THE PREDICTIVE VALUE OF THE HIGH SCHOOL ORADE POINT

 AVERAGE AND A SELEGT GROUP OF STANDARDIZED TESTS POR JUNIOR COLLEGR ACBIEVEMENT\qquad

A Dissortation
Presented to the Fraulty of the College of Education University of Houation

In Partial Pulfiliment of the Requirementa for the Degree Doctor of Education

bs
Horbert 0. Morice
мay, 1963

ACKNOWLEDGUEATS

For their asaistance and oncouragement during the planning and oxecution phasea of this investigation, the writer wishes to expresa his appreciation to his advisory comaltee, Dr. Franklin L. Stovall, Dr. Fallace H. Strevell, Dr. L. E. Freaman, Prof. Loy W. Hartafield, and Dr. A. H. Moore. The writer is most appreciative of the helpful guidance recelved from Dr. Pranklin L. Stovall who prompted the selection of the atudy and who also gave many valuable suggestions regarding methods and prosedures.

The writer is indebted to Dean waltor Rundell of Lee College, who made accesible the material used in the study and to Dr. Vivian Remecok of Kansas State College of Pittsburg, Pittsburg, Kansas, who provided the statistical program and computer machine time for the statistical treatment of the data.

THE PREDICTIVE VALUE OF THE HIGH SCHOOL GRADE PJINT AVERAGE AND A SELECT GROUP OF STANDARDIZED TESTS POR JUAIOR COLLEGE ACEIEVEMERT

An Abstract of a Dissertation
Presented to
the Faculty of the College of Fducation
University of Houston

In Partial Fulciliment of the Requirements for the Degree Eoctor of Education

> by
> Herbert O. Morice May. 1963

THE PREDICTIVE VALUR OP THT HIGH SCHOOL GRADE POINT aVERAGR AND A SELECT GRJUP OP STAMDARDIZED tESTS FOR JUNIOR CJLLEGE ACHIEVEAENT

The purpose of this study was to investigate the high school grade point average and a group of standardised testa for their usefulness in predicting grades in select junior college courses. A total of five hundred and forty-six Junior college studenta were chosen to be inoluded in the study. For each student the high achool grade point average, the Amorican Council on Education Poychologioal Examination, and the Cooperative English Test soores were available; additional measurement variables (Cooperative Biology Iost, Cooperative Chomistry Tost ane Cooperative Physios Tost) were also used for particular correlation studies.

The plan of the atudy includeds

1. determining the relationshlp between the high school grade point average and grades received in select Junior collezo courses:
2. determining the relationship between scores on standardized tests and grades received in seleot junior college courses:
3. determining whethor a combination of the high achool grade point average and the American Council on

Education Psychological Examination would give higher predictive validities, for the courses studied, then the high sohool grade point average alone; and
4. determining whether combination of the high achool grade point average, the Amerioan Council on Education Psyohological Examination, the Cooperative English, and - Cooperative Achlevement Tost in the subject area would Jleld higher predictive validities, for the courses studied, than the high school grade point average alone.

Simple correlations were computed between each single measurement variable and the courae grades received in each of the funior college courses elocted for the study. By adding tis standardized test scores to the high school grade point average, various combinations of predictor varlables wers formed and these combinations were also correlated with the grades in the junior oollege courses. Comparisons were made between the arious correlations giving the following resulte:

1. The high achool grade point average had considerable predictive value when predicting course grades in junior college courses.
2. Siagle correlations between the standardized tests scores and junior college course grades wore significantly high in most of the aimple correlation studies; therefore, in the majority of instances, the standardized
tests were valuable predictive instruments.
3. Various co.bbinations of the high sohool grade point average and standardized test scores did not jield significently higher correlations with junior college course grades than the high sohool gpade point average used alone.

TABLE OP CONTEETS

CHAPTER
PAGR
I. IATRODUCTIOR OF TEE PROBLEM 1
Statement of the Problem 2
Need for the Study Genoral Plan of Study Definitions of Terms UsedLimitations of the study7
Groups studiod 7
Measurement Variables7
Courses selected for the tudy 8
II. RELATED RESEARCH 9
III. GROUPS STUDIED AND MATERIALS USED 23
Subjecta Used in the Study 23
Predictor Variables Used in the Study... 25
Criterion Variables Used in the Study 27
IV. METHODS ANE PROCEDURES 30
Data Gattiering 30
Processing the Data 31
Calculatiag Proceduren 31
Single Correlation Studiea 32
Multiple Correlation Studies 32
Soleoting Variates for the Expectancy
Tables 34
36
Conatructing the Expectancy Tablea 36
V. PRESENTATION AND ANALYSIS OF DATA 38
Single Correlation Studies Using the High School Grade Point Average and College
Course Grades............... 39
Hypothesi: 1 39
 39

TABLE OP OONTENTS (cont.)

Single Correlation Studies Using the Standardized mest Scores and College Grades 43
Hypothesis 2 43
Analysis of Reaults 43
Multiple Correlation Studien Using the
High School Grade Point Average Combinedwith the Amerioan Council on EducationPsychological Examination, Q-acore, Lacore, or T-soore and College CoupseGrades49
Mypothesis 3 49
Analysis of Results 49
Nultipie Correlation Studies Using a Combienation of the Eigh School Grade PointAverage. Amerioan Council on EducationPeyobolopioal sxamination, the CooperativeEnglish Iest and Cooperative AchievementTest in the subject Area, and college
Course Grades 66
Hypothesis 4 66
Analysis of Results 66
Presentation and Use of Expectanoy Tables 80
VI. SUMHARY, CONCLOSIONS, AND RECOKMENEATIOYS 95
Summary 95
 97
Recommendations 100
BIBLIOGRAPHY 101
APPENDIX 48 T-score Equivalents of Rav Score Values for Predictor Variables 105
APPENDIX B: A Sample of the Solution of a kultiple Rogression Problea Using the Doolittle Method 108
 110

LIST OF TABLES

I. S1zs of Groups Listed by Course and Heasure-ment Variables....................... 24
II. Means and Standard Deviations of the Predictor and Criterion Variables--By College Course... 40
III. Coefficiente of Correlation Between the HighSchool Orade Point Average and College Course
IV. Neans and Standard Deviations of Prediotorand Criterion Variablea--By College Courae .45V. Coefficients of Correlation Between theStandardiaed Test Scores and CollegeCourse Grader48
VI. Leans, Standard Deviations, Intereorrelations. Regression Squations and Multiple Correlations of Variables for Algebra 304 (ym301). 51
VII. Means, Standard Deviations, Intereorrelations, Regression Equations and Multiple Correlation* of Variable for analytiaal Geometry 310 ($\mathrm{N}=67$) 52
VIII. Means, Standard Deviations, Intercorrelations,Regreasion Equations and Multiple Correlationaof Variables for Trigonometry 301 ($\mathrm{N}=177$). .53
IX. Means, Standard Deviations, Interoorrelations, Regression Equations and Hultiple Correlations of Variables for B1010gy 805a (Nm301)....
X. Means, Standard Deviations, Intercorrelations, Regression Equations and Multiple Correlations of Variables for Biology 805b (Em207). . .55
XI. Moans, Standard Deviations, Intercorrelations, Regression Equations and Multiple Correlations of Variables for Chemistry 801a (Nm202). 56

LIST OF TABIES (cont.)

TABLE
Page
XII. Means, atandard Deviations, Interoorrelations, Regrestion Equations and Multiple Correm lations of Variables for Chemistry 801b
 57
XIII. Means, Standard Deviations, Interoorrelations, Regreasion Equations and Multiple Correlations of Variables for English 301 ($8=217$) 58
XIV. Means, Standard Deviations, Intercorrelations, Regression Equations and Multiple CorreIations of Variables for English 302 (Nm484) 59
XV. Means, Standard Deviations, Intercorrelations, Regression Equations and Multiple Correm Lations of Variables for English 303 ($\mathrm{N}=256$) 60
XVI. Means: Standard Deviations, Intercorreiations: Regression Equations and Multiple Correlations of Variables for HL story 15a (Na459)
XVII. Heans, Standard Deviations, Intercorrelations, Regression Equations and Multiple CorreLations of Variables for History 15 b ($\mathrm{N}=\mathrm{H} 16$) 62

XVIII, Means, Standard Deviations, Intercorrelations, Regression Equations and Multiple Corre* Lations of Variables for Physies 801a

XIX. Meana, Standard Deviationa; Intereorrelations, Regreselon Equations and Multiple Correlations of Variablea for Phyaioa 801b

XX. Critical Ratios Obtained When the Coefficient of Correlation of the High School Grade Point Average and Course Grades Fas Compared to a Combination of the Bigh Sohool Grade Point Average and the Amerioan Council on Fdueation Psychological Pxamination and Courso

LIST OF TABLES (cont.)

TABLE
PAGE
XXI. Means, Standard Deviations, Interoorrelations, Regression Equations and Multiple Correlations of Variables for Blology 805a
 68
XXII. Means, Standard Deviations, Intercorrelations, Regression Fquations and Multiple Correm lations of Variablea for Blology 805b ($\mathrm{N}=119$)
XXIII. Means, Stendard Deviations, Intercorrelations, Regression Equations and Multiple Correm lation of Variables for Chemiatry 801a (H 푸)
XXIV. Keans, Stendard Deviations, Intercorrelations, Regression Equations and Rultiple Correlations of Variables for Chemistry 801b (im
 71
XXV. Means, Standard Deviations, Intercorrelations, Regression Equations and Lultiple Correlations of Variablea for English 301 (Nm 74) . 72
XXVI. Means, Standard Deviations, Intercorrelations, Regression rquation and Multiple Correlations of Variebles for English 302 ($F=252$)73
XXVII. Means, Standard Deviations, Intercorrelations, Regression Equations and Multiple Correo lations of Variables for English 303 ($\mathrm{ym}=171$) 74
XXVIII. Yeans, Standerd Deviations, Intercorrelations, Rogression Equations and Multiple Corrow lationa of Variables for Hiatory $15 a(y=214) 75$
XXIX. Means, Standard Deviations, Intercorrelations, Regression Equations and Multiple Correlations of Variables for History 25b (Ne216) . . 76
XXX. Means, Standard Deviations, Intercorrelations, Regreseion Equations and Hultiple Corree Lations of Variables for Physios 801a (Nam4) 77

LIST OP TABLES (cont.)

XXXI. Meane, Standard Deviations, Intercorrelations, Regression Equations and yultiple Corree lations of Variables for Physiea 801b
 78
XXXII. Critical Ratios Obtained Fhen the Coefrioient
of Correlation of the High Sohool Grade
Polat Average and Course Grades Was Com-
pared to a Combination of the High School
Grade Point Average, the Amerioan Council
on Education Psyehologioal Exanination, the
Cooperative English Test and a Cooperative
Achlevement Iost in the Subject Area... 79
XXXIII. T-Seale Equivelont of the High School Grade

XXXIV. Expectoncy Table for Algebra 304 (Nm312) . . 82

XXXY. Expectancy Table for Trigonometry 301 (N=180) 83
KXXVI. Expectancy Table for Analytio Geometry (M=67) . 84
XXXYII. Expectancy Table for Blology 805a (ime252) . . 85
XXXYIII. Expeotanoy Table for Blology 805b (im210) . 86
XXXIX. Expeotaney Table for Chemistry 801a (Nm208). 87
XL. Expectency rable (or Cacmiatry 801b (Ay 166) - 88
XLI. Expectancy Table for English 301 ($\mathrm{Xm}=217$) . . 89
XLII. Expoctancy Table for Englioh 302 (Nal48) . . . 90
XLIII. Expeotancy Table for English 303 (Mm270). . 91
XLIV. Expectancy Table for History 15a (Nay 59). . 92
XIV. Expeotanoy Table for Hiatory 15b (Am422) . . 93
XLVI. Expectancy Table for Physice 801a (w=136) . 94

XIVII. Expeotancy Table for Physios 8010 (Nwio2) . 95

CHAPTER I

INTRODUCTION OF THE PROBLEM

Effective guidance depende upon the efficient use of information that oan be colleoted about any individual or group. Although it does not nocessarily follow that the more information obtained the better the guidance will be, it does soen probable that obtaining important information from tests, questionnaires, grade cards, and personal data folder: will assist a counselor or teachor in making tho guidance process more meaningiul and revarding to the individual student.

In many instancos, information for guidance activities is available to school personnel; however, its avallability does not insure its proper use. Dyer brings this problem to Soous when he writes:

There are plenty of good tests on the market boing used for guidance purposes, and in most chool systems there are plenty of good personnel data lying in the files waiting for somebody to organize them and put therl to work. The big probleng, of course, is to get the test scores and personnel data together, $s 0$ that they can make maximura contribution to the guidance process-in other words, to work up a series of short-range prediction studies applicable to each loeal situation. . . . I am afraid it is unlikely that the statisticians and professional researchora will over get around to the job. The only solution, it seoms to me, is for the guidance workers to depend on themselves for the
looal prediction studies that so badiy noed doing. ${ }^{1}$ Students entering college are constantly faced with the deoisions of selecting courses and subsequently ohoosing major and minor fields of study. Information secured on both the high sohool and college lovels oan help the atudent make these decisions more inteliligently. If it is found that a substantial relationship exists botwoon a measuring Instrument or certain combination of instruments and college grades, this information can be given to the student. This affords him the opportunity to use objective data in choosing college coursea.

Statement of the Problem

The purpose of this investigation was to ovaluate the high school grade point avorage and a select group of standardized tests, administered on both the high school and junior college levels, to ascertain their usefulness in predioting academic achievement in apeoified group of sourses taken on the junior college levol; and to determine if a combination of tests and the high achool grade point average would yield higher predictive validities than the high school grade point average alone.
$1_{\text {Honry S S. Dyer, }}$ The Need for Do-It-Yoursolf Prodiction Researoh in High School Guidance," The Personnel and Gu1dance Journal, $36: 162-167$, November, 1957 .

Nood for the study

Each fall an estimated seventy to seventy-five per cent of the graduates of Robert E . Lee Righ School, Baytown, Texas, who go to college enroll in Lee College, the shool distriat' junior college. A part of the pro-enrollment progranat the college is concerned with obtaining test scores from the college testing progran and the high nohool recordas these are used in planning the student's acadoalc programe

To date, the problom of predicting the chances of auccesaful aohlevement from the information colleoted has been left almost entirely to the cilnical judgment of the counselors and teachers. Studiea are not available to show a tudent his chances of success in varlous college courses at Lee College.

To more adequately merve the wide range of interesta and aptitudes of the student body of Lee College, a three-level program of studies was introduced in 1960. The acadomie requirementa vary with each program, thus making it highly advisable to counsel atudenta more extonaively so that a program more suitable to their needs may be auggested.

The junior college in which thin atudy was conducted

[^0]had no information regarding the effectivenesa of either its entrance test or the date received from the high school for predictive purposes. The wide range of differences found in correlations between standardized teats and oollege grades from school to achool makea it necessary for ach college to develop its own predictive Information. The publio junior college with its close relationghip to the high school frequently has access to high sohool guidance data that can be used to develop thia prediotive information. This study is concerned with the collection and evaluation of such data. It is felt that the outcone of this atudy will be of value to both high school and funior college permonnel, especially those in the Goose Creok Independent School DIstriot.

General plan of Study

This study attempted
2. to determine the degree of relationship (predietive validity) between the high school grade point average and grades recelved in select junior college courseas
2. to determine the degree of relationship (prediom tive validity) botween aingle standardised teat variables and grades recelved in select junior college courses;
3. to determine if a combination of the high sehool grade point average and the Amerioan Council on Education Psychological Examination would yield higher predictive
valldities, whon predioting junior college course grades, than when either of these measures were used alone;
4. to determine if a combination of the high school grade point average, the American Council on Education Psychological Examination, the Cooperative Fnglish Tost, and a Cooperative Achlevement Test in the subject would yield higher predictive validities, when predieting junior college course grades, than when the high school grade point average was used alones
5. to develop local norms for the measurement Indices received by the Lee College Guidance Department; and
6. to present a two-way expectanoy table for each college course, using college grados and the best predictor or combination of prediotor variables found in the correlation studies.

Hypotheses of the Study
The hypotheses tested in this study were aa followas
Hypothesis 1: Course grades in select junior college courses may be predicted from a student's high school grade point everage.

Hypothesis 2: Course grades in eelect junior college oourses may be predicted from scorea on aingle atandardised tests.

Hypothesi: 3: A combination or the high school grade point average and the American Council on Eduoation

Paychologieal Examination will jield highor predictive validities when predieting select junior college oourse grades than whon the high achool grade point average is used mione.

Hypothesis $4:$ A combination of the high school grade point average, the Amerioan Counoil on Education Paychologioal Exarination, the Cooperative English Test, and a Cooporative Achlevement Toot in the subject area will yield higher prediotive validities, when predioting seleot junior college course grades, than when the high achool grade point average is used alone.

Definitions of Terms Used

The following dofinitions are pertinent to this studys Predictor variables or measurenent variables. In this study the standardized test aeries and the high sehool grade point average were oommonly reforred to as prediotor variables or measurement variablea.

Criterion variables. The oriterion variables used In this study wore the course grades recelved in any of the fourteen jumior college oourses studied.

Subject mattor achieverent tests. These were comercially propared standardized achievement tests (Cooporative Aehievement Tests) given to high achool students to measure their achiovement in various content courses taken in high school.

College aptitude test. This instrument (Americen Council on Education Psyohological Examination) way used to appraise what has been called scholastic aptitude or general intelligence, with apecial reference to the requirements of most college curricula.

Courge grados. The letter grade recelved by a itudent, (A, B, C, D, of F), in apecific junior colloge course was used to deaignate the student's academio echievement in that course.

High sohool grade point averegs. The high sohool grade point average, as used in thil study, wa: the mean of all of the gradoa recoived in the last throe years of high chool. These grades were roported in percentages.

LImitations of the study

Groups studied. The groupe tudied were composed of graduates of Robert E. Lee High School, Baytown, Toxas, who entered Lee College, Baytown, Texas, botween the years of 1956 and 2959. Only those students who had campleted one or more of the oollege courses deaignated in the atudy were included.

Measurement variablos. The meazurement variablea used in this atudy, with the exception of the high school grade point average, wore comorcially prepared standardized teste. Those selected were the Cooperative English Test, Form Y: Cooporative Biology Test, Form X: Cooperative Chemistry Test, Form Z; Cooperative Physios Test, Form Z;
and the Amerioan Council on Education Peychological
Examination, Proshman Lovel.
Gourses seleoted for the study. The coursea seleoted for the atudy were those offered by Lee College that are normally needed as a part of the general work done by students planning to transfer to a senior college or needed to complete an Associate's Degree. The courses seleoted were College Algebra, 304: Plane Trigonometry, 301: Analytia Geometry, 310; History of the United States, 15as History of the Onited States, 15b; Kaglish Composition, 301; Engliah Composition, 302; Componition and Reading: English, 303; General Blology, 805a; General Biology, 805b; General Inorganio Chemiatry, B01es General Cheialatry and Qualltative Analysis, 801b; General Physios: Mechanios and Heat, 801as and Goneral Physice: Light, Sound, Electrioity, and Magnotiam, 801b.

RELATED RESEARCH

In reviewing the researoh on the predietion of college auccess it immediately beoomes apparent that the predictive validity of any measuring instrument or combination of instruments dopends as much on the school In which the study was made as it does upon the oriterion and predistor variables used. Therefore, aurvey of research studies in this field jields extrenely conflicting results. Prediotive validities of measuremont variables in one institution may be of considerable value to the guidanee process; however, in another institution these amo Instrumenta may be of no practioal value. Firiting on the abjoot of testing in oollege, Freeman tateds

As group, euprent teste for the selection of college freshmen have met high technical standards in the statistioal analyses of their data and in the choice of items. They have utilized types of test itens that have best urvived jeare of researoh and experimentation; so much so, in fact, that there is conaiderable minilarity from one teat to another, in general contont and paychological congtruota onployed.

A major critioism againat some svailable soales is that their norms and studies of prodictive validity are based upon results found in too fot institutions, not adequately representative of the nation's colleges and tochnioel sohools. Therefore. In the study of perticular instrument's possible value for a particular institution, it is ossontial that the oharactoristios of the institution and
population upon which the socle was etandardized be oxamined to determine the scale's appropriatones: to the situation. 1

The over increasing need for more and better guidance eervices has extended the need for testing programs and, apparently, this trend will continue for some time. The essential uses of tenting are for claseification, diagnosis, and eelection, but the deterraining factor of their usefulness is their predietive vaiue. Cronbech emphasized this when he wrote:

An atteapt to prediot underliea every use of testing. Whenevor a test is given to two people. it tella about some dirforence betweon their porformance at this moment. But this would not be worth knowing, if from it one could not prediet that these two people would differ in some future activity. 2

Many types of measurement variables have been used in prediction studies. Aohievement testa, interest inventories, sohool marics, tests of general and specific aptitudes, personal data sheota, and personality ratings are some of the measuring instruments in current use. These variables have been used $2 l o n e$ and in various conbinations. This review is primarily concerned with aingle and multiple measurement variablea and their effectivenes in prodicting college achievement.
$1_{\text {Frank S. Freman, Theory and Practioe of Psychologieal }}$ Testing, Third Edition (Hew York: Holt, Kinehart and winstion, 1962). p. 398.

2Lee J. Cronbach, Essontials of Payohological Testing (Now York: Harper and Brothers; 2949T, P. 27.

One of the most widely used general soholastic aptitude tests for college students is the Ameriean Council on Education Paychological Examination. A considerable range of prediotive validities has been found from institution to institution and from aubject to subject with this particular inatrument.

Rigg's study correlating four-jear oollege grade point everages with the American Council on Education Psychological Pxamination for seven graduating elases found correlations ranging from . 22 to .67, With an average or .43 for a even year period. 3

Other studies have given conrifoting results when a apecific oollege major has been ahosen as the criterion variable. Correlating grades in industrial oducation with the Amerioan Council on Education Peychological Examination, Staatz reported a coorficient of e40,4 however, a similar study by Grater and Tholman roported a correlation of .10 with these same two variables. 5 In two study groups composed of English majors, moderate to high correlations were found

3x. C. Rigg, "Relation of College Achlevement Teste to Grades and to Intoliigence," Journal of Educational Psychology, 30:397-400, May, 1939.

4merlin D. Statz, "Relationship of the Orades of One Elundred and Elovon Induatrial Education Majors to Seleated Standard Tests" (unpublishod Master's problem, Kansas State Teaohera College, Pittsburg, Kanaes, 1952), p. 34.

Sharry Grator and F. A. Tholman, "A Statistical Analyais of the Relationship between AcE Psychologioal Examination Rating and Grade-Point Averagen," Joumal of Educetional Research, 49:307-10, Decomber, 1955.
between the total grade point average and the Amorican Council on Education Pbyohologieal Examination. Grator and Tholman found a correlation of .47 in their atudy, ${ }^{6}$ while Anderson and Stegran obtained a much higher corrolation of .65 in a almilar study. 7

Shuey compared eleven groups in his study or the predictive validity of the Amorioan Council on Education Pejehologieal Examination. Signifioantly higher predictive validities were found for students majoring in mathomaties, chemiatry, French, Spanish, and peychology than for atudenta majoring in blology, Engliah, politioal soience, economies, and sociology. Conoluding his atudy ho stateds

Choice of major subject bears some relationship to the studentls Anerican Council on Education Paychologieal Exaraination scorea and to the average grades of those enrolled in the most elementary courses. 8

Henderson, using the American Council on Education Paychologioal Examination to predict first semester oollege grados, found both the quantitative and the linguistie scores correlated too low to be valuable. He obtained correlationa

6 Ib1d.
7Mary R. Anderson and Erwin J. Stegran, "Predictora of Freahman Achievement at Fort Haya State College," Educational and Psychological Measurenents, 14:722-3, Winter, 1954.

8A. M. Shuey, "Choice of Major Subject as Related to ACE Score and College Grades, " Journal of Educational Peychology. 41:292-300, May, 1950.
of . 02 between the quantitative score and first semester college grades and .24 for the linguistid score and the arae eriterion. 9

In a study comparing the college auccose of veterans with non-veterans, Frederiokson and sehrader, using the high achool standing and the Amorican Council on Education Psychologioal Examination at the prediotor variables, found - medien multiple correlation of .60 for vetorana and .68 for non-veterans with firat fear college gradea. 10

Stone used the total high school grade point average, the Anorioan Council on Education Pbjchologiosi Exanination and the Cooperative General Gulture Test to tudy the relationship of these instruments to grades received in four college currioula. Selecting commerce, elementary education, physical solence, and social scienoe, Stone reported the following sumary etatements of his findings:

1. Utilization of entrance test data and high achool grade point average provide: the counselor with a basis for making differential predictions of academic sucoesa in four curricula.
2. Por commerce and elementary education, the most offective battery inoluded the high school grade point average and ACE total soores. The respective R's were . 633 and .731.
3. The physical sciences oriterion was best predieted by battery including the high school grade

9if. L. Henderson, MPredictors of Preshmen Gradea in a Long Island College," Fiduoational and Payohologieal Moasurements, 17:623-7, Winter, 1957.

10Noman Frederickson and W. B. Schrader, "The ACEPaychological Examiantion and High School Standing aa Predietors of Collego Succese:" Journal of Applied Paychology, 36:26-65, Auguat, 1952.
point average, the ACE total acore and the Cooperative General Culture Test, Literature and General Selence sections. This battery gave a R of 733.
4. The cocial acience predictor battery included the high school grade point average, ACE total score and Cooperative General Culture Test, Genoral Eclence ceotion; the multiple correlation wes .507.
5. The beat ingle prediotor was the high sehool grade point average: 11

Hoerres used grados in apocific oollege courses as the oriterion measure and found the following apread of correlationa between the American Council on Fducation Peychological Examination and the following abjecta: phyaics, . 54; biology, .49; English, .42; social soience, . 39 ; ohemistry. . 37 mathematies, . 25 ; foreign language, .22; and art, .06. One of the important conclusions drawn from this etudy was that eignificant predictiona were found for groups, but it was not advisable to use the American Councll on Eduoation Psjohological Examination for individual counseling. 12 A similar study by horriss found the Amerioan Council on Education Payohological Examination,Q-score had predictive value for courses in college cheristry and pure mathematics and the American Council on Education Peyohological Examination, L-soore was valuable in predicting college grades in

[^1]12y. A. Hoerres and J. D. OIDea, "Predictive Value of the ACE," Journal of Righor Education, 25:97. Fobruary, 1954.

English, history, general business arithmetic, and blology. 13 Similar reaulta to the above have beon obtained in two meparate utudies by Wallace and Carlin. Wallace found the Amerioan Council on Education Peychological Examination Ilaguiatia soction wa moderately correlated with English (.479). Fronch (.304), hiatory (.341), and political seience (.357): the total acore of the ame test served to predict grades in geology (. 350) and the freshman grade point average (.410). 14 carlin found the American Council on Education Peychological Exanination linguiatio acore was auperior to the quantitative score for agriculture, blology, chemistry, geography, and payehology, but found the quantitative soore best in prodieting grades in mathomation. 15

Haking a comparison of thirteon collegoa and univeraitien, Birdie; et al., found considerable variation in the corpelations between nine freshman college courses and the quantitative, linguistic, and total soores on the American Council on Education Pgyohological Examination. 16 since this
 Aohlevoment from Standardized Test Scores at the University of Houston Freshman Level" (unpublished Doctor's dissertation, Univernity of Houston, Houston, Texas, 1960), 173 pp.

14w. L. Wallace, "Differential Prediotive Value of the ACE Pajchological Exanination," School and Society, 70: 23-25, July, 1949.

15Lealie C. Carlin, "A Longitudinal Comparison of Freshran-Sonior Standing;" Journal of Fducational Researoh, 47:255-90, December, 1953.
study covers a variety of courses and a number of sohools, it ia presented in table form, showing the range of correm Lations by prediotor variable ror the nine courges and the total freshman erade point average.

RANGE OP CORAELATIONS BETWEEN THE ACE-Q, ACE-L AND ACE-T AND NIEE COLLEGE FRESEMAR COURSES IT THIRTEEN SELECT COLLEGES AND UAIVERSITIES*

Courae	ACE-Q	ACE-L	ACS-T
Eagliah	. $08=.47$. $11 . .68$	$.24-.66$
Mathematiet	.11-. 51	. 09.0 .64	-. $03-.52$
Phyeles	. $03-.33$.10.. 45	.08-. 71
Chomistry	$.14-.48$.09-.59	$.10-.54$
Blologioal Solence	. 12-. 50	$.11-.67$.20-. 59
Soelal Science	. 07.49	.23-.62	. 22-.63
Foreign Lenguage	.00-.47	. 23-. 46	. 17-.53
Musie	-23-. 43	.01-. 49	-.09..43
$A{ }^{\text {a }}$. $00-.38$. $06-.43$	-. $080 . .44$
Total 0PA	. $15-.53$	$.18-.65$. 25-.66

Excorpted from R. F. Berdie, Paul Dreasel, and Paul Kelso, "Q. and L. Soores of the ACE, Educational and Parehological Moasurements, 11:803-12, Sprlag, 195\%.

Comparing four commonly used college aptitude teats, the College Qualifioation Test. School and Colloge Ability Test. American Council on Eduction Peychologioal Exarination, and the Soholastio Aptitude Toat. Juola evaluated each to determine its ability to prodict grades in basia courses,
non-basia coursea, communicationa akilla, and natural sciences. The following conclusions were submitted by Juolas

1. While differenons were noted in the predictive valldity of total coores on the ACE, CQT. SCAT, and SAT, the differences were generally mall.
2. The total scores on all testa wore muperior to the total seore of the ACB in predicting the grade point average of males, but not the grade point average for females.
3. With the exception of relationships with the grade point avorage in communications skills, the total scores on all tests were generally as good a single index of attainmont as the mont relevant part-acore.
4. Because the patterns of prediotion among the part-scores oxhibited a complete revorsal when prediotions were made for communioations skills of natural goience, discrepancies on these scores aeem to provide zome basis for difforential acadonic counseling.
5. Thore was some ovidence to suggest the greater applicability of the CQT for the malepopulation and the SCAT for the reanle population, 17

Chapman, using Southorn Mothodist Univeraity Ireshmen,
found the Cooporative English: Mechanios of Exprossion section jielded the highest correlation of four measurement variabloe used in his study. Soleoting freshman grades at his criterion vapiable, the following correlations, by measurement variable, were found: American Council on gducation Peychologieal Examination, Q-score; .330;

17A. E. Juola, "Predietive Validity of Five College-Level Academic Aptitude Tests at one Institutiong" Personnel and Guidance Journal, 38:637-41, Apr11, 1960.

Amerioan Council on Education Paychological Examination. L-Score: 500; Cooperative English Pesti Meohanies of Expression. 695 I Iowa Silent Reading Tost. .581 and high school grades. $.454 .^{18}$

Samenfield, tudying the long-range predistive value of the American Council on Education Paychological Examination for high school tudents, computed correlations of ninth and twolfth grade Amerioan Council on Education Psychological Exarination scores with firet jear college gradese fe found the ninth grade tent results were as valuable in prediction as the twelfth grade test results, the two giving respeotive correlations of .39 and 34.19

At Brighar Young University Jensen and Clark used the Cooperative English Test ith a select population and seoured the following resultst

1. Seores of the Mechanios of Expression part and the total soores of the Cooperative English Tent proved to show the highost correlation (.519) with fipat year college gradea. The other two parts did not contribute to the prediative power of the total English scores.
2. The Cooperative English Test appoare to compare favorably with the better predietive instru= ments used at Brigham Young University. 20

18Harold Chapman, Mredietion of Freshman Soholarship from a Combination of Standardised Test Scores and High Sohool Grades" (unpublished Doctor's diseertation, University of Houston, Houston, Texas, 1955). p. 273.

19Herbert W. Samenfield, Predicting College Aohievement: "Journal of Higher Education, 24442-2. November. 1953.

20yem H. Jensen and Monroe H . Clark, "A Prediction Study of Cooperative English Test Scores," The Personnel and Guldance Journal. $36: 635-36$. Hay. 1958.

Using the Cooperative Sooial Science Test. Buckton found only moderate correlations with higtory (.45), political science (.38), paychology (.36), and sooiology (.36). Also, using gradea in biological selence, he found correlations of .38 with the Cooperative Matural Science Tost and. 32 with the Cooperative Mathematics Tost, 21 Cariln, in - Eimilar tudy with the Cooperative General Achievement Tests, found the Sooial Soience Test to be the best over-all prediotor of achievement in the social seiences. 22

Some studies that used the Cooperative Achievoment Tests did not find the magnitude of correlations as presented above. Plerson and Jox found the English and Mathematies Testa of the Cooperative Aohlevement Tests, When combined with the high echool grade point average, gave multiple correlations of .653 with the first jear college grade point averagea of two hundred and seventy-aix engineering students, 23 This was aignificantly higher than any of the simple correlations uaing oither a seation of the Cooperative Aehiovement Tests or the high achool grade point average.

Soleating entering college freshmen in eight Georgia

[^2]tax-aupported colleges, Franz, Davis, and Garcia found a considorable range of eorrolations betweon the Scholastio Apeitude Test and rirst quarter grade: (.19 to .65) : when the high achool grade point average was used as the predietor variable, the range secured was. 26 to .67. Combining the verbal and mathomatical sections of the Scholastio Aptitude Test and the high echool grade point average yielded multiple correlations of .48 to . 70 for men and .42 to .77 for momen. 24

In a recent atudy comparing the predietive validity of sevon different measures (the high mohool grade point avorage, the Iowa Tost of Educational Development, the American Council on Education Psychologioal Examination: T-soore, the Nelson Denny Reading Tost, the Cooperative English Tost: Meohanics of Expreseion and the Cooperative English Test: Efrectiveness of Expression), Hansmeir found the Iowa Test of Educational Development yielded the higheat correlation with freshmen grade point averages. 25 This study also chose the composite score or the Iowa Test of Educational Dovelopment and the high school grade point average an the best combination for predictive purposes.

24Gretchen Prany, Junlus A. Davis, and Dolores Garoia, "Predietion of Gradea from Pre-Adinisions Indices in Georgia Tax-Supported Colleges," Educational and Psychological Measurements, 18:841-44; Winter, 1958 .

25Thomas W. Hanameier, "The Iowa Teste of Educational Development as Predictora of College Achievement," Education and Psychologioal Measurements, 20:843-45, Winter, 1960.

Studying the long-range prediction possibilitios of the Iowa Test of Basio Skills and the Iowa Test of Educational Development, Seannell chose a study group composed of students from Iowa state College and the State University of Iowa. Using both the freshman grade point average and the four-year grade point averages as the eriterion measures, the following rosulte were reported by himt
2. The acouracy with whioh general oollege academio success was predioted from chievement teat scores increased year by year from grade four through high school; the grade twelve Iown Tests of Educational development jielded multiple correlations of 634 with freshman college grade point average and .535 with four-year grade point average.
2. Combinations of achievement tost data obtained at several points in the students' careers were only nilghtiy more predictive than the most recent studies.
3. High achool grade point average was the best aingle prediotor of college aucess ylelding correlam tions of .670 and .590 with reeshman and rour-year grade point everage, reapoctively, Rank-in-clase was not highly predictive for graduates of mall high sohools. 26

According to a study by Vinejard, the Differential Aptitude Test Battery in capable of predieting course mark: in college if the proper tests are chosen. He found the Verbal Reasoning, Abstract Reasoning, Numerical Ability and Spelling tests of the battery when corbined, correlated .563 with firat-year grade point averages of womon. Formen. the best combination of Differential Aptitudo Tosts was

26Dale P. Scannell, "Prediotion of College Succoses from Elementary and Socondary School Porformance," The Journal of Educational Psychologi, 51:130-34, June, 1960.
the Verbal Reasoning, Abstract Reasoning, Numerioal Ability, and Clarical Speed and Accuracy, which gave a multiple correlation of .631. The important aspect of thin atudy is that the predictions wore made from the test resulta obtained Auring the froshran year of high school. 27

Summary

A wide variety of standardized tests has been used to predict college suecessy these have been used singly and in various combinations. The majority of studies use the first semester or firat jear grade point average as the oriterion measure however, in many studiea specific ourrioula or course gredes have been used. The following conclusions seem to be indicated from these studies:

1. A considerable range of oerrelations has been found between tendardised testa and colloge grades.
2. The size of the correlations dopends on the prediotor mesare, oriterion measure, and the institution In which the study ves made.
3. The high school grade point average is one of the beat predictor measures that has been used.
4. Uaing the high school grade point average in combination with an aptitude or atandardized achievement tost usually increases prodictive value.

27 Edwin s. Vineyard, "A Longitudinal Study of the Relationghip of Differential Aptitude feat Scores with College Success." The Porsonnel and Guidance Journal, 36:413-17. Fobruary, 1958.

CHAPNER III

GROUPS STUDIED AND MATERIALS USED

Subjects Used in tho Study

The subject: used in the atudy were all graduates of Robert E. Lee Eigh School, Baytown, Texas, who entered Lee College, Beytown, Toxas, betweon the yeara of 1956 and 1959. To be included in the atudy a student must have met the above conditions and have completed one or more of the fourteon oollege coursea used as the eriterion variables.

The total number of persons in the study wes five hundred and forty-six. However, in any one particulap valldity study, the number available ranged from a low of fifty-nine to high of four hundred and fifty-nine atudents. Table I gives this information, by college course, ahowing the size of the different groups used to make the correlation studies.

As can be meon froz Table I, the number of individuals varies considerably from one group to anothor. This population variation was dependont upon aeveral factors. Some of the studenta had taken only one of the college courses over the study poriod; soze had completed more than one. Slnce students mere allowed to select different courses to meet their college course requirements, different ize groups were

SIZE OF GROUPS LISTED BY COURSE

 and measurement variables| College Course | Measurement Varlable | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| Algobra (304) | 301 | 301 | | | | |
| Analytical Goomotry (310) | 67 | 67 | | | | |
| Trigonometry (301) | 117 | 117 | | | | |
| English (301) | 217 | 217 | 74 | | | |
| English (302) | 484 | 484 | 252 | | | |
| English (303) | 256 | 256 | 171 | | | |
| History (15a) | 459 | 459 | 214 | | | |
| History (15b) | 416 | 416 | 216 | | | |
| Biology (805a) | 252 | 252 | 135 | 135 | | |
| Biology (805b) | 207 | 207 | 119 | 119 | | |
| Physioa (8018) | 133 | 133 | 74 | | 74 | |
| Physice (801b) | 102 | 102 | 59 | | 59 | |
| Cheraistry (801a) | 202 | 202 | 90 | | | 90 |
| Chemistry (801b) | 163 | 163 | 80 | | | 80 |

formed in this selection procesa. For the multiple correlation studies using more then two predictor variablea, the size of the atudy groups was dependent upon the Cooperative Achiovement Tests that were taken in bigh achool.

Each student used in the study had at least four
measures avallables these were the language score, quantitative aoore, ad total soore of the American Council on Education Parohologioal Examination and the high sohool grade point average. The romaining measures were secured from one or more of the Cooperative Aohiovement Tosts given at Robert E. Leo Kigh School.

Predictor Variables Used in the Study

The following measurements were used for the various predictive tuales. All of these are oomercially prepared standardized tests with the excoption of the high mehool grade point aversge. Below is a description of each of theses

Amorioan Council on Education Peychologieal Examination for Freshman. This test consists of aix aubtests combined to jield a quantitative, linguistio and total score. The teat is designed to fumieh meazurement of general scholastic aptitude, primarily for college academies.

Cooperative English Test, Porm Y, Higher Levol. The Cooperative English Test is divided into three sections. Section One Jields a score for Reading Compreheneion; it ia divided into two parte, vocabulary and paragraph reading. Section Two, Mechanies of Expression, contalne parts dovoted to gramnaticml usage, punctuation, and capitalization, and spelling. Section Three, Effectivenesa of Expression, contalns parts concerned with sentence atructure and ityle,
diction and organization of aentences into paragraphs. A total acore oan be obtained by adding the acaled soorea of the three sections of the test."

Cooporative Biology Test, Fom X. The Cooperative Blology Test is designod to measure etudent'a achievement in blology by pequiring him to make application of blological information. Portions of the test are concerned with drawings whioh are to be identified, and terminology and factual material that are nombally covered in a typieal high school blology oourge."

Cooperative Chemistry Test. Form Z. Thia teat is divided into two parts: Part I contains definitions, genoral principles and theories, and the basic understanding of the lawe of oheniatry; Part II is largely ooncerned with the testing of skills and the quantitative applieations of chomiatry prinelples and interpretation of laboratory prosedures.*

Cooporative Physios Test, Form Z. The major topies com verod in the Cooperative Physies Test are meohanics, heat. - leatricity, light, and sound. The test contains typical high school phyaica problems, charta and diagrams to be interpreted, and questions calling for recall of factual information**

High Sohool Grade Point Avorage. Thia messure was seoured from the atudent's high sohool record and was computed by averaging the final marise, expressed in percontages, that the student rooelved in all of the courses taken
during his last three yoars in high school.

Criterion Variables Used in tho Study

Fourten junior college coupses were selected and the letter grade received in each wes conalderod the eriterion variable. A description of each course is given below.

College Algebra, 304. fapid review of elementary topics, followed by suoh adranced materials as simultaneous, IInear, and quadratio equations, doterminants, progressions, the binomial theorem, complex numbers, inequalities.

Plane Trigonomotry 301. Measurement of angular magnitude, trigonometrio funations, eolution of right and oblique triangles, thoory and use of logapithme. idontition. trigonometric equations.

Analytio geomotry, 310. A alsoussion of the point, loci problems, the straight line, the cirele, conio sections, and transformation of coordinates.

Eistory of the United gtates. 15a. A survey of the establishmont and growth of tho English colonies; their relations with Britain; the Revolution; the Confederation; the Conatitution; the development of nationality; westrard expansion, slavery, and the Civil War.

History of the United States, 15b. A survey of the growth and development of the United statea since 2865. Ineluding reconstruetion! eoonorale political and soolal developmentes and international relations.

English Composition, 301. A concentrated study of modern gramar and usage, spelling, punctuation, vooabulary building; training in the reading and writing of prose, chiefly expository.

English Composition, 302. A tudy of the principles of olear and effeotive expression, with abundant practice in various types of writing; analyais of modela; training in the use of the library and its resources: the writing of an - lemontary pesearoh paper.

Composition and Reading: Finglish, 303. The writing of oritioal roviews, reports, and a long research paper based upon a study of Anerican novels, plays, and pooms.

Genoral Blology, 805a. General survey of invertebrate and vertebrate andmal phyle. Emphasis on general biologieal principles. Unite in animal structure, function. and development.

General Blology, 805b. Goneral survey of the plant phyla. Emphasis on the strioture, development, and ecology of plant life.

General Inorganic Chemiatry. 801a. The rundamental principlea, laws, and theories of chomistry, inoluding atomio and molecular atructure; the electron theory; valence; Lonization; equilibrium; reversible reactions; the periodio table: oxygen, hydrogen, sulfur, end water atudied. General Chemistry and Qualitative Analyais, B01b. Continuation of 801a. Inoludes oxidation reduction by the -lectron transfer, metals and metellurgy; leatro-chemistry;

Industrial appliontions of important chemical prooesses. Systematio qualitative analysis of the common anions and twenty-two oations.

General Physios: Mechanios and Heat, 801a. A basic technical course for students who intend to do further work in science, matheatics, or medicine.

Genoral Physica: Light, Sound Eleotricity, and Magnetism, 801b. For tudents who intend to do further work in solence, mathematios, modicine, ete.**
*Bibllography of Teats Uaeds
Cooperative Physios rest, Form Z, Rducational Tenting Sorvice; Princeton, $\mathrm{M} \cdot \mathrm{J} ., 1950$.

Cooperative English Tost. Form Y, Higher Level, Educational Testing Servico, PrInceton, 日. J., 1948.

Cooperative Chemistry Teat, Form Z, Educational Testing Service, Pringeton, X_{o} J., 1950.

Cooperative Blology Test. Form X, Educational Tenting Servioe, Priaceton, $\overline{\text { B. J., }} 1950$.

American Council on Education Pajchological Examination For Colloge Freshren, Educational lesting Sorvice; Princeton, Net Jorsey, 1950.

* The above course deseriptions are taken from the Lee college Catalogue, "Bullotin of Information and Announcementa," The GooaeCreek Junior College Distriet, Baytown, Texat, 1956-1958, 1957-1959.

CEAPTER IV

METHODS AND PROCEDURES

Nata Gathering

For each atudent used in the study a record was made of (1) his high achool grade point average, (2) the raw seores he recelved on the American Council on Education Payohological Examination and the Cooperative Achievement Tests, and (3) the grades he recelved in one or more of the fourteen college courses. (This information was recorded in raw weore form and placed on cards, a card being made avallable for each tudent eeparately.) Upon the eompletion of T-acale transfomationa of the paw scores, the I-scorea were transforred to TBM-oarde for later procesaing.

The data were collected from two sources. The high school grade point average and the Cooperative Aohievenent Test scoren were a part of the student's permenent high school record; these were housed in the Regletrar's Office of Robert E. Lee High Sohool, Baytown, Texan. The scores of the Amerioan Counoil on Eduoation Psyohologioal Examination and the college course grades were taken from the atudent's Lee College transoript; these were made available through the Lee College Regiatrapls Orfice and the Guidance and
costing Bureau of the college.

Procesting the Datt

To prepare the raw seore data for the correlation Etudies. T-soale quivalents of the raw soores were secured. This was acoomplished by using a technique given by Garrott that allowed raw scores to be put into m-acale equivalente. This techaique allowed each of the variablea to be put into the sares standard-acore units. ${ }^{2}$

Upon the completion of the I-scaling, the data wore transforred to IBM-eards and corted relative to the various college coursea that were used. A by-produet of the sorting procese allowed an IBM data-sheet to be printed. by each course, giving the grade and test seores of each etudent In tha study population. These data were then transferred to a spocial tape that eould be used with the LaP-30, an - leotronic computer machine. The remaining parts of the atudy were perfommed using the Lop-30 and a deak caloulator.

Caloulating Prooedures

Calculating the means and standard deviations of the variablos. Using the rapid oaloulating prooesses of the Lop-30, It was possible to secure the number, mean, and

IHonry E, Garrett, Statiatics in Payohology and Education, Fifth Edition (Mew Mork: Longmans, Green and Coe. 1960). pp. 315-317: 478.

2T-seale equivalents of the raw ecores for all of the Variables used in the tudy are found in Appondix A.
standard deviation of each of the variables used in the study. All of these operations were made possible by uning a prepared program made available through the Computer Division of the Mathematios Department of Kanaes state College of Pittsburg, at Pittsburg, Kansas. These data will be presented in Chapter ∇, "Presentation and Analysis of Data."

Single Correlation Studies. Uaing the Formula given below, the aingle predietor variablea were correlatod with the course grades received in each of the fourteon oollege coursea.

$$
r_{x y}=\frac{N \Sigma_{x y}-\left(\Sigma_{x}\right)\left(\Sigma_{y}\right)}{\sqrt{1} \Sigma_{x^{2}}-\left(\Sigma_{x}\right) 27\left[\sqrt{N} y^{2}-\left(\Sigma_{y^{2}}\right) 7\right.}
$$

Thi: comploted the first sot of correlationa necessary to teat Eypothesis 1 and Hypothesia 2.

Multiple Corpolation studies. The first step in the preparation of the data for the multiple correlation studies was to compute the intercorrelations of the variables for each colloge course separately. This was done in two phasess the firat were those intercorrelations using only the American Council on Education Paychological Examination and the high sohool grade point average; the second phase consisted of the intercorrelation necessary to evaluate the predietive velidity of the American Council on Education Psychological Examination and the high school grade point avorage in combination with the Cooperative Engllsh Tost
and Cooperative Achiovement Test in the subject area.
Table containing these intercorrelations will also be found In Chapter V. "Presentation and Analyeis of Data."

From the intercorrelations found in the above procedures it was then possible to determine the predictive validity: by college course of (1) the Arerican Council on Education Payohological Examination, E-soore, plus the high school grade point average, (2) the Ameriean Council on Education Psyohologioal Exanination, Q-score, and the high school grade point average, and (3) the Amerioan Council on Eduoation Pgychological Examination, F-score, and the high shool grade polnt everage. The Monroe Calculator was used to compute these two-predietor variable multiple correlationa using the machine formula: ${ }^{3}$

$$
R_{x(y m)}=\sqrt{\frac{r_{x y}+r_{x y} \cdot r_{y z}(-2)+\left(r_{x y}\right)^{2}+\left(r_{x y}\right)^{2}}{1-\left(r_{x y}\right)^{2}}}
$$

Regression equations were also formed for each multiple correlation secured in the above operations. The formulae used to compute the regression equations weres

$$
\begin{aligned}
& =\frac{\left(r_{x y}-r_{x z} r_{y z}\right)^{\sigma}}{\left(1-r_{y} z^{2}\right)^{\sigma}} \\
& b=\frac{\left(y_{x}{ }^{2}-r_{x y} y_{y z}\right)^{\sigma}}{\left(1-r_{y} z^{2}\right)^{\sigma_{x}}} \\
& 0=\frac{\sum x-\sum y-b \Sigma z}{I}
\end{aligned}
$$

3Monroe Caloulating Machine Co., Inc* Monroe Calculating Machine Mothods: General Statistics, Orange, K. J. 3 . 3960 .

The second phese of the multipie correlation tudies was to add the Cooporative English Test and a Cooperative Achlevement Tost in the subject area to the Amerioan Council on Eduoation Payohologiosl Exanination and the high echool grade point average. It can be seen by examining table that only eleven of the fourteen courses could be analyzed with the addition of the Cooperative Aohiovernent Teste.

As was true in the first phase of the multiple correlation studies, intercorrelations were computed between each of the variables used in producing the coefficient of multiple correlation for any course using more than two predietor variablea. The Doolittle Method of oomputing multiple oorrelations, as described by Guilford, 4 was applied to the deta. 5 This teohnique allowed the finding of the multiple correlation, regression equation, and beta-weights in one continuing process. These data are also entered in Chapter V, "Presentation and Analysia of Data." Seleoting Variates for the Expeotancy Tables

The "Plan of Study" in Chapter I included the construction of ex expectaney table for ach college course, using the best predictor or combination of prediotor

4J. P. Guilford, Pundamental Statistios in Peychology and Education, Third Edition (Now Yorki XeGraw-ilill Book Company, Ine., 1960). pp. 406-410.

5A ample worksheet or this procedure is presented in Appendix B.
variables found in the tudy. To determine these it was necessary to compare the various correlations obtained and to choose the higheat; this was done soparately for each college course.

Slince the high school grade point average gave the highest single correlation for each oourse it was chosen as the baso to whioh combinations of predictor variablea could be compared. Comparisons were made between (1) the high school grade point average and combination of the high sohool grade point average and the American Council on Education Paychological Examination, and (2) the high school grade point average and a combination of the high sohool grade point average, the Amorioan Council on Education Paychologioal Examination, the Cooperative English Tost, and a Cooperative Aohievement rest in the subject ares. The formula employed to make the comparisons is given by Bryant \boldsymbol{j}^{6} it allowe the ilgnificance of the difference between two corrolations to be testeds

$$
C_{0} R_{0}=\frac{z_{1}-z_{2}}{\sqrt{{ }^{2} Z_{1}+\sqrt{z_{2}}}}
$$

whore
N number of people in
the sample
F number of predictor
variables $\sigma_{z_{1}} 2=\frac{1}{N-3} \quad \sigma_{z_{2}}=\frac{1}{N-P-2}$

[^3]The oritical ratios were obtained and if they foll below the Pive par cent level of confldence, this was taken as evidence that the correlations wore not atatistically aignifioant. An inspection of Tablea and , Chapter Y, "Presentation and Analyais of Data," shows no elgnifioant difforences between the correlations secured for the high achool grede point average and college course grades and those obtained whon oither the American Council on Education Psyohological Examination and/or the Cooperative Aohiovement Teste were added to the high echool grade point everage. Therefore, the high school grade point avorage way used as the prodiotor variable, for each college course, for each of the fourteen expeotaney tables.

Constructing the Expectanoy Tables

Uaing the high achool grade point averace as the predictor variable, a requency distribution was prepared, marking off the f-scale equivalonts of the raw acores at decile intervals. The first vertical colum of the tables gives these deoile intervala; along the abscisas are the gradea oorreaponding to the decile groupinga of the F -soores. Six columns were used to report the number and peroentagea of grades corresponding to the decile intervala; these present the grades $A, B, C, D, o r F$ and pass, rail, and total. To give the expectancy table meaning for coursea with samall populations and intervala with small distributions of
ceses, the ton decile intervals wore combined to field a eecond expectancy table with only five intervala. The ame procedure as given above was used in reporting the number and percentages of grades received in various coursea in thes shortened tebles.

CHAPTER Y

PRESEMTATIOA AXD ANALYSIS OF DATA

Since considerable amount of data is presented in this chapter it is organized into five soctions. Sections I and II are concorned with the aingle corrolation atudies. Onder each section the Collowing is presented: (1) table of the means and standard deviations of the prediotor and criterion variables, (2) table of the coefficient or correlations (predictive validities) obtained, and (3) a restatement of the hypothesis and an analysis of the resulta. Sections III and IV are devoted to the multiple prodiction studies. Each section presents: (1) the tables of the means and atandard deviations of the predictor and criterion variables, (2) the tables of the inter-correlations of the variables, (3) the tables of the multiple corrolations and regresaion equations, (4) a table of the critieal ratios obtaiaed whon the differences between correlations were tested, and (5) a restaterment of the hypothesia and an analysi: of the data. The nature of the data in Sections III and IV necessitates reporting the findings soparately for each of the college courses. Section V presents the fourteen expectaney tables, one for each college course, selecting the best predictor variable found in each course in the correlation studies.

I. Single Correlation Stuaies Jising the High school Grade Point Average and College Courae Gradea

Rostatoment of the Hyothesis and Analysis of Results

Hyoothesis 1: Course Orades in select Junior college courses may be prodicted from a student's high school grade point average.

Analysis of Rogults. The high achool exade point average corralates significantly with algebra, trigonometry: the three English courges, and the courses in biology, chemistry, history, and physics. In only one of the fourteon courses, analytio geometry, wes the correlation too small to be considered significant. Eliminating the analytio geometry course from the group, the correlation range was .52 to .68. A11 of these correlations are considered moderate, howing a abstantial relationship exists between the high ohool grade point average and course grades in thirteen of the fourteen coursea studied. From these results, Hypothesis 1 is accepted.

TABLE II

MRAMS AND STANDARD DEVIATIONS OF THE PREDICTOR AND CRITERIOA VARIABLES--BI COLLEGE COURSE

Couras	Variable	Humber	Hean	Ctandard
Deviation				

TABLE II (continued)

Course	Variable	Number	Moan	Standard Deviation
Engl1sh 301	ESGPA	217	49.51	9.39
	Coll.0r.	227	50.06	8.97
Eng21ah 302	HSOPA	484	54.97	10.57
	coll.0r.	484	49.74	9.07
Ingilsh 303	hsapa	256	59.02	9.67
	coll.gr.	256	49.81	9.03
History 15a	HSapa	459	54.25	12.03
	Coll.0r.	459	53.84	7.83
History 250	higapa	416	53.94	10.46
	Coll.0r.	426	50.92	8.77
Physios 801a	HSGPA	133	55.03	9.64
	coll.ar.	133	50.63	9.08
Phyiles 800 b	HSGPA	102	55.50	9.45
	Coll.3r.	102	50.02	9.31

tablis III

COEFFICIENTS OP CORRSLATIOE EETWEDK TAE HIGZ SCHOOL GRADE POINT AYERAGE AMD COLLEGE COURSE GRADES

Criterion Variable	Predietor Variablo	Coofficient of Correlation
Algebra 304	HSGPA	.53
Trigonometry 301	HSGPA	. 53
Analytie Geometry 310	HSGPA	.08**
Eng12eh 301	HSGPA	. 64
\%ngl1en 302	HSOPA	. 68
English 303	HSOPA	. 56
B10logy 805a	HSOPA	. 61
BLology 805b	HSGPA	. 63
Chemistry 801a	HSGPA	.65
Chemistry 801b	HSOPA	. 52
H1story 25a	HSOPA	. 57
History 150	HSOPA	.53
Physies 801a	HSGPA	.55
Phyeias 801b	HSOPA	. 54

*Rot ifgifisant at either the five per eent or one por cent level of confidence.

II. Single Correlation Studies Using the Standardized

 Test Scores and College GradesRestatement of the Eypothesis and Ansiysis of Results

Hypothesis 2: Course grades in seleot junior college coursea may be predicted from scorea on single atandardized tests.

Analyais of results. Signifioant correlationa were found between the Amorican Council on Education Parohological Examination, Q-score, and Aigobra 402, Trigonometry 301, Analytic Goomotry 310, Chemiatry 801a and 801b, and Phyaica 801a. The Amerioan Gouncil on Education Psychological Exanination, Q-score, did not correlate aignificantly with Physios 801b.

The American Council on Education Psychological Exarination, L-score, correlated with English 301, 302, and 303, Blology 805a and 605b, Chemistry 801a and 801b, and History 15a and 15b. It did not correlate significantly with Phyalce 801 and 801 b .

The Amerioan Council on Education Psychological Examination. T-acore, correlated aignificantly with each of the Pourteen courses except Physios 801 b and Analytic Geometry 310.

The Cooperative English Tost correlated Eignificantly with the English, blology, chemistry, history, and physics coursea.

The Cooporative Blology Tost correlated aignificantly with the blology coursea.

The Cooperative Chemistry Tost correlated significantly with the chemistry courses.

The Cooperative Physios Teat correlated aignificently with the physios courses.

Of the fifty-nine correlations reported in this section, fifty-four eigniricant correlations were founds therefore, hypotheals 2 may be acoopted.

MEANS AND STANDARD DEVIATIONS OP PREDICTOR AND CRITMRIOU VARIABLES--BY COLLEGE COURSE

Criterion Variable	Variable	Number	Moan	Standard Deviation
Algobra 304	ACE-Q	301	56.53	9.64
	ACE-T	301	56.35	9.30
	Coll.ar.	301	49.52	7.98
Analytio Goom. 310	ACESQ	67	58.73	10.16
	ACR-T	67	57.73	9.13
	Coll.Gre	67	49.82	8.77
Trigonometry 301	ACE-Q	177	57.86	
	ACB- ${ }^{\text {a }}$	177	58.18	8.86
	Coll.Gr.	177	49.83	8.73
E10logs 805a	Coll. 0 .	301	49.52	7.98
	ACE-L	301	56.53	9.64
	ACE-T	301	56.35	7.98

	Coop. B10.	135	53.37	8.01
	Coop Eng.	135	54.05	8.97
	Collogr	135	50.05	8.78
B1010g7 805b	Coll. Gr.	207	51.02	10.16
	ACE-L	207	50.77	10.90
	ACEST	207	54.47	10.61
	C00p			
	Coop. Bio.	119	53.84 5.21	0.00 9.04
	Coll. ${ }^{\text {ar. }}$	119	51.85	10.47
Chmistry 801a	Coll.ar.	202	50.51	8.80
	ACE-Q	202	55.61	9.87
	ACE-T	202	55.90	9.42
	ACE-L	202	51.58	10.21
				7
	Coop Eng. Coop. Chem. Coll. Gr.	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 55.36 \\ & 61.86 \\ & 53.20 \end{aligned}$	$\begin{aligned} & 7.41 \\ & 6.19 \\ & 8.65 \end{aligned}$

Criterion Variable	Variablo	Number	Mean	Standard Deviation
Chomistry 801b	Coll. 0 \%	163		
	ACE-Q	163	56.66	10.71
	ACE-L	163	53.39	9.23
	ACEW	163	57.06	9.69
	Coop. Eng.	90	56.12	7.53
	Coop. Chem.	90	62.29	5.98
	Coll.Gr.	90	52.73	9.09
Englith 301	Coll.ar.	217	50.06	8.97
	ACE-L	217	46.36	10.48
	ACE-	217	50.52	10.25
	Coopeting.	74	50.85	7.71
	YColl.Gr.	74	52.81	8.19
	1			
English 302	Coll. Cr .	484	49.74	9.07
	ACEML	484	50.31	20.59
	ACE- ${ }^{\text {P }}$	484	54.31	9.80
	Coop.Eng.	232	54.81	$8.29{ }^{-0}$
	coll.0r.	25^{2}	52.60	8.75
Eng11ah 303	Coll. 0 \%	256	49.81	9.03
	ACE-L	256	52.60	10.23
	ACEm ${ }^{\text {\% }}$	256	56.79	9.38
	Coop. Eng.	171	55.60	8.28
	Coll. 6 .	271	51.29	8.51
H1story 150	Coll. 6 Cr .	459	53.84	7.83
	ACE-L	459	49.67	10.60
	ACEST	459	56.31	10.27
	$\begin{aligned} & \text { Coop.Eng. } \\ & \text { Coli.Gr. } \end{aligned}$	214	53.15 51.35	$\begin{aligned} & 9.14 \\ & 8.73 \end{aligned}$
E1story 15b	Coll. 0 \%	416	50.92	8.77
	ACEML	416	50.13	10.62
	ACB-T	426	54.31	6.77
	Coop.Eng.			7.65
	$\operatorname{col} 1.0 r *$	216	54.17	7.92

TABES IV (continuod)

Criterion Variable	Variablo	第umber	Mear	Standara Deviation
Physics 801a	Coll. 62.	133	50.63	9.08
	ACE-A	133	56.41	9.52
	ACE-L	133	52.63	9.07
	ACE-T	233	51.59	8.30
	Coopemer			
	Coop Eng . Coop. Phys.	74	55.15 61.94	6.99
	Coll, Or .	74	52.64	8.96
Physica 801b	Coll.gr.	102	50.02	9.31
	ACS-Q	102	57.93	8.91
	ACE-L	102	52.08	8.91
	ACE- ${ }^{\text {a }}$	102	57.48	7.79
	相 Coop. Eng.			
	Coop. Eng Coop. Phy	59 59	$\begin{aligned} & 54.85 \\ & 61.95 \end{aligned}$	$\begin{array}{r} 9.30 \\ 9.30 \end{array}$
	Coll. ${ }^{\text {co. }}$	59	49.16	9.30

table
COEFFICIENTS OP CORRELATIOn BETYEEA THE STANDARDIZED
TEST SCORES AND COLLEGE COURSE GRADES

Hot significant at either the one per cent or five per cent levels of confidence.

* Significant at the $P 17$ per cent but not the one per cent level of confidence.

IIT. Multiple Correlation Studies Uaing the Bigh Sohool Grade Point Average Combined with the American Council on Education Payohologieal Exanination, (-score, L-acore; or T-soore and College Courne Grades

Restatement of Hypothesis and Analysis of Results

Bypothesis 2: A combination of the high achool grade point average and the Amoriosn Counoil on Eduoation Payoholofical Examination will yield highor predictive vallditien when predicting select junior oollege course grades than when the high sohool grade point average is used alone.

Analysis of Rosults. Adding the American Council on Education Peychological Eremination, Quscore, to the high sohool grade point avorage increased the correlation elgnificantly for analytical geometry; however, the correlation obtained (.39) was 10 and therefore had ilmitad predictive value.

A combination of the American Council on Education Perchological Exaraination, Q-scores, and high school grade point average aid not jield correlations signifieantiy higher than the high school grade point average used alone for Chemistry 801a or 801 b and Physios 801a or 801b, Algebra, and Trigonometry.

Combining the Amerioan Council on Education Psychological Examination, L-score, with the blgh school grade point average did not give correlation agnificantly different
from the high school grade point average alone for Blology 805 a or 805 b, English 301, 302, or 303, Chemistry 801a or 801b, Hiatory 15a or 15b, and Physics 801a or 801b. Adding the American Council on Education Paychological Examination, 4 -score to the high school grade point average gave only one correlation aignificantiy higher than the high achool grade point average used alones this being for Analytieal Geometry. dowever, the multiple correlation obtained was not high enough for predictive purposes. In the remaining thirteen courses, no significent differences were found from the above comparisons of correlations when the high school grade point average was combined with the Amorican Council on Education Paychological Examination, T-soore.

Adaing the Anerioan Council on Education Psyohological Examination, Q, L, or T-seores to the high echool grade point everage did not ignificantiy inorease the correlation botween the various combinations and course grades in thirteen of the fourteen coursea studied; therefore, hypothesis 3 must be rejected.

TABLE VI

MEANS, STANDARD DEVIATIUMS, INTERCORTIELATIONS, regression equations and multiple correlations of Variables for algebra $304 \quad(\mathrm{~N}=301)$
mbans and standard deviations of variables

Variable	Mean	Standard Deviation
HSCPA	55.12	10.06
ACE-Q	56.53	9.64
ACE-T	56.35	9.30
Coll. Crad.	49.52	7.98

INTERCORRELATYOAS OF VARIABLES

	HSGPA $\left(x_{2}\right)$	ACE-Q $\left(X_{3}\right)$	$\operatorname{ACET}-\mathrm{T}\left(\mathrm{X}_{4}\right)$
$\left.\begin{array}{l} \text { Crade }\left(\begin{array}{l} X_{C} \\ A C E-Q \\ A C E-T \end{array} X_{3}\right. \\ x_{3} \end{array}\right)$	$\begin{array}{r} .529 \\ .430 \\ .504 \end{array}$. 409	. 379

REGRESSION EGUATIONS AND MULTIPLE CORRELATIONS

$$
x_{c}=.343 x_{2}+.185 x_{3}+20.28
$$

$x_{c}^{c}=.129 x_{2}+.060 x_{4}+40.33$
.54

TABLE VIf

MEANS, STANDARD DEVIATIONS, INTERCORRELATIONS, REGRESSION ETUATIONS AND MULTIPLE CORRELATIONS of variables for analyticai. geometry 310 ($\mathrm{N}=67$)

means and standard deviations of variables

REORESSION EQYATIONS ANM MULTIPLE CORRELATIONS

Regression Equation	Multiple Correlation
$x_{c}=.797 x_{2}+.323 x_{3}+9.90$.39
$x_{c}=.008 x_{2}+.167 x_{4}+38.39$.18

TABLE VIII

MEANS, STAEDARD DEVIATIONS, INTERCORRELATIONS, RECRESSION EQUATIONS AND MULTIPLE CORRELATIONS of VARIABLES FOR TRIGONOMETRY 301 ($\mathrm{h}=177$)

MEANS AND STANNARD DEVIATIONS OF VARIABLES

Variable	Mean	Standard Peviation
HSOPA	56.70	9.65
ACE-Q	57.86	9.30
ACE-T	58.18	8.86
Coll. Grada	49.85	8.73

INTERCORRELATIONS OF VARIABLES

	HSCPA $\left(X_{2}\right)$	$A C E-Q\left(X_{1}\right)$	$A C E-T\left(X_{3}\right)$
Grade $\left(X_{6}\right)$.527	.343	.291
ACE-Q $\left(X_{4}\right\}$.390		

REGRESSION EQUATIONS AND MULTIPLE CORRELATIONS

Pegression Equation	Multiplo Correlation	
$x_{0}=.419 x_{2}+.152 x_{3}+17.30$	55	
$x_{6}=.446 x_{2}+.082 x_{4}+19.86$	53	

TABLE IX

MEANS, STANDARD DEVIATIONS, INTERCORRELATIONS, REGRESSION EQUATIONS AND MULTIPLE CORRELATIONS OP YARTABLE3 FOR BIOLOCI 805a ($N=301$)

MEAMS AND STANDARD DEVIATIONS OF VARIABLES

REGRESSION EqUATIONS AND MULTYPLE CORRELATIONS

Regression Equations
$x_{\mathrm{e}}=.405 \mathrm{x}_{2}+.202 \mathrm{x}_{3}+27.63$
$x_{6}=.391 x_{2}+.223 x_{4}+16.40$

Multiple Correlation
.65
.66

TABLE X

> MEAMS, STANIAAD DEVIATIONS, INTERCORRELATIONS, REGRSSION EVUTIONS AND NULTIPLE CORRELATIONS OF VARIABLES FOR BIOLOGY BO5b $(\mathbb{N}=207)$

MEAN3, STANDARD DEVIATIONS, INTERCORRELATIONS, REGRESSION EQUATIONS AND MULTIPLE CORRELATIONS of variables for chemistry b01a ($N=202$)

means and standard deviations of variables

Variable		Mean	Standard Reviation	
HSGPA		55.90	9.78	
ACE-Q		55.61	9.87	
ACE-L		51.58	10.21	
ACE-T		55.90		
Coll. Grade		50.51	9.428.80	
INTERCORRELATIOAS Of VARIABLES				
	HSGPA (X_{2})	$A C E-Q\left(X_{3}\right)$	ACE L(X_{4})	ACE-T(X5)
Grade (X_{c})	. 646	. 378	. 402	. 449
ACE-Q ($\mathrm{I}_{3}{ }^{\text {a }}$)	. 477			
ACE-L $\left(\mathrm{X}_{4}\right)$. 394			
ACE-T(X_{5})	. 492			

regression equations and multiple correlations

Regression Equation	Multiple Correlation
$x_{\mathrm{c}}=.543 x_{2}+.058 x_{3}+18.07$.65
$x_{c} \equiv .5181_{2}+.152 x_{4}+19.38$.66
$x_{c}=.504 x_{2}+.162 x_{5}+16.97$.66

MEANS, STANDARD DEVIATIONS, INTERCORRELATIONS, REGRESSION EqUATIONS AND MULTIPLE CORRELATIONS OF VARIABLES FOR CHEMLSTRI 8O1b ($N=163$)

MEANS AND STANDARD DEVIATIONS OF VARIABLES

Variable	Mean	Standard Jeviation
HSGPA	57.44	9.64
ACE-Q	56.66	10.71
ACE-L	52.39	9.23
ACE-T	57.06	9.69

Interconrelations of variable3

	HSGPA (z_{2})	$A C B-Q\left(X_{3}\right)$	ACE-L $\left(X_{h}\right)$	ACE-T(I_{5})
Grade (xe)	.517	.364	. 303	.383
AC8-Q(X3)	. 478			
ACE-L (X_{4})	.379			
ACE-T(I_{5})	. 478			

regression equations and multiple correlations
Regression Equation Multiple Correlation
$X_{0}=.417 \mathrm{I}_{2}+.143 \mathrm{I}_{3}+18.07$
$x_{e}=.441 x_{2}+.106 x_{4}+19.39$
$x_{c}^{e}=.406 x_{2}+.173 x_{5}+16_{.97}$
(

MEANS, STANDARD DEVIATIONS, IUTERCORRELATTONS, REGRESSION EQUATIONS AND BULTIPLE CORRELATIONS OF VARIABLES POR ENGLISH 301 ($\mathrm{H}=217$)

TABLE XIV

MEATS, STAUDARD DEVIATIONS, INTERCORRELATIOES, REGRESSION EQUATIONS AND MULTIPLE CORRELATIONS OF VARIABLES FOR EXOLISH 302 (1 ± 484)

HEARS AND STANDARD DEVIATIONS OF VARIABLES			
Variable		Mean	Standard Deviation
HSGPA		54.97	10.57
ACE-L		50.31	10.59
ACE-T		54.31	9.86
Coll. Gr	Grade	49.74	9.07

	INRERCORRELATIONS OF VARIABLES		
	HSGPA $\left(X_{2}\right)$	ACE-L $\left(X_{3}\right)$	ACE-T $\left(X_{4}\right)$
Grade $\left(X_{9}\right)$.679	.450	.472
ACE-I $\left(X_{3}\right)$.397		
ACE-T $\left(X_{4}\right)$.422		

REORESSION EQUATIONS AND MULTIPLE CORRELATIONS
Regression tquations
wultiple Correlation

$X_{c}=.510 X_{2}+.183 X_{3}+12.80$.71
$X_{0}=.501 X_{2}+.206 x_{4}+11.32$.71

TABLE XV

MEANS, STANDARD DEVIATION3, INTERCORRELATIONS, reqrésion equations and multiple correlations of variables for english 303 ($\mathrm{m}=256$)

MEANS, STANDARD DEVIATIONS, INTERCORRELATIONS, regression evuations and multiple correlations OF VARIABLES FOR HISTORY 15a ($N=459$)

MEANS AND STANDARD DEVIATIONS OF VARIABLES

Variable	Mean	Standard Deviation
HSGPA	54.25	11.03
ACEML	49.67	10.60
ACEFT	56.31	10.27
Coll. Grade	53.84	7.83

INTERCORRELATIONS OF VARIABLES

	HSGPA $\left(X_{2}\right)$	ACE-L $\left(X_{3}\right)$	ACE-T $\left(X_{4}\right)$
Grade $\left(\begin{array}{l}X_{C} \\ \text { ACE-L } \\ \text { ACE T } \\ X_{3} \\ X_{4}\end{array}\right)$.569	.492	.501
	.492		

regression equations and multyple correlations

Regression Equations

Multiple Correlation
$x_{0}=.301 x_{2}+.218 x_{3}+26.85$
.62
$x_{e}=.311 x_{2}+.198 x_{4}+26.15$
.61

> MEANS, STAMDARD DEVIATIONS, INTERCORRELATIONS REGRESSION EQUATIONS AND MULTIPLE CORRELATIONS of Variables por history 256 ($\mathrm{N}=416$)

MEANS, STANDARD DEVIATIONS, INTERCORRELATIONS, REGRESION EQUATIONS AND MULTIPLE CORRELATIONS of VArIABLES fOR PHYSICS 801a ($\mathrm{m}_{\mathrm{l}}=133$)

means and standard deviations of vartables

Varlable	Mean	Standard Doviation
HSGPA	55.03	9.64
ACE-Q	56.41	9.52
ACE-L.	51.63	9.07
ACE-T	56.59	8.30
Coll. Grade	50.63	9.08

redression gquations and multiple correlations
Regression Equations Multiple Correlation

$$
\begin{array}{ll}
x_{c}=.470 x_{2}+.118 x_{3}+18.53 & .56 \\
x_{c}=.560 x_{2}=.138 x_{4}+27.42 & .56 \\
x_{c}=.529 x_{2}-.040 x_{5}+24.22 & .55
\end{array}
$$

MEANS, STANDARD DEVIATIONS, INTERCORRELATIONS, REGRESSION EQUATIONS AND MULTIPLE CORRELATIONS OF VARIABLES FOR PHYSICS 801b (N-102)

MEANS AND STANDARD DEVIATIONS OF VARIABLES

Variable	Mean	Standard Deviation
HSGPA	55.50	
ACE-Q	57.93	9.45
ACE-I	52.08	8.91
ACE-T	57.48	9.91
Coll. Grade	50.02	7.79

INTERCORRELATIONS OF VARIABLES

	HSGPA (X_{2})	$A C E-Q\left(X_{3}\right)$	ACE-L $\left(X_{4}\right)$	$A C E-T\left(X_{5}\right)$
$\text { Grade }\left(X_{C}\right)$	- 542	. 169	.151	.182
$A C E-Q\left(X_{3}\right)$	$.424$			
ACE-L (X_{4})	. 267			
ACE-T X_{5}^{4})	.406			

REGRESSION EQUATIONS AND MULTIPLE CORRELATIONS
Regression Equations
Multiple Correlation

$x_{c}=.565 x_{2}-.078 x_{3}+23.88$.55
$x_{c}=.533 x_{2}+.007 x_{4}+19.88$.54
$x_{c}=.558 x_{2}-.073 x_{5}+22.92$.54

TABLA XX

GRITICAL RATIOS OBTAIKED WHEN THE COMFIIEIEAT OP CORRRTATION OF TGE MIGH EGHOOL GRADE POIXT AVERAGE AND COURSE GRADES EAS COMPARED mO A COMBIMATIJN OF THIE EIGH SCROOL GRADE POIYT AVERAGT AXD THE AMERICAN COURCIL

Course	ESGPA	ESGPA + AUS-C C. 2 . ISGPA + AOE-L C.E. BSGPA + ACG-T C.R.					
Algebra 304	.53	- 56	0.05			. 54	0.02
Analytie Geometry 310	. 08	. 39	10.71*			. 18	$9^{\text {and }}$
Trigonometry 301	.53	.55	0.27			. 53	0.00
BLology 805a	. 61			.65	0.74	. 66	0.94
Biology 805b	.63			. 65	0.34	. 65	0.34
English 301	. 64			. 66	0.37	. 67	0.56
English 302	. 68			.71	0.92	. 7	0.92
English 303	. 56			.62	0.87	. 60	0.67
Chemistry 801a	.65	.65	0.00	. 66	0.28	. 66	0.28
Chemistry 801b	. 52	. 53	0.13	. 53	0.13	.54	0.27
History 15a	. 57			. 62	1.22	. 61	0.97
日iatory 15b	. 53			. 57	0.83	. 57	0.83
Physics 801a	.55	. 56	0.12	. 56	0.12	. 55	0.00
Phyeics 8016	. 54	.55	0.10	.54	0.00	.54	0.00

[^4]2V. Multiple Correlation Studies Usiag e Combination of the High School Grado Polnt Average, American Council on Fiuction Psychological Examination, the Cooperative English Test and a Cooperative Achievement Tost in the Subjoct Area, and College Course Grades

Reotatement of gypothesis and Analysig of feaults

Hypothesis 4 A orabination of the high echool grade point average, the Amerioan Council on Fducation Pspchological Examination, the Cooporative Fngiloh Tost, and a Cooperative Achievoment Test in the abject area will yield higher predietive validities when predieting select junior college course grades than when the high school grade point average is usad alonm.

Analysis of Results. For Biology 805a and 805b, the Amerioan Council on Education Pgyohologiogl Exanination. L or T-scores, the Cooperative Biologi Test, and the Cooperative English Test plus tho high achool grade point average did not give aignificantly higher corrolationa than the high sohool grade point average alone.

For Chenistry 801a and 801b, the Aneriean Council on Education Paycholopioal Examination, Q, L, or T-scores, the Cooperative Chomistry Test, and the Cooperative English Test plus the high sohool grade point average did not yield significantly higher correlations than the high echool grade point average alone.

For Fanglish 301, 302, and 303, the Amorioan Council on Education Psyehological Fxamination, L or T-scores, and the Cooperative English Test plus the high school grade point
avergeg did not giold significantly higher correlations than the high achool grade point averaze alone.

For E1story 15a and 15 b , a combination of the Amoricen Council on Education Perchological Examination, E or T-scores, the Cooperative English reat and the high school eride point averazo did not field aignificantly higher coprelations than the high school grade point average alone.

Por Physica 801a and 801b, the Americen Council on Pducation Peychological Fxamination, Q or T-scores, the Cooperative Pnclish Test and the Cooperative Physics Test plus tire high school erade point average did not give signiricantly higher correlations than the high achool grade point average alone.

Since the various combinations, given in this section, did not sfenificantly increase the correlations over the single vapiable, the high school grade point average; Mgpothesis 4 must be rejected.

MEAMS, STAMDARD DEVIATIONS, INTERCORRELATIONS, regressios equations and multiple correlations OF VARIABLES FOR BLOLOGY 805a ($N=135$)

| | |
| :--- | :--- | :--- |
| | |
| | |

INTERCORRELATIONS OF VARIABLES

	$\operatorname{HSGPA}\left(\mathrm{x}_{2}\right)$	$\operatorname{ACEML}\left(X_{3}\right)$	ACE- $T\left(X_{4}\right)$	$\begin{aligned} & \text { Coop. } \\ & \text { Bio. }\left(x_{5}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \text { Coop. } \\ \text { Eng. } \\ \hline \end{gathered}$
$\text { Coll: } \quad \text { Grade } x_{e} \text {) }$. 610	. 478	:509	. 483	. 484
Coop. ${ }_{\text {Eng. }}\left(\mathrm{X}_{6}\right)$. 529	. 772	. 758	. 540	
$\left.\begin{array}{l} \text { Coop. } \\ \text { BIO. }\left(X_{5}\right) \\ \text { ACEE-L }\left(X_{4}\right. \\ \text { ACE } \end{array}\right)$	$\begin{aligned} & .481 \\ & .487 \\ & .455 \end{aligned}$. 616	. 644		

regression equations and multifle correlations
Regression Equation
Multiple Correlation
$x_{e}=.361 x_{2}+.145 x_{3}+.052 x_{5}+.151 x_{6}+12.56$
$x_{e}=.355 x_{2}+.138 x_{4}+.049 x_{5}+.152 x_{6}+12.08$

TABLE XXII

MEANS, STAMDARD DEVIATIONS, IMTERCORRELATIONS, REGRESSION EQUATIONS AMD MULTIPLE CORRELATIONS OF VARIABLES FOR BIOLOGY 805b (NF119)

MEANS AND STANDASD DEVIATIONS OF VARIADLES

Varlable		Mean		Standard Deviation	
HSGPA ACE-L ACE-T Coop. English Coop. Blology Coll. Grade		$\begin{aligned} & 57.03 \\ & 52.80 \\ & 57.27 \\ & 54.21 \\ & 53.84 \\ & 51.85 \end{aligned}$		$\begin{array}{r} 10.53 \\ 10.76 \\ 10.24 \\ 9.04 \\ 8.00 \\ 10.07 \end{array}$	
intercorrelations of variables					
	HSGPA $\left(\mathrm{x}_{2}\right)$	$\operatorname{ACE}-1\left(x_{3}\right)$	$\operatorname{ACE}-\mathrm{T}\left(\mathrm{X}_{4}\right)$	Coop. $\mathrm{Bio} .\left(x_{5}\right)$	Coop. $\text { Eng. }\left(\mathbf{x}_{6}\right)$
Coll. Grade (X_{0})	. 619	. 439	.480	. 460	. 490
$\xrightarrow[\text { Eng. }]{\text { Cop. }}\left(x_{6}\right)$					
	. 510	. 759	. 758	.535	
$\begin{aligned} & \text { Coop. } \\ & \text { Bio. }\left(x_{5}\right) \\ & \text { ACE-T }\left(X_{4}\right) \\ & \text { AEEL }\left(X_{3}\right) \end{aligned}$. 607	. 641		
	. 4981	.607	. 641		
	. 457				

regression equations and multiple correlations

Regression Equation

 Multiplo Correlation$$
x_{c}=.472 x_{2}+.063 x_{3}+.072 x_{5}+.230 x_{6}+.732
$$

$x_{0}=.460 x_{2}+.105 x_{4}+.068 x_{5}+.212 x_{6}+4.51 \quad .67$

MEANS, STANDARD DEVEATIONS, IETERCORRELATIONS, REGRESSION EQUATIONS AND MULTIPLE CORRELATIOHS OF VARIABLES FOR CHEMISTRI 601 (Em (90)

INTERCORRELATIOMS OF VARIABLES

	$\begin{aligned} & \text { HSGPA- } \\ & \left(x_{2}\right) \end{aligned}$	$\begin{gathered} A C E-Q \\ \left(X_{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{ACE}-\mathrm{L} \\ \left(\mathrm{X}_{4}\right) \end{gathered}$	$\begin{aligned} & \text { ACE-T } \\ & \left(X_{5}\right) \end{aligned}$	$\begin{aligned} & \text { Coop. Eng } \\ & (X 6) \end{aligned}$	Coop . Chem (x_{7})
Col1.ar. $\left(X_{0}\right)$ Coop, Cheat $\left.\chi_{7}\right)$.653 .265	.382 .198	. 404	.446 .299	$\begin{array}{r} \cdot 522 \\ \cdot 322 \end{array}$. 504
Coop. Enge (X_{6})	.549	.419	.727	.691		
ACE-T (X5)	. 492					
ACE-L X_{4})	.394					
ACE-Q $\left(\mathrm{X}_{3}\right)$. 477					

REGRESSION EQUATIONS AND MULTIPLE CORRILLATIONS

REGRESSION EQUATION	R
$\bar{x}_{c}=.409 x_{2}+.028 x_{3}+.174 x_{6}+.458 x_{7}-7.20$.74
$\bar{x}_{0}=.428 x_{2}+.001 x_{4}+.149 x_{6}+.328 x_{7}-8.23$.74
$\bar{x}_{0}=.470 x_{2}+.020 x_{5}+.144 x_{6}+.328 x_{7}-8.76$.74

TABLE XXIV

> MEABS, STATDARD DRVIATIONS, INTEMCORRFLATIONS, REGRESSIOR EQUATIOHS AND MULTIPLE COREWLATIDES OP VARIABLES FOR CREMISTRI 801b (Nm80)

TABLE XXV

MEANS, STANDARD DEVIATIONS, INTERCORRELATIONS, REGRESSION EQUATIONS AND MULTIPLE CORRELATIONS OF VARIABLES FOR ENGLISH $301(\mathrm{~N}=74)$

MEAYS AND STANTARD DEVIATIONS OF VARIABLES

Variable	Rean	Standard Deviation
HSGPA	52.14	9.30
ACE-L	49.22	9.64
ACE-T	54.90	9.69
CoOD. English	50.85	7.71
Coli. Grade	52.81	8.91

INTERCORRELATIONS OF VARIABLES

	HSGPA ${ }^{\text {(}}$ 2 $)$	$\operatorname{ACE-L}\left(X_{3}\right)$	ACE-T(X_{4})	Coop. Eng. $\left(x_{5}\right)$
Coll. Grade (X_{c})	. 642	.383	. 406	.480
Conn. Eng. $\left(x_{5}\right)$.355	. 794	.726	
$A C E-T\left(X_{4}\right)$. 321			
$\operatorname{ACEL}\left(X_{3}^{4}\right)$. 333			

reqression equations and multiple corralations
Reuression Rquation
Multinle Correlation

$x_{c}=.477 x_{2}-.064 x_{3}+.369 x_{5}+12.33$.70
$x_{g}=.470 x_{2}+.043 x_{4}+.270 x_{5}+12.21$.70

TABLE XXVI

> MEANS, STANTARD DEVIATIONS, INTEQCORRELATIONE, REGRESSION EQUATIONS AND MULTIPLE CORRELATIONS OF VARIABLES FOR ENGLISH $302(\mathbb{N}=252)$

MEANS AND STANDARD DEVIatIONS OF VARIABLES

Variable	Mean	Standard Deviation
HSGPA	58.00	10.20
ACE-L	52.87	10.38
ACE-T	57.00	9.56
Coop. English	54.81	8.29
Coll. Crade		8.60

INTERCORRELATIONS OF VABIABLES

	HSGPA $\left(x_{2}\right)$	ACE-L (X_{3})	$\mathrm{ACE}-\mathrm{T}\left(\mathrm{X}_{4}\right)$	$\begin{aligned} & \text { Coop. } \\ & \text { Eng. } \\ & \hline \end{aligned}$
Coll. Grade (1)	. 683	. 451	. 466	. 615
Coop. Eng. (X_{5})	. 587	. 773	.735	
${ }^{\text {ACE }}$-T $\left(X_{4}\right)$. 422			
$\operatorname{ACE-L}\left(X_{3}\right)$. 397			

RECRESSION EQUATIONS AND MULTIPLE CORRELATION3
$X_{c}=.417 x_{c}^{c}+.048 X_{4}+.307 x_{5}+9.40$
.73

MEANS, STANDARD DEVIATIONS, INTERCORZELATIONS, REGRESSION ECUATIONS AND MULTIPLS CORRELATIONS OF VARIABLES POR ENGLISH $303(N=171)$

HEANS AND STAMDARD DEVIATIONS OF VARIABLES		
Variable	jean	Standard Deviation
HSCPA	55.68	8.19
ACE-L	54.39	10.30
ACEM 1	58.48	9.53
Coop. Englikh	55.60	8.28
Coll. Grade	51.29	8.51

IMTERCORRELATIONG OF VARIABLES

	HSGPA $\left(\mathrm{X}_{2}\right)$	ACE-L $\left(X_{3}\right)$	$A C E-T\left(X_{4}\right)$	$\begin{aligned} & \text { Coop. } \\ & \text { Eng. } \left.X_{5}\right) \\ & \hline \end{aligned}$
Coll. Grade (Xe Coop. Eng. (X5) ACE-T ACE L $\binom{X_{4}}{X_{3}}$.559 .579 .512 .429	.456 .708	$\begin{array}{r} .474 \\ .842 \end{array}$. 439
REARE:SSION EQUATIONS AND MUETIPLE CORRELATIONS				
Remressinn Equation			Multiple Correlation	
$\begin{aligned} & X_{c}=.511 x_{2}+.290 x_{3}-.015 x_{5}+7.94 \\ & x_{c}=.459 x_{2}+.279 x_{4}-.032 x_{5}+13.97 \end{aligned}$			$.65$	

MEANS, STANDARD DEVIATIDNS, INTERCORRELATIONS, REGRESSION EOUATIONS AND mULTIPLE CORNELATIONS or variables por hiotory $15 a(N=214)$

MEARS AND STANDAPD DEVIATIONS OF VARIABLES

Variable	Mean	Standard Feriation
HSGPA	56.25	9.95
ACE	52.00	10.87
ACE-T	52.59	10.75
CoOp. Engliah	53.15	9.14
Coll. Grade	52.35	8.73

INTERCORKELATIONS OP VARIABLES

	HSGPA $\left(X_{2}\right)$	$A C E-L\left(X_{3}\right)$	$A C E-T\left(X_{4}\right)$	$\begin{aligned} & \text { Coop. } \\ & \text { Eng. } \mathrm{X}_{5} \text {) } \end{aligned}$
Coll. Grade $\left(X_{c}\right)$. 528	.451	.455	.515
Coop. Eng. (X_{5})	. 518	.693	.729	
	. 497			
ACESL $\left(\mathrm{X}_{3}\right)$.490			

REGRESSION EQUATIONS AND MULTIPLE CORRELATIONS
Regression Equation
$x_{c}=.410 x_{2}+.244 x_{3}+.088 x_{5}+18.39$
$x_{c}=.355 x_{2}+.163 x_{4}+.109 x_{5}+17.56$
Multiple Correlation

+ $2+.163 x_{4}+.109 \times 5+17.56$
\qquad

TABLE XXIX

MEANS, STANDARD DEVIATIONS, INTERCORRELATIOMS REGRESSION ECUATIONS AND MULTIPLE CORRELATIOAS of Variables for history 156 ($\mathrm{N}=216$)

MEANS AND STANDARD DEVIATIONS OF VARIABLES

Variable	Mean	Standard Deviation
HSCPA	59.03	9.46
ACEM	53.51	9.84
ACET	57.65	9.36
CoOp. English	55.33	7.65
Coll. Grade	54.17	7.92

INTERCORRELATYONS OF VARIABLES

	MSGPA (I2)	$\mathrm{ACE}-\mathrm{L}\left(\mathrm{X}_{3}\right)$	$\operatorname{ACR-T}\left(X_{4}\right)$	$\begin{gathered} \operatorname{Coop}_{4}\left(\mathbf{x}_{5}\right) \end{gathered}$
Coll. Grade (X_{O})	. 528	. 451	.455	. 515
Coop. Eng. (X I_{5})	. 518	. 693	.729	
$A C E-T\left(X_{4}\right)$.497			
$A C E-L\left(X{ }_{3}\right)$.490			

REGRESSION EQUATIONS AND BULTIPLE CORRELATIONS
Reqression Equation
Multiple Corralation
$x_{c}=.296 x_{2}+.070 x_{3}+.414 x_{5}+9.59$
$x_{c}=.299 x_{2}+.063 x_{4}+.414 x_{5}+8.93$
\qquad

table XXX

MEANS, STANDARD DEVIATYONS, INTERCORRELATIONS, REGRESSION EQUATIONS AND MULTIPLE CORRELATIONS OF VARIABLES FOR PHYSICS 801a ($\mathrm{N}=74$)

MEANS AND STANDARD DEVIATIONS OF VARIABLES

Varlable	Mean	Standard Deviation
HSCPA	56.95	9.81
ACE-Q	58.95	9.04
ACE-T	597	6.04
Coop. English	55.15	6.99
Coop. Phyaies	61.94	6.19
Coll. Grade	52.64	8.96

INTERCORRELATIONS OF VARIASLES

	HSGPA $\left(x_{2}\right)$	ACE-Q $\left(X_{3}\right)$	$A C E-T\left(X_{L}\right)$	$\mathrm{Eng}_{5} \mathrm{Cog}^{\text {(}}$)	$\text { Poop }\left(x_{6}\right)$
Coll. Grade (x_{c})	.549	. 311	- 209	. 307	.193
Coop. ${ }_{\text {Phys. }}\left(\mathrm{x}_{6}\right)$. 367	. 085	. 175	. 439	
	$\begin{aligned} & 431 \\ & .463 \\ & .355 \end{aligned}$.306	. 605		

regression equations and multiple correlations

Regression Equation

Multinle Correlation

$$
\begin{array}{lll}
x_{c}=.501 x_{2}-.114 x_{4}+.138 x_{5}-.060 x_{6} & 26.97 \\
x_{c}=.440 x_{2}+.114 x_{3}+.069 x_{5}-.015 x_{6} & 17.99 & .55
\end{array}
$$

TABLE XXXI

MEANS, STANDARD DEVIATIONS, INTERCORRELATIONS, regression equations and multiple correlations of variasles for physics 8016 ($\mathrm{N}=59$)

geans and staniard deviations of variables

Varlable	Mean	Standard Deviation
HSCPA	55.39	9.60
ACE-Q	57.69	8.86
ACE-T	57.89	7.74
Coop. Eng11sh	54.85	9.30
Coop. Physics	61.95	9.30
Coll. Grade	49.16	9.30

In mercorretations of variablics

	$\operatorname{HSGPA}\left(\mathrm{X}_{2}\right)$	ACE-2(x_{3})	$\mathrm{ACE}-\mathrm{T}\left(\mathrm{X}_{4}\right)$	$\begin{aligned} & \text { Coop. } \left._{E_{5}}\right) \end{aligned}$	$\begin{aligned} & \text { Coop. } \\ & \text { Phys. }\left(x_{6}\right) \\ & \hline \end{aligned}$
Coll. Grade (X_{c})	. 539	.170	. 180	.276	.270
Coop. ${ }_{\text {Phys. }}\left(x_{6}\right)$. 338	.276	. 378	. 449	
Coop. ${ }^{\text {c }}$					
Eng. (X_{5})	. 528	. 320	. 651		
ACE-T $\left(\mathrm{X}_{4}\right)$. 406				
ACE-Q(K_{3})	. 424				

REGRESSION ERJATIONS ATD MULTTPLE CORRELATIONS

Regression Equation

Misitinia Correlation
$x_{c}=.522 x_{2}-.097 x_{4}-.009 x_{5}+.122 x_{6}+23.25$
$x_{c}=.542 x_{2}-.094 x_{3}-.042 x_{5}+.127 x_{6}+18.99$
.56
$x_{0}=.542 x_{2}-.094 x_{3}-.042 x_{5}+.127 x_{6}+18.99$
 grade poinf average and course grades was conpared to a coisimation op the HIGE SCROJL GRADE POINT AVERAGE, TRE AMERICAI COJNCIL ON FIHCATIOR PSYCHOLOGIGAL EXAMLNATION, THAS COOPEIATIVE GTGLISATEST AXD A COUPGAATIVE ACRIEVEAEATP TEST INTHB SUBJECT AREA

Course	HSGPA	HSGPA ACE-Q Coop. Ach. Tests	C.R.	```HSGPA ACE-L Coop. ACh. Test:```	C.R.	```iSGPA ACE-T Coop. Ack. Testa```	C.R.
Biology 805a	.61			. 67	0.86	. 67	0.86
B1ology 805b	. 63			. 66	0.40	.67	0.54
Chemistry 801a	. 65	- 74	1.90	. 74	1.90	. 74	1.90
Chemistry 801b	- 52	- 54	0.18	. 53	0.09	.54	0.18
kngllsh 301	. 64			.70	0.66	.70	0.66
English 302	. 68			.73	1.12	. 73	1.12
Finglish 303	.56			.65	1.36	. 61	3.69
History $15 a$. 57			.63	1.00	. 63	1.00
History 150	- 53			.60	1.10	. 60	1.10
Physies 801a	. 55	.55	0.00			. 55	0.00
Physics 801b	.54	. 56	0.48			. 56	0.48

V. Presentation and Uae of Expectanoy Tables

The following are the expeatancy tables that were formed by using the high ohool grade point average as the predictor variable and the grade pooeived in partioular Junior college course as the eriterion variable. De of these tables requires converting the high school grade point average (expressed in porcentages) to areoce, asing the following table.

TABLIE XXXIII
T-SGALE EQJIVALTEXS OF THS HIGH SCEOOL GRADE POINT AVERAGE

T-SoOre	HSGPA	T-Score	ESGPA	T-Seore	ESGPA
85	99	67	89	49	79
83	98	65	88	47	78
81	97	63	87	45	77
79	96	61	86	43	76
78	95	60	85	41	75
76	94	58	84	39	74
74	93	56	83	37	73
72	92	54	82	35	72
71	90	50	80	30	70

The rollowing procedures are to be followed in using the oxpectancy tables. The student'a high sohool grede point average is converted into m-Bcore and the interval containing this soore in found in the expectancy table. The percentages expressed in the columa to the wight of the partioular T-acore interval how the probability of a student's attaining partioular lottor grade and/or passing
or ralling.
An example of this procedure is as followit a student planning to enroll in Algebra 304 wishes to know his chances or sucoess in this course. His high sehool grade point average is 87 ; the T-ncore equivalent of 87 is 638 entering the 59-63 interval of the expeotency table for Algobra 304, the following oatimatea can be made $A, 14 \% ;$ B, 42\%; C, 33\%; $D, 9 \%$; and $F, 2 \%$ the chances of his pasing the course are 89 out of 100. Depending upon the distribution of scorea and the interval la waich a studentia high school grade point average falls, ithor Section A or Seotion B of Table 34 may be used. It should be notioed that using Section B of an expectancy table gives a much rougher grouping and, therefore, should be interpreted more cautiously.

TABLE XXXIY

Expectancy pable for alagbra 304 ($=312$)

$\begin{gathered} \text { T-Scorr } \\ \text { Inter: } \\ \text { val } \end{gathered}$	Section A				Grades										
	\%	A \%	-	B 8	N	c	N	x	N	\%	H	${ }^{3 s}$			$\pi^{\text {Total }}$
64 *	28	43.8	22	34.4	6	9.4	8	12.4	0	0.0	56	87.6	8	12.4	64100
59-63	9	14.1	27	42.2	21	32.8	6	9.4	1	1.5	57	89.1	7	10.9	64100
56-58	3	8.8	13	38.2	7	20.6	4	11.8	7	20.6	23	67.6	11	43.4	34100
54-55	1	4.5	2	9.1	11	50	4	18.2	4	18.2	14	63.6	8	36.4	22100
51-53	3	9.1	6	18.2	15	$45 \cdot 4$	6	18.2	3	9.1	24	72.7	9	27.3	33100
48-50	3	13.0	2	8.7	8	34.8	4	17.4	6	26.1	13	56.5	10	43.5	23100
46-47	0	0.0	1	5.9	7	41.2	1	5.9	8	47.0	8	47.1	9	52.9	17100
43-45	0	0.0	4	14.8	6	22.2	6	22.2	11	40.8	10	37.0	17	63.0	27100
38-42	0	0.0	1	5.5	11	61.1	3	16.7	3	16.7	12	66.6	6	33.4	18100
- 37	0	0.0	1	10.0	3	30.0	I	10.0	5	50.0	4	40.0	6	60.0	10100
	Section 8														
59 +	37	29.0	49	38.2	27	21.2	14	10.9	1	0.8	13	88.3	15	11.7	129100
54-58	4	7.1	15	26.9	18	32.0	8	14.3	11	19.7	37	66.0	19	34.0	56100
48-53	6	10.7	8	14.3	23	41.1	10	17.8	9	16.1	37	66.1	19	33.9	56100
43-47	0	0.0	5	11.4	13	29.5		15.9	19	43.2	18	40.9	26	59.1	44100
- 42	-	0.0	2	7.1	14	50.0	1	14.3	8	28.6	16	57.1	12	42.9	28100

TABLE XXXV
EXPECTANCI TABLE POR TRIGONOMETAY 301 ($\mathrm{I}=180$)

$\begin{gathered} \hline \text { F-Seore } \\ \text { Inter- } \\ \text { val } \end{gathered}$	Section A Grades									-					
	$\begin{array}{\|c} 4 \\ \hline \end{array}$	\mathbb{N}^{B}		$n^{8} \%$		${ }_{N}^{D} 8$		$\mathrm{N}^{\mathrm{F}} \%$		$\mathrm{n}^{\text {Pass }}$		${ }_{\mathrm{F}}^{\mathrm{Fail}} \mathrm{\%}$		$x^{\operatorname{Tot} 21}$	
$64+$		12	30.0	4	10.0	1	2.5	0	0.0	39	97.6	1	2.5	40	100
59-63	H0 28.6	18	51.4		11.4	1	2.9	2	5.7	32	91.4	3	8.6	35	100
56-58	$4 \quad 15.3$	9	34.7	6	23.2	4	15.3	3	11.5	19	73.1	7	26.9	26	100
54-55	18.3	5	41.7	5	41.7	0	0.0	1	8.3	11	91.7	1	8.3	12	100
51-53	210.0	7	35.0	5	25.0	2	10.0	4	20.0	14	70.0	6	30.0	20	100
48-50	321.4	3	21.4	1	7.2	4	28.6	3	21.4	7	50.0	7	50.0	14	100
46-47	00.0	1	12.5	4	50.0	2	25.0	1	12.5	5	62.5	3	37.5	8	100
43-45	18.3	1	8.3	3	25.0	2	16.7	5	41.7	5	41.6	7	58.4	12	100
38-42	$0 \quad 0.0$	2	18.2	5	45.4	2	18.2	2	18.2	7	63.6	4	36.4	12	100
-37	$0 \quad 0.0$	0	0.0	1	50.0	0	0.0	1	50.0	1	50.0	1	50.0	2	100
	Soction 3														
59+	33 44.0	30	40.0	8	10.6	2	2.7	2	2.7		94.7	4	5.3	75	100
54-58	51313	14	36.9	11	28.9	4	10.5	4	10.5	30	78.9	8	21.1	38	100
48-53	514.8	10	29.4	6	17.6	6	17.6	7	20.6	21	61.8	13	38.2	34	100
43-47	15.0	2	10.0	7	35.0	4	20.0	6	30.0	10	50.0	10	50.0	20	100
-42	$0 \quad 0.0$	2	15.4	6	46.1	2	15.4	3	23.1	8	61.5	5	38.5	13	100

taels XXXII

expectancy table por avalytic agoabtay ($=67$)*

Section B

$59+$	13	44	12	40	4	13	1	3	0	0	29	97	1	3	30
100															
$54-58$	2	10	8	33	10	47	0	0	1	5	20	95	1	5	21
100															
$46-53$	1	13	1	13	3	37	0	0	3	37	5	63	3	37	8
100															
$43-47$	1	14	0	0	3	43	1	14	2	29	4	57	3	43	7
100															
-42	0	0	0	0	0	0	1	100	0	0	0	0	1	100	1

"The correlation between the RSGPA (high school grade point avorage) and Analytic Geometry was too mall to be considered significant.

TABLES XXXVII

EXPEGTANGY table for bioloay 805a ($=$ = 252)

$\begin{gathered} \text { T-score } \\ \text { Inter } \\ \text { val } \end{gathered}$	Section A Grades													
	H	\%	F	\%		H^{D}		$\mathrm{H}^{\mathrm{P}} \%$		$\mathrm{S}^{\text {Pass }}$	$\text { Pall }_{1}$		$\mathrm{T}^{\text {Total }}$	
$64+$	18	33.3	24	44.4	1120.4	1	2.9	0	0.0	F3 98.1		1.9	P4	100
59-63	5	10.4	21	43.8	1633.3	5	10.4	1	2.1	1287.5	6	12.5	48	100
56-58	2	8.0	7	28.0	728.0	6	24.0	3	12.0	664.0	9	36.0	25	100
54-55	1	6.3	3	18.7	637.5	5	31.2	1	6.3	1062.5	6	37.5	16	100
51-53	0	0.0	4	26.7	533.3	4	26.7	2	13.3	960.0	6	40.0	15	100
48-50	2	9.5	2	4.8	942.9	4	19.0	5	23.8	257.2	9	42.8	1	100
46-47	1	7.1	1	7.1	224.4	4	28.6	6	42.8	428.6	10	54.8	31	100
43-45	0	0.0	4	12.9	1032.3	7	22.5	10	32.3	445.2	17	54.8	31	100
38-42	0	0.0	1	6.2	743.8	4	25.0	4	25.0	850.0	8	50.0	16	100
- 37	0	0.0	0	0.0	216.7	1	8.3	2	75.0	216.7	10	83.3	2	100
		B												
$59+$	23	22.5	45	44.1	2726.5	6	5.9	2	1.0	7593.1	7	6.9	102	100
54-53	3	7.3	10	24.4	1331.7	11	26.8	4	9.8	2663.4	15	36.6	41	100
48-53	2	5.6	5	13.9	1438.9	8	22.2	7	19.4	2158.4	15	41.6	36	100
43-47	1	2.2	5	11.1	1226.7	11	24.4	16	35.6	p8 40.0	27	60.0	45	100
- 42	0	0.0	1	3.6	932.1	5	17.9	13	46.4	1035.7	18	64.3	28	100

table ixxvili
EXPECTANCY TABLE FOR BIOLOGY 805b (I $=210$)

$\begin{gathered} \hline \text { T-Score } \\ \text { Intor } \\ \text { val } \end{gathered}$	Section 1															
	\% ${ }^{\text {a }}$ \%		\#	B	$1{ }^{1} \mathrm{c}$				$1 \mathrm{~F}^{\mathrm{F}} \mathrm{8}$		$\left.\right\|^{P a 88} \%$		$\text { Fall } 8$		${ }^{\text {Total }}$	
$64+$	14	26.9	22	42.3	15	28.9	1	1.9	0	0.0	51	98.1	1	1.9	82	100
59-63	3	7.3	17	41.5	15	36.6	6	24.6	0	0.0	35	85.4	6	14.5	41	100
56-58	1	4.8	5	23.8	8	38.1	4	19.0	3	14.3	14	66.7	7	33.3	21	100
54-55	0	0.0	3	23.0	5	38.5	5	38.5	0	0.0	8	61.5	5	38.5	13	100
51-53	0	0.0	1	9.1	6	54.5	4	36.4	0	0.	7	63.6	4	36.4	11	100
48-50	2	10.0	1	5.0	9	45.0	3	15.0	5	25.0	12	60.0	8	40.0	20	100
46-47	0	0.0	1	14.2	2	28.6	2	28.6	2	28.6	3	42.8	4	57.2	7	100
43-45	0	0.0	1	3.7	13	48.2	7	25.9	6	22.2	21	51.9	6	48.1	27	100
38-42	0	0.0	0	0.0	6	60.0	2	20.0	2	20.0	6	60.0	4	40.0	10	100
- 37	0	0.0	0	0.0	0	0.0		25.0	6	75.0	0	0.0	8	100.0	8	100
	Sect	on B														
59+	17	18.3	39	41.9	30	32.3	7	7.5	0	0.0	86	92.5	7	7.5	93	100
54-58	1	2.9	8	23.5	13	38.2	9	26.5	3	8.9	22	64.6	12	35.4	34	100
$48-53$	2	6.5	2	6.5	15	43.3	7	22.6		16.1	19	61.3	12	38.7	31	100
43-47	0	0.0	2	5.9	15	44.1	9	26.5	-	23.5	24	50.0	10	50.0	34	100
-42	0	0.0	0		6	33.3	4	22.2	8	44.5	6	33.3	12	66.7	18	100

TABLE XXXIX

Expectaxcy table por chaxistry bola (y = 203)

$\begin{gathered} \text { T-Score } \\ \text { Inter } \\ \text { val } \end{gathered}$	Seotion A				Grades										
				B $\$$	C		${ }^{D}$		H^{F}		$\mathrm{i}^{\text {Pasa }}$		$\mathbb{K}^{\text {Fail }}$	Total	
64+	14	31.2	18	40.0	11	24.4	1	2.2	2	2.2	43	95.6	24.4	45	100
59-63	1	2.7	24	64.9	9	24.3	2	5.4	1	2.7	34	91.9	38.1	37	100
56-58	0	0.0	5	20.0	14	56.0	4	16.0	2	8.0	19	76.0	$6 \quad 24.0$	25	100
$54-55$	0	0.0	1	6.2	7	43.8	4	25.0	4	25.0	8	50.0	650.0	16	100
51-53	1	5.6	2	11.1	10	55.5	2	11.1	3	16.7	13	72.2	527.8	18	100
48-50	0	0.0	3	26.7	5	27.7	7	38.9	3	16.7	8	44.4	1055	18	100
46-47	0	0.0	1	11.1	4	44.5	3	33.3	1	11.1	5	55.6	444.4	9	100
43-45	0	0.0	0	0.0	7	41.2	4	23.5	6	35.3	7	41.2	1058	17	100
30-42	0	0.0	1	5.9	6	35.3	3	$17 \cdot 6$	7	46.2	7	41.2	10.588	17	100
-37		0.0		0.0		0.0		33.3	4	66.7	0	0.0	6107.0	6	100
		tion													
	1.5	18.3	42	51.2	20	24.4	3	3.7	2	2.4	77	93.9	56.1	82	100
54-58	0	0.0	6	14.6	21	51.3	8	29.5	6	14.6	27	65.9	1434.1	41	100
48-53	1	2.7	5	13.9	15	41.7	9	25.0	6	16.7	21	58.3	154	36	100
43-47	0	0.0	1	3.8	11	42.4	7	26.9	7	26.9	12	46.2	$14 \quad 53.8$	26	100
-42	10	0.0	2	4.3	6	26.1	5	21.7	11	47.9	7	30.4	$16 \quad 69.6$	23	100

EXPECAACY TABLE FOA CHEALSTRY B01b ($M=166$)

fable XLI

expectancy table for english 301 ($\mathrm{A}=217$)

T		Sect	on	A		ades										
Inter	1	${ }^{4} 8$	W	${ }^{\text {B }}$ \%	\%	c	1	${ }^{\text {d }}$	N	${ }^{P}$		${ }^{288}$		${ }^{11}$ \%		
$64+$	8	50.0	6	37.5	2	12.5	0	0.0	0	0.0	12	100	0	0.0	16	100
59-63	7	26.9	12	46.2	7	26.9	0	0.0	0	0.0	26	100	0	0.0	26	100
56-58	1	7.1	4	28.6	9	64.3	0	0.0	0	0.0	14	100	0	0.0	4	100
54-55	1	5.6	5	27.7	11	61.1	1	5.6	0	0.0	17	94.4	1	5.6	18	100
51-53	1	5.0	8	40.0	8	40.0	3	15.0	0	0.0	17	85.0	3	15.0	20	100
48-50	0	0.0	6	30.0	13	65.0	0	0.0	1	5.0	19	95.0	1	5.0	20	100
46-47	0	0.0	2	15.4	8	61.5	1	7.7	2	15.4	10	76.9	3	23.1	13	100
43-45	0	0.0	2	6.4	15	48.5	12	38.7	2	6.4	17	54.9	4	45.1	31	100
38-42	1	2.9	4	11.8	14	41.2	8	23.5	7	20.6	19	55.9	5	44.1	34	100
-37	1	4.0	1	4.0	7	28.0	8	32.0	,	32.0	9	36.0	6	64.0	25	100
	Soc	tion														
59+	5	35.8	18	42.8	9	21.4	0	0.0	0	0.0	42	100	0	0.0	42	100
54-58	2	6.2	9	28.2	20	62.5	1	3.1	0	0.0	31	96.9	1	3.1	32	100
48-53	1	2.5	14	35.0	21	52.5	3	7.5	1	2.5	36	90.0	4	10.0	40	100
43-47	0	0.0	4	9.1	23	52.3	13	29.5	4	9.1	27	61.4	7	38.6	44	100
-42	2	3.4	5	8.5	21	35.6	16	27.1	15	25.4	28	47.5	31	52.5	59	100

SABLIS XLII
EXPECTAACY TABLE FOR EYOLISA 302 ($1=484$)

T-Score	Soction A				Grades										
	-	${ }^{4} 8$	\%	8		c 8	-	8	${ }^{\text {F }}$		$\mathrm{s}^{\text {pa }}$	88	${ }^{7}$	${ }^{211}$	${ }_{8}^{\text {Total }}$
$64+$	45	42.4	44	41.5	16	15.1	1	1.0	0	0.0	105	99.0	1	1.0	06100
59-63	14	15.5	46	51.2	27	30.0	2	2.2	1	1.1	87	96.6	3	3.4	90100
56-58	3	6.1	16	32.6	22	44.9	5	10.2	3	6.2	41	83.6	8	16.4	49100
54.55	1	2.8	17	48.6	13	37.2	3	8.6	1	2.8	31	83.6	4	11.4	35100
51-53		2.3	17	39.5	20	46.6	4	9.3	1	2.3	38	88.4	5	21.6	43100
48-50	1	2.6	8	20.5	21	53.8	6	25.4	3	7.7	30	76.9	9	23.1	39100
46-47	0	0.0	3	13.0	18	78.3	0	0.0	2	8.7	21	91.3	2	9.7	23100
43-45	0	0.0	4	10.5	20	52.6	8	21.1	6	15.8	24	63.1	14	36.9	38100
38-42	0	0.0	2	5.6	17	47.2	11	30.5	6	16.7	19	52.8	17	47.2	36100
-37	0	0.0	1	4.0	9	36.0	8	32.0	7	23.0	10	40.0	15	60.0	25100
	Soction B														
59+	59	30.2		45.9		21.9	3	1.5	1	0.5	192	98.0	4		96100
54-58	4	4.8	33	39.2	35	42.7	8	9.5	4	4.8	72	85.7	12	14.3	84100
48-53	2	2.4	25	30.5	42	50.0	10	12.2	4	4.9	68	82.9	32	17.1	32100
43-47	0	0.0	7	11.5	38	62.3	8	13.1	8	13.1	45	73.8	16	26.2	61100
-42	0	0.0	3	4.9	26	42.7	19	31.1	13	21.3	29	47.6	32	52.4	61100

$\begin{gathered} \text { T-seore } \\ \text { Inter } \\ \text { Fal } \end{gathered}$	Section A				Grados		${ }^{\mathrm{D}} \mathrm{\&}$	\#		Pass		Pail		Total	
	\%	A 8	帾	8	\%										
64+	35	42.7	32	37.1	13	25.8	00.0	2	2.4	80	97.6	2	2.4	82	100
59-63	15	23.4	26	40.6	21	32.8	11.6	1	1.6	62	96.8	2	3.2	64	100
56-58	3	10.8	14	50.0	7	25.0	27.1	2	7.1	24	85.8	4	14.2	28	100
54-55	1	5.3	7	36.8	9	47.3	15.3	1	5.3	17	89.4	2	10.6	19	100
51-53	0	0.0	8	32.0	11	44.0	312.0	3	12.0	19	76.0	6	24.0	25	100
48-50	0	0.0	2	15.4	7	53.8	215.4	2	15.4	9	69.2	4	30.8	13	100
46-47	0	0.0	5	45.4	3	27.3	19.1	2	18.2	8	72.7	3	27.3	11	100
43-45	0	0.0	1	6.3	9	56.2	531.2	1	6.3	10	62.5	6	37.5	16	100
38-42	0	0.0	1	12.5	3	37.5	3 37.5	1	12.5	4	50.0	4	50.0	8	100
-37	0	0.0	1	25.0	1	25.0	125.0	1	25.0	2	50.0	2	50.0	4	100
	Soction 3														
59+	50	34.2	58	39.7		23.3	10.7	3	2.1	42	97.2	4	2.8	146	100
54-58	4	8.5	21	44.7	16	34.0	36.4	3	6.4	42	87.2	6	12.8	47	100
48-53	0	0.0	10	26.3	18	47.5	513.1	5	13.1	28	73.8	10	26.2	58	100
43-47	0	0.0	6	22.2	12	44.5	622.2	3	11.1	18	66.7	9	33.3	27	100
-42	0	0.0	2	16.7	4	33.3	433.3	2	16.7	6	50.0	6	50.0	12	100

TABLE XLIV

EXPECTARCY TABLE FOR BISTORY 15a ($\mathrm{N}=459$)

T-Score Interval	Section A				Grades						Pass		Fail					
		A	B			c		D		F								
	M	4	1	8	H	8	H	\%	\%	\%		\%			1	\%		8
$64+$	28	29.5	42	44.2	22	23.1	1	1.1	2	2.1	92	96.8	3	3.2	95	100		
59-63	7	8.3	34	40.5	38	45.2	4	4.8	1	1.2	79	94.0	5	6.0	84	200		
56-58	1	2.3	45	34.9	23	53.5	3	7.0	1	2.3	39	90.7	4	9.3	43	100		
54-55	1	3.1	11	33.3	18	54.6	2	6.0	1	3.0	30	91.0	3	9.0	33	100		
51-53	2	4.7	10	23.3	24	55.7	6	14.0	1	2.3	36	83.7	7	16.3	43	100		
48-50	2	5.7	6	17.1	18	51.4	9	25.7	0	0.0	26	74.3	9	25.7	35	100		
46-47	0	0.0	5	26.3	10	52.7	3	15.8	1	5.2	15	79.0	4	21.0	19	100		
43-45	0	0.0	5	13.9	17	47.2	9	25.0	5	13.9	22	61.1	14	38.9	36	100		
38-42	0	0.0	5	11.4	16	36.3	16	36.3	7	16.0	21	47.7	23	52.3	44	100		
-37	0	0.0	0	0.0	15	55.6	6	22.2	6	22.2	15	55.6	12	44.4	27	100		
		ction																
59+	35	19.5	76	42.5	60	33.5	5	2.8	3	1.7	71	95.5	8	4.5	79	100		
54-58	2	2.6	26	34.2	41	54.0	5	6.6	2	2.6	69	90.8	7	9.2	76	100		
48-53	4	5.1	126	20.5	42	53.8	15	19.3	1	1.3	62	79.4	16	20.6	78	100		
43-47	0	0.0	12	18.2	27	49.1	12	21.8	6	10.9	37	67.3	18	32.7	55	100		
-42	0	0.0	5	7.0	31	43.7	22	31.0	13	18.3	36	50.7	35	49.3	71	100		

TABLE XLH

EXPECTANCY TABLE FOR HISTOBY 150 ($=422$)

$\begin{gathered} \text { T-Scoro } \\ \text { Inter- } \\ \text { Val } \end{gathered}$	Section A				Orades						${ }^{\text {Pass }}$ \%		$\%^{\text {Pail }}$ \%		${ }^{\text {Total }}$	
		4			${ }_{4}^{C}$				$\square^{\text {P }}$ \%							
$64+$	24	27.3	31	35.2	27	30.7	5	5.7	1	1.1	82	93.2	6	6.8	88	100
59-63	8	9.3	26	30.2	49	57.0	3	3.5	0	0.0	83	96.5	3	3.5	86	100
56-58	4	10.0	13	32.5	20	50.0	2	5.0	1	2.5	37	92.5	3	7.5	40	100
54-55	0	0.0	7	24.1	18	62.2	3	10.3	1	3.4	25	86.2	4	13.8	29	100
51-53	3	7.5		20.0	22	55.0	7	17.5	0	0.0	33	82.5	7	17.5	40.	100
48-50	0	0.0	4	13.3	17	56.7	7	23.3	2	6.7	21	70.0	9	30.0	30	100
46-47	0	0.0	5	26.3	11	57.9	2	5.3	2	10.5	16	84.2		15.8	19	100
43-45	1	2.9	4	11.4	17	48.5	10	28.6	3	8.6	22	62.9	13	37.1	35	100
38-42	0	0.0	5	16.1	12	38.7	12	38.7	2	6.5	17	54.8	14	45.2	31	100
-37	0	0.0	1	4.2	10	41.7	9	37.5	4	16.6	11	45.8	13	54.2	24	100
		tion														
59+	32	18.4	57	32.8	76	43.6	8	4.6	1	0.6	65	94.8	9	5.2	74	100
54-58	4	5.8	20	29.0	38	55.1	5	7.2		2.9	62	89.9	7	10.1	69	100
48-53	3	$4 \cdot 3$	12	17.1	39	55.7	14	20.0	2	2.9	54	77.1	16	22.9	70	100
43-47	1	1.9	9	26.6	28	51.9	11	20.4	5	9.8	38	70.4	16	29.6	54	100
-42	0	0.0	6	11.0	22	40.0	21	38.0	6	11.0	28	51.0	27	49.0	55	100

table xivi

expectancy table for parsics bola ($=136$)

$\begin{gathered} \text { T-Score } \\ \text { Inter } \end{gathered}$val	Sestion A				Grades												
	N	${ }^{4} \%$	H^{B}		3^{6}		$\\|^{D}$		H^{F}		$\int^{\text {Pass }}$ \%		Nail_{8}		$\mathrm{T}_{\mathrm{y} \text { otal }}^{8}$		
$64+$	11	44.0	7	28.0	4	16.0	3	12.0	0	0.0	22	83.0	3	12.0	25	100	
59-63	4	16.0	11	44.0	9	36.0	1	4.0	0	0.0	24	96.0	1	4.0	25	100	
56-58	1	6.2	4	25.0	7	43.8	1	6.2	3	13.8	12	75.0	4	25.0	16	100	
54-55	0	0.0	4	44.5	2	22.2	1	11.1	2	22.2	6	66.7	3	33.3	9	100	
51-53	1	6.0	5	29.4	4	23.5	4	23.5	3	11.6	10	58.8	7	41.2	17	100	
48-50	0	0.0	4	33.3	6	50.0	-	0.0	2	16.7	10	83.3	2	16.7	12	100	
46-47	0	0.0	1	20.0	3	60.0	0	0.0	1	20.0	4	80.0	1	20.0	5	100	
43-45	0	0.0	1	9.0	3	27.3	4	36.3	4	36.4	4	36.4	7	63.6	11	100	
38-42	-	0.0	0	0.0	4	30.8	4	30.8	5	38.4	4	30.8	9	69.2	13	100	
-37	0	0.0	0	0.0	0	0.0	1	33.3	2	66.7	0	0.0	3	100.0	3	100	
		cetion	B														
59+	15	30.0	18	36.0	3	26.0	4	8.0	0	0.0	146	92.0	4	8.0	50	100	
54-58	1	4.0	8	32.0	9	36.0	2	8.0	5	20.0	28	72.0	7	28.0	25	100	
48-53	1	3.4	9	31.0	10	34.6	4	13.8	5	17.2	20	69.0	9	31.0	29	100	
43-47	0	0.0	2	12.5	6	37.5	3	18.8	5	31.2	8	50.0	8	50.0	12	100	
-42	0	0.0	0	0.0	4	25.0	5	31.2	7	43.8	4	25.0	12	75.0	16	100	

TABLE XLVII

EXPECTAHGY TABLE FOR PHYSICS 801b ($\%=102$)

$\begin{gathered} \hline \text { T-score } \\ \text { Inter } \\ \text { Val } \end{gathered}$	Section A				Grades										
	A		B		c		D		F	Paas		Fall		Total	
	H	\%	IN	8	\%	8	\cdots	8	\% \%		8	:	8	1	6
64*	6	33.3	4	22.2	7	38.9	1	5.6	00.0	17	94.4	1	5.6	18	100
59-63	1	5.0	5	25.0	10	50.0	3	15.0	15.0	26	80.0	4	20.0	20	100
56-58	0	0.0	4	30.8	7	53.8	2	16.4	00.0	11	84.6	2	16.4	13	100
54-55	0	0.0	2	28.6	5	71.4	0	0.0	$0 \quad 0.0$		100.0	0	0.0	7	100
51-53	1	9.1	1	9.1	3	27.3	2	18.2	456.3	5	45.5	6	54.5	11	100
48-50	0	0.0	0	0.0	3	37.5	3	37.5	225.0	3	37.5	5	62.5	8	100
46-47	0	0.0	1	12.5	1	12.5	5	62.5	112.5	2	25.0	6	75.0	8	100
43-35	0	0.0	1	12.5	1	12.5	3	37.5	337.5	2	25.0	6	75.0	8	100
38-42	0	0.0	0	0.0	4	57.1	3	42.9	00.0	4	57.1	3	42.9	7	100
-37	0	0.0	0	0.0	0	0.0	0	0.0	1100.0	0	0.0		200.0		100
	Section														
59+	7	18.4	9	23.7	17	44.7	4	10.6	12.6	33	86.8	5	13.2	38	100
54-58	0	0.0	6	30.0	12	60.0	2	10.0	00.0	18	90.0	2	10.0	20	100
48-53	1	5.3	1	5.3	6	31.6	5	5.3	631.6	8	42.1	11	57.9	19	100
43-47	.	0.0	2	12.5	2	12.5	8	50.0	425.0	4	25.0	12	75.0	12	100
-42	0	0.0	0	0.0	4	50.0	3	37.5	1212.5	4	50.0	4	12.5	8	100

CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOYGEADATIONS

Summary

This investigation ovaluated the predictive value of the high school grade polnt average and a select group of standardized tosts. used singly and in various combinations, to ascertaln their usefulness in predicting course grades in fourteon elect junior college courses. Five hundred and Sorty-six studente from Robert E. Lee High Sohool. Baytow, Texas, were solected for the study. A student must have completed one or more of the fourteen select junior college courses in Lee College, Baytown, Texag, between the Jears of 1956 and 1959 to be included in the study.

The firat pert of the atudy determined the prediotive value of eight meaaurement variables (high achool grade point average, American Council on Education Psychological Examination: Q. L, and T-scores, Cooperative Biology Test. Cooperative Fingilsh Test, Cooperative Chemistry Test. and Cooperative Physics Test) by obtaining correlationa between oach of the ight variablea and grades rocelved in specific college courses. The high sehool grade point average proved to be the most valuable predictor variable of those studied.

Whe seoond part of the atudy dealt with combining the high school grade point average with the Q, L, or T-score of the Ameriegn Counoil on Education Psychologioal Exanination. These various combinationa of variables ware correlated with -ach of the junior college courses and the correlations were compared with those obtained when the high achool grade point average was used aingly as the predictor variable. The critical ratios obtained from these comparisons showed the high school grade point average to be as valuable for predictive purposes as any corabination of the high school grade point avorage and a aubteat acore of the American Counoil on Education Psyohological Examination.

The third part of the investigation dealt with combining the high school grade point average a subtest score of the American Council on Eduoation Psrchologioal Examination, the Cooperative Englion Test and a Cooperative Lohlevement Test in the subjeot area to deteraine the value of partioular combination for predioting junior college course grades. For each of eleven courses ariticel ratio was obtained by comparing the correlation of the high sohool grade point average and course grades, with a combination of the high nohool erade point average and a eelect combination or standardized test seores and oourse grades. In each instance the high echool grade point average was as valuable an an combination of variables for predieting graces in the oleven junior collego courses.

Choosing the high achool grade point average as the best prediator variable, fourteen expectancy tablea (one for each junfor college course) were formed. These expectancy tablea serve the function of allowing a probable -atimate to be made of a student's obtaining a specifie letter grade and passing or failing in a particular college course, whon his high achool grade point average is known.

Conclusions

The conclusions presented in this study were only applicable to students of Robert E. Lee Hign School, Baytom, Texas, who had enrolled in one or more of fourten select junior aollege courses in Lee College, Baytown, Texas. For the four hypotheses tested, the following conclusions are presented:

1. Hypothesis $2:$ Course grades in select Junior college courses may be prediated from a atudent's high sohool grade point average. Hjpothesia 1 was accepted, for the high sohool grade point average was aseful predictor variable when attempting to determine the probability of a student's obtaining a speoific course grade in one of the thirteen out of fourteen junior college coursea at Lee Colloge, Baytown, Texas. With the excoption of Analytia Ceometry, the correlationa were all aignificant beyond the one per cent level of confldence.
2. Hypothesis 2: Course gradea in select junior college courses may be prodicted from acores on single stendardized tests. Forty-five of forty-nine correlations between a standardized teat (American Council on Education Psychological Examination, Cooperative Biology Test, Cooperative Chemistry Test, Cooperativo English Test, and Cooperative Phyalos Test) and college course grades were sigaificant beyond the five per cent level of confidence. Oniy four correlations (Physies, 801b--ACE-Q; Physics, 801b--ACE-L; Phyaics, 801b-ACE-T; and Physics B01a-ACE-L) were too low to be considered eignificent; therefore, hypothesis 2 was accopted. The correlations between the standardized tests and course grades.were high enough, in forty-five of forty-nine correlation studien, to be oonsidered valuable when prediating course grades in the courses studied.
3. Hypotheais 3: a combination of the high achool grade polat average and the American Council on Eduoation Pejchologioal Exanination will yield higher predictive valldities when predicting seleot junior college course grades than whon the high achool grade point average ia used alone. Hypothesia 3 wes rejected, for the addition of the Amerioan Council on Education Psychological Examination, Q. L, or T -acore, to the high achool grade point everage did not produce aignifioantly higher correlations with the college course grades than when the high school grade point average was used as the single prediotor variable. Adding
the American Council on Education Paychological Examination, Q, L or T-score to the high sohool grade point average did not aeen to be advisable for the courses used in this study. The high school grade point average alone was as valuable when estimating the probability of a student's seouring a certain grade an any combination of the high achool grade point average and the subtest scores of the American Council on Education Psychological Examination.
4. Hypotheas 4 : A coubination of the high sehool grade point average, the American Council on Education Psyohologioal Examination, the Gooperative English Test, and a Cooporative Achievement Test in the aubjoot area will yield higher predictive validities, when predicting select junior college course grades, than when the high school grade point average it used alono. Eypothesis 4 was rejected, for the addition of the American Council on Education Psychological Examination, Q, L, or T-score, the Cooperative English Tost, and a Cooperative Achlevement Test in the subject area to the high school grade point average did not significantly increase the correlations with college course grade: over that found when the high school grade point average was used as alngle predictor variable.
5. It was possible to construct on expectaney table for thirteen of the fourteen college courses that would allow a probable estimate to be made of a student's chences of receiving a particular lotter grace and passing or railing in a specific course when his high school grade point average

1s known.

Reoommendations

1. To extend the scope of predictive information for Lee College, Baytow, Texas, aimilar study might be made, using Lee college students who have gradueted from other high sohoola.
2. A similar study, uaing the same measurement variables but other Lee College courses may also prove to be valuable.
3. Rather than studying peciflo coursee, certaln select ourrioula might well bo tudied in mannor imilar to this study.

Bryant, Edward Co Statistical Analysis. How York: Mcorawm Hill Book Compang, Lno. 1960.

Cronbach, Lee J. Espentials of Paychologioal Testing. Het Tork: Harper and Brothers, 1949.

Frecman, Frank 3. Theory and Practice of Pbychologieal
 and inston. 1962.

Garrett, Henry E, Statiatios in Psychology and Education, Hifth Editione ino Xork: Zonganang Grean akd 00. 1960.

Guilford, J. P. Pundamental Statistios in Psychology and Fducation Inird Edition bew York: wecraw-dill Book Company, Inee: 1960.

PERIODICAIS

Aaderson, Mary Re and Stogman, Erwin Jo: Prodiotors of Froshman Achlovement at Fort Hay State College," Fducational and Psychologion Measuroments. 341722-3. wintory 1954.

Berdie, R. Fer Dressel, Paul, and Kelao, Paul, Meiative Validity of Q and L Scores of the ACE, Educational and Paychological toasurement, 11:803-12, Spring. 1951.

Carinn. Levile Cs. "A Longitudinal Comparison of Freshman" Senior Standing, Journal of Educational Rosoarch. 47:285-90, December: 1953.

Dyer, Henry S.: Whe Heed for Do-It-Yourself Prediction Research in $41 g h$ School Guidanee, The Personnel and Guidance Journal. 36:162-67, November: 1957.

Frana, Oretchen, Davis, Juniua, A. end Garcia, Dolores, Prediction of Grades frora Pre-Admitaions Indioes In Ceorgia's Tax-Supported Colleges, " Fducetional and Psychological Measurements. $18: 841-44$ Winter: 1958.

Frelderiokson, Jorman and Sohrader, w. Bu., "The Ack.Paychological Examination and High School Standing as Prediction of College Sucaess, Joumal of Applied Psyohology. 36:26-65, Auguet: 1952,

Grater, Harry and Thelam, W. A., "A Statiatical Analysia of the Relationship between ACE Poyohological Examination Ratings and Orado-Point Averages, "Joumal of Educetional Researoh, 49:307-10, Decomber, 1755.

Hansmeier, Thorasa We, "The Iowa Testa or Educational Development as Predictor: of College Achioveinent," Education and Psychological Moasuraments, 20:843-45, wintor, 1960.

Henderson, H. Lo: "Predictora of Freahren Grados in a Long Island College; "Rduoetional and Psychological Messurements, $171623-7$, Winter; 1957.
 ACE," Journal of Highor Education, 25:97, Fobruary, 1954.

Jensen, Vern $\mathrm{H}_{\text {. }}$ and Clark, Monroe E., "A Prediction Study of Cooperative English Test Seorea," The Porsonnel and Guidence Joumal. $36: 635-36$, Kay, 1958.

Juola, A.T., "Prediative Valldity or Pive College-Level Acaderic Aptitude Tosts at one Institution, Personnel and Guldanoe Journal, 38:637-41, April, 1960,

Pierson, Georgia A. and Jex, Frank B., "Using the Cooperative Goneral Achiovement Tests to Prodict Succesi in gingineering," Educational end Psychological Messure*ments, 21:397-402, Autum, 1951.

Rigg, W. C., "Relation of College Aohlovement Teats to Grades and to Intelligence " Journal of Educational Payohology: 30:397-400, hay. 2939.
Samenfield, Horbort w. "Prodieting College Achleverant," Journal of E1gher Eduoation; 24:432-3: Hovember; 1953.

Scannell, Dale P., "Predietion of College Success from Elementary and Secondary Sohool Performance," The Journal of Educational Pbychology, $51: 130-34$, June, 1960.

Shuey, A. M., Choice of Major subject as Related to ACE Score and College Grades," Journal of Educational Peyohology, 41:292-300, May, 1950.
Stone, Joica, "Difforential Pradiction of Aoadenile Sueceas at Brighan Young Univeralty," Journal of Applied Psyohology, 38:109-110, Maroh, $1954{ }^{\circ}$
Vineyard, Edwin g., "A Longituainal study of the Relationship of Differential Aptitude Test Seores with College Sucoess," The Porsonnol and Guidanoe Joupnal. 36:413-17. Pebruary, 1958.
Wellace, W. Le, "pirferential Predictive Value of the ACR Paychological Examination," sohool and socioty, 70:23-5. July, 1949.

PAMPHLETS

Buckton, LaVerne, "The Prediction or Student succese at Brooklyn College," Brooklyn, Hew York: Brooklyn College Testing Bureau, 1949.

Monroe Calculating Machine Company, Inc., Monroe Coloulating Machine Mothods: Genoral Etatistics, Grange, How Joreoy: Monroe caloulating uachine Company, Incie 1960.

UHPUBLISEED MATERIALS

Chapman, Harold, "Prediation of Freshman Seholarship from a Combination of Standardised Tast Soores and High Sohool orades" (unpublishoa Doctoral dissertation, Oniversity of Houston, Houston, Texas, 1955).

Morriss, Jamea H_{*}, Predieting General Acadomic Achiovement from Standardized Tost Scores at the University of Houston Freshaga Level, " (unpubilehed Doetorel diesertation, Univereity of Houston, Houston, Texas).

Staatz, Meriln D., "Relationship of the Gradea of One Fundred and Eleven Industrial Education Majora to Selected Standard Tests" (unpubilshed Master's problem, Kanaas State Teacheri College, Pittsburg, Kansas, 1952).

APPEMDIXA

T-SCORE LQUIVALENTS OF RAW SCORE VALUES POR PREDICTOR VARIABLES

T-S00re	PREDICTOR VARIABLES Raw Scorem							
	HLCAPA	4Cx-2	ACB-L	AOE-T	COOP-B	600P-0	cone-s	C009-84
85	99				66		248	74
84	\%				65		246	73
83	98				64	80	243	72
82				260	63	77	241	71
81	97			158	62	74	238	70
80			100	156	60	69	235	69
79	96	66	99	154	59	66	232	68
78	95	65	96	252	5	63	230	67
77	94	64	96	150 148	57	59	227	66
75	94	62	93	144	54	52	222	63
74	93	61	92	142	53	48	219	62
73		60	90	140	51	45	216	60
72	92	59	89	138	49	42	213	59
71	91	58	88	136	47	38	211	57
70		57	86	134	45	36	208	56
69	90	56	84	132 130	43	33 31	205	54
67	89	53	81	126	39	30	199	50
66		52	80	124	37	23	196	48
65	88	51	78	122	34	27	193	47
64		50	77	120	32	26	190	45
63	87	49	76	118	30	25	187	43
62	86	48	74 72	116	28 26	24	183 182	42
60	85	46	71	112	25	22	179	38
59		45	70	100	24	21	176	35
58	84	44	68	105	23	20	173	34
57		43	66	102	22	19	170	32
56	83	42	65	100	21	18	168	30
5	82	40	64 62	98	18	17	165 162	28 26
53		39	61	93	17	15	159	25
52	81	38	60	90	16	14	156	23
51		36	58	88	35	13	153	22
50	80	35	56	86	14	13	150	20
49	79	34	55	84	13	12	147	19
48	78	34 33	54	82 80	12	110	145 142	17
46		32	50	77	10	9	139	15
45	77	31	49	74	9	8	237	14

S-SCORE ERUTVALEATR OF RAT SCORE VALUES FOR predicioa variables (cont.)

44		30	48	72	8	7	134	13
43	76	28	46	70	7	6	132	12
42		27	44	68	6	6	129	11
41	75	26	43	66	4	5	126	10
40		25	42	63	3	4	124	10
39	74	24	40	60	2	3	121	9
38		23	38	58	1	2	118	9
37	73	22	37	56		2	116	8
36		21	36	54		1	113	8
35	72	20	34	52			110	7
34		19	34	50			103	7
33	71	18	32	47			104	6
32	70	27	30	4			102	5
31 30	69	16	29 28	42				5
29	69	14	26	38				4
28	68	13	24	36				3
27		12	22	34				3
26		11	21	30				2
25		10	20	28				2
24		8	18	26				2
23		8	27	24				1
22		7	16	22				
21		6	24	20				
20		4	12	27				
19		3	11	16				
18		2	10	14				
17		1	8	22				
16			7					
15			6					
14 13			5					
12			2					

APPEMDIX 8

A SAMPLE OP THE SOLUTION OP A MULTIPLE REORESSIOA

 PROBL磔 USIFA TEE DOOLTTTLF METHOD| | usapa | ACE- ${ }^{\text {a }}$ | $\begin{gathered} \text { COOP. } \\ \text { EAGG. } \end{gathered}$ | coop. CREM. | COLL. GRADE | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2 | 3 | 4 | 5 | 1 | Cheek |
| | X_{2} | X_{3} | X_{4} | X_{5} | X_{6} | |
| $\stackrel{\text { A }}{\text { B }}$ | $\begin{array}{r} 1.000 \\ -1.000 \end{array}$ | $\begin{array}{r} .379 \\ -.379 \end{array}$ | $\begin{array}{r} .522 \\ -.522 \end{array}$ | $\begin{array}{r} .188 \\ -.188 \end{array}$ | $\begin{array}{r} .517 \\ -.517 \end{array}$ | $\begin{array}{r} 2.606 \\ -2.606 \end{array}$ |
| C D E P | | $\begin{array}{r} 1.000 \\ -.144 \\ .856 \\ -1.000 \end{array}$ | $\begin{array}{r} .719 \\ -.198 \\ .521 \\ -.609 \end{array}$ | $\begin{array}{r} .337 \\ -.071 \\ .266 \\ -.311 \end{array}$ | $\begin{array}{r} .303 \\ -.196 \\ .107 \\ -.125 \\ \hline \end{array}$ | |
| $\begin{aligned} & \text { a } \\ & \mathbf{H} \\ & I \\ & J \\ & Z \end{aligned}$ | | | $\begin{array}{r} 1.000 \\ -.272 \\ -.317 \\ .412 \\ -2.000 \end{array}$ | $\begin{array}{r} .281 \\ . .098 \\ -.162 \\ .021 \\ . .051 \end{array}$ | $\begin{array}{r} .355 \\ .270 \\ -.065 \\ .020 \\ -.049 \end{array}$ | $\begin{array}{r} 2.877 \\ -1.360 \\ -1.066 \\ -1.451 \\ -1.097 \end{array}$ |
| 2 \mathbf{L} \mathbf{H} 0 \mathbf{R} \mathbf{Q} | | | | $\begin{array}{r} 1.000 \\ =.035 \\ -.083 \\ -.001 \\ -.881 \\ -1.000 \end{array}$ | $\begin{array}{r} .381 \\ -.097 \\ -.033 \\ -.001 \\ -250 \\ -.284 \end{array}$ | $\begin{aligned} & 2.187 \\ & -.490 \\ & -.544 \\ & .023 \\ & 1.130 \\ & 1.283 \end{aligned}$ |

(1)	(2)	(3)	(4)
X_{2}	. 440	. 517	. 2275
x_{3}	. 016	. 303	.0048
${ }^{1}$. 035	. 355	.0124
$\times 5$. 284	. 381	. 1082
$\begin{aligned} & R^{2}=.3529 \\ & R=.594 \end{aligned}$			

APPEMLIX C

[^0]: *This ostimate was secured from the Registraris offlee of Lee College, Baytown, Texas, August, 1960.

[^1]: 11 Joica Stone: "Differential Prediotion of Academie Success at Brigham Young University, "Journal of Appliod Paychology, 38:109-110, March, 2954.

[^2]: ${ }^{21}$ LaVerne Buckton, "The Predietion or Student Success at Brooklyn College "(Brookiyn, N. Z. B Brooklyn College Testing Bureau, 1949). p. 38.
 ${ }^{22}$ carlin, op. cit.: p. 90.
 23georgia A. Pierson and Frank B. Jox, "Uaing the Cooperative General Achievement fests to Prediot Success in Engineering," Educational and Psychological Measurements, 21:397-402, Auturan, 1951.

[^3]: 6edward C. Eryant, Statistical Analysis (New York: MoGraw-Hill Book Company, Ino., 1960T. P. 303.

[^4]: *isignificant at the one per cent level of confidence.

