \\
& =\frac{a k}{\sinh \alpha \beta \delta}\left[\frac{c_{m}}{\alpha} \cosh \alpha x-\frac{c_{i}}{\alpha} \cosh \alpha(\beta \delta-x)\right]_{0}^{\beta \delta} \\
& +\frac{a k}{\sinh \alpha \delta(1-\beta)}\left[-\frac{C_{m}}{\alpha} \cosh \alpha(\delta-x)+\frac{c_{b}}{\alpha} \cosh \alpha(x-\beta \delta)\right]_{-\beta \delta}^{\delta} \\
& =\frac{a k}{\alpha \sinh \alpha \beta \dot{j}}\left[c_{m}(\cosh \alpha \beta \delta-1)-c_{i}(1-\cosh \alpha \beta \delta)\right] \\
& +\frac{a k}{\alpha \sinh \alpha \delta(1-\beta)}\left[-C_{m}\{1-\cosh \alpha \delta(1-\beta)\}+\right. \\
& \left.c_{b}\{\cosh \alpha \delta(1-\beta)-1\}\right]
\end{aligned}
$$

$$
=\frac{a k\left(C_{m}+C_{i}\right)(\cosh \alpha \beta \delta-1)}{\alpha \sinh \alpha \beta \delta}+\frac{\operatorname{ak}\left(C_{m}+C_{b}\right)[\cosh \alpha \delta(1-\beta)-1]}{\alpha \sinh \alpha \delta(1-\beta)}
$$

It will be of interest to predict the behavior, by the above equation, of the system under extreme conditions.

If the diffusional mass transfer rate is very large compared to the reaction rate, the mass transfer resistance will be very small such that $\delta \longrightarrow 0$. With $\delta \rightarrow 0$, Equation ($4-87$) can be reduced to zero:

$$
\begin{aligned}
& \operatorname{Lim}_{\delta \rightarrow 0} \int_{0}^{\delta} a k c d x=\operatorname{Lim}_{\delta \rightarrow 0} \frac{a k\left(C_{m}+C_{i}\right)\left(\cosh \alpha \beta c^{\delta}-1\right)}{\alpha \sinh \times \beta \delta} \\
& +\operatorname{Lim}_{\delta \rightarrow 0} \frac{\operatorname{ak}\left(C_{m}+C_{b}\right)[\cosh \alpha \delta(1-\beta)-1]}{\alpha \sinh \alpha \beta(1-\beta)} \\
& =\frac{\operatorname{ak}\left(C_{m}+C_{i}\right)}{\alpha} \operatorname{Lim}_{\delta \rightarrow 0} \frac{\cosh \alpha \beta \hat{\delta}-1}{\sinh \alpha \beta \delta}+\frac{\operatorname{ak}\left(C_{m}+C_{b}\right)}{\alpha} \operatorname{Lim}_{\delta \rightarrow 0} \\
& \frac{\cosh \alpha \delta(1-\beta)-1}{\sinh \alpha \delta(1-\beta)} \\
& =\frac{a k\left(C_{m}+C_{i}\right)}{\alpha} \operatorname{Lim}_{\delta \rightarrow 0} \frac{\alpha \beta \sinh \alpha \beta \delta}{\alpha \beta \cosh \alpha \beta \delta}+\frac{a k\left(C_{m}+C_{i}\right)}{\alpha} \operatorname{Lim}_{\delta \rightarrow 0} \\
& \frac{\alpha(1-\beta) \sinh \operatorname{si} \delta(1-\beta)}{\alpha(1-\beta) \cosh \alpha \delta(1-\beta)} \\
& =0
\end{aligned}
$$

This means that the production or consumption is almost none within the liquid film and that all the reactions take
place in the liquid bulk if the diffusional mass transfer rate is extremely large.

On the other hand, if the reaction rate is extremely high compared with the diffusion rate, Equations (4-82a). $(4-82 b)$ and $(4-82 c)$ can be substituted into Equation (4-86) giving

$$
\begin{align*}
& \int_{0}^{\delta} \operatorname{akC} d x=\frac{\operatorname{akC} j}{\sinh \gamma \beta \delta} \int_{0}^{\beta \delta} \sinh \alpha(\beta \mathcal{F}-x) d x+\int_{\beta \delta}^{-\frac{\delta}{\delta}} 0 d x \\
& +\frac{a k C_{b}}{\sinh \alpha \delta(1-\beta)} \int_{\xi \delta}^{\delta} \sinh \alpha(x-\beta \oint) d x \\
& =\frac{-a k C_{i}}{\alpha \sinh \alpha \beta \delta}[\cosh \alpha(\beta \delta-x)]_{0}^{\beta \delta} \\
& +\frac{\operatorname{akc}_{b}}{\alpha \sinh \omega^{\prime} \delta(1-\hat{\xi})}[\cosh \alpha(x-\hat{\xi} \delta)]_{\frac{j}{j}}^{\delta} \\
& =\frac{a k C_{i}(\cosh \alpha \beta \hat{j}-1)}{\alpha \sinh \alpha \beta \delta}+\frac{a k C_{b}[\cosh \alpha \delta(1-\hat{j})-1]}{\alpha \sinh \alpha \delta(1-\hat{j})} \tag{4.-88}
\end{align*}
$$

If there is no liquid feed, ie., $C_{b}=0$, the overall amount of reactant consumed within the film will depend on gas-licuid interfacial solubility C_{i} only, and no reactant diffuses into the liquid bulk from the vapor bubbles. On the contrary, if there is no vapor feed, ie., $C_{i}=0$, there will be no reactant appearing in the generated vapor bubbles.

4.5.2 Reaction in Liquid Bulk

Since the iiquid portion of the feed contains a reactant, ethyl alcohol, the reaction also takes place continuously in the liquid bulk. The rate of mass production and consumption in the liquid bulk is dew signated W_{B} and can be expressed as follows.

$$
\begin{equation*}
W_{B}=k C_{b}(v-a \delta) \tag{4-89}
\end{equation*}
$$

Where v is the clear liquid volume. It should be noted that the volume of liquid bulk excluding the film is represented by (v-ad).

4.5.3 Overall Rates of Mass Production of Consumption

Since a component is consumed or produced both within the liquid film and in the liquid bulk, its overall mass rate of production or consumption can be expressed as

$$
W_{T}=W_{I}+W_{B}
$$

Substituting Equations (4-87) and (4-89) into the above yields

$$
\begin{align*}
W_{T}= & \frac{a k\left(C_{m}+c_{i}\right)(\cosh \alpha \beta \delta-1)}{\alpha \sinh \alpha \beta \delta}+\frac{a k\left(c_{m}+c_{b}\right)[\cosh \alpha \delta(1-\beta)-1]}{\alpha \sinh \alpha \delta(1-\beta)} \\
& +k C_{b}(v-a \delta) \tag{4-90}
\end{align*}
$$

If the reaction rate for a unit volume is designated by $R_{i n}$, then

$$
\begin{equation*}
W_{T}=R_{T} V \tag{4-91}
\end{equation*}
$$

Equating Equations ($4-90$) and ($4-91$) gives

$$
\begin{aligned}
R_{T}= & \frac{1}{v}\left\{\frac{a k\left(c_{\mathrm{r}}+c_{i}\right)(\cosh \alpha \beta \hat{\beta}-1)}{\alpha \sinh \alpha \beta}+\right. \\
& \left.\frac{\operatorname{ak}\left(c_{\mathrm{n}}+c_{\mathrm{b}}\right)[\cosh \alpha \beta(1-\beta)-1]}{\alpha \sinh \alpha \delta(1-\beta)}+k c_{b}(v-a \delta)\right\}
\end{aligned}
$$

or,

$$
\begin{align*}
R_{T}= & k C_{v}\left(1-\frac{a \delta}{v}\right)+\frac{a k\left(C_{m}+C_{i}\right)(\cosh \alpha \beta \delta-1)}{\alpha v \sinh \alpha \beta} \\
& +\frac{a k\left(C_{m}+C_{b}\right)[\cosh \alpha \delta(1-\beta)-1]}{\alpha v \sinh \alpha \delta(1-\beta)} \tag{4-92}
\end{align*}
$$

4.5.4 Mass Transfer Effects Correction Factors

In order to account for the mass transfer effects, a mass transfer correction factor is introduced to the following intrinsic rate expression,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{T}}=\eta \mathrm{kC}_{\mathrm{T}} \tag{4-93}
\end{equation*}
$$

where
η : mass transfer correction factor on the intrinsic rate expression
k: intrinsic rate constant
C_{If} : concentration measured from an overall liquid sample

Equating the exact solution, Equation (4-92) and the defining equation, Equation (4-93) givos

$$
\begin{align*}
\eta= & \frac{C_{b}}{C_{T}}\left(1-\frac{a \delta}{v}\right)+\frac{a\left(C_{i}+C_{m}\right)(\cosh \alpha \beta \delta-1)}{\alpha C_{T} \sinh \alpha \beta \delta} \\
& +\frac{a\left(C_{m}+C_{b}\right)[\cosh \alpha \delta(1-\beta)-1]}{\alpha V C_{T} \sinh \alpha \delta(1-\beta)} \tag{4-94}
\end{align*}
$$

Equation (4-94) contains three terms which represent the mass transfer effects on reaction rates, namely film thickness, interfacial area, and interfacial concentration. These three terms, δ_{i}, a and C_{i} cannot be measured directly and separately. Therefore, it is convenient and practical that the correction factor, η. is introduced to lump the three unmeasurable variables into one.

As the values of the liquid film thickness, the interfacial area, and the interfacial concentrations are affected by the system operating conditions, the mass transfer effects correction factor is character$i z \in d$ by the same system parameters. These parameters are numerous and include those related to physical dimensions and shape of the apparatus, operating and flow conditions, and transport properties of the system. It is too ambitious to studys the effects of all the parameters on the correction factors. For the present study, therefore, the number of the parameters of which the effects are to be investigated is limited to four. These variables ares

1. Initial system temperature and surrounding temperature, T_{0}
2. Total feed rate, F
3. Relative ratio of feed vapor to total feed, ψ
4. System temperatur, T

Thus, the correction factor, η, can be expressed by

$$
\begin{equation*}
\eta=\eta\left(\mathrm{T}_{0}, \mathrm{~F}, \psi, \mathrm{~T}\right) \tag{4-95}
\end{equation*}
$$

It is noted that the first three variables, T_{0}, F, and ψ change from one experimental run to another but are set equal to certain constant values during a given run. The system temperature I is a time-dependent function during each run. It is assumed that η-function is a product of two separate functions as follows:

$$
\eta_{1}=\eta\left(T_{0}, F, \psi, T\right)=\eta_{s}\left(T_{0}, F, \psi\right) \cdot \eta_{T}(T) \quad(4-96)
$$

The above apprach is useful because one function η_{S}, which is not time-dependent, is separated from the other η_{T}, which is time-dependent. It is further assumed that the temperature dependent function, η_{T}, is related to temperature in a functional relationship similar to the Arrhenius Equation, namely,

$$
\begin{equation*}
\eta_{T}(T)=e^{-E \eta / R T} \tag{4-97}
\end{equation*}
$$

where

$$
R=\text { gas constant }=1.987 \mathrm{cal} / \mathrm{g}-\mathrm{mole}-{ }^{\circ} \mathrm{C}
$$

Substituting Equation (4-97) into Equation (4-96) gives
the following expression for the mass transfer coefficient factor:

$$
\begin{equation*}
\eta_{=}=\eta_{\mathrm{s}} \eta_{\mathrm{s}}=\eta_{\mathrm{s}} \mathrm{e}^{-\mathrm{E} \eta / R T} \tag{4-98}
\end{equation*}
$$

It is recalled that the Arrhenius Equation relates the reaction rate constant k to temperature as follows

$$
\begin{equation*}
k=k_{o} e^{-E_{0} / R T} \tag{4-99}
\end{equation*}
$$

Substituting Equation (4-98) and (4-99) into Equation (4-93) yields

$$
\begin{aligned}
R_{R} & =\eta L C_{T}=\left[\eta_{s} e^{-E_{\eta} / R T}\right]\left[K_{0} e^{-E_{0} / R T}\right] C_{T} \\
& =\eta_{S} k_{0} e^{-\left(E_{\eta}+E_{o}\right) / R T}
\end{aligned}
$$

or

$$
\begin{equation*}
R_{\mathrm{L}}=K_{m} e^{-E_{m} / R T} \mathcal{C}_{\mathrm{m}} \tag{4-100}
\end{equation*}
$$

where

$$
\begin{align*}
& E_{m}=E_{\eta}+E_{0} \tag{4-100a}\\
& K_{m}=\eta_{s} k_{0} \tag{4-100b}
\end{align*}
$$

Furthermore, if an intrinsic reaction rate equation

$$
\begin{equation*}
R_{T}=k_{m} C_{T} \tag{4-101}
\end{equation*}
$$

is adopted for expressing the overall reaction rate which indicates not only the reaction kinetics but also the mass transfer effects, the constant, k_{m} can
be represented by the Arrhenius-type equetion

$$
\begin{equation*}
k_{m}=k_{m} e^{-E_{m} / R T} \tag{4-102}
\end{equation*}
$$

It is emphasized that the terms, k_{m}, E_{m}, and K_{m}, as defined by their respective equations, include the variables representing the contributions from both reaction kinetics and mass transfer.

4.5.5 Pseudo-High-Order Reactions

As discussed earlier, the chemical reactions encountered in this study are more complex and pseucio-hishorder reactions. The mathomatical analysis and models for the rate expressions including mass transfer effects for such reactions will be extremely complex but the basic approach in deriving Equations (4-100) to (4-102) may be extended to the high-order reactions. Thus,

$$
\begin{aligned}
& \text { For Reaction } 1 \text { - Esterification } \\
& R_{1, T}=k_{m, 1} C_{1, T} C_{6, T}=K_{m, 1} e^{-E_{m, 1} / R T} C_{1, T^{C}}^{C, T}
\end{aligned}
$$

$$
(4-103)
$$

For Reaction 2 - Dehydration

$$
\begin{equation*}
R_{2, T}=k_{m, 2} C_{1, T}^{2}=K_{m, 2} e^{-E_{m, 2} / R T_{C}^{2}} C_{1, T}^{2} \tag{4-104}
\end{equation*}
$$

For Reaction 3-Successive Reaction

$$
\begin{equation*}
R_{3, T}=k_{m, 3} C_{1, T}^{2} C_{6, T}=K_{m, 3} e^{-E_{\text {rin }}, 3 / R T} C_{1, T}^{2} C_{6, T} \tag{4-105}
\end{equation*}
$$

The rate equations should then be used to calculate the respective rates, R_{i} 's, in the series of equations derived in Section 4.4.1 through 4.4.10.
4.6 Relationship between the Vapor and Liquid Composition

Both chemical reaction and mass transfer affects the vapor-liquid relationship of a reaction-distillation system, The effects of chemical reaction on a vapor-liquid equilibrium system reflect in the activity coefficients while the effects of mass transfer deviate the system from vapor-liquid equilibrium. In order to reduce the mass transfer effects to the minimum and consequently to obtain a perfectly or nearly perfectly mixed tray as assunech previously, a micro-sieve distillation tray equipped with with a high speed stirrer and three baffle plates is then employed. The micro-sieve tray ($60-75$) produces very tiny bubbles resultirg in large interfacial area as well as excellent mixing. The stirrer and the baffle plates provide good mixing and good contact wi.th the vapor bubbles as well as liquid droplets, therefore, it is reasonable to consider that the sieve tray used in this study can be treated as an ideal tray and the vapor leaving the tray is momentarily in equilibrium with the liquid mixture on the tray.

The equilibrium mole fractions of component i in the vapor and liquid phases may be related by the following
definition.

$$
\begin{equation*}
y_{i}=K_{i} x_{i} \tag{4-106}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{K}_{\mathbf{i}}=\text { vapor-liquid equilibrium ratio } \\
& \mathrm{y}_{\mathrm{i}}=\text { vapor mole fraction } \\
& \mathrm{x}_{\mathbf{i}}=\text { liquid mole fraction }
\end{aligned}
$$

When a chemical reaction is present in the liquid phase, it proceeds until the chemical equilibrium is attained. The vapor-liquid concentration relationship which is sought for the distillation accompanied by chemical reaction is, in general, not that under the chemical equilibrium. Instead, the interest is to determine the relationsinp of vapor and liquid compositions while they are still under the influence of active chemical reaction. A typical example is the vapor-liquid equilibrium relationship obtained by Hirata and Komatsu (32,33.34), as mentioned previously in section 2.1.2, for the esterification of acetic acid and ethyl alcohol.

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COCO}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \tag{4-107}
\end{equation*}
$$

For the present study, it is also assumed that there exists an instantaneous equilibrium at any moment between the vapor leaving the system and the liquid remaining in the system. The instantaneous temperature so measured is considered to be the bubble point of the liquid corres-
ponding to vapor-liquid equilibrium.

Component i in vapor and liquid are in equilibrium if, and only if, fugacity of vapor phase is equal to that of liquid phase.

$$
\begin{equation*}
f_{i}^{V} \equiv f_{i}^{L} \tag{4-108}
\end{equation*}
$$

where

$$
\begin{aligned}
& f_{i}^{V}=\text { vapor phase fugacity } \\
& f_{i}^{L}=\text { liquid phase fugacity }
\end{aligned}
$$

The vapor phase fugacity is related to the vapor phase mole fraction through the vapor phase fugacity cocieicient ϕ_{i} by

$$
\begin{equation*}
f_{i}^{V}=\phi_{i} y_{i} P \tag{4-109}
\end{equation*}
$$

where

$$
\begin{aligned}
& \phi_{i}=\text { vapor phase fugacity cocfficient } \\
& p=\text { total system pressure } \\
& y_{i}=\text { mole fraction of component in vapor phase }
\end{aligned}
$$

The liquid phase fugacity f_{i}^{L} is related to the liquid phase mole fraction x_{i} by an activity coefficient and a standard-state fugacity. In this study, the liquid solution is extremely complex. As discussed in Section 4.2s it contains nine compounds as well as their associated ionic species. These ionic species are all initiated by the protons supplied by sulfuric
acid at the presence of water. The amount of free sulfuric acid in the liquid solution is essentially fixed for all the experimental runs at any instance. The amount of water is increased due to a continuous feed and a dehydration reaction but decreased diee to a continuous evaporation. The resulting amount of water from the above thrce functions gives an almost constant water mole fraction in the liquid solution. Therefore, the effects of the liquid compositions of all the ionic species: on the activity coefficients of the nine compounds in the system may have little variations, PhereFore, it is reascnable, as a practical application, to set up vapor-iqquid equilibria for this reaction-dism tillation system only based. on the thermophysical properties of these nine compounds. That is, all the ionic species are included in their corresponding compound. Since all the compounds in the system are condensable, the following form given by Prausnitz, et al. (53) for the liquid fugacity coefficient of a condensable component is then adopted here.

$$
\begin{equation*}
f_{i}^{I}=\gamma_{i} x_{i} f_{i}^{O L} \exp \left(\int_{P}^{P} \frac{\bar{v}_{i}^{I} d P}{R T}\right) \tag{4-11.0}
\end{equation*}
$$

where

$$
\begin{aligned}
f_{i}^{o L}= & \text { standard-state fugacity, i.e., fugacity of } \\
& \text { pure liquid i at temperature } T \text { adjusted to } \\
& \text { the reference pressure } P^{r}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{I}_{i}= & \text { activity coefficient of component } i \text { at tem- } \\
& \text { perature } T \text { adjusted to the reference pressure } \mathrm{p}^{r} \\
\stackrel{\rightharpoonup}{\mathrm{~V}}_{i}^{\mathrm{L}}= & \text { partial molal volume of } i \text { in the solution at } \\
& \text { temperature } T .
\end{aligned}
$$

The standard-state fugacity' is given by

$$
\begin{equation*}
f_{i}^{O I}=p_{i}^{0} \phi_{i}^{0} \exp \left(\int_{p_{i}^{o}}^{P^{Y}} \frac{v_{i}^{L}}{R T} d P\right) \tag{4-111}
\end{equation*}
$$

where

$$
\begin{aligned}
p_{i}^{o}= & \text { saturated vapor pressure of pure liquid } i \\
\phi_{i}^{o}= & \text { fugacity coefficient of pure vapor } i \text { at } \\
& \text { temperature } T \text { and pressure } p_{i}^{o} \text {, and } \\
v_{i}^{L}= & \text { molar liquid volume of pure component } i \\
& \text { at temperature } T .
\end{aligned}
$$

Since the solution in the system is far from critical conditions, v_{i}^{L} and $\overline{\mathrm{v}}_{\dot{i}}^{\mathrm{I}}$ are of negligible difference. Equations ($4-110$) and ($4-111$) can ther be combined and simplified to

$$
\begin{equation*}
f_{i}^{L}=\gamma_{i} x_{i} p_{i}^{0} \phi_{i}^{0} \exp \left(\int_{p_{i}^{0}}^{P} \frac{v_{i}^{I}}{R T} a P\right) \tag{4-112}
\end{equation*}
$$

Also, at low subcritical conditions, the liquid molar volume v_{i}^{L} may be considered to be independent of system pressure (53), Equation (4-112) may be further reduced to:

$$
\begin{equation*}
f_{i}^{L}=\gamma_{i} x_{i} p_{i} \phi_{i} \exp \left[\frac{v_{i}^{L}\left(P-p_{i}^{o}\right)}{R T}\right] \tag{4-113}
\end{equation*}
$$

Substituting Equations (4-109) and (4-113) into Equation (4-108) gives the following vapor-liquid equilibrium relationship.

$$
\begin{equation*}
\phi_{i} y_{i} P=\gamma_{i} x_{i} p_{i}^{0} \phi_{i}^{0} \exp \left[\frac{v_{i}^{I}\left(P-p_{i}^{0}\right)}{R T}\right] \tag{4-114}
\end{equation*}
$$

Equation (4-114) can now be incorporated with the defining equation, Equation (4-106) to yield the following expression fo K_{i} :

$$
K_{i}=\frac{y_{i}}{x_{i}}=\frac{\gamma_{i} p_{i} \phi_{i}^{0} \exp \left[v_{i}^{L}\left(P-p_{i}^{0}\right) / R T\right]}{\phi_{i} P}
$$

The exponential term, exp $\left(v_{i}^{I}\left(P-p_{i}^{0}\right) / R T\right)$, in the above equation is called Poynting factor. At atmospheric pressure, the highest calculated Poynting factor is 1.009 for ethyl alcohol at $130{ }^{\circ} \mathrm{C}$. This term can then be simply set to unity. Also at the low pressure the vapor mixture may be considered to be an ideal gas and ideal solution. Thus, the vapor fugacity coefficient in the mixture, ϕ_{i}, may also be set to unity without significant error.

With the assumptions that $\phi_{i}=1.0$ and \exp $\left[\mathrm{v}_{i}^{\mathrm{L}}\left(\mathrm{P}-\mathrm{p}_{i}^{0}\right) / \mathrm{RT}\right]=1.0$, Equation (4-115) can now be reduced to the following working equation

$$
\begin{equation*}
K_{i}=\frac{V_{i} p_{i} \phi_{i}^{o}}{P} \tag{4-116}
\end{equation*}
$$

It is noted that fugacity coefficient of pure vapor; ϕ_{i}^{c}
cannot be omitted from the above equation because its value for ethyl alcohol at the highest operating temperature, $125.4^{\circ} \mathrm{C}$ is only 0.837 , which is 16.3% below unity. The three-paraneter general correlations by Prausnitz, et al. are used for estimating the fugacity coefficients of pure vapors. Their correlations are shown in Appendix A .12 . For vapor pressures, p_{i}^{0}, the Antoine Equation given in Appendix 1.5 is used. Its three constants are either obtained from the literature or fitted from vapor pressure data by the computer program BSOLPTI given in Appendix C.5.

In this study, the instantaneous vapor and liquid compositions are measured experinentally. Thus, $\mathrm{K}_{\mathrm{i}}-$ values are obtained from experiments. The only undetermined quantity in Equation(4-116), liquid activity coefficient, can then be calculated from the following rearranged form of Equation (4-116).

$$
\begin{equation*}
\gamma_{i}=\frac{K_{i} P}{\phi_{i}^{0} p_{i}^{0}}=\frac{y_{i}^{P}}{x_{i} \phi_{i}^{O} p_{i}^{0}} \tag{4-117}
\end{equation*}
$$

However, there are some difficulties when using the above equation for calculating activity coefficients of either very volatile diethyl ether or four very nonvolatile components, namely acrylanide sulfate, sulfuric acid, amonium bisulfate and acrylamide. For very volatile diethyl ether, its liquid mole fraction,
x_{i}, can not be measured accurately. For the four very nonvolatile compounds, their vapor mole fractions, y_{i}, can not be determined properly either. These are all due to the facts that diethyl ether is not detectable in the liquid phase and the four very nonvolatile compounds are not found in the vapor condensate. Since the activity coefficients of diethyl ether and all the nonvolatile compounds are not important for vapor-liquid equilibrium calculations, it is expeditious to lump all the very nonvolatile compounds as a pseudo-component and to treat diethyl ether as a gaseous product fron de.. hydration, The pseudo-component is designated as very nonvolatile material. Summarizing, the liquid mixture to be considered for correlating liquid activity coefficients, as will be shown in Chapter 6, contains the following five readjusted components.

Readjusted Component Identity Number	Component Name
1	Ethyl Alcohol
2	Ethyl Acrylate
3	Water
4	Gethoxy-ethyl propiorate
5	Very Nonvolatile Material

4.7 Numerical Method for Solution of Unsteady-State Distillation Accompanied by Chemical Reactions The mathematical model for the semi-batch distillation accompanied by chemical reaction is represented
by a series of differential equations developed in Chapter 3. Because of its complexity, an analytical method for simultaneously solving this set of equations is not, available. Therefore, a numerical method is applied. As happened so often the system has more unknowns than the number of equations. It then demands a trial-and-error integrating procedure. Holland (36) has proposed the θ-method for solving an unsteady-state distillation in absence of chemical reaction with a constant holdup. His method is not applicable to tre present problem since the liquid holdup on the tray is not constant and the reaction rate expressions are nonlinear here. A new convergence method is proposed in this study to solve the model developed for the unsteady-state distillation accompanied by chemical reaction.
> 4.7.1 Reduction of Unknown Variables in Working Equation

In order to reduce the number of unknown variables, and to rewrite the model into forms for easier numerical solutions, the following relationships are introduced to Equations $(4-55)$ through $(4-59)$ and (4-63) through (4-66),
(1) Vapor compostion

$$
\begin{equation*}
V_{i, O U T}=y_{i} V_{O U T} \tag{4-118}
\end{equation*}
$$

(2) Vapor - liquid equilibrium

$$
\begin{equation*}
y_{i}=\frac{\gamma_{i} p_{i}^{0} \phi_{i}^{0}}{p} x_{i} \tag{4-119}
\end{equation*}
$$

(3) Liquid molal holdup

$$
\begin{equation*}
M_{i}=x_{i} M \tag{4-120a}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{i}=\frac{M_{i}}{M}=\frac{m_{i}}{\sum_{i=1}^{2} m_{i}} \tag{4-120b}
\end{equation*}
$$

(4) Reaction rates

$$
\begin{align*}
& R_{1}=R_{1, T}=K_{m, 1} e^{-E_{m, 1} / R T} C_{1, T} C_{6, T} \tag{4-103}\\
& R_{2}=R_{2, T}=K_{m, 2} e^{-E_{m, 2} / R T} C_{1, T}^{2} \tag{4-1.04}\\
& R_{3}=F_{3, T}=K_{m, 3} e^{-E_{m, 3} / R T} C_{1, T}^{2} C_{6, T} \tag{4-105}\\
& \text { (5) Concentration } \\
& C_{i, T}=\frac{M_{i}}{v} \tag{4-121}
\end{align*}
$$

After substitutions and certain rearrangements, Equations (4-55) through (4-59) and (4-63) through (4-66) can be rewritten to the following set of equations

$$
\begin{aligned}
\frac{d M_{1}}{d t}= & L_{1, I N}+V_{1, I N}-\frac{\gamma_{1} p_{1}^{o} \gamma_{1}^{0}}{p} \frac{V_{O U T} M_{1}}{M}-\left[K_{m, 1} e^{-E_{m, 1} / R T}\right. \\
& \left.\left(\frac{M_{1} H_{6}}{v}\right)+2 K_{m, 2} e^{-E_{m, 2} / R T} \frac{M_{1}^{2}}{v}+2 K_{m, 3} e^{-E_{m, 3} / R T} \frac{M_{1}^{2} H 6}{v^{2}}\right)
\end{aligned}
$$

$$
\begin{equation*}
\frac{d \mathrm{dm}}{d t}=0 \tag{4-129}
\end{equation*}
$$

It is noted that 9 unknowns ($V_{i, \text { OUT }}$) are eliminated and replaced by a new unknown, total vapor rate ($V_{\text {OUT }}$).

The above equations can be substituted into Equation (4-67) to yield another equation for the total mass change.

$$
\begin{aligned}
& \frac{d M_{2}}{d t}=-\frac{\gamma_{2} p_{2}^{0} \phi_{2}^{0}}{p} \frac{M_{2} v_{0 U N}}{M}+K_{m, 1} e^{-E_{m, 1} / R T} \frac{M_{1} M_{6}}{v} \\
& \frac{\mathrm{dM}_{3}}{\mathrm{dt}}=\mathrm{L}_{3, \mathrm{IN}}+V_{3, I N}-\frac{\gamma_{3} p_{3}^{0} \phi_{3}^{0} \mathrm{M}_{3} V_{O U T}}{\mathrm{p}}+ \\
& \mathrm{K}_{\mathrm{m}, 2} \mathrm{e}^{-\mathrm{E}_{\mathrm{m}, 2} / \mathrm{RT}} \frac{\mathrm{H}_{1}^{2}}{\mathrm{v}}
\end{aligned}
$$

$$
\begin{align*}
& \frac{d m_{5}}{d t}=-\frac{\tau_{5} \mathrm{p}_{5}^{0} \phi_{5}^{0}}{\mathrm{P}} \frac{\mathrm{M}_{5} \mathrm{~V}_{\text {OUS }}}{M}+\mathrm{K}_{\mathrm{m}, 3} 3^{-\mathrm{E}_{\mathrm{m}, 3} / \mathrm{RT}} \frac{\mathrm{~m}_{1}^{2} \mathrm{H}_{6}}{\mathrm{v}^{2}} \tag{4-125}\\
& \frac{d H_{6}}{d t}=-K_{m, 1} e^{-E_{m, 1} / R P} \frac{M_{1} M_{6}}{v}-K_{m, 3} e^{-E_{m, 3} / R T} \frac{M_{1}^{2} M_{6}}{v^{2}} \\
& \text { (4-127) } \\
& \frac{d M_{7}}{d t}=0 \tag{4-123}\\
& \frac{d M_{8}}{d t}=K_{m, 1} e^{-E_{m, 1} / R T} \frac{H_{1} M_{6}}{v}+K_{m, 3} e^{-E_{m, 3} / R T} \frac{M_{1}^{2} L_{6}}{v^{2}}
\end{align*}
$$

$$
\begin{equation*}
\frac{d M}{d t}=L_{I N}+v_{I N}-v_{O U T}-K_{m, 3} e^{-E_{m, 3} / R T} \frac{m_{1}^{2} L_{6}}{v^{2}} \tag{4-131}
\end{equation*}
$$

The values of heats of reaction needed in Equation (4-69) can be calculated f'rom heats of formation by applying Hess' law. The heats of formation are obtained from literature or estimated by reliable correlations. All the determirea heats of reaction along with related data sources and correlation methods are given in Appendix $A=10$. The reaction rate equations and the heat of reaction expressions are substituted into Equation (4-69) to yisld the following new equetion for the temperature change with times

$$
\begin{aligned}
\frac{d T}{d t}= & \frac{1}{M C_{p}}\left[I_{I N} h_{I N}+V_{I N} H_{I N}-V_{O U T} H_{O U T}+\right. \\
& \left(-\Delta H_{R_{8} 1}\right) K_{m, 1} e^{-E_{m, 1} / R T} \frac{M_{1} H^{\prime} \sigma}{V}+ \\
& \left(-\Delta H_{R, 2}\right) K_{m, 2} e^{-E_{m, 2} / R T} \frac{N_{1}^{2}}{v}+\left(-\Delta H_{R, 3}\right) K_{m, 3} \\
& \left.e^{-E_{m, 3} / R T} \frac{M_{1}^{2} H_{6}}{v^{2}}-U_{i} a_{i}\left(T-I_{0}\right)-h_{s} \frac{d M}{d t}\right] \quad(4-132)
\end{aligned}
$$

Again, the liquid enthalpy and vapor enthalpy required in the above equation are obtained from literature or estimated from the reliable correlations. Appendix A. 7 and Appendix A. 8 have detailed discussions cin these two items.

Since the clear liquid volume, v, is required for calculating the reaction rates for all the three reactions, it is necessary to formulate its rate equation. The difference between the feed rate and the leaving vapor rate contributes most of variation in the clear liquid volume. Assuming excess volune induced from mixing and composition changes by chemical reactions is negligibl small compared to the above mentioned factor: the rate of change of the clear liquid volume can be represented by the following equation:

$$
\begin{equation*}
\frac{d v}{d t}=\sum_{i=1}^{5} \frac{F_{i}}{\rho_{i}}-\sum_{i=1}^{5} \frac{V_{i, \text { OUT }}}{\rho_{i}} \tag{4-133}
\end{equation*}
$$

where

$$
\begin{aligned}
\rho_{i}= & \text { Iiquid density for component } i \text { at the } \\
& \text { temperature of the reacting licuid mixture } \\
F_{i}= & L_{i, I N}+V_{i, I N}=\text { total feed rate for component } i
\end{aligned}
$$

- In order to compare the measured vapor molal condensates by the mathenatical model, it is then necessary to write rate equations for the vapor condensates of individual components as well as of the total mixture. Let N_{i} be the instantaneous vapor condensate of component i and N_{r} the instantaneous total accumulated vapor condensate. Then tine relationship between N_{i} and $V_{i, 0 U T}$ can be expressed by the followirg definition

$$
\begin{equation*}
\frac{d N_{i}}{d t}=V_{i, \text { OUT }} \tag{4-134}
\end{equation*}
$$

The above definition can be incorporated with the definitions of Equations (4-118) and (4-119) to give the following working equations for the rates of change of N_{i} and N_{T} :

$$
\frac{d N_{i}}{d t}=\left(\frac{\hat{T}_{i} p_{i}^{0} \phi_{i}^{0}}{P} \frac{M_{i}}{M}\right) V_{\text {OUT }}, \quad i=1, \cdots, 5
$$

$$
(4-135)
$$

$$
\text { to }(4-139)
$$

$$
\begin{equation*}
\frac{d N_{T}}{d t}=V_{O U T} \tag{4-140}
\end{equation*}
$$

Now, it can be summerized that there are 19 unknowns $\left(M_{1}, \cdots, M_{9}, N_{1}, \cdots, N_{5}, T, M, V, N_{T}, V_{0 U T}\right)$ to be solved simultaneously from 18 equations which can be recapitulated as follows.

$$
\begin{align*}
& \frac{d H_{i}}{d t}=f_{i}=f_{i}\left(M_{1}, \cdots, N_{9}, N_{1}, \cdots, N_{5}, T, M, v,\right. \\
& \left.N_{T}, V_{\text {OUT }}\right), \quad i=1, \cdots, 9 \quad(4-141) \\
& \text { to (4-149) } \\
& \frac{d \eta}{d t}=f_{10} \\
& \text { dM } \\
& \frac{-}{d t}=f_{11} \tag{4-151}\\
& \frac{d v}{d t}=f_{12} \tag{4-152}
\end{align*}
$$

$$
\begin{equation*}
\frac{d N_{i}}{d t}=f_{12+i}, \quad i=1, \cdots, 5 \tag{4-153}
\end{equation*}
$$

to (4-157)

$$
\begin{equation*}
\frac{\mathrm{dN}_{T}}{\mathrm{dt}}=\mathbf{f}_{18} \tag{4-158}
\end{equation*}
$$

The boundary and initial conditions given for the solution are the initial liquid compositions, the inlet liquid and vapor compositions and surrounding or oil bath temperature.

A trial procedure begins with an assumed value for $V_{\text {Our }}$ which is the total vapor outlet flow. Then, the integrations and solutions are obtained for the remeining 18 variables by the Runge-Kutta method. The details are given in the next section.

Trial- and-error procedure requires a means of checking whether the assumed value is correct. For this solution, the criterion is that the sum of the component compositions in the outlet vapor must be equal to unity.

$$
\begin{equation*}
\sum_{i=1}^{5} y_{i}=1.0 \tag{4-159}
\end{equation*}
$$

Substituting Equation (4-119) into the above equation yields

$$
\begin{equation*}
\sum_{i=1}^{5} \frac{\gamma_{i} p_{i}^{0} \phi_{i}^{0} x_{i}}{p}=1.0 \tag{4-160}
\end{equation*}
$$

If an error function α is defined,

$$
\begin{equation*}
\alpha=\sum_{i=1}^{5} \frac{\gamma_{i} p_{i}^{0} \phi_{i}^{0} x_{i}}{p}-1.0 \tag{4-161}
\end{equation*}
$$

A set of solutions ($M_{1}, \cdots, M_{9}, \mathrm{~T}, \mathrm{M}, \mathrm{v}, \mathrm{N}_{1}, \cdots, \mathrm{~N}_{5}$, N_{T}) is obtained when an iteration of the trial-anderror procedure reaches an α-value within the allowable tolerance ϵ. The trial-and-error procedure is best illustrated by the flow diagram given in Fig. 4.9.

4.7.2 Runge-Kutta Bethod

The Runge-Kutta method (δ) has been used wicely for obtaining satisfactory numerical solutions for differential equations. It is also used in this study for solving the above 18 simultaneous differential equations. Let t_{2} and t_{z+1} represent, at the $(z+1)$ th integratior step, the previous time and the elapsed time respectively. The Runge-Kutta method maken wee of the values of $x_{i, z}^{0}$ and t_{z} to predict $x_{i, z+1}^{0}$ values where x^{0} stands for any of the 18 dependent variables. It is based on Taylor's sexies of expansion of x_{i}^{0} about t. The evaluation of the terms which are higher than the fourth order is not necessary for most applications, and the Runge-Kutta fourth-order method is discussed here.

In crder for a uniform and easy discussion of the

Fig. 4.9 Flow Diagram for Integration Procedures by Trial-And-Error
procedures, the 3.8 dependent variables are represented by the above mentioned mathematical terms, x_{i}^{0} as follows.

$$
\begin{gathered}
x_{1}^{o}=M_{1} \\
\vdots \\
x_{9}^{o}=M_{9} \\
x_{10}^{o}=T \\
x_{11}^{o}=M \\
x_{12}^{0}=v \\
x_{13}^{0}=N_{1} \\
\vdots \\
x_{17}^{0}=N_{5} \\
x_{18}^{o}=N_{T}
\end{gathered}
$$

Then, a general representation of a working equation can be written for variable x_{i}^{0}

$$
\begin{equation*}
\frac{d x_{i}^{0}}{d t}=f_{i}\left(x_{i}^{0}, v_{\text {OUT }}, t\right) \tag{4-162}
\end{equation*}
$$

Then, the Runge-Kutta formula can be represented as

$$
\begin{equation*}
x_{i, z+1}^{0}=x_{i, z}^{0}+\frac{\Delta t}{6}\left(G_{i, 1}+2 G_{i, 2}+2 G_{i, 3}+G_{i, 4}\right) \tag{4-163}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\Delta t=\text { Size of integration step } \\
G_{i, 1}=f\left(t_{z}, x_{i, z}^{0}, V_{\text {OUT, }}\right) & (4-164) \\
G_{i, 2}=f\left(t_{z+\frac{1}{2}}, x_{i, z}^{o}+\frac{1}{2} \Delta t G_{i, 1}, v_{\text {OUm }, z+\frac{1}{2}}\right) & (4-165)
\end{array}
$$

$$
\left.\begin{array}{l}
G_{i, 3}=f\left(t_{z+\frac{1}{2}}, x_{i, z}^{0}+\frac{1}{2} \Delta t G_{i, 2}, v_{\text {OUT }, z+\frac{1}{2}}\right) \\
G_{i, 4}=f\left(t_{z+1}, x_{i, z}^{0}+\Delta t G_{i, 3}, v_{\text {OUT, }}+1\right. \tag{4-167}
\end{array}\right)
$$

With the exception of $V_{\text {OUT }}, z+1, V_{\text {OUT }, ~}+\frac{1}{2}$, the values of individual terms in the right-hand sides of the above equations are available from the calculated results of the previous step. The first assumption is made for the value of $\mathrm{V}_{\text {OUT, }}$ which is then designated as $\mathrm{V}^{(1)}$. If the very small time interval Δt is chosen so that $V_{\text {OUP }}$ can be represented as a linear function of time, then

$$
\mathrm{V}_{\text {OUT }, \mathrm{z}+\frac{1}{2}}=\frac{1}{2}\left(\mathrm{v}_{\text {OUT }, \mathrm{z}}+\mathrm{v}_{\text {OUT }, z+1}\right)
$$

or

$$
\begin{equation*}
V_{\text {OUT, }, z+\frac{1}{2}}=\frac{1}{2}\left(V_{\text {OUT }, z}+V^{(1)}\right) \tag{4-163}
\end{equation*}
$$

Thus, $x_{i, z+1}^{0}$ can be calculated by Equation (4-153) after. $G_{i, 1}, G_{i, 2}, G_{i, 3}$, and $G_{i, 4}$ are determined by Equations (4-164) through (4-167). It is noted that during the course of computation, the computation requires values for vapor pressure, activity coefficient, and reaction rate constants. These values will be obtained by appropriate correlations which are given later in Chapter 6.

When a set of $x_{i, z+1}^{0}$'s is obtained, the value of the error function α is calculated by Equation (4-161). If the absolute value of α is less than the tolerance, then the trial procedure is terminated for the $(z+1)$ th
step. The last assumed value of $\mathrm{V}_{\text {OUT }}$ and the last calculated values of x_{i}^{0} 's are the desired solutions. These values are then used as the starting values for another series of trial-and-error calculations for the next time interval. However, if the absolute value of the calculated error function is greater than the tollerance, a new series of $\mathrm{V}_{\text {OUP }}$ must be assumed and the new iterative computations by the Runge-Kutta equation should be repeated, How quickly a good convergence can be obtained will depend on the method of assigning the next assuned value of $\mathrm{V}^{(2)}$.

4.7.3 Convergent Method

The convergent method is essentially a linear in:terpolation (or extrapolation) of the previous results. Mathematically, it can be stated that

$$
\begin{equation*}
v^{(k+2)}=\frac{v^{(k)} \alpha^{(k+1)}-v^{(k+1)} \alpha^{(k)}}{\alpha^{(k+1)}-\alpha^{(k)}} \tag{4-169}
\end{equation*}
$$

In order to avoid unreasonable extrapolation at the beginning of using the above equation, the first iterative pair of error functions, $\alpha^{(k)}$ and $\alpha^{(k+1)}$ must: satisfy the following criterion:

$$
\begin{equation*}
\alpha^{(k)} \alpha^{(k+1)}<0 \tag{4-170}
\end{equation*}
$$

These error functions can be obtained by repeatedly adjusting the first assumed value of $\mathrm{V}^{(1)}$ until a pair of assumed values of $V^{(k)}$ and $V^{(k+1)}$ can produce a pair of error functions to satisfy the above mentioned ariterion. The adjusting function employed is expressed as follows:

$$
\mathrm{V}^{(\mathrm{m}+1)}=(1+\beta)^{\mathrm{m}} \mathrm{~V}^{(1)} \quad \mathrm{m}=1, \ldots ; \mathrm{k} \quad(4-171)
$$

where m is number of adjustments on $V^{(1)}$ and β is an arbitrary value having the same sign with that of $\alpha^{(1)}$.

Chapter 5 Experimental Investigation

5.1 Experimental Systen

5.1.1 Design of Experimental System to Heet the Process Requirements

A general system of the semi-batch distillation accompanied by chemical reaction was illustrated previously in Figure 4.1. The experimental scheme proposed here is developed to meet the conceptual design. The first task in designing the experimental system is to provide the mechanisma whereby the following three operating paramw eters can be measured consistantly and accurately.
(1) Initial and Constant Surrounding Temperature. To
(2) Feed Flow Rate, F
(3) Relative Ratio of Feed Vapor to motal Peed. ψ A constant temperature bath is used to satisfy the first condition. In order to avoid any operating difficulty later; the initial temperature of each experimental run is adjusted to the surrounding temperature. The initial liquid holdup on the reaction-distillation tray is made up of the very nonvolatile reactant, acrylamide sulfate. The seperately prepared acrylamide sulfate is charged to and kept in the reaction-distillation tray until its temperature becomes equal to the surrounding temperature,
with the maximum tolerence of $0.02^{\circ} \mathrm{C}$. When this tray temperature is reached, the other reactant, ethyl alcohol, is introduced to the tray.

A variable-speed pump is used to feed the liquid, ethyl alcohol, the more volatile reactant, from a storage container to a preheater. The feed rate oif the liquid ethyl alcohol is measured by a rotameter installed in front of the preheater. The second design condition is thus met. The preheater is a simple tube submerged in the oil bath. The ethyl alcohol is heated and partially vaporized. While it passes through the preheater, the tiny vapor bubbles and Jiquid droplets are dispersed into the reaction-distillation tray through the perforations. The bubbles and droplets stir and mix the liquid holdup on the tray with the aid of a high-speed stirrer such that an assumption of a complete mixing on the tras can be justified.

Although the tube preheater is simple it has a certain limitation. For a given liquid feed rate, a given oil bath temperature and a given tube length and material, there is a definite corresponding ratio of vapor to feed. The heat input to the preheater cannot be manipulated independently. In order to provide different ratios, two different types of tubes are used. h copper tubing is used to provide a high heat flux and consequently a
high vapor to feed ratio while a glass tubing is adopted for a low vapor to feed ratio.

A large oil bath is selected so that a constant temperature can be maintained even though there is a constant transfer of heat from the oil to the preheater. Furthermore, the cold feed to the preheater is installed far away from the reaction-distillation tray. This is done because most of heat flux from the oil to the preheater occurs in this region and consequently a constant oil temperature in the vicinity of the reaction-distillation zone can be further guaranteed.

The left section of Figure 5.1 is an illustration of the experimental setup to measure the above threa operating variables. As soon as ethyl alcohol is mixed with acrylamide sulfate in the reaction-distillation tray, the three reactions, i.e., esterification, dehydration, and successive reactiong talse place immediately. In order to satisfy the assumption that the tray is a perfect tray, a stirrer driven by a motor and three baffle plates are furmished. Uniform temperature and concentration distribution in the liquid holdup are obtained with these assistances. The instantaneous liquid temperature is measured by a thremocouple and the instantaneous liquid sample is obtained by a syringe as shown in

Fig. 5.1 Flow Scheme
\cdots

Fig. 5.1. The remaining section of Fig. 5.1 shows a special design for sampling a vapor condensate. Its concentration is not only dependent on time but also affected by chemical reactions. Details of its flow scheme are discussed in the next section as follows.

5.1.2 Experimental Arrangment for Vapor Sampling

The reaction products as well as unreacted ethyl alcohol may absorb enough heat to be vaporized. The conventional method to obtain a vapor sample is first to use a water cooler to condense this vapor stream. However, in this study, the vapor condensate collected must be an instantaneous sample corresponding to the liquid sample withdrawn. The vapor travelling time from the vapor-liquid interface to the sample botitle of the vapor condensate must be accurately measured. The conventional water cooler can not provide a substantial temperature driving force to make a very fast condensation. The , condensation involves complicated heat and mass transfer. Furthermore, the conventional method often leaves a certain amount of vapor condensate in the condensation tube and causes a mass loss. Therefore, the vapor condensate collected by the conventional method carmot closely relate to the vapor which leaves the vapor-liquid interface. A special design for sampling a time-dependent vapor condensate is then required for this study.

The present method of vapor condensate sampling includes two specific features, one using helium as a carrier gas and the other liquid nitrogen as a cooling medium for the condenser. The use of helium as a carrier gas reduces the time lag for the vapor sample to reach the condenser. Liquid nitrogen (B.P., - $195^{\circ} \mathrm{C}$) provides a large temperature driving force to condense the vapor sample quickly without condensing the helium carrier gas. Furthermore, liquid nitrogen is the least expensive cryogenic liquid available.

Helium is supplied by a pressurized helium tank as shown on the left-hand side of Fig. 5.1. A rotemeger is used to measure its flow rate. The boundary of the mathematical model considered in this study is only large enough to enclose the liquid holdup. Once the vapor leaves the liquid holdup and is heated up to a sligitly higher temperature to keep it from refluxing back to the system, the vapor temperature beyond the boundary will have negligible effect on the system energy and material balances. In order to prevent the condensation before the vapor reaches the condenser the vapor temperature in the vapor stream is raised about $5^{\circ} \mathrm{C}$ higher than the liquid temperature. To maintain this temperature in the upper section of the equipment the carrier gas was preheated before it is introduced to the system. All the rest of the vapor path is also maintained at about the same high
temperature to avoid vapor condensation before it reaches the sample bottle. The heat required for maintaining high temperature in these sections is supplied by heating tapes. Since these temperatures do not enter into the system analysis, accurate temperature controlling devjces are not required.

During preparation for an experiment, all the vapor and gas lines are cold. Since helium is too expensive to be used to warmup the system, a much less expensive nitrogen gas of intermediate grade is then used for this service. A three-way valve has been equipped for selecting either nitrogen or helium for different operating requirements.

The vapor sample bottle is immersed in liquid nitrogen and functions as a vapor condenser. It has two stages. The connecting tube between the two stages miast be free in the air. Since liquid nitrogen is extremely cold, most of vapor condensate can be trapped in the first stage. The remaining small amount of uncondensed vapor components is crystalized and filtrated by a section of fine fiberglass in the second stage. Finally, the non-condensible heliun gas is discharged through the vent. It is noted that if the connecting tube between the two stages is also immersed
in liquid nitrogen, vapor will be crystalized gradually inside the tube until it completely block the vapor passage. This, of course, will lead to an explosion causing ruptures of part of the equipment.

Although two vapor sample bottles are connected to the hot vapor line, only one of them is in service at any particular instant. The other is prepared ready for next vapor sampling, Since liquid nitrogen can also condense the oxygen in air, the heliurn is used to purge the air in the vapor sample bottle before the latter is used to collect the vapor condensate. The purge helium line is show at the bottom of Fis. 5.1. Its flow rate can also be measured by a rotameter.

The complete experimental system of semi-batch dis... tillation accompanied by chemical reaction is show in Fig. 5.1.
5.2 Chemicals
5.2.1 Reactants and Related Chemicals

1. ACPYLAMIDE

The highest purity grade of acrylamide manufactured by Eastman Kodak Company is used in this experiment. It is a white crystalline solid with a melting point of $84.5^{\circ} \mathrm{C}$. Since its vapor pressure is only $20 \mathrm{~mm}-\mathrm{Hg}$ at $130{ }^{\circ} \mathrm{C}$ compared to $3360-\mathrm{mm} \mathrm{H}_{5}$ for ethyl alcohol at the same temperature, it is then treated as a nonvolam tile component in the system. It is thermally stable and has a long shelf life as compared with sone cther vinyl monomers, if the environmental temperature does not exceed its melting point. Fror example, even after 24 hours at $80^{\circ} \mathrm{C}$, a pure sample shows little or no poiy. mer formation (2). However, to maintain its highest purity for a long period, all the samples are stored at $5^{\circ} \mathrm{C}$ in a refrigerator.

Holten acrylamide polymerizes vigorously with evolution of heat (2). Even for a small amount, it is recommended that the solid acrylamide should not be heated above the melting point without due precautions. In this study, acrylamide is dissolved in concentrated sulfuric acid to form the molecular complex, acrylamide sulfate. The temperature of the acrylamide
sulfate solution may be above the melting point of acrylamide without any polymer formation. It is assumed that if the molal quantity of sulfuric acid is in excess of that of acrylamide, all the acrylamide is converted into acrylamide sulfate. That is, the amount of free acrylamide in such a acrylamide sulfate solution is negligible.

2. SULFURIC ACID

As mentioned previously in Section 4.2.3. if a large amount of water is presented in the acrylamide sulfate solution, esterification between acrylamide sulfate and ethyl alcohol will produce appreciable amount of by-product, acrylic acid. This by-product can be reduced to a negligible amount by reducing the water quantity in the acrylamide sulfate solution. Thus, the concentrated sulfuric acid must be used for preparing acrylamide sulfate.

A 89.6 Wt $\%$ sulfuric acid solution is used for all the experimental runs in this study. This concentration is within the range recommended by Hardman et. al. (27). The small amount of water in the acid is used mostly to dissociate protons $\left(H^{+}\right)$from the sulfuric acid which in turn initiates the formation of acrylamide sulfate.
by diluting the 95-98 Wt \% sulfuric acid of Fisher Scientific Company. The water used for dilution is specially treated. Deionized water is redistilled twice with the addition of $0.5 \mathrm{Wt} \%$ potassium permanganate solution. The potassium permanganate solution can destroy some organic compounds in the water which are not removed by an ion exchanger. The redistilled water has been tested by a gas chromatographer, which shows no trace of peaks other than that of water.

The diluted sulfuric acid is titrated by a dilute sodium hydroxide solutior. Since the acid concentration of the sulfuric acid solution in the experiments is very high, a sulfuric acid solution sample for the concentration determination is prepared in two stages. The first stage is to take about 3 grams of the $95-98 \%$ sulfuric acid and dilute it by adding about 50 ml of water. All these quantities can be accurately measured by the electronic balances available in the University of Houston Chemical Engineering Department. Then take a known volume of this newly diluted sulfuric acid solution and titrate it by a dilute sodium hydroxide solution.

The normality of the dilute sodium hydroxide solution can be determined from a standard acid solution. This standard acid solution is prepared by dissolving a known amount of potassium phthalic acid in a known
amount of water. The potassium phthalic acid used here is cbtained from Matheson Coleman \& Bell.

Since sulfuric acid has very strong tendency to absorb moisture from the air, it is recommended that this prepared 89.6 Wt \% sulfuric acid be stored in a desiccator. The sulfuric acid stored even for a month in the desiccator has shown no change in concentration.

3. ETHYL ALCOHOL

Pure ethyl alcohol manufactured by Commerical Solvents Corporation can be obtained from the Universits of Houston Chemistry Department store room.

Ethyl alcohol is the major reactant for esterifica. tion. It is prepared as a $86 \mathrm{Wt} \%$ aquecus solution. The small amount of water presented in the feed stream is to make up the water evaporated from the liquid holdup. Without this small amount of water in the feed stream, a reduction of water in the liquid holdup reduce the amount of protons which is necessary for the formation of acrylamide sulfate. The lack of the protons may lead to other serious side reactions. The concentration of aqueous ethyl alcohol solution used in this study is also within the range recommended by Hardman et. al. (27).
5.2.2 Reaction Products and Related Chemicals

1. ETHYL ACRYLATE

Ethyl acrylate is the major product of this reaction system.

It can be easily polymerized at the time when it is produced by esterification. Therefore, a small amount of polymerization inhibitor, hydroquinone (about $0.5 \mathrm{Wt} \%$) must be added into the acrylamide sulfate som lution to prevent the polymerization. Eoth ethyl acryiate and hyciroquinene are maufactured by Eastmar. Kodak Company.

2. DIETHYL ETHER

Diethyl ether is a trace by-product of this system. An analyzed reagent grade of diethyl ether from Matheson, Coleman \& Bell is adopted for blank test in gas chromatrography.
3. B-ETHOXY-ETHYL PRIPIONATE
β-Ethoxy-ethyl pripionate is another trace byproduct in the system. Since it is not available commercially, all its properties including its relationship with other components in the gas chromatography
must be estimated. Accuracies of these estimated quan. tities have little effect on the entire system's behavior because it is a trace component in the system.

5.2.3 Chemicals for Gas Chromatography

1. CARBOWAX 1000

The columns in gas chromatography used. in this study are prepared by the author. Three types of chemicals are required for packing a gas chromatographic colum. They are used as stationary phase, support and solvent. For selection of stationary phase, kicReynolds' book. "Gas Chromatograph Retention Data " (47) has been referred. The column must be able to separating 1-propanol and acetone in addition to all the five volatile comporents in the system. 1-Propanol is used as a reference compound while acetone is a solvent for the vapor sample. Detailed functions for these two additional compounds in the samples will be discussed later in this Chapter. Comparing the retentions times for the above seven components in the kicReynolds' book, it is found that Carbowax 1000 is the most suitable stationary phase and is, therefore, adopted for this study.

2. CHROMOSOB | $80 / 100$

According to Horváth (14), almost any analytical problem in gas chromatography can be solved with columns made of diatomaceous supports. The acid washed chromosorb is a common diatonaceous support. It is chosen as column support for this system. Small partical size of the support increases the pressure drop along the column. However, it can provide more surface area for the same total amount of support. Selection of particle size should then be judged from these two factors. It is found that $80 / 100$ mesh acid washed chromosob can provide desired separation and is then used in this system.

3. ETHYLENE CHIORIDE

Selection of solvent in correspondance with a stationary phase is specified in most of comerical catalogs of gas chromatographic colurns. The solvent is used to dissolve the stationary phase and then to coet it on the column support. For carbowax 1000, ethylene chloride should be used. The manufacturers of the above mentioned chemicals are listed as follows.

Carbowax 1000	Variant Aerograph
Chromosob W 80/100	Fisher Scientific
Ethylene Chloride	Fisher Scientific
Acetone	Fisher Scientific
1-Propanol	Fisher Scientific

In addition to the above three chemicals, helium is used as a carrier gas in gas chromatography. A helium with minimum 99.995% purity is used in this work. It is also used as carrier gas for the vapor sampling system. The gas is a product of Union Carbide.
5.2.4. Miscellaneous Chemicais

1. SILICONE FLUID

Dow Corning 200 dielectric silicon fluid has loy vapor pressure, low viscosity, moderate heat capacity and high dielectric constant at high temperature. Ii is recommended by the manufacturer to be used as heating medium of a high-temperature oil bath. The silicon fluid is supplied by Lubri-Kote Company, Houston, Texas. 2. LIQUID NITROGEN

- Liquid nitrogen is used to condense vapor samples as mentioned previously in Section 5.1. A liquid nitrogen tank with a capacity of 160 liters is used in this experiment. It is manufactured by Union Carbide and supplied by IWECO, Houston.

3. GLYCERINE

Glyerine with $99+\%$ purity is used in this work for
calibrating overall heat transfer coefficient and relative ratio of feed vapor to total feed. This compound is Obtained from Curtin Scientific Company, Houston. It has extremely low vapor pressure (1.5 mm Hg at $130^{\circ} \mathrm{C}$) and is infinitely miscible with water and ethyl alcohol. Therefore, it can absorb these feed vapors with negligible amount of vapor loss above the liquid surface. The heat of condensation of the feed vapor is used principally to increase the temperature of glycerine. From the temperature rise of glycerine, the relative ratio of feed vapor to total feed can be determined. Detailed techniques of using glycerine for determining the relative vapor ratio will be presented later in Section 5.4.

5.3 Major Experimental Units of the System

5.3.1 Reaction-Distillation Tray and Its Accessuries

The reaction-distillation tray and its accessories are illustrated in Fig. 5.2. The reaction-distillation tray is the portion below the leflon gasket as shown in the figure. The wall of the reaction-distillation tray is a $2 "$ standard pyrex pipe, i.e., it has an inside diameter of 2.068" and wall thickness of $0.125^{\prime \prime}$. A micro-sieve Pyrex disc with pore sizes of $60-75 \mu$, is fitted onto the bottom of the pipe as the distilla-

Fig. 5.2 Reaction-Distillation Tray
and Its Accessories
tion tray. The disc has a thickness of $1 / 8^{\prime \prime}$ and diameter of 20 millimeters. Below the disc, the 2 " pipe is connected to a capillary glass tubing with $1.0-\mathrm{mm}$ inside diameter and $1 / 4^{\prime \prime}$ outside diameter. A stirrer is suspended above the sieve tray. This stirrer is housed in a stirrer guide and driven by a motor. Detailed descriptions on the stirrer guide and the motor will be presented later in this section. This stirrer is employed to provice good mixing in the liquid holdup. Its $10-\mathrm{mm}$ shaft is equipped with four symmetric flat blades, each of which is 15° declined from the vertical line. This decline in blades enables the liquid to make up-and-down mixing. The blade is 7 mm wide, 10 mm long and sweep out a circle of $24-\mathrm{mm}$ diameter making the ratio of stirrer radius to the pipe inside diameter of about 1 : 2.1. The stirrer is positioned so that the blades are 1.5". above the sieve dis. tillation plate. To improve mixing, 3 glass baffle plates are provided. Each baffle is $1 / 4 "$ wide, $1 / 8^{\prime \prime}$ thick and 3.5" long. The clearance between the baffle plate and the pipe wall is $1 / 8^{\prime \prime}$ to avoide mixing dead spots. The baffle plates are connected to the pipe wall only at two points as shown in Fig. 5.2. At the stirring speed of about 1000 rpm ; as used in this system, very uniform temperature and concentration distributions can be obtained. The temperature distribution can be tested by
moving the thermocouple positions while the concentration distribution of the liquid is directly obtained by sampling at two different positions simultaneously by sampling syringes. Details on temperature measurement and liquid sampling will be discussed later in this chapter.

The portion above the Teflon gasket up to the top edge of the larger horizontal pipe is the area for vapor withdrawal. It looks like a T-shape pipe joint. The vertical part is a $2 "$ glass pipe flange and the horizontal part right on the top of the flang is a 2 " glass pipe. Total length of the $2 "$ horizontal pipe is 5 inches. At each of its two ends, the pipe is reduced conically and then connected to a $1 / 2^{\prime \prime}$ glass tubing. At the lefthand side the $1 / 2^{\prime \prime}$ glass tubing is only $1.5^{\prime \prime}$ long. It is connected to a $1 / 4^{\prime \prime}$ copper tubing by a reducing union. The copper tubing is enclosed in a heating tape and served as a preheater for the carrier gas, helium. The preheated helium carrys the up-coming vapor and leaves this vapor withdrawal section: It then enters the $1 / 2^{\prime \prime}$ horizontal tubing at the right hand side of the unit, and eventually goes to the vapor sample unit. In order to prevent vapor from condensation, the larger pipe portion is surrounded by a heating mantle obtained from Curtin Scientific Company. The rest of small tubings ($1 / 2^{\prime \prime} \& 1 / 4^{\prime \prime}$) are all wraped by heating tapes.

All the temperatures along the vapor path are manually controlled by transformers. This operation is justified because the purpose is not to obtain accurate temperatures but to get temperatures greater than dew points of the entire gas-vapor stream.

On the center top of the large horizontal pipe, there are one stirrer guide and three vertical ports. As mentioned early in this section, the stirrer guide is used to house the stirrer for stable operation. Silicon fluid is used as lubricating fluid, and sealing material in this gap. The silicon fluid may flow down along the stirrer shaft and enter the reaction-distills. tion tray due to high-temperature operation and partial dissolution of silicon fluid in organic compounds. To prevent it from contaminating the liquid mixture, a small Teflon holder is installed on the stirrer rod right beneath the stirrer guide to hold the grease as shown in Fig. 5.3. Since the thermal expansion of Teflon is much higher than that of glass, the hole at the bottom of the Teflon grease holder must be small enough such that at the operation temperature, it still can tightly hold on the glass rod. Therefore, the installation of the Teflon holder on the glass rod must be performed at a temperature hjgher then the system operating temperature. This device is very helpful for avoiding the grease contamination in a reaction system in.

Yolving organic vapors. In this experiment, the accumulated grease is only about 0.2 ml compared to more than 100 ml vapor condensate for a conplete run. The amount of rapor dissolved in the grease is even smaller and thus negligible. The stirrer is driven by a reversible and variablespeed ($0 .-6000 \mathrm{rpm}$) motor with $1 / 40$ horse power. Both motor and speed controller are manufactured by G. K. Heller corporation. A short piece of thick rubber tubing is used to connect the stirrer rod and the motor shaft. The rubber tubing used here is to reduce the stress of stirrer rod on the stirrer guide and to avoid breaking stirrer shaft or stirrer guide.

The port on the left-hand side among the three ves. tical ports are the largest one. It is $5 / 5^{\text {s }}$ in diameter, - and 1.125" in height, and used as the feed entrance of: acrylamide sulfate at the beginning of each run. It is 2lso used as a themocouple path. The other two ports are both $1 / 4^{\prime \prime}$ djameter and $1^{\prime \prime}$ high. The center port is a pach way for liquid sampling syringe and the righthand port is used as a thermocouple path. The midpoint of the right-hand port is connected to a glass tubing of $1 / 8^{\prime \prime}$ O.D. and $1^{\prime \prime}$ long. This $1 / 8^{\prime \prime}$ glass tubing is connected to a pressure guage ($0-5 \mathrm{psig}$) by a flexible Tygon tubing for measuring the operating pressure of the reaction-distillation system.

Fig. 5.3 Teflon Grease Holder

Fig. 5.4 Thermocouples

5.3.2 Temperature Keasuring System

5.3.2.1 For Reaction-Distillation Tray and Its Accessories

Two sets of iron-constantan thermocouples are used for measuring the temperatures in the liquid holdup as well as in the vapor withdrawal area. These two sets have the same confizuration as shown in Fig. 5.4. Each set constains a hot junction, a reference junction, two sleeves, two leads, and two recorder adaptors.

The reference junction is imnersed in a tubing containirg Dow Corning dielectric silicon fluid. Since the tubing is immersed in an insulated ice bath, the temperature of the silicon fluid can achieve a stable 00_{0}^{0} reference temperature after an overnight immersion of the tubine in the ice bath. It j.s noted that the direct immersion of thermocouple in the ice bath sometimes may lead to inaccurate reference temperature if the ice bath contains impurities, especially ionic impurities.

The not junction is immersed in the reaction-distillation tray. Since the reaction system is very corrosive, coating metal on the hot junction as well as on the thermocouple sleeves must be properly seiected. It is found from the experiment that type-316 or type347 stainless-steel coating can be completely destroyed
in only one run. However, inconel, an nickle alloy, has excellent resistance to this reaction system, Throughout the entire experiments, only one inconelcoated thermocouple is used without replacement. Two constantan cords from the thermocouple leads must be welded together at point C as shown in Fig. 5.4. Thus, when the hot junction is immersed in a hot fluid, the difference in conductance between the two metals will produce a net thermo-electrical current. This current is then detected and converted into voltage by a "Honeywell 19" two-pen recorder. For iron-constancan thermocouple, 0.05 mv is equivalent to about $1^{\circ} \mathrm{C}$ if the reference temperature is $0^{\circ} \mathrm{C}$. The conversion table for the iron-constantan thermooouple used in this system is given in Table B. 1 of Appendix B.

The hot junction for measuring the liquid terperature is located at about one third of total liquid height from the liquid surface. At the first ten minuites of each run, the bottom temperature is about $1^{\circ} \mathrm{C}$ higher than that at the above-mentioned location. This is because all the heat of reaction cannot be dispersed fast enough and is absorbed in the liquid phase in this section. However, after the initial period, a uniform temperature throughout the liquid holdup can be achieved with the same apparatus described in Section 5.2. The mathematical model for semi-batch diatillation accompanied by

Abstract

chemical reactions deals with the above operating period of uniform temperature distribution.

The hot junction for measuring the temperature of the carrier gas-product vapor is located at the intersection between the center of the 2 " horizontal pipe and the right-hand edge of the vertical $2^{\prime \prime}$ pipe. This location was considered as an ideal point for obtaining average temperature of the gas-vapor mixture.

5.3.2.2. For Isothermal Oil Bath

Since oil bath temperature is constant throughour a run, it is not necessary to use thermocouple for measuring temperature. A calibrated thermometer is then employed for measuring the temperature of silicon flaid in the oil bath. Deionized boiling water ($100{ }^{\circ} \mathrm{C}$) and deionized ice water ($0^{\circ} \mathrm{C}$) are the two checking points. for this calibration.

5.3.2.3 For Cryogenic Temperature

Temperatures of the carrier gas, helium, in the vapor sample bottle are well below the ice point. They can not be measured by any thermometers. But the thermocouples presented in Section 5.3.2.1 can be used for this purpose
with a minor modification. The required modification is to shift the zero reference point on the Honeywell 19 Recorder from one end of the recorder chart to the other end. Thus, regative voltages can be shown on the recorder charts. Conversion of this negative voltage to a corresponding cryogenic temperature is also given in Table B. 1 of Appendix B.
> 5.3.3 Preparation of Nonvolatile Reactant, Acrylamide Sulfate

The molal ratio of acrylamide to sulfuric acid used for preparing acrylamide sulfate for all experimental runs is about 1:1.2. For comparison, each run uses about one mole of acrylamide. This acrylamide sul.fate solution is prepared separatly outside the reactiondistillation tray as described below.

The weighed concentrated sulfuric acid ($89.6 \mathrm{Wt} \%$) of desired quantity is heated in a $250-\mathrm{ml}$ glass beaker over an electric heater. The temperature of the sulfuric acid can be increased rapidily up to $60-70{ }^{\circ} \mathrm{C}$ under agitation. The temperatures are measured by the calibrated thermometer described in Section 5.3 .2, which is mainly used for measuring the oil bath temperature, Then, the weighed acrylamide of desired quantity is gradually added also under agitation into the sulfuric acid in about 30 seconds. Because heat is evolved from the reaction be-
tween these two components as well as supplied by the electrical heater, the liquid temperature can be further increased up to $115-125^{\circ} \mathrm{C}$ after all the desired quantity of acrylamide is added. The temperature is normally about $10^{\circ} \mathrm{C}$ above the desired oil bath temperatures. Since the prepared acrylamide sulfate must be fed through a glass funnel, which is normally at room temperature, the liquid temperature is then decreased down to about the oil bath temperature. Whenever there are differences between these two temperatures, it is necessary to wait for about 25 minutes before the absolute difference between the two temperatures becomes less than an allowable error of $0.02{ }^{\circ} \mathrm{C}$. Then, an initial liquid temperature equal to the oil bath temperature (surrounding temperature) can then be reached.

As mentioned eariier, ethyl acrylate from esterification between acrylamide sulfate and ethyl alcohol may polymerize as soon as vinyl group is freed from the molecular complex, i.e., acrylamide sulfate. Thus, 0.2 . Wt \% of hydroquinone is then added into the acrylamide sulfate solution before feeding ethyl alcohol into the re-action-distillation tray.

5.3.4 Volatile Reaction Feed System

Volatile reactant, ethyl alcohol is prepared as an 86 Wt \% aqueous solution. Sufficient amount of ethyl alcohol solution for one run is stored in a $250-\mathrm{ml}$
calibrated glass cylinder. The solution is first pumped from the cylinder and its rate measured by a rotameter. It is then preheated by the heat from the hot silicon fluid. in the oil bath before entering the reaction-distillation tray. Details on the storages, cylinder pumping device, rotameter and feed preheater are described as follows.
5.3.4.1 Storage Cylinder and Flow Rate Measurement

A capillary glass tubing with outside diameter of $1 / 4^{\prime \prime}$ and inside diameter of 1 mm is immersed into the ethyl al.cohol solution in the cylinder. Its open end $i s$ located 1 centimeter above the bottom of the cylinder. The other end is outside of the cylinder. It is reaurad and then connected to a flexible Tygon tubing with outside diameter of $1 / 8^{\prime \prime}$ and wall thickness of $1 / 32 "$. This Tygon tubing is extended to a pump for purping the solution from the cylinder to the reaction-distillation tray.

When suction is obtained from the pump, the ethyl alcohol solution will enter the open end of the capillary tubing. The solution level instantaneously reduced in the cylinder can then be read from the readings marked on the cylinder.

With the amount of the solution consumed and the corresponding time measurement, the feed rate of the solution can be determined. Thus, this storage cylinder
with salibrated volume serve as a.storage tank as well as a device for fine flow rate measurement.

Mowever, this devjee can not ve used for controlling the ciesifed flow rate. A rotameter is installed for presetting the desired flow rate for each run. The rotameter is located right after the discharge stream from the feed pump. Gilmount No. 260 flowrator is used for this service. Its calibration will be presented later in details in Section 5.4.
5.3.4.2 Feed pump

A polystalic pump manufactured by Bucher Instruments is very suitable for delivering continuous smail Iiquid stream ranged from $2 \mathrm{ml} / \mathrm{hr}$ to $1000 \mathrm{ml} / \mathrm{hr}$. In this system, the observed flow rates are ranged from to to $120 \mathrm{ml} / \mathrm{hr}$, which are well covered by the capacity. of this pump.

The pump has four parallel rotating stainless-steel cylinders. On each rotating cylinder, there are ten stainless-steel bearings. All the cylinders are attached to a variable internal motor, whose rate can be controlled by a dial on the top panel of the punp as shown in Fig. 5.5. The Tygon tuoing mentioned in the previous section is pressed against on five of the ten bearings for each rotating cylinder. The liquid solution then moves in the same direction of the rotating cylinder

Fig. 5.5 Feed Pump
when the five bearings press the Tygon tubing against a fixed vertical wall. Although the flow pattern produced by polystalic purap is slightly peristatic, the amplitude of the peristalsis is constant and very small. For example, for ethyl alcohol fed at $2 \mathrm{ml} / \mathrm{min}$ or 120 $\mathrm{mi} / \mathrm{hr}$ the rotameter reading is 60 ± 0.2. The peristaltic duration is only 0.4 seconds. Therefore, this flow pattern can be considered to be constant and stable. Though there are four rotating cylinders, only one of them is in use at any time.

5.3.4.3 Feed Preheater

For the best feed rate measurement, aqueous etryi alohol solution is fed to the system in liquid state at rocm temperature. The solution is then preheated to. the desired relative ratio of vapor to total feed. As mentioned in previous sections, the solution is prehested by the heat from the hot silicon fluid in the oil bath. Heat transfer surface is a glass tubing wall, or a copper tubing wall, or both of them in series. If low relative ratio of vapor to total feed is desired, only a segment of glass tubing directly connected to the bottom of the reaction-distillation tray is used as preheater. This preheater is illustrated in Fig. 5.6.a. The heating section is an eleven-inch long capillary glass tubing with inside diameter of 1 mm and outside diameter of $1 / 4 \%$. The free end of the heating tubing is connected by a swagelog elbow
union to an upward glass tubing of the same size. The other end of the upward glass tubing is reduced to a size such that it can be fitted and connected to the $1 / 8 "$ tygon tubing extended from polystalic pump. It is noted that the free end of the heating glass tubing must be kept in a position that the elbow union is still underneath the surface of the oil bath. This is because the free end of the glass tubing should be connected to a copper tubing for high relative ratio of vapor to total feed. If the union is exposed to the air, the vapor from the copper tubing will be condensed. Heat loss caused by this false installation will lead to serious error in determining relative ratio of vapor to total feed. The preheater for higher relative ratio of vapor to tolel feed is illustrated in Fig. 5.6.b.

In addition to the glass heating tubing montioned early in this section, a. 48" long of spiral copper tubing with outside diameter of $1 / 4^{\prime \prime}$ is used to increase vapor ratio in the feed stream. At the downstream of the copper tubing, a pressure ga.uge of 5 psig is attached on the tubing to measure the pressure of the feed stream at this point. For a given oil bath temperature and a selected flow rate, there is a corresponding pressure. This pressure can be kept almost constant throughout a run im-

LIQUID FEED

Fig. 5.6b Feed Preheater for High Relative Ratio of Vapor to Total Feed

Fig. 5.6a Feed Preheater for Low Relative Ratio of Vapor to Total Feed
plying that the feed flow rate can be steadily maintained. Calibration of relative ratio of vapor to total feed will be presented later in Section 5.4.

5.3.5 Vapor Sampling System

Vapor sampling system starts from the cylinder with carrier gas helium to the vapor sample bottles imnersed in liquid nitrogen. Heliun is delivered by pressure drop at a fixed flow rate for all experimental runs. The rate is set at 4.5 standard cubic ft per hour or $2170 \mathrm{ml} / \mathrm{min}$. Since the total volume in the heliun path from the vapor withdrawal section to the vapor sample bottle is 250 ml . the above-mentioned carrier gas rate then reflects a time lag of only 0.11 minutes compared a total of about 120 minutes of operation time for each run. The error caused by the time lag of vapor sample to liquid sample can then be reduced to minimum.

Vapor withdrawal section has been described in Section 5.3.1. Here the discussion is devoted to vapor condensation in liquid nitrogen, which is contained in a 1200 ml dewar for good insulation.

Two-stage sample bottles are used for trapping vapor sample by liquid nitrogen and shown in Fig. 5.7. The first stage is a small glass bottle with very thin wall thickness. It has a diameter of $1.125^{\prime \prime}$ and height of $2^{\prime \prime}$, which can be used to contain vapor condensate up to

Fig. 5.7 Vapor Sample Bottle

25 ml . Two inlet and outlet glass arms are connected to both sides of the upper edge of the bottle and extended straight upward. The inlet arm has a flat opening end which can be attached onto the hot tubing extended from the vapor withorawal section. The outlet arm of the first-stage bottle is connected by a U tube to the second-stage bottle.

The second-stage bottle has two paralled vertical glass tubings with an outside dianeter of $1^{\prime \prime}$ and a length of $5^{\prime \prime}$. They are on tops or a shallow cylinder of $3^{\prime \prime}$ in diameter and $1^{\prime \prime}$ in height. This shallow cylinder is designed to allow the entire sample bottle sitting stably on the table or weighing pan. One of the two vertical tubes is, of course, connected to the above-mentioned U tube and the other is connected to a flexible rubber twbe by a special Teflon cap. The female screw in the Teflon cap is fitted to the male screw on the glass tube for connection. A hole is punched on the center of the teflon cap. Then a small segment of teflon tubing with outside diameter slightly greater than the hole is forced into the hole for tight connection between the tefion tube and teflon cap. The free end of the teflon tube is then connected to a vent gas line by a piece of flexible rubber tube. The sample of the vent gas can then be taken by a gas sampling syringe at the flexible rubber tube for analysis.

Within the two parallel vertical tubes and the shallow cylinder, fine glass fiber is packed for filtration purpose. The outlet temperature of the exhausted gas in the bottle beneath liquid nitrogen level is measured to be $-192^{\circ} \mathrm{C}$ by the thermocouple described in Section 5.3.2.3. At such cryogenic temperature all the vapors in the system become crystals. Although most of vapors are condensed in the first stage of the vapor sample bottle, the rest of vapor may become particles suspending in the helium stream. These particles can not be adsorpted simply by glass wall. Therefore, fine glass fiber must be provided for a complete collection of all the vapor components by filtration.

Since the product vapor mixture is a continuous stream, the sampling devices should permit an immediate shift of the vapor strean from one sample bottle to another without any mass loss. Therefore, two vapor sample bottles must be connected in parrallel to the hot helium-vapor line for this purpose. The deyices are illustrated in Fig. 5.8.

The down-stream tubing for hot helium-vapor stream from the reaction-distillation tray extends for 13 inches before bended vertically downward for 3 inches. A small port is installed at the elbow as a path way for thermocouple. The port is covered by a silicon rubber cap for sealing. The vertical tube is then connected to a three-

Fig. 5.8 Device for Gas Flow Shift
way stopcock. The other two ways of the stopcock are connected to two symmetric glass tubes with 30° declination. The declined tubes are then bended downward vertically for adopting two vapor sample bottles by tubing unions.

At the center points of the two declined tubes, the deciined tubes are connected to another set of three-way stopcock unit. The free end of its three paths is connected to helium gas cylinder by a flexible rubber tubing. The purpose of this device is to expel air in the vapor sample bottle by helium before it is surromad by liquid nitrogen because oxygen in the air is condenm sible at liquid nitrogen temperature. The flow rate of this helium stream can also be measured by a rotameter. It is noted that the glass tubing in the regions with hat vapor stream are wrapped by heating tape to prevent vapor from condensing on the tubing walls.

5.3.6 Liquid Sampling System

As the reaction-distillation tray is immersed in an oil bath, liquid samples should be taken from the sample port located on the top of the 2 " horizontal pipe as shown in Fig. 5.2. The distance between the liquid holdup and the sample port requires a syringe with an 8"long needle. Cast stainless-steel of type-316 is used as the material of the needle. It has much better cor-
rosive resistance to the reacting liquid mixture than the weld type-316 stainless steel used for coating on thermocouple as mentioned previously. For more than one-hundred liquid samplings no visible corrosion on the needle, i.e., no visible reduction in needle diameter, is found.

To overcome high liquid head in the long syringe needle, a Glenco gas-tight glass syringe is used. It has a maximum capacity of 10 ml with an adapter fitted to Hamilton syringe needle with gauge number of 18. The strong suction of this gas-tight syringe greatly reduces the time required for taking a liquid sample.

Since acrylamide and amonium bisulfate in the system are in solid state at room temperature. If the syringe needle is not preheated before liquid sampling, these two compounds will be crystalized inside the needie as soon as the needle is pulled from the not liquid holdup. The crystallized compounds block the path way of the needile and make sampling become completely impossible. Thus, a copper tubing with a sealed end is used for preheating the needie. The copper tubing is imnersed in the hot oil bath and has an outside diameter of $1 / 8^{\prime \prime}$ and a length of $8^{\prime \prime}$. For similar reason, another piece of copper tubing immersed in the oil bath is also used to preheat the glass syringe to avoid crystallization in the syringe. This copper tubing has a larger diameter
or 7/8" and a shorter length of $6^{\prime \prime}$. The syringe and syringe needle must be inserted into the above mentioned two heating tubes at least 5 minutes before taking liquid sample. Thus, the temperatures of the syringe and the syringe needle can become high enough to maintain the liquid sample as a clear brown liquid solution. The liquid sample is then injected into a liquid sample bottle. The liquid sample bottle is illustrated in Fig. 5.9. It j.s a $1 / 2^{\prime \prime} \times 2^{\prime \prime}$ cylindrical vial. A silicon rubber stopper with reversible sleeve provides path way for syringe needle and simultaneouly gives an exicellent seal for the bottle.

Fig. 5.9 Liquid Sample Bottle

In order to terminate reactions in the liquid sample, cold water is used to quench the liquid sample. Since the liquid sample becomes partially crystallized at low temperature, this cold water also becomes a good solvent for dissolving all solid compounds in the liquid sample. As the bottle is entirely closed, injection of liquid sample will increase the internal pressure of the bottle. This increased internal pressure reduces sample injection rate and even pushes away the rubber stopper. Therefore, all the liquid sample bottles are partially vacuumed in advance by a gas-tight syringe to provide fast sample injection rate and to secure the rubber stopper. During the sample injection, the needle tip mist not be in touch with cold water in the bottle. Otherwise, nonvolatile compounds may be crystallized in the needle to block the sample path way. As soon as the sample is injected into the water, the sample bottle is shaked violently to speedup quench function as well as dissolution of solid compounds in the sample. A clear liquid solution is then obtained, and immersed in ice bath for sample analysis.

5.3.7 Sample Analysis by Gas Chromatography

Gaw Fac Model 69-500 Gas Chromatography is used in this system for sample analysis. Its detector is a themal conductivity cell. Although a hydrogen flame
ionization detector is more sensitive to organic compounds, it cannot be used here because the system contains water. Its oven can house two columns of same size, and same packed material for producing same chromatograms. As mentioned in Section 5.2, gas chromatographic columns used in this work are self prepared. Since good separation for the components in a sample greatly depend on the quality of a packed colum, preparation of the packed column is then presented first in this section.

5.3.7.1 Preparation of Packed Column

Carbowax 1000 and Chromosob W 80/100 have been selected previously as stationary phase and support respectively. The next step is to coat Carbowax 1000 on Chromosorb W $80 / 100$. A desired amount of Carbowax 1000 is dissolved in the solvent,methylene chloride, in a flask. The corresponding amount of Chromosorb W, which makes 35 Wt \% of Carbowax 1000 on this support, is placed in a shallow porcelein dish. Then pour the methylene chloride solution in the Chromosorb W with constant and mild stirring. The solvent is then gradually evaporated from the dish, where heat is supplied from a heater underneath it. The temperature of the heater is generally controlled slightly below the boiling point or the solvent. For this case, temperature is adjusted at
about $40-50{ }^{\circ} \mathrm{C}$. As soon as the coated support is completely solvent free, it is then ready for being packed into a column.

According to Horváth (14), small-diameter columns with inside diameters from $2-3 \mathrm{~mm}$ are most adequate for analytical purpose. Thus, the tube used in this work have outside diameter of $1 / 8^{\prime \prime}$ and inside diameter of $3 / 32^{\prime \prime}$, which is equivalent to 2.4 mm . Two six-foot stainless-steel tubes of the above mentioned size are then cieaned and dried for colum packing. The method of packing the coated support into the stainless-steel trbes is illustrated in Fig. 5. 10.

The method employs a vacuum pump to provide a suction force such that the support can be forced into the tube. It is used here because it is easy to operate and i.ts low pressure drop across the colum does not seriously crush the particles of the support.

The tube is declined $45-60^{\circ}$ from the floor. On its top, it is connected to a small glass funnel by a small segment of flexible Tygon tube. To pack the column, the packing material is fed into the column from the funnel. At the bottom of the tube, it is connected to one end of a Nuprofilter by a tube union. The other end of the filter is further connected to the vacuum pump. In the filter, the filtration is performed by a $50-60 \mu$ sintered metal which prevents the packing material

Fig. 5.10 Device F̈or Column Packing
from entering the vacuum pump. The upper space of the filter is filled with glass beads to serve as the filtration media and thus reduce the amount of the packing material falling into the filter. Although pressure drop presents the entire column tube, the small inside diameter of the tube reduces incoming flow rate of the support. Therefore, tapping must be applied by a metal bar on the tube. It is better to tap the tube up-and-down lightly until the packing is finished. The packed column is then removed from the packing system and inserted with fine glass fiber on both of its ends. All the procedures are then repeated for packing the ancther colum. Finally, both of the column tubes are bent into coils and connected by Swagelog tube fittings onto the tube adaptors in the column oven of the gas chronatography.

Now, the next step is to condition the prepared columns. At first, each column is oniy connected to the sample injection chamber. The other end is let free to avoid the contamination of detector filament at the beginning of column conditioning. Helium of 99.995% is used as carrier gas. The flow rate is set at $30 \mathrm{ml} / \mathrm{min}$ The oven temperature is adjusted at $125^{\circ} \mathrm{C}$, maximum suggested temperature for the Carbowax 1000. The column is then operated overnight at the above mentioned conditions. Next, the column is attached to the tube adeptor in the oven, which is connected to the detector. The detector temperature is set at $110^{\circ} \mathrm{C}$ while the oven
temperature is reduced from $125^{\circ} \mathrm{C}$ to $100{ }^{\circ} \mathrm{C}$ and the carrier gas is increased from $30 \mathrm{ml} / \mathrm{min}$ to $50 \mathrm{ml} / \mathrm{min}$ with a gauge pressure of 60 psig. The current of the detector filament is set at 180 ma at $110{ }^{\circ} \mathrm{C}$ detector temperature. The current may be adjusted slightly higher or lower than 180 ma depending upon the size of the sam-. ple. After another 24 hours, a stable base line can be obtained and no impurities can be observed from the chromatograms. The column is then ready for sample analysis. It is operated isothermally.
5.3.7.2 Sample Analysis

1. Vapor Sample:

Most of vapor sample is in solid state when it is removed from the liquid nitrogen bath. The vapor sample bottle is then flushed by warm water until the entire vapor sample becomes liquid state. This step takes about 30 seconds. The bottle is then weighed by an electronic balance to get total weight of the sample. Since some vapor sample is caught in glass fiber, about $60-\mathrm{ml}$ acetone per sample is added into the bottle to extract it out and also to mix uniformly all the vapor sample.

For better results, 1-propanol is used as reference compound in gas chromatographic analysis. The amount of this reference compound must be known. It can be
calculated from the difference between the weights of bottle before and after the addition of 1-propanol. A typical gas chromatogram for a vapor sample is shown in Fig. 5.11. Very clear peak separation among 2.11 the components including acetone and 1-propanol in the sample bottle can be observed. This demonstrates that the prepared column is excellent for analyzing the compounds in this system. The peak area for each compound is measured by a Hudron planimeter. The measured area for each peak should be devided by the antenuator shown on the top of the peak. The resulting areas for all the compound then has the same basis.

Although water peak has a long tailing because of its high polarity, its relatively small quantity in the entire sample does not produce a significant effect on analysis for major compounds such as ethyl acrylate and ethyl alcohol. The area ratio of a component to 1-propanol as measured above dces not reflect actual weight ratio between the two components. Therefore, relationship between area ratio and weight ratio for a component to the reference compound, 1-propanol must be determined from blank test on gas chromatography. Calibration between these ratios will be presented later in Section 5.4.
2. Liquid Sample

The molal quantities in the liquid holdup are calculated from the instantaneously stochiometric balance on the basis of the accumulated feed quantities, vapor condensate, and reaction relationship. Therefore, only relative ratios among ethyl alcohol, ethyl acrylate, diethyl ether, and β-ethoxy ethyl propionate are needed to be determined. No reference compound is used in liquid sample because the presence of sulfuric acid in the liquid sample can cause serious side reactions with 1-propanol, and thus produces unclear gas chromatograms.

A typical gas chromatogram for a liquid sample is shown in Fig. 5.12. A slight shift in base line is caused. by the deposit of nonvolatile compounds and sulfuric acid. This shift may be assumed to have negligible error in determination of relative areas among the different peaks. Because of the effect of sulfuric acid, inorganic nonvolatile compounds, the peak of ethyl alcohol has a tailing effect which overlaps the peak of ethyl acrylate. The relationship between the two over-lapped compounds has been determined by blank test. The shaded area all belongs to ethyl alcohol and that of the unshaded peak belongs to ethyl acrylate. Since large amount of water is used to quench the liquid sample and to dissolve its solid compound, the peak of water in the gas chromatographic chart is then very large. Since the quanity of water

Fig. 5.12 Gas Chcomaeraphical Analysis of
A Typicsi inquic Sample
produced can be calculated from the amount of diethyl ether produced, its peak in this chronatogram is not used to determine its quantity. It is noted that diethyl ether does not show on the chart of the liquid sample. All the diethyl ether produced in the reaction is evaporated and appears in the vapor condensate sample. Calibration of gas chromatographical area ratio as a function of actual weight ratio will be presented in Section 5.4.
5.4 Equipment Calibration

Several equipment used in the experimental system are calibrated by the procedures described below.

5.4.1 Feed Flow Rate

The feed flow rate is one of the three operating parameters in the system. It is measured by a Roger Gilmont rotameter. For calibriation purpose, a threeway stopcock is equipped on the top of the rotaneter. One of the two outlets of the stopcock goes to the reac-tion-distillation tray. The other is a free end. During calibration , this free end is attached by a glass cylinder as a collection bottle while aqueous ethyl alcohol solution flow through the rotameter. For a preset rotameter reading, an accumulated amount of ethyl alcohol solution is weighed with respect to the measured time
interval. Then the mass flow rate of the feed can be calculated for its corresponding reading on the rotameter. If a volume flow rate, is preferred, the density of the prepared aqueous alcohol solution can be used to convert the mass flow rate into the volume flow rate. All the calibrated volumetric feed rate for the Gilmont rotameter is given in Fig. B. 2 of Appendix B.
5.4.2 Overall Heat Transfer Coefficient Across the Wall of the Reaction-Distillation Tray

Boiling water, boiling ethyl alcohol and nonvolatile glycerine are the three materials used to simulate the liquid mixture in the reaction-distillation tray. Ovarall heat transfer coefficient for each of the above three materials across the wall of the reaction-distillation tray is measured separatly. Since the variations among the three sets of measured overall heat transfer coefficient are small, their average value is then lised as a simulated overall heat transfer coefficient for the reac-tion-distillation liquid mixture. Detailed techniques for measuring the above three sets of overall heat transfer coefficients are described as follows.
5.4.2.1 Overall Heat Transfer Coefficient of Boiling Water in the Reaction-Distillation Pray

A fixed amount of water is preheated up to about
$90^{\circ} \mathrm{C}$ and then put into the reaction-distillation tray. The oil bath temperature is set higher than the boiling point of water such that water in the reaction-distillation tray can be heated up to its boiling point and also kept boiling at the boiling point. It is noted that no water is fed into the reaction-distillation tray during this measurement. Thus, all the heat transferred across the wall of the reaction-distillation tray contributes to evaporate water vapor. The amount of heat transferred can then be calculated from water vaporization rate and heat of vaporization of water by the following equations

$$
\begin{equation*}
Q=\lambda_{\mathrm{H}_{2}} \mathrm{O}_{\mathrm{H}_{2} \mathrm{O}} \tag{5-1}
\end{equation*}
$$

where

$$
\begin{aligned}
Q= & \text { heat transfer rate across the wall of the reac- } \\
& \text { tion-distillation tray } \\
\mathrm{V}_{\mathrm{H}_{2} \mathrm{O}}= & \text { vapor mass flow rate of water, i, e. vaporization } \\
& \text { rate } \\
\lambda_{\mathrm{H}_{2} \mathrm{O}}= & \text { heat of vaporization of water }
\end{aligned}
$$

From the definition of overall heat transfer coefficient Q can be alternatively represented by

$$
\begin{equation*}
Q=U_{i} a_{i}\left(T_{0}-T\right) \tag{5-2}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{i}= & \text { inside heat transfer area of the reaction- } \\
& \text { distillation tray }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{U}_{\mathrm{i}}= & \text { cverall heat transfer coefficient referred } \\
& \text { to inside heat transfer area } \\
\mathrm{T}_{0}= & \text { oil bath temperature } \\
\mathrm{T}= & \text { liquid temperature in the reaction-distillation } \\
& \text { tray }
\end{aligned}
$$

Equa.ting the above two equations and removing the term, $a_{i}\left(T_{0}-T\right)$ to the other side give the following working equation for U_{i} :

$$
\begin{equation*}
u_{i}=\frac{\lambda_{H_{2} O} v_{H_{2} O}}{a_{i}\left(T_{0}-T\right)} \tag{5-3}
\end{equation*}
$$

The water vapor rate, $\mathrm{V}_{\mathrm{H}_{2} \mathrm{O}^{\prime}}$ can be calculated from the amount of water vapor condensate collected within a measured time interval. The experimental apparatus introduced in Section 5.3.6 for vapor sampling can be used to measure water vapor condensate, and a stop watch to measure the time interval. If the temperature driving force, ($T_{0}-T$), which is constant throughout a measuring period, is not large, evaporation rate will be small. And, if the temperature driving force is too small, amount of water evaporated will be too small. This may reduce the accuracy in calculated total heat transfer rate across the wall of the reaction-distillation tray. Therefore, three oil bath temperatures, 105 , 110 and $115^{\circ} \mathrm{C}$,
which can provide moderate temperature driving forces, are used. Before calculating heat transfer area, a_{i}, the aerated volume must be determined first.

The aerated water volume is calculated from the following equation:

$$
\begin{equation*}
v_{a}=\frac{\left(W_{0}-W_{c} / 2\right)}{\rho} x \epsilon \tag{5-4}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{v}_{\mathrm{a}}= & \text { aerated water volume } \\
\mathrm{W}_{\mathrm{o}}= & \text { amount of water in the reaction-distillation } \\
& \text { tray at the beginning of measurement } \\
W_{\mathrm{c}}= & \text { amount of water vapor condensate collected } \\
& \text { at the end of measurement } \\
\rho= & \text { water density at } 100^{\circ} \mathrm{C} \\
\epsilon= & \text { volumetric ratio of aerated water to clear } \\
& \text { water }
\end{aligned}
$$

The term, \in, is predetermined to be 1.06 . The procedures are described below. The clear water volume is calculated from water quantity and water density. The aerated volume is obtained by first measuring the height of the aerated water and then using the calibration chart given in Fig. B. 3 of Appendix B for the volume of aerated water. When the aerated volume, v_{a}, is determined from Equation (5-4), its corresponding heat transfer area, which can not be directly measured in this reaction-distillation system, can be obtained from a calibration curve also given in Fig. B.3. For computer calculations in the program

MODEI, this calibration curve has been fitted by a polynomial equation. The program MODEI is a computer simulation for the mathematical model of semi-batch distillation accompanied by chemical reaction.

Now, all the terms on the right-hand side of Equation (5-3) are known, the overall heat transfer coefficient, U_{i}, can then be calculated. Since the reactiondistillation liquid is mixed by a stirrer at about 1000 rpm, the overall heat transfer coefficient of the boiling water is also measured at the same stirring speed. The measured results are listed as follows.

$T_{0,}{ }^{0} \mathrm{C}$	$\left(T_{0}-T\right),{ }^{\circ} \mathrm{C}$	$\mathrm{U}_{\mathrm{j}}, \mathrm{cal} / \mathrm{min}-{ }^{\circ} \mathrm{C}-\mathrm{cm}^{2}$
105	5	0.180
110	10	0.184
115	15	0.185

An average value of $0.183 \mathrm{cal} / \mathrm{min}-{ }^{\circ} \mathrm{C}-\mathrm{cm}^{2}$ for the above three quantities is then used to represent the overall heat transfer coefficient of boiling water in the reac-tion-distillation tray.
5.4.2.2 Overall Heat Transfer Coefficient of Boiling Ethyl Alcohol in the Reaction-Distillation Tray

[^0]section are also used here to measure overall heat transfer coefficient of boiling ethyl alcohol in the reactiondistillation tray. Three oil bath temperatures, 85, 90 and $95^{\circ} \mathrm{C}$ are used to provide temperature driving forces close to those shown in the previous section. It is noted that boiling point of ethyl alcohol is $78.4 .{ }^{\circ} \mathrm{C}$. The results are listed as follows.
\[

$$
\begin{array}{ccc}
\mathrm{T}_{0},{ }^{\circ} \mathrm{C} & \left(\mathrm{~T}_{0}-\mathrm{T}\right),{ }^{{ }^{\circ} \mathrm{C}} & \mathrm{U}_{\mathrm{i}}, \mathrm{cal} / \mathrm{min}^{\circ}{ }^{\circ} \mathrm{C}-\mathrm{cn}^{2} \\
85 & 6.6 & 0.150 \\
90 & 11.6 & 0.152 \\
95 & 16.6 & 0.152
\end{array}
$$
\]

An average value of $0.151 \mathrm{cal} / \mathrm{min}-{ }^{\circ} \mathrm{C}-\mathrm{cm}^{2}$ is then used to represent the overall heat transfer coefficiert of boiling etryl alcohol in the reaction-distillation tay.
5.4.2.3 Overall Heat Pransfer Coefficient of Nonvolatile Glycerine in the Reaction-Distillation Tray

Vapor pressure of glycerine is very small. Therefore,: during the determination of overall heat transfer coefficient using glycerine, there is no vaporization of glycerine in the reaction-distillation tray. All the heat transferred from the oil bath then contributes to increase the temperature of glycerine. The glycerine is aiso completely mixed in a similar manner as used in
the two previous cases. For any instant, the energy balance require that the rate changes of heat transfer and intermal energy increase should be equal. Thus,

$$
\begin{equation*}
M \frac{d E}{d t}=U_{i} a_{i}\left(T_{0}-T\right) \tag{5-5}
\end{equation*}
$$

At atmospheric pressure, the differential internal. energy, dE, may be approximated by

$$
d E=d(h-p v) \stackrel{N}{=} d h=C_{p} d T
$$

Substituting the above relatiorship into Equation(5-5) yields

$$
M C_{p} \frac{d T}{d t}=U_{i} a_{i}\left(T_{0}-T\right)
$$

If the temperature range is narrow, an average heat capacity \bar{C}_{p}, may be used to replace C_{p} without any significant finem. Then the above equation can be readily integrated to give the following working equation for overall heat transfor coefficient:

$$
\begin{equation*}
U_{i}=\frac{M_{p} \ln \frac{T_{0}-T_{1}}{T_{0}-T_{2}}}{a_{i}\left(t_{2}-t_{1}\right)} \tag{5-6}
\end{equation*}
$$

where
1 =subscript to represent the initial conditions
$2=s u b s c r i p t ~ t o ~ r e p r e s e n t ~ t h e ~ f i n a l ~ c o n d i t i o n s ~$
$\hat{\mathrm{C}}_{\mathrm{p}}=a r e r a g e$ heat capacity

Two oil bath temperatures, 105 and $115^{\circ} \mathrm{C}$ are used and the temperature rise for glycerine is in the range of 70 to $85^{\circ} \mathrm{C}$. The results are listed as follows.

$$
\begin{array}{cc}
\mathrm{T}_{\mathrm{O}}{ }^{{ }^{\circ} \mathrm{C}} & \mathrm{U}_{\mathrm{i}}, \mathrm{cal} / \mathrm{min}-{ }^{\circ} \mathrm{C}-\mathrm{cm}^{2} \\
115 & 0.149 \\
105 & 0.145
\end{array}
$$

An average value of $0.147 \mathrm{cal} / \mathrm{min}-{ }^{\circ} \mathrm{C}-\mathrm{cm}^{2}$ is then used to represent overall heat transfer coefficient of nonvolatile glycerine in the reaction-distillation tray.
5.4.2.4 Overall Heat Transfer Coefficient of the Reaction-Distillation Liquid Mixture

The reaction-distillation liquid mixture contains both volatile componerts such as ethyl alcohol and water, and very nonvolatile components such as sulfuric acid and amonium bisulfate. Therefore, a simulated overall heat transfer coefficient calculated from an average of the above three experimental overall heat transfer coefficients is then used for the reaction-distillation liquid holdups. The calculated average value is $0.16 \mathrm{cal} / \mathrm{min}-{ }^{\circ} \mathrm{C}-\mathrm{cm}^{2}$. Since the liquid inside the reaction-distillation tray is boiling and under a vigrous stirring, its resistance to heat transfer should be much smaller than that of the silicon film on the outside wall of the reaction-distillation system. The silicon fluid is very nonvolatile and stirred
mildy. The silicon film on the outside of the glass wall and the glass wall itself are the major components of the overall heat transfer resistance. This is verified by the fact that the overall heat transfer coefficients determined by using the three different fluids in the system are about the same. Thererore, the use of an. average overall heat transfer coefficient is justified.
5.4.3 Relative Ratio of Vapor to Total Feed

- The relative ratio of vapor to total feed is used to calculate the inlet enthalpy of the feed stream. According to the definition of the system, the inlet enthalpy of the feed stream should be that at the micro sieve tray entry, or more precisely, right before its mixing with the liquid holdup. Because of the glass-blowing technique, the feed glass tube is comected to the bottom of the reaction-distillation tray as a whole piece. mhus, the feed enthalpy is best measured with the same preheater (feed tubing) and under the same operating conditions as used in the reaction-distillation system except that glycerine is useu as liquid holdup. The incoming aqueous ethyl alcohol solution is absorbed into glycerine without chernical reaction. When the vapor in the feed stream is absorbed by glycerine, an appreciable amount of heat will be released because the absorbed vapor is condensed into the liquid holdup. This released heat of conden-
gation will then increase the temperature of glycerine. The overall heat transfer coefficient across the wall of the reaction-distillation tray with such an additional insulation by qeflon sheet is then measured by the same procedures described in Section 5.4.2.3. .The new measured overall heat transfer coefficient is $0.056 \mathrm{cal} / \mathrm{min}-{ }^{\circ} \mathrm{C}-\mathrm{cm}^{2}$, which is much smaller than the original $0.16 \mathrm{cal} / \mathrm{min}-{ }^{\circ} \mathrm{C}-\mathrm{cm}^{2}$. The instantaneous energy balance around the reactiondistillation tray can be repressented by

$$
\text { . } \quad \frac{d}{d t}(M h)=V_{I N} H_{I N}+L_{I N} h_{I N}+U_{i} a_{i}\left(T_{0}-T\right)
$$

For a small measuring period, average liquid holdup, heat capacity, and heat transfer area may be employed. Then, the above equation can be reduced to the followins equation:

$$
\tilde{M}_{\mathrm{M}}^{\mathrm{C}} \frac{\mathrm{dT}}{\mathrm{dt}}=V_{I N}{ }^{H_{I N}}+I_{I N} h_{I N}+U_{i} \bar{a}_{i}\left(T_{0}-T\right)
$$

Integration of the above equation yield:

$$
\begin{equation*}
\frac{V_{I N} H_{I N}+I_{I N} h_{I N}}{U_{i}{ }_{i}}=\frac{T_{2}-T_{1} e^{-\alpha \Delta t}}{1+e^{-\alpha \Delta t}}-T_{0} \tag{5-7}
\end{equation*}
$$

where

$$
\alpha=\frac{U_{i} a_{i}}{M_{p}}
$$

```
\Deltat= measured time interval
T
    alcohol solution
```

$$
\begin{aligned}
T_{2}= & \text { temperature of glycerine at the end of a mea.- } \\
& \text { suring period }
\end{aligned}
$$

At a high ethyl alcohol concentration, equilibriun compositions of vapor and liquid very close. Therefore, it may be assumed that the vapor composition is the same as the feed composition. Thus, the inlet enthalpy can be expressed as a function of neat of vaporization, total feed rate and relative ratio of vapor to total feed as follows:

$$
\mathrm{V}_{I N}{ }^{\mathrm{H}} \mathrm{IN}+\mathrm{I}_{\mathrm{IN}} \mathrm{~h}_{\mathrm{IN}}=\left(\psi \lambda+\mathrm{h}_{\mathrm{F}}\right) \mathrm{F}
$$

where

$$
\begin{aligned}
\psi= & \text { relative ratio of vapor to total feed } \\
\mathrm{F}= & \text { total feed rate } \\
\lambda= & \text { heat of vaporization of feed stream } \\
\mathrm{h}_{\mathrm{F}}= & \text { liquid enthalpy for total feed at the exit tem- } \\
& \text { perature of the preheater }
\end{aligned}
$$

Substituting the above equation into Equation (5-7) and rearranging the equation will give the following working equation to determine the relative ratio of vapor to total feed.

$$
\begin{equation*}
\psi=\frac{U_{j} a_{j}}{\lambda F}\left[\frac{T_{2} T_{1} e^{-\alpha \Delta t}}{1+e^{-\alpha \Delta t}}-T_{0}\right]-\frac{h F}{\lambda} \tag{5-8}
\end{equation*}
$$

As mentioned in Section 5.3.4.3, glass tubing is used for generating a low relative ratio of vapor to total feed and copper tubing plus the above mentioned

Abstract

glass tubing is used to generate a high relative ratio of vapor to total feed. For each set of operating conditions, i.e., oil bath temperature, feed rate, and tubing material, the experiments are repeated twice. The average value of ψ^{\prime} s determined by Equation (5-8) is plotted in Fig. B. 4. of Appendix B and its smoothed curve is used as the calibration for relative ratio of vapor to total feed. Figure B. 4 shows that at a higher flow rate, the relative ratio of vapor to total feed is smaller if the other operating conditions such as the oil bath temperature and tubing material do not. change. Though ar increase in inside flow rate can increase the inside film heat transfer rate, it is too small to affect an overall heat transfer coefficient.

> 5.4.4 Relation between Weight Ratio and Area Ratio in Gas Chromatography

As mentioned in Section 5.3.5. 1-propanol is used as the reference compound in gas chromagraphical analysis. Therefore, for each volatile compound except β-etnoxy ethyl propionate in the system, serveral samples with different weight ratios to 1 -propanol are prepared for blank test. The peak areas of the test compound and 1-propanol from the chromatographical analysis are then integrated by a Hudron planimeter. The weight ratios are then plotted against the corresponding area ratios
as shown in Fig.B. 5 of Appendix B. It is found that ethyl acrylate and ethyl alcohol have the constant relationships between the ratios. But the similar relationships for water and diethyl ether are functions of weight ratios. As mentioned in Section 5.2, β-ethoxy-ethyl propionate can not be purchased from commercial sources for use in a blank test. Since the system contains only a trace amount of this by-product, any error introduced by a simplifying assumption is negligible. It is assumed that the weight and the area ratios for this compound are the same.

All the smoothed curves in Fig. B. 5 have been fitted into polyncmial equations and used by the computer progrem LABDATA. That is, all the gas chromatographical analysis obtained from area ratios into actual weight ratios by these polynomial equations is in the program LABDATA.
> 5.4.5 Heat of Reaction for the Reaction between Acrylamide and Sulfuric Acid

Heat of reaction for the reaction between acrylamide and sulfuric acid is required for calculating heat of formation of molecular complex, acrylamide sulfate. Then the heat of formation of acrylamide sulfate is used to calculate the heats of reaction for esterification and successive reaction on the basic of Hess' law. The heat of reaction between acrylamide and sulfuric acid is
measured as follows.
A 250-ml beaker containing 131.3 grams of sulfuric acid solution of $89.6 \mathrm{Wt} \%$, which is equivalent to 1.2 moles of pure sulfuric acid, is immersed in the oil bath at $80^{\circ} \mathrm{C}$. Pemperature of sulfuric acid is finally reached at $80^{\circ} \mathrm{C}$. Then, 71.1 grams or 1 mole of acrylamide at the room temperature, $25^{\circ} \mathrm{C}$, is added into the sulfuric acid solution under continuous stirring. The released heat from the reaction between sulfuric acid and acrylamide not only melts crystalline acrylamide but also raise the temperature of the formed acrylanise sulfate solution to $89.2{ }^{\circ} \mathrm{C}$. The heat of reaction is then equal to the heat required to melt acrylsmide ame raises temperatures of acrylamide from $25^{\circ} \mathrm{C}$ to $89.2^{\circ} \mathrm{C}$ and sulturic acid from $80^{\circ} \mathrm{C}$ to $89.2^{\circ} \mathrm{C}$. The calculation procedures are given as follows.

1. Heat of Fusion of Acrylamide:

General correlation for heat of fusion has been unsuccessful. However, entropies of fusion of homologous compounds are generally very close while those of heterogenous compounds are widely apart as shovm below.

Entropy of Fusion

Paraffins

$$
\begin{array}{ll}
\text { n-Hexane } & 17.51 \\
\text { n-Heptane } & 18.37
\end{array}
$$

$$
\mathrm{cal} / \mathrm{g}-\mathrm{mole}-{ }^{\mathrm{O}_{\mathrm{K}}}
$$

Naphthene

$$
\text { Cyclohexane } 2.28
$$

1,cis'-2-Dimethyl Cyclohexane 1.76
Aromatics
Benzene . 8.43
Toluene 8.83

Therefore, the best estimate for heat of fusion is to use the entropy of fusion of a homologous compound with known heat of fusion or entropy of fusion. The closest compound to acrylamide with known heat of fusion is cyanamide (52). It is then used to estimate the heat of fusion of acrylamide as follows.

Compound | Melting Point | Heat of Fusion |
| :---: | :---: |
| ${ }_{\mathrm{C}}^{\mathrm{C}}$ | K.cal/g-mole |

Cyanamide
44
2.09

Acrylamide
84.5
x

$$
x=2.09 \times \frac{273.2+84.5}{273.2+44}=2.36 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole}
$$

2. Sensible Heat:

For pure sulfuric acid

$$
\begin{aligned}
\overline{\mathrm{c}}_{\mathrm{p}} & =0.38 \mathrm{cal} / \mathrm{g}-{ }^{{ }^{0}} \mathrm{C} \\
\mathrm{~h}_{1} & =131.3 \times 0.896 \times 0.38(89.2-80) \times 10^{-3} \\
& =0.41 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole} \text { acrylamide }
\end{aligned}
$$

$$
\begin{aligned}
\overline{\mathrm{C}}_{\mathrm{p}} & =1.0 \mathrm{cal} / \mathrm{g}-{ }^{\circ} \mathrm{C} \\
\mathrm{~h}_{2} & =131.3 \times(1-0.896) \times 1.0(89.2-80) \times 10^{-3} \\
& =0.12 \mathrm{cal} / \mathrm{g} \text {-mole acrylamide }
\end{aligned}
$$

For acrylamide

$$
\begin{aligned}
\overline{\mathrm{C}}_{\mathrm{p}} & =0.60 \mathrm{cal} / \mathrm{g}-{ }^{\circ} \mathrm{C} \\
\mathrm{~h}_{3} & =71.1 \times 0.60 \times(89.2-25.0) \times 10^{-3} \\
& =2.73 \mathrm{Kcal} / \mathrm{g} \text {-mole acrylamide }
\end{aligned}
$$

3. Heat of Reaction:

Difference in heat capacities between the reactant and the product is assumed to be negligible. Then heat of reaction for this reaction, Reaction 4 is equal to the sum of the above four energy terms:

$$
\begin{aligned}
\Delta H_{R_{4}} & =\lambda_{f}+h_{1}+h_{2}+h_{3} \\
& =2.36+0.41+0.12+2.73 \\
& =5.62 \mathrm{Kcal} / g \text {-mcle acrylamide }
\end{aligned}
$$

5.5 Experimental Procedures
5.5.1 Preparatory Work

1. Turn on the gas chromatographic equipment at least 48 hours before sample analysis.
2. Prepare vapor sample bottle following the method given in Section 5.3.5.
3. Prepare liquid sample bottle following the method given in Section5.3.6
4. Before the addition of silicon fluid into the oil bath, assemble experimental apparatus according to the flow scheme shown in Fig. 5.1.
5. Add silicon fluid into the oil bath, turn on the heater and the stirrer, and set the desired temperature of the oil bath.
6. Feed nitrogen gas into the vapor withdrawal system for preheating the system.
7. Tum on heating tapes and heating mantie along the vapor withdrawal line and set the desired temperature.
8. It takes at least an hour before the constant temperatures both in the oil bath and the vapor withdrawal system are reached.
9. Preheat the liquid sample syringe and syrirge needle following the method given in Section 5.3.6.

10 Shift the above nitrcger gas to carrier gas heliun.
11. Feed the auxiliary helium into the vapor sample bottles to expel air in the bottles.
12. Two minutes later, pour liquid nitrogen into the 1200 ml dewar to immerse vapor sample bottles about $1 / 2^{\prime \prime}$ below the U tube of the bottle.
13. Another three minutes later, close the auxiliary helium stream and open the carrier gas helium stream.
14. Prepare nonvolatile reactant, acrylamide sulfate solution following the method given in Section 5.3 .3
15. Pour the above prepared acrylamide sulfate solution into the reaction-distillation tray through the largest vertical port.
16. Seal the largest vertical port by a large Teflon stopper equipped with a silicon-Teflon rubber, and seal other two vertical ports with silicon rubber stopper with reversible slecves.
17. Insert thermocouples through the above mentioned silicon-Teflon rubber or silicon rubber stopper for measuring liquid and carrier gas temperatures.
18. As soon as the temperature in the liquid holave (acrylamide sulfate solution) become the same as oil bath temperature, or the difference between the two tem. peratures becones less than $0.02{ }^{\circ} \mathrm{C}$, the system is ready for conducting an experiment on semi-batch distillation accompanied by chemical reaction.
5.5.2 Reaction-distillation Experiment and Vapor Liquid Sampling
19. First close the feed line to the reaction-distillation tray but open the flow path to the glass cylinder. The latter is used for the feed rate adjustment and calibration.
20. Tum on the feed pump and adjust its variable dial for the rotameter reading equivalent to the desired flow rate.
21. As soon as the desired flow rate is obtained. turn the three-way stopcock to shift the feed flow from the glass cylinder to the reaction-distillation tray. 22. Notice that a sudden decrease in rotameter reading can be observed at this moment because a sudden vaporization occurs in the preheater and consequently increases the pressure drop across the micro-sieve tray. Therefore, readjust the dial on the feed pump immediately. It takes only 5 to 15 seconds to get another steady ard constant flow at the desired flow rate.
23. At the desired sempling time, take the Jinusa sample by a Glenco gas-tight syringe through the liande sample port.
24. Inject the liquid sample into the cold liquid sample bottle to quench immediately the reaction.
25. Immerse the liquid sample bottle in an ice bath to keep i.t from reacting. Then take the vapor sample by shifting the helium-product vapor stream into a previously empty bottle for next vapor sampling. The shifting can be accomplished by truning the three way stopcock on the upper part of the gas-shifting device shown in Fig. 5.8.
25. Remove the vapor sample bottle with the vapor condensate from the gas-shifting device. Seal the bottle with a silicon rubber stopper and then flush the bottle surface with tap water until all the frozen solids are melted.
27. Clean the contaminated syringe and syringe needle used in Steps 23 and 24 for liquid sampling. If spare syringes and syringe needles are enough for a complete experimental run, this step can be skipped. Otherwise, a longer time period between two samplings must be allowed because this step requires at least 5 minutes. The cleaned syringe and syringe needle are then preheated following the method given in Section 5.3.6.
28. Replace the liquid nitrogen-containing dewar, which was used to condense the previous vapor sample. by an empty dewar. Attach a new empty vapor sample bottle on the gas-shifting device. The empty devar should be adjusted so that the empty vapor sample bottlo can be suspended right above its center bottom.
29. Blow auxiliary helium stream through the empty vapor sample bottle to expel the air in it for about two minutes. Then, pour liquid nitrogen into the dewar to pre-cool the vapor sample bottle. The liquid nitrogen level should be about one centimeter below the horizontal connecting tube in the sample bottle.
30. Repeat Steps 23 through 29 for next set of liquid and vapor samplings until the end of an experimental run.
31. Remove reaction residue from the reaction-distillation tray and then clean all the experinental appratus for next experimental run.
32. Finally, analyze all the collocted vapor and liquid samples by the gas chromatography following the methods given in Section 5.3.7.2.

Chapter 6 Analysis of Experimental Data and Correlation of Operating Parameters

6.1 Treatment of Experimental. Data

Data obtained from the experiments described in the previous chapter include the following:
(1) Composition analyses of vapor and liquid samples by gas chromatograph
(2) Accumulated vapor condensate for each vapor sample
(3) Instantaneous Iiquid temperature

The above data were obtained for different sets of operia. tion conditions. Three operating parameters discussed in Chapter 4 define the conditions for each experimental rin. These operating parameters are:
(4) Initial and constant surrounding temperature
(5) Feed rate of aqueous alcohol solution
(6) Relative ratio of vapor to total feed Among the above six different data, values of items (4) and (6) are used for energy balance calculations only. For the system investigated in this study, the energy balance calcuiations are required for solving the mathematical model of the semi-batch distillation accompanied by chemical reaction. The energy balance based on the mathematical model will be discussed in next chapter.

Thus, data analysis presented in this chapter will deal with the remaining four items, i.e., Items (1), (2), (3) and (5). These are required for correlating "chemical" vapor-liquid equilibria and reaction rates. The correlations, in turn, provide numerical values for verifying the mathematical model as discussed in Chapter 7.
6.1.1 Vapor and Liquid Compositions

The individual vapor molal quantities of a vapor sample can be calculated from its total weight and gas chromatographical analysis obtained in the previous chapter. The required calibration curves for convertine the relative area ratios to the weight ratio of a conponent to 1-propanol are given in Fig. B. 5 of Appendix B. The vapor molal quantities for a compound determined above at different time intervals are then added to get the accumulated vapor molal quantity. The derivative of the smoothed curve of this accumulated quantity at any moment then becomes its instantaneous molal flow rate. The individual accumulated vapor molal quantites can be typically represented by Run 1 and plotted in Fig. 6.1.a. The results show that the relative content of the main product, ethyl acrylate, is very high at the early stage due to an active esterification, and becomes smaller than those of ethyl alcohol and water at the end of the run due to a continuous feed of the later two compounds and a much less active esterification. Very low contents in diethyl ether
and β-ethoxy-ethyl propionate indicate that the two side reactions, dehydration and successive reaction, are very minor.

The total vapor molal quantities calculated from the above individual molal condensates, and the liquid hold-up temperatures are plotted as a function of time and shown in Figs. 6.1.b through 6.4 for the nine experimental runs made in this study. During the first ten minutes of the reaction between acrylamide sulfate and ethyl alcohol, the amount of vapor condensate collected in the vapor sample bottle is negligibly small. A rapid temperature rise of the liquid holdup is observed for this time period. These phenomena indicate that the reecting liquid mixture during the first ten minutes is stinl bejuw its bubble point. Therefore, the neat released from chemical reactions are absorbed entirely by the liquid mixture to raise its temperature.

When the temperature reaches its maximum value it indicates that the liquid mixture has reached its bubble point. Then, the additional release of heat of reaction is consumed by vaporizing the volatile product, and other components. The accumulation of the vapor condensate becomes noticeable. After this maximum point, the liquid bubbling temperature, starts to decline as more of the relatively cold ethyl alcohol is fed into the system and as the liquic composition changes because of reactions. Heat of reactions is sufficient enough to vaporize products and other volatile compounds. The vapor condensate

Fig. 6.1.b Liquid Temperature and Total Vapor Holal Condensate

Fig. 6.2 Liquid Temperature and Total Vapor Molal Condensate Vs. Real Tine, Rus 3 : 4, 05

Fig. 6.3 Liquid Temperature anc: otal vapor Molal Condensate
Vs. Real Time, Funs $6 \approx \frac{7}{2}$

Fig. 6.4 Liquid Temperature and Iotal vapor Molal Condensate Vs. Real Time, Rims 889
is accumulated steadily almost at a constant rate, Runs 1 through 9 exhibit the similar behavior. Generally, the higher the feed rate and the higher the relative ratio of vapor to total feed, the higher the maximum temperature obtained. This is because a higher feed rate yields a higher reaction rate and consequentiy releases more heat of reaction. The higher relative ratio of vapor to total feed provides a larger inlet enthalpy.

In order to make sure all the collected vapor samples are obtained from a boiling liquid, the data points used for evaluating the semi-batch distillation accompanied by chemical reaction are those after the maximum liquid temperature of each run. Since, usually, the maximm temperature is reached after the second sampling, the third sampling time is taken as the zero time in the data correlation and analysis.

Since the variation of accumlated vapor molal quantities, as a function of time, is rather moderate, they can be properly fitted into a polynomial equation. Then, the instantaneous vapor molal flow rate for each component is obtained as the derivative of its corresponding polynomial equation.

As mentioned in Chapter 5, there is a certain time lag, though small, between the vapor and liquid sampling.

This time lag can be calculated from the vapor molal flow rate. The total vapor molal flow rate is first calculated as the sum of all the individual molal flow rates. Since the system is operated at atmospheric pressure, the ideal gas law can be used to convert total vapor molal flow rate into total vapor volumetric flow rate. Other information required is the carrier gas (helium) flow rate and the volume of the entire vapor flow path. It is found that the time lag between vapor generation and vapor collection is between 0.24 to 0.41 minutes for all the experimental runs of this study. These time lags are relatively small. However, these time lags are not ignored but are taken into account for correcting the sampling time. For the mathematioe? model analysis, the vapor and liquid samples should be at equilibrium.

> 6.1.2 "Chenical" Vapor-Liquid Equilibria

Molal quantities determined in the previous section can be used to determine instantaneous vapor and Iiquid compositions at the vapor-liquid interface. With the calculated vapor and liquid compositions, the corresponding K-value for "chemical" vapor-liquid equilibrium can be readily determined.

From the above determined K-value, liquid activity
coefficient can be calculated by Equation (4-117) which is repeated below

$$
\begin{equation*}
\gamma_{i}=\frac{K_{i} P}{\phi_{i}^{O} P_{i}^{0}}=\frac{y_{i} P}{x_{i}^{0} F_{i}^{0}} \tag{4-117}
\end{equation*}
$$

The vapor pressure, P_{i}^{0}, can be calculated from Antoine constants given in Table A. 5 and fugacity coefficient, ϕ_{i}, from the correlations of Prausnitz and his coworkers as given in Appendix A.12. The activity coefficients calculated from Equation (4-117) for all the five volatile components in the system are correlated by the methods presented later in Section 6:2.1.

6.1.3 Reaction Rates

Ethyl acrylate, the main product of the reaction system, appers in both liquid and vapor phases. Therefore, its overall production rate should be equal to the sum of its rate of flow to the vapor condensate and its rate of accumulation in the liquid holdup. The volume of the liquid holdup is equal to its original volume plus the net change. The net change is the difference between the liquid volume of the entering feed under the tray conditions and the volume of the accumulated vapor condensate. With these information, the reaction rate can be calculated.

For detemination of the dehydration rate, i.e.,
R_{2} for the second reaction, numerical values of the vapor molal flow rate of diethyl ether are only required. Diethyl ether is totally vaporized and it is not detectable in the liquid mixture. For the successive reaction, i.e., the third reaction, its reaction rate can be calculated from the vapor molal flow rate and accumulation rate of β-ethoxy ethyl propionate in the liquid. A procedure similar to that for esterification can be used. The liquid concentrations of all the components in the liquid mixtures can be determined analytically as discussed in Chapter 5. The rate and the liquid composition aste are substituted into Equation (4-103) through (4-105) to obtain three corresponding rate constants, $k_{m, 1} k_{n, 2}$ and $k_{m, 3}$. If these three rate constants can be properly correlated as a function of the three oporating farameters, the reaction rates under different operating conditions can be estinated. The correlations of the reaction rate constants will be presented in Section 6.2.2.

Based on the methods described above computer program LABDATA was prepared and used to treat all the laboratory data. The program listing input data and calculated results for all the above experimental results are given in Appendix C.1.
6.2 Correlations of Parameters

6.2.1 Correlation of Activity Coefficient for "Chemical" Vapor-Iiquid Equilibria

The conventional correlation of activity coefficients must satisfy the Gibbs-Duhem equation, the basic thermodynamic relation to treat the nonideality of a liquid solution. However, in this study, the activity coefficients of several compounds and their associated ionic species can not be measured. These compounds include the very volatile compound, diethyl ether, and the four very nonvolatile compounds, namely acrylanide sulfate, sulfuric acid, ammonium bisulfate and acrylamide. As mentioned in Section 4.6, the purpose of this correlation is to predict accurate vapor mole fractions from the known liquid compositions. A hypotheticel liquid solution, containing four volatile components, nanely ethyl alcohol, ethyl acrylate, water and -ethoxyethyl propionate, and one pseudo-component, "very nonvolatile material", is then used as the basis of this correlation. The pseudo-component, "very nonvolatile material", is a lumped parameter obtained from lumping together the four very nonvolatile compounds and their asscciated ionic species.

Even for a hypothetical liquid solution, a convertional correlation equation which can satisfy the

Gibbs-Dunem equation can make better prediction of activity coefficient than an arbitrary function. Therefore, a good correlation equation for the activity coefficients of the four volatile components may be selected from the five well-known correlations of Wilson, van Laar, Margules, Wohl, and Hala. (11).

Sabylin and Aristovich (55) made a comparison of the five correlations with the "physical" equilibrium data of 30 ternary and 4 quaternary systems. It was concluded that the Wilson equation gives the best prediction while the Wohl and Hala equations are least successful in predicting good multicomponent dat. The superiority of the Wilson equation to predict multicom. ponent data from the binary data, implies that the mixing rule and the function forms proposed by Wilson are also superior. The Wilson method is then adopted here as the basis for developing the correlation for the multicomponent "chemical" vapor-liquid equilibria.

6.2.1.1 Working Equation

The Wilson equation for a multicomponent system can be represented by the following equation.

$$
\begin{equation*}
\ln \bigwedge_{i}=1-\ln \left(\sum_{j=1}^{N} \Lambda_{i j} x_{j}\right)-\sum_{k=1}^{N} \frac{x_{k} \Lambda_{k i}}{\Lambda_{k j} x_{j}} \tag{6-1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{i j}=\frac{v_{j}^{L}}{v_{i}^{L}} \exp \left[-\frac{\left(\lambda_{i j}-\lambda_{i j}\right)}{R T}\right] \tag{6-1a}
\end{equation*}
$$

In equation ($6-1 a$), v_{i}^{L} and v_{j}^{L} are the liquid molal volumes of the pure components i and j and $\left(\lambda_{i j}{ }^{-\lambda_{i j}}\right)$. is an empirically determined energy tern. Since the temperature range for this reaction-distillation system is small, the wilson constant, $\Lambda_{i j}$, is treated as a constant, independent of both temperature and pressure. It is noted that the binary wilson constants ($\Lambda_{k j}$ and $\Lambda_{j k}$) are the only parameters appear in Equation (6-1). The parameters, $\Lambda_{i j}, \Lambda_{j j} \Lambda_{k k}$, etc., should be equal to unity.

In order to clearly understand the characteristics of the Wilson equation, its simplest form, that is the binary form, may be examined. For a binary mixture, Equation (6-1) is reduced to

$$
\begin{align*}
& \ln \gamma_{1}=-\ln \left(x_{1}+\Lambda_{12} x_{2}\right)+\left(\frac{\Lambda_{12}}{x_{1}+\Lambda_{12} x_{2}}-\frac{\Lambda_{12}}{\Lambda_{21} x_{1}+x_{2}}\right) x_{2} \tag{6-2a}\\
& \ln \gamma_{2}=-\ln \left(x_{1}+\Lambda_{21} x_{1}\right)-\left(\frac{\Lambda_{12}}{x_{1}+\Lambda_{12} x_{2}}-\frac{\Lambda_{12}}{\Lambda_{21} x_{1}+x_{2}}\right) x_{1} \tag{5-2b}
\end{align*}
$$

If a mixture is an infinitely diluted solution of component 1 its compostion can be expressed as

$$
x_{1} \longrightarrow 0,
$$

and

$$
x_{2} \longrightarrow 1
$$

With the relationships, equations (6-2a) and (6-2b) are reduced to

$$
\begin{align*}
& \ln \gamma_{1}=-\ln \Lambda_{12}+1-\Lambda_{21} \tag{6-3a}\\
& \text { in } \gamma_{2}=0 \tag{6-3b}
\end{align*}
$$

The activity coefficient of a component at an infinite dijution is then a function of Λ_{12} and Λ_{21} while the activity coefficient of pure component is unity.

For an ideal solution $\Lambda_{12}=\Lambda_{21}=1$. Thus, deviation of the parameters from unity is an indication or the nonideality of the solution. If both \wedge_{12} and \wedge_{21} are greater than unity, γ_{1} becomes less than unity according to Equation (6-3a). That is, the solution exhibits negative deviations from ideality. However, if they are both less than unity, positive deviations from ideality can be observed. It is possible that one parameter may exceed unity and the other less than unity for cases where deviations from ideality are not large. Although the Wilson equation used in this work is an empirical form, the relationship between the calculated activity coefficients and the Wilson constants should have the same characteristics as discussed above.
6.2.1.2 Data Regression

For a five-component system, total number of required Wilson binary constants is $5 \times(5-1)=20$, which excludes all the unity terms, $\wedge_{11}, \wedge_{22}, \cdots$, and $\wedge_{55^{\circ}}$ Now, the desired correlating equation, Equation(6-1) has twenty undetermined constants. These twenty constants can be obtained from regression of experimental data by SUBROUTINE BSOLVE, which is suitable for either linear or nonlinear fit of the experimental data by the method of least-squares. this subroutine employes either the Newton Raphson Method or the Steepest Descent Method for obtaining convergent solutions. There are two other computer programs developed and used in this study. One is SUBRCUTINE FUNC, which is used to calculate the activity coefficient based on the given functions. the other is SUBROUTINE DERIV which calculates the partial derivative of activity coefficient. The form of functions used in this work is the general simultaneous equation, Equation ($6-1$). Since the number of undetermined constants is very large, it will be too cumbersome to list all the twenty individual cerivatives calculated by SUBROUTINE DERIV. Insteac, they are grouped into the following three general cases.

Case 1:

$$
\begin{equation*}
\frac{\partial \ln \gamma_{i}}{\partial \Lambda_{i k}}=-\frac{x_{k}}{\sum_{j=1}^{N} \Lambda_{i j} x_{j}}+\frac{x_{i} x_{k}}{\left(\sum_{j=1}^{N} \Lambda_{i j} x_{j}\right)^{2}} \tag{5-4a}
\end{equation*}
$$

where $k \neq i$
Case 2:

$$
\begin{equation*}
\frac{\partial \ln \gamma_{i}}{\partial \Lambda_{k i}}=-\frac{x_{k}}{\sum_{j=1}^{N} \Lambda_{k j} x_{j}}+\frac{\wedge_{k i} x_{i} x_{k}}{\left(\sum_{j=1}^{N} \wedge_{k j} x_{j}\right)^{2}} \tag{6-4b}
\end{equation*}
$$

where $k \neq i$
Case 3:

$$
\begin{equation*}
\frac{\partial \ln \gamma_{i}}{\partial \Lambda_{k m}}=\frac{\Lambda_{k i}-x_{k} x_{m}}{\sum_{j=1}^{N} \Lambda_{k j} x_{j}} \tag{6-4c}
\end{equation*}
$$

where $k \neq m \neq i$

All the above subroutines are included in the program "CHEHACT" which is listed in Appendices C.3.1-C.3.3. The input data and constants for the program are also shown in the Appendices.

By the definition as given in Equation ($6-1 a$), $\Lambda_{i j}$ must be a positive value. Therefore, the lower bound of $\Lambda_{i j}$ is set equal to zero during the data regression. Since the range of experimental temperatures are only between $90^{\circ} \mathrm{C}$ and $130^{\circ} \mathrm{C}$, the difference of tempereture effects on activity coefficients are very small compared to the effects of composition on the solution nonireality. Since the system is operated at constant pressure, γ_{i} car be treated here as a function
of only composition. With the above assumptions, the fitted values of $\Lambda_{i j}$ by the program CHEMACT are as follows,

Λ_{12}	0.0709	Λ_{21}	0.494
Λ_{13}	0.	Λ_{31}	1.41
Λ_{14}	0.	Λ_{41}	0.
Λ_{15}	0.677	Λ_{51}	13.2
Λ_{23}	0.	Λ_{32}	9.11
Λ_{24}	0.271	Λ_{42}	0.
Λ_{25}	0.	Λ_{52}	0.
Λ_{34}	10.9	Λ_{43}	0.0269
Λ_{35}	6.02	Λ_{53}	3.91
Λ_{45}	0.	Λ_{54}	6.91

Fig. 6.5 Comparison of Calculated Activity Coefficients by The Wilson's Equation To Experimental Activity Coefficients

The calculated activity coefficients using the above coefficients and Wilson's equations are plotted against the experimental values as shown in Fig.6.5. the agreement between the calculated values and the experimental data are satisfactory, especially for the reactant ethyl alcohol and the most polar component. water. Larger deviation can be seen for the activity coefficient of the two volatile products, ethyl acrylate and f-ethoxy ethyl propionate. This larger deviation may be explained as follows. The mole fractions of these tro products in the reacting liquid are very small, only up to 0.0525 for ethyl acrylate and 0.0076 for β-ethoxy ethyl propionate. It is not unusual that the percentage error for measuring a very small gron-ti.ty is larger than that for measuring a large quantity. Furthermore, determination of a smaller peak area from the gas chromatograph also has an inherent larger percentage reading error.

Since the liquid mixture contains mostly the nonvolatilc material, the activity coefficients of the four volatile components are affected by their molecular relationships to this nonvolatile material. Water is a very polar compound. Its presence helps sulfuric acid to generate proton for promoting the
formation of acrylamide sulfate. Its affinity to the nonvolatile liquid mixture is then very high and thus its activity coefficient is the smallest anong the four volatile components. These low water activity coefficients can be characteristically represented by the fitted Wilson constants for the binary pair of water and nonvolatile meterial. The constants are $\Lambda_{35}=6.02$ and $\wedge_{53}=3.91$, As jiscumate earlier high values of $\wedge_{i j}$ give low ${ }^{\prime}{ }_{j}$. This is consistent with water activity coefticjent desemined for water here. For reactent etryl alcohol, activity coefficients in the pair with the nonvolatile material are such that Λ_{51} is grester than unity while Λ_{15} is less than unity. For the main procuct, ethyl acrylate, $\Lambda_{25}=A_{52}=0$. This indicates that ethyl acmylate has very large activity coefficients, Which are not affected by the liquid compositions of the system comporents. Instead, this large product activity coefficient is affected by the large heat of reaction of the system as explained below.

During the production of ethyl acrylate, a large amount of heat of reaction is released (please see the calculation by Hess' Law as given in Appendix A.10). If ethyl acrylate were a nonvolatile meterial, this heat
would be uniformly distributed in the liquid solution through a mechanical mixing resulting in the rise of liquid temperature. However, ethyl acrylate is a volatile component with low heat of vaporization. The heat of reaction immediately becomes available as the heat of vaporization for the reaction product. Therefore, the vapor stream becories very rich in ethyl acrylate. The liquid temperature is reduced because the part of its enthalpy is also used to vaporize ethyl acrylate.

For the ky-product, β-ethoxy ethyl propionate, its binary wilson constants with nonvolatile material are $\Lambda_{45}=0$ and $\Lambda_{54}=6.91$. Since its mole fraction in the liquid is extremely small, its activity coefficient may be considered at inifinite dilution. At infinite dilution, its activity coefficient in a binary system may be represented ty Equation ($6-3$) and repeated below with corresponding subscript:

$$
\ln \gamma_{4}=-\ln \Lambda_{45}+1-\Lambda_{54}
$$

Although Λ_{54} is much greater then unity, it is still a small term compared to $-\ln \Lambda_{45}$ where Λ_{45} approaches zero. Therefore, the calculated γ_{4} is the largest among the four components. This unusually large activity coefficient for by-product β-ethoxp-ethyl propionate is another indication of substantive effect of chemical reaction on vapor-
liquid equilibria.

In a "physical" vapor-liquid equilibrium system, the activity coefficients in a multicomponent mixture, as mentioned in Chapter 2, are generally developed from the data of its constituent binary systems. Therefore, the activity coefficients of its any two constituents have the same relative order-of-magnitude as they are in a binary mixture. However, in a "chemical" vaporliquid equilibrium system, such as the one used in this study, a reverse order of magnitude for some binayr pair can be observed.

As an example, the binary system of ethy ecowlate and ethyl alcohol is considered. The activity coefinicients of ethyl acrylate calculated from the present "chemical" vapor-liquid equilibriun data fall between 3 and 12. They are much higher than those of ethyl alconol, which are between 0.45 to 1.4. However, the activity coefficients of these two compounds calculated from the "physical" vapcr-liquj.d equilibrium data of Loginova, et al. (43) show a reverse trend. The activity coefficients of ethyl alcohol are between 1.0 to 9.45 , wihile those of ethyl acrylate are between 0.53 to 2.56 .

Based on the above analysis of the present experimental data and on the comparison betweon the Chao-Seader
"physical" vapor-liquid equilibrium correlation and the Grayson-Streed "chemical" vapor-liquid equilibrium correlation, given in Section 2.1, it can be concluded that chemical reaction do have a definite effect on vaporliquid equilibrium. One of the causes yielding, definite effect of chemical reactions on vapor-liquid equilibrium is the release of the heats of reactions. For Grayson Streed hyarocracking system, the reaction kinetics are extremely complicated, However, the exothermic reactions of the system can be typically represented by the hydrocracking of n-decane as shown below:

Heat of Reaction, AE; $\mathrm{Kcal} / \mathrm{g}-\operatorname{mole~} \mathrm{H}_{2}$

$$
\begin{array}{ll}
\mathrm{n}-\mathrm{C}_{10} \mathrm{H}_{22}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{n}_{2} \mathrm{C}_{7} \mathrm{H}_{16} & -3.66 \\
\mathrm{n}-\mathrm{C}_{10} \mathrm{H}_{22}+\mathrm{H}_{2} \longrightarrow \mathrm{n}_{2} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{14} & -3.31 \\
\mathrm{n}-\mathrm{C}_{10} \mathrm{H}_{22}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{n}_{2} \longrightarrow \mathrm{C}_{5} \mathrm{H}_{10} & -4.11
\end{array}
$$

The average heat of reaction for hydrocracking of r-decane is then equal to -3.86 Kcal per gram mole of hydrogen consumed. This heat of reaction per gram mole of hydrogen consumed is somewhat different if the reactant is a different type of hydrocarbon such as naphthene or aromatic, or a different size of hydrocarbon such as n-heptane or n-hepta-decane.

If hydrogen consumption is very large for a hydro-
cracking system, the exothermic heat of reaction per mole of a heavy hydrocarbon must be very large, implying that this system has a high reaction conversion. Hydrocracking can be performed thermally. It can be further promoted at the presence of a catalyst. Since these two types of operation have different reaction kinetics, resulting in different conversions, their heats of reaction are then different and so are their effects of chemical reaction on "chemical" vapor-liquid eçuilibrium. Therefore, for a reactor effluent from a catalytic bed, the vapor-liquid equilibrium pattern right after the cotalbic bed may be different from that at a remote separation zone without the presence of catalyst. when measorive "chemical" vapor-liquid equilibrja.for such a systen, it is recommended that the residence time and the variation in "chemical" vapor-liquid equilibrium from the catalytic bed to the separation zone should be taken into account. 6.2.2 Reaction Rate Constants

The reaction rate constants, $k_{m, 1}, k_{m, 2}$ and $k_{n, 3}$ defined in Section 4.5 .4 can be expressed in the following Arrhenius type equations:

$$
\begin{aligned}
& k_{m, 1}=K_{m, 1} e^{-E_{m, 1} / R T} \\
& k_{m, 2}=K_{m, 2} e^{-E_{m, 2} / R T} \\
& k_{m, 3}=k_{m, 3} e^{-E_{m, 3} / R T}
\end{aligned}
$$

Taking the logarithm of the above three equations gives the
following general form:

$$
\begin{equation*}
\log k_{m, 1}=\log K_{m, 1}-\frac{E_{m_{0} i}}{2,303 \mathrm{KT}}, i=1, \cdots, 3 \tag{6-5}
\end{equation*}
$$

For each experimental run, $k_{m, 1}$ are then plotted against $1 /(2.303 \mathrm{RT})$ on semilog graph paper which is shown as Fig. 6.6 for esterification reaction, it is observed that for the first hour of operation, ie., the first 5-6 experimental points, the above plot yields straight lines. Furthermore, these straight lines are parallel to each other indicating that the activation energy for all the nine experimental runs are the sem for the first five to six data points. This is a significant experimental confirmation of the assumption mode for this study. For the rest of each experimental run, the reaction rate is greatly reduced and the temperature is decreased as the time progresses. This phenomenon jus an indication of more active side reactions near the end of an experimental run. The possible side reaction may be the decomposition of acrylamide sulfate and the formation of alkyl sulfates $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right){ }_{2} \mathrm{SO}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HSO}_{4}$, which are generally the transition components for the formation of diethyl ether.

For the first five to six points of each run, a universal activation energy can now be introduced to

Fig. 6.6 Esterification Rate Constant k_{1} Vs.
Reciprocal of Temperature
make further simplification. The procedures are stated below.

For a data point in the run s. Equation (6-5) is rewritten, with the activation energy in Kcal/(g-mole), as

$$
\log K_{s}-\frac{1000 E_{s}}{2.303 R T_{s, j}}=\log K_{s, j} s=1, \cdots, n_{s}(6-6)
$$

where

$$
\begin{aligned}
& n_{S}=\text { number of experimental runs } \\
& \left.E_{S}=\text { universal activation energy in Kcal/(g-mole }\right)
\end{aligned}
$$

Define $\quad \xi_{s, j}=1000 /\left(2.303 R T_{s, j}\right)$

$$
\Phi_{S, j}=\log k_{s, i}
$$

and

$$
F_{s}=\log K_{s^{\circ}}
$$

Equation (6.6) can then be reduced to

$$
\begin{equation*}
F_{s}-E_{s} \xi_{s, j}=\Phi_{s, j} \quad, s=1, \cdots, n_{s} \tag{6-7}
\end{equation*}
$$

The difference between the experimental and calculated values of $\log K_{S}$ for the data point j in the run s is equal to that between right-hand side and left-hand side of Equation ($6-7$). Mathematically it can be represented as follows:

$$
\begin{equation*}
\varepsilon_{s, j}=\Phi_{S, j}-F_{s}+E_{S} \xi_{s, j} \tag{6-8}
\end{equation*}
$$

The variation for all the data points, where the universal activation energy concept can be applied, is written according to the definition:

$$
\begin{equation*}
\sigma^{2}=\sum_{s=1}^{n} \sum_{j=1}^{n} \varepsilon_{s, j}^{2} \tag{6-9}
\end{equation*}
$$

where

$$
\begin{aligned}
& \sigma^{2}=\text { variation } \\
& n_{s}=\text { number of runs }=9 \\
& n_{j}=\text { number of data points for run } s .
\end{aligned}
$$

Substituting Equation (6-8) into Equation (6-9) gives the following working equation

$$
\begin{equation*}
\sigma^{2}=\sum_{s=1}^{n_{s}} \sum_{j=1}^{n_{j}}\left(\Phi_{s, j}-F_{s}+E \xi_{s, j}\right)^{2} \tag{0-10}
\end{equation*}
$$

The least-msuares method requires that

$$
\frac{\partial \sigma^{2}}{\partial \mathrm{E}}=0 \quad \text { and } \quad \frac{\partial \sigma^{2}}{\partial \mathrm{~F}_{s}}=0, \quad s=1, \cdots, n_{s}
$$

The corresponding ($n_{s}+1$) simultaneous linear equations can now be obtained by differentiating Equation (6-10)
with the above $\left(n_{s}+1\right)$ constraints:

$$
\begin{equation*}
2 \sum_{s=1}^{n} \sum_{j=1}^{n}\left(\Phi_{s, j}-F_{s}+E \xi_{s, j}\right) \xi_{s, j}=0 \tag{6-11}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \sum_{j=1}^{n} \sum_{j=1}^{n}\left(\Phi_{S, j}-F_{s}+E \xi_{s, j}\right)=0, \quad s=1, \cdots, n_{s} \tag{6-12}
\end{equation*}
$$

Equation ($0-11$) can be further simplified as follows:

$$
\sum_{s=1}^{n_{s}} \sum_{j=1}^{n} \xi_{s, j} \Phi_{s, j}-\sum_{s=1}^{n_{s}} \sum_{j=1}^{n_{j}^{j}} \xi_{s, j} F_{s}+E \sum_{s=1}^{n_{s}^{s}} \sum_{j=1}^{n} \xi_{s, j}^{2}=0
$$

Prom Equation (6-12),

$$
\sum_{j=1}^{n}{ }^{n} \Phi_{s, j}-n_{j} F_{s}+E \sum_{j=1}^{n} j \xi_{s, j}=0
$$

or

$$
\begin{equation*}
F_{S}=\frac{\sum_{j=1}^{n j} \Phi_{s, j}+E \sum_{j=1}^{n} j \xi_{s, j}}{n_{j}} \tag{6-14}
\end{equation*}
$$

Substituting Equation (6-14) into Equation (6-13) gives the following solution for E, the universal activation energy:

The value of the universal activation energy. E, is obtained by the above equation with all the experinontal data points. Then Equation (6-14) can be used to determine F_{5} for each run. The frequency factor, $K_{m, 1}$ is simply calculated as 10^{F}.

The above procedures for data reduction are also used for the dehydration and the successive reactions. These procedures have been programmed into the computer program RXNRATE which is given in Appendix C.4. The reduction of all the experimental data by the computer
program RXNRATE yields the activation energies and frequency factors for the three reactions of all the experimental runs. They are summarized in Table 6.1. As shown in Table 6.1 the average percentage errors for the three reactions are small, which justify and confirm the appropriateness of the proposed rate expressions for the three chernical reactions dealt in this study.

The above data reduction has shown that a specific behavior of each experimental run can be represented by a single factor, namely Frequency Factor. Thus, the different effects of interface mass transer on reaction rate can now be discussed quantitatively in terms of the frequency factors. Furthermore, sisnce the interface properties such as interface concentration, filn thickness, etc, cannot be measured directiy, the frequency factor be used to represent the overall effects of these properties on the reaction behavior. As discussed earlier the interfacial properties are functions of the three operating parameters, i.e., the initial and surrounding temperature, the feed rate of aqueous ethyl alcohol solution, and the relative ratio of vapor to total feed. These operating conditions for all the experimental runs are listed in Table 6.2.

The frequency factor may now be quantitatively related to the operating parameters as follows, assuming

Table 6.1 Arrhenius Constants

		Esteri- fication	Dehydration	Successive Reaction
$\begin{aligned} & \text { Activa } \\ & \text { E, Kca } \end{aligned}$	$\begin{aligned} & \text { tion Bergy } \\ & 1 / s-m o l e \end{aligned}$	35.56	47.97	52.88
			$\begin{aligned} & \mathrm{K}_{\mathrm{s}, 2^{\mathrm{x}} 0^{-23}}^{1 / \mathrm{m}-\mathrm{mole} \mathrm{~min}} \end{aligned}$	$\begin{aligned} & \mathrm{K}_{\mathrm{s}, 3^{x 10^{-25}}} \\ & \mathrm{I}^{2} /(\text { (g-moje })^{2} \\ & \hline \text { min } \end{aligned}$
	1	2.59	1.01	3.51
	2	2.93	0.93	2.70
	3	3.08	1.82	5.35
	4	3.12	3.21	5.02
	5	3.85	2.60	6.25
	6	3.96	2.11	3.71
	7	4.02	1.69	3.37
	8	7.41	7.11	13.79
	9	10.21	3.60	17.95
$\begin{gathered} \text { Average Percent- } \\ \text { age Error of" } \\ K_{s, i} \\ \hline \end{gathered}$		3.77	6.29	12.6

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{s}, 1}=\mathrm{K}_{\mathrm{s}, 1} \mathrm{e}^{-35560 / \mathrm{RT}} \\
& \mathrm{k}_{\mathrm{S}, 2}=\mathrm{K}_{\mathrm{s}, 2} \mathrm{e}^{-49970 / \mathrm{RT}} \\
& \mathrm{k}_{\mathrm{S}, 3}=\mathrm{K}_{\mathrm{S}, 3} \mathrm{e}^{-52880 / \mathrm{RT}} \\
& \mathrm{R}=1.087 \mathrm{cal} / \mathrm{g}-\mathrm{mole}-\mathrm{o}_{\mathrm{K}} \\
& \mathrm{~T}=\text { temperature in } \mathrm{o}_{\mathrm{K}}
\end{aligned}
$$

that each parameter has independent influence.

$$
\begin{equation*}
K_{S, i}=g_{1}\left(T_{0}\right) g_{2}(F) g_{3}(\psi) \tag{6-16}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{s}_{3} i}=\text { frequency factor for reaction } i \text { and run } \\
& \quad \text { number } s \\
& \mathrm{~T}_{0}=\text { initial and surrounding temperature } \\
& \mathrm{F}=\text { feed rate } \\
& \psi=\text { vapor fraction of feed stream } \\
& \mathrm{g}_{1}, g_{2} \text {, and } g_{3}=\text { independent functions }
\end{aligned}
$$

It is assumed that each independent function, g_{1}, has two constants to represent the effects of its coccesponie. ing parameter. The following function form is found to be very suiteble,

$$
g_{1}(\xi)=\left(\xi+b_{1}\right)^{b_{2}}
$$

where

$$
\xi=T_{0}, F \text { or } \psi
$$

With the above relation, Equation ($6-16$) can be rewritten as

$$
\begin{equation*}
K_{s, i}=b_{7}\left(T_{I N}+b_{1}\right)^{b_{2}}\left(F+b_{3}\right)^{b_{4}}\left(\psi+b_{5}\right)^{b_{6}} \tag{6-17}
\end{equation*}
$$

where the constant b_{7} is an adjusting factor to match the relative magnitudes between $K_{s, 1}$ and three g_{i} 's.

Although there are only nine frequency factors to fit seven constants for the above equation, the

Table 6.2 Operating Parameters

Run Number	Initial Temp. ${ }^{\circ} \mathrm{C}$	Feed Rate, ml/min	Vapor Fraction
1	115	1.56	0.82
2	115	1.736	0.34
3	111.5	1.496	0.69
4	111.5	1.558	0.60
5	111.5	1.192	0.70
6	110.0	1.147	0.55
7	110.0	1.465	0.76
9	106.0	1.26	0.85

* Relative Ratio of Vapor to Total Feed
operating temperatures in the nine runs have covered the applicable reaction temperature range. Therefore, these nine experimental runs were considered to be sufficient to demonstrate how the basic information required for this study can be obtained. The constants in Equation ($6-17$) are determined by the computer program BSOLFIT. The program is developed on the basis of the BSOLVE techniques, which was described in Section 6.2.1 and is listed in Appendix C.5. The working equarions for the three reactions with appropriate constants obtained by the computer program BSOLPIT with the data of table 6.1 and 6.2 are given as follows.

Esterification:

$$
\begin{align*}
\mathrm{K}_{\mathrm{m}, 1}= & 0.196\left(\mathrm{I}_{\mathrm{o}}-104\right)^{-0.571} \times(\mathrm{F}+0.911)^{-0.501} \\
& x(\Psi+0.0447)^{-0.13} \times 10^{18} \mathrm{I} /(\mathrm{g}-\mathrm{mole})-\mathrm{min} \tag{6-18}
\end{align*}
$$

Dehydratjon:

$$
\begin{align*}
K_{m, 2}= & 1.31\left(T_{0}-103\right)^{-1.14} \times(\mathrm{F}-0.661)^{-0.258} \\
& x(\psi+0.01)^{0.131} \times 10^{23} \mathrm{I} /(\mathrm{g}-\mathrm{mole})-\mathrm{min} \tag{6-19}
\end{align*}
$$

Successive Reaction:

$$
\begin{align*}
K_{m_{0} 3}= & 7.22\left(\mathrm{~T}_{0}-104\right)^{-0.885} \times(\mathrm{F} \cdot 0.164)^{1.84} \\
& x(\psi-0.749)^{-0.4} \times 10^{25} \mathrm{I}^{2} /(\mathrm{g}-\mathrm{mole})^{2}-\min \tag{6-20}
\end{align*}
$$

The calculated frequency factors from Equations $(6-18)$ to $(6-20)$ are plotted in Figures 6.7-6.9 and compared to the experimental frequency factors listed in Table 6.1. For the esterification reaction, the agreement is very satisfactory. However, for the dehydration and the successive reactions i.t is only fair. The experimental runs with intermediate operating conditions exhibit larger deviations. Thus, the simple correlation model as given by Equation (6-17) may be inadequate for the correlation of these two reactions. Fortunately, these two reactions are minor compared fith the esterification reaction. Therefore, a somense larese error in their frequency factors would not sjenificanty affact the prediction of the system beravior. wherefore, their fitted equations. Fquations (6-19) and ($\mathcal{C - 2 0 ;}$ may still be adopted by for the simulation studies which will be presented in the next chapter.

Since Equation (6-18) can accurately predict the frequercy factors for the main reaction, esterification, it can be used to discuss the effects of operating conditions on the frequency factor. The major advantage of this equation is to express the three operating parameters, T_{0}, F, and ψ as separated variables. If any two of the three operating conditions are kept constant, the effect of the third operating condition can be readily

Fig. 6.7 Comparison of Frequency Factors for Esterification

Fig. 6. 3 Comparison of Frequency Factors for Dehydration

EXPERIfIENTAL FREQUEICY fACTOR
Fig. 6.9 Comparison of Frequency Factors for Successive Reaction
derived from Equation ($6-18$) as an independent parameter. If the effect is expressed as the ratio of frequency factors of Condition 2 to Condition 1 , the three independent effects can be expressed as follows:

$$
\begin{equation*}
\left[\frac{K_{T, 2}}{K_{T, 1}}\right]_{F, \psi}=\left(\frac{T_{0,2}-104}{T_{0,1}-104}\right)^{-0.571} \tag{5-21}
\end{equation*}
$$

$\left[\frac{\mathrm{K}_{\mathrm{F}, 2}}{\mathrm{~K}_{\mathrm{F}, 1}}\right]_{\mathrm{T}_{0}, \psi}=\left(\frac{\mathrm{F}_{2}+0.911}{\mathrm{~F}_{1}+0.911}\right)^{-0.501}$
$\left[\frac{\mathrm{K}}{\mathrm{K}_{4,2}}\right]_{\mathrm{T}_{0, F}}=\left(\frac{\psi_{2}+0.0447}{\psi_{1}+0.0447}\right)^{-0.13}$
where subscripts 1 and 2 stand for Condition 1 and Condi. tion 2, and subscripts T, F, and ψ stand for T_{0}, P and ψ : respectively. If Condition 1 is taken as the operating condition giving the smallest frequercy factor and Condition 2 giving the Iargest frequency factor within the boundary of the operatiing conditions used by this study, then the laresest indopendent effects by the three operating parameters can be determined from the above three equations. The results are sumarized in Table 6.3.

These results demonstrate that the frequency factor is most sensitive to the initial and surrounding temperature, T_{0}, and least affected by the volatile reactant feed rate, F. If the initial and surrounding temperature is

> Table 6.3 Largest Independent Effect of Operating Conditions on the Frequency Factors

Independent Operating
Parameter
:---
:---
Factors K_{2} / K_{1}

Name	Symbol	unit			
Initial and Surrounding Temperature	T_{0}	${ }^{\circ} \mathrm{C}$	11.5	106	2.65
Volatile Reactant Feed Rate	F	$\mathrm{ml} / \mathrm{min}$	1.127	1.736	1.13
Ratio of Vapor to Total Feed	ψ	-	0.85	0.0	1.48

incroased from $106{ }^{\circ} \mathrm{C}$ to $115^{\circ} \mathrm{C}$, the frequency factor will be reduced by a factor of 2.65 . This implies that the reaction occurs mostly in the liquid film due to a high reaction rate at a high temperature. If the vapor fraction in the total feed is reduced from 0.85 to zero, the frequency factor will be increased by a factor of 1.48. This implies that the film reaction is reduced to the minimum by introducing a totally liquid feed stream. The volatile reactant feed rate mostly contributes to increasing the concentration of the volatile reactant, ethyl alcchol, in the liquid holaup. Its effect on the frequency factor is then small.

Chepter 7 Verification of Theoretical
 Model and Parametric Evaluation

7.1 mheoretical Solutions

Two conditions must be met and satisfied for any theoretical model to predict the system behavior accurately. First, the model must be developed on the sound theoretical foundation. Secondiy, the physical and chemical data to be applied and used in the model. must be accurate. Thus, before aralysing the system behavior predicted by the model, the preparation of accurate physical and chemical data will be discussed.
7.1.1 Physical and Chemical Data Required for System Analysis

The physical and chemical cata required in this system consist of two groups. One group is the data related mainly with material balance equations and the other for energy balance.

The data for material balance are essentially those related to
(1) Chemical vepor-liquid equilibria
(2) Chemical reaction rates

The correlations of the above data, with the experimental
data obtained by this work, were discussed in details in Chapter 6. They will not be repeated here.

The data for energy balance equations include:
(1) Liquid and vapor enthalpies
(2) Heats of reactions
(3) Overall heat transfer coefficient

As mentioned in Chapter 3 heat of solution is assumed to be negligibly small compared to heats of reactions or latent heats of vaporization. Therefore, the ontialpy of a mixture, either liquid or vapor, is detemined ber adding the enthalpies of individual comporents. ano enthalpy of a pure liquid component is calculated from heat capacity data according to the definition with datum temperature of $0^{\circ} \mathrm{C}$. If liquid heat capacity, ${ }^{C_{p}}$, is related to temperature by the following polynomial equation:

$$
\begin{equation*}
c_{p}=a_{1}+a_{2} T+a_{3} T^{2}+a_{4} T^{3} \tag{7-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{p}=\text { liquid heat capacity in cal } / \mathrm{g}-{ }^{\circ} \mathrm{C} \\
& T=\text { temperature, }{ }^{\circ}{ }_{C}
\end{aligned}
$$

$$
a_{1}, a_{2}, a_{3} \text { and } a_{4}=\text { constants for a component }
$$

then liquid enthalpy can be readily obtained as

$$
\begin{equation*}
h=a_{1} T+(1 / 2) a_{2} T^{2}+(1 / 3) a_{3} T^{3}+(1 / 4) a_{4} T^{4} \tag{7-2}
\end{equation*}
$$

Therefore, only liquid heat capacity data are required for obtaining the constants, a_{1}, a_{2}, a_{3} and a_{44}. The data regression by the least-square method is made using the computer program POLYFIT, as described in Appendix C.6. The computer program employs the Gauss elimination method to solve simultaneous linear equations.

The liquid heat capacity data for ethyl alcohol (15), ethyl acrylate (17), water (52), diethyl ether (16), and sulfuric acid (52) are available in the literature. For other compounds of which data are not aveilable in the literature, reljable correlations are used. For example, the method of Johnson and Huang (39, 52) i.s used for predicting the liquid heat capacities at $20^{\circ} \mathrm{C}$. The method is based on the idea of additive contribution from constituent atomic groups. The corralation is relatively accurate, with 5 and 16 per cent averase and maximum deviations. For estimation of the heat capacities at temperature other than $20^{\circ} \mathrm{C}$, the Watson expansion factor (23) method is employed. Estimation of liquid heat capacities for the components without available literature data are discussed in details in Appendix A.7. All the constants of Equation (7-1), detemined by the program POLYFIT from either available literature data or the above mentioned estimated data, are listed in Table 7.1.

$$
\begin{aligned}
& C_{p}=a_{1}+a_{2} T+a_{3} T^{2}+a_{4} T^{3} \\
& h=a_{1} T+a_{2} T^{2} / 2+a_{3} T^{3} / 3+a_{4} T^{4} / 4 \\
& C_{p}=c a l / g-C ; h=c a l / g ; T={ }^{\circ} C
\end{aligned}
$$

Component Name	a_{1}	$\mathrm{a}_{2} \times 10^{3}$	${ }^{a_{5} \times 10^{5}}$	$a_{4} \times 10^{7}$	Ref.
Ethyl 4lcohol	0.53150	2.2012	0.72024	-	(15)
Ethyl Acrylate	0.45560	0.48312	0.17086	-	(17)
Water	1.0060	-0.31738	0.34230	-	(52)
Diethyl Ether	0.53002	0.97143	1.10120	-	(16)
β-Ethoxy-ethyl Propionate	0.44220	1.0364	0.26786	-	(Est.)
Acrylamide Sulfate	0.51106	-2.6872	2.5080	-0.46642	(Est.)
Sulfuric Acid	0.47433	-.5.4866	4.1811	-0.81692	(52
Ammonium Bisulfate (Solid)	0.42655	-2.3368	1.7822	-0.34821	(Est.)
Acrylamide	0.56106	1.1766	0.19831	0.017361	(Est.)

The vapor enthalpy can be treated as the jdeal gas enthalpy because the system is operated at atmospheric pressure. the ideal gas enthalpy of a volatile component, except β-ethoxy-ethyl propionate, at the boiling point is equal to the sum of the heat of vaporization and the liquid entraipy at that temperature. The vapor enthalpy at other temperatures is calculated from the heat capacity data following the similar procedure as employed for determining the liquid entholpy. Vapor heat capacities and heats of vaporization for ethyl alcohol (15), ethyl acryiate (17), water (52), and diethyl ether (16) are available in the literatures.

The heat capacity or the enthalpy data for f-eftexyethyl propionate are not available in the literature. They are, therefore, calculated by the correlations. The Giacalone method (21) is used for estimating heat of vaporization at its normal boiling point. The method has an average error of 3% and maximun error of 10% (52). For the estimation of heat of vaporization at other temperatures, the Watson temperature correlation is used. It is relatively accurate with 4.7 \% average error for 247 organic compounds (21). For detailed procedures of the estimation, refer to Appendix A. 8 .

All the vapor enthalpy. data determined from the procedures stated above are then fitted into poly-
nomial equations by the program POLYFIT. The fitted constants along with the vapor enthalpy equation are listed in Table 7.2.

The second set of data needed for energy balance calculations is heat of reaction. As mentioned in the previous chapter, Hess' law is used to calculate heat of reaction. To utilize Hess' law, heats of formation for all the reactents and the products must be obtained first. Since neither experimental data nor estimation methods are available for obtaining the heat of formation of the molecular complex, acrylamide suliate, a special procedure is then used to calculate its heat of formation.

As mentioned in Section 5.4.5, heat of reaction for Reaction 4 , the formation of acrylamide sulfate fron: acrylamide and sulfuric acid, or Equation (4-1), is measured to be $-5.62 \mathrm{Kcal} / \mathrm{g}$-mole. Then from this heat of reaction, heat of formation for the molecular complex, acrylamide sulfate can be estimated from the following equation according to Hess' law:

$$
\begin{equation*}
H_{f, 6}=H_{f, 7}+H_{f, 9}+\Delta H_{R, 4} \tag{7-3}
\end{equation*}
$$

where

$$
H_{f}=\text { heat of formation }
$$

	$H=a_{1}+a_{2} T+a_{3} T^{2}+\ldots$				
	$T=$ temperature,${ }^{\circ} \mathrm{C}$				
	$H=$ ideal gas enthalpy, cal/g				
Component	a_{1}	a_{2}	$a_{3} \times 10^{5}$	$a_{4} \times 10^{7}$	Ref.
Ethanol	227.0	0.3630	33.973		(15)
Ethyl Acrylate	96:0	0.2387	67.20	-0.132	(16)
Water	597.6	0.4200	0.102		(52)
Diethyl Ether	90.0	0.3450	0.375		(16)
β-Ethoxy-ethyl	79.7	0.3695	-6.211	8.929	(Est.)
Propionate					

$$
\begin{aligned}
6.7 .9= & \text { subscripts for acrylamide sulfate, sulfuric } \\
& \text { acid, acrylamide, respectively } \\
\Delta H_{R, 4}= & -5.62 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole} .
\end{aligned}
$$

The heat of formation for sulfuric acid, at $25^{\circ} \mathrm{C}, \mathrm{H}_{\mathrm{I}, 7}$, is available in the literature (48) while the heat of formation of acrylamide at $25^{\circ} \mathrm{C}$ is estimated from the nethod of Anderson, Beyer and Hatson (22). The ABW method is the only available method, which contains heat of formation of a basic amide group, formamide (HCONH_{2}). if the estimation starts from formamide, instead of other simpler atomic groups as used by other estimation methods. the estimation error can then be reduced to minimum. Therefore, this method is adopted in this work for estimatins heat of formation of acrylamide. After the heat of formation of acrylamide sulfate is determined, by Equation (7-3), heats of reaction for all the three major reactions can then readily be calculated from the following equations by utilizing Hess' law.
(1) For esterification, or Reaction 1, or Equation (4-2)

$$
\begin{equation*}
\Delta H_{R, 1}=H_{f, 2}+H_{f, 8}-H_{f, 6}-H_{f, 1} \tag{7-4}
\end{equation*}
$$

(2) For dehydration, or Reaction 2, or Equation (4-3)

$$
\begin{equation*}
\Delta \mathrm{H}_{\mathrm{R}, 2}=\mathrm{H}_{\mathrm{f}, 3}+\mathrm{H}_{\mathrm{f}, 4}-2 \mathrm{H}_{\mathrm{f}, 1} \tag{7-5}
\end{equation*}
$$

(3) For successive reaction, or Reaction 3, or Equation $(4-4)$

$$
\begin{equation*}
\Delta H_{R, 3}=H_{f, 5}+H_{f, 8}-2 H_{f, 1}-H_{f, 6} \tag{7-6}
\end{equation*}
$$

The contribution of the net heat capacity between reactants and products to the heat of reaction, for the above three reactions, is found to be very sniall compared to the calculated heat of reaction. Therefore, heats of reactions at $25^{\circ} \mathrm{C}$, determined from the heats of formations at $25^{\circ} \mathrm{C}$ by the above three equations, are used for the entire temperature range.

All the required heats of fomation show in Equation (7-4) through (7-6) are listed in Table 7.3. Thoir literature sources or the methods of estimation ved are given in Appendix A.9. The detailed procedures for determining the heats of reactions of the above three reastions are discussed in Appendix A.10. Table 7.4 is a summary of the heat of reaction determined and used in in this chapter for analysis of the mathematical model.

The last data required for energy balance calculations is overall heat transfer coefficient across the system wall. It is determined experimentally as described in details in Section 5.4.2.3.
7.1 .2 Solution of Theoretical Model

Table 7.3 Heats of Formation

No.	Component	Phase	Kcal/g-mole	Ref.
1	Ethyl Alcohol	L	-66.35	(52)
2	Ethyl Acrylate	L	-92.46	(Est.)
3	Water	L	-68.32	(52)
4	Diethyl Ether	L	-65.2	(52)
5	β-Ethoxy-Ethyl Propionate	L	-160.81	(\%女口)
6	Acry lamide Sulfate	L	-245.91	(Exp.)
7	Sulfuric Acid	\pm	-193.69	(52)
8	Ammoniun Bisulfate	s	-238.89	(Est.)
9	Acrylamjde	L	-46.6	(Est.)

Table 7. 4 Heats of Reaction

Reaction No.	Reaction	Equation	Heat of Reaction Kcail/g-mole
1	Esterification	$(4-2)$	-19.2
2	Dehydration	$(4-3)$	-0.82
3	Successive Reac- tion	$(4-4)$	-21.2
4	Equilibrium Reac- tion (Complex Formation)	$(4-1)$	-5.62

As mentioned in Chapter 4 the Runge-Kutta fourthorder method was used for numerical solution of the proposed mathematical model. This method can be show (8) to be convergent, that is,

$$
\begin{equation*}
\lim _{\Delta t \rightarrow 0}\left[y_{i}-y_{i}\left(t_{i}\right)\right]=0 \tag{7-7}
\end{equation*}
$$

where

$$
\begin{aligned}
& t_{i}=\text { independent variable } \\
& y_{i}\left(t_{i}\right)=\text { true solution } \\
& y_{i}=\text { numerical solution } \\
& \Delta t=\text { size of integration step }
\end{aligned}
$$

To obtain an exact solution $y_{j}\left(t_{i}\right)$ the size of irtegration step should be approaching zero, which is equivaient to requiring infinite integration steps. This is not practical. Instead, the size of an integration step is determined on the basis of considering both the desired accuracy and the computer time required to achieve this accuracy. Table 7.5 listed the calculated vapor condensate for Run No. 1, using four different integration steps, i. e., $\Delta t=1,2,4$, and 8 minutes. Though no analytical solution can be obtained for comparison with these four sets of numerical solutions, the criterion of Equation (7-7) can be used to justify that the smaller the integration step the close the numberical solution can approach the true solution. Significant differences

Table 7.5
Effect of Integration Step size on Calculated Total Kolal Vapor Concensate

mirutes	Integration Step Sizes			
	1 min .	2 min.	4 mir.	8 min .
0	0.432	0.432	0.432	0.432
4	0.563	0.568	0.558	
8	0.676	0.678	0.676	0.655
12	0.789	0.759	0.784	
16	0.902	0.902	0.900	0.397
20	1.012	i.011	1.009	
24	1.121	1.120	1.119	3.110
28	1.229	1.227	1.225	
32	1.336	1.334	1.333	J. 329
36	1.442	1.440	1.438	
40	1.549	1.547	1.545	1.533
44	1.657	1.654	1.651	
48	1.765	1.763	1.760	1.749
52	1.875	1.872	1.868	
56	1.986	1.933	1.979	1.964
60	2.098	2.095	2.090	
64	2.211	2.208	2.204	2.189
68	2.326	2.323	2.318	
72	2.443	2.440	2.434	2.418
76	2.561	2.558	2.552	
80	2.680	2.677	2.671	2.655

Abstract

in vapor molal condensate between the 4 -minute step size and the 8 -minute step size can be observed. As the integration step size is reduced to 1 minute, the improvement from 2 -minute step size becomes very small, for example, less than 0.08% at $t=80$ minutes. Therefore, the step size for the numerical integration was then selected as 2 minutes throughout this work, except a few severe cases such as adiabatic simulation where a smaller step size should be used for convereent solution.

7.2 Eifects of System Farameters on Theoretion Sclution

Among mary independent parameters deaning the syatarno three operating parameters are chosen as variables for the experimentel investigations. They are iritial and surrounding temperature, volatile reactant feed rate, and relative ratio of vapor to total feed. The effects of these three parameters on the system behavior will be discussed in details in this section. Furthermore, for a better understanding of the system characteristics, the systern response to two other parameters, though not independent variables, will also be analysed. They are heat of reaction and overall heat transfer coefficient. For each of the above five system parameters, discussions are presented for the following three system responses:
(1) Ethyl Acrylate Vapor Molal Condensate
(2) Total Vapor Molal Condensate
(3) Liquid Temperature

In a semibatch operation, the feed rate is generally limited to a certain range such that the system can be operated reasonably. For example, if the feed rate is too small, it will take a long time before the boiling point of the liquid mixture is attained. On the other hand if the feed rate is too large, the liquid holdur may increase rapidly such that liquid may overflow to the vapor flow path as entrainment. Since ?un ive. t. is at a flow rate which is about in the midcile of the appropriate flow range used in this study, all its eystem parameters are then used as the reference parameters for the discussion.
7.2.1 Effects of Heat of Reaction

Heats of reactions for this particular reaction system has been determined from Hess' law as described early in this chapter. Since heats of formation of several compounds required for such determinations are estimated, the calculated heats of reactions should have some degree of uncertainty. Because of this uncertainty, the analysis should be made to determine the effects if the estimated values of heat of reaction are erroneous.

The calculated value of heat of reaction for esterification is - $19.2 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole}$. Five other values, namely $-35,-30,-25,-10$, and $0 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole}$ are chosen to determine the effect if the correct heat of reaction were not $-19.2 \mathrm{Kcal} / \mathrm{g}$-mole. No positive heat of reaction is used because the system being studied is exothermic.

Fig. 7.1 snows the plots of the liquid temperature as a function of time. For the case where the released heat of reaction exceeds $35 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole}$, the liquid temperature becomes greater than $135^{\circ} \mathrm{C}$ when time reaches 12 minu'es. It has been experimentally verificd the: the acrylamide sulfate solution prepared in Section 5.3.3 decomposes near the vicinity of $135^{\circ} \mathrm{C}$. The decomposition can be detected easily by the smell of ammonia, one or the decomposed products. No actual measurements have been made for such decomposed vapors. If the absolute heat of reaction is lower, say at $30 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole}$, the liquid temperature reaches the maximum which is slightly below $135^{\circ} \mathrm{C}$ at $t=28$ minutes. Before reaching the maximum temperature, the systen behavior is similar to the above "run-away" case. High heat of reaction forces out appreciable amount of volatile components and thus increases the bubble point of the liquid mixture.

After reaching the maximum temperature, more volatile

Fig. 7.1 Liquid Temperature - Effect of Heat of Reaction
components are either absorbed or produced in the liquid phase and more nonvolatile reactant (acrylamide sulfate) is consumed as time proceeds. Thus, the bubble point of the liquid mixture starts declining after the maximum temperature. If heat of reaction is small such that heat of generation is less than the net heat removal, the liquid temperature decreases continuously from the beginning of the run. This phenomenon can be recognized by the temperature lines of $\Delta \mathrm{H}_{\mathrm{R}}$ at $\mathbf{- 1 0 . 2}$, -10, and 0 Keal/g-mole in Fig. 7.1. The effect of hect of reaction, as compared to its base value of -19.2 Kcal/g-mole can be sumarized as

Difference in	Haximurn	Hax. Temp.
Heat of Reaction	Temperature	Difference per
$\left[\Delta \mathrm{H}_{\mathrm{R}, 1}-(-19.2)\right]$	Difference	Unit Ohance of Heat of Reaction
Kcal/g-mole	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C} /(\mathrm{Kcal} / \mathrm{g}-\mathrm{mole}$)
-10.8	+11.7	1.08
- 5.8	$+3.8$	0.66
+ 9.2	- 3.8	0.41
+19.2	- 6.2	0.32

The results show that the maximum temperature difference per unit change of heat of reaction is least at zero heat of reaction and largest at the highest investigated heat of reaction of $-35 \mathrm{Kcal} / \mathrm{g}$-mole.

When the released heat of reaction is higher than $19.2 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole}$, more ethyl acrylate can be produced and collected in the vapor condensate as show in Fig. 7.2. This is because the reaction rate can be represented by the Arrhenius equation. As discussed earlier, the higher heat of reaction yields a higher liquid temperature which in turn results in a higher reacting rate. For the case of $\Delta H_{R, 1}=-35 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole}$, it was statac that the liquid temperature reaches above $135^{\circ} \mathrm{C}$ after 12 minutes of operation and that the product decrapos:tion occurs. Therefore, no molal quantity of ethel acrylate vapor condensate is show in Fig. 7.2 after thise point. For all the other selected heats of reaction, the molal quantities of ethyl achylate vepor condensate are plotted up to $t=80$ minutes so as to include a.li the dita points used in Chapter 6 for correlating reaction rate expressions. At the cperating time of 80 minutes, the difierence of the collected amount of ethyl acrylate vapor condensate can be summarized as follows.

Difference in Heat of Reaction	Difference in Ethyl Acrylate	Molal \% Difference
$\mathrm{H}_{\mathrm{R}, 1}-(-19.2)$	Vapor Condensate	
Kcal/g-mole	Moles	
-10.8	+0.112	+14.7
-5.8	+0.045	+5.9
+9.2	-0.055	-7.2
+19.2	-0.100	-13.1

Fig. 7.2 Ethyi Acrylate "ropr Condensate.
Effect ci inat ce Reotion

As show in rig. 7.3, during the early stage of the reaction, the variation of total vapor molal condensate is still appreciable, depending on the amount of heat of reaction released. This phenomenon reflects the high heat of reaction forcing out more volatile components from the liquid mixture. However, the differences are narrowed near the end of reaction because the esterification reaction rate becomes very small and consequently the effect of heat of reaction is greatly reduced.

7.2.2 Heat Transfer Coefficient

The overall heat transfer coefficient was measured previously as $0.16 \mathrm{cal} / \mathrm{min}-{ }^{\circ} \mathrm{C}-\mathrm{cm}^{2}$ using the similer fiviús, If the system is operated odiabatically, i. e., no heat is transfered through the system boundary, the iiduid temperature rises very rapidly and reeches $135^{\circ} \mathrm{C}$ in less than 8 minutes as show in Fig. 7.4. If the insulation material can be adjusted to give an overall heat transfer coefficient of $0.08 \mathrm{cal} / \mathrm{min}-{ }^{\circ} \mathrm{C}-\mathrm{cm}^{2}$, the decomposition temperature of $135^{\circ} \mathrm{C}$, may also be reached rapidly in about 17 minutes. However, such "run-away" temperatures are reached only when the initial and surrounding temperature (T_{0}) is high, or the relative ratio of vapor to total feed (ψ) is large, or both. Run 1 is operated under such conditions. For Run 9, the initial and surrounding temperature is

Fig. 7.4 Liquid pemperature - Effect of
Overall Heat T ransfer Coefficient
set to $106{ }^{\circ} \mathrm{C}$, and the relative ratio of vapor to total feed is zero, which are respectively lower than those of Run 1. As shown in Fig. 7.5 the maximum temperature is only $118.5^{\circ} \mathrm{C}$ even the system is operated adiabatically. Therefore, undesirable high operating temperatures can be avoided even for an adiabatic operation if the above mentioned two operatirg parameters are properly adjusted.

Now, return to Fig. 7.4. The overall heat transfer coefficient can be increased if the material of the pyrex wall of the reaction-distillation colum is replaced by the corrosion-resistent inetal such as incon? Then, the liquid temperature will rapidly approach the surrounding temperature as shown by the lines of high overall heat transfer coefficients, ranged from $0.20-$ $0.32 \mathrm{cal} / \mathrm{min}-{ }^{\circ} \mathrm{C}-\mathrm{cm}^{2}$. As show in Fig. 7.5 , the liquid temperature may even go below the surrounding temperature. Usually this occurs only in the system where the feed is totally or nearly totally liquid.

If the overall heat transfer coefficient is small, the reaction temperature is higher, resulting in higher product yield. This phenomenon is illustrated in Fig. 7.6. The relation between product yield and overall heat transfer coefficient at the reaction time of 80 minutes can be summarized as follows.

Fig. 7.5 Liquid Temperature- Effect of
Overall Heat Iransfer Coefficient

U. cal/min- ${ }^{\circ} \mathrm{C}-\mathrm{cm}^{2}$	Ethyl Acrylate, moles
0.12	0.852
0.16 (measured value)	0.752
0.24	0.701
0.32	0.678

During the early stage of reaction, small overall heat transfer coefficient leads to higher liquid temperature, which in turn forces out more volatile components from the liquid mixture to give a higher total vapor molai condensate as shown in Fig. 7.6. At the end of the rg. action, all the liquid tomperatures approach the aurounc ing temperature as illustrated by Fig. 7.4. Therctome, the effect of overall heat transfer coefficient on total vapor molal condensate is greatly reduced as shown in Figer.7.

7.2.3 Initial and Surrounding Temperature, To

The initial temperature as discussed in Section 5.1.1 is set equal to the surrounding temperature to avoid further complicating the system. Fig. 7.8 gives the temperature history of the system at four different initial and surrounding temperatures, T_{0}. For all the four cases, liquid temperature approaches to the surrounding temperatures. There is a temperature cross-over between the $110^{\circ} \mathrm{C}$ and $106^{\circ} \mathrm{C}$ lines. The cross-over is caused by two factors. One of them is frequency factor, and the other

Fig. 7.7 Total Vapor Condensate - Effect of
Overall Heat Transfer Coefficient
is heat loss. The ratio of the frequency factors of the $106{ }^{\circ} \mathrm{C}$ case to the $110{ }^{\circ} \mathrm{C}$ case can be calculated from Equation (6-29) as given in Chapter 6. It is found that the frequency factor for the $106^{\circ} \mathrm{C}$ case is 1.87 times that for the $110^{\circ} \mathrm{C}$ case. Therefore, during the early stage of reaction, the $106{ }^{\circ} \mathrm{C}$ case produces more neat of reaction, resulting in a higher liquid temperature. As time proceeds, higher heat loss due to a higher temperature driving force across the reactor wall for the $106^{\circ} \mathrm{C}$ case rapidly brings dom its liquid temperature ine and then crosses over the $110{ }^{\circ} \mathrm{C}$ line. If two sets of injtial and surrounding temperature are very apart as in the cases of $115^{\circ} \mathrm{C}$ and $106^{\circ} \mathrm{C}$. there is no cross-over because the less heat loss at $115^{\circ} \mathrm{C}$ con maintain higher Jiauia tomperature during the run.

For this system, the reaction rate constant is higher for a lover initial and surfounding temperatures it is resulted from a higher frequency factor for this lower initial and surrounding temperaure and a high starting Iiquid temperature, which in turn gives a high value for the Arrhenius exponential term. Therefore, the product yield at $106^{\circ} \mathrm{C}$ is very high as shown in Fig. 7.9.

At a higher surrounding temperature with a higher

Fig. 7.8 Liquid Temperature - Effect. of
Initial and Surrounding Temperature

Fig. 7.9 Ethyl Acrylate Vapor - Effect of. initial and Surrounding Temperature
initial temperature, the temperature driving force is small, consequently there is less heat loss through the wall of the reaction-distillation column. Therefore, the li.quid temperature is higher and there is more volatile vapor leaving the liquid mixture as shown in Fig, 7.10.
7.2.4 Feed Flow Rate, F

As mentioned early in this section (7.1.3). feed flow rate can be neither too large nor too sudit for a semibaten system if the appropriate operating rance is to be maintained. The selected flow rates in this study are between 1.0 and $2.0 \mathrm{ml} / \mathrm{min}$. Since the feed flow rate during Run 1 is an intermediate rate, 1.56 $\mathrm{ml} / \mathrm{min} .$, this flow rate along with the above menticned feed rates are then used as the typical cases for the following discussions.

The liquid temperature during a run is plotted in Fig. 7.11 for three different rates. At the smallest, feed rate, the liquid temperature in the early stage of reaction js the lowest. At the smallest feed rate, the concentration of ethyl alcohol in the liquid is lowest. Thus, its reaction rate is the slowest with release of the least heat of reaction. As the reaction continues,

Fig. 7.10 Total Vapor Moial Concensate - Effect of Initial and sumondins Temperature

Fig. 7.11 Liquid Temperature -Effect of Recd Rete
the content of volatile components in the liquid mixture becomes much less. Therefore, its bubble point eventuaily becomes the highest among the three cases. This cross-over of the liquid temperature lines happens frequently: for example, the temperature cross-over between the cases of 1.56 and $2.0 \mathrm{ml} / \mathrm{min}$. feed rates is at 21.5 minutes and similarly between 1.0 and $1.56 \mathrm{ml} / \mathrm{min}$. at 42 minutes.

Since a high feed rate reduces the liquid temper ature in the long run, it does not proportionately increase the product yield. Fig. 7.12 shows that the product yield at $2.0 \mathrm{ml} / \mathrm{min}$. feed rate is slightiy higher than that at $1.56 \mathrm{ml} / \mathrm{min}$. during the first 60 minutes of operation. However, its yield becomes smaller arter 60 minutes of operation. With little improvement in the product yield, this axcessive increase of volatile components, introduced by the feed, will reduce the product concentration in the vapor condensate collected. Selection of a proper feed rate is, therefcre, very important for obtaining the desired product concentration. However, it should be noted that many operating parameters interact and, therefore, the selection of feed rate should also be considered in accordance with other parameters, such as overall heat transfer coefficient, initial temperature, surrounding temperature and relative ratio of vapor to

total feed.

As can be expected, a higher fecd rate, containing volatile components, produces more total vapor condensate. This is shown in Fig. 7.13. The difference in the amounts of accumulated total condensate at the different feed rates is very large compared to the similar variation in the product yield.
7.2.5 Vapor Fraction in the Total Feed

It has been shown earlier in Fig . 7.5. that the Liquid temperature becones less then the surrounding temperature if the feed is totally liquid. The illustration is show for the case of a low initial and surrounding temperature of $106^{\circ} \mathrm{C}$. However, a similar phenomenon can be observed for the run with a high initial and surrounding tomperature of $115^{\circ} \mathrm{C}$, as long as the relative ratio of vapor to feed rate is low. The latter is show in Fig. 7.14. The liquid temperature becomes lower than the surrounding temperature, $115^{\circ} \mathrm{C}$, at $t=$ 20 minutes if the feed stream is totally liquid. As the relative ratio of vapor to total feed is increased, the liquid temperature increases substantially, especially at $t=22$ minutes. No "run-away" temperature is reached because the outgoing vapor carrys away some of this heat

Fig. 7.13 Total Vapor Molal Conciersate - Effect of Feed Rate

flow to maintain a moderate temperature operation. However, if the system is operated adiabatically and with the feed of totally vapor, the liquid temperatures may reach the "run-away" temperature of $135^{\circ} \mathrm{C}$.

As shom in Fig. 7.14, the higher ψ the higher the liquid tomperature. The corresponding product yield is then higher for the cases with higher ψ values, except the case of $\psi=0$. At low ψ, the ethyl alcohol concentration in the liquic is high. As discussed in Section 6.2.2. at low ψ, the frequency factor is also high. Therefore, a combination of low tomperature, high frequency factor ard high jicuid concentration, as requized for calculating reaction rate constant, nay give a nimer product yield at a lower ψ as shown in Fig. 7.150

At the constant feed rate of $F=1.56 \mathrm{ml} / \mathrm{min} .0$ the amount of total vapor condensate increases as the vapor fraction of the feed is increased. It can be reasoned simply that a feed with a higher oontent of vapor bring with it more heat which is in tirn used for vaporization. This can be show by Fig. 7.i6.
7.3 Comparison of Theoretical End Experimental Results

The previous section has presented the parametric evaluations of the unsteady state system behavior, using

Fig. 7.15 thyl Aomplate rapor Molal Condensate iffeet ot rooc Vapor Fraction

the proposed mathematical model. Now, the discussion should be extended to examine how accurately the proposed mathematical model represents and predicts the actual experimental results obtained in this study. The three operating paraneters for all the nine experimental runs are given in mable 6.2, while their initial values are show in the computer print-outs of the program IABDATA detailed in Appendix C.1.3.

Since the proposed theoretical model includes eighteen simultaneous differential equations, as presented in Chapter 4, eighteen initial conditions are required ax the solution, Ghese injtial values are given, more conveniently, in the computer print-outs of the model sio mulation program, lODEL. They are included in fpperdix C.2.3. Althouch there are eighteen dynamic quantitiess as mentioned above, whicn can be used for comparing the theoretically calculated and experimentally measured values, only those with great importance are selected for presentation here. Among the selected are the accumulated vapor molal condensate and the liquid temperature. Since the liquid compositions prorides useful information on the distribution of the volatile components between vapor and liquid as well as on the reaction conversion, they are also included in this comparative study.

7.3.1 Comparison on Vapor Molal Condensates

Since ethyl acrylate is the main product and ethyl alcohol is an important unreacted reactant in the vapor phase, they are the two vapor molal quantities of greatest importance. With the additional knowledge of the amount of total vapor molal condensate, the relative purity of ethyl acrylate in the condensate can be determined. Therefore, these three quantities are to be evaluated in this section. No discussions will be presented for the rest of components in the vapor, such as water, diethyl eincr and β-ethoxy ethyl propionate, because water is not a product and the other two compounds are by-producs with only trace quantities.

The comparisons between theoretically calculated and experimentally measured results for the above three important quantities are presented in Figures 7.17-7.25, one for each experimental run. The comparisons are made for the dynaric behavior of the system during the initial 80 minutes operation.

For the main reaction product, ethyl acrylates the agreement between the theoretical and experimental values is very satisfactory except Run 9 where the theoretical calculations give an average error of 0.095 moles, i. e., approximately 23%. It is noted that one of the original

Fig. 7.18 Comparison of Mhecreticin liodel and Experimental Results - Vapor Molal Ccnensate, Run 2

Fig. 7. 19 Comparison of meoreticri ronsl and Experimental Results - Vapon holea Condsastee, Run 3

Fig. 7.20 Comparison of Theoretical Model and Experimental
Results _ Vapor Molal Condensate, Run 4

Fig. 7.21 Comparison of Theoretical Model and Experimental

Fis. 7.24 Comparison of Theoretionl bodel and Experimental Kesults - Vapor Rosai gonconaste, Run 8

Fige 7.25 Compariscri of Theocetion brocl and Experimental

reactant, acrylamide, for all the nine runs was prepared to be in the range of 1.007 ± 0.021 gram moles. Therefore, the molal quantities shown on thes graphs for ethyl acrylate essentially reflect total conversion of the reactant, acrylamide, to the main product, ethyl acrylate.

For ethyl alcohol, an unreacted volatile reactant, the theoretical prediction is also satisfactory except Run 3, where the quantity of the predicted vapor ethyl alcohol is 0.14 moles above the experimental data, 0.96 moles at $t=78.7$ minutes. This is equivalent to the discrepancy of 14.6%.

The theoretical model also predicts fairly accurately the experimentally messured amount of the total vapor molal condensate, the average deviation is 7.9% over the 47 data points covered in the nine runs. The naximum deviation occurs in Run 9 with an absclate average error of 19.5% while the best prediction is seen in Run 5 with an absolute average error of only 1.2%.

In view of the complexity of the mathematical model and of the reaction system, the agreement between the theoretical and the experimental results is excellent.
7.3.2 Comparison on Liquid Temperature

Fig.7.26 Comparison of Jiquid temperature, Run 1 to Run 3

IIQUID TENPERATURE

LIQUID TEMPERATURE

Pig. 7.27 Comparison of Liquid Temperature, Run 4 to Run 6

Fig. 7.28 Comparison of Liquid Temperature, Kun 7 to Kun 9

The liquid temperature has significant effects on reaction rate and vapor-liquid equilibria, as demonstrated in the correlation work discussed in Chapter 6. Since the description of the physico-chemical system includes several energy terms such as heat of reactions. heat loss, enthalpy of feed stream and enthalpy of leaving vapor, an accurate prediction of the liquid temperature is dependent on the accuracy of the prediction or the measurement of these energy terms.

Comparison between theoretical and experincratal liquid temperatures is given in Fig. 7-26 through 7-28 for all the nine runs. Although experimental temperature were measured continuously by a Honeywell 19 recoder, only discrete experimental temperatures at each sampling tine are used here for comparison. The agree. ment for Kuns 2, 3, 4, 6 and 7 are very satisfactory. For the other four Runs, 1, 5, 8 and 9, the predicted temperatures are 1 to $3^{\circ} \mathrm{C}$ higher than the experimental values. hs show in the figures, once a higher predicted temperature is reached, the temperature profile remains high for a period of time because of consequential contribution from heats of reaction.

Maximun temperatures are predicted by the model for Run 5, 6, 8 and 9. This phenomenon indicates that net

Abstract

accumulated energy estimated for the early stage of reaction is ton high. As demonstrated in Section 7.2, the maximum temperatures can be ubtained when the heat of reaction is high, or the overall heat transfer coefficient is small, or the relative ratio of vapor to feed is large.

Since the temperature deviations of 1 to $3^{\circ} \mathrm{C}$ give very small errors in predicting the experinentel molal quantities of vapor condensate as demonstrated by graphs, Figs. 7.17-7.25, these temperature deviations are acrsidered to be insignificant and acceptable.
7.3.3 Comparison on Liquid Mole Fractions

If the agreement in total vapor molal condenssite between the theoretical and experimental results of the total vapor condensate is satisfactory, the agreement on total liquid molal quantity should also be satisfactory. This is because the sums of the liquid and vapor quantities should be stochiometrically constant for each component except of β-ethoxy-ethyl propionate which is prsented in trace quantity. The variation of β-ethoxyethyl propionate quantity is not significant on the total picture.

The most severe test of the theoretical model is
whether it is able to predict the liquid composition. The comparison of liquid mole fractions of individual components can provide useful informations about distribution of volatile components between vapor and liquid as well as the conversion of reactants.

Since the theoretical model gives the best prediction for Run 7 and the worst prediction for Run 9 as to both the vapor molal condensate and the liquid terperature, the comparisons on the liquid composition will be made for these two runs. Fig. 7.29 presents the comparison of liquid mole fractions for seven liquid components in Rum 7. The agreements between the model and the experimental results are excellent for all the seven components. Acrylamide is not shown in the figure because it is assumed to be completely converted into aorylamice sulfate. Another component, diethyl ether was tctally vaporized and not detectable in the liquid phase.

Fig. 7.30 is a similar presentation for Run 9, which is considered to be the worst case for matching the experimental and theoretical values of total vapor molal quantity. But it is amazing how well the model predicts the experimental liquid compositions for even Run 9. The agreements between the calculated and the experimental mole fractions of each component in the liquid phase are excellent, except of the ethyl acrylate. This may be

Fig. 7. 29 Comparison of Liquid ncie Fractions, Run 7

Fig. 7.30 Comparison of Liquid Mole Fractions, Run 9
due to an under estimation of liquid astivity coefficient of ethyl acrylate at low temperatures. A better correlation of multicomponent "chemical" vapor-liquid equilibrium data is needed. In fact, until the present study, there was no "chemical" vapor-liquid equilibriua correlation available on the sound thermodynamic basis. The present approach of using the Wilson-type equation, as presented earlier, is the first attempt for such a correlation.

Chapter 8 Conclusions

The following conclusions have been drawn from this study:

1 A general and theoretical model for unsteady state distillation accompanied by chemical reaction is proposed. The model is a general model since it can be reduced to represent all the four basic cases of dism tillation operation. With substitution of proper Miniting values to certain terms of the equations, the papored general mathematical model yields the theoretical equations for
(a) Marek Model for Steady-State Distillation with Chemical Reaction
(b) Holland Model for Unsteady-State Distillation without Chemical Reaction
(c) Thiele-Geddes Model for Steady State Distillation without Chemical Reaction

2 The model contains 18 simultaneous differential equations. Ever for a simpler system of nonisothermal system of unsteady-state distillation without chemical reaction, Hollard's numerical solution of such equations requires that at least four values must be initially assumed. However, the numerical solution proposed in
this study requires only one assumed initial value, i.e., the outlet vapor flow rate. The proposed procedure is based on the Runge-Kutta method and the solution converges very rapidly.

3 In order to verify the proposed tieoretical model, the experiments were conducted to determine the system responses of a semibatch (therefore unsteady-state) distillation accompanied by chemical reaction. The chenical reactions involved are esterification betwect acrylamide sulfate and ethyl alcohol to produce ethyl acielett, and the associated side and competitive reactions. The experimental apparatus and procedures developeá were sound because the reproducible results were obtained. It is concluded that the apparatus and the procedures can be readily adopted for other distillation systens with different reactions.

4 The experimental results compare very satisfactorily with the theoretical predictions by the mathematical model. The quantitative predictions of the accumulated total vapor condensate by the model agree with the experimental values, with the average error of 7.9 for all the nine experimental runs. The maximum deviation was observed for Run 9 which is 19.5%.

5 The agreement between the experinental and the calculated values for the vapor condensate of ethyl acrylate,
the reaction product, is very satisfactory. So is the similar comparison for ethyl alcohol, one of the major reactants. The excellent agreements imply that not only the matheratical model is theoretically sound but also the correlations for the reaction rates and for the vapor-liquid equilibrium are good.

6 The liquid temperature calculated by the model deviates from the experimental values with an average deviation of $1.2{ }^{\circ} \mathrm{C}$ for the entire experiments. It is noted that the magnitude of $1.2^{0} 0$ temperature dovintion is too small to yield any significant error in predieting the accunulated vapor molal condensates.

1 Another proof of the soundness of the theoretical model is that the calculated liquid compositions of each component agree excellently with the measured values by the chromatograph.

8 The attempt by the Wilson-type equation, which was made to correlate the "chemical" vapor-liquid equilibrium data, is found to be satisfactory. The proposed method is more useful for computer calculations than that employed by Hirata and Komatsu, who correlated "chemical" vaporliquid equilibrium data by discrete equations.

2 The mass transfer effects on chemical reactions were correlated by the iilm theory and the Arrheniustype equation. The activation energy in the Arrhenius equation is found to be uniform for the three reactions involved in the system. The frequency factor is successfully correlated by a generai function of the three operating parameters, initial and surrounding temperature, volatil reactant feed rate, and vapor fraction in the total feed. The major advantage of the Eerecal function is to expreas the three operating parameters as searatea variables. Therefore, their individual effects on the frequency factor can be evaluated. It is found that the fraquency factor js most sensitive to initial and surrounding temperature and least affected by volatile reactant feed rate. If the initial and surrounding temperature is increased from $106^{\circ} \mathrm{C}$ to $115{ }^{\circ} \mathrm{C}$, the frequency factor will be reduced by a factor of 2.65. This implies that the reaction occurs mostly in the liquid film due to a high reaction rate at a high temperature. If the vapor fraction in the total feed is reduced from 0.85 to zero, the frequency factor will be increased by a factor of 1.43. This implies that the filn reaction is reduced to the minimun by introducing a totally liquid feed stream. The volatile reactant feed rate mostly contributes to incroasing the
corcentration of the volatile reactant, ethyl alcohol in the liquid holdup. Its effect on the frequency factor is then small.

10 With the above sound general correlatios for the "chemical" vapor-liquid equilibrium and the chemical reaction rate expressions, the system characteristics are then investigated by the appropriate parametric studies using the theoretical model. The increase c.t. heat of reaction promotes the product yield as well as the liquid temperature increase. If the syotom is operated adiabatically, it can reach very rapidly to high liquid temperature of $135^{\circ} \mathrm{C}$ at which the decomposition of acrylamide sulfate takes place. Since the tendency is particularly apparent if the feod. contains a larger fraction of vapor, the proportion of liquid in the feed may be increased to aroid the undesirable decomposition. In a case with a large proportion of vapor in the feed, the liquia temperature is initially high. But as the reaction time progresses, the liquid composition moves toward the higher content of volatile materials, resulting in the lowering of the liquid temperature. The product yield does not increase proportionately with the vapor content in the feed.
11. The effects of chemical reactions on distillation
behavior are very complex. At this time, no simple and general methods are available to predict these effects. Heat of reaction, particular if it is significantly large, certainly affects the distillation. For example, the esterification encountered in the present system has the heat of reaction of $-19.2 \mathrm{Kcal} / \mathrm{g}$-mole. The heat released by the reaction is fairly large and directly influences the vapor-liquid equilibrium and thus the distillation performance.

12 A chemical reaction within a given distiliation syoten affects directly its vapor-liquid equilibriwn, then, in turn, the distillation performance . hore specificaily, the value of liquid activity coefficient of the same compound differs depending on whether the system is in physical equilibrium or accompanied by chemical reaction. Thus, it is concluded that a chemical reaction affects distillation behavior mainly by changing the value of liquid activity coefficient or by supplying the latent heat of vaporization.

13 The present model of a single-tray distillation accompanied by chemical reaction can be used in the future as a building block for a more complicated multipletray distillation problem. This is recomnended as a follow-up to the present study.
A. :Total molal quartities of component in in both vapor and liquid phases
: Inside heat transfer area
C_{b} : Concentration of reactant A in liquid bulk
$C_{i} \quad$: Concentration for component i, g-mole/i
$\overline{\mathrm{C}}_{\mathrm{p}}$: Average or molal heat capacity
$C_{p} \quad$: Iiquid heat capacity at temperature $T, ~ c a l / \varepsilon-0$
C_{I} : Concentration measured from a overalit Ifoid sample
© : Diffusivity of liquid through liquid
E. : Activetion energy, cal/g-mole

E 01 : Activation energy for the rate constent ra_{2}
E_{1}^{0} : Vaporization tray efficiont defined by Hollard
F : Total feed rate
F_{i} : Feed rate for component i
$f_{1}^{o L}:$ Standard-state fugacity, i.e., fugacity of pure liquid i at temperature 1 adjusted to the reference pressure, p^{r}
H_{F} : heat of formation
h_{F} : Iiquid enthalpy for total feed at the exit temperature of the preheater
$H_{\text {IN }}$: Inlet vapor enthalpy
$h_{\text {IN }}$: Inlet liquid enthalpy
$\mathrm{H}_{\text {OUT }}$: Outlet vapor enthalpy
$h_{\text {OUP }} \quad$ Cutlet liquid enthalpy
$-\Delta H_{R, j}$: Heat of reaction of reaction j
$h_{S} \quad$: Enthalpy of hold up on the tray (anoming negligible vapor holdup)
$K_{0} \quad:$ Frequency factor
K_{01} : Frequency factor for the rate constant k_{1}
$k_{i} \quad: \quad y_{i} / x_{i}=$ vapor-liquid equilibriam ratios
$k_{i} \quad$: Rate constant for reaction i
$K_{s, i}$: Frequency factor for reaction i and run number s
$I_{i} \quad$ holal liquid quantity for component i
$I_{\text {IN }}:$ Total liquid iniet molal quantity
$I_{\text {OUT }}:$ Total liquid outlet molal quantity
in : $\sum_{i=1}^{n} H_{i}=$ Total molal holdup on the tray
$M_{i} \quad: M o l a l$ quantity of component i in the liquid hold up
n : Number of components
$n_{j} \quad:$ Number of data points for an experimental run
$n_{r} \quad$: Number of reactions

n_{s}	Number of experimental runs
n_{T}	- Total vapor molal condensate
P	: Product or total pressure
$\mathrm{P}_{\mathrm{i}}^{0}$	s Saturated vapor pressure of pure liquid i at temperature T
Q	: Heat transfer rate across the wall of the reaction-distillation tray
${ }^{Q_{L}}$: Net heat transfer rate from the system to the surrounding
R_{i}	: Net rate of component i generated and/os onsumed by reaction
R_{j}	8 Rate of reaction for reaction j
Δt	- Integration step size, or measured time interval
T	: Absolute temperature. ${ }^{\circ} \mathrm{K}$ or liquid tenperature in the reaction-distillation tray in ${ }^{\circ} \mathrm{C}$
t	: Temperature in ${ }^{\circ} \mathrm{C}$, or tine in minutes
To	: Oil bath temperature or initial and surrounding temperature
T_{1}	: Temperature of glycerine before absorbing ethyl alcohol solution
T_{2}	: Temperature of glycerine at the end of a measuring period
t_{i}	* Independent variable
T_{m}	: Melting point in degree Kelvin
t_{n}	: Time at the end of nth integration step

U_{i}		Overall heat transfer coefficient in terms of inside heat transfer area
V	:	Total volune of liquid hcldup
v_{a}	:	Aerated water volume
V_{i}	:	Holal vapor quantity for component i
$\overline{\mathrm{V}} \mathrm{I}_{\mathrm{i}}$:	Partial molal volume of i in the solution at temperature T
V_{i}^{L}	3	Nolar liquid volume of pure i at tempernture is
$V_{\text {IN }}$:	Total vapur inlet molal quantity
${ }^{\mathrm{V}} \mathrm{CuT}$:	Total vapor outlet molal quantity
VOUT, 2	:	Outlet vapor flow rate at the previous time of the z th integration step
$V_{z+1}^{(1)}$:	Initially assumed $V_{\text {our }}$ at the elapsed time of the ($z+1$)th integration step
W_{0}	8	Amount of water in the reaction-distillation tray at the beginning of measurenent
W_{6}	:	Amount of water vapor condensate collected at the end of measurement
x_{i}	:	Liquid mole fraction
y_{i}	:	Vapor mole fraction
$y_{i}\left(t_{i}\right)$:	True solution of a dependent variable
γ_{i}	:	Activity coefficient of component in in the liquid mixture

η		Mass transfer correction factor on the intrinsic rate expression
8	:	Film thickness
λ	1	Heat of vaporization
λ_{f}	:	Heat of fusion at melting point
$\lambda_{\mathrm{H}_{2} \mathrm{O}}$:	Heat of vaporization of vater
$\nu^{\circ} \mathrm{i}$:	Fugaci.ty coefficient of component in in the Iiquid phase
ϕ_{i}	7	Vapor fugacity coefficient of compunenti it in the vapor mixture
9_{i}^{0}	8	Fugacity coefficient of purs saturated vapor i at temperature T and pressure P_{i}^{0}
ψ	1	Relative ratio of vapor to total feed
σ^{-}	:	$(1-\mu) / 2$
0^{2}	1	Variance
ϵ	:	Volumetric ratio of aerated water to clear water
μ	;	Multiplier for the implict method
ω	1	Acentric factor
ρ	:	Water density at $100{ }^{\circ} \mathrm{C}$
ρ_{i}	:	Liquid density for component i at the temperature of the reacting liquid mixture
ξ	:	T_{0}, F or ψ

REFERENCES

(1) Acrivos, A. and N. R. Amundson, Ind. Eng. Chem. , 45. 467(1953)
(2) American Cyanamid Company, "The Chemistry of Acrylamide": New Yark 1969
(3) Babcock, P. D. , "Distillation with Chemical Reaction", Ph. D. Dissertation, Lehigh University, 1976
(4) Backhaus, A. A. , U. S. Patents : $1,400,849$, 1,400.850, 1.400,851(1921); 1,403.224, 1,403,22.5 $1,425,624,1,425,625(1922) ; 1,454,462,1.454,463$ (1923)
(5) Belck, L. H. , A. I. Ch. E. JI, 1, No. 4, Lót(1955)
(6) Berman, S. H. Isbenjian, Sedorf, and D. F. Othmer, Ind. Eng. Chem., 40, 2139(1948)
(7) Berman, S., A. A. Melnychak, and D. F. Othmer, Ind. Eng. Chem. , 40, 1312(1948)
(8). Carnahan, S., H. A. Iuther, and J. O, Wilkes, "Applied Numerical Methods", John Willy and Sons, Inc., New York, 1969
(9) Chao, K. C., and J. D. Seader. A. I. Ch. E. Joural 1, 598(1961)
(10) Chow, W. if. and Bright, J. A.: Jr., Chem. Eng. Progr., 49: 175(1953)
(11) Davies, B., J. D. Jenkins and G. V. Jeffreys, Trans. Inst. Chen. Engrs. . 51, 267(1973)
(12.) Davies, B., and Ge V. Jeffreys, Trans. Inst. Chem. Engrs., 51, 275(1973)
(13) Lean, J. A., "Lange's Handbock of Chemistry", MCGraw-Hill Book Company, 11 Edi., 1973
(14) Ettre, L. S. \&A. Zlatkis, "The Practice of Gas Chromatography", Wiley is Sors, Inc., New York, 129(1967)
(15) Gallant, Robert W., Hydrocarbon Processing, 45 , No. 10, 171(1966)
(16) ibid, 47 , No. 9, 169(1968)
(17) ibid, 47, No. 11, 223(1968)
(18) Gold, P. I. and G. J. Cgle, Chemical Eng., Nov. 4, 1968
(19) ibic, Nov. 18, 1953
(20) ibid, Jan. 13, 1969
(21) ibid, Feb. 24, 1969
(22) ibid, Mar. 10, 1969
(23) ibid, April 7, 1969
(24) ibj.d, Sept. 8, 1969
(25) Grayson, H. G., and C. W. Streed, Proc. 6th world Petro. Congr. , Frankfort/iain III, Paper 20-PD7, 233(1963)
(26) Hála, Eòwara, Vichterle, Ivan, Palak Jiri and Tomas Boublik, "Vapor-Liquid Equilibriun Data at Normal Pressures" pergamon Press Ltd, 175(1968)
(27) Hardman, h. \vec{r}. , and A. Miller, U. S. Pat. No. 3,325.534, June 131967
(28) Hatta, S., Ird. Chem. (Japan), 37, 601(1934)
(29) Hatta, S., New Chem. Eng. Series, VIII -ik, NiKan Ind. News, Japan (1957)
(30) Hatta, Sop Rech Reports, Tohoku Imp. Iriv., Japsin, 3, 1(1928-29)
(31) Hatte, S., fiech. Reports, Tohoku Imp. Univo, 10, 119(1932)
 $125(1965)$
(33) ibsd, 30, No, 11, 939(1966)
(34) Hirata, M. and Ho Komatsu, Kagaku Kogatu (Abridged Eistion), 5, kic. 1, 143(1967)
(35) HiIdebrant J. H. and R. L. Scott, "The Solutility of Nonelectrolytes", Reinhold, Puilishine corp. (1950)
(36) Holland, C. D., "uncteady State Processes with Applications in Gulticomponent Distillation". Prentice-Hall, X. X . (1967)
(37) Hougen, O. A.. K. M. Watson, and R. A. Ragatz, "Chemical Process Principals", Wiley, New York(1947)
(33) Ito, Shunichi, Asahi Garasu Kenkyu Hokoku, 16, 133 (1966)
(39) Johnson: A. I. and C. J. Huant, Can. J. Technol., 33. $421(1955)$
(40) Lapicius, L., and N.R. Amundson, Ind. Ent. Chen., 42, 1071(1950)
(41) Leyes; C.E. and D.F. Othmer Trans. An. Inst.

Ghem. Engr. 41, 157(1945)
(42) Z.cyes, C. E., and D. F. Othmer, Ind. Chem., 32. 968(1945)
(43) Loginova, N. A., A. F Frolob, and B. F. Ustashchikov, Ihimicheskaia Promyshlennost, No. 4, 275(1968)
(44) Lyderson, A. L., "Estimation of Critical Properties of Organic Compounds", University of Wisconsjin, Engineering Experimental Station, Report No, 3. Madison. Wis., Apr. 1955
(45) Farek, Jo, Colln Czech, Chem. Commumn 19, $1055(205 \%)$
(46) Karshall, W. R., Jr., and R. L. Figford, "fre Applicarion of Differential Equations to Chemical Encineering Problers. Newark, Del. : Univ. Delaware, 1947
(47) Kckeynolds, W. O., "Gas Chromatographic Retention Data" Preston Technical Abstract Co., Evanston, III.(1966)
(48) Jinistry of Supply, Department of Director of Ordnance Factories (Explosives) "Thermal Properties of the System $\mathrm{H}_{2} \mathrm{O}-\mathrm{SO}_{3}{ }^{\prime \prime}$.
(49) Natural Gas Processors Supplies Association, "NGFSA Engineering Data Book"
(50) Othmer, D. F. Ind. Eng. Ckem., 35, 614(1943)
(51) Othmer, D. F.. N. Shlechter, and N. Varsliar; Ind. Eng. Chem., 37, $900(1945)$
(52) Perry, R. H., et ai., "Chemical Engineers Handbock, 5th ed., HeGraw-Hill Book Company, 1973
(53) Prausnitz, J. M., et al., "Computer Calculations for multicomponent vapor-liquid Euuilibrium," Prentice Hall, New Jersey (1967)
(54) Redlich, O., and J. N. W. Kwong, Chem. Rev., 44, 233(1949)
(55) Sabylin, I. I., and Aristovich, Yu. V. Zh. Prikl. Khim., Leningr., 43 , No. 9, 2021 (1970)
(56) Saito, S., et al J. Chem. Eng., Japan, 197i. is. No. 1, P. 37
(57) Sitting, Larshall, "Acrylic Acid and Esters", Hoyls Development Corp., Fark Ridge, N. J. (1965)
(58) Wilson, G. M., Advan. Cryog. Bing. 2, 163(1963)
(59) Wacgoner, R. C., "Solution of Unsteady State Distillation Problem", Ph. D. Dissertation, Texas A \& M University, College Station, Texas, 1964
(60) Yamazaki, Ken-ichi, Polymers (Japan), 19, No. 224, 1045(1970)

Appendix A Basic Physical and Chemical Data

As mentioned in Chapter 1, a good quantitative evaluation of the theoretical nodel can be made only if all the values of system parameters are accurately obtained from existing experimental data, or predicted from reliable correlation methods. In a reaction-distillation system, the system parameters inciude thoss for material balance calculations such as vapor-liquid equilibrium ratios and reaction rates, as well as these for energy balance calculations such as liquid and vapor enthalpies, heats of reaction and heat transier rate across the system boundary.

Since some of these parameters are determine $\mathcal{C}_{\text {and }}{ }^{\prime}$ or calculated on the bases of more fundamental phesical and chemical data, the latters must be very accurate too. The fundanental physical and chemical data used in this study include the following twelve items.
(1) Normal Boiling Point (NBP)
(2) Critical Temperature (T_{c})
(3) Critical Pressure (P_{c})
(4) Iiquid Density (ρ)
(5) Vapor Pressure (p^{0})
(6) Acentric Factor (ω)
(7) Liquid Enthalpy (h)
(8) Vapor Enthalpy (H)
(9) Heat of Formation (H_{f}).
(10) Heat of Peaction ($\Delta \mathrm{H}_{\mathrm{R}}$)
(11) Fugacity Coefficient of Pure Liquid (ν°)
(12) Fugacity Coefficient of Pure Vapor (ϕ^{0})

This hppendix presents and discusses the sources of experimental data for the above physical and chemical properties as well as the methods used for estimating the values if experimental data are not availabla. The discussions are followed by tables sumarizing the final diata, both experimental and preuictod, for the compounds encountered in the study.

```
A.1 Nornal Boiling Point (NBP)
```

Estimated MBP

1. β-Ethoxy-cthyl propionate

FORMULA: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}$
METHOD: Three methods may be used for estimating the normal boiling point according to the compilation of Gold and Ogle (20). They are the Bumop Role: the Watson Dethod, and the Atomic Number correlation. The last one is the best method with on absolute average error of only 3.30 for $\%$ organic compounds. However, it can be used only for specific homologous series such as ketches, aldehydes, etc. Since the ester group is not included in this correlation, the next best methot, Burnop kule is then adopted here. The Burnop Rule has an absolute average erro: of 28.47% for 255 orgnnic compounds. Any other chenieal and physical properties derived from thiceboiling point must be used with care. Since β-ethoxy-ethyl propionate is trace in the system, any errors induced from this approximation should have little effects on predicting the system behavior. The Eurnop Rule states that

$$
\begin{equation*}
W=M \log _{10} T_{B}+3 \sqrt{\mathrm{M}} \tag{A-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& W=\text { atomic contribution } \\
& M=\text { molecular weight } \\
& T_{B}=\text { normal boiling point in }{ }^{\circ} \mathrm{K}
\end{aligned}
$$

ESTIIATION DETATLS:

Atom	Atomic Contribution	No. of Atoms	Subtotal Contributicn
C	23.2	7	162.4
H	10.9	14	152.6
0	51.0	3	153.0
Total Atomic Contribution			468.0
Double Bord Contribution			16.1
$W=$ Total Contribution			484.1
$\mathrm{M}=146.2$			
Then, solve Equation ($A-1$) for T_{B}			
$484.1=146.2 \log _{10} \mathrm{~T}_{\mathrm{B}}+8 \sqrt{146.2}$			
$\mathrm{T}_{\mathrm{B}}=446.2 \mathrm{O}_{\mathrm{K}}=173.0^{\circ} \mathrm{C}$			

2. Acrylamide

PORNULA: $\mathrm{CH}_{2} \mathrm{CHCOONH}_{2}$
METHOD : The molten acrylamide (M.P. $84.5^{\circ} \mathrm{C}$) poly-
merizes vigorously and exothermally. before it reaches the normal boiling point. However it becomes very stable when it forms a molecular complex, acrylamide sulfate, with sulfuric acid at a temperature well above its meltiry point. Therefore, many thermophysical properties of acrylamide and acrylamide sulfate are.estimated on an assumption that they have same thermophysical progorijies of compounds with similar moleculs. structwre. The following comparison method is then ured . for estimating the nomal boiling point of acrylamide.

ESTIMATION DETAILS:

Comparison of Amide Group

Compound	Formula	$\mathrm{NBP}^{\mathrm{O}} \mathrm{C}$	Ref.
Ethyl amide	$\mathrm{CiH}_{3} \mathrm{CONH}_{2}$	222	(52)
Butyl amide	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}$	216	(52)

Propyl amide $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}\right) \cong \frac{222+216}{2}=219^{\circ} \mathrm{C}$
Comparison between Double Bond and Single Bond Ethyl Propionate $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5} \quad 99.1{ }^{\circ} \mathrm{C}$ Ethyl Acrylate $\quad \mathrm{CH}_{2} \mathrm{CHCOOC}_{2} \mathrm{H}_{5} \quad 100.1{ }^{\circ} \mathrm{C}$ Double Bond Contribution $\quad+1.0^{\circ} \mathrm{C}$

$$
\text { pseuo-NBP of acrylamide } \cong 219+1=220^{\circ} \mathrm{C}
$$

The experimental and the calculated values of NBP for the compounds are summarized in Table A.1.

Table A. 1 Normal Boiling Foints

No.	Component	NBP, ${ }^{\circ} \mathrm{C}$	Ref.
1	Ethyl Alcohol	78.4	(52)
2	Ethyi Acrylate	100.1	(17)
3	Water	1.00 .0	(58)
4	Diethyl Bther	34.6	(52)
5	β-Ethcxy-ethyl Propionate	173	(Esto)
б	Acrylamide Sulfate	Not in use	-
7	Sulfuric Acid	340.0	(52)
8	Ammonium Bisulfate	490.0	(52)
9	Acrylamide	220	(Est.)

A. 2 Critical Cemperature (T_{c})

Estimated T_{C}

1. B-Ethoxy.ethyl propionate

 FORTULA : $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}$METHOD : The Lydersen method is generally recommended for estimating critical temperatures of organic compounds (13, 52). The absolute averase error hy the method is 5.14% on the basis of 216 organic compounds. This method is adopted here. The Lydersen mothod (43) states that

$$
\begin{equation*}
T_{c}=T_{B / \theta} \tag{A-2}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=0.567+\sum \Delta t-(\Sigma \Delta t)^{2} \tag{A-3}
\end{equation*}
$$

where

$$
\Delta t=\text { group contribution }
$$

ESTIHATION DETAILS :

Atomic Group	Group Con- tribution, at	No. of Group	Subtotal Contribution
$-\mathrm{CH}_{2}$	0.02	4	0.08
$-\mathrm{CH}_{3}$	0.02	2	0.04
$-0-$	0.021	1	0.021

$$
\begin{aligned}
& -C 00-1.047 \quad \frac{0.047}{0.188} \\
& \theta=0.567+0.138-(0.188)^{2}=0.7197 \\
& \mathrm{~T}_{\mathrm{c}}=446.2 / 0.7197=620.0 \mathrm{~K}=346.8^{\circ} \mathrm{C}
\end{aligned}
$$

2. Acrylamide

FORIULA : $\mathrm{CH}_{2} \mathrm{CHCOONH}_{2}$
METHOD : The Lydersen method is also adopted here.

ESTILATION DETAILS:

Atomic Group	Group Con- tribution, Δt	No. of Groups	Subtotai Contribition
$\mathrm{CH}_{2}=$	0.018	1	0.018
$=\mathrm{CH}-$	0.0	1	0.0
$-\mathrm{C}=0$	0.040	1	0.04
$-\mathrm{NH}_{2}$	0.031	1	$\underline{0.031}$
$\theta=0.567+0.039-(0.089)^{2}=0.648$	0.089		
$I_{\mathrm{C}}=(220+273.2) / 0.648=760.8{ }^{\circ} \mathrm{K}=487.6{ }^{\circ} \mathrm{C}$			

Table A.? Critical Temperature

NO.	Compound	$\mathrm{T}_{\mathrm{C},} \quad{ }^{\circ} \mathrm{C}$	Ref:
1	Ethanol	243.1	(15)
2	Ethyl Acrylate	288.0	(17)
3	Water	374.1	(49)
4	Diethyl Ethyl	193.8	(16)
5	β-Ethoxy-Ethyl Propionate	346.8	(玉心t.)
9	Acrylamide	487.6	(Est.)

```
A.3 Critical Pressure ( }\mp@subsup{P}{c}{}\mathrm{ )
```

Estimated P_{c}

1. β-Ethoxy-ethyl Propionate

FORTULA $: \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}$
NEMHOD : The Lydersen method is also recomended for estimating critical pressures of organic compounds(52). It has an absolute average error of 3.7% for 182 compound. The working equation is given as follows (4)

$$
\begin{equation*}
P_{c}=\frac{\mathrm{H}}{(0.34+\Delta p)^{2}} \tag{A-l}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{H}=\text { molecular weight } \\
& \Delta \mathrm{p}=\text { atomic group contribution }
\end{aligned}
$$

Escimation Details :

Atomic Group	Group Con- tribution, $\Delta \mathrm{p}$	No. of Groups	Subtotal Contribution
$-\mathrm{CH}_{2},-\mathrm{CH}_{3}$	0.227	6	1.362
-COO	0.47	1	0.470
-O	0.16	1	$\frac{0.16}{1.992}$
$\mathrm{P}_{\mathrm{C}}=\frac{146}{(0.34+1.992)^{2}}=26.9$	atm.		

2. Acrylamide
$\mathrm{FORHULA}: \mathrm{CH}_{2} \mathrm{CHOOORH}_{2}$
METHOD : The Lydersen method given by Equation (A-4) is also used.

ESTIMATION DETAILS

Atomic Group	Group Con- tribution	No. of Groups	Subtotal Contribution
$\mathrm{CH}_{2}=$	0.198	1	0.193
$=\mathrm{CH}-$	0.199	1	0.193
$-\mathrm{C}=0$	0.290	1	0.200
$-\mathrm{TH}_{2}$	0.095	1	0.095
$\mathrm{P}_{\mathrm{C}}=\frac{71.08}{(0.34+0.781)^{2}}=56.6 \mathrm{~atm}$			

Table A. 3 Critical Pressures

No. Component	$P_{c,}$, Atm	Ref.	
1	Ethyl Alcohol	62.9	(15)
2	Ethyl Acrylate	36.3	(17)
3	Water	218.2	(49)
4	Diethyl Ether	35.5	(16)
5	P-Ethoxy-ethyl	26.9	(Est. $)$
9	Acrylamide	56.6	(Est.)

A. 4 Liquid Density (f) :

Estimated p

1. β-Ethoxy-ethyl Propionate

FORMULA: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}$
METHOD : There are ten methods available for estimating liquid density (19). The first Gugethheim method is considered to be the most suitable for the compounds dealt in this syster considering both accuracry and availability of the basic data required. The working aquation can be represented by

$$
\begin{equation*}
f_{r}=1+1.75\left(1-T_{r}\right)^{1 / 3}+0.75\left(1-T_{r}\right) \tag{A-5}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{I}_{r} & =\text { reduced temperature } \\
\rho_{r} & =\rho \mathrm{v}_{\mathrm{c}}=\text { reduced density } \\
\mathrm{v}_{\mathrm{c}} & =\text { critical volume }
\end{aligned}
$$

The critical volune is estimated by the Lyderson method as shown below.

Atomic Group	Group Contribution, Δv	No. of Groups	Suibtotal Contributions
$-\mathrm{CH}_{2},-\mathrm{CH}_{3}$	55	6	330
-COO-	80	1	80
-0-	20	1	20
			430
$V_{c}=\Sigma(\Delta V)=430 \mathrm{c.c.c} / \mathrm{g}-\mathrm{mole}=2.94 \mathrm{c} . \mathrm{c} . / \mathrm{g}$.			
$\rho_{c}=1 / \mathrm{v}_{\mathrm{c}}=0.34 \mathrm{~g} / \mathrm{c}_{6} \mathrm{c}$.			
The critical temperature T_{c} can be obtained			
from Appendix A. 2. Then for any given tem-			
perature a corresponding liquid densj.ty wan			

2. Acrylamide

FORAULA : $\mathrm{CH}_{2} \mathrm{CHCONH}_{2}$
METHOD : The First Guggenheim method, or Equation (A-5), is used. The required critical volume of acrylamide is estimated as follows.

Atomic Group	Group Con- tribution,	No. of Groups	Subtotal contribution
$\mathrm{CH}_{2}=, \mathrm{CH}=$	45	2	90
$\mathrm{C=0}$	60	1	60
$-\mathrm{NH}_{2}$	28	1	$\frac{28}{178}$
$\mathrm{~V}_{\mathrm{c}}=$	$178 \mathrm{c} . \mathrm{c} . / \mathrm{g}-\mathrm{mole}=2.505 \mathrm{c} . \mathrm{c} \cdot / \mathrm{g}$.		
ρ_{c}	$=0.399 \mathrm{~g} / \mathrm{c} . \mathrm{c}$.		

3. Acrylamide Sulfate

FORIULA : $\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}$
MEPHOD :Assume that the liquid molar volume of this molecular complex is approximately equal to the sum of the liquid molar volumes of its two pure constituents. Then

$$
\begin{equation*}
\frac{1}{\bar{\rho}_{6}} \cong \frac{1}{\bar{\rho}_{6}}+\frac{1}{\bar{\rho}_{7}} \tag{A-5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{\rho}_{\mathrm{i}}=\text { liquid molar density for component i } \\
& 1 / \bar{\rho}=\text { liquid nolar volume }
\end{aligned}
$$

4. Armonium Bisulfate

FORTIULA : $\mathrm{NH}_{4} \mathrm{HSO}_{4}$
METHOD :Armonium bisulfate is a dissolved solid in the liquid solution. Its molar volume may be assumed equal to the average molar volume of anmonium sulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, and sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$. Then,

$$
\frac{1}{\bar{f}_{8}}=\left[\frac{1}{\bar{f}_{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}}+\frac{1}{\bar{\rho}_{7}}\right] / 2
$$

At a low operating pressure, liquid density is only a function of temperature. The densities obtained from either the literature or Equation (A-5) are then fitted as a function of temperature according to the following polymonial equation.

$$
\begin{equation*}
\rho_{i}=a_{i, 1}+a_{i, 2^{T}}+a_{i, 3^{T^{2}}} \tag{A-6}
\end{equation*}
$$

The program POLYFIT given in Appendix 0.6 can be used for data regression to obtain the coefficiente of Equation (A-6). These determined coefficients for the nine components in this system are sumeriacd in TABLE h .4.

$$
\rho_{i}=a_{i, 1}+a_{i, 2^{T}}+a_{i, 3^{T}}{ }^{2}
$$

where

$$
\begin{aligned}
\rho & =\text { liquid density }, g / \mathrm{ml} \\
T & =\text { temperature },{ }^{\circ} \mathrm{C}
\end{aligned}
$$

i Compound
1 Ethyl Alcohol
2 Ethyl Acrylate
3 Water
4 Diethyl Ether
5β-Ethoxy-ethyl Propionate
6 Acrylamide Sulfate
7 Sulturic Acid
8 Ammonium Bisulfate
9 Acrylamide

$a_{i, 1}$	$a_{i, 2} \times 10^{3}$	$a_{i, 3} \times 10^{5}$	Data Sources (15)
0.79800	-0.75060	-0.16369	(17)
0.93971	-0.94345	-0.16369	(52)
0.10067	-0.25200	-0.22973	(16)
0.73271	-0.88333	-0.32738	$($ (Est.)
0.97266	-0.87446	-0.014881	(Est.)
1.4734	-0.95768	+0.0031945	(52)
1.8511	-0.99000	-	(Est.)
1.8141	-2.7500	-	(Est.)
1.1452	-0.76236	-0.38601	

A. 5 Vapor Pressure (${ }^{0}$)

Estinated n^{0}

1. B-Ethoxy-ethyl Propionate

FORHULA: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}$
HETHOD : The Riedel correlation is a suitable method among the "reduced" correlations (24) for estimating vapor pressure, considering both accuracy and availability of correlating parameters. There are four differcnt forms of the Riedel Correlation. The third form is most suitable for the compound beine studied and thus presented here ais follows.

$$
\begin{array}{ll}
\log _{10} p_{r}^{0}=-\Phi\left(T_{r}\right)-\left(\alpha_{C}-7\right) \psi\left(T_{r}\right) & (A-7) \\
\Phi\left(T_{r}\right)=0.118 \phi\left(T_{r}\right)-7 \log T_{r} & (A-8) \\
\psi^{\prime}\left(T_{r}\right)=0.0364 \phi\left(T_{r}\right)-\log T_{r} & (A-9) \\
\phi\left(T_{r}\right)=36 / T_{r}+42 \log T_{r}-35-T_{r}^{6} & (A-10) \\
\alpha_{C}^{\prime}=0.9076\left[1+\frac{T_{B_{r} r} \ln P_{C}}{1-T_{B} r}\right] & (A-11) \tag{A-11}
\end{array}
$$

where

$$
p_{r}^{0}=p^{0} / p_{c}
$$

$$
\begin{aligned}
& \mathrm{p}^{0}=\text { vapor pressure } \\
& \mathrm{T}_{\mathrm{r}}=\mathrm{T} / \mathrm{T}_{\mathrm{c}}
\end{aligned}
$$

The required critical temperature (T_{c}) and critical pressure (F_{c}) are obtained in the previous sections.

The vapor pressure data obtained from either the literature or the above Ricdel method can be carrelated ky the following Antoine equation

$$
\begin{equation*}
\log _{10} p^{C}=A-\frac{C}{B+I} \tag{k-12}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{p}^{0}=\text { vapor pressure, } \mathrm{mm}_{\mathrm{E}} \\
& \mathrm{~T}=\text { temperature, }{ }^{\circ} \mathrm{C} \\
& \mathrm{~A}, \mathrm{~B}, \mathrm{C}=\text { Antoine constants }
\end{aligned}
$$

The Antoine constants for the five volatile components in the system are obtained and given in Table A.5.

Taule A. 5 Antoine Constants for Vanor Pressure

No.	Component	A	B	C	Ref.
1	Ethanol	8.1629	1623.2	228.93	(26)
2	Ethyl Acrylate	6.9773	1283.1	212.19	(17)
3	Water	7.96681	1568.2	228.0	(26)
4	Diethyl lither	6.89227	1051.3	227.43	(26)
5	B-Ethoxy-ethyl Propionate	8.3190	2691.9	313.38	(Est.)

A. 6 Acentric Factor ($\boldsymbol{\omega}$):

The acentric factor is defined as

$$
\begin{equation*}
\mathcal{U}=-1-\left(\log P_{r}\right)_{T_{r}}=0.7 \tag{A-13}
\end{equation*}
$$

It is a factor to account for the degree of departure of a real fluid from a simple fluid. It is used in this study for estimating fugacity coefficient of a pure vapor by the Prausnitz general correlation (53). The acentric factors of ethyl alcohol, water and diethyl ether are given by the Pransnitz compilation (53) while those of ethyl acrylate and β-ethory-athyl propionate can be calculated from Equation ($\mathrm{A}-\hat{1}^{2} \hat{3}$) utilizing tine vapor pressure data estimated in Section A.5. Table A.S is a list of the acentric factors for the five volatile componerts.

Table A. 6 Acentric Factor

No. Component	Acentric Factor 1	Ref.
1 Ethanol	0.637	(53)
2 Ethyl Acrylate	0.329	(Est.)
3 Water	0.344	(53)
4	Diethyl Ether	0.283
5	β-Ethoxy-ethyl Propionate	0.557
(Est.)		

A. 7 Jiquid Enthalpy (h)

Liquid enthalpy is only dependent on temperature at low pressure and can be calculated from liquid heat capacity by

$$
\begin{equation*}
h=\int_{T_{d}}^{T} C_{p} d T \tag{A-14}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}=\text { liquid heat capacity } \\
& \mathrm{T}_{\mathrm{d}}=\text { datum temperature } \\
& \mathrm{h}_{\mathrm{l}}=\text { liquid enthalpy }
\end{aligned}
$$

If liquid heat capacity i.s expressed by a polynomis. equation,

$$
\begin{equation*}
c_{p}=a_{1}+a_{2} T+a_{3} T^{2} \tag{A-15}
\end{equation*}
$$

and the daturn temperature is chosen as $0^{\circ} \mathrm{C}$, the liquid enthalpy can be obtained readily by integration of Equa.tion ($A-14$):

$$
\begin{equation*}
h=a_{1} T+a_{2} T^{2} / 2+a_{3} T^{3} / 3 \tag{A-16}
\end{equation*}
$$

Therefore, only liquid heat capacities are required for obtaining liquid enthalpies. The liquid heat capacities are estimated for the compounds for which measured data are not available.

Estimated Liquid Heat Capacity, C_{p}

1. β-Ethoxy-ethy? pronionate

FORTULA: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}$
HETHOD: The heat capacities of orgaric liquids at $20{ }^{\circ} \mathrm{C}$ may be simply evaluated with relatively good accuracy (5 and 16 per cent average and maximum errors) with the additive-contribution method of Johnson and Huang (39). The working equations can be expressed by

$$
\begin{equation*}
\overline{\mathrm{c}}_{\mathrm{p}, 20^{\circ} \mathrm{C}}=\Sigma \text { Atomic Group Contributions } \tag{t-17}
\end{equation*}
$$

where

$$
\overline{\mathrm{C}}_{\mathrm{p}, 20^{\circ} \mathrm{C}}=\text { molar heat capacity at } 20^{\circ} \mathrm{C}
$$

Heat capacities calculated in this manner at $20{ }^{\circ} \mathrm{C}$ may be used to calculate the constant b of the following Chow and Bright general correlation; $(10,23)$

$$
\overline{\mathrm{c}}_{\mathrm{p}} \omega^{2,8}=\mathrm{bM}
$$

Once the constant b is determined, the equation can be used for calculating a heat capacity at any temperature. Since the system is operated at atmospheric pressure and the reduced temperature encountered in this study is less than 0.65 , the following thatson expansion factor is used (52)

$$
\omega \alpha=0.1745-0.0838 \mathrm{~T}_{\mathrm{r}}
$$

The following working equation is obtained by combining the above two equations.

$$
\bar{C}_{p}\left(0.1745-0.0838 T_{r}\right)^{2.8}=6 M \quad(A-18)
$$

ESTIMATION DETAILS :

For $\overline{\mathrm{C}}_{\mathrm{F}}, 20^{\circ} \mathrm{C}$

Atomic Group	Group Con- tribution	No. of Group	Subtotal Contribution
CH_{3}	9.9	2	19.8
$-\mathrm{CH}_{2}$	6.3	4	25.2
$-\mathrm{COO}_{-}$	14.5	1	24.5
$-0-$	8.4	1	$\frac{8.4}{}$

$$
\begin{aligned}
& \overline{\mathrm{C}}_{\mathrm{p}, 20}{ }^{{ }^{\circ} \mathrm{C}}=67.9 \mathrm{Cal} / \mathrm{g}-\mathrm{mole}-{ }^{\circ} \mathrm{C} \quad \text { (Molal Basis) } \\
& \text { Molecular Weight }=146.2 \\
& \mathrm{C}_{\mathrm{p}, 20}{ }^{\circ} \mathrm{C}=\frac{67.9}{146.2}=0.464 \mathrm{Cal} / \mathrm{g}-{ }^{\circ} \mathrm{C} \quad \text { (Mass Basis) }
\end{aligned}
$$

Determination of b using ${ }^{\mathrm{C}} \mathrm{D}, 20^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 0.464\left(0.1745-0.0838 \times \frac{20+273.2}{346.8+273.2}\right)^{2.8}=b \\
& b=0.007893
\end{aligned}
$$

For C_{p} at Other Temperatures

$$
C_{p}=126.69\left(0.1745-0.0838 T_{r}\right)^{2.8}
$$

2. Acrylamide

FORMULA : $\mathrm{CH}_{2} \mathrm{CHCONH}_{2}$

METHOD :The Johnson-Huang method given by Equation (A-17) and the Watson expansion factor method given by Equation ($\mathrm{A}-18$) are also adopted here.

ESTIMATION DETAILS

Atomic Group
$\mathrm{CH}_{2}=$
$=\mathrm{CH}-$
$C=0$
$-\mathrm{NH}_{2}$

Group contribution
6.3
5.4
14.7
15.2

No. of Subtotal Groups

1
1
1 . 14.7
1
$\bar{C}_{p}=\frac{15.2}{41.6}$

Molecular Weight $=71.06$
$C_{p:, 20}{ }^{{ }^{C}}=\frac{41.6}{71.06}=0.5854 \mathrm{Cal} / \mathrm{E}-{ }^{{ }^{\circ} \mathrm{C}}$

For C_{p} at Other Temperature

$$
\begin{aligned}
& 0.5854\left(0.1745-0.0838 \times \frac{20+273.2}{487.6+273.2}\right)^{2.8}=b \\
& b=0.007253 \\
& c_{p}=137.88\left(0.1745-0.00838 T_{x}\right)^{2.8}
\end{aligned}
$$

3. Acrylamide Sulfate :

FORMULA: $\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}_{4}$

NETHOD: The enthalpy of acrylamide sulfate is equal to the sum of the enthalpies of its two constituent compounds, acrylamide and sulfuric according to the assumption made in Chapter 7 . Its molal heat capacity can then be readily determined, by definition, from the following equation.

$$
\begin{equation*}
\bar{c}_{p, 6}=\left(\frac{H_{7}}{M_{6}} \bar{c}_{p, 7}+\frac{N_{9}}{M_{6}} \bar{c}_{p, 9}\right) \tag{A-19}
\end{equation*}
$$

where in stands for molecular weight.
4. Ammonium Bisulfate

FORMULA: $\mathrm{NH}_{4} \mathrm{HSO}_{4}$
METHOD: The method used for acrylamide sulfate as steted above is also used here. Accordingly, the heat capacity of amonium bisulfate can be expressed in terms of those of sulfuric acid and anmonium sulfate as follows.

$$
\overline{\mathrm{c}}_{\mathrm{p}, 8}=\frac{1}{2}\left[\frac{\mathrm{M}_{7}}{\mathrm{H}_{8}} \overline{\mathrm{c}}_{\mathrm{p}, 7}+\frac{\mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}{\mathrm{H}_{8}} \overline{\mathrm{c}}_{\mathrm{p},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}\right]
$$

Liquid heat capacities obtained from the literature or estimated by the above mentioned methods are then fitted to Equation (A-15) by the computer program POLYFIT given in Appendix C.6. The fitted coefficients are listed in Table A.?.

$$
\begin{aligned}
& C_{p}=a_{1}+a_{2} T+a_{3} T^{2}+a_{4} T^{3} \\
& h=a_{1} T+a_{2} T^{2} / 2+a_{3} T^{3} / 3+a_{4} T^{4} / 4 \\
& C_{p}=c a l / g-C ; h_{1}=c a l / g ; T={ }^{\circ} C
\end{aligned}
$$

Component Name	a_{1}	$\mathrm{a}_{2} \times 10^{3}$	$\mathrm{a}_{5} \times 10^{5}$	$a_{4} \times 10^{7}$	Ref.
Ethyl Alcuhol	0.53150	2.2012	0.72024	-	(15)
Ethyl Acrylate	0.45560	0.48312	0.17096	-	(17)
Water	1.0060	-0.31738	0.34230	-	(52)
Diethyl Ether	0.53002	0.97143	1.10120	-	(16)
β-Ethoxy-ethyl Propionate	0.44220	1.0364	0.26786	-	(Est.)
Acrylamide Sulfate	0.51106	-2.6872	2.5080	-0.46642	(Est.)
Sulfuric Acid	0.47483	-5.4866	4.1811	-0.81692	(52)
Ammonium Bisulfate (Solid)	0.42665	-2.3368	1.7822	-0.34821	(Est.)
Acrylamide	0.56106	1.1706	$0.1983 \pm$	0.017361	(Est.)

A. 8 Vapor Enthalpy (H)

A vapor mixture at atmospheric pressure may be treated as an d.deal gas without a significant error. Two methods are used to obtain vapor enthalpies for the five volatile compounds. The first method uses the following equation to calculate vapor erthalpy.

$$
\begin{equation*}
H=\lambda_{0}+\int_{0}^{T} C_{p_{v}} d T \tag{A-21}
\end{equation*}
$$

where

$$
\begin{aligned}
& H=\text { vapor enthelry at temperature } T{ }^{G} C \\
& \lambda_{0}=\text { heat of veporization at } 0{ }^{\circ} \mathrm{C} \\
& C_{D_{V}}=\text { vapor heat capacity }
\end{aligned}
$$

This method is applied for the first four volatile compounds. The data for λ at $0 \% \mathrm{C}$ and O_{y} for these four compounds are available in the literature. For the least volatile compound, β-Ethoxy-ethyi propionate, none of the above data are available. It is then more convenient to obtain its vapor enthalpy froin the previously estimated liquid enthalpy paus neat of vaporization for a given temperature. Thus,

$$
\begin{equation*}
\mathrm{H}=\lambda_{\mathrm{Y}}+\mathrm{h} \tag{A-22}
\end{equation*}
$$

where
$\lambda_{T}=$ heat of vaporization at temperature T

Since vapor pressure of β-ethoxy-ethyl propionate in the system is always less than atmospheric pressure, the vapor enthalpy obtained from the above equation may be treated as an ideal gas enthalpy.

Estimated Heat of Vaporization, $\boldsymbol{\lambda}$

FORMULA: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}$
METHOD: There are four methods which may bs used to estimate heat of vaporization ai the normal boiling point (21). The Giacalone correlaticis is most suiteble for this compound, considering both accuracy and availability of ccrajet.. ing parametere. His method is presented here as follows.

$$
\begin{equation*}
B=\frac{R T_{B} T_{C} \ln P_{C}}{\left(T_{C}-T_{B}\right) M} \tag{A-23}
\end{equation*}
$$

The above equation has average and maximum errors of about 3 and 10 per cent, respectively.

For heat of vaporization at other temperatures, the Watson temperature correlation can be employed and is expressed as follows:

$$
\begin{equation*}
\lambda_{T}=\lambda_{B}\left(\frac{1-T_{r}}{1-T_{B, r}}\right)^{0.38} \tag{A-24}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda_{T}=\text { heat of vaporization at temperature } ? \\
& T_{B, r}=T_{B} / T_{C}
\end{aligned}
$$

The average absolute error of Equation (A-24) is 4.7% for 247 organic compounds.

ESTIMATION DETAILS:

From TABLE A.1, $\mathrm{T}_{\mathrm{B}, 5}=173^{\circ} \mathrm{C}=446.2^{\circ} \mathrm{K}$
From TABLE A.2, $T_{C, 5}=346.8{ }^{\circ} \mathrm{C}=620{ }^{\circ} \mathrm{K}$

$$
T_{B, r}=\frac{446.2}{0.20}=0.7197
$$

From TABLE A. $3, \quad P_{c}=26.9 \mathrm{~atm}$
From Equation (A-23)

$$
\begin{aligned}
\lambda_{B} & =\frac{1.987 \times 446.2 \times 620 \times \ln 26.9}{(620-445.2) \times 140.2} \\
& =71.2 \mathrm{cal} / \mathrm{g}
\end{aligned}
$$

From Equation ($\mathrm{A}-24$)

$$
\begin{aligned}
\lambda_{\mathrm{T}} & =71.2\left(\frac{1-T_{\mathrm{r}}}{1-0.7197}\right)^{0.38} \\
\text { or } \lambda_{\mathrm{T}} & =115.42\left(1-\mathrm{T}_{\mathrm{r}}\right)^{0.38}
\end{aligned}
$$

From Equation (A-22)

$$
H_{5}=\lambda_{\mathrm{T}, 5}+\mathrm{h}_{5}
$$

or

$$
\begin{equation*}
H_{5}=115.42\left(1-\mathrm{T}_{\mathrm{r}}\right)^{0.38}+\mathrm{h}_{5} \tag{A-25}
\end{equation*}
$$

The vapor enthalpy of β-ethoxy-ethyl propionate can now be calculated from Equation (A-25) as a function of temperature (or reduced tenperature).

The vapor enthalpy calculated from either Equation (A-21) or Equation (A-25) is then fitted into a polynomial equation again by the program POLYFIT given in Appendix C.6. The fitted coefficients ara hea data sources for the five volatile compounds are listed in Table A. 8.

Table A. 8 Vapor Enthalpies at 1 Atme

$$
\begin{aligned}
& H=a_{1}+a_{2} T^{T}+a_{3} n^{2}+\cdots \\
& T=\text { temperature, }{ }^{\circ} \mathrm{C} \\
& H=\text { jdeal gas enthalpy, cal/g }
\end{aligned}
$$

Component

a_{1}	a_{2}	$a_{3} \times 10^{5}$	$a_{4 \times 10^{7}}$	Ref.
227.0	0.3630	33.978		(15)
96.0	0.2387	67.20	-0.132	(16)
597.6	0.4200	0.102		(52)
90.0	0.3450	0.375		(16)
79.7	0.3695	-6.211	8.929	(Est.)

A. 9 Heat of Formation (H_{f})

The heats of formation presented in this section are all evaluated at normal reference temperature, 25 ${ }^{\circ} \mathrm{C}$. They are needed for calculating heat of reaction by Hess' rule in the next section.

Estimated H_{f}

1. Ethyl Acrylate

FORRULA: $\mathrm{CH}_{2} \mathrm{CHCOOC}_{2} \mathrm{H}_{5}$
METHOD: The heat of formation of ethyl acrylate in the liquid state is estimated by two atens. The first step is to estimate its heat of formation in the ideal gas state, namely H_{f}°, by the nethod of Andersen, Beyer and ivatson as mentioned in Chapter 7. To reduce error to a minimum, a largest molecule of "close size and structure", ethyl propionate, is used as base group. The second step is to estimate its heat of vaporization by Equations (A-23) and (A-24) following the precedures gives in Section A.8. Then; its heat of formation in the liquid state, namely H_{f}^{I}, can be readily calculated.
(1) $H_{f, 2}^{O}$ (Ideal gas heat of formation):
Kcal/g-mole Ref.

Base Group
Ethyl Propionate

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$	-112.36
Double Bond Contribution	+30.0
$\mathrm{CH}_{2} \mathrm{CHCOOC}_{2} \mathrm{H}_{5}$	-82.36

(2) λ_{2}
(3) $\mathrm{H}_{\mathrm{f}, 2}^{\mathrm{L}}$
-) 10.1
-92.46
2. β-Ethoxy-ethyl propionate

FORIGULA: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{COOC}_{2} \mathrm{H}_{5}$
IETYOD: The same method used for ethyl acrylate is employed.

EStimation details:
(1) $\mathrm{H}_{\mathrm{f}, 5}^{\mathrm{O}}$

Kcal/g-mole Ref.
Base Group
Ethyl Propionate
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5} \quad-112.36$ (52)

Contribution of Secondary CH_{3}
to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5} \quad-5.2$
Contribution of Substitution
of CH_{3} by -OH to

$$
\begin{array}{ll}
\mathrm{HCCH}_{2} \mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5} & -32.7 \\
\text { Contribution of Substitution }
\end{array}
$$

of H in OH group by CH_{3} to
$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5} \quad+9.5$
Contribution of Secondary

(2) λ_{5}
(3) $\mathrm{H}_{\mathrm{f}, 5}^{\mathrm{I}}$
\qquad
-160.81
3. Ammonium Bisulfate

FORNULA: $\mathrm{NH}_{4} \mathrm{HSO}_{4}$
PHERHOD: Heat of formation of solid ammonium bisulfate is assumed equal to the average heat of formation of solid sulfuric acid and amonium sulfate. It is derined as $1 i_{s, 8^{\circ}}^{5}$ ESTIMAYION DEATILS:
$H_{f, 7}^{L}$
$\lambda_{\text {fusion, }} 7$
$H_{f, 7}^{s}$
$\mathrm{H}_{\mathrm{f},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}$

$$
\begin{aligned}
\mathrm{H}_{\mathrm{I}, 8}^{\mathrm{S}} & =[(-196.24)+(-231.74)] / 2 \\
& =-238.99 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole} \mathrm{e}
\end{aligned}
$$

4. Acrylamide:

FORMULA: $\mathrm{Ci}_{2} \mathrm{CHCONH}_{2}$
METHOD: The method used for ethyl acrylate is employed.

ESTMMATION DETAILS:
(1) $\mathrm{H}_{\mathrm{f}, 9}^{\mathrm{O}}$

Kcal/g-mole Ref.
Base Group
Formamide, HCONH_{2}-49.5 (52)
Contribution of Primary CH_{3}
Substitution to $\mathrm{CH}_{3} \mathrm{CONH}_{2} \quad-9.0$
Contribution of Secondary CH_{3}
Substitution to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2} \quad-5.0$
Contribution of Double Bond to $\mathrm{CH}_{2} \mathrm{CHCONH}_{2}$

$$
\begin{array}{r}
\frac{+30.0}{-33.5} \\
-\quad-13.1 \\
\hline-46.6
\end{array}
$$

(2) λ_{9}
(3) $\mathrm{H}_{\mathrm{f}, 9}^{\mathrm{L}}$

Experimentally Determined H_{f}

5. Acrylamide Sulfate:

FORMULA: $\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{HSO}$
NETHOD: Acrylamide sulfate is a molecular complex. Its heat of formation can not be estimated
by any available correlation methods. Therefore, it must be determined from the experimental heat of reaction data between sulfuric acid and acrylamide and their heats of formation by Equation (7-3) as discussed in Chapter 7 .

$$
\begin{equation*}
H_{f, 6}^{I}=H_{f, 7}^{L}+H_{f, 9}^{I}+\angle H_{R} \tag{7-3}
\end{equation*}
$$

From Section 5.4.5 of Chapter 5.

$$
\Delta \mathrm{H}_{\mathrm{R}}=-5.62 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole}
$$

From Perrys' Handbook (52),

$$
\mathrm{H}_{\mathrm{f}_{\bullet} 7}^{\mathrm{L}_{1}}=-193.69 \mathrm{Kcal} / \mathrm{gmole}
$$

From the previous section,

$$
\mathrm{H}_{\mathrm{I}, 9}^{\mathrm{I}}=-46.6 \mathrm{Kcal} / \mathrm{g} \text {-mole }
$$

Then, the heat of formation of acrylamide sulfate can be readily calculated by Ecution (7-3).

$$
\begin{aligned}
\mathrm{H}_{\mathrm{f}, 6}^{\mathrm{I}} & =(-1.93 .69)+(-46.6)+(-5.62) \\
& =-245.91 \mathrm{Kcai} / \mathrm{g}-\mathrm{mole} .
\end{aligned}
$$

Table A. 9 Heats of Formation

No.	Component	Phase	Kcal/g-mole	Ref.
1	Ethyl Alconol	Is	-66.35	(52)
2	Ethyl Acrylate	L	-92.46	(Est.)
3	Water	工	-68.32	(52)
4	Diethyl Ether	I	-65.2	(52)
5	$\beta-$ Ethoxy-Ethyl Propionate	L	-160.81	(S6t.)
6	Acrylamide Sulfate	L	-245.92	(Exp,
7	Sulfuric Acid	L	-193.69	(52)
8	Amontum Biculfate	Σ	-2.39.99	(2 stas)
9	Acxylamide	L	-46.6	(Est.)

A. 10 Heat of Reaction, $\left(\Delta H_{R}\right)$

The heats of reaction for the three reactions encounterred in this study are determined by Equation (7-4) through (7-6), using the data listed in Table A.9. The details of calculation are given below.

1. $\Delta H_{R_{1}}$ for Reaction 1, Esterification:

From Tabie a. 9

$$
\begin{aligned}
& H_{f, 1}^{\mathrm{L}}=-66.35 \\
& \mathrm{H}_{\mathrm{f}, 2}^{\mathrm{I}}=-92.46 \\
& \mathrm{H}_{\mathrm{f}, 6}^{\mathrm{I}}=-245.91 \\
& \mathrm{H}_{\mathrm{f}, 8}^{\mathrm{S}}=-238.99
\end{aligned}
$$

Substituting the above data into Equation (7-4) Eives

$$
\begin{aligned}
\Delta H_{R_{1}} & =H_{f, 2}^{I}+H_{f, 8}^{S}-H_{f, 6}^{I}-H_{f, 1}^{L} \\
& =(-92.46)+(-238.09)-(-245.91)-(-66.35) \\
& =-19.19=-19.2 \mathrm{Kcal} / \mathrm{g}-\text { mole }
\end{aligned}
$$

2. $\Delta H_{R_{2}}$ for Reaction 2, Dehydrations

$$
\text { From Table } \mathrm{A} .9 .
$$

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{f}, 1}^{\mathrm{I}}=-66.35 \\
& \mathrm{H}_{\mathrm{f}_{8}, 3}^{\mathrm{I}}=-68.32 \\
& \mathrm{H}_{\mathrm{P}, 4}^{\mathrm{I}}=-65.2
\end{aligned}
$$

The heat of reaction for Dehydration can now be readily calculated from Equation (7-5):

$$
\begin{aligned}
\Delta H_{R_{2}} & =H_{f_{s} 3}^{\mathrm{I}}+\mathrm{H}_{\mathrm{f}, 4}^{\mathrm{I}}-2 \mathrm{H}_{\mathrm{f}, 1}^{\mathrm{I}} \\
& =(-68.32)+(-65.2)-2(-66.35) \\
& =-0.82 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole}
\end{aligned}
$$

3. $\Delta H_{R_{3}}$ for Reaction 3. Successive Reaction

From TABLE A.9.

$$
\begin{aligned}
& H_{f, 1}^{\mathrm{L}}=-66.35 \\
& \mathrm{H}_{\mathrm{f}, \mathrm{~S}}^{\mathrm{L}}=-160.81 \\
& \mathrm{H}_{\mathrm{f}, \mathrm{E}}^{\mathrm{I}}=-245.91 \\
& \mathrm{H}_{\mathrm{f}, 8}^{\mathrm{S}}=-238.99
\end{aligned}
$$

Then, the heat of reaction of Successive Reaction can be determined from the above four heats of formation by Equation (7-6) as follows.

$$
\begin{aligned}
\Delta H_{R_{3}} & =H_{f, 5}^{\mathrm{L}}+\mathrm{H}_{\mathrm{f}, 8}^{\mathrm{S}}-\mathrm{H}_{\mathrm{f}, 6}^{\mathrm{L}}-2 \mathrm{H}_{\mathrm{f}, 1}^{\mathrm{L}} \quad(7-6) \\
& =(-160.81)+(-238.99)-(-245.91)-2(. .66 .35) \\
& =-21.1 .9 \cong-21.2 \mathrm{Kcal} / \mathrm{g}-\mathrm{mole}
\end{aligned}
$$

Table A. 10 Heats of Reaction

Reaction No.	Reaction	Equation	Heat of Reaction Kcal/g-mole
1	Esterification	$(4-2)$	-19.2
2	Dehydration	$(4-3)$	-0.82
3	Successive Reac- tion	$(4-4)$	-21.2
4	Equilibrium Reac- tion (Complex Formation)	$(4-1)$	-5.62

> Table 11 Constants of Equation (2-6) for Determining Fugacity Coerficients of Pure Iiquid
Constant
A_{0}
A_{1}
A_{2}
A_{-}
A_{4}
A_{5}
A_{6}
A_{7}
A_{8}
A_{9}

Grayson-Strood Complation

Hydrosen	Methane	Simple Fluid
1.50709	1.36022	2.05135
2.74283	-1.54831	-2.10899
-0.02110	0.	0.
0.00011	0.02889	-0.19395
0.	-0.01076	0.02282
0.008585	0.1 .486	0.08852
0.	-0.02529	0.
0.	0.	-0.00872
0.	0.	-0.00353
0.	0.	0.00203

Chao-Seader Correlation

Hydrosen		Methane	
1.95718	2.43840	5.75748	
1.02972	-2.24550	-3.01761	
-0.054009	-0.34084	-4.98500	
0.0005288	0.00212	2.02299	
0.	-0.00223	0.	
0.008585	0.10486	0.08427	
0.	-0.03691	0.26667	
0.	0.	-0.31138	
0.	0.	-0.02555	
0.	0.	0.02883	

A. 12 Fugacity Coefficient of Pure Vapor (ψ°)

Fugacity coefficient of pure vapor is estimated by Prausnitz' three-parameter general correlation (53). The correlating equations are:

$$
\begin{aligned}
\log \phi_{i}^{0}= & \log \phi_{i}^{(0)} \omega_{i} \log \phi_{i}^{(1)} \\
\log \phi_{i}^{(0)}= & \left(\left(0.57335 / r_{r}-3.0756\right) / T_{r}-5.6086\right) / T_{r} \\
& -3.5021
\end{aligned}
$$

anà

$$
\begin{aligned}
\log \phi_{i}^{(1)}= & \left(\left(\left(\left(\left(() \left(()\left(0.012039 / \mathrm{T}_{r}-0.0151 / 9\right) / T_{r}\right.\right.\right.\right.\right.\right. \\
& \left.\left.-0.068604) / \mathrm{T}_{r}+0.024365\right) / \mathrm{T}_{r}+0.14 .937\right) \\
& \left.\left./ \mathrm{T}_{r}+0.18927\right) / \mathrm{T}_{r}-0.12147\right) / \mathrm{T}_{r} \\
& \left.\left.-0.10656) / \mathrm{T}_{r}-1.1662\right) / \mathrm{T}_{r}+0.12666\right) / \mathrm{T}_{r} \\
& \left.+0.31661) / \mathrm{T}_{r}+4.3539\right) / \mathrm{T}_{r}-3.7694
\end{aligned}
$$

where

$$
\begin{aligned}
T_{r} & =\frac{T}{T_{c}}=\text { reduced temperature } \\
\omega_{i} & =\text { acentric factor }
\end{aligned}
$$

The required critical temperature T_{c} and accentric factor can be obtained from Section A. 2 and A.6, respectively.

Appendix B Calibration

The five calibration curves and one calibration table are included in this appendix. The nethods of calibration and the respective data sources are described in Chapter 5. The calibration curves and table are listed as follows:

> Fig. B. 1 Calibration Curve for Helium Flow Rate
> Fig. B. 2 Calibration Curve for the Flow Betc of 86 Wt \% Aqueous Ethyl Alcohol Solution

> Fig. B. 3 Calibration Curve for Weight Ratios of Volatile Components to 1-Propanol ir the Gas Chromatography

> Fig. B. 4 Interelations anong Volume of Liquid Holdup, Inside Wall Surface Area, Liquid Height on the Reaction-Distillation Tray

> Fig. B. 5 Calibration Curves for Vapor Weight Fraction in Feed Strean as a Function or Fced Rate

> TABLE B. 1 Calibration Table for Iron-Constantion Thermocouples

Fig. B. 1 Calibration Curve For Heliun Flow Rate

Fig. B. 3 Interrelations Among Voivme of Equit Holdup, Inside Well Surface Area. I inuia foignt on the Reaction-riatillation Trey

Fig. B. 5 Calibration Curve for wight Ratios of Volatile Components to 1-Fropand in the Gas Chromatography

TABLE E .1 Calibration rable for Iron-Con-

Appendix C Computer Programs

```
C.1 Program LABDATA: For treating the laboratory data of semibatch distillation accompanied by chemical reactions
C.1.1 Frogram List
C.1.2 Input Data
C.1.3 Results
```

C. 2 Program HODEL: For solving the mathematical model of semibateh distillation accompanied by chemjeal reactions
C.2.1 Program List
C.2.2 Input Data
C.2.3 Results
C. 3 Program CHEiACT: For correlating liquid activity coefficients under the effect of chemical reactions
C.3.1 Program List
C.3.2 Input Data
C.3.3 Results
C. 4 Program RXNRATE: For calculating activation energy and Irequency factor for reaction rate constant
0.4.1 Program List
0.4.2 Input Data
c.4.3 Results
C. 5 Program $\operatorname{BSOLFIT}$: For fitting data into nonlinear equation by the BSOLTE technique
C.5.1 Program List
C. 6 Prcexam POLPFIT: For fitting datia into pojymoaisi equation by the Gauss eliminstion nathod
c.6.1 Program List
LA(2:)ATA
CDC
$77 / 01 / 79$

DAGE
1

MFAL ATGM
Courral CC(0), JJJaYM(10)

Jसt(10.
EE (10. 5)
[i]NFMSTOV $14(5), 3 H(5), C P(5) \cdot A V(9) \cdot Y F(9), X L(10) \cdot X V(10)$.

[fta naveflohalcohol - lohacpylate . Lohwateo,

- Johetrez - IUAPHOPIONATE/

READ(7.)O JSET
KFAD(7, 10) M, MramV

FELO (7, 11) (TC(I):I=1,MV)
HFAD(7.11) (CMEGA(I), $I=1$, HV)

RE $\mathrm{A}[\mathrm{J}(7,16)(\mathrm{AD}(J), S P(J), C P(J), J=1, M V)$
FEAD (7,11) XT
FFAD (7,11) (YF(N) •1:1, PMM)
HC=Eう.0!
55 RFwimi 5
RFAO(8.10) JSTOP,4U
" 0$]=m(1+1$
10 F0NMAT(8Jb)
11 FORMAT(ELE10.0)
Iق FOOMAT (5E16.5)
14 FORMAT(bE14.5)
\therefore F(IE:MAT (5Fio.0)
16 FODMAT (SFIO.0:
$0 \geq$ FOEMAT (EF10.0)

$1 \mathrm{KF} \angle \mathrm{D}(5,10) \mathrm{NL}$. 1 SE

$N=N_{i} 1-$?
FFGD(5. 11) (XL(I) $4=1$ •(N)
PEAU(5. 11) (XV(I), $I=1, N 1)$
AFAD(5:11) (AT(I):I=1,N1)

$\operatorname{KFAD}(3,11)\left(T(I), I=1, A_{1}\right)$
DFTFLMINATION OF RISTAMTANEOHE VAPOF OUAATITIES ANO TIME LAGS

```
JJJ=1
YI(1)=YII
YI(3)=1.-YI(1)
Y 1 (2) =0.
Y I (4)=0.
YI(5)=0.
NO 200 I=3.N1
IT=I-?
```

$x v C(I I)=x V(I)-x L(3)$
Co $x(I I)=x L(I)-x L(3)$
LF（ISFT．（O．B） 60 TO 84
D（j2？$\quad \mathrm{J}=1 \times \mathrm{N}$
$R \subset(I)=0$ 。
DO $2 \boldsymbol{C l}, \mathrm{~J}=1 \mathrm{MV}$
$K=V G(1, J) / D G(J)$
Cyr＝ACVS（J，1）
Dの 20～

RノニロッCVS
$R C(I)=k S(I)+R A$
$R N_{1}(I: J)=2 \Lambda \# N T(I)$
？G CONTIMNE
00 20～$I=1 \mathrm{sN}$
DO $20 \because \quad J=1, M V$
$0 \Leftrightarrow R N(I, J)=2 N(I, J) / R S(I)$
D0 \quad 二10 $1=2, ~ N 1$
$1 I=I-1$
$N T(I)=N T(I)+N T(I I)$
DO 210 J＝1．MV
10RN（I：J）＝RN（I，J！＋RN（II，J）
GOTO B （
\＆\＆U0 \＆\＆ $1=1 \cdot 1: 1$
D） 0 \＆$J=1 \cdot \mathrm{VV}$

ゃら DC 211 I＝1，N
un 21）$k=1: M$

［0211 J＝＂と．M

O○ $\subset 12 \mathrm{~K}=1 \mathrm{Mm}$
OI（K）$=0$ ．
UO 2l2 J＝1，M
$1201(K)=\Gamma!(K)+A(K \cdot J) * T H *(J-1)$
$V 0=-60101(3)+A 4 I D E / D J(6)+H 2 S 04 / 0 I(7)$
Hनrm＝－1？ $0 /:(3)$
$H 2 S \cap 4=H \subset 504 / \mathrm{M}$ 民（7）
A！TVE＝LMIDE／71．П6

Dn $2131=1, N$
$J=1+2$
$Q(T)=F F F!\div X(J)$
$Q(I)=O(I) * F H C A$
Q1（I）$=0(I) * Y I I$
$03(I)=T(I) *(1 .-Y I I)$

$13 v(1)=323.1-v 04$
Un 2le $1=1 . \ln$
un $231 k=1, N$
3）$\quad V Y(k)=\cdots(k+\dot{C} \cdot J)$
YC（J）$=Y F(J) / 10$ 。
CALL．L，STSOH（N•MU，XVC•VY•XF，YS（J）PFERR（N），CTUEV（J））
Un ぶ $1 \nrightarrow K=1$ •N

```
36 Y&:%(k.J)=YPN(K)/M*(J)
    00 2l0 k=1.N
    TNO=Y0F(k.1)
    Dn 250 J=2.i4V
GO TH:=TARZ+YPL(K.J)
    VD=THL*2Q*(T(K)+273.15)/(PT/700.)
    TLAG(*)=VC(K)/人凉250./(2170.+VR)
19 XVC(K)=xVC(K)-TLAG(K)
    U0 2%0 J=1, MV
    OO 234 K=1,N
34 VY(k)=2N(K+C',J)
    L=M
    C.LI LSTSGO(W,M|,XVC,VY,XF,YS(J),FEPR(L),STDEV(L))
    On 2an J=1gmul
20 CH(J, U)=CC(J)
    [n 2el I=1,N!
    [0 2"1 J=1,:SV
    YY(I,j)=CH(N,I)
    [0 2?? JL=2,{11]
?2 YY(I,J)=YY(I,J)+CH(J,JL)*X(I)**(UL-l)
    JF(YY(I|J) &!T. 0.) YY(I,J)=0.
Zl COMTINUE
DETFRMINATION OF INSTANTANEOUS LIQUID QUANTITIES
    00 88 I=1,N
    xP(I,1)=xD(I,I)*0.913
    XP(I,Z)=XD(I, 2)*1:274
    WI(l)=01(1 )-YY(I,D)
    WT(2) =-YY(1,?)
    WI(3)=0.3(I )-YY(I.B)
    WI(4)=-YY(I,4)
    Wi(5) =-YY(I,5)
    DELV(I)=0.
    Un 35 K=1,Nv
350:LV(T)=0ELV(I)+WI(K)/0(I ,K)
    V(J)=V(0+1)ELV (I)
    C1=1.+(1).4602*XD(I,?)+0.6264XP(I,5))/XD(I,1)
    C马=mJ(1)-0.460己*YY(1, 2)-1.C44*YY(1,4)-0.02&*YY(1.5)
    A ( (1,1) = C2/C1
    Xx(I,?)=x口(1,2) कx x(I,1)/XR(I,1)
    XX(I,4)=Xp(I,4) #XX(I, 1)/XP(I,1)
    Xx(I, ¢) =xp(I,5) #xx(I,1)/XP,(I,1)
    XX(1,3)=4I(3)+420)+0.2432*YY(1,4)
g* COnTl`:it
    un 7%゙ 1=1.N
    U(1 7? k=1.wV
    xx(I,K)=xx(I,K)/M:(<)
7己 YY(I,K)=YY(I,K)/M(:(K)
    DO 73 1=1,4
    ACr =XX(I,C) +YY(1,2) +XX(1,5)+YY(I,5)
    XX(I;G)=\triangleNIDE-ACD
    Xx(),7)=42504-4MIDE
    \lambdax(I,M)=ACL
73 C(N1TIHAF
```

U $40 \quad I=1, N$
NT（I）＝0．
U $\because<0 \quad J=1, M M$
$0 \quad v^{\prime} \gamma(I)=\because T(I)+x x(I, J)$
0） $37 \mathrm{~J}=1$ ，
！n $37 \mathrm{~K}=1$ ，wV

DETFOMINATION OF IUSTANTAGFOUS REACTION QATES
U气 $61 J=2.4 V$
$J:=J-1$
IF（J．Eき，3）GO TO 51
IF（J．GT．3）JM＝J－2
$L L=L+J M$

On $64 \quad J=1$ a
4 「以（I ，${ }^{3}$ ）$=$ YPN（I）
1 CRNTTV．JE
U0 $671 \quad[=1, N 1$
［） 0 47］$J=1 . \mathrm{MV}$
i $\operatorname{Ra}(I, J)=? N(I, J) /\{1!(J)$
On $434 \quad 1=1 \cdot \mathrm{~N}$

Fk $2(1)=2 R(I, 2) * V(I) /(X X(I, 1)) * * \hat{C}$

KTINV（I）$=2.18 .53 /(T(I)+273.16)$
$34 \quad Y \subset 4(1)=Y Y(1,1)+Y Y(I, 2)+Y Y(I, 3)+Y Y(I, 4)+Y Y(I, 5)$
IF（TWS．Eา．1）GO TO 69G
W以TTE（らe500）JSET
WNITR（FO，13：）
3］FOS：MRT（／1X，IZNDEFINITIONS－）
wDITE（S．112）
12 FOF：OTG $3 X$ ，\＆QEAL TIVE IS COUNTED FROM THF MONEVT ALCOHOL IS FIRST
 ZTHE MrMENT STUUIES FOR DISTILLATION ACCONPANIEG EY CHEMICAL KEACTI
 $4 E$ PEACTING LIOUI＇MIXTUFE KECOMES BOILTNG＊／／IX．FINITIAL CONUITIONG S FRF THE REAL TIME：／）

 く14いVムコ！R FQACTIOV＝，FO．4）
＊
 1t．3：
甘ん丁TE（6．115）
15 F円に：

＊$J=1 \cdot 3) \cdot I=1 \cdot N)$
 URTTF（H．1033）
33 FnWIAT（／／IX：INSTAMTANEOUS LIOUYD WOLAO OUANTYTIES VS ADJUSTEU IT： 1t：
wEITE $(5,103)$

wivft（h，104）（X（I），（XX（I，K）$K=1, M m), I=1, N)$

 vi二ITE（50．340）

WロITE（5c505）TSET
 WDITF（6．390）
GO FOEMAT（／／LY \＃JMSTANTANEOUS TOTAL MOLAG OUANTITJES VS DEJUSTEU TIME ＋＊ 16 B ：＊REACTICN KATE CONSTANTS＊）
WRITE（6．342）

$+\mathrm{I}=1$ ， N$)$
05 F（10MAT $(F 8 \cdot \hat{c}, 9 F I 2.6)$
W：JTF（f，3？
ご FOWHAT（／， $1 \times$＊ACCINULATED VAFOQ DUANTITIES VS WFAL TIMEN）
＊FITE $(6,340)$
以品TE（6，310）$(X V(1) \cdot(R N(I, K), K=1, M V), I=1, N 1)$
צ6 L $1=L L+1$
$L \dot{H}=L L+?$
J．JJ $=2$
CALL LSTSOF（N•W1，X，T•XF•YF（1），PFFR（LI）©STDFV（LI））
U0 $40 \quad \mathrm{I}=1.1$
$x \operatorname{clm}(J)=0$ ．
U $\cap 40 \quad J=1$ ，NM

$T r_{1} 1 \mathrm{~L}=T \mathrm{I}$
－ $10 \cap 43 \quad I=1,0 \mathrm{n}$
णr $43 \mathrm{~J}=1 \mathrm{mV}$

Lr $24 k=3.6111$

43 （nat IN：jt
UETFDMINATIGN OF INSTANTAMEOUS VADOR－LIVUIO EOUJLIRRIA

1） $41 \quad I=10$
0） $41 \quad J=1 \mathrm{gmA}$
＋1 $x \times(T, J)=x \times(I, J) / X S U 4(I)$
U（1） $44 \quad I=1.11$
$S Y \operatorname{SR}(J)=0$ 。
LOM $44 \quad J=1, " \mathrm{~V}$

44 §YpP（I）＝SYDト（I）＋Y甘三（I，J）
$\left.P T=07 / 7()^{0}\right)$ 。
00 $45 \quad T=1 \cdot \mathrm{M}$
リn $4.5 \mathrm{~J}=1 \cdot \therefore V$
$Y Y(I, J)=Y ん F(I, J) / S Y P R(I)$
$P G=10 . *:(H \omega(J)-H P(J) /(C P(J)+T(I))) / 760$ 。
IF（Jofn．4）GO TO 5 6
IF（XX（I，J）－0．00001）58．58．59
$5 \leqslant E K(I, J)=100$ ．
GFMMA（I，J）$=100$.
GOTO 45
50 F．K $\{I, J)=Y Y(I, J) / X X(I, J\}$
$T \rho=(T(I)+\dot{c} 73.16):(1 C(J)+\ddot{i} 73.16)$
PHISO $=((0.67335 / T R=3.0766) / T P+5.6086) / T+2=3.5021$

20．12（ $6(6) / T i+0.31061) / T R+4.3539) / T R-3.7694$

45 CONTT4据
Wい！TE（6．350）
50 F ПニMAT（／／Lスq＊INSTA：JTANEOUS LIOUID MOLE FRACTION VS AUJUSTEO TIAE\＃） VRITE（6．103）

W上TTE（t．360）
GO FONMAT（／／IXQ I VSTANTANEOUS VAPOF MOLE FRACTIONS AND TOTAL VAPOR FL 20w PATF VS AOJUSTED TIME＊）
WFJTF（4．34．3）

んLITF（f．，SOS）ISET
HनTTE（F．3ッし）
※O F HL：＂AT（I／IX：＂INSTANTGNEOUS EQUILIEPIUM COUSTANTS VS ALIJUSTEU TIWE： 1）

WOTTF（6． 340 ）

：んTTE（t：370）
70 foraat（／lx，＂IVSFAMTANEOUS LIOUID ACTJVITY COFFFICIENT VS AUJUSTE： 1 TYME：

WコTTF（t．3．340）

W以ITE（f．0404）MJ

0s FnEvAT（／／1x．＂VAPOR FLOW NATES\＆）
W以ITF（6．407）


```
    *1x, 己́(10x,*TIME LAG CORFECTION *))
    #@)!E(&,40゙S)
```



```
    HOITF.(0,440)
```



```
    00 414 I= 1.MV
    IX=I+5
\YWTYF(G.4J1) NASE(I)QFEFF(I),STUEV(I):PEQD(IX),STDEV(IX)
```



```
    NRITE(6.4\C)
```



```
    K口ITE(K&A)G)(PERG(I)&I=11,13)
14 F(IRNAT(/玉Y.1%W&BS PCT EPR . 3E゙15.5)
    WRITE(tat!6; (STOTVII),I=1)•13)
```



```
    IF(ISET-1SFT) 15%>゙タ0.999
94 IF(J5T0;-2) 555:%590.9%99
GG STOP
    EMO
```

```
    SH:ROUTIME LSTSOR(N.K.XAGYAGXF,YF,PFPR,STDEV)
    UIMENEIOV XA(1),YA(1),YCAL(10),XSUM(10),A(5,5)
    COmmanCA(G),JJJOYPN(10)
    DO 10 J=1,N
    XA(I)=XA(I)*XF
10 YA(I)=YA(I)*YF
    CA(1)=0.
    On l2 :=1,N
1?CA(1):=CD(1)+YA(J)
    x<1品(1)=v
    k1=k+1
    DO 14 I=?,K!
    (A(J)=0.
    On 14 J=1,N
14C^(I)=CA(I)+YA(J)*(XA(J))**(I-I)
    KK=?*く*1
    vo lf I=2,kK
    Xs(1): (J)=0.
    UO 16 J=1.N!
35xS!m(I)=xS!M(I)+KA(J) =%(I-I)
    LO 18 I=1,K!
    00 1& J=1.K1
    L=I+J-1
1& A(I,J)=x.SUM(L)
    0n 20 I=14K1
    DO 2.4 J=1.5.1
    DET=A(J I)
    CA(J)=CA(J)/A(J:I)
    DO 24 L=1,K1
2& A(J,L)=A(J,L)/DET
    OO20 J=1*K1
    IF(J.FO.I) GO TO 20
    CA(J)=CA(J)-CA(I)
    Un 26 L=l:Kl
BA(v,L)=A(J,L)-A(I,L)
20 cOnTIN|E
    0) 2R I=1:<1
ZQ CA(I)=C4(I)/A(I,I)
    CA(1) =CA(1)/YF
    Un 30 I=2,K1
30 CA(1)=CA(I)/YF*XF**(I-1)
    0n 32 I=1,N
    X&(I)=XA(I)/XF
    YS(I)=YA(I)/YF
    YCLL(I)=CA(1)
    DO 32 J=2.kl
3? YCCL(I)=Y(ALL(I)+CA(J)*XA(I)**(J-1)
    D(, 34 1=1,A.
    YDN(I)=CA(\ddot{c})
    IF(Kl.LT.3) GO TO 34
    00 3A J=3,rl
36. YD*(I) =YD:!(I) +FI.OAT(J-1)*CA(J)*XA(I)**(J-2)
    G\cap T\cap (3N,34) .JJJ
SH IF(YPO(I).LT, O.) YPN(I)=0.
34 CONjTIN:JF
```

PEPR＝0．
STOEV：0．
$N \mathrm{~N}=\mathrm{N}$
10 $42 \quad T=144$
UFI Y＝YCAL（I）－YE（I）
IF（AMS（YA（Y））ジYF－．001）44．46．46
44 NM＝NM－1
G0 1042

STHLV $=$ STOEV WELLY：OELY
2 CrnT I MUE
STMEV＝SORT（STOSV／FLOAT（NM－1））
Pと听＝OERR／FLOAT（INT）\＆ 100 。
RETURN
EMIT

1． 2 Inrot Data for Prorram LABDARA

5							
	－		－0．0．1t．3nct	－0 0			
	$\because 1+00-$	－0．40365E－0．3	－0．10．36，	－0			
	（\％\％）＋6］－	－r．－5c00！－0．3	－0．3 cal	－05			
	71 $6+00$	－5．以世333F－03	－0．32730	－05			
	$108+00-$	－ $10.874465-103$	－0．14＊s？	－0t			
－ 14	$365+01=$	－6．957n¢F－03	0.31945	－ 07			
， 1 it	$115+01$－	－－．yconne－6，					
	－15＋01－	－1）．27， $0=-6 \%$					
0.07	100.11	116.016	74.083	147.7	169.14	48.04	115.05
	Fsic．	374.1	193．	346.8			
	1．324	0.344	0.203	0.557			
－4130t：5＋00							
－ $37465+01$							
． 10	$4{ }^{4} 2 r+01-$	－0．756175－01	0.15432	－01			
－ 89	$30 r+00$	U．109105－01					
－！nuboral 01							
c^{4}	1－23．	2゙ら6．933					
73	1233．1	212.19					
6：1	1ftix．？	2\％\％．0					
ce7	1051．3	2С7．43					
46	1753．？	211.67					
	1.0	10.0	100.	100.	1.0	1.0	1.0

1		，				378
	71.4	$76 \mathrm{C} \cdot 0$	115．0	1］．0	0.86	（\％． 3.8
$; 1 \cdot 2$	31.0	43.37	5\％．93	74.97	S 3.0	103.3%
159．3h						
P1：ct 7	31.54	$44 \cdot 17$	5s．33	75.43	138．50	104.33
1．33．3．3						
1\％．71\％	16．3233	18．6M03	14.947	24.5075	1 14．027	22．0547
16．1350						
Q1．	ごで	1.	0.	9% 98。		
1～U0．	162.	40.	14.	4830.		
154\％．	230.	52.	72.	$4 \% 8$.		
	260．	42．	142．	420．		
F＇sので。	420	100	204.	896.		
10330	234.	92.	234．	736 。		
rut．。	542	112.	310	1432.		
ジわ。	3．4．	84.	212.	816．		
rrs．	544.	92.	178.	－ 928.		
200.	651）．	86.	163.	1215．		
31．		．	0.			
14.			4.			
1% 。			5.			
13.			7.			
6.			5.			
4.5			4.			
4.			4.			
3.			4.			
123.16	1¢0． 23	118.47	116.49	115.65	114.93	116．9
$خ$						
1ぞって	70．53	765.	115.	12．51	0.86	0.825
20.17	30.53	42.	52.	64.92	7x．53	90.25
135.1						
29.75	31.47	42.67	52．89	65.58	74.5	40.83
115．m						
13.37310	15.5348	17.5507	12．7865	1s．3710	21.1443	10．74＊）
1：4．	534.	10.	0.	4672		
$44^{\circ} \mathrm{s}$ 。	60.	0 。	\cdots	1へ0。		
474 。	5\％．	16.	10.	1ヵ9．		
－¢ 4	3ri．	14.	ご。	175．		
\＆3）．	ヶヶ．	1＇。	t4．	フとす。		
1.7% 。	1ぞ。	32．	60．	こちこ。		
$\because 44$ 。	256．	3% 。	44．	られボ。		
21ヶ．	100．	1ヶ。	70.	444 ．		
ジ4．	236	14.	$\triangle R$ 。	400 ．		
－－．	rims．	n ．	\rightarrow ¢	\therefore－ 510		
2r．			3.			
アッ。			5.			－
？ 1 。			4.			
\therefore 。			3.			
\cdots •		．	5.			
や。	．		t．			
1：			$4 . \quad$.			
\cdots			3.			
1－0．0n	114．2n	114.07	111．24	11！	10ヶ．6	11＂．＂

3						379
1：3．1	73.102	765.	111.5	13.3	.86	－ロád
13.07	31.41	40.67	51.62	75.	85.62	49.114
124.614		－				
14.9	33.17	41.33	52．03	70.67	n6．12	40． 7
1\％5．019						
1．405．4	12.2559	11．0ncら	13．43\％	24.2402	$20.743 y$	14．27 2
cilel344						
了54．	0.	3.	． 0	403.		
1 h.	2.	2.	0 。	20 。		
נ1\％	11.	4.	2.	5\％．		
125．	ご．	7.	1\％．	$7{ }^{\text {P }}$		
7 f ．	20.	4.	4.	57.		
P00．	3% ．	16.	18．	60.		
144.	48.	5.	20.	9% ．		
44^{4}	34.	4.	12.	40.		
76.	bo．	8.	28.	116.		
11？	114.	12.	55.	19？．		
c．${ }^{1}$			． 0			
44.		．	6.			
3 F ．			8.			
\％			8.			
2？．			16.			
32.			14.			
そこ。			14.			
10.			6.			
116.46	115．8	114.45	112.9	10\％．	107．9	107.
$4{ }_{4}$						
122．3	69.89	760.2	111.5	1？．1	－84．	－mizt
15.17	25.08	36.	59.	73.33	85.17	$98=67$
16．	25.83	36.83	60.42	－74．4？	87.	100．
1.5267	12.0440	15.7124	31.5077	15.4365	19．052？	14．5an
32.	30.	40.	0 ．	100.		
75.	25.	3.	.0	104.		
37く．	25．	4.	6.	15？．		
1 $\because 2$.	30.	1% 。	10.	76.		
1500．	144.	90．	13\％．	70．		
1．4．	44.	16.	¢「．	110.		
12．	4 co.	19.	12.5	102.		
$\because \mathrm{c}$	57.	？2．	20.	140 。		
号䊽。	230.	40.	54.	51 ？		
＇！ว．						
－1．			3．			
\because			3．6	．		
7.4			5．5			
\cdots			4.			
＂．			4.			
＂．			\therefore ．			
$11 \% .41$	115．1？	113.4	112.51	$111 . \mathrm{n}$	111．be	

5						380
133．	72.7	704.5	111.6	$1 \% \cdot 1$	－ 150	－aric
）	31.75	45.67	01．3\％	74.75	90.68	102.16
14.75	32．25	$46.3 .3^{*}$	62.08	75．5	91.	112．37
1．7ヶア1	11.6142	16.2330	17．8657	16.5195	16．1718	15．2764
7ッ。	200.	2.		145.		
100。	12.	4.	． 0	44.		
こと人。	33.	6.	． 0	174．		
的为．	bu．	20.	4.	208.		
いty．	\％n．	2.6 －	30.	230.		
3ン0。	70.	18.	40.	188．		
>4.	54.	20.	40.	1M4．		
1frr．	68.	14.	30.	12\％。		
？ 4×0	188.	30.	80.	264．		
F1．			4.			
47.			12.			
4% 。			1\％．			
35.		－	27.			
37.			24.			
2f．			16.			
Pr．			14.			
116.8	115.47	114．16	113.117	112.71	111.63	
$170 . ? 5$	72.22	762.	110.	12.87	－${ }^{\text {de }}$	． 180
20.5	37.17	49.17	63.67	80.	94．17	1．1．
2） 67	37.75	50.35	64.67	87.5%	9 Ca	111．5．0
4.5771	18.1065	12.2595	15．600\％	23.4542	$13.007 ?$	13．2？
1ヵッ．	920.	2.	． 0	7350.		
124．	． 0	2.	0 ．	170.		
31 ？	32.	4.	5.	96.		
164．	40.	16.	14.	156.		
1024.	123．	10.	22.	44% ．		
235．	38.	14.	14.	132．		
J 24.	40.	10.	1% ．	$1{ }^{14} 4$		
シャ．	11\％．	14.	14.	370 。		
$4{ }^{\text {a }}$	2r．	6.	14.	1\％8．		
\％			c。			
4 \％			4.			
2．			$\stackrel{\square}{6}$			
为。			14.			
1% 。			$\stackrel{1}{5}$			
\cdots 。			勺．			
${ }^{\text {c．}}$ ．			4.			
110．91	115.	$11 i^{\prime} \cdot 7$	111．0	104.	$10 \% .3$	

」ぞい。7	71.7	760.	110.	13.0	． 86	$\cdots \cdots$
10.43	30.5	44.22.	59．5？	73.55	43.53	10：・カ3
20.17	31.1	44.83	60.17	74.03	41.7 ？	104．\％\％
F．2ri34	13.421	18．4403	20.4971	13．543	23.6981	23.3743
4% ．	16．	2.	－ 0	130.		
11：られ．	176.	48.	8.	6ne．		
1404.	\％66．	40.	36.	75？		
－144．	344.	72.	55.	704.		
10．10．	13k．	64.	121.	704.		
1んヶ8．	404.	¢4．	130.	1104.		
1700．	Sus．	80.	94.	475.		
400.	cose．	44.	37.	443.		
4 K 4.	600.	56.	124.	1072.		
40.			3.5			
30.			6.0			
55.		．	9.0			
？ 0			3.5			
24.			5.5			
2% 。			6.			．
1% 。			4.5			
114.9 ？	116.32	114.07	111.74	110.71	110.02	
125．k	71.03	752.3	10t．	11.4	0.86	（1．825
20.	30.	41.	50.	60.1	71.	104.
20．34	30.35	41.35	50.35	60.45	71.35	104.30
7.733.	12.5770	24.9192	36．4829	47.6515	01．4．5bh	77．5u95
－113	－ 0	－ 004	－ 0	1.		
2．34	． 0	.096	． 0	1.		
7.33	.44	． 271	.032	1.		
21.63	1.03	． 697	$0.324 n$	1.		
21.246	C．04	． 945	． 72	1.		
33.32	3.56	1．25：3	1．1？	1.		
un． 2 a	4.8	1.43	1．ba	1.		
	7.77	2．4he	2．0．	1.		
4tatir	10.29	2.75%	3.41	1.9		
5%			2.			
47.			5.			
4．，			4.			
－1．			11%			
ci．			1%			
$\therefore 1$.			4.6			
ri．			へ0，			
114．0．4	$113 .+3$	111.47	110．\％	119．3＊	1137.34	

4						382
1－8．4	71.5	76\％．0	106	12.1	． 36	－＇se＇，
r： 1.45	33.47	46.12	62.75	75.83	84.30	195ッ3．3
20．6：2	34.08	46.96	$63 \cdot 33$	76.03	90.	105．7
1．4747	14.1775	16.1743	13.1 どく4	$1 \ddot{r} \cdot \operatorname{sos} 72$	15.3696	14.1200
3×0.	400.	2.	－ 0	1280		
$1+0$ ．	ら\％．	5.	－ 0	272．		
与AM．	60.	12.	4.	¢04．		
	20.	6.	16.	128.		
1：344．	10\％	44.	31.	52\％．		
4： 0	40．	16.	67.	3×4.		
） 120.	231	440	70.	9 28.		
勺a4．	15！．	26.	100.	496.		
3ハこ。	120.	13.	84.	384.		
＋？			2.			
46.			6.			
1，4．			8.			
4．		－	10.			
4 （1．			12.			
Pa．			7 ．			
〕マ．			6.			
115.47	105.	102.5	100.38	98.	97.	

C.1.3 Results from Program LABDATA

Each run contains three pages of computer outputs to represent the treated experimental data. The major work of this program is to convert measured temperature, feed rate, total vapor condensate and analytical results from Gas Chromatography into vapor and liquid molal quantities, reaction rate and all associated quantities. The items shown on the computer printouts are explained as follows.

```
Page 1 -
```

1. INITMA CONDITIONS FOR MHE REAL TIME TELIP $=$ inital and surrourding temperature, 0_{0} VOL = clear liquid volume, milliliters TOT IIQ = initial total liquid molal quantity AMIDE = initial molal quantity of acrylamide $\mathrm{H}_{2} \mathrm{SO}_{4}=$ initial molal quaritity of sulfucic acid $\mathrm{H}_{2} \mathrm{O}=$ initial molar quantity of water
2. FEEj CONDITIONS RATE $=$ feed rate of aqueous ethyl alcohol solution ALCOHOL $=$ weight fraction of ethyl alcohol WATER $=$ weight fraction of water

VAPOR FRACTION $=$ vapor to feed ratio by weight
3. MIXTURE QUANTITIES AND REACTION RATES VS ADJUSTED TIME
rLME $=$ adjusted time as defined in the computer printouts

TMME LAG = time lag for vapor condensate from its leaving laquid surface to vapor sample bottle $=$ vapor travelling time, minutes

TETP = instantaneous liquid temperature
LIQ VOL $=$ instantaneous clear liquid volume, $m 1$
VAP MOL = accumulated total vapor condensate, g-moles
ACR RATE $=$ reaction rate of esterification,g-moles /min.-mi

ROR RATE = reaction rate of: dehydration, g-imacs $/ m i n .-m 2$
4. InStanfaneous liquid holal quantmites vs adjuspen TIME

All the terms are well defined
5. ACCUMLATED VAPOR MOLAL QUANTITIES VS ADJUSTED TIME All the terms are well defined

Page 2 -

1. Instanyaneous toral holal quantities vs adjusted time ... REACtion rate constants

$$
1000 / 2.3 \mathrm{RT}=\frac{1000}{(2.3)(1.987)\left(\text { temperature in }{ }^{\circ} \mathrm{K}\right)}
$$

$$
\begin{aligned}
\text { ACR RCONST }= & \text { rate constant of esterification, } \\
& \mathrm{ml} / \mathrm{g}-\mathrm{mole}-\mathrm{min} . \\
\text { ROR RCONST }= & \text { rate constant of dehydration, } \\
& \mathrm{ml} / \mathrm{g}-\mathrm{mole}-\mathrm{min} .
\end{aligned}
$$

PRO RCONST =: rate constant of successive reaction, $(\mathrm{ml} / \mathrm{g}-\mathrm{mole})^{2} / \mathrm{min}$.
2. ACCUMULATED VAPOR QUANTITIES VS REAL TIME

All the quantities are in g-moles.
3. InStantaikous liqutd hole fraction vs ajugeriz time All the terms are well defined
4. INSTANTANEOUS VAPOR MOLE FRACTIONS AND TOTAT. VAPOR FLON RATE VS ADUUSTED ITHE V RATE $=$ total vapor flow rate, g-moles/min.

Page 3 -

1. InStantaneous equilibrium constants vs adjusted tme All the terms are well defined.
2. INSTANTANEOUS LIQUID ACTIVITY COEFFICIENT VS ADJUST TINE

All the terms are well defined.
3. SUMMARY OF ERRORS FOR CURVES FITS-3 DEGREE POLYNOMIALS In order to calculate vapor flow rate and reaction rate, all the instantaneous molal quantities are fitted with respect to time into third order
polynomial equations. The errors for each set of data fit are represented by absolute average percentage ercor and standard deviation.
OFFI TINF IG COUNTFD FOOM THE NOMENT ALCOHOL IS FIDST WIXFD WITH ACOYIANTOE SULFATE

AOUIGTED TIVF IS COUNYED FOחM THE MONENT STUNIES FOR OIGTILLATIUN ACCOMPAVIED RY CHEAICAL PEACTIOVS QEGIV AIJUSTED TIMF MIJT HEGIN RIGHT OR SLIGHTLY AFTEQ THE FEACTING LIOIIO NIXTIRE EECOMES POILIVA

IVITIAL COMOITTOMS FOR THF REAL TIME

 feen comititinus

M1YTURE GUANTITTFS AND REACTION RATES VS ADJUSTED TTVE

ACCUMILATEN VAOOD MOLAR DIIANTITJES VS ADJUCTED TIMF

TJMF	Airahil	ACPYLATE	WATER	FTHES	FPOPIONATE
0.60	． 0 6Fi49a	． 22.29715	． 129481	．005636	． 002590
12.57	． 163300	． 345500	． 176524	－0105？？	．007：74
24．95	． 307560	－ $260: 30$	． 250353	－ 015740	． 01344%
43.97	－5アフ67？	． 570165	？ 3 ¢131	．0？1413	－ 0214% ？
57.00	． 721049	． 535540	． 45 GO 94	－ $0 ? 5446$	－ 0275% ？
$7 \overline{\text { 7．}}$ 5	－ 996576	． 696160	－ 50.6745	． 039877	． 034768
－r．0？	1．312596	． 73 GOGR	． 731770	－ 033421	－0こロワフか
101.35	1.618057	.755680	－ 466724		－04154？

INSTA：JTANEOUC TOTAL UOLAR OUANTITIES VS ADJHSTED TINE

TIME	ALCOHOL	ACPYLATE	WATFD	FTHED	PROPIONATE
C．0n	． 40 ¢R85	． 322346	． 92 6Fl 15	． 005436	．00？58．
$1 \% .57$	． 557065	． 435559	1.057367	． 01052 ？	．017173
26.45	－7न！2ヶ9	．532879	1.206576	.015740	－0？4128
43.97	1．05510？	． 521622	1.392173	－071413	－03427？
57.00	1． 307504	．671792	1.517179	． 1125446	．043754
72.52	1． 6045753	． 726560	1.677009	－ 029870	． 045497
－9．0．7	1.933747	． 758891	1．836764	．0．3．39？1	． 051194
101．35	2.239905	． 76.9957	1．972049	． 037128	－ 250990
ACCU！ハ4！	vapno o！	ITIES VG	L TIME		
Tine	$A L C O H C L$	ACQYLATE	WATFP	ETHES．	PROPIOMATE
10.42	－0ヶ0371	－ 000785	－ 0 On4 24	－OCOOOS	0.000000
20.67	－ 029905	－103254	． 055763	．002512	－ 000511
\＄1．54	． 022545	．222863	.125736	.006113	－003228
44.17	．151397	． 359875	． 178442	－ 110284	－006334
54.33	．275130	． 475447	－ 255572	． 014924	－012135
75.43	.544512	． 563017	． 346459	－ 02.2002	．022213
MH．0\％	． 747134	－603901	． 456903	．1127099	－03012？
104.33	．949359	.727777	.600597	． 024550	． 03 ？ 56
114.57	1．316864	． 740595	.741867	． 0.33052	． 13 3412
153.33	1．644758	.7494 h2	． 863578	． 037585	． 042260

PEnCTITI PATE CONSTAVTS －
instantanemis liditn mole fataction vs afuisted time

TIMF	ALCOHOL	ACPYLATE	WATEP	ETHEP	PROOIONATE	COADLEX
0.00	.136085	． 036024	． 318151	0.000000	0.000000	－273タ09
12.57	．144544	． 0.33572	． 332383	0.000000	． 003773	.211970
26．95	． 167845	． 025832	． 342931	－． 0.000000	． 003830	－143053
43.42	．186580	.017700	－ 35155 ？	0.700000	． 005088	－121740
57.10	． 107082	． 011845	－ 356138	0.000000	． 005278	－ 000883
72．52	－ 2 ？2127	.010070	－ 360167	0.000000	． 004779	－ 074434
¢ ¢ ¢ C 2	.204510	.007505	－363696	0.000000	． 00.0006	－ 0164424
111.55	． 204587	.004379	． 365464	0.000000	．003117	－053239
－－－－						
INSTANTANEOIIS	\checkmark VADOP	MOLE FRACTIONS	ANO TOTAL	VAPOP FLOW	Pate vg anjusted	TTME
TINE	ALCOHOL	ACPYLATE	WATED	FTHER	OROPIONATE	VGATE
0.60	－ 327525.	． 443575	.153780	.019501	． 015634	． $0 \cdot 0.576$
－2．57	． 3 ¢9459	． 380955	．106730	.014566.	－ 017759	－07\％ 24
\％6．65	．44F2¢5	－ 28885 ？	． 230533	． 013938	．014391	－ 0 － 51774
43.69	－ 509450	． 204.355	－ 257043	.011535	．017217	－02709\％
57.00	． 55.410	． 152044	． 250823	.010054	－015e3n	－ 0 － 1808
Tえ． 5 ，	－f0n39？	． 100746	． 274337	． $0 n 9607$	． 011974	－0．3700
r r ．n2	．645467	． 054497	.281021	－ 707420	－007504	－037636
141035	． 6×3009	.027708	.279453	． 006562	－003254	． $03577 ?$

:ASTANTAMEOIG FOIILLTARTUM CONGTANTS VG ADJUSTED TIME

_ INSTGNTAEFCIS LIOUIN ACTIVITY COEFFICIENT VS ADJISTFD TIME

TINE	AL. COHCl.	ACDYLGTE	$\checkmark \triangle T F F$	ETMER	PRODIOMATE
0.00		7.74!1347	. 320219		100.000000
12.57		7.07\% ? 0\%	- 387440		22.527442
ご.95	.707050	7.3699 .38	-352011		24.457217
43.4?	- 74095n	\&.7fonot	.411793	- .. -	19.143A15
$57.0 n$. 434713	9.243515	.444980		17.244738
72.h2	.91730 n	7.495861	. 475687		15.559167
Hh.07	. 994417	5.044733	-4*6695		12.248375
101.35	1.055140	4.839434	. 491451		6.817560

SHMMADY OF FPRODS FOP CUQVE FITC-- 3 DEGREE POLYNONTALS

OF，YTNF IS COUNTED EQOM THE MOMENT．ALCOHDL IS FIRST NIXEO WITH ACEVLANIDE SUHFATE
ARUUSTED TIMF IS COUNTEN FDOM TME MOMFNT STUNIES FOR DIGTILLATIOA ACCOWPANED BY CMEMICAL DEACTIDNS BEGIN ADJISTED TIMF ：AIST REGIN RIGHT OD GLIGHTLY AFTEQ THE PEACTIVG LIOUTU MIXTIRE RFCOMES BOILIVG

INITIIL CONRITIONS FOD THE REAL TIME

 FEED CRNDITICNS

－MIXTIDF DUANTITYFS AND RFACTINN FATES VE ADJISTFD TIME

Timf	TIMF LAG	TFMD	LTO VOL	LI＇Moll	VAD MOL	ACO DATE	DOD QATE	PRO DATE
0.80	－ 34473	123.57	163.16	2．60542	． 43414	． 2117038	－ 0605453	－ 0004455
11.47	－3n784	127．n5	165.64	P．42715	． 67444	． 00044700	－ 0905400	.0004777
72.47	.27710	118．36	167.14	3.07478	． 711%	－ 000 こラ471	－ 0 00゙けちゃ	． 0004547
34.75	.25193	114.07	168．？ 4	3.16339	1.25805	． 0044575	． 7002413	． 0004248
4\％．30	． 23355	111.28	164．51	3． 2×183	1．68037	－0027051	．0001．475	－000．37－7
ミ5．7？	． 2204 r	i10．20	168．18	3.31017	2．06041	－001652l	．0001470	－000332\％
$71 .-7$	－ 21075	179．60	167.38	3．33．317	2．48i46：	－00ncrso	－0001046	－0つの？ヶ0？
64.57	.20176	108．80	164．04	3． 3 ？ 466	2．98193	－0005420	． 0000705	．0002133
－－－	－		．－．－－－					
INSTARTA	a 18010	NOLAD ruan	ITIFS VS AD，	FD TImE				
TTMF	ALCOHNL	$\triangle C P Y I . \triangle T E ~$	WATFD	FTHER	DROPIONATE	CRMDLEX	M？¢0\％	NH4HSO4
0.50	．414144	．079233	.407616	0.000000	－003525	． 691470	－284441	． 325243
11.47	－ 5.34163	． 075599	． 070780	0.000000	.004907	－571331	． 2×9941	． 4254.32
21.47	． A 75.7 mm	－ 967728	1.039740	0． 0 000n\％	．004 027	－4すら゙ィつ3	－ 2 ¢9741	－500ごロ0
34.79	－ 700527	．nऽ2¢87	1．109335	0.0000000	． 003474	．414473	－249941	－577アら1
$45 .: 0$	． $745^{6} 40$	． $0537+6$	1．1ヶgヶ¢t	0.090900	．000523	－3：2001		．633763
55.77	．794174	． 05044 A	1．201497	0.000000	． 007345	． 370050	－	． 567714
71.57	.743607	.931523	1.714729	0.000000	． 00550.50	－こ？17ヶ2	． $2499+1$	．475001
－4．-7	－ 0 ？：59\％	.027035	1.273 .739	0.000090	－00542：	． 301971	．24ヶ741	． 594792

＿ACCIMIIIATFO VADOR MOLAE OIANTITIFS US ADJUSTED．TIMF

ACCIMHLITE VADOR DUANTITIEG VG DFAL TIME

TIME	ALCOHOL	$\triangle C P Y L A T E ~$	WATEQ	ETHER	PROPIONATE
4.42	．00n300	． 000390	．004018	－000020	0.000007
2.75	0023310	.110290	．067226	．001422	－000262
31.47	－ 07400	． 22.5371	.134530	.005560	.001711
42.67	．144595	． 34702 l	． 197520	． 010.79	．0065？
5？．80	． 230191	． 414759	－256592	． 012650	． 011950
65．54	－320199	．502901	． 325628	． 014696	．0161ar
79．5．0	． 60540.3	． 547552	． 424779	．010182	－020240
00.43	．9 PG口tr	．594760	． 514514	． 021189	．02457？
102．72	1．175953	． 516747	． $55+354$	－ 023092	－0ヶ409？
115．ッก	1．515462	． 627485	． 709442	． 023815	． 037470

INSTANTANEOIG LIDUIO MOLE FQACTION VS AOUUSTED TIME

TIUE	ALCOHOL	ACPYLATE	WATER	ETHE？	PROPIONATE	COMOLEX	H2S04	VH4HSO4
ก．0n	．155131	－ 079396	． 335779	0.000000	． 00130 H	． 254535	.107558	． 113263
11.47	．19574	．0255．31	． 330359	0.000000	.001700	.197887	.100425	.147354
C1．47	－ 206898	．022391	.34 .3741	0.000000	.001594	．164112	．095455	． 1654 ？ 0
34.30	． 3 ？ 1447	． 119480	－350680	0.000000	． 001224	．132602	．091555	．1H2441
44.30	，274ヶ28	． 016493	． 358356	0.000000	．002000	.111297	－Пल4ヵ¢	． 194297
54.72	.230457	.015240	．．．342471	． 0.000000	． 002217	－ 1.20408	．087541	－ 201715
71．5．7	．P74n9？	． 009457	． 344737	0.000000	．001583	．ri46533	－0nçat	－20ア510
84．57	.241137	.008150	． 362064	0.700000	.001631	．000428	．047？09	． 20 8951

INSTAMTANEOHE VAOND MOLE FRACTIONS AND TOTAL VAOOG FLOH RATE VS AIJISTEO TIME

Y＇ME	ALCTHOL	ACOYLATE	WATER	FTHFD	DRCPIMEAYE	VDATE
C．0n	.073627	－602．457	．27A336	．020954	－02＋asza	－ 018055
．11．47	－ $226^{\circ} 16$	－349下53	． 23 P195	.015271	－ 11×95	－02？ 203
21．4？		－270944	－225057	． 011761	－61rar！	． 025136
34.34	－575．4ヶの	.176912	－ 226076	． 0101844	－ 010708	－¢ッいらの7
44．30	－F34784	.10593 ？	． 24.2444	－ 005 Cata	0010630	－ 091075
S4．7？	． 650296	.059472	． 265048	． 004254	－ 0 何ご	． 0.36440
71．57	． 644.47	． 047011	－ 207779	－002934	－00， 0 ¢	－039309
9.40 .7	．A14364	． 0.36529	． 335451	．001726	． 000 s．i7	－ 0 ORSE

TIVE	alcrunt．	ACPYLATF．	KATFR	FTMEP	PROOIDNATE
0.00	． 474614	20．40496n	． 930474		20.360884
11.47	1.750596	15．943729	． 701890		11.747123
21．47	2．253649	12.542729	． 654759		10.000117
34.30	2.600190	¢．499177	． 6465370		10．377558
45.30	2.775754	6．4265．3？	． 478053		5.219424
59.72	2．910429	4.558454	． 733083		4.15070 ？
71.57	2．7n9449	4.970445	． 915051		5.177469
¢4．57	P．54778？	4.48220%	341		． 1308

：NETAOTANFOIS LIDIID ACTIVTTY COEFEICIENTT VS ADJUSTED TIME

TJME	Alcomot	ACRYLATE	WATFR	ETHED	DROPITNATE
0.00	．1120？	12．70046？	． 30 F553		9K． 24 ？${ }^{\text {a }}$ ？ 7
11.47	． 477 Fifa	10.010904	.370978		61．70ら5i7
21.47	－fヶの301	Q． 337005	． 377649		57．874．3－12
34．39	． 447615	9．964017	．410021		$59.50 \leqslant 302$
49.30	．974n79	5.404900	．487425		34．0．7R2\％
59.72	1．0209？？	3.9437 .35	． 540394		32．690141
71.57	．9068ar	4． 36908 c	．F1PR？7		40.950719
¢4．57	．961095	$4.07 .395{ }^{\circ}$	． 722707		$42.300 \geq 70$

SUYNADY OF FPDOQS FOR CIIPVE FITS－－ 3 DEGPEE POLYNOMIALS

PEAL TYF IS COUNYEDFQOM THE MOMENT ALCOHOL IS FIRST MIXFD WITH ACOYLAMIOF SULFATE
ADUUSTED TINE MIST BEGIN PIGHT OR SLIGHTLY AFTEY THE REACTING LICIID NIYTURE GECOMES ROILIVG

IVIT：AL COMOITIONS FOR THE PEAL TIME

FEEO CONOITTONG

MIXTIJRE QUAVTITIES AND QEACTION DATES VG ADJUSTED TIME

＿ACCUMULATED VAODO MOLAQ QUANTITIFS VG ADUUSEFD TIAE

T T P E	ALCTHOL	ACOYLATE	WATFE	ETHE：	QRODINNATE
0.00	． 04.062	． 095009	.044	00356	．－．001059
5.00	． 029402	.174 .360	.101507	－Onflos	． 003463
20.15	.164360	.254968	．171824	． 012939	． 00.5554
43.53	492731	． 405176	． 336699	． 071461	． 0144.3%
b4．15	－551925	．455713	．414895	－0P4701	．018751
47.61	．7ん2125	． 509768	． 534379	． 027389	． 02507.5
74．56	． 95 an55	． 542110	．636901	－ 331161	． 931053
9こ．ち1	1．274559	． 57081 R	.778703	． 034464	． 05077 ？

- ACCUMULATEO VGONQ DHANTITIES VS REAL TIME

IVSTAMTANENIS LTO:IID MOLE FDACTION VG ADJISTEDTYMF

TIUE	ALCOHOL	ACRYLATE	WATER	FTHER	OPIONATE	COVOLEX	H2594	$\mathrm{VH4} 4504$
0.00	. 150 FRG	. 044693	. 349888	0.000000	0.000000	. 2k1550	. 086828	. 078344
9.20	.179724	.035761	. 350330	0.000000	.003503	. 240165	. 083483	. 097533
20.15	. 140143	. 031374	. 350682	0.000000	. On- 722	. 213495	. 080370	.121714
43.53	. 215059	. 034525	. 352193	0.000000	. 005255	.147514	.075375	.169087
54.15	. 337197	. 019526	. 353613	0.009000	. 007581	. 140447	. 075234	.171403
67.01	. 2401797	.020295	- 35.3786	0.030000	. 000440	.1?2194	.073.303	.104520
73.56	. 24352.4	. 017202	. 354001	0.000000	.005044	. 112134	. 073747	. 193549
92.tı	.250330	. 012365	. 353254	0.000000	. 003961	.107732	. 073373	. 198275

IVSTANTANENUS VADAD MOLE FRACTIONS AND TOTAL VAPOR FLOW DATE VS GDNISTED TIME

－TVSTARIANENUS EQUILISQIUM CONSIANTS VS ADUSTED TTME

T1WE	ALCOHOL	ACDYIATE	WATER	ETHER PGOPIDNATE
0.00	1．372195	10.767497	． 858105	100.000700
9.20	1.545741	10.795173	． 940105	4.957270
20.15	1.914707	in．164017	－ 8 フ7669	3.514819
43.53	2.333751	5．86ftobs	．233571	2．7959．15
54.15	7.244002	Q． 14577 ？	． 828490	？．1ヶ115\％
67.51	2.3373 ht	5.589537	． 845146	3．56，28：0
74．65	2.417925	4.698043	． 860182	3.112401
$\because 3^{3} 01$	7.45414 A	3.597411	－M86907	4.997329

ride	ALCOHOL	acaylate	water	FTHER DPODIOMATE
0.01	． 398344	7．151463	． 493838	．－． 100.000300
7.20	．47715	T．9ヶ5254	． 501590	29．528718
20.15	． 567475	7．643653	． 511031	22．10940\％
－43．53	． 11×373	4.564728	． 530047	18.512042
54.15	． 754543	6．6248R6	－561389	14.534421
67.61	． 878473	$5.01107 ?$	． 550748	20．419438
7上， 6 ¢	． 940394	4.337141.	．687029	26.65939
9？．A1	．980437	3.497370	． 730255	44.439047

SUMUADY GF EPROOG FOR CURVE FITS－－ 3 DEGREE POLYNOMIALS

EEEVIIICNE
QEG TIME IS COINTED GOOM THE MOMENT ALCOHOL IS FIRST MIXED WITH ACOVIGNJOE SULFATE
 aDJISTED time must begin right op slightiy after the peactivg liouid mikture recomes hoiling

INITIAL COMRITICNO FOR THE REAL TIMF．
．TEMF＝111．50 $\mathrm{C} \quad \mathrm{VOL}=134.12 \mathrm{ML}$ TOT LIQ＝2．ON21MOL $A M I D E=.984 \mathrm{MOL} \quad H 25 \cap 4=1.247 \mathrm{MOL} \quad \mathrm{MATER}=.672 \mathrm{MOL}$
FEED CONDITYONS
RAYF＝1．557G ML／MTN ALCOHOL $=.8600$ WT FRACTION WATER＝． 1400 WT FQACTION VAPOR FQACTION＝ $.6 O O O$

MIXTURE QUANTITIFS AND REACTION PATES VS ADJUSTED TTME

	TIME	TIMF LAG	TSMP	LITV迷	Lİ MOL	VAP MOL	$\triangle C D=A T E$	POD RATE	PRO PATE
	0.00	． 30015	119.46	162.22	2．57020	－ 20084	．O0\＆1780	． 0004171	． 0010704
	10.92	． 33×25	117.91	143.63	2.72996	． 40049	－007n556	－0005575	． 2008797
	37.4 ？	.27543	115.17	164.00	2．96754	． 93052	.0040540	． 0007024	－ 0005384
	4 r .25	－25680	113.60	162.82	3．05593	1.32204	－0035244	． 0007045	－Onc 3674
	80.09	.24459	117.51	161．28	3．1054\％	1.67284	．002995i	－000nse？	－ก002501
	73．59	． 24257	111.60	150．08	3.13755	2.09571	－0021K46	．0005528	－ 0001420
	44．47	． 23759	111.52	155．23	3.15287	2．78662	． 0711128	．0002512	．000032？

INSTANTANEOIIS LIOUSD MOLAQ DUANTITJES VS ADJUSTFD TIMF

－TINE	ALCCHOL	ACDYLATE	WATEQ	FTHEA	DRODICNATE	COMOLFX	H2504	VH4以SO4
0.10	． 3.34454	． 114545	． 874251	0.000000	0.000000	． 765 ？ 38	． 26.3405	－？ 19297
10.42	．43P274	－077155	． 944945	0.000000	－ 008644	． 561445	． 263406	． $3220 \div 0$
33.47	－Sopria	． 0466.33	1.051775	0.000000	． 013404	－5？n201	． 293406	． 453334
44.65	． 640744	． 036341	1.098181	0.000000	． 014227	． 443993	.263476	$.53954 \%$
م0．09	． $50 n 637$	－ 026556	1.129073	0.009000	．01134！	．401589	． 263406	． 581840
73．59	－ 60 ¢856	． 019630	1.163549	0.000000	． 010479	． 362435	． 253406	． 521100
94.67	． 075530	． 011759	1．221661	0.000000	． 0066977	． 32 ¢136	.203405	． 654399

ACCUALILATEの VADOP MOLAD NUANTITIES VG ADJUSTED TIME

INGTAMTANEMIS TOTAL MOLAR QUANTITIES VS ADJUSTED TIME

time	AI．COHOL	ACPYLATE	WATEP	EtHEF	OROPIONATE
0.00	． 377047	． 217746	． 925110	． 0007755	．00055：
10.02	． 513736	． 309522	1.039599	－0¢83975	．012557
33．9？	． 8 ¢ก749	．435？ 11	1.284279	．пフアP．80	． 027123
4\％．25	1.130746	． 514231	1.437730	．073011	．034711
60.119	1.344044	． 544745	1.564257	． 041171	． 037107
73.59.	1.508995	． 579814	1.707489	． 049440	． 041295
04.67	2．062798	． 612353	1.927068	． 058279	． 042045
CCumlla	VADCz DUANTITIES vS peal time				
time	ALCOHOI．	acrylate	water	FTHEP	－ROPIONATE．
6.33	．000209	． 00 万n4 3	．00017？	．000n5i	0.000000
16．00	．0n5353	． 010086	． 014398	． 0000426	0.000002
25.43	． 036394	． 104936	.743155	．001441	－0nosisi
36．43	． 020234	． 213138	． 114016	.01 nos 4	－c03819
H0．4？	． 278431	． 400115	． 232105	．023115	．01379i
74.42	． 464585	． 470924	． 335134	． 031497	． 021995
97.00	．fabarl	． 574731	． 450.503	．047572	－ 0 P6075
100.00	． 940598	． 561598	． 553327	． 251777	．030751
1く0．17	1.349736	． 601308	． 704 H7？	． 057690	． 135233

-

Instantanenus liouin mole fraction vs adjligted timp

REACTION RATF CONSTANTS
ACD RCONS

Corc． 32 T	CP	por reonst	－Rn PCONST
－556594	5．1＊3416	． 904265	37．9．0．00896
．554800	4.037874	.482101	190.5646 H6
－5623：5	2．564．454	． 310718	75．002752
－5ヶ5027	2.124201	－ $254 \div 39$	50.3150
－545524	1．741216	.223913	33，0499．31
． 567964	1．353215	.181030	29．54？881
－5ncora	． 7769 ？ 3	．OfRAGS	5.1 S45．31

time.	ALCOHOL	ACQYLATE	WATER		F.THER	DFCPIONATE
0.00	- H59799	14.644999	. 5734 ¢ 3			100.000000
10.5?	1. AOAO71	12.977234	. 687545			5.567993
33.92	2.141572	15.483791	. 767369			4.019990
4世.25	7.40744 .3	13.056431	. 754569			3.445104
65.09	?.60n55?	14.033328	. 731559			3.764? ? 24
73.59	2.8ヶ341K	12.93692?	. 677707			2.9.c9n37
44.0.7	2.4573n*	10.67462 ?	.551916			.876106

INSTANTSNFOIS LTOUTD ACTIVITY COEFFICIFNT VS ADJUSTED TIME

REFI:HTITVNC-
2FAL TIF JS COUNTED EOOM THE NOMENT ALCCHOL IS FIRST MIYED WITH ACPYLGMIDE SULFATE
AOJISTFD TIME IS COLVTFD FFOM THE MONENT STUCTES FOQ DICTILLATION ACCGVDAVED ZY CUEMICAL PEACTIOVS BEGIN
ANJUSTEO TIME MUST REGIN PIGHT OR SLIGHTLY AFTEQ THE DEACTIVG LIJUID MIXTIPE BECOVES BOILIVS

IVITIAL COAINITTONS FOA THE REAL TIME

FEED CONDITTCNS

INSTANTANERIIS LIOUID MOLAR QUANTITIES VS ADJUSTED TIME

ACCUMULATEN VAOOR MOLAR BHANTITIES VS ADJISTED TIMF

T195	a	E	W	ETHER _ PROPIOMATE	
0.00	.042997	.101651	.058527	. 002590	0.000000
13.42	.0922i8	.224980	.111413	.007057	- col?4?
29.5?	. 184440	.341579	.171912	.012301	- 05172
43.00	. 29 ¢59K	. 424707	. 231337	.014029	. 010030
59.43	. 450535	. 504927	. 321153	.02?531	- 015 ¢83
.70.39	. 561750	. 551544.	. 404661.	. 026602	-0フこ.3\%?
44.17	. 75.7434	. 596659	. 532664	. 031508	- 0 OSP8

TIME	ALCOHOL	ACRYLATE	WATED	FTHEP	PROPIONATE	1000／2．30T	$A C Q$ PCOVST	ROR PCONST	PRO GCDVST
ก．00	． 358390	－21？125	，017129．	002ちR0	－．．．00．393？	． 557445	4.740531	． 515344	194．292051
13.4 ？	－494？ 35	． 309549	1．029110	． 007057	． 010746	．54？301	3．846436	． 329415	148.026301
29．58	．644351	． 414564	1．143171	． 012301	－02184\％	－ 5 S2309	3．574741	.257113	124．792425
43.00	． 74×353	－ 41403	1．2．00477	． 016970	．031577	－ 5 ¢4？ 210	3．1574i？	$.2191 ? 2$	102.114452
5 t． 43	． 0.1909	.557957	1．387962	． 027531	． 035457	－55こ803	2．645157	． 149330	61.266917
70.39	1．144563	． 549339	1.479715	－0．35602	－ 038083	． 5 －5 331	2．2．00447	.171582	20.005447
＋4．17	1．3F6416	． 5.33614	1.590053	．031504	． 039747	． 557020	1．45940？	.150479	0.000000

ACCUWILATEN VAPOD OUANTITIFS VS PEAL TIME

time	ALCNuOL	ACPYLATE	WATFR	FTHEP	PPORICNATE
12．10	－0n1647	．000164	.001975	.000004	0.000000
14.75	－介06R？ 1	.014009	． 009013	．00053？	0.000000
32．25	－ก4つ550	.102915	． 059862	－ 007540	0.000300
45.33	．005¢？ 1	－ 226343	．11217？	－007211	． 001038
he．08	． $1250+3$	． 344054	． 166497	．012424	． 0050.34
75.50	． 249105	． 430726	.246946	． 017048	． 010835
41.00	．44ヶ347	． 490533	． 311953	． 022397	．0in326
167.47	－540ヶว	－556752	． 409405	－ 076941	－07ヶ281
11 hot 7	．7A166？	． 597295	． 538259	．0．31614	－0ア975

IVSTANTANEOUS LIOUID MOLE FRACTION VS ADJUSTED TIYE

INSTANTANEOIS VADOD MOLE FDACTIONS ANO TOTAL VADOR FLOQ QATE VS AOJUSTEN TIVE

-SUMMARY_OF-FRDORG.FOR.CURVE-WITS--_3_DEGREE-POLYNOMIALS

	VADDR RATE VS VADOR ADJUSTED TIME PEFORE TIME LAF CORRECTION		VAPOR RATE VS LIMIID ADJUSTED TIMF AFTEA tiME-lag correction	
	ARS PET ERR	StANDADD DEV	ASS PCT FPq	standarg nev
ALCOHOL	. $11105 \mathrm{E}+01$. $13477 \mathrm{E}+00$.11:04F+01	.13522E+nつ
acpylate	.47916E+00	. 30 OOnE +00	. $47948 \mathrm{~F}+00$. $30140 \mathrm{E}+00$
WATF2.	. 2197 PE + 01.	.132265+00	. $218995+01$.13237E+00
ETrEq	. $534355+00$. 752 Fly -02	- $53494 E+00$. $75485 \mathrm{E}-\mathrm{C}$?
SRODIOVATF	.f18?95+01	. $53083 \mathrm{E}-01$.61953F+01	. $53152 \mathrm{E}-01$

CDJUGTEF TIME IG COLNTED FOOM THE MOMENT STUNIFS FOR MISTILLATION ACCOMPANIFD RY CMEMICAL DEACTIONS SEGIN ADJISTED TIME MIST PEGIN RIGHT OQ GLIGHTLY AFTEP THE DEACTTAG LIQUID MIXTIGE YECOMES FOILING

IUITIAL COMAITININS FOP THE REAL TIME
 FEED COMOITYONE

- mixturg ouantittfe and afaction rateg vs adjligted time

TTVE	TTME LAF	TEMP	LIO VOL	LTワNOL	VAP NOL	ACO DATE	DOO FATE	PDO DATE
0.00	. 50110	118.34	155.63	2.53732	. 33002	. 0074523	. 0001328	-0004537
12.00	. 47924	116.81	15n.6?	2.66625	. 49735	.0067068	. 7001499	- 0003478
26.50	. 39440	115.00	156.35	2.78901	. 73224	. 0054160	-0002534	-0003067
42.43	- 3×410	112.70	154.84	2.49165	1.03401	- 0004854	-1)002778	. 0002137
+1.00	-74041	110.60	152.72	2.97023	1.40811	-00?7557	-000フ601	. 0001075
73.43	- 77955	109.00	151.54	3.00751	1.64169	.0010139	. 0002191	.0000310
¢7.43	32371	107.90	151.13	3.02567	1.89817	.0013712	. 0001754	0.0000900

- IVSTANTANENIG LIOHIN MOLAR OIIANTITIES VG ADJUSTFD TIME

COMPLEX	H?974	N44HCC4
$.7340 R 5$.209716	.278239
.677459	.204716	.393475
.543574	.209716	.462750
.472791	.209715	.543544
.3 .1401	.209716	.624523
.344700	.209716	.550324
.357531	.209716	.654793

TINE	ALCOHOL	ACRYLATE	WATED	ETHEP	PROPIONATE	1000／？．307	AC？RCONST	2OP RCOA：ST	POO DCOVST
0.60	－ 360354	． 274170	． 990 H87	－00706R	． 004049	． 55 m186	5.23530 .8	． 20.6990	140.102136
12.00	． 457547	． 385471	1．081251	． 0 OL89？	． 0008404	．540376	4．547511	.226622	110．627934
＜ 6.50	－637934	． 4488804	1.191327	－004205	． 013447	． 5×2780	3．23327？	． 177024	60.517403
4こ．${ }^{\text {2 }} 3$	．4275．31	． 574960	1.315443	.017544	－C18534	． 365345	2．472551	$.16543 ?$	57．02：753
61.00	1．05E553	． 503509	1.454073	．017－52	－071015	． $5 \times .4444$	1．4＊？ $12 i$	－112353	19.310558
73.83	1． 24.4554	－ 629805	1.552231	－ 070651	．021514	.571229	1．310530	．040839	5.467048
42.53	1.395279	． 536473	－1．620290	． 022239	． 027320	.573630	． 935544	.059456	0.000000

＿ACCUMULATEN VAPOE TUAMTITIES VS REAL TIME

TIME	ALCOHOL	ACQYLATE	WATER	F．THFA	PROPIONATF
12．90	． 001959	．．．．．．． 000649	． 020261	． 000010	0.000000
21.57	－ 111225	．041640	－ 020761	．000639	0.000000
37.75	－0～？？¢ R	．138479	． 004701	－00243？	－00157\％
50.33	． 090058	．． 280491	－128191	． 006286	－ 003307
64.67	． 16 ¢ 377	－ 389649	－184000	． 007297	． 004637
47．58	． 348170	－5：6］61	． 272120	．014501	． 008575
99．54	． 4 H 3 K 20	－565e93	.339131	．018200	．011163
111．54	． 55360 ？	． 502499	． 418783	－0ア0410	．01240？
120．67	． 77979 ？	．520029	． 467.906	－ 077507	.015139

INSTANTANEOIS LIDIIT MOLE FRACTION VS ADJUSTED TIME．

TINF	ALCnmol．	ACQYLATE	YATER	FTHER	PROPIONATE	CONDLEX
0.00	． 124445	． 034536	． 356757	0.000000	．000970	．290385
12.00	.139392	． 039994	． 359745	0.000000	． 002033	． 23.3454
24．50	－1606た9	．024706	． 3 A3338	0.000000	.003230	． 105494
42.43	．147103	.015379	．369676	0.000000	－00384．3	.163409
E1．00	．194204	.013127	－ 374369	0.000000	－ 003504	． 131909
73.43	． 201039	． 008465	． 380011	0.000000	． 002924	.121696
82.83	.204750	.005818	．32：725	0.000000	．007425	.114166
INSTANTANEOII	5 VADOR	MOLF FRACTIONS	AND TOTAL	VAPOR FLOW	RATE VG ADUUSTED	TVE
TMF	ALCOHOL	ACPYLATE	WATFH	FTHER	OROPINNATE	YOATE
0.00	． 125017	． 615850	－？¢ 0426	．010344	－00ヶ3ヵ3	
． 12.00	． 253767	.495779	－2 238？ 1	.013314	－00ヶ．うこ？	－015011
26．5n	． 367486	． 38.3498	－224070	.014627	－0， 0537	001738
47.43	－46632n	． 278404	． 237505	.014704	－10ヶ37	－0） 05.5
61．00	－5576Kl	． 173408	． 248379	.012075	－Arsiat	－123：7
73．43	－616373	.100078	－ 264391	－000025	－n03ッワ	－1コア＋？
＋2．83	－656363	.049443	.277950	． 00759%	－ 0 0835	－ 023235

DFAI．TIME IS COIATEC FROM THE NOMFNT ALCOHOL IS FIRST MIXED WITH ACPYLAMINE SULFATE

JFFIATTTONE
ANJHSTED TIMF IS COUNTED FPOIA THF MOMFNT STUDIES FOR NISTILLATION ACCONOANIFD RY CHEMICAL PEACTICNS GFGIN ANJUSTED TIME MIGT PEGIN PIGYT OR SLIGHTLY AFTER THE PEACTIVG LIOUID UIXTIRE RECOMES EOILING

INITIAL COMIITTONS FOD ThF REAL time
$T F M P=110.00 \mathrm{C}$ VOL＝ 139.48 ML ．TOT LIO＝ $3.0385 \mathrm{MOL} \quad A M I D E=1.002 \mathrm{MOL} \quad 42 S O 4=102 H 2 \mathrm{MOL} \quad W A T E R=\quad .755 \mathrm{MOL}$ FEEG CONDITIOMC

－mixtuof oulatitifg and peaction pates ve aduusted tive

－INSTAMTANEOIS LIOUTO MOLAR OIIANTITIES VS ADJUSTED TIME

TIMF	AICCHOL	ACRYLATE	HATFR	FTHEQ	PPOPIONATE
0．00	． 334808	－ 1215977	． 941537	0.000000	． 004940
13.72	．4こつ734	－121629	1.030110	0.000000	． 009974
24．0？	． 505509	． 110893	1.107308	0.000000	．000ヶ87
43.05	－56arac	－）93077	1．16025？	0.000000	．004595
63．08	－6こ？177	－ 0 ¢1R63	1．210338	0.000000	． 0.07558
74．3？	． 629404	．055704	1．231570	0 －0¢noon	． 005315
9\％．0n	． 647 Mr	． 027133	1．2405S5	0.000000	.005437
accurulaten	VAPOD	DJANTIT	VS ADJUST	TIMF．	
TJME	ALCOHOL	ACPYLATF．	WATER	FTHEQ	DQOPIONATE
ก．ก0	－05？ 011	． 154078	． 104365	．004213	． 000756
13.72	－115月n9	． 291300	． 149169	－0n8574	． 005204
20．11？	． 254014	． 409075	． 220479	． 01.3700	．009675
4.3 .15	．434991	． 444787	.303491	．017235	．013204
6．3．188	． 765 hoon	－ 564737	.447106	． 027584	． 017545
76． 32	1．060674	． 507937	． 572019	－0263？	． 020204
42．00	1.347434	． 530415	． 695666	．029414	－022207

COMOLEX	$H 2504$	NH4HSO4
.714460	.279537	.287510
.573783	.279637	.428147
.442739	.274537	.539231
.367207	.279537	.604763
.344256	.274637	.655714
.313149	.274537	.649621
.314703	.279537	.585667

INETANY	IS TOTAL	MOLAD OUANT	S.VS ADJl	TIME		REACTION RAT	TE CONSTANTC		
TIME	ALCNHOI	ACOYIATE	WATER	FTHED	PROPIONATE	$1000 / 2.30 \mathrm{~T}$	ACO DCONST	ROR RCONST	P2O PCONST
0.00	. 367419	- 3 R1905	1.045902	.004213	. 005606	. 554745	$7.47351 ?$. 477376	237.547783
13.72	. 5.34343	.412987	1.179770	.0n8574	. 015190	. 557361	5.554533	- 286549	174.23014
29.0?	. 75757.3	-519919	1.327787	. 013209	. 019313	. 5a, 0¢ 1	3.962153	.1801044	$6 ? .601479$
43.15	1.0n0276	- 59.7864	1.453743	- 017735	.021990	- 554342	2.717480	. 142057	32.53451\%
63.02	1.3078ム7	-630600	1.657444	.072584	-0751:4	. 567758	1.276942	. 10566 ?	15.770349
74.32	1.大90978	- 56.52742	1.804499	- $075320 n$. 026579	. 549241	. 565487	.094112	20.675628
92.00	1.095370	. 557540	1.936?22	- 0 P9414	.027719	- 57029 ?	.146776	.080417	.32.463331

ACCUיHLATEN VADOQ OUANTITIES VS REAL TIME

TINE	ALCOHCL	ACQYLATE	WATEP	FTHER	PROPIONATE
10.17	-0n1493	. 001004	.002741	- D00076	0.00000 .7
20.17	. 014644	. 050558	. 0.37152	.002182	.000197
31.10	.051304	. 158555	.049023	. 004254	. 091243
44.43	-12145?	. 200344	. 155147	- 0096672	. 094505
60.17	. 259607	.413063	.212199	.013393	.009497
74.03	. 4.34631	.491764	- $2.48 \mathrm{fl3}$.017354	.014245
91.72	. 724519	. 560067	. 434953	-021692	-017121
105.27	?.064545	- An807S	. 573331	. 074725	.0:0491
12?.4?	1.350.567	.630645	. 596426	.029319	.022711

INSTANTANENIS ITOIIT MOLE FQACTION VS ADJUSTED TIMF

	TIME	ALCOHOL	ACPYLATE	WATED	ETHER	DPOPIONATE
	0.00	1.103950	14.156896	. 440047		11.34408?
	13.72	2.284547	10.2R9065	. 544794		4.359734
	24.02	?.ROQR4R	7.602615	. 613686		3.569298
	43.05	3.071174	6.232685	. 555109		3.23134
	63.014	3.150698	5.373341	.695047		2.766787
	78.32	7. 247526	3.761963	. 717408		2.62004?
-	92.10	3. 2hathat	5.187101	.734409		? 2421406

INCTANTANFOIIS LIOIID ACTIVITY COEFFICIFNT VS ADJUSTFD TIME

DEFINTYIONG

AFI：STER TTMF IS COHNTED FRCM THE MOMENT STUNIES FOR OISTMLLATTON GCCONOANIED RY CHEMICAL PEACTIONS REGIN ADJUSTEO TIMF MUST BFGIN DIGHT OR SLIGHTLY AFTER THE DEACTING LIQIID VIXTURE RECOMEG POILIVG

IVITIAL CONOTTYONS FOR THE REAL TIME

 FEED COVUITIGNS

－－mIXTIPE OUARTITIES AND PEACTION PATES VS ADJUSTED TIME

．TINE	TIMF LAG	TEMP	LIO VOL	LIO MOL	VAP MOL	ACQ CATE	ROこ PATE	POS PATE
0.00	． 32341	115.71	165.86	2．00603	． 13334	． 0113540	． 0005178	－0008334
11.00	． 33115	114.94	167.45	2.67157	－ 36118	．0040632	.0005030	． 0005770
20.00.	． 33742	113.42	160.51	2.72551	． 54×01	－CO72277	． 0004235	． 0005621
30.10	－37587	111.97	159.09	2．74R35	． 75457	． 0055255	． 0004530	． 000447 ？
41.00	－ 3 ？ 467	110.80	159．20	2．45241	－Q9225	．0039795	．0004125	．0003399
74．00	． 30 п5 8	109.36	155.58	？．90505	1．7484．7	－ 0171410	．0n02？．84	－ 0001201
64.00	． 2777 R	107.39	153．40	3．02653	2．25675	－OOCTGRS	．000073	．0000640

INSTANTANE IIS L．IOUID MOLAR DHANTITIES VS ADJUSTFD TTME

ACCUNILLATE VAOOD MOLAR DUANTITIES VS AOJUSTED TIME

JIME	ALCOWNL	ACOYLATE	WATFR	ETHER	ORODICASATE
0.00	．03ア7ん1	－08G？24	．010575	． 073458	0．00n900
11.00	＝ 019637	.303103	．076641	－ 00908 ？	．002716
20.00	－11747？	－？R ¢ 273	． 120731	.01 .352 K	．005ing
30.10	－19048A	． 355490	．198597	． 014257	－00，772．
41.00	． 348508	． 419341	． 251602	－0ア790？	－ 0 iots3
74.00	． 717554	． 533411	． 414003	． 0.33817	
94.00	1．006539	． 571581	． 565364	． 0.34893	． 076.374

 ACCUMILATEN VADNO OUANTITIFS VS RFAL TIME

IRSTANTANEOUS LIDUID MOLE FRACTION VG ADJUSTED TIMF．

TIPE	ALCOHOL	ACPYLATE	WATER	ETHER	PRODIONATE	COMDLEX
0.00	.117734	． 056718	． 333182	0.000000	－000500	． 293940
11.00	． 122751	． 052512	－335671	0.070000	－00295？	． 341871
20.00	． 13 A 72 l	．051270	． 337774	0.000000	． 004247	． 205059
30.10	．1489RA	－ 04 大ロ32	． 340167	0.000700	.004813	． 177624
41.00	． 144379	－ 03 ¢190	－ 342982	0.000000	.004706	． 157307
74．c0	－185のカロ	－ 0 265ag	． 355152	0.900000	． 004350	． 114341
44.10	． 189653	.018190	.365420	0.000000	－ 0025.33	－11P210
INSTANTANE	IS VADOR	MOLF FQACTIONS	ANO TOTAL	VADOR FLOW	RATF VS ADJUSTED	TIUE
TIM E°	ALCOUnL	ACDYLATF	WATER	ET4FD	DROPIONATE	VQATE
0.00	－108359	．5ヵ2378	． 291927	． 024874	． 012461	－0？n¢ia
11.00	． 214022	． 452486	－286860	． 0272269	． 01754 ？	－ロアロ7アj
20.00	－20faga	.385995	－ 281503	．023226	． 012574	－ 0298 －9
30.10	．303179	． 307988	． 274908	． 021505	． 012539	．97？ 134
41.00	． 4 AASP4	． 234 4 88	.367090	． 010074	．01759．3	．021627
74.00	． 64.3977	． 092 F 20	－P41814	．0n929a	． 012790°	．0ヶ4567
94.00	． 694453	.061438	． 227365	． 002698	.012645	． 17734
－－－－				－		

DFACTION QATE CONSTANTS

1000／7．30T	ACT RCONST	QOQ RCONGT	PRO CCONST
．5k！9f？	8．023451	． 912363	318.042323
． 563077	6．550534	． 490576	233．657446
． 545290	5．5bus15	． 552133	146.775121
． 5×7410	4．272？68	．418370	13？．418351
． 54914%	2．4ら2？79	．296441	45．221452
． 571290	． 007245	． 115641	25．405555
． 574 ？48	.606430	． 034436	13．524227

IVSTANTANEOHS EIDUID ACTIVITY COEFFICIENT VS ADJUSTED TIME

TTMF	ALCOHOI	$\triangle C R Y L \triangle T E ~$	W \triangle TER	ETHER	PRODIONATE
0.00	- 290142	7.385919	. 531441		112.02.4661
11.00	. 51×950	6.6 .30 .356	. 5.30887		26.871025
20.00		5.891575	. 543959		20.054575
30.10	-9大980l	5.433614	. 552956		18.708359
41.00	.903140	5.149026	. 553490		10.631486
74.00	1.265704	3.030003	. 507455		22.415134
04.00	1.420355	3.095449	. 494632		40.778544

_GMMMAFY OF EPONOS FOR CURVE FITS-- 3 DEGREE POLYNOMIALS

INITIAL CONIITIOAS FOR THF REAL TIME

FEEE conduttunis

＊IPTHES RUANTITIFS ANO RFACTION DATES VE ADJUSTFO TIME

TILSE．	TIME LAG	TEMD	LIO VOL	LIO UOL	VAD WOL	ACO＝ATE	LOR CATE	PRO RATE
0.00	． 76350	110.40	175.50	2．83511	． 2369 ？	． 00093422	．00n1445	．0007131
1icot5	－ 14454	108.47	177.55	3.014 .35	． 45510	.0074428	－0001962	． 0005449
－9．\％9	． 35107	105.00	197.40	3.2590 .3	． 74331	－0052282	－0001913	－0003645
41.76	． 37505	102.60	18 f .57	3.44250	．97179	． 00.37770	－0001823	． 0007722
55.41	－2037n	107.38	190.72	3．57173	1．2555i	－0023501	－ 0001506	． 0001972
71．th	－くら97？	94.00	193.27	3．7775？	1.61726	－0010350	． 000142 ？	－0001540
45.57	.23273	97.00	197.39	3．55737	1．G4¢ア\％	．0001159	． 0001147	．0001ヶ2？

PNGTA：OTAAFAOIS LIOHIN MOLAQ DUANTITIES VG ADJHGTFD TYMF

ACCIMIILATEN VAPIDD MOLAR DUANTTTIES VS ADJUSTED TIMF

TINF	ALCOHAL	ACUYLATE	WATFP	ETHED	DROOIOMATE
ก．0n		． 12 P54 4	．05R983	．On2506	－00ns20
12．45	． 105179	． 236620	．105227	．0049R2	．003144
24．29	． 21.3879	． 353777	． 161254	－00以？${ }^{\text {a }}$	－09大ido
41.76	． 3717.35	－47？n＠	． 203864	．01055？	－00rabs
55.91	． 479726	． 443978	－ 267854	． 113028	－01こ0入？
71．4．5	． 705005	.539847	． $33 \mu 876$	． 115449	． 017055
＋5．60	．950¢0？	． 543211	． 405116	． 917253	． 023036

－Instantanenis total molao guantitifg va anjusten time

TINE	ALCOHCl	AC：JYLATE	WATER	ETHED	PDOPIONATE
ก．00	．497445	－ $27+203$	． 997674	－ 0 の？50ん	．0n3？ 04
1？．65	． 471506	． 365437	1.127432	． 0015 Pa ？	．011773
24.10	－ 712 wa	． 4×4 1：7	1．29647\％	－nnprls	－016504
41.76	1．133500	.54 .3699	1.470347	． 010557	． 074103
55．41	1.417104	－57 H13．3	1.548656	． 013024	－0フ7101
71．54	1．757365	.603490	1.703346	． 015450	．027017
M5．50	2．047477	－ 417610	1.438916	． 717753	． 031512
ACCHMtLA	vaono	ITIES VG	L TIME		
TI $\sim_{0} \mathrm{~F}$	ALCOHAI，	ACDYLATE	WATEP	ETHEO	PPOPIONATE
10．cio	－nocuma	－00n526	．00？371	－0nO003	0.000000
20.64	－0nちッフl	－n10411	． 018512	－ 0 0031？	0．000n0）
34.018	．047905	．12？901	－0¢G¢i 7	－ 007585	－000425
$4 \mathrm{AC.4a}$	－198719	.747161	：1053 10 A	． $0 n 493$ ？	－ 003937
4.3 .33	． 215429	． 35457 ？	． $1+5533$	－OnR563	． 005385
7ヶ．0．3	，3240ヶ9	． 41.9487	－208487	．01048号	－ 000307
90．1．0	．444081	.4436 .34	－2¢64＊31	． 012910	－ 011 Con4
1 （14．70	． 710700	． 5457 H ？	－ 343568	．015725	．017ヶ3．3
114.67	－WRC144	－9Q？641	．406322	． 017236	． 023100

PEACTION RATE CONSTANTS

100n／2．30T	ACU PCONST	QOP PCONST	PQO RCONST
．560148	5．042564	． 170448	150．GRA108
．57．3．3	3．71754	． 100.595	H5． 206 CROT
－ $377+7$	2．大与以1リフ	．070143	49.337 〒90
－5凶！5ムy	1．474194	． 051563	32．750574
．54ら口74	1．1才1？ 1 K	－035！nc 3	20．31\％452
． $58 \mu 776$	． 504263	． 025099	14.357435
． 520366	． 0.57411	．014045	$14.194 \mathrm{ha,4}$

INSTAMTANEOIIS LTOUTD MOLF FRACTION VG ADJUSTFO YIMF

	TIPF	ALCOHOL	ACQYLATE	YATER	FTHFR	PDOPIOAGTE	Covolex
	0.00	． 154365	． 05.4 .354	． 3 267？${ }^{\text {a }}$	ก．0ワ00¢0	－¢On934	－257？37
	12．65	． 147894	． 042900	． 337454	0．70600n	－1）n2rs3	．204497
－	24．c9	－こ1575？	．041107	－ 344204	0．00000n	．0n32ちl	． 153346
	41.76	．？35913	－ 035349	． 348720	0．00000n	． 004403	． 127339
	55.41	.7591 .33	－02ヶnn1	－．35．3501	0.000000	． 004154	－110724
	$71.6 n$	－27499？	． 016040	． 361198	0.000000	． 002 CH 38	． 209344
	－5．f．0	－ 24 On， 24	－004918	． 371704	0.000000	．002247	． 002558
INGTAMTAMENIS VADAD			MOLE FRACTIONS	AND TOTAL	VADOQ FLOL	PATF VS AIJJUSTEN	TINE
	TIME	Al．COHOL．	ACPYLATE	HATFD	FTHER	ERODIOAATE	VPATE
	n．0n	． 25×241	． 560956	－ 150324	． 011113	$.012356$	$.0 .17498$
	12．65	． 374555	．472570	．180520	.711457	－ 1010004	.017132
	－9．7\％	．431104	． 347704	． 3 仏R＝3	－ 110789	－Olr4a	． 217735
	41.76	． $5111+9$.254889	． 209075	－ 000598	－011170	． 21 mい
	55.01	． 691878	． 184240	． 204079	． 707933	．013770	－ 221245
	71．ta	．6An？${ }^{\text {G }} 7$	． 131179	．19743？	－กn5723	． 015049	
	MS．50	． 70.358 ¢	.105442	．160444	－0n3969	． 017137	

INCTAHTANFAUS FOUTLIARIIMM CONGTANTS VS ADJISTED TIME

TiNg	4 COMHOL	ACAYLATE	WATED	FTHEP ORODICNATF
$0 \cdot 00$	1．412940	10．485059	． 457791	13．71131？
17．大5	1．7こ73？	11．015450	． 534246	3.809114
70． 38	1．860］45	8．339049	．505073	3．214465
41.76	2．14．4771	7．301375	．60ア131	
55.41	？．ว4n04？	7．0455：37	． 575008	3．06ar3．
71．4．4		7.743656	－ 520075	5.705781
mis．un	P．404774	11．870f，${ }^{\text {P1 }}$	．45んR57	7.759550

IVGTAN．TAMENHG LIOHIC，ACTIVITY COEFFICIENT VS AOJIISTFD TINE

TTVE	4．cnunt	$\triangle C O Y L \triangle T E ~$	WATFP	ETHED	DPOPI ONATE
0.00	． 57797 ？	F．965～81	． 331×07		101．05794日
120．65	－ $6 \times 05 \% 4$	10．315710	．415218		31.441 从小
26．0．74	－Mitona	Q．327176	． 524044		3n． 9 ¢K1：155
41.7 F	－04chi3	7．7909．35	－575737		26．451548
$5 \leq .41$	1．117002	－．044551	． 505911		35．794 प25
71．6．f	1． 256316	9．416735	－ 5834 AB		73．465102
m5．4n	1．3514．3？		． 530410		105．100405

PRORRAM MODEL（INDUT，OUTHUT，TAPFS＝INPUT，TAPFG＝OUTPUT）

L，HINT，HOUTOT，HILDSS•HEXN，HUXDTE，CHMOTRT

DINENSION RP（5），IDEN（9），KMO（18），YO（5）
x（1）－．．．$x(9)$ LIQUID mOLE FRACTIGíS
RN（1）－．．－p：（9）LIOUID MGLAR（JUANTITIES
2：（10）＝TFMDEATUEE
2m（1））＝1．IQUID TOTAL VOLAR QUANTITY
QM（10）$=C L E A R$ LIOUIO VOLUME
PM（12）… LM（17）ACCURULGTEL VAPOR MOLAR OUANTITIES

Y（l）－－Y（S）EQUILIRPIUM VAEOR MOLE FRACTIONS $V=$ IRSTANTAYEOUS MOLAR EVAPORATION PATE

REAO（5．24）ME，WV，M．NN

$K E A D(5,11)(R G N(I), J=1 \cdot 941)$

RFAD（5，1］）（ONEGA（I）．I＝I，MV）
PEAD（S，14）（AP（I），SO（I），CW（I），I＝1，MV）

27 fnomat bFlu．0）
READ（b，B7）（IDEM（I），$I=1, M M)$
Un $16 \mathrm{~J}=1, \mathrm{Am}$
LO $16 \mathrm{~J}=1 \mathrm{~m}$
A．HAO（I，J）$=\mathrm{ARH}$ ）（I，J）$=1000$ ．／PAN（I）
$A(P L(I \cdot J)=A C F L(I \cdot J) * R M W(I)$
16 ConTI vis
DO $281=1 \mathrm{MV}$
OO そう $J=1 \mathrm{M}$
29 AHMO（I，J）＝AFVO（I，J）ニ2MW（I）
30 RF4D（5．24）15ET
PEAD（5．ll）Tly．FEEDV．RAOIA．PT，
REAO（h，11）（ $\mathrm{P} V(\mathrm{I}), I=1$, NAS $)$
RF $\triangle O(5,11)$（Y（I），I＝1，MV）
RFAD（5．11）（YIN（I），I：＝1，MV）
Do $151=1$ ：iv

FFFOP＝YIY（1）＋YJN（3）
YIN（1）$=Y$ IN（1）／FEEUR
YIN（3）＝1．－YINi（I）
$\mathrm{PT}=\mathrm{PT} / 7 \mathrm{SO}$ ．
Un $444 \quad \Gamma=1$ ，MiN
44 RUの（I）$=04(\mathrm{I})$
Dr， $443 \mathrm{I}=1$ ． FV
$43 Y(I)=Y(I)$
$V_{0}=V$

11 FORMAT（8F10．0）
1．F FOMMAT（SE14．5）
$1 \Leftrightarrow$ FORMAT（3F10．0）

87 F（124nT（y46）
（0）REAO（5．11）（OHR1． 1 ）H22．DHA3．（10．OUALE
RFAD（h．ll）DTIME，ATIAE，TSLTGUVNEPS

WETFF（6．144）OUALE EDTIME，UO，（1HEI

ACK1＝？．303＊（13．19607－0．57106＊ALOG10（TIN－104．）－0．13054\％，LOS10（
10（1aLF＋ 1.044739$)-0.50106 * 4 L O G 10(0.911$ ？＋FEEDV））

101日ALF＋0．01）－0．25785＊AL．OG10（FEENV－0．66092））

1GIIALE， 3.8434 ）－0．16398＊ALOG10（ 7.7684 （FEEDV））
RMC＝KM（2）＋EM（5）＋RM（14）＋RM（17）
$J=0$
TMES1＝0．
SUMY＝1。
Ri：T $=0$ ．
$0025 \quad J=1 . \mathrm{mm}$
$2.5 \mathrm{RMT}=\mathrm{P} 4 \mathrm{~T}+\mathrm{DM}(\mathrm{J})$
On $26 \quad 1=1, \mathrm{Mm}$
25 $\times(I)=\operatorname{Sn}(I) / R H T$
V：DTTE（ 6,100 ）
100 FOG：MAT：／／1XQ4IHINITIAL CONDITJONS PASER ON ADJUSTED TIME／）
（in $70 I=1, N V$
$70 R D(I)=Y(I)$ ．
$R D(6)=V$
$R D(7)=5 U V Y$
$R P(8)=0$ ．
$\mathrm{HP}(4)=0$.
Un Kष் $I=1 \cdot \mathrm{NM}$
$J D=I+G$
RR WGITF（5．101）I，X（I）．I．RM（I）•JP•RM（JP）．IDFN（I）．RP（I）

72 VO～EV＝－0．1
ITFR＝0
VA＝V＋1）V的
$5401 T F K=I T E 2+1$
IF（ITFR．GE．20）G0 TO 18
CALL QUVくUT
IF（AKG（DY）－EPS）1K．15．20
$\because 0$ IF（VDOFV）600．600．615
600 SHMYP＝SyMy
VFEEV＝VN

$6 \cap$ © $V N=n \cdot 75 * V$
$0 Y 1=0 Y$
GO TO 540


```
    DYJ:ijY
    GO TO F40
35 IF (DY:
```



```
    VFRFV: V .
    SH:YP=SUMY
    \(V A=V N-T\) Y/bírPE
```



```
    \(V=V N\)
    UO 51 ]=1.1. 4
51 RN(I) \(=\times 1(5)\)
    \(R T \because=T 1: T / \therefore T 1\) NE
    ICTM=的T:
```



```
    1I3/)
    DO 10t, \(I=1\) 4. MV
\(\Omega G B P(I:-Y(I)\)
    PP( 0 ) : : V
    RD(7) \(=5\) SMA
    \(R D(\Delta)=D Y 1\)
    \(\operatorname{RD}(9)=!\gamma\)
    Un (4) \(I=1\) sh
    \(J F=I+C\)
```



```
90 RHAO(5.24) 1RES
```



```
3न Di, \(434 I=1\), Niv
\(345 \%(I)=040(I)\)
    On \(4.33 \quad I=1\), \(\mathrm{A} V\)
33 Y(I) \(=\) Y
    \(V=V 0\)
    GOTO 100:
GK STOD
    ENT
```

```
    S(lin2%OMTIVE RUNKUT
```



```
    C(MMN(N/BLOCK3/ <U(LY),TIME,TIMEI:DTIMF.VN
    COMA(H:1/mLOCK4/ FF(1H)
```



```
    OH 10 T=1.NN
0 \lambdal(i)=2M(I)
    VF=V
    TIME=TIMFI
    ChLL FIINC
    U\cap 12 I=l,NN
    G1(1)=UTIME*FF(T)
    2 XI(I)=2M(I)+GI(I)/2.
    VF=(V+VN)/\Sigma.
    TT:\becauseF=TIME1+UTIVE/Z。
    Crli yvalue
    CALL FUNC
    DO.14 J=1aMN
    Ge(I)=0TIME*FF(I)
4 XI(I)=24(I)+G2(I)/2.
    CALL YyaluE
    CA!L FUVC
    OC 1S I=I.NN
    G3(I)=0TIS!゙ゃFF(I)
6 xI(I)=04(I)+G3(I)/2.
    VF=VN
    TYME=TIME+DTI`#/Z.
    CAlL YVALUE
    CAlL FuNG.
    0n 18 I=1.NN
    G4(I)=5TI'E&FF(I)
    XI(I)=4V(I)+(GI(I)+2.#G2(I)+2.*G3(I)+64(I))/S.
    CAlL yVALUE
    RFTUPN
    END
```

GHIPOOUTJVE YVALJE

COMMOV／SLDCK？／AP（ら），GP（ら）．CD（ち）•TC（ら）•PT•SUMY，DYGMT•OMEGA（5）

COMMOV／BLOCK a／FF（18）
DJPFNSIOV XG（5），GAMAA（5）．SUM（5）
chlcilatr liouid mole fractions
$R M T=0$ ．
$0010 \quad 1=1,1 \mathrm{M}$
$10 \mathrm{KMT}=\mathrm{KNT}+\mathrm{XI}(\mathrm{I})$
DO 11 1＝1．MM
$11 X(I)=x 1(1) / R M T$
CALCILATE VAPOR MOLE FQACTIONS
$T r=x](1) 01+273.16$
$x(i(1)=x(1)$
$x \in(2)=x(2)$
$x(3(3)=x(3)$
$x G(4)=x(5)$
$x \cap(b)=1-x G(1)-X G(2)-X G(3)-X G(4)$
Do $42 \quad 1=1.5$
$\operatorname{sim}(I)=0$ 。
$\ln 4 a^{\prime} J=1,5$
$42 \operatorname{SUM}(I)=S H *(I)+x(J) * X L A M O A(I, J)$
$0044 \mathrm{~J}=1,4$
SiPT＝0．
Un $46 \quad k=1.5$
45 SU日T＝ムU！T＋XG（K）KXLAMDA（K．I）／SUM（K）
44 GandA（I）$=$ EXP（1．－ALOG（SUM（I））－SUMT）
GAMAA（5）＝GAEMA（4）
DO $31 \mathrm{l}=1, \mathrm{MV}$
JF（I．Fn．4）GO TO 31
$P \mathrm{P}=10$ ．\because \％（AP（1）－SP（1）／（CP（1）＋X1（10）））／750．
TE＝TK／（TC（1）＋27．3．16）
PHJSO $=((0.57335 / T R-3.0766) / T R+5.60$（6）$) / T R-3.5021$
PHTS $=(()(()(()(10.012089 / T R-0.015172) / T R-0.068504) / 12+0.024365) /$ $1 T D+0.14937) / T 2+(0.19927) /(p-0.12147) / T 2-0.106(6) / T P-1.1662) / T R+$
（ $0.12(0,5) / T 2+0.31501) / T R+4.3539) / T E-3.7644$

31 Contrans

Y（4）＝2ムTF゙く／VF
Suny $=0$ ．
DO $12 \mathrm{I}=1$ ，MV
$12 \sin Y=\sin Y+Y(I)$
UY＝St：NY－1．
hatuy．
EMI：

Shapoutive FU＇vC

1．HIMT．HOUT？T•HLOSS，HOXN，HOYDTH，CDMDTOT

Cownc：／ntock4／fF（18）
UI＂ENSION CPL（9），ML（4），HLIN（9），HIM（5），HVIN（5），HV（5），RHO（y）
Un $15 \mathrm{~T}=1 \mathrm{MM}$
RHO（I）＝＝LmO（I，1）
$\operatorname{CDL}(i)=A C P L(I \cdot 1)$
$H L(1)=6 C P L(I, 1) * \times 1(10)$
HLIN（1）$=A C \cdot L(1,1) * T I N$
Un lb J＝？．m

$C D L(I)=C D(I)+4 C P L(I ; J) * x(10) * *(J-1)$
ML（I）$=H \mathrm{H}(\mathrm{I})+A C P L(I \cdot J) * X I(10) * * J / F L O A T(J)$

DO $16 \mathrm{~J}=1$ •州V
MV（I）$=$ atrvo（I．］）
HVIM（I）$=$ AHVO（I，I）
DO $16 \mathrm{~J}=\mathrm{Z}$ ，M
Hy（I）＝HV（I）＋AWV0（IMU＊XI（10）＊2（J－1）
16 MVIN（1）＝HVIN（I）＋AKVO（I，J）＊TIM＊＊（J－I）
DO $14 \quad I=1, \because V$
1BH1N（I）＝HLJ：（I）＊（1．0QUALE）＋HVIN（I）＊QUALE
$T K=X 1(10)+273.16$
KATCL＝EYO（ APKI
－F 0 1／RC／TK）＊x1（1）＊x1（6）／X1（12）

FF（1）＝YIU（1）＊FEEUR－Y（1）＊VF－RATE1－？．＊（RATEC＋RATE3）
$F F(2)=-Y(2) * V F+24 T E 1$
$F F(3)=Y I V(3) * F E E D R-Y(3) * V F+R A T E Z$
FF（4）$=0$ ．
$F F(5)=-Y(b) * V F+R A T E 3$
FF（l）$=0$ 。
［0 12 ＇$J=1,5$
25 FF（12）$=F F(12)+(F E E D マ * Y I N(J)-V F: Y(J)) / O H O(J)$
$X C=X 1(2)+X 1(5)+X 1(14)+X 1(17)$
$F F(6)=-$ RATE1－RATE 3
$F F(7)=0$.
$F F(\xi)=D A T E 1+D A T E 3$
FF（9）$=0$ ．
RMXCD $=0$ ．
HRXUTM＝0．
HI：T＝
MClTOT＝0．
100 $20 \mathrm{~J}=1 \mathrm{~mm}$
RA．xCD＝2以スCD＋x1（J）＊CPL（J）

Un 2？J＝1，MV
HTAT＝HINT＋HIN（J）＊FEFDD＊YIN（J）
？H（\｜ITOT：＝HOUTOT＋HV（J）：Y（J）＊VF
$v a=x 1(1 \subset) * 1.05 * 1000$ ．
rail＝TIN
JF（VS－150．）50．00．51
$50 \quad U A=1 J(j * \Omega F(V \subseteq)$
Gп TO 65
51 IF (VS-172.4) 52.52.53
$52 \times 12=1.3 / 50)+(V S-150) /$.
$U \subset 1=1 . /(1 . / U 0+16.4 * A L O G(x P / 1 \cdot 125))$
Uん=1J(1*)50.4+(1S1* (AF (VS) - 150.4)
GO TO GS
$53 \mathrm{lF}(V \mathrm{~S}-1 甘 7.4) 54,54,55$
$54 U \wedge=11035150.4+(A F(V S)-172.4) /(1 . / U 0+4.74)+2 ? .4 /(1 . / U 0+4$.
GO $T 0+5$
55 IF (VS-212.?) 56.56 .57
$56 x 0=1.0750-(v 5-137 \cdot 4) / 91 \cdot 6$
US $3=1 . /(1 . / U 0+4 .+16.4 * A L O G(X R / 1.125))$
$U A=110 * 150.4+22.4 /(1 . / 10+2)+.10.9 /(1 . / 100+2.37)+(A F(V S)-183.2) *(143$
6п 7065
57 UA= $=00 \div 150.4+\bar{c} 2.4 /(1 . / \cup 0+4)+.10.9 /(1 . / 110+4.74)+29 . /(1 . / 4(144.44)+$
1Un: (AF (VS)-212. 2)
$6514 \cap 5 S=11 A *(x 1(10)-T O T L)$

FF (10) $=(4 I N T-H O U T O T-H L O S S+$ HRXN-HIXOTH)/RNXCP
CPWDTDT=FF(10) \# 二MXCD
FF(il)=0.
i) $\cap 26 \quad J=1 \mathrm{~cm}$
$25 F F(11)=F F(11)+F F(J)$
On $27 \quad \mathrm{~J}=13 \cdot 17$
$J J=J-12$
$27 F F(J)=Y(J J) * V F$
$F F(1 \Omega)=V F$
RFTURN
ENT

FIMCTION AF（VS）
 1\％VS：： 4 ぞTリが，
ENO

.2 Input Lata for Program MODEL

$$
\begin{aligned}
& \text {-11.44345E-03-0.15363Eー05 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } 0.457 \text { FLE-03 } 0.3144 \text { 5F-07 } \\
& \text {-0.4ソ0005-03 } \\
& \text { - 0. } 275 \text { OME-02 } \\
& \text {-1.7心て365-03 } \\
& \begin{array}{r}
-0.34601 F-06 \\
0.72924 t-05 \\
0.170 .36 F-0 b \\
0.34236 F-05 \\
0.11012 F-04 \\
0.267 .26 F-05
\end{array} \\
& \begin{array}{rr}
10.103 n 4 S-02 & 0.26726 F-05 \\
-0.26 .272 F-06 & 0.20030 F-04
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 0.36300 E+00 \quad 0.33973 F-03 \\
& 0.235595+00 \quad 0.67200 E-03 \\
& \begin{array}{lll}
0.42000 E+00 & 0.10200 E-05 \\
0.4005+00 ~ & 0.37500 F-65
\end{array} \\
& 0.345015+00 \quad 0.37500 E-65 \\
& \text {-0.6ご110E-04 0. 大ソ?90E-00 } \\
& 74.03147 .2169 .14
\end{aligned}
$$

ア¢ヶ．	374.1	193．8	35% \％
11.329	0.344	0.243	0.2 кь
192．3．7	22天．43		
〕243．1	212．19		
1rater	228．0	\cdots	
1！5］．3	227．43		
1745．2	211．67		
47470	5\％30．	1.987	
0.07037 C	0 。	0 ．	0.57696
1.0	0.	0.27093	1）．
4.1004	1.	10．873	0.0193
5.	0.02 ¢勺37	1.	0.
r ．	3.4135	6.9154	1.

$Y(\ell)=Y(3)=Y(4)=Y(5)=V D A T E=$ SHAY $=10 Y 1=\quad 0 Y=$

1．5n	0．以2＇	762 。	0.02057			
	－7ヶ4134	0 ．	0 。		－2n40xy	． 36.4 ：34
1；5．4．1	2．60457	.15603	． 0.05494	－くでy710	－1204N1	－（10）${ }^{\text {an }}$
．4x141						
－4ヶ3ヶ75	－15375	．019501	．01203＊			
1.	0.14	0.	0.			
－入っ。	21317.	0.16	0.42			
4 。	$\bigcirc 3$.	1）． 000 x	1.11001			

1．73h	－126	765．	－11）			
．07424．	－967ス16	－ 0		． 64147	－cosis41	．302 $2+3$
1）．5．5	？．ACM	.16 .31 O	． 077472	．271134	－13224M	－いしここのーフ
． 43×14	．．．					
－ハ0ン4ら7	． 2753.45	－0ア0y 0	－10かった	．		
0	0.14	0.	0.			
－「n．	？こうい。	0.10	． 34			
4.	＜ 7 。	0.0 OH	0.0001			

1．406，	－K26	76：。	．0\％coser			．
．12\％607	－Cusyers	． 0	． 0	． 4038808	． 247807	－ 2203005
110.03	2．65016	.1777	． 040962	． 095008	． 04495	．110334
－1364		－				
． 44.4 95］	.300241	．02546号	．012！，43			
\bigcirc O．	0.14	0.	0 ．			
$\therefore<0$	P120i）．	0.16	－fis			
4.	y！．	0.00 k	0.0001			

1．5575，	．826	760.7	． 016 bay			
． 114545	． 874.351	． 0	． 11	． 755238	． 263400	－ 2 in 2 y
119．4t）	2．570？		． 043488	.103020	． 050849	．102750
－シ0nが号						
－hatib	． 19.5115	．025902	．015354			
f.	0.14	0.	0 ．			
的0。	21200.	0.16	． 60			
\＆	96.	0.008	0.0001			

1．19？	． 825
． 110475	． 858609
118．4h	2.54249
「．2057h	
－cismest	.24714
\because	0.14
$\beta \cdot{ }^{\circ} 0$	21200.
4.	87.

764：5

.016747
.003932
.042947
.000938
0.0
0.0001

1.147	.026
.04743	.905229
114.34	2.53739
.43091	
.4545	.240426
$?$.	0.14
470.	21200.
4.	83.

76．	．012041
0.	． 00246 C
． 155 E 3	． 053337
． 010344.	． 008838
0.	0.
0.15	． 55
0.00%	0.0001

.733085	.209716	.276230
.13556	.085554	.002502

750．．010tロこ

1．465	． 225
－120ヶ¢ 7	． 941537
170.77	¢． $68 \rightarrow 72$
． 31.45	
	． 154034
0	0.14
$\therefore \therefore$ 。	21こけ曲
4.	41.

－ 1
.16444
0 0．
0.

$$
41 .
$$

.00484
.052011
$.0204 m 4$
0.0
0.0001
0.14
.00484
.052011
$.0204 m 4$
0.0
0.0001
$0.00 \mathrm{O} \quad 0.0001$

1．29	．ṅs
．140ヶ4io	－以吅？から
$11=.11$	Cotiota
．13814	
－＋r？la	
\therefore－	0.14
－in．	21c01．
4.	4 ¢．

$7.9 .3 \quad .700 \times 1 \mu$
.0 ．0017ヶн
$.765 \%$ ？
．203345 ．2345，7
－106ロビ
． 103 Cl 1
－0．48．74
． 111 Catal

4.

4．
－004～4
.71445
.27937 ．247
$.10447 \pi \cdot 104305 \cdot 114213$

$$
1
$$

$$
\because
$$

－10．0ro
0.10.
0.001.
0.
． 1.5
0.0001

42

J．b0is	－ $\begin{aligned} \text { 2 }\end{aligned}$	763.5	． 017496			
－143547	－42htsl	－ 0	． 000644	.726725	－ 23663	
110．x	\therefore dichll	． 175 －	－ 042055	.122646	．068983	－10くら00
－i3＊小入						
－ $964+50$.150324	.011113	.012366			
\because ．	0.14	0 ．	0 。			
ッンリ。	21200.	0.0000001	i）．			
4.	83．	0.012	0.0001			

```
C.2.3 Results form Program MODEL
    Each integration step contains forty two instan-
taneous quantities: They are defined as follows.
X(1) to X(9) = liquid mole fractions for components
    1 to }
RM(1) to RH(9) = liquid molal quantities for components
    1 to }
Rin(10) = inquid temperature
RN(11) = total liquid molal quantity
RM(12) = clear liquid volume
Ri(13) to Ruf(17) = accumulated vapor molal condenaste
                    for components 1 to 5
RM(18) = accumulated total vapor condensate, g-moles
Y(1) to Y(5) = vapor mole fractions for components
    1 to 5
V RATE = vapor flow rate, f-moles/min.
SUNY = calculated total vapor mole fraction
DY1 = deviation in total vapor mole fraction right
    before the last iteration
DY = deviation in total vapor mole fraction after the
    last iteration
HINT = total feed enthalpy, cal/min.
HOUTO = total outlet vapor enthalpy, cal/min.
HLOSS = convection heat loss across the reactor wall,
    cal/min.
HRXNS = total heat generated by chemical reactions,
    cal/min.
```

$$
\begin{aligned}
& \text { HDMDT }=h_{s} \frac{d I T}{d t} \text { shown in Equation (4-132) } \\
& \text { NDHDT }=M \frac{d H}{d t}=M C_{p} \frac{d T}{d t} \text { shown in Equation (4-132) }
\end{aligned}
$$

IVITIAL COARITTOYG RASED ON ADJISTFO TIME

TIVF: 4.00 WIVUTES

NIMAER OF ITERATIOAC= 14

TIVE $=8.00$ MIN!ITES

MIMMRER OF ITERATIONS $=11$

TIWF = 12.00 MTVITTFS
 NIIMRER OF ITEDATIONG= 10

TIME $=28$. OO MINUTES
NIJMPFER OF ITERATIONS $=9$

-TIME= EO.OO HINHTES ... NUMRER OF ITFRATIONS= 7

-TIME= - AR.OO MTVUTFS.-

NIMREQ DF IYEQATIONS=. $\%$

LME $=76.00 \mathrm{MIVUTFS}$

\cdots

NIJMBER OF ITEFATIOAS=-• 7

On(1) =	.61403
Qut 2) =	. 02216
$\operatorname{RM}(3)=$. 99535
Pra (4) =	0.00000
$\operatorname{Pa}(5)=$	- 00969
2M(6) =	. 19307
Qu(7) =	- 26468
$B M(8)=$	-91475
QM(9) =	0.00000
4nuto $=$	368.999

RH(10) $=$	117.18836		$Y(1)=$. 58594
PM: 11) $=$	2.91775		$Y(2)=$. 04205
QM(12) =	. 14274		$Y(3)=$		-29159
PM(13) =	1.00499		$Y(4)=$.01518
QM(14) $=$	$.74720^{\circ}$		$Y(5)=$		-01517
PM(15) $=$. 72993		Q \triangle TE $=$		- ? $79+2$
DM (16) =	. 04648		Sumiy =		- 4.9093
$\operatorname{PM}(17)=$. 03971		n) 1 1=		.10759
$P M(18)=$	2.55747		I:Y $=$		- 01007
HLOCS=	55.13	HRXMS:			

Hiad = $\quad-.067 \quad$ MOHDT $=\quad=3.21 ?$

TIVF =--80.00 MINITFS

IVITIAL CONOTTIONS PASFD ON ADJUSTFO TIME

TIME = 4.n पINITFS

TIMF = 8.OO MTNUTFS NIMAFR OF ITERATIONS= 9

TIME= I2.月0 MINUTES

NIMAFR OF ITFRATIONS $=\alpha$

-…-...--. -
TINE 20.00 MIVUTFS

NUMREG OF ITERATIDNS = 6

TIMF = 24. กO WTVITES NUMPES OF ITFQATIONS = 7

TIVE= 23.nO YINITES

NIJMRER OF ITERATIONS $=7$

TIMF $=44$. OCMINUTES NUMPER OF ITERATIONS = 7

- मI:

TIVE= 68.00 WIVITFS
MIMAEE OF ITERATIONS $=7$

TIME = 80. 0 HIVITFS NHMBEO OF ITFOATIOAG:= 7

x \%	$11=$. 24519		Qus	$11=$, 81033	Quidio; =	109.45751	$Y(1)=$	- 016197
$x($	2) $1=$	-00447		QV:	$21=$.02932	pria) $=$	3.30503	$Y(2)=$.06431
x !	3) $=$. 35500		GM:	$3!=$	1.17329	Ra(12.2$)=$. 1 6.606	$Y\{3\}=$. 2735
x ¢	:1 $=$	O.ranon	-	QM:	4) $=$	0.00007	Q*(13) =	1.41670	$Y(4)=$	-105r, 3
$x!$	$-1=$. 0610.7		Qul	$51=$. 1005	R'0 14) $=$	- 5raise	Y! $31=$	005903

${\underset{\sim}{3}}_{5}^{5}$

IVITIAL COMIITIONS RASED ON ANJUSTEO TIME

	y_{i}	$11=$	-15489	Q41	1) $=$.45307		QM(10) =	1:8.03000	$Y(1)=$. $211 \% 0$
	$\times 1$?) $=$. 04459	Qul	2) $=$. 12761		QM(11) $=$	2.25516	$Y(2)=$	044945
	$\times 1$	3) $=$. 34049	Qul	3) $=$.90809	--	Q* (1) $=$.17770	$r(3)=$	-30024
	$x 1$	4) $=$	ก.0nпon	RM(4) $=$	0.00000		DM(23) $=$.04095	$Y(4)=$	-02587
	$\times 1$	5) $=$	0.00000	RM 1	5) $=$	0.00080		am $(14)=$. 0950 i	$Y(5)=$. 01254
	$x 1$	t.) $=$	-2火!5A	RM:	6) $=$.80 .390		$\operatorname{ran}(15)=$	- 04500	VDATS =	. 02010
	$x:$	$71=$	- OHAP3	RM1	7) $=$. $247{ }^{\text {cil }}$		172: $(16)=$. 00356	SUAT $\mathrm{Y}=$	1.00000
	$\times 1$	-) $=$. 07 ¢\% 34	D'11	(8) $=$. 2736 K		RM(17) $=$. 00107	nY1 $=$	0.00000
	$\times 1$	4) $=$	0.0 OnO)	RM (9) $=$	0.00000		DM(1A) =	18560	DY	0.00000

TIUF = 4.nO MIMITES

M940T $=67.502$

TIME $=8.00$ MTNUTES
NUMAER OF ITFQATIONS $=9$

NIMRER OF ITERATIONS = B

TIUE $=20.00$ पIMIITFS
NIIPARER OF ITENATIONS= T

TVITIAL COARTTTOAS RASED ON ADJUSTED TIMF

$x 1$	$11=$.13013	RM1	1）＝	． 33445
x	i）$=$	．14457	OH1	2．）$=$	－11455
x	3）$=$	． 34015	P4，	3）$=$	． H 7476
$\times 1$	4）$=$	n．00rono	QM（	4）$=$	0.00000
$\times 1$	5）$=$	O．nñon	RM！	5）$=$	0.00000
$\times 1$	A．）$=$	－p4773	DM	6）$=$	． 76524
＊	$7)=$	． 10749	Dill	$7)=$	． 26.341
$\times 1$	$\therefore 1=$	－ 04493	Q $\mathrm{Al}_{1} 1$	（8）$=$	－21430
	Q）$=$	n．norno	Qa	9）	0.000

RM（10）＝	119.46900	$v(1)=$	． 11159
¢M（11）$=$	2．57020	$Y(7)=$	．64257
RM（12）$=$	－152？	$Y(3)=$	． 10508
$\operatorname{RM}(13)=$	． 04344	$Y(4)=$	－0c5？ 11
RM（14）＝	．10302	$Y(S)=$	． 01535
RM（15）$=$	－ 05784	VRATE $=$	－01655
QM（15）$=$	－ 00276	SIIMY＝	1．00000
$\operatorname{RM}(17)=$	－ 00055	ПY：$=$	0．0n00n
RM（14）$=$	70044	by	0.00

\square
TIMF＝4．nO WINUTES
NHMEER OF ITERATIONG＝

TIVE＝12．nח MINIITES
NIBMRER OF ITFRATIONG＝ 7

（ $(-1)=$	． 15914	DM1	1）$=$	． 43279	RM（10）$=$	．${ }^{2}$	$Y(1)=$	－35975
$x($ 「）$=$	－ 03675	D．A 1	2）$=$	． 09993	RM（11）$=$	2．7195＂	$Y(2)=$	－ 37023
$\times(3)=$	． 34741	QM ${ }_{\text {P }}$	3）$=$	－ 0.3445	QNA $(12)=$.16350	$Y(3)=$	－25597
$x(4)=$	n．0nono	R＊）	4）$=$	0.00000	QM（13）＝	－ 22023	$Y(4)=$	． 0130%
$\because(5)=$	． 00199	PM	5）$=$	－ 00542	$\operatorname{PM}(14)=$	，こ0554	$Y(5)=$	．0090\％
$x(H)=$.84409	QMI	（6）$=$	－6FATS	EM（1ら）＝	．？ 14 ？ 4	VAATE＝	－1．277
－ （ $_{\text {（ }}$ ）$=$	． 04645	Q． 41	$7)=$	－ 2 F .341	日M（15）$=$	－ $00 \cdot 44$	cturt＝	． 24.906
$11.5=$	． 11.15	241	（8）$=$	． 31777	0＊（17）＝	－リaで・	ワッ：	－．0193s

TIWE＝2H．חOMINTES

NIIMRER OF ITERATIONS＝ 7

$\times(1)=$.10543		QMI	1）$=$	． 53	11	$\operatorname{RM}(10)=$	115．31383		$r(1)=$		4593		
$x(\overline{\text { Cl }}=$	． 02714		RMI	2）$=$	． 07		RM（11）＝	2．462＊？		$Y(2)=$		． 251.75		
$x(3)=$	$.34 \times 30$		RMI	3）$=$.997		$\operatorname{PN}(12)=$	． 16317		$v(3)=$		25：32		
$\mathrm{Y}(4)=$	n．00000		口丩f	4）$=$	0.00		QM（13）＝	－ 29010		$Y(4)=$		－01234		
$\times(\mathrm{F})=$.0031 h		Qul	5）$=$	． 00		PM（14）＝	－ 2.30 .34		$Y(5)=$		C）．677		
$\times(\mathrm{H})=$	． 19541		Qul	6）$=$	． 55		RM（15）$=$	． 21645		QATE＝		－ $0: 4 \times 3$		
$y(7)=$	．109201		Qul	7）$=$	－ 26		$P M(16)=$	． 11196		GlMy＝		－＋095		
$x(-4)=$	． 14×15		2M1	R）$=$	． 42		$\operatorname{RN}(17)=$	． 0065		1）$\div 1=$		00943		
$x\left(\begin{array}{c}\text { ¢ }\end{array}\right.$ ）$=$	ก．00ッกn		211	9）$=$	0.00		$2 \mathrm{M}(1-3)=$	．+ ＇4418		DY＝		C，9007		
－！＇T 三	＞c1．21？		T？＝	32：	794	HLOSS $=$	103．451	Hexas＝	115.39%	： 17			v240t＝	－15．72．3

TTVF=--6B.nO NTNUTES

nimber of iterations = 7

NHMRER OF TTERATIONSE 7

－TIVE＝－－92．nn UTNUTES
NIMAFR OF TTERATIONE＝ 7

TIUE＝－ 96. no uJNJTFS

$y(1)=.23749$
.23794
$x(-3)=$－36i43
$x(a)=r .00 f 09$

$x(4)=$ ．0．74． 1
Y $(7)=$ ．nがな4
（ ）＝・テリンのて

Q M $^{\text {（ }}$	1）$=$.74410
DM 1	2）$=$	． 03375
पus	3）＝	1．16244
Cid	4）$=$	0.00000
D： 1	$5)=$	－0n7ヶ\％
Qrs	6）$=$	－303？5
Difl	7）$=$	． 26341
DM\｛	$81=$	－ 6rinaz
2001	$91=$	0.00000

RM（10）$=$	110.13569
$\operatorname{RM}(11)=$	3．19505
PM（12）$=$.15031
RN（13）$=$	1．3s＋17
PM（14）＝	－ 01743
QM（15）$=$	． 75070
PM（！	－ 23.34
听住隹＝	－กッチ16
日＊（ 12 H$)=$	？．？itha

$Y(1)=$	－67？ 24
$Y(2)=$	cri．237
$Y(3)=$	－ 3 ソプ
$Y: 4)=$	－00478
$Y(5)=$	－0\％म：\％
V TCTSE	－1030ヶ3
slive＝	，0400\％
Пソ？＝	－．¢0ヶ4 3
$9 \gamma=$	－，10，i－i］4

IVITTAL CONATTTONS RASED ON ADJISTED TIME

NIMAEQ OF ITEQATIONS $=5$

TEAE = 12.חO MTAUTFS
NIIMAFR OF ITEPATIONS= B

TIUE $=\quad 29.00$ MTVITFS

NIMBER OF ITERATICNE= R

TTWF $=-{ }^{-69 . \text { MO MTNIITES }}$

IIIMAFR OF ITEEATIONS＝A

$x(1)=$	．14\％ア3	QMS	1）$=$	－ 59919	QM110）＝	113．57115	Y（））$=$	． 51544
$x(2)=$	：01．947	口M（	？）$=$	． 96026	吅（1ij＝	3.01767	Y（こ）$=$	－17304
$x(3)=$	－34155	DM1	3）$=$	1．09045	QM（1）${ }^{\text {PM }}$＝	－15：16	$Y(3)=$	－21512
$x(4)=$	n．0rancor	PM：	4）$=$	0.00000	PM（］3）$=$	－6571？	$Y(4)=$	． 01556
ソ ジこ	－irichat	241	（1）$=$	－14370	pea（1）$=$	－5n9\％	Y（3）$=$	－ 01640
：\quad－－	，： 674	－41	6：$=$	－${ }^{2} 25,5$	Pre（！！）＝	－ 4564	viste	－62101

IVITYAL CONDITTOAS RASEO ON ADJHSTFO TIME

	$x(i)=$.17454	RM（	1）$=$	．314n2	$\operatorname{RM}(10)=$	118．34000	$Y(1)=$.12502
	$x(2)=$	． 03454	Dus	C）$=$	－08763	PM（11）$=$	2．53739	$Y(P)=$	． 51585
	－－ 3	.35676	OM（	3）$=$	－905？3	PM（12）$=$	． 15553	$Y(3)=$	． 24043
	$x(4)=$	©．00000	QMi	4）$=$	0.00000	RM（13）$=$	． 05334	$Y(4)=$.01034
	$x(5)=$	000097	RMI	5）$=$	． 002746	RM（14）$=$	－ $1: 556$	$Y(5)=$	． 00936
x	$x\left(\begin{array}{l}\text {（ }\end{array}=\right.$	－20149	EN：	6）$=$	． 7.3 Rワ9	PM（15）＝		VEATF：	． 01.244
	$x(7)=$	－ 0 2フィ5	241	$7)=$	． $2097 ?$	PN（1G）$=$	． 0 へ247	$\operatorname{stmy~}=$	1.00000
	$x(\mu)=$	－10cks	941	8）$=$	． 27474	pu（17）＝	．00154	DV1 $=$	0.00000
	$\times\left(\cdot Q_{i}=\right.$	0.00000	Qid 1	9）$=$	0.00000	RV（18）＝	． 32002	DV $=$	0.00000

TIvE＝ 4.00 WTMITES

TIMF＝12．00．MINUTES
NIMMER OF JTFQATIONS $=8$

	$x(-1)=$	－． 13779 －－	QM：	1）$=$.37157	$\operatorname{RN(10)}=$	117．57141	Y $11:=$	． 29543
	$x(7)=$	． 04740	QMI	2）$=$	． 12783	P＊（11）$=$	2．0．955？	$Y(\sigma)=$	． 42555
	$x(3)=$	． 35719	RM（	3）$=$	．96．320	RM（12）$=$	． 16041	$Y(3)=$	－ 25227
	$x(4)=$	¢．nonfo	QM：	4）$=$	0.00000	PM（13）＝	． 08950	$Y(6)=$	． 02435
	$x(5)=$	－nopak	RMS	5）$=$	－00799	Fi＊（i4）＝	.2450 F	$Y(b)=$	． 011135
	$x\left(\begin{array}{c}\text {（ })\end{array}\right)=$	． 2345 A	QM（	6）$=$	． 63257	PM（13）$=$	－i 2000	VOAYE $=$	． 01357
－	$x(7)=$	． 07777	DM：	$7)=$	－2n07？	cm（15）$=$	－01754	cilMy＝	． 44946
	Y1－：$=$	．14＞91	0416	（8）$=$	． 32375	QN（17）＝	－$\therefore 02 \mathrm{c}$	กy？＝	－ $10 n$ ？

-TIVE $=64$. ON VINHTFS NUMRER OF ITERGTIONS $=6$

FFWE= - 72.0n MIMUTFS..... NIMRER OF TTFRATIONS= 6

TIUE=-76.OOMTVUTES MUMAER OF ITFQATIONS = 6

TIMF= HO. NO AINUTFS NHMAFR OF ITFPATIONS= 6

TINE＝
4．nO MIVUTES
MIIMPFR OF TTEQATIONS＝ 9

	$x(1)=$.13716
	$x(\%)=$	． 042 F 3
	$\times(3)=$	－35151
	$\because(4)=$	0．00000
	$x(5)=$	－90，${ }^{\text {a }}$ ？
	$x(1)=$.	． 24870
	$x(7)=$	．107＋1
	$x(m)=$.11297
	$x(0)=$	0.00000
	$H I \therefore T$	330.473

EN（10）＝	119．347！？
$\operatorname{PM}(11)=$	2．7252？
Qat $(12)=$	． 1640 A
$\operatorname{Das}(13)=$	－ 07579
$\operatorname{PM}(14)=$.14706
吅（15）＝	－1270ヶ
PM（16）＝	－005R1
FM（17）＝	－ 0165
$\begin{aligned} & D M(1 H)= \\ & 253.360 \end{aligned}$	$.40 \div 35$

177．36A

$Y(1)=$.25405
$Y(2)=$.44405
$Y(3)=$.24323
$Y(4)=$.02211
$Y(5:=$.71054
$V \Delta T F=$.01637
$51 M Y=$.44993
$ח Y I=$	-.00740
$D Y=$	-.00007

－－．－
TIME G．OO MINUTES NIIMRED OF TTEQATINNG＝Q

TINE 22．0ロ NIYUTES

NIMARER OF TTEHATIONC＝$=0$

INITIAI COMOITTANS FASED ON AOJUSTED TIME

	$\times 1$	1）$=$	． 11773		2041	$1:=$	－3nヶ大？	QM（10）$=$	115.71000	$Y(1)=$	－ 10936
	$\times 1$	21）$=$	－054 ？？		QMi	2）$=$	－14651	$\operatorname{RN}(11)=$	？．5050．3	$y(7)=$	． 56238
	X \times	3）$=$	． 33714	－	PM	3）$=$	－868ア8		$\cdots .15586$	$Y(3)=$	－ 20193
	X	$4)=$	n．norion		2us	4）$=$	0.00000	DM（13）＝	． 03278	$y(4)=$.02447
	$\times 1$	5）$=$	－nomag		Qup	5）$=$.00147	$\operatorname{PiN}(14)=$	－0ヶ6？	$Y(5)=$.01246
	$x($	6．）$=$.29784		RMS	5）$=$	． 76575	PU（15）＝	． 01058	VRATE＝	－02032
	$\times 1$	$71=$	．10434		Qus	7）＝	－2．82．34	ри（15）$=$	．0n34 6	Cl｜MY）$=$	1.00000
	$\times 1$	H）$=$	－ 04009		DM：	8）$=$	－？ 3453	pN（17）＝	0.000100	DY］＝	0.00000
	$\times 1$	C）$=$	0．030）		PM（	$9)=$	0.00000	PM（19）＝	． 23304	DY＝	0.00000

——．．．．．．．．．．．．．．．．

TIME＝ 4.00 MINUTFS
NIMRER OF ITERATIONG＝ 4

TIE＝12．nO MTVITFS
NIJMRER OF ITERATIONS：A

$1 \quad 7=$
$\times 7)=$

241	1）$=$	． 504075	Pailf）$=$	112．51390		$Y(1)=$	． 37943
241	2）$=$	－13＞6， 7	$0 \times 11: 1=$	3.05270	－	$Y(2)=$	． 32118
ロul	3）$=$	1.10794	on：12：$=$	． 26.015		$Y(3)=$	． 24455
口is！	4）$=$	0．0ロッロの	$\because *(13)=$	． 296446		$Y(4)=$.03948
2MI	5）$=$		Pu（1）$=$	． 51373		$Y(5)=$	－015？1
2M1	$51=$	，3：${ }^{\text {a }}$ ，	$p: 4(15)=$	． 27735		VQATE $=$.01919
QM1	$71=$	． 20.534	pw（16）＝	． 04197		SITUY＝	.99794
241	（）$=$	．64icif	DM（17）$=$	． 01375		TY？$=$	－．00n25
Q4i	9）$=$	0．innon	QM（15）＝	1．041？		TY＝	－． 00005

TTNES EB．NC UYMITES

$x: 1 ;=$	－9407	$0 \cdot 91$	1）$=$	． 6.3447	P4： 0 ： P	139，013：5	$y(1)=$	．44357
$y: 2:=$	－0．3．3：	Cul	2）$=$		0：11：$=$	$3,2<4 \geqslant 5$	$y(2)=$	－19「？
$\times(3)=$	－1754	Did	3）$=$	1．71194	Q： 42 ）$=$	＝159\％	$Y(3)=$	－ 26010
$\pm 14)=$		R＊ 1	$41=$	O－nction	स＋13）＝	－ 53.98 .4	$\because(4)=$	－斤36！ 3
＞${ }^{-\cdots:}$	，\rightarrow 为	20.1	$5:=$	－ 03572	が： $1 \times$ ；	－¢r：$\%$ \％	$\because!5!=$	
$\therefore \div=$	\cdots \％ 3	2：1：	$H=$	．$\because=04$	0．： 2.10	Sir．3	$6: 118=$	$\cdots{ }^{\text {a }}$

INTTIAL COMIITIUNG PASED ON ADJUSTED TIME

TI'E= R.ПП M! V!!TFS

NUMRER OF TTEPATIONS= 6

TIMF = 1?.ON MINITFS NIMMEQ OF ITFOATIONS= 8

	. 1	I) $=$. 17506	DH1	1) $=$. 54401	RM(10) =	110.90169	$r(1)=$. 35137
	$y 1$	$(-)=$.07523	QMI	2) $=$. 23.379	R"(11) $=$	3.10761	$Y(2)=$. 41095
	$\because 1$	3) $=$	- 3.3 ¢ 4 ?	DMe	3) $=$	1.03581	$P M(12)=$. 18745	$r(3)=$. 20099
	X 1	4) $=$	\therefore ancmo	Qus	4) $=$	0.00000	Ris(1) ${ }^{\text {Pa }}$ =	.07549	$Y(4)=$. 024.59
	$\times 1$	E) $=$.00379	Qidl	5) $=$. 11019	QA(14) $=$	- 16.624	$Y(5)=$.71197
	*:	Ei $=$.14]?5	D.A 1	61)	. 59433	Qat (15) =	- 05020	VOATE $=$	-4!15!
	x	$\cdots \cdots$. $007=3$	EM:	$71=$.29463	甠(15) $=$	Cnnet?	stary =	-464.7
	ri	- -	2305	241	P) $=$	c. 1145	DM(17)=	-03:5	[JY! $=$	-anois

$-$

AUMRER OF ITERATIOAS= T

0．3．1 Erogran List fon Procmem Chnifox

PPGIFAAM CHEMACT（TNPUT，OUTPUT，TAOES＝INP：IT TAPEO＝OUTPUT）

DIAFMSION DEV（？+0$)$ ©TITLE（20）
$R=\triangle 0(5.103)(T I T L E(I), I=1 \cdot 20)$

g Fownat（sIS）
N：！＝M\％Vr
$0010 \quad \mathrm{I}=1, \mathrm{KK}$
BMAX（I）$=10000$ ．
10 B $\because I N(I)=0$ 。
IF（KK．FQ．K）GO TO 60
$K K]=K K+1$
Un 31 I $=K K I$ ，K
GKIN（1）$=-100$ 。
$3 i \operatorname{Kax}(I)=1000$.
60 RFAD（ $5 \cdot 14$ ）（E（I）：$I=1, K)$
$B(K+1)=0$ 。
NOOMP）$=\mathrm{NCOMF-1}$
70 DO $10001=1$ N

Un 6\％！$=1: N$
$x c=0$ ．
$0083 \mathrm{~J}=1 \cdot \mathrm{NCOMD1}$
$83 x \subseteq=y S+x(10, J)$
6．$\cdot \times(I \cdot \| C 0 \times 2)=1 \cdots \times S$
IF（JMUMY FO．NCOMF）GO TO 80
NCOMPえ $=V C O M P+1$
DO $63 \mathrm{~J}=\mathrm{NCONP} 2 \cdot \mathrm{ID}$ UMWY
63 FFRO（5．ly）$(X(I, J), I=1, N)$
［016 64 $I=1, N$
DO $64 \quad J=$ VCONP2 1 IDUM：MY
$64 \times(I \cdot J)=x(I \cdot J)+273.16$
14 Fr，ment（BFlo．0）
80 On．31 $1=1$ ，UN
H1 Y（J）$=$ ALOG（Y（I））
READ（5．14）STUEVS
Flul＝0．
$F \operatorname{L} \cdot \mathrm{~N}) \mathrm{S}=0$ 。
TAl！＝0．
LPSIL：$=0$ ．
PHJ！M $\mathrm{H}=0$ 。
INDEX＝0
Do $121=1$ K

W．FTTE（6：100）

30 CAl．L WSOLVF
STHEV＝CのRY（PHII／FLOAT（1：M－1））
IF（INOEX．GE WSET ）KODE＝－I

JF（KOOF）40．40．37
27 IF（INOFX．LT．NSET）GO TO ． 30
40 UO $\bar{C} 5 \mathrm{I}=1 \cdot \mathrm{~N} N$
DFV（I）＝YCAL（I）－Y（I）
2．CONTIMUE
WFITF（6．203）（TITLE（I），I＝1．20）
03 FOPMAT（1H）／／1X，20A4）
WRITE（0．104）

$17 Y$ ，4！TSYS， $7 X$ ，4HTSUP／）

OS FOロNAT（1x．15．7F11．5）
W』ITF（6．120）

$16 x \cdot 5 H L N G C Z \cdot 8 X \cdot 3 H D E V /)$
D0 $92 \quad I=1 . \mathrm{s}$
$L .1=I+N$

94 FOAnAT（1x，I5y of 11．5）
wFITE（6．1え2）
 169．5HLNGC4．$\because X+341) E V / 1$
DO 96 J $=2 . \mathrm{a}$
$L Z=I+? * V$
$L 3=I+3: N$

DO 82 I＝，NN
$Y(I)=F{ }_{n} P(Y(I))$
GZ YCALII）＝EXO（YCAL（I））

$\mathrm{D} \cap \mathrm{B4} \quad \mathrm{I}=1 \mathrm{~N}$
$L I=I+N$
$L \ddot{r}=I+? \because v$
$L 3=I+3 \% N$
 IYChL（L3）
93 FnPMAT（1X：15，EF11．5）
WRITE（b．lOE）STUEV
10ß FONAAT（IHI／／20Xe1GHSTANUAKD DEVIATION＝，F10．5／／20X，
1LGHFITYEO CONSTAUTSI
WGITF（6，114）（I•B（I）•I＝I，K）
114 FCDMAT $(22 \mathrm{X}, 2 \mathrm{HF}(\cdot I 2 \cdot 2 H)=, \mathrm{F} 13.5)$
77．RE．LD（5．$\dot{y})$ IDT
GO TO（50．60，70．30．90），1DT
GO STOP
ENT

SLIFHOUTJMF RSOLVF．

DTMFNSTON 7ETA（240），LLPHA（24），AJACOE（240，24），G（24），A（24924），

$k: 1=k+1$
IF＇（FLAVDA．LE．O．0）FLAMOA＝C．OD
IF（INOFX．$\because T .0$ ）GO TO 300
IF（FNU．LE．O．0）FNU＝10．0
IF（TAU．LE．O．0）TAU＝0．001
IF（EPSILG．LE．0．0）EPSTLA！＝0．00002
IF（FNYMIN．LT．O．0）PHIMIN＝0．0
$K F Y=0$
DO 100 J＝1．K
100 IF（1BCOOF（J）．NF。0）KEY＝KEY＋1
JF（KFY．G7．0）GO TO 101
KONE $=-3$
GO TO 1500
101 JF（N．GF．KEY）GO TO 10 ？
KONE $=-\boldsymbol{Z}$
GOTO 1500
102 IF（INGEX．GT．O）GO TO 300
［00 000 ！：＝1．K

GO TO 400
300 IF（PHIMINOGT．DHI．AND．INDEX．GT．1）GO TO 400

IE（IKCr！！E（J））301．307．303
30）CGLL OEجlV（J，JYEST，R．ZETA）
U0 $302 \quad i=1 . N$
30% AJACO：（IPJ）＝ZETA（I）
IF（JTEST．NE．－1）GO TO 307
If－Co！st（J）$=1$
303 1）FT $=0.001 * a R S(8(J))$
IF（ABG（rs（J））．LT．I．UE－04）OEL＝0．00001
IF（P（J）＋DtL．LE．GMAX（J））GO 10304
$A L D H A(J)=E(J)=D E L$
DEL＝－IEL
Gの 10305

```
30& ALVHA(J)=5(J)+DEL.
```

sos CALI F!l:1C(FLPHA= ZETA)
hLaHA（J）$=$ G（J）
UO $306 \mathrm{I}=1$ • N
306 A， $1, \mathrm{COH}(I \cdot J)=($ ZETA（I）$-7(I)) /$ DEL
307 CONT INUE
400 Li， 406 LL＝1，K
If（15r．OjE（LL））401•404：401
$4016(1 . L)=7.0$
0）40？JJ＝I N
$407 \quad G(L L): R(L L)+A J A C(i f(J J, L L) *(Y(J J)-7(J J)$
［10 $403 \mathrm{JJ=1,K}$
A（LL．JJ）－ 1.0
OO $403 \quad v: 10 \mathrm{~N}$
403 A（LL，JJ）＝A（LL：JJ）＋AJACOB（1．M．LL）＂AJACOシ（MN：JJ）

IF（f．（LL．LL）．GT．］．OE－20）GO TO 400

```
04 [On 405 JJ=1,K
```

0 万 $n(L L . J J)=0.0$
$A(L L, L L)=1.0$
$G(L L)=0 \cdot 0$
06 CNNTIN.UE
GNORH=0.0
DO $407 \mathrm{I}=1, \mathrm{~K}$
07 GROMRM=GVORM+G(I)**2
Un $500 \mathrm{I}=1, \mathrm{~K}$
000 OHEGA(I)=SGFT(A(I•I))
LO 501 I=laK
$G(I)=G(I) / O M F G A(I)$
Un $501 \mathrm{~J}=1 \cdot \mathrm{~K}$
i01 A(J.J!=A(I,J)/(0MEGA(I)\&OMEGA(J))
FLGM=FLAVDA/FNU
ITEP: $]$
GOTO 503
,02 $\mathrm{F}_{\mathrm{L}} \mathrm{AM}=\mathrm{FL} \mathrm{A} \times \mathrm{FNU}$
$03 \mathrm{DO} 504 \mathrm{I}=1 . \mathrm{K}$
604 A(Is I) =A(ieI) +FLA4
[0) $50 \mathrm{~K} \quad \mathrm{I}=1, \mathrm{~K}$
DO $505 \mathrm{~J}=1 . \mathrm{K}$
505 ASCAL.F(T, J) $=A(I, J)$
506 ASCALE(I,KDI) $=G(1)$
DO $603 \mathrm{~L}=1, \mathrm{~K}$
$L_{L}=L+1$
Un $600 \mathrm{M}=\mathrm{LL}, \mathrm{KPD}$
GOO ASCALF $(L, M)=A S C A L E(L, M) / A S C A L E(L, L)$
DO $603 \quad n=1 \cdot K$
IF (1-4) 601;603,601
6010060 ? J=LL, KPl
t0z $\operatorname{ASCALE}(x, J)=A S C A L E(M, J)-\operatorname{ASCALE}(L, J) * A S C A L E(M, L)$
603 Cont I vue
(M NOR $=0.0$
DEPPOT: 0 0.?
DO 701 I=1.K
DFLTA(I) = LSCALE(I,KPI)/OMEGA(I)
IF(IGCGOE (I).EO.O) GO TO 700
ALOHA(I) =AMAXI(RAIN(I), AMINI(FMAX(I)•R(I) + DELTA(I)))
700 DLAORM=IT: NOP: + DELTA!I)"*?

701 DFLTA(I) =ALPHA(I)-R(I)
COSGAN=0SPFOD/(SQFT (DLAOP: (GNORM))
$J \cap U A D=1$
IF(COSGAM) 800:801.801
Y00 JnUAD=?
$\operatorname{CosGA}=-\cos G A M$

GOO CALL FUNC(ALPMA, 7ETA)
x ロッI $=0.0$
DO GO1 I=1.N
$X P H I=Y P H I+(Y(I)-Z E T A(I)): 5 \%$

```
    ComTINAUE
    STNFV=SO!T(XPHI/FLOAT (1,-1))
    IF(STOFV.LT.STOEVS) GO TO 1400
    IF(INMFX.GT.O) GO TO 1000
    KOOE=K
    GO YO 1404
000 IF (XPHI.GE.PHI) GOTO 1300
    KOCE=0
    DO 1100 I= J.K
1.00 IF(AFS(DELTA(I))/(TAU+ABS(ALPHA(I))).GT.EPSILN) KODE=KODE+I
    IF(KOOE.EO.O) GO TO 1200
    1F(FLGU.GT.1.O.AND.GAMMA.GT.90.0) KODE=-1
    GO TO 1401
200 IF(FLA*.GT.1.O.AND.GAMMA.LF.45.0) KOUE=-4
    O! TO 1401
300 IF(FLAM.GE.I.OE+OB) GO TO 1301
    ITER二JTEZ+1
    GO TO 502
301 K\cap!E=-1
    GO TO 1500
400 KOCE=0
    IF(INDEX.EO.O) SO TO }240
401 FLAMDK=FL.AM
40? 10) 1403 I=1.K
403 6(1) =0.\P4A(1)
404 00 1405 J=1,N
405 2(J)=7ETA(J)
    PHI= XP献
500 INOEX=INOFX+1
    RETIHN
    ENO
```

FUNCTION ARCO(Z)
$X=7$
$K E Y=0$
$I F(X \cdot L T \cdot(-1 \cdot 0)) \quad X=-1 \cdot 0$
IF $(x . G T .1 .0) \quad x=1.0$
$I F(X \cdot G F \cdot(-1.0) \cdot$ NUO. X, LT. O. 0) KEY $=1$
$E p S=1 \cdot F-12$
IF $(A B C(X)-F P S) \quad 20,20430$
20 AFCO=1.57079633
GOTO 40
$30 \quad x=\operatorname{sins}(x)$
AF(O) $=$ ATAN($\left.S\left(\sqrt{2} T(1) \cdot 0-x^{*} X\right) / X\right)$
Jr (KEY.EO.1) \triangle RCO $=3.14159265-A R C O$
40 RETURV
FMT

SHPROUTINE LAMOA(ij)

DIMFNSION E(1)
DO $70 \mathrm{JI}=1$, NCOMP

1) 70°, $2=1$, 11004

IF(J)-Jट) 40:42.44
$40 J=(J 1-1):(N \operatorname{Com}-1)+J 2-1$
6n TO 46
$44 \quad \mathrm{~J}=(\mathrm{J}-1)$ (NCOMP-1)+J2
$46 \times \operatorname{Lam} \operatorname{la}(J): J 2)=3(J)$
GO TO 70
$42 \times$ LAMOA(J):J2) $=1.0$
70 COMT I NUE
DO $10 \quad I=1$ s
On 10 IS $=$]. NCOMP
$S(11 \cdot(I: I S)=0$.
IF (IS.F V.h.AND.KK.LT.K) GO TO 20
Un $25 \mathrm{~J}=1$-NCOMD
$2: S I M(I \cdot I S)=S U M(I \cdot I S)+X(I ; J) * X L A M D A(I S, J)$
GOTO 10
$\therefore 010030 \quad 1=1, N C O M D$
30 SUN(I•IS)=SUM(I,IS)+X(IsJ)*XLAMDA(IS\&J)*EXF(S(J+KK)*(I000.1
1X(1,7)-(000. (X(I, 6)))
10 CONTINUE
BETUOV
END

```
SURPOUTINF FUNC(R,YCAL)
COMMON K,N.MG.X(S0.7), XLAN[)A(5,5),NN,NCOMP,SUNG(60,5),KK
DIMENSIOVF(1),YCAL(1)}\mathrm{ Sl!N:(60,5)
CALL LABijA(F)
(i) 20 y =1.N
OO 20,M=1,NG
J=(N-1):V+I
Su;N=0.
DO 30 KS=1,NCOMP
F=1.
IF(KS.EO.5.AND.KK.LT.K) F=EXP(B(KS+KK)*(1000./X(I,7)-1000./X,(I,6))
1)
SUッMT=S|MT+X(I,KS)*XLAMDA(KS,A1)/SUM(I,KS)*F
YCAL(J)=1.-ALOG(SUM(I,N))-SUMT
RFTUPN
ENO
```

SIH：POUTINE DERIV（J，JTEST，H，ZETA）

UIMENSION B（1），7ETA（1）SUM（60．5）
IF（J．GT．KK）GO TO 30
$J]=F L . O A T(J-1) / F \operatorname{LOAT}(N C O A P-1)+1$
$J ?=J-(J 1-1) \div(N C O M P-1)$
IF（JZ．rE．Jl）JZ＝Jて＋1
En TO 35
$30 \mathrm{~J}=5$
」？ごJーKK
35 DO $20 \quad M=1 \cdot M G$
$0020 \quad I=1.1$
$L=(M-1) \div v+I$
$\mathrm{F}=1$ 。

IF（J．FT．KK）GO TO 50
IF（JI．VE．M．AND．JZ．NE．M G GO TO 40
$J J=J!$
IF（J］．EO．M）JJ＝J2

$1 * *=\approx F): F$
GO TO 20
40 ZETA（L）$=x(I, J 1) * x(I, J 己) * X L A M O A(J I \cdot N) / S!M(I, J 1) * * 2 * F * * ?$
GO TO 20
$50 G=1000 . / X(I, 7)-1000 . / X(I, E)$
IF（Jご，VE．A）GO TO 60

1）
60 TO 20
$60 \quad F M=E X 5(K(K K+A):(1000 . / X(I, 7)-1000 \cdot / X(I \cdot 6)))$

20 CONTI VUE
JTFST $\because=$ O
RETURN
EMIT

50 b	45	5020				
0.	0.	． 68	.486	－ 0	． 41	0
9.2	11.	6.05	0.	0.	． 028	0.
0.	4.1	6.73 ．	10	－10．	10.	-10.
． 13357	． 3324	． 00.3773	.6595	7.0727	． 2878	22．53
． 02593	． 3428	． 00383	． 7080	7.370	． 3520	22.96
－ 0177	.3516	－005088	． 7810	4.06	.4118	19.18
－0118？	－ 3551	.005278	． 8347	9.2835	.4470	17.23
－0100\％	． 3602	． 00478	． 9173	7.496	.4757	15．65
．007505	． 3537	． 004006	.9944	5．944	． 4867	12．29
．02239	． 3437	.001594	． 6503	8.837	.3726	57.87
． 0164	． 3594	． 0020	． 9740	5.405	． 4824	39.03
－01524	． 3630	． 002220	1.0208	3．944	.5404	32.69
.100457	． 3647	．001683	． 9969	4．369	． 6123	40.96
.00815	－ 3521	.001631	． 9611	4.024	－ 720	42.30
． 0358	． 3503	.0026	． 4772	7.91	－502	29.53
． 0314	． 3507	.00372	． 5625	7.64	． 511	22．19
.0345	.352	． 00527	． 719	4.565	$=531$	18．51
.0195	． 3536	.00758	.7546	6.63	．56， 4	14.53
－ 020.3	． 3533	． 00474	． 8785	5.01	． 5507	29.42
． 0172	． 354	． 005844	． 9404	4.34	．587	26.7
.01237	． 3533	.003901	． 9804	3.497	.7301	44.44
． 03559	． 3461	.00317	． 4655	9.165	． 3931	32．73
－ 1157	． 3544	.004517	． 6696	11.73	． 479	25.75
.0119	.359	． 00466	.7856	10.39	.498	23.69
．00855	． 36.39	． 00365	.875	11.36	.4969	26.67
－006で的	． 3708	． 00334	.9962	10.72	． 4742	21.96
.03172	． 3436	． 00356	.5467	11.0	． 3770	17.57
－026？	． 3524	.00599	． 7214	10.49	． 385	18.17
． 01980	． 3593	． 00752	.8135	10.94	－4356	17.73
.01807	－ 35.35	． 006432	.805	8.744	－531	2．2．13
.01613	． 36.33	． 005306	． 2.569	7.502	． 615	25.7
． 01249	． 3574	.003333	.3261	$6.96 R$.7536	37.15
－ 03999	． 3557	.002033	． 5444	¢．013	． 3734	24.65
.024 ？	． 3633	． 00323	． 6813	12.05	． 391	16.64
． 01538	． 3697	． 003848	.8363	14.63	． 4256	15.35
.01313	． 3764	． 003504	1.025	11.26	.478	18．51
． 008465	． 3801	． 0028.84	1.145	10.61	． 5315	24.73
－ 0.0582	． 3817	． 002485	1.24	7.81	.574	24.75
－ 04245	． 3594	． 003487	． 6433	7．085	． 3015	24.24
－ 03678	.3673	． 003213	． 8495	5.584	． 3688	21．81
． 02994	． 3732	． 0028	.9726	4．846	． 423	21.55
.01943	． 3902	.00238	1.087	4.38	． 484	20．19
．017？3	． 3944	． 00197	1.107	3.19	.5166	19.9
.00847	． 3574	.001696	1.181	4.478	． 541	18.83
.0525	． 3357	.002982	.517	6.63	． 531	26．57
．0513	． 3378	.004247	.7067	5.892	． 544	20.05
－ 046	． 3402	． 004813	． 870	5.434	． 5529	18.71
－ 03414	． 343	． 004975	． 9932	5.148	.5535	19.63
－ 02659	.3552	． 00435	1.2657	3.03	.5075	22．42
． 0429	． 3375	． 0025563	． 6000	10.02	． 4142	31.94
． 0411	． 3443	.00325	． 8475	8.327	． 524	31.0
－ 03535	－ 34887	． 004493	． 9898	7.79	． 5757	20.45
－02601	． 3537	． 0041 f4	1.117	8.05	.546	35.77

C.3.3 Results from Program CHEHACT

This progran correlates liquid activity coefficient under the frame work of Wilson's Equation. The BSOLVE technique is used for data regression. The terms in the computer outputs are explained as follows.

```
Pages 1 to 3-
    INDEX = number of iterations
    KODE = an indication for program convergerse
    0 = Program converges to a preset accuracy.
    -1 = Program converges but does not converge to a preset accuracy after certain number of iterations. The final standard deviation represents the accuracy that. the selected function can get at this point.
    positive numbers = Program requires more iterations
STDEV \(=\) standard deviation
\(B 1=\) constants \(B_{1}, B_{8}\), and \(B_{15}\)
\(B 2=\) constants \(B_{2}, B_{9}\), and \(B_{16}\)
\(B 3=\) constants \(B_{3}, B_{10}\) and \(B_{17}\)
\(B 4=\) constants \(B_{4}, B_{11}\) and \(B_{18}\)
\(B 5=\) constants \(B_{5}, B_{12}\) and \(B_{19}\)
\(B 6=\) constants \(B_{6}, B_{13}\) and \(B_{20}\)
```

$$
B 7=\text { constants } B_{7} \text { and } B_{14}
$$

Page 4 -
X 1 to $\mathrm{X} 5=$ liquid mole fraction for components 1 to 5

Page 5 and 6 -

$$
\begin{aligned}
& \text { LNG }=\ln \gamma_{i}, i=1, \cdots, 4 \\
& \text { LNGCi }=\text { calculated } \ln \gamma_{i} \\
& \text { DEV }=\text { LNGCi }- \text { LNG } i
\end{aligned}
$$

Page 7 -

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{i}}=\gamma_{i}, \mathrm{i}=1, \cdots, 4 \\
& \text { Gid }=\text { Calculated } \gamma_{i}
\end{aligned}
$$

Page 8 -

Fitten constants

$R(2)=0$.
$a(3)=0$.

- R(5 - $=\quad .494505+00$

स(5) $=0$.
Fi(7) $=\quad$ - 2TnO3F+nn

- - R($n)=-n$

F(3$)=.141175+01$
E(20) $=\quad .31$ naのF +01
$\begin{array}{ll}(1) \\ (1)\end{array}=\quad: n+73-+0 ?$
$P(1 ?)=.601935+0$?
$R(13)=0$.
$-\cdots R(14)=0$
$\begin{aligned} H(15) & =0.260375-71\end{aligned}$
$\begin{array}{ll}M(15)= & 0 . \\ R(17)= & .13173 F+12 \cdots\end{array}$
$\mathrm{P}(14)=0$.
D(10) $=$-39!35E+01
$\cdots A(20)=.691545+01$

0．4．1 Frogram List for Program RORRARE
Qx．vRATE
che
77／01／29
PAGE 1

PUOGRAM ZYAFATE（INPUT．OUTFUT．TAPES＝IAPUT．TAPEG＝OUTPUT）
UIWENSIOY VSET（10），SETIO（7．10），X（7，10），Y（7，10），XSUM（10），YSUM（10）
1．YTAL（7．10）QEELT（7．10）．FKM（10）．TITLE（20）
1 Ffno（s．10）L：ICONTO
10 F（IrMAT（16I5）

RFGO（S．l6）（TITLE（I），I＝1，20）
15 FnEsMAT（2才A4）
$X Y S=0$ 。
$x, s=0$ 。
$0020, J=1 \cdot L$
NC＝NSET（J）
$X \operatorname{Sil}(J)=0$ ．
$Y \subset(1+A(J)=0$ 。
DO $20 \quad 1=1$, NS
FFAO（5，30）SETID（I，J）$X(I, J), Y(I, J)$
$Y(1 \cdot J)=A L O G 10(Y(I \cdot J))$
$X \subseteq(1)(J)=X \operatorname{Sil}(J)+X(I \cdot J)$
$Y S(1 M(J)=Y S U M(J)+Y(I \cdot J)$
$X Y \subset=X Y C+X(I \cdot J): Y(I \cdot J)$
$X \times 5=X \times 5+X(I ; J) \%$ \＆
¿O Crivt IN！JE
30 Frasint（4G，2X：2F10．0）
$x \varsigma y S=0$ 。
$x \leq y 5=0$ 。
0n $50 \quad J=1$ ，L
x r：$:=x 5 \times 5 * x$ SU4（J）＊＊2／FLOAT（NSET（J））
$x \subset Y S=X S Y C+X S U M(J) * Y S U M(J) / F L O A T(N S E T(J))$
50 C（NTIN！E
STIEV＝0．
N5い $4=0$
$E=(X Y S-X S Y S) /(X S X S-X X S)$
LO $70 \mathrm{~J}=1 \cdot \mathrm{~L}$
FKn $(J)=\left(X \subseteq U^{+4}(J) * E+Y S U M(J)\right) / F L O A T(N S E T(J))$
$A S=W S E T(J)$
Uの $80 \quad 5=1$ ，NS
$Y(A L(T, J)=F r M(J)-X(I \cdot J): E$
UFLT（T：J）$=$ YCA！（I，J）－Y（I •J）

NGいM＝NくりM＋NS
F\＆：（J）$=10 . * \%(F K M(J))$
70 CrivTIいJ．
STMFV＝この：T（ST！FVV／FLOAT（NSUM－1））
औiTTE（N．1Lか）（TITLE（I）$I=1 \cdot 20)$
115 F（1以：14T（1H1／／／／1X，20ac）

Un 1 （i4 $\quad \mathrm{l}=\mathrm{l}$ ．L
NC＝MSFT（J）
ज口 $104 \mathrm{I}=1$ ，NS

Px：ロロのTE $C D C$
$77101 / 29$
WETTE（GQ1］O）STDEV
IF（ICONTO．EO．1）GO TO 1
STOP
EMI

PAGE 2

1-1 . 44 м 245
.5370
.551369 .3769
$.554554 \quad .2400$
.553001 . 1655
.560118 . 1310

- 5504\% •3689
. '5491? .1941
.554301 . 1262
. 564342 .0527
.5628437 .05679
.555679 .450
.560305 .2963
.56143? . 20045
.563788 .1154
.566052 .0887
.556594 .6049
.558400 .4821
.562815 .3107
.565027 . 2646
.566524 . 2239
.557446 .5164
.560391 . 3294
.562309 .2591
.56421 .2191
.565803 .1893
.560376 .2266
.562959 .1770 .
$.566345 \quad .1469$
. $569444 \quad .1195$
$.571529 \quad .00034$
$.554743 .477 \%$
.557361 .2803
-56108i . 1892
$.554362 .142!$
$.5+1062$ - 912^{2}
.563077 . 5906
-bt5?c .562l
.567itio .4164
$.56 y 14 \quad .2968$
.56914: .1705

.4771 .77 .0702
-5431568 .05157.

5	\checkmark	$5 \quad 5$	5	4	5	4
SSIVE	FéACTIO					
!-1	. 548285	28.4 .4				
$1 \cdots$	- 5 61340	23?.0				
1-3	- 554659	165:4				
$1-4$	- 4 brionl	123.6				
1-5	- $\because 011 \mathrm{~s}$	95.1				
-1	- 50.9 Pa	104.3				
\bigcirc	- 56491 ?	79.?1				
1, 3	-56301	65.96				
c-4	- 46434 ?	5,4.40				
$\cdots \cdots$	- 5611437	53.26				
- 1	. $55860{ }^{\circ}$	183.7				
$3 \sim 2$	- 50305	131.6				
3-3	-461:32	99.30				
3-4	-6.63758	75.51				
3-5	. 566056	55.85				
$4-1$. 556594	329.1				
-	. 5589800	190.6				
$4-3$. 562815	75.03				
4.04	$\therefore 605027$	50.32				
4-5 5	.56.6624	33.94				
S.0)	. 55744%	194.3				
$5 \cdots$?	. 6.60391	148.8				
6-3	- is.cis0\%	128.7				
$\therefore \cdots$. 6.6421	102.1				
5	-565803	61.27				
¢, $\}$. 554186	149.1				
¢-3	-5\%0.376	110.6				
$6 \cdots 3$. 56.699	60.52				
6-4	-5,65345	37.02				
6-5	. 6.69444	14.31				
7-1	. 554743	237.6				
7-?	. 657361	124.2				
7-3	-561081	62.60				
7-4	. 564342	32.54				
H-1	- 561962	318.0				
4-?	- 503077	233.7				
$\underline{4}-3$. 56529	166.3				
$8-4$. 567419	13\%:4				
$14-5$.h6414\%	30.22				
¢-1	- btal44	121.0				
- - ?	. 572623	85.21				
4-3	. 577477	49.34				
$4-4$	- 5 31568	32.75				

C.4.3 Results from Program RXNRATE

The program is used to fit reaction rate constants into the Arrhenious equation. The terms shown on the. printouts are explained as follows:

Pages 1 to 3-
$1000 / 2 \cdot 3 R T=$ see definition shown in Section C .1 .3
$K=$ rate constants, units being the same as those for $A C R$ RCONST, ROR RCONST, and PRO ROOASH:
given in Section C.1.3

ESTFGIFICATTINN
INTVEPSAL ATTTVATION FNERGY $=35.65 \mathrm{KCAL} / G \mathrm{MOLE}$

SET	10	FOFOUFNCY	FACTOR	1000／2．32T	Lot k	CALC LOG K	OEVIATION
cet	0］－1		2591F＋？	． 548785	． 784425	－ 8×7515	．081090
SET	01－？		591F＋71	． 551398	． 7388808	－75653\％	.019640 00290
SET	ri－3		591F＋21	－554559	． 649584	． 640285	－ 000299 -04561
SET	01－4		2591F＋21	－554001	－565876	． 321145	－．0456\％1
SET	01－5		501F＋？1	－5ム9118	． 402475	445675 .42015	-.045750 .0 .37593
¢FT	ni－al		243F＋？1	－547 5 2 4	.793072 659544		－0．06439
¢5T	8 P －7		$29335+? 1$	－554912	－ 658544 .546987	． 5×4207	－017220
GET	い「－3		2933f＋21	－554301	－ 54 Ear ${ }^{\text {angal }}$	－ 3 － 3 ＋1949 4	－058032
SET	$0 \div-4$		9 $433 F+21$	－ 564342		－ $3+182084$	－．0i3アプ
GFT	いン－5		29725＋ 21	－564437	－ 5 －49723	－ 573040	－． 01 － 5 － 3
「ET	C3－1		$30795+21$			－51349？	－．nnupl7
¢Fr	0：－ 2		$30795+$ ？ 1	－ 5×0305	.573179 .466407		－．007042
	0．3－3		$30745+21$	－ 6 ¢6373？	.46640 $.39450 \%$	－3ス97う5	－．004457
SET	0ご年		$30795+21$	－¢h37r8	.394 .773306	.309015	． 036700
SET	กイーテ		$30795+21$		． .714515	.051303	－．053．31？
SST	n4－1		$3114 F+? 1$	－5h6504 -554×00	． 6 ．nats	－57zhan	－． 033445
ことT	rce－？		？ $1165+21$	－ 5 ¢ 62 215 15	．409037	－ 4 － $92 \times$	． 020441
$\mathrm{c}=\mathrm{T}$	fu－3		7116F＋ 3 ？	－562－15	． 327195	． 350671	． 02.3475
c＝1	04－4		$3116 F+?!$ $71165+?$ ？	－5¢6824	－ 240849	． 273739	．052441
SFT	114－5		all 305 3	． 557445	． 620350	．7137．8	． 032419
SFT	0．－1		$3053+?!$ $3-53 E+P 1$	－ 5×0361	． 500675	． 6940021	． 017546
CFT	0ヶ5－2		$3-53 E+21$ $305.35+21$	． 567309	－54765？	.539445	－．007m0s
SET	114－3		$3043 F+21$ $3653 F+21$	． 564710	.449330	． 473076	－．027254
C5T	（12．4			－565803	.4 .30591	．415？84	－．015305
S戸 T	「ハーム		$74-5 F+? ~$ $70455+? 1$	－55R146	． 71978	－948143	－．021138
${ }_{5} 5 \mathrm{~T}$	nK－1			$.54 R 186$.560376	－767113	－5？0071	－．037042
¢ ET	nt－？		$30-5 F+21$ $3955 E+21$	． 560376 .562089	－ 509646		． 017273
SET	ith－3		$3955 E+21$ $36555+21$	－ 562089	． 303171	4n7？40	．014108
SET	10ヶ－4	.3	$35555+21$ $3055 F+21$	． 584444	－270003	．29040？	．02ヶ709
cET	C＋－5		$3055 F+21$ $4020 E+Z 1$	$.5 イ 4444$.554743	－ 473574	． 8 ． 2763	－．045571
	07－1		$4020 E+\overrightarrow{C l}$ $40205+21$	． 554743	． 744.545	.734623	－．010027
CET	17－2	． 4	$4020 \mathrm{~F}+21$ $4020 \mathrm{~F}+21$	－．567351	． 5979.35	． $30 \rightarrow$ rin 7	.004071
SFT	07－3		$4020 F+71$ $40205+? 1$	． 564434 ？	.434233	．48う755	－05．1521
CET	$07-4$ $n=-1$		$402 n=+? 1$ $7411!+?!$.564342 .561962	． 904310	．835240	－． 106403 n
T	nor－1 ir－？		741： 0 － 21	－5ヶ3077	．R16774	． 740531	－．014743
CET	リrッ－？		$7 \pm 112+? 1$	． 565250	． 745044	． 717639	－． 027405
¢ $=$	（1－4		7411F＋21	． 557419	． 63055 ？	． 641741	． 111040
々ご	0－－5		$74115+21$	． 559148	． 476005	－54010．3	104048
CFT	$6 \leq-1$		1021F＋22	－ 5 R9148	－702655	－710419	n］か765
ここT	0－3－7		$10215+27$	－572．23	－5haska	－5u5h3R	0
Cri	Cい－3		1021E＋？	． 577877	．4．105ल	－434236	
CET	0－－4		$10215+72$	． 581568	． 20.54 KA	． 2765.54	9

DEMYDSATIOM

FWOGOAN BSOLFIT（INPUT，OUTPPIT，TAPF．5＝INOUT，TAPEG＝OUYPUT）
COMAON K．N．X（40．4）STTDEVS

KFAN（5，lt STOEVS
RFGO（S．14）（RU4（I）（I），I＝10K）
RFGU（5，14）（R4I！（I），I＝1，K）
60 PFAD $5 \cdot 14$（ $5(1) \cdot 1=1 \cdot K)$

$000 \mathrm{RF}: 0(5 \cdot 34)(X \times(I, J) \cdot I=1 \cdot N)$
$\operatorname{lTERI}=100$
DO $10 \mathrm{e}^{\circ} \mathrm{O} \quad \mathrm{J}=1$ ，IDUSAY
Do $1020 \quad 1=1, \mathrm{~N}$
$920 \times(I, J)=X X(I, J)$
BO FEFAD（5，14）（YY（I），I＝1，N）
IF（IYF．EO．2．O2．IYF．EQ．3．OR．IYF．EO．4）PEAD（5．14）QE
CA！L NEMFUNC（Y•YY•NGYFQRB）
14 FO：mAT（SF10．0）
F以に品。
$F L A B D=0$ ．
Tル！に0。
EDeslleo．

IUNEX＝0
Dn le $T=1$ ，K
$12 \operatorname{lhCODF}(1)=-1$
WRITE（5：100）

30 CALL asolve
STAFV $=C$ CRT（PHI／FLGAT（N－I））
IF（IHAFX，GE．IYEOI）KOIDE＝－1

1F（KOAF）40．40．27

40 FrTッ＝斤。
（1） $75 \mathrm{~J}=1$ •4
0はV（I）＝YChL（I）－Y（I）
＂a Critjol－
4：！！TH（5．104）

UR is $\mathrm{I}=1$ ，N
UEV（I）＝YY（iL（I）－YY（I）

HCTOV（I）$=0$ 。
Gri 1047

```
\(56 \operatorname{PCTDFV}(I)=\) IIEV(I)/YY(I)/.01
```

57 PCTM=DC.TM+A.FSS(PCTDEV(I))
5h Crimt Inle
PCTM=PCTM/FLOAT(N)
WIITE(6,207) (XNAME (J) $J=1$ \& IOUMMY)

13HEEV.4(14Xga.2))
Un $700 \mathrm{I}=1 . \mathrm{N}$
700 WDITE(6.20以)YY(I),YYCAL(I)•OFV(I) • (XX (I, J) , J=I•IDUMMY)
208 ト!ロ:~AT (7E1G. 5)
WDITE(f.]OE) DCTM.STDEV

IION $=F$ F $10.5 / 120 \times$. 16 HFITTEO CONSTANTS)
WDITE ($\mathrm{H}, 114$) ($I, H(I): I=1, K)$

77 PEAD 5.9 I IOT
GO TO $(50,60,70,30,90), 10 T$.
90 STOP
En:

SHrapOUTIVE ESOLVE
COMAGON K．A，X (40.4) GTDEVS

＋FI．ACEA，YGU，EPSILNGHHTMIN．INUEX．KOUE ITEQ

Kロ1 $=$ K＋ 1

IF（INIUEX．FT．0）ほO TO 300
IF（FNil．LE．0．0）F：VU＝10．0
IF（TAU，LE．0．0）TAU＝0．001
IF（EPSILN．LE．0．0）EWSILN＝0．00002
IF（PHJMIN．LT．0．0）PHIMJN＝0．0
$K E Y=0$
OO $100 \quad J=1, K$
00 JF（IFICODE（J）NE．O）$K E Y=K E Y+1$
IF（KEY．GT．0）GO TO 101
$K \cap \cap F=-3$
GO TO 3900
Ol LF（N．BE．KFY）GO TO 102
KOUE $=-$ ？
GO TO 1500
02 1F（INOFX．OT．O）EO TO 300
U（1 そU（1）J＝1，K
00 ALPWA（J）＝s（J）
G TO 900
00 IF（FHININ．GT．DHI＝AND．INDEX：GT．I）GO TO 400
Dก $307 \quad J=1, K$
IF（IHCOSE（J））301，307．303
01 CALL DELIV（J，JTEST，B．ZETA）
U $302 \quad I=3, N$
30 己 $A, J \wedge C O R(I, J)=25 T 4(I)$
IF（JTEST．VE．－1）GO TO 307
IFCOUE（J）$=1$
303 UFL：O．001 $\because 2 \mathrm{BS}(\mathrm{S}(J))$

IF（H（，）＋DEL．LE．HMAX（J））GO TO 304
ALUHA（J）＝4（J）－DEL
$1)+1=\cdots 1+L$
GO TO 305
114 AL コトロ（J）＝－（J）＋JFL

$A L: \operatorname{ma}(J)=-(J)$

$307^{\circ} \mathrm{CNT}$ T I＂．＇r
400 いの 40 に $L=1$ •K
1＋（IMCㄱำ（L．L））4U1．404．401
401 （LL）$=$ い（
Un 40% 小 $=1+N$
$40 \Rightarrow(!L)=:(L!)+\Delta J ん \operatorname{CO}+(J J \cdot L I) *(Y(J J) \cdots(J J))$
シロ 403 J，$=1$ •K
$A(1 . L \cdot J)=1 \cdot 0$
bn $403 \quad 4 \mathrm{a}=1$ •付
$403 A(L L: J J)=h(L L \cdot J J)+a J A C O E(M M+L L): A, J A C(I F(M M, J J)$

IF (A (LL.LL).GT.1.0E-20) 60 TO 406

```
404 DN 405 JJ=1,K
405 A (LL,J,) =0.0
    A(LL.LL)=1.0
    G(LL)=0.0
&05 Conittilje
    GNOLMM=0.0
    0n 407 I=1,K
```

407 GNCDM=にNOR:+G(I)\$2?
DO $500 \mathrm{I}=1 . \mathrm{K}$
勺OO OHFGA(I) $=\operatorname{SOPT}(A(I, I))$
D0 501 $I=1, K$
G(I)=G(I)/OMEGA(I)
LO 501 J=1. K
$501 A(I, J)=A(I, J) /(0$ AEGA(I) \#OMEGL (J))
$F L A M=F L A M D A / F V U$
ITFM=1
GO TO 503
502 FL.AM=FLAM*FNU
503 [0n $504 \mathrm{I}=1, \mathrm{~K}$
SO4 A (I, I) $=A(I, I)+F L A M$
Un 50 g I $=1, \mathrm{~K}$
Un $505 \mathrm{~J}=1, \mathrm{~K}$
605 ASCALE (I...) $=4(\mathrm{~J}, \mathrm{~J})$
506 ASCALF (I,KPI)=G(I)
DO $603 \mathrm{~L}=1, \mathrm{~K}$
$L_{L}=L+1$
U0 60% V $=$ LL.KPI
000 ACCOLE L, M $)=$ OSCALE $(L, M) / A S C A L E(L . L)$
U0 $603 \mathrm{M}=1, \mathrm{k}$
IF (L-N) 601,603.601
60] [00 G0? J=LL.KPI
GOZ AGCALE. (M.J) $=$ ASCALE (M, J)-ASCALE $(L, J) * A S C A L E(Y \& L)$
603 CONTINUE

!n $7011=1 \cdot k$
OL(TA(I) =ACCALE (I•KDI)/GMEGA(I)

701 UF! TH (I) = 4! मHA (I) - - (I)

Jillad:=1

Cricha" = - Consgaw

ч(1) Cal C (1)
λ cril=0.0
un $9011=1$, N
X M. $I=X D H I+(Y(I)-$ IETA(I) $): \# 2$

```
    COMTITNUE
    STDEV=5SRT(XPHI/FLOAT(N-1))
    IF(STUFV.LT.GTDEVS) GO TO 1400
    IF(IMPFX.GT.0) GO TO 1000
    KOHF=
    GO TO 1404
    IF(YP,AI.GE.PHI) GO TO 1300
    KOR吕=0
    UO 1100 I=1,K
100 IF(ARC(DFLTA(I))/(TAU+AKS(ALPHA(I))):(GT.EPSILN) KODE=KOUE+1
    IF(KODS.EN.0) GO TO 1200
    IF(FL.A.GT.1. n, AND.GARMM.GT.90.0) KODE=-1
    GN TO 1401
COO IF(FI.AS.GT.1.0.AND.GAMMA.LE.45.0) KODEE=-4
    GO TO 1401
300 1F(FLAW.GE.1.0E+08) GO TO 1301
    1TER=1TER+1
    GO TO 502
301 KOOF=-1
    GO TO 1500
400 krnf=0
    IF(INDEX.EO.0) GO TO 1402
401 FLAMOD=FLAM
4 0 2 ~ 0 0 ~ 1 4 0 3 ~ I = 1 , K
403 K(I)=ALPHA(I)
4 0 4 0 0 1 4 0 5 ~ J = 1 , N
40S Z(J)=7FTA(J)
    PHI=XPHI
1500 1NOLX=INDEX+1
    R&TOPV
    EN(I)
```

```
    SUFDOUTINE NEWFIJNC(Z,7Z,N,IFUNC,A)
    OIHFMCIO\ 7(1),7Z(1)
    GOTO (10, <0,30.40,50.60.70.40), IFUNC
10 00 15 I=1.v
15 Z(I)=77(I)
    RFYlIFM
20 U| 25 I=1,N
C5 2.(I)=77(I)+A
    HFTMPN
30 Un 35 T=1,N
35 Z(T)=(7Z(I)+A)/100.
    RFTUNS
40 U0 45 I=1,N
45 Z(I)=1./(7.7(I)+A)
    N'FT|!2V
50 0n b5 I=1,N
55 2(T)=ALOG10(77(I))
    RF!UPN
60 U0 65 J=1 N
65 2(1)=aLOG(7Z(I))
    KFTUKN
700075 I=1,N
75 Z(1)=10.**(Z2(I))
    RETUPV
80 D0 !3b I=1, Nj
&5 Z.I)=F\timesP(ZZ(I))
    PETURN
    E゙@!
```


II:FNSIOV 7(1), 7Z (1)
GOTO (10. $\mathrm{T} 0,30,40,50,60,70,80)$. IFUNC
10 00 15 $1=1, N$
$1577(I)=7(I)$
PFTUKN
20 LO $25 \mathrm{I}=1 \mathrm{an}$
¿2 27 (I) $=7$ (I) $-A$
RFTURN
30 U0 $35 \quad I=1 \cdot M$
$3577(I)=100 . * Z(I)-A$
KETURV
$40 \mathrm{On} 45 \mathrm{I}=1$. N
$457.7(I)=1 . / 7$ (I)-A
KFYU5N
50 D $\cap 55 \mathrm{I}=1 \cdot \mathrm{~N}$
$5577(I)=10 \% \%(Z(I))$
RFTUNN
60 0n $65 I=1, N$
$657.7(\mathrm{I})=\mathrm{FXP}$ (7(I))
RFTURN
70 DO $75 \mathrm{I}=\mathrm{I}, \mathrm{N}$
$7577(I)=A L O G 10(7(I))$
RFTURV
50 DO $35 \mathrm{I}=1$. A
$85 \quad 27(1)=\Delta L O G(7(I))$
RETURN
END

FIMNCTION AOCO(7)
ORURLE PRECISION $x: Z$ EPS
$X=7$
$K F Y=0$
$\operatorname{IF}(X \cdot L T \cdot(-1 \cdot 0)) \quad x=-1 \cdot 0$
$I F(x, 0 T \cdot 1.0) \quad x=1.0$
$I F(X \cdot G F \cdot(-1,0) \cdot A \cup D \cdot X \cdot L T \cdot 0 \cdot 0) K E Y=1$
EDS $=1.010-1$?
IF (DARS (x)-EPS) 20. 20.30
$20 \mu \mathrm{arO}=1.570756325$
6○ TO 40
$30 x=\left\{4 \cos _{5}(x)\right.$

IF (KT.Y:E?.1) AKCO=3.1415926.5-AFCO
40 RETUPA
ENT

SUADOUTINE FUNC(IA.YCAL)
COMMOMK, K, X (40, 4) STDEVS
UTNENSIOM R(1),YCAL (1)
UrI $10 \quad \mathrm{I}=1, \mathrm{Ni}$
 $\operatorname{lnL}(G) 1 \mathrm{C}(\mathrm{x}(\mathrm{J} \cdot 3)+\mathrm{F}(6))+\mathrm{H}(7)$
10 CrIT TMUE
RFTURV
FMO

```
    SHM,<OUTIME DERIV(J,UTEST,Y,TETA)
    COm,MOY KsN.X(40.4),STDEVS
    UTMENGION H(1).7ETA(1)
    Gn T0 (10.70,30.40,50.60,72).J
10 DN 15 I=1,N
15<FTA(I)=AL.DG10(X(I,1)+H(2))
    gr TO 70
20 b0 25 I=1.N
257FTA(I)= Fj(1)/(X(I|l)+B(C))
    GOTOT0
30 0:1 35 I=1.N
35 2FTA(T)=4LOE10(X(I,C):B(4))
    G0 T0 70
40 U0 45 I=1,N
45 ZFTA(I)=2(3)/(X(I.Z)+4(4))
    60 ro 70
50 00 55 I=1, N
55 2FTA(J)=ALOGIO(X(I, 3)+F3(6))
    GOTO 70
60 00 65 I=1,N
65 ZF.TA(I)= k(5)/(X(I,3)+E(6))
    (in) TO 70
72 4:74 !=!, N
74 7&TH(I)=1.
70 JTHST=0
    keT,MRN
    ENO
```

C． 6.1 Program List for program PoLyFIn
puLyFIT
coc
77／01／29
page 1

PROGQAN DOLYFIT（INDUT，OITPUT－TAPES：INPIT •TAPEG＝OUTPUR）
UTMENSION X（70），Y（70）•YY（70），XX（70）•YYCAL（70）
COMMOV C（8），JJJ，YYV（70）QYCAL（70），PCT（T0）．FERR．STDEV
20 KFFは（b，I0）N：IX•IY•JJJ
10 Foumat（oIb）
REAO（S，l？）XF，YF
12 FODMAY（of10．0）
2？KF（．D）（5．le）（XX（I），I＝1，N）
IF（IX．FO．Z．OK．IX．EO．3．OU．IX．EO．4）READ（5．12）A
CFLL F（VVC（X，XX，N，IX，A）
？．4 RELU（5．12）（YY（I），I＝1，N）
IH（IY．EJ．Z．OP．IY．EQ．3．OR．IY．EO．4）READ（5，I2）S
CALL FUNE（Y，YY，V，IY，B）
ćb REA日（5，10）K
K］$=$ K + ）
CALL LSTSOF（N．K•X，YロYFGYF）
CALL REVFUNC（YCAL，YYCAL，NGIY，B）
4．DITE（ÁCl00）

WHITE（G，J．02）（XX（I）．YY（I），YYCAL（I），X（I），Y（I），YCAL（I），PCT（I），YPI（I）
1，$T=1$ ， V_{H}

WFITE（G，104）DERE．STOEV

NEITE（6，120）（J，C（I），I＝1，kI）

RFOU（5．］0）IDT

28 Smp
FMO

SUPDOUTIVE LSTSOR（N，K，XA，YA・カXF，YF）
UIMENSJON XA（1），YA（1）：YCAL（70）：XSUA（70）：A（6：6）
COKMON CA（D），JJJ，YPV（70）•YCAL（70），FCT（70）．PERQ．STDEV
On $10 \quad I=1$ A
$X A(I)=X \wedge(I) * X F$
$10 Y \Delta(I)=Y A(I) \because Y F$
$C A(1)=0$ ．
00 $12 \quad J=1, N$
12CA（1）＝CA（1）＋YA（J）
$x \operatorname{Sil}(1)=\mathrm{N}$
$K 1=K+1$
DO $14 \quad I=2 \cdot K 1$
$\mathrm{CA}(\mathrm{I})=0$ 。
On $14 \quad J=19$ is
$14 C \wedge(J)=C A(I)+Y A(J) ;(X A(J)) * *(I m 1)$
$k K=2 \% k+1$
Uم $16 I=2 . K K$
$x \operatorname{cum}(1)=0$ ．
Do $16, j=1, N$
$16 x \operatorname{Cum}(1)=x \operatorname{sln}(I)+x A(J) \neq(I-1)$
On 1 H $I=1, K I$
0n $1 甘, J=1, k 1$
$L=1+J-1$
$18 A(1 \cdot J)=X S U M(L)$
$0020 \quad J=1 . k 1$
UO $24 \mathrm{~J}=1 \cdot k 1$
UFT＝A（J，I）
$C A(J)=C A(J) / A(J \cdot I)$
On $24 \mathrm{~L}=1, \mathrm{Kl}$
$24 A(J \cdot L)=A(J \cdot L) / D E T$
UO $20, ~ i=1, K 1$
IF（J．EN．I）GO T！ 20
$C A(J)=C A(J)-C A(I)$
DO $26 \mathrm{~L}=1, \mathrm{Kl}$
EG $A(J \cdot L)=A(J, L)-\Delta(I, L)$
20 CruTIU！E

そR $C A(I)=C A(I) / A(I, I)$
$C L(1)=C A(1) / Y F$
Un $30 \mathrm{~J}=2 . \mathrm{kl}$
$30 C 4(I)=C A(I) / Y F \% \because F * *(I-1)$
U（1 $32 \quad I=1, N$
$X_{A}(I)=X A(I) / X^{=}$
$Y L(I)=Y \dot{A}(I) / Y F$
Y（Cal（I）$=$ Ca（1）

3 ） $\operatorname{YruL}(I)=Y C A L(I)+C h(J) * X A(1) *=(J-1)$
Ur， $34 \quad T=10 \therefore$

IF（K）．（．T．3）GO TO 34
D $\cap 36, J=3, k 1$

G $\cap T(3 \times, ~(34) \cdot J J$
39 1F（Y以：（I）．LT．O．）YPN（I）＝O．．
34 CONTIVIE
POLYFIT
CDC
$77 / 01 / 29$
PAGE 3

```
    PFGR=0.
    STOFV=0.
    N:=N
    00 42 I=1,N
    UFLY=YCAL(I)-YA(I)
    JF(NKc,(YA(I)):YF-.001) 44.46.46
44 NM=NK-1
    GO TO 4?
45 PERF=こERP+AFKS(1)ELY/YA(I))
    PCT(I)=DELY/Y(II)*100.
    STRFV=CTOEV+DELY*DELY
42 COMT I M|JF
    STIEV=S`?T(STDEV/FLOOAT(NM-1))
    PEPR=FER2/FLOAY(NN)}=100
    KETURA
    EATO
```



```
    010[WSION 7(1). Z7(1)
    Gn T0 110,己0,30,40,50,60,7(,000). IFUNC
3r.io lb I=1,N
16 2(!)=7ワ(J)
    BfTHFN
ジ0 un 2% 1二1.0
?5 又(1)=77(1)+A
    &+ケ|ミ\
30 00 35 j=1.m
352(I)=(2C(I)+A)/100.
    FFTU;:M
401045 I=1.N
4; 2(I)=1./(77(I)+A)
    4ETHEA
50 00 55 j=1,N
557(I)={ん0G]n(ZZ(I))
    F+Tucey
60 00 65 1=1, 4
G5Z(I)=4LOS(ZZ(I))
    FFT|!?:
70 D0 75 1=1, iv
75 Z(I)=10.**(ZZ(I))
    F!T|NN
{0 DO MS J=1, M
&- (11)=4%0(27(1))
    RETURV
    t!!)
```


[^0]: The method and equations given in the previous

