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ABSTRACT 

Standard seismic-processing methods are applied to numerical simulations for several 

variations of a standard 1-D numerical CSEM model, calculated using seismic-style acquisition 

parameters: an impulsive source and many receivers, unaliased.  The data are normalized to unit 

maximum amplitude at each offset, making the weak far-offset signal visible (seismic-style) 

without computation of apparent resistivity (EM-style).  Hence, the amplitudes are not 

appropriate for inversion (EM-style), but the moveout is interpretable (seismic-style) for the 

presence of a reservoir layer. 

Plots of normalized data exhibit distinctive moveout, similar to seismic data, but with 

significant dispersion.  The dominant moveout is shown to be linear at a given frequency, 

consistent with theoretical expectation for lateral (head) waves. Conventional (semblance) 

velocity analyses and stacking detects a 100 Ωm reservoir on the basis of its linear moveout, but 

does not appear to be useful for picking stacking velocities.  Standard f-k transforming and 

filtering does not appear to be promising.  Linear Radon transforms also detect the reservoir. 

Standard seismic processing methods are modified to account for the strong frequency-

dependence of the EM data, in order to focus on the resistivity.  Moveout as a function of 

frequency is replaced by moveout as a function of resistivity.  A resistivity moveout correction 

is defined that indicates the existence of the reservoir, and estimates its effective resistivity.  

Similarly, a modified Radon transform (“EM-Radon”) is defined which also indicates reservoir 

existence and effective resistivity.  EM-Radon is shown to be robust to noise, and to decimation 

of the receivers, and of the time-sampling.  EM-Radon’s sensitivity is explored to depth, 

thickness, and resistivity of the reservoir; T-equivalence is confirmed. 

These calculations demonstrate that, in simple cases, numerical CSEM data, appropriately 

acquired, and processed seismic-style, can be interpreted for subsurface effective resistivity.  
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1 Introduction 

 1.1     Deep connection between EM and seismology 

Thomsen et al. (2007, 2009), Strack et al. (2008), and Thomsen (2014) lay out the case for 

the deep connection between EM and seismology.  Thomsen (2014) is the inspiration for this 

thesis. 

The deep connection arises in part because of similarities between the partial differential 

equations governing the two physical phenomena, and their plane-wave solutions, and in part 

because of surprising similarities in the wavenumbers parameterizing these solutions.  This 

section explains the motivation of the first part in terms of the choices made by exploration 

geophysicists. 

For seismic exploration, due to weak frequency dependence in the relatively narrow 

seismic frequency band (say, 10 to 100 Hz), the simplest physical explanation was adopted 

early on and has worked remarkably well.  Linear Hooke’s law for an elastic, homogeneous, 

and isotropic medium has proven able to predict particle displacement in P-waves and S-waves 

well enough to find oil and gas.  Only three real-valued, frequency-independent material 

parameters are required to define a wave equation: longitudinal modulus, shear modulus, and 

mass density.  The small amplitude inaccuracies in displacement due to “over simplification” 

did not matter because seismic processing was primarily based on moveout.  Now that we need 

“true amplitude” processing, seismology has become more complex.  Anelastic seismology 

relaxes the elasticity assumption by making the moduli complex-valued, to allow for frequency-

dependent attenuation and dispersion. 

On the opposite extreme, for EM exploration, the frequency bandwidth is much wider (say, 

.01 to 10 Hz), and velocity dispersion and attenuation are strong.  A simplest physical 
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explanation is found by starting with the relatively involved Maxwell’s equations and peeling 

off unnecessary complexities.  I say “relatively involved” because the equations involve three 

complex-valued, frequency-dependent material tensors: electric conductivity, electric 

permittivity, and magnetic permeability.  The parameters are, in principle, complex-valued 

because each can build in first-order loss resonances, each characterized by its magnitude, and 

relaxation time constant.  The parameters are frequency-dependent because different loss 

mechanisms apply in different frequency ranges. The material parameters are tensors, because 

most rocks are anisotropic. 

For exploration geophysicists, this level of complexity is overkill in the EM exploration 

frequency band and for most earth media.  The loss mechanisms for non-ferromagnetic 

materials have magnitudes too small, and relaxation time constants too short to greatly affect 

the magnetic field (Keller, 1988).  Consequently, if we ignore ferromagnetic materials, 

magnetic permeability can be considered constant, and real-valued.  Complex-valued electric 

permittivity is thought sufficient to model both conductivity and permittivity resonances; below 

microwave frequencies, conductivity can be considered constant (Jackson, 1999).  Thus, we can 

consider conductivity real-valued, and frequency-independent.  Of course, conductivity 

introduces frequency-dependent loss without being complex-valued, via Ohm’s law.  And, for 

this thesis, I consider that the materials are isotropic, hence the parameters are scalars. 

Perhaps the biggest simplification is achieved by noting that, in the EM frequency band, 

the “displacement current” contribution due to permittivity is sufficiently swamped by the 

“conduction current” due to conductivity that we can ignore the displacement current altogether.  

Keller (1988) terms this the “inductive” regime, where Maxwell’s equations effectively 

degenerate to the diffusion equation.  Note that if air and other gasses are considered  “Earth” 

materials, they provides important exceptions, in that EM waves travel with essentially no 
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attenuation or dispersion in air, and other gasses to a lesser degree.  Thus, ignoring magnetic 

materials, air, and other gasses, we end up with only one real-valued, frequency-independent 

material parameter (electrical conductivity), and one universal constant (magnetic 

permeability), and we wind up with the diffusion equation. 

Whether working with the seismic wave equation, or the EM diffusion equation, both 

admit plane-wave solutions expressed as sums of Fourier basis terms parameterized by a 

complex-valued wavenumber. 

Appendix A restates this section in mathematical terms, and explores the motivations for 

complex anelastic seismic moduli, and for ignoring EM displacement current. 

1.2     EM and seismic parameter comparisons 

This section summarizes differences and similarities to expect between seismic and EM 

imaging by comparing wavenumbers k , as understood through quality factors Q , phase 

velocities phsv , skin depths  , transmission and reflection coefficients, and critical angles.  

Appendix B gives backup for the following observations: 

1) The wavenumber governs EM and seismic solutions.  It can be expressed in terms of 

its quality factor Q , and its phase velocity phsv : 

  
   

1
2phs

i
k

v Q




 

 
   

 

  (1.2.1) 

1a) In principle, the quality factor depends on frequency; however, it is frequency-

independent for both EM and seismic exploration.  Its importance to EM 

imaging is paramount since, for EM, Q  is always equal to ½ (Thomsen, 
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2014), while it is generally ignored in seismic imaging since its value differs 

for each material, and generally exceeds 30 (Futterman, 1962).   

1b) Seismic phase velocities have a relatively narrow range that is only mildly 

affected by dispersion, while EM phase velocities are highly dispersive, 

resistivity-dependent, and have a broader range. Hence, generating an image 

using EM phase velocities must take frequency into account, much more so 

than using seismic phase velocities.   

2) The imaginary part of the wavenumber governs attenuation.  The skin depth   is one 

measure of this attenuation and is defined as the depth at which wave amplitude has 

decayed to 
1e
 (about 37%) times its original value. In terms of quantities already 

defined, it is: 

  
 

 21

Im{ }

phsv Q

k


 

 


    (1.2.2) 

We will see below that EM skin depths are proportional to  .  Since shallow strata 

tend toward low resistivity, EM will usually not image as deeply as seismic.  

3) Seismic processing is designed to image relatively low impedance contrasts associated 

with reflected modes (reflection coefficients), while EM processing should image 

relatively high impedance contrasts associated with critically refracted modes (cf. 

Appendix B).  Hence, while large reflection coefficients can be problematic in seismic 

imaging, they are integral to EM imaging.   

4) Similarly, in seismic processing, near-vertical critical angles are problematic, while 

they are prospective in EM processing.  Hence, critical and post-critical refracted 

waves which are “noise” in the seismic case, are “signal” in the EM case.   
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1.3     Consequences of the deep connection 

Thomsen et al. (2007, 2009), Strack et al. (2008), and Thomsen (2014) argue that the deep 

connection between electromagnetics and seismology suggests that many seismic methods of 

acquisition and processing could be useful for EM data.  Quoting Thomsen (2014) extensively: 

1) “Both wave types may be described as a Fourier superposition of plane waves. 

2) The wave vectors in both cases have both real and imaginary parts, which lead to 

dispersive, attenuative propagation.  

3) Hence, although seismic dispersion and attenuation are weak, whereas EM dispersion 

and attenuation are strong, any seismic processing algorithm which does not assume 

weak dispersion and attenuation is, in principle, applicable to EM data processing. 

4) In particular, EM data may be directly imaged, using seismic-like techniques, rather 

than mathematically inverted for subsurface physical properties; this has various 

advantages, including less sensitivity to source strength and orientation. 

5) In both seismic and EM cases, since the signal from the subsurface is weak, it is best to 

detect it without a concurrent active source. Hence, EM data should (optimally) be 

Impulsive-Source (ISEM), rather than Continuous-Source (CSEM) data. Further, the 

EM receivers should not be spatially aliased.  

6) The phase velocities of EM waves at low frequencies (~1 Hz) are comparable to 

seismic velocities (several km/s), so that seismic-style acquisition parameters are 

feasible, and moveout of the EM signal is a primary observable.” 

This thesis presents evidence supporting the above arguments.  Further, I show that several 

seismic processing algorithms which are ineffective for EM data, due to its dispersion and 
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attenuation (see point 3) above, may be modified in straightforward fashion, to make them 

effective for processing EM exploration data. 

1.4     Conventional marine CSEM acquisition 

A typical survey is acquired by towing a horizontal electric dipole transmitter a few tens of 

meters above the seafloor, and recording fields on the seabed with independently deployed 

receivers.  This arrangement is depicted in Figure 1.4.1. 

 

Figure 1.4.1: Conventional CSEM acquisition with towed transmitter and sea-bed receivers 

(from Figure 1 in Constable and Weiss, 2006) 

In the cartoon, the source is specified as a 1 Hz square wave (continuously on), with maximum 

amplitude 200 A.  The dipole length is several hundred meters long; this arrangement generates 

enough radiated power to image reflectors to 2 or 3 km depth, under favorable circumstances. 

The receivers are 2-arm (inline & crossline) horizontal dipoles, with arm lengths of about 10 m; 

there may also be coils measuring the magnetic field.  In this thesis, only the inline horizontal 

component of the electric field is analyzed. 
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Another common arrangement replaces the sea-bed receivers with cable-based receivers 

towed along the sea-bed inline with the source, as depicted in Figure 1.4.2.   

      

Figure 1.4.2: Conventional CSEM acquisition with sea-bed towed transmitter and inline E-field 

receivers (from Swidinsky and Edwards, 2009) 

A newer scheme intended for simultaneous use with seismic acquisition is depicted in 

Figure 1.4.3.  Here, the shallow transmitter and receivers enable efficient acquisition in shallow 

water depths. 

  

Figure 1.4.3: Conventional CSEM acquisition with shallow streamer towed transmitter and 

receivers (from http://www.pgs.com/Geophysical-Services/Towed-Streamer-EM/ ), 

(note that a seismic image has been displayed below the seafloor in this cartoon). 

1.5     Plan for this thesis 

http://www.pgs.com/Geophysical-Services/Towed-Streamer-EM/
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In Section 2, simulations are presented for several variations of a standard 1-D numerical 

EM model using seismic-style acquisition parameters – an impulsive source and many 

receivers.  Intuition is built by exploring ray paths for the model.  These ray paths include those 

for critically and post-critically refracted waves, described herein as “lateral waves”, although, 

in the strictest sense, a lateral wave can only occur at the interface between semi-infinite half 

spaces.  The importance of normalization is illustrated in seismic-style displays.     

In Section 3, standard seismic processing methods are applied to the normalized 

simulations.  Seismic methods based on moveout are applied to the data: 

a) Velocity (semblance) analysis and stacking  

b) f-k transform and filtering  

c) Radon transforms  

Applying these methods represents a first cut at understanding.  Where practical, 

modifications are made to the standard algorithms to accommodate the linear moveout of lateral 

waves.  The methods are judged as to effectiveness in detecting the reservoir, by comparing 

their output for models without and with the reservoir.  Of these, the Radon transform is found 

to be the most effective.  Sampling considerations for the Radon transform are discussed in 

Appendix D.1. 

In a second cut, Section 4 reports on two efforts made to take frequency out of the EM 

experiment and to identify resistivity.  Both efforts exploit the fact that the frequency 

dependence of EM moveout velocity is determined by resistivity.  A resistivity moveout 

correction is defined and illustrated.  Then this concept is applied to the Radon transform, 

producing an “EM-Radon” transform that is shown to transform time versus offset  ,t x  space 

to intercept versus resistivity  ,   space, giving an indication of the reservoir’s “effective 
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resistivity” as well as its existence.  Sampling considerations for the EM-Radon transform are 

explored in Appendix D.2.   

Sections 5 and 6 report on tests for the robustness of the EM-Radon transform to noise, to 

decimation of the receivers, and to sparser time-sampling.   

In Section 7, the sensitivity of the EM-Radon transform is studied to variations in the depth 

and thickness of the reservoir, and to the resistivity of the reservoir. 

Section 8 demonstrates that the EM-Radon transform produces results consistent with T-

equivalence.  This suggests that the “effective resistivity” indicated might better be termed “T-

equivalent resistivity”.  The connection between T-equivalence and lateral waves is explored in 

Appendix C. 

Section 9 presents suggestions for future work, and conclusions. 

Portions of this material are covered by U.S. Provisional Patent Application No. 62066126 

by the University of Houston (Neese and Thomsen, 2014a).  The SEG has a copyright on 

content published in Neese and Thomsen (2014b), and the EAGE will have a copyright on 

content to be presented in June, 2015 at the 77th EAGE Conference & Exhibition (Neese and 

Thomsen, 2015).  
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2 Numerical EM simulations 

2.1     Canonical Model 

In the CSEM community, a 1D “Canonical Model” (Constable and Weiss, 2006) is often 

used for academic studies (Figure 2.1.1).  It is comprised of an upper half space of air 

(resistivity ρ=1012 Ohm-m), over ocean (ρ=0.3) 1 km deep, over sediments (ρ=1.0) 1 km thick, 

over reservoir rock (ρ=100.0) 100 m thick, over a lower half space of sediments.  The source is 

an in-line horizontal electric current dipole at 50 m above the seafloor.  To create pleasing 

seismic-style displays, negative polarity is chosen for the source.  

 

Figure 2.1.1: 1-D Canonical Model 

Strictly speaking, for simulation of propagation in air, the wave equation displacement 

term should be included.  However, the very high resistivity of air (1.30×1016 to 3.30×1016 Ωm 

at 20° C (Pawar et al., 2009)) minimizes its attendant diffusion characteristics. 

Also strictly speaking, the word “sediment” normally refers to sedimentary deposits that 

are not indurated; while, at model depths exceeding 1 km, most sediment will have been 

lithified into “sedimentary rock”.  In deference to Constable and Weiss (2006) and to common 
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usage in the CSEM community, in this thesis the word “sediment” is meant to include 

sediments that have undergone any degree of lithification. 

Data is synthesized using acquisition parameters that emphasize similarity to standard 

seismic acquisition: an impulsive source, receivers being 200 in-line horizontal electric dipole 

antennae, stationed from 50 m to 10 km offset (50 m intervals) along the ocean bottom, with a 

20 second recording time at a 2 millisecond sample rate. 

To explore reported problems identifying the reservoir in shallower waters, a “shallow-

water model” is also simulated, identical to the Canonical Model except for a shallower (500 m) 

deep ocean. 

2.2     Ray paths under the high-frequency approximation 

Figure 2.2.1 shows ray paths for the Canonical Model. Ray tracing is only strictly valid for 

electromagnetic waves whose wavelengths are much shorter than the dimensions of the 

Canonical Model, which is not the case here.  Nonetheless, the hope is that it will give a starting 

place for developing intuition, just as it does for seismic analysis.  We must keep in mind that 

EM waves see identical dimensions differently at different frequencies, so that intuition valid at 

higher frequencies may often need to be modified for lower frequencies (cf. Appendix C). 
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Figure 2.2.1: Ray paths for the Canonical Model 

In Figure 2.2.1, lateral waves are illustrated at the air-ocean interface (the dark blue “air 

wave”), at the ocean-sediment interface (the purple “sediment wave”) and at the sediment-

reservoir interface (the red “reservoir wave”).  At and beyond the critical angle of incidence, a 

well-developed lateral wave travels at the phase velocity of the “faster” medium, this is: for the 

air wave the speed of light in air, for the sediment wave the speed in sediment, and for the 

reservoir wave the speed in the reservoir.  Except for the air wave, these velocities are 

frequency-dependent, but the critical angle of incidence at which the lateral wave develops is 

not frequency-dependent (cf. Appendix B).  In this Canonical Model, the air wave critical angle 

is nearly 0°, for the sediment wave it is nearly 34°, and for the reservoir wave it is about 7°.  

Each of these lateral waves develops after a frequency-dependent time lag determined by the 

pathlength and the medium (or media) traversed between the source dipole and the subject 

interface.  At sufficiently far offset, all three lateral waves will exhibit nearly linear moveout.  

Also, the faster media will exhibit less attenuation at a given frequency, since their wavelengths 

are longer.  For the air wave, there is no attenuation. 
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Beyond the critical angle of incidence, each lateral wave travels at a lesser phase velocity 

given by the phase velocity of the “slower” medium divided by the sine of the incidence angle 

(Balanis, 1989).  Therefore, components of these waves travel at a spectrum of phase velocities 

lying between that of the faster and slower media, with phase velocity decreasing as the post-

critical angle of incidence increases. 

As mentioned above, in the strictest sense, a lateral wave can only occur at the interface 

between semi-infinite half spaces.  Since this condition never applies for the Canonical Model, 

we need to look out for the effect of finite bed thicknesses, especially of the reservoir.  

Figure 2.2.1 also illustrates the direct ocean wave (olive green) which will also exhibit 

nearly linear moveout.  Reflected waves in the ocean (yellow) and sediment (orange) will 

exhibit hyperbolic (known as “normal”) moveout, at each frequency. 

  2.3     Simulations in layered media 

A MATLAB code written by Kerry Key (UCSD: Key, 2012) is available from the SEG at 

http://software.seg.org/2012/0003 to perform EM simulations of the diffusion equation for 

propagation in layered media.   This code includes options for time- and frequency-domain 

output for electric and magnetic field components recorded in the same horizontal layer as an 

impulsive horizontal electric source.  It uses numerical techniques which are conventional, 

within the EM community.  Bessel function frequency-domain integral solutions are computed 

via Fast Hankel Transform (FHT) digital filters or via the sum of partial integrals evaluated 

using quadrature.  Time-domain solutions are assembled from a range of frequency-domain 

solutions using sine and cosine digital filters.  For this study, 201 point FHT filters and 201 

point cosine filters produce a satisfactory result in about 24 minutes of compute time on an HP 

Pavilion Notebook PC with a Dual-Core 2.5 GHz processor. 

http://software.seg.org/2012/0003
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2.4     Un-normalized versus normalized seismic-style displays  

For seismic-style processing, simulations are imported into the Seismic Un*x (“SU”) 

seismic processing package (Stockwell and Cohen, 2008).  Since my PC is Windows-based, the 

UNIX-emulator CYGWIN is used to set up the appropriate environment.  SU uses numerical 

techniques which are conventional, within the seismic community. 

Seismic-style displays (SUXIMAGE routine in SU) of the simulations are presented in 

Figure 2.4.1.  In keeping with seismic practice, time traces are plotted against receiver offset.   

In Figure 2.4.1, the Canonical Model is built up progressively, with the first four images 

showing simulations with a) whole space seawater, and adding in b) sediment, in c) air, and in 

d) the reservoir.  Parts e) and f) are the equivalent of c) and d), but for a shallow-water model 

(with water depth 0.5 km, all other parameters identical).   

We see how quickly trace amplitude decays in time and offset, showing that it is difficult 

to discern moveout at true amplitude.  This decay is much more severe than for seismic data, 

since the Q factor for EM data is so low.  The standard EM practice to deal with this decay is to 

compute at each  ,t x  from the data, an “apparent resistivity” (i.e., the resistivity of a 

homogeneous full-space which would yield the same amplitude, given the known source 

strength).   
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a) Whole space sea water                                           b) Sediment added 

 
c) Air added (1km ocean)                                     d) Canonical Model (1km) 

 
e) Shallow-water w/o res.                                 f) Shallow-water Model 

 

Figure 2.4.1: Un-normalized seismic-style displays of inline horizontal electric field component 

[volts/meter]. 
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Here, however, each trace is instead normalized to unit amplitude, seismic-style.  Figure 

2.4.2 shows that, with such display, the moveout is readily apparent.  This simple normalization 

makes the weak far-offset signal visible (seismic-style) without computation of apparent 

resistivity (EM-style).  Compare each of these plots with the corresponding plot in Figure 2.4.1. 

Each element possesses a distinctive moveout, similar to seismic data, but with significant 

dispersion. In particular, the presence of the reservoir arrival is obvious (in Figure 2.4.2d), 

compared to the same model without reservoir (in Figure 2.4.2c). In this way, the apparently 

trivial act of normalization and display becomes a non-trivial aspect of the analysis (Strack et 

al., 2007).  The corresponding differences for the shallow-water model (in Figures 2.4.2ef) are 

also clear, but with a different character. The shallow-water model without reservoir (Figure 

2.4.2e) shows a region at moderate-to-large offset with a prominent arrival with very rapid 

moveout, arriving before 1 second. This is the air wave, which causes problems with 

conventional CSEM (amplitude-based) analysis by interfering strongly with the reservoir wave. 

But using the present seismic-style acquisition (impulsive source, many receivers), when the 

reservoir is present (Figure 2.4.2f), the character of the moveout is different (slower than air, but 

faster than sediment), even to the eye.   

It is critical that these velocities are comparable to seismic velocities (a few km/s), many 

orders of magnitude less than the EM velocity in these same materials at high frequency (cf. 

further discussion in Appendix A).  Hence, they are measurable with seismic-style acquisition. 

A further critical point is that the gain factors applied in the normalization procedure are 

much larger (see Section 2.5) than those in seismic practice.  However, conventional EM 

acquisition is able to detect the very small signals at large offsets (which have been amplified so 

strongly); the robustness (of the present analysis) to noise is discussed in Section 5.  

I will seek to quantify these differences via seismic-style processing. 



17 

 

 
a) Whole space sea water                                          b) Sediment added                  

 
c) Air added (1km ocean)                                   d) Canonical Model (1km) 

 
e) Shallow-water w/o res.                                    f) Shallow-water Model 

 

Figure 2.4.2: Normalized seismic-style displays of inline horizontal electric field component 

[volts/meter (normalized to unit maximum value at each offset)]. 
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The low-frequency EM body-wave phase slowness (inverse of velocity) for a 

homogeneous non-magnetic isotropic body has real part given by (cf. Appendix A): 

  
 

  0
Re{ }1

2phs

k
p

v

 


  
      (2.4.1) 

Here μ0 is the magnetic permeability of free space (
74 10   H/m). This formula, along with 

the analysis of Thomsen (2014) for a body wave at an interface, leads to the following 

description of these plots. The “air wave” propagates slowly up through the seawater, refracts 

horizontally through the air at the speed of light in air, then propagates slowly back down to the 

receivers.  This is evident in the early arrival at far offsets, which is obvious in part c), and even 

more obvious in part e), with its shallower water layer.  

Similarly the reservoir wave propagates slowly down to the reservoir though the sediments, 

refracts rapidly along the reservoir, then propagates slowly back up to the receivers. 

The above behavior suggests that identifying the reservoir by means of conventional 

seismic processing tools via the different moveouts of various modes, rather than via their 

amplitudes, may be feasible (Thomsen et al., 2009). Because the air wave is excited 

impulsively, rather than continuously, it arrives late and fast, and is easily distinguished from 

the signal (Thomsen et al., 2009). 

2.5     Use of normalized data  

The applied normalization is simply an offset-variable, time-independent scalar gain: 

 ( , ) ( ) ( , )normu x t s x u x t   (2.5.1) 

Here: 
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1( ) [max ( , ) ] ( , )s x u x t over all t given x   (2.5.2) 

This thesis considers normalized data instead of the original un-normalized data.  The use 

of the normalized data means that seismic processing of the EM data will seek to interpret the 

moveout of the data, not its amplitude; this is a major difference from conventional EM 

analysis.  This normalization is also not frequency-dependent, unlike computation of apparent 

resistivity (EM-style).  Of course, the original data may be recovered at any time, since the gain 

factors  s x are retained (Figure 2.5.1, below). 

 

Figure 2.5.1: Inline horizontal electric field amplitude vs. offset [volts/meter]  inverse of gain 

factors used for numerical data normalization  
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3 Application of standard seismic moveout algorithms 

3.1     Frequency content 

Figure 3.1.1 shows a frequency spectrum (SUSPECFX in SU) for the Canonical Model, 

Figure 2.4.1d.  Notable is the loss of high frequency with offset, despite the trace normalization.  

Further, note that the refracted waves (air, reservoir) re-introduce higher frequency content at 

the longer offsets.

 

Figure 3.1.1:  Frequency content of normalized inline horizontal electric field component for 

Canonical Model [volts/meter (scaled by Fourier transform algorithm)] 

3.2     Velocity (semblance) analysis and stacking 

Semblance is computed with a modified version of SU’s SUVELAN program embedded in 

a UNIX script adapted from iva.sh (Forel et al., 2005).  The SUVELAN program is converted 

from hyperbolic moveout (NMO) to linear moveout, due to the expectation that sediment, 

reservoir, and air lateral waves are dominant.  Figure 3.2.1 shows output from the script for the 
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Canonical Model with and without the reservoir.  Velocities run from 500 m/s up to 38000 m/s 

in 150 increments.  

 

 
     a) Canonical w/o Res.                                b) Semblance Plot for a) 

 

 
    c) Canonical Model                                   d) Semblance Plot for c) 

 

Figure 3.2.1: Semblance plots with constant velocity CMP stacks overlaid on the right 

[semblance units are normalized volts/meter (see legend), CMP stacks are normalized 

volts/meter wiggle plots] (@ 0.25 Hz: sediment wave velocity 1.6 km/s, reservoir wave 

velocity 15.8 km/s). Normalized horizontal inline electric field amplitudes on the left 

[normalized volts/meter] are input into the semblance and CMP stack routines. 

Overlaid on the semblance plots (Figures 3.2.1bd) are limited-range (1-10km) Constant 

Velocity CMP Stacks computed at 3, 10, 17, 24, and 31 km/s.  One sees notable differences in 
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the semblance plots and stacks; differences which suggest the ability to detect the reservoir on 

the basis of its moveout, rather than its amplitude (as in CSEM).  Note that the detection does 

not rely upon forming the numerical difference between on-reservoir and off-reservoir datasets, 

as is commonly done is conventional CSEM analysis.  However, the plots do not appear to be 

useful for picking stacking velocities; this is presumably because EM data arrives with a 

spectrum of lateral and dispersive phase velocities, and this seismic process does not take these 

into account. 

3.3     f-k transform and filtering 

The UNIX script ifk.sh (Forel et al., 2005) studies the f-k amplitude spectrum produced by 

the SU program SUSPECFK.  Figures 3.3.1ab show output from the script, for the simulations 

without and with reservoir, respectively.  It is remarkable how similar are the two f-k plots, 

given the differences in the input data.  It is not clear from the f-k plots what strategy would be 

promising for identifying the reservoir.  It is possible that offset-dependent normalization 

obscures what is going on. 

  
a) without reservoir    b) with reservoir 

 

Figure 3.3.1: Comparison of f-k plots for the normalized inline horizontal electric field for the 

Canonical Model without and with the reservoir [normalized volts/meter scaled by the 

Fourier transform algorithm].  
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3.4     Radon transforms 

Radon transforms (SURADON in SU) for the Canonical Model are presented in Figure 

3.4.1.  In the absence of dispersion, an arrival refracted along the reservoir would appear as a 

straight line in time-offset space.  We restrict ourselves to linear “tau-p” transforms here, so that 

the refracted reservoir arrival should, in the absence of dispersion, and at a given angle of 

incidence, approximate a point in the tau-p (vertical time – slowness) domain.  Dispersion and 

varying incidence smear this point considerably, as shown in Figure 3.4.1b.  

 
           a) Canonical w/o reservoir                  b) Canonical Model 

 

Figure 3.4.1: Comparison of Radon transforms of the normalized inline horizontal electric field 

for the Canonical Model without and with reservoir [normalized volts/meter]. 

Following experiential guidelines (Yilmaz, 2001), the number of p  values is set equal to 

the number of offsets (200), and the p  range is chosen to bracket slownesses of interest: (.03-

.27) s/km (33-4 km/s).  These p  values satisfy the theoretical Turner (1990) anti-aliasing 

criteria presented in Appendix D.1.  Strong energy is present (at early tau) for slowness between 

0.1 and 0.2 s/km (velocity: 5-10 km/s) when the reservoir is present. By contrast, when the 

reservoir is absent, the early energy is arriving diffusely, and with much larger slowness (> 0.2 
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s/km (low velocity: 5 km/s)).  The phase velocity 10 km/s corresponds to a wave refracting 

along the reservoir (100 Ωm) at about 0.1 Hz. 

a) Canonical w/o reservoir                             b) Canonical Model 

 

Figure 3.4.2: Comparison of Radon transforms of the normalized inline horizontal electric field 

for the Shallow Model without and with reservoir [normalized volts/meter].  

The result is less clear for the shallow-water model, Figures 3.4.2ab.  At early tau, the 

reservoir slowness between 0.1 and 0.17 s/km only dominates when the reservoir is present 

Figure 3.4.2b.  This shows that the Radon transform, is affected, but not completely frustrated 

by air wave interference.   

It is worth mentioning that filtering via the Radon transform should be able to remove any 

noise that moves out very rapidly and without dispersion, like the air wave.  Similarly, Radon 

transform filtering should be able to remove any noise that does not move out at all, like 

environmental noise (not present in our simulations, but discussed in Section 5).  
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4 Taking frequency out of the EM experiment and identifying resistivity  

4.1     Resistivity moveout correction 

The first effort to account for the strong frequency-dependence of EM data, and to focus on 

resistivity, is a resistivity moveout correction.  This correction simply shifts the data’s phase 

according to the Fourier transform’s shift theorem (Bracewell, 1978).  The linear moveout 

correction can be expressed as: 

 ( , ) ( , ) ( , , )  u t x u t px x u x p   (4.1.1) 

where t px    is the reduced or intercept time, and the slowness p may vary with frequency.  

Taking the Fourier transform F of the right-hand side, applying the shift theorem (choosing 

negative for the sign of the forward Fourier exponent), and using Equation (2.4.1) to relate 

slowness to resistivity: 

 

0

2( ){ ( , ), } { ( , , )} { ( , , )}



   


  
i x

i p xF u t px x e F u t x e F u t x   (4.1.2) 

Thus, we can define the moveout correction for a given resistivity ρ (replacing the slowness): 
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21( , , ) { { ( , , )}}



   

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i x

u x F e F u px x   (4.1.3) 

4.2     Examples of resistivity moveout correction 

Figure 4.2.1 shows a 100 Ωm resistivity moveout correction applied to the Canonical 

Model.  We see that the moveout of the lateral reservoir wave is flattened considerably, and 

gives confidence that this resistivity value (which was input in the forward modeling) is 

consistent with the observed moveout. 
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Figure 4.2.2 shows a 10 Ωm resistivity moveout correction applied to the Canonical 

Model.  We see that the moveout of the lateral reservoir wave is bent beyond flat – to negative 

(non-causal) moveout, suggesting that this resistivity value is not consistent with observed 

moveout.   

Figure 4.2.3 shows a 1 Ωm resistivity moveout correction applied to the Canonical Model.  

We see that the moveout of the lateral reservoir wave is even more non-causal. 

 
On left: Canonical Model              On right: Canonical @ 100 Ωm correction 

Figure 4.2.1: 100 Ωm moveout correction of normalized inline horizontal electric field 

amplitude for Canonical Model [normalized volts/meter]. 
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On left: Canonical Model                  On right: Canonical @ 10 Ωm correction 

 

Figure 4.2.2: 10 Ωm moveout correction of normalized inline horizontal electric field amplitude 

for Canonical Model [normalized volts/meter]. 

 
On left: Canonical Model                     On right: Canonical @ 1 Ωm correction 

 

Figure 4.2.3: 1 Ωm moveout correction of normalized inline electric field amplitude for 

Canonical Model [normalized volts/meter]. 

Figures 4.2.4, 4.2.5, and 4.2.6 show, respectively, 100, 10, and 1 Ωm resistivity moveout 

corrections applied to the Canonical Model without reservoir.  Beyond 2.5 km offset, none of 
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these data are flattened, even approximately; i.e., there is little evidence of linear lateral 

moveout.  At 1 Ωm resistivity, the moveout is predominately non-causal. 

In sum, these Figures show that this simple version of resistivity moveout is able to 

indicate the existence of a reservoir and to estimate the reservoir’s effective resistivity. 

     
        a) Canonical w/o reservoir               b) Canonical Model 

 

Figure 4.2.4: 100 Ωm moveout correction of normalized inline horizontal electric field 

amplitude for Canonical Model w/o reservoir [normalized volts/meter]. 
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        a) Canonical w/o reservoir               b) Canonical Model 

 

Figure 4.2.5: 10 Ωm moveout correction of normalized inline horizontal electric field amplitude 

for Canonical Model w/o reservoir [normalized volts/meter]. 

 

a) Canonical w/o reservoir                                         b) Canonical Model 

 

Figure 4.2.6: 1 Ωm moveout correction of normalized inline horizontal electric field amplitude 

for Canonical Model w/o reservoir [normalized volts/meter]. 

4.3     Radon resistivity transform 
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The second effort to account for the strong frequency-dependence of EM data, and to focus 

on resistivity, modifies the Radon transform using Equation (2.4.1) in a similar way and 

produces a Radon resistivity transform (“EM-Radon”).  

The SU code SURADON (Anderson, 1993) performs the bulk of its Radon transform 

computations in the frequency domain.  This approach is particularly well-suited to EM, 

because it enables a natural allowance for the high dispersion of EM waves.  After converting 

the data from the time domain to the frequency domain, SURADON computes slowness, one 

frequency at a time.  Slowness can be converted to the square root of conductivity (inverse of 

resistivity) at each frequency, simply by dividing each slowness by √(μ0/2ω) (cf. Equation 

(2.4.1)). Upon conversion back into the time domain, the output is intercept τ versus the square 

root of conductivity √(1/ρ), and can be displayed as τ versus ρ. 

Since EM-Radon is a modification of SURADON, I will start by describing the 

computations in SURADON.  In order to reduce computational effort, Anderson (1993) 

configures the transform so that the least-squares equations for the discrete inverse Radon 

transform form a Hermitian Toeplitz (shift invariant) system, solvable by a complex form of 

Levinson recursion.   

Following Foster and Mosher (1992), this is not always true for a forward transform unless 

the receiver positions are regular.  Therefore we begin with an expression for the discrete 

inverse Radon transform: 

       
1

0

, , 0,..., 1
pn

l k k l x

k

f x t F p t p g x p l n
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

      (4.3.1) 

where f  is the input data, F  is the forward Radon transform of f , p  is slowness, 

 t pg x    is the time-intercept value, pn  is the number of slownesses kp , xn  is the 
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number of offsets xl, and p  is the (regular) offset spacing so that 
0kp p k p   .  The 

function  g x  is user-defined: for linear transforms  g x x , for parabolic transforms 

  2g x x , etc.   

In the frequency domain, Equation (4.3.1) becomes a set of independent equations for each 

frequency.  Applying the Fourier time transform with shift theorem (Bracewell, 1978): 
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where tildes denote Fourier transforms ( i t  has been used in the Fourier transform).  

Expressing this in matrix form: 

      , ,f x B F p     (4.3.3) 

where, at each frequency, B  is an pn  by xn  matrix with elements 
 k li p g x

klB e p


  , f  is a 

vector with xn  elements, F  is a vector with pn  elements, and the summation in Equation 

(4.3.2) is accomplished by the implied sum over the repeated index l  in the matrix 

multiplication.  Then the least-squares inversion formula for the frequency-domain Radon 

transform is: 

      
1

† †, ,F p B B B f x 


   (4.3.4) 

where the †  denotes complex conjugate transpose.  Since the slowness increment p  is 

constant,  †C B B is shift invariant (Toeplitz), and can be written (Anderson, 1993): 
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SURADON utilizes Equation (4.3.5) to compute F  in Equation (4.3.4), and then forms 

the desired Radon transform by taking the inverse Fourier time transform of F  (using i t in 

the inverse Fourier transform). 

To produce EM-Radon, SURADON is modified by replacing slowness, at each frequency, 

with the formula for EM plane-wave phase slowness (cf. equation (2.4.1), above): 

 0
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k
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
   (4.3.6) 

where the pn user-input resistivity values  1 k now replace the slowness values and a 

uniform increment 
1
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 replaces the slowness increment, through a simple division by 0
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Applying the uniform increment restriction: 
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the components of C  become: 
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Of course, this makes a non-uniform decrement in resistivity, which is accommodated in the 

displays, following the computation.   

Now, utilizing Equation (4.3.5) to compute F , and taking its inverse Fourier time 

transform, produces a Radon 1   transform, replacing the Radon p   transform 

familiar in seismology; hence, we call it the EM-Radon transform. 
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4.4     Example of Radon resistivity transforms 

Figure 4.4.1 presents a comparison of Radon resistivity (called “EM-Radon”) transforms 

for the Canonical Model without and with reservoir.   

     
        a) Canonical w/o reservoir               b) Canonical Model 

 

Figure 4.4.1: Comparison of EM-Radon of normalized inline horizontal electric field amplitude 

for Canonical Model w/o and with reservoir [normalized volts/meter]. 

The Canonical Model transform (on the right) shows resistivities at early times in the 8 to 

100 Ωm range, while the model without reservoir (on the left) does not.  Smearing of the 100 

Ωm resistivity amplitude probably results from the spectrum of incidence angles as well as 

spreading of the reservoir lateral wavelet with offset.  Note that the Turner (1990) anti-aliasing 

criteria (see Appendix D.2) suggest a low level of resistivity resolution, on the order of 10 Ωm 

at 1 Hz. 

4.5     Time and offset gating of Radon resistivity transform 

The EM-Radon transform may be more effective when applied to data that is offset-gated 

to exclude the near-field response where the reservoir lateral wave has not yet become 
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dominant, and to exclude the very far-field where the air wave becomes dominant.  Similarly, it 

may be helpful to exclude early times when the reservoir lateral wave is dominated by the 

ocean-bottom sediment lateral wave.  Figure 4.5.1 shows the time and offset gates overlaid on 

plots of the base model without and with the reservoir. These gates are easily identified on this 

model data, and may also be identifiable in field data. 

     
        a) Canonical w/o reservoir               b) Canonical Model 

 

Figure 4.5.1: Time and offset gating of normalized inline horizontal electric field amplitude for 

Canonical Model without and with reservoir [normalized volts/meter]. 

Figure 4.5.2 shows the EM-Radon comparison for the time- and offset-gated models.  It 

appears that the resistivity in the model with reservoir (Figure 4.5.1b) is now closer to the 100 

Ωm of the input model, than without gating (Figure 4.4.1b).  For the model without reservoir, 

resistivity is low and relatively diffuse, in either case. 
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        a) Canonical w/o reservoir               b) Canonical Model 

Figure 4.5.2: Comparison of EM-Radon of normalized inline horizontal electric field amplitude 

for time- and offset-gated Canonical Model without and with reservoir [normalized 

volts/meter]. 
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5 Robustness of EM-Radon transform to noise  

5.1     Noise in CSEM surveys 

A recent overview of noise in CSEM surveys is provided by Connell and Key (2013) 

where complete noisy electric field data E  is comprised of relative and additive noise 

components: 

 r aE E E E    (5.1.1) 

Here, errors in transmitter and receiver orientations and locations, and variable sensor 

calibrations are often said to scale with measurement; hence, they are modeled as relative to the 

field intensity E  via the multiplicative constant rE .  The additive component aE  is termed the 

“absolute electric field response noise” and is frequency-dependent: 
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where iE  is the environmental noise induced by magnetotelluric signal, water currents, and 

tides, rV  is the voltage noise spectrum for the recording system, rl  is the length of the receiver 

antenna, sl  is the length of the transmitter antenna, IS  is the current intensity of the transmitter, 

and N  is the window stack length. 

In order to test the robustness of EM-Radon to noise, the complete noisy electric field is 

simplified by ignoring the relative noise rE  and environmental noise iE  components.  N  is 

set to unity since there is no stacking involved in this thesis.  Equation (5.1.2) simplifies to: 
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This is the electric-field noise floor given by Constable and Weiss (2006).  According to Mittet 

and Morten (2012), at frequencies above 0.1 Hz, recording system technology can currently 

limit receiver self-noise fluctuations to amplitudes below 10-10 V/m.  Following the lead of 

Houck et al. (2013), the receiver and transmitter lengths are assumed to be 8 m and 300 m, 

respectively, and the transmitter current intensity is assumed to be 3 kA, over all relevant 

frequencies.  These assumptions produce the oft-employed noise floor aE =10-15 V/m. 

5.2     Robustness to additive noise 

Figure 5.2.1a where there is no additive noise, is to be compared to Figure 5.2.1b where 

noise of amplitude 10-15 V/m has been added, to Figure 5.2.1c where 10-14 V/m noise has been 

added, and to Figure 5.2.1d where 10-13 V/m noise has been added.  The noise is added to the 

raw synthetic data, prior to the trace normalization. Ability to identify the reservoir deteriorates 

when the magnitude of random additive noise exceeds 10-13 V/m, well above the noise floor 

discussed in Section 5.1; see Figure 2.5.1d.  
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a) Base Model (no noise)  
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b) 10-15 V/m noise added 
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c) 10-14 V/m noise added 
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d) 10-13 V/m noise added 

 (For each image set: top left – normalized inline horizontal electric field amplitude for 

Canonical Model w/o reservoir, top right – EM-Radon for Canonical model w/o 

reservoir; bottom left – normalized inline horizontal electric field amplitude for 

Canonical Model, bottom right – EM-Radon for Canonical Model [normalized 

volts/meter for all images].) 

Figure 5.2.1: Noise study EM-Radon Plots 
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6 EM-Radon decimation tests 

6.1     Robustness to fewer receivers 

Figure 6.1.1a (Canonical Model) with 200 receivers at 50 m spacing, is to be compared to 

Figure 6.1.1b where the data are spatially decimated with 100 receivers at 100 m spacing, to 

Figure 6.1.1c with 50 receivers at 200 m spacing, to Figure 6.1.1d with 25 receivers at 400 m 

spacing, to Figure 6.1.1e with 12 receivers at 800 m spacing, and to Figure 6.1.1f with 6 

receivers at 1600 m spacing.  Ability to identify the reservoir and its resistivity is not very 

sensitive to receiver spacing since wavelengths in the reservoir are long enough relative to the 

tested spacing range. This is an important conclusion because the density of spacing of the 

receivers is an issue of some economic importance in real data acquisition.  However, it may 

well be modified for more realistic models with finite lateral dimensions. 

 

  

a) Base Model – 50 m receiver spacing 
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b) 100 m receiver spacing 

  

c) 200 m receiver spacing 
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d) 400 m receiver spacing 

  

e) 800 m receiver spacing 
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f) 1600 m receiver spacing 

(For each image set: left – EM-Radon of normalized inline horizontal electric field amplitude 

for Canonical model w/o reservoir; right – EM-Radon of normalized inline electric field 

amplitude for Canonical Model [normalized volts/meter for all images].) 

Figure 6.1.1: EM-Radon plots for various receiver spacings 

 

6.2     Robustness to sparser time samples 

Figure 6.2.1a (Canonical Model) with a 2 ms sampling interval, is to be compared to 

Figure 6.2.1b where the data are temporally decimated with sampling interval 4 ms, to Figure 

6.2.1c where the sampling interval is 8 ms, to Figure 6.2.1d where the sampling interval is 16 

ms, to Figure 6.2.1e where the sampling interval is 32 ms, and to Figure 6.2.1f where the 

sampling interval is 64 ms.  Reservoir resistivity is not adversely affected at these sampling 

intervals since, even at 64 ms, Nyquist frequency (7.8 Hz) is at the upper range of frequency 

content in the data. 
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a) Base Model – 2 ms sampling interval 

 

 

b) 4 ms sampling interval 
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c) 8 ms sampling interval 

 

d) 16 ms sampling interval 
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e) 32 ms sampling interval 

 

f) 64 ms sampling interval 

(For each image set: left – EM-Radon of normalized inline horizontal electric field amplitude 

for Canonical model w/o reservoir; right – EM-Radon of normalized inline electric field 

amplitude for Canonical Model [normalized volts/meter for all images].) 

Figure 6.2.1: EM-Radon plots for various sampling intervals 
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7 Sensitivity of EM-Radon transform to model variations 

7.1     Sensitivity to depth of reservoir 

Figure 7.1.1a (Canonical Model) where the reservoir lies below 1 km of sediment, is to be 

compared to Figure 7.1.1b where the model is modified such that the reservoir lies below 1.5 

km of sediment, to Figure 7.1.1c where the reservoir lies below 2 km of sediment, and to Figure 

7.1.1d where the reservoir lies below 2.5 km of sediment.  Ability to identify the reservoir and 

its resistivity is preserved to 1.5 km but degrades fairly quickly thereafter. 
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a) Base Model – 1 km thick sediments 
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b) 1.5 km thick sediments 
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c) 2 km thick sediment 
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d) 2.5 km thick sediment 

(For each image set: top left – normalized inline horizontal electric field amplitude for 

Canonical Model w/o reservoir, top right – EM-Radon for Canonical model w/o 

reservoir; bottom left – normalized inline horizontal electric field amplitude for 

Canonical Model, bottom right – EM-Radon for Canonical Model [normalized 

volts/meter for all images].) 

Figure 7.1.1: EM-Radon plots for various thicknesses of sediment overburden 

 

7.2     Sensitivity to thickness of reservoir 
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Figure 7.2.1a (Canonical Model) where the reservoir is 100 m thick, is to be compared to 

Figure 7.2.1b where the model is modified such that the reservoir is 50 m thick, and to Figure 

7.2.1c where the reservoir is 25 m thick.  Ability to identify the reservoir and its resistivity is 

somewhat preserved to 50 m but appears to degrade thereafter. 

 

 

 

a) Base Model - 100 m thick reservoir 
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b) 50 m thick reservoir 
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         c) 25 m thick reservoir 

(For each image set: top left – normalized inline horizontal electric field amplitude for 

Canonical Model w/o reservoir, top right – EM-Radon for Canonical model w/o 

reservoir; bottom left – normalized inline horizontal electric field amplitude for 

Canonical Model, bottom right – EM-Radon for Canonical Model [normalized 

volts/meter for all images].) 

 
Figure 7.2.1: EM-Radon plots for various reservoir thicknesses 

7.3     Sensitivity to resistivity of reservoir  
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Figure 7.3.1a (Canonical Model) with a 100 Ωm reservoir, is to be compared to Figure 

7.3.1b where model is modified such that the resistivity is 75 Ωm, to Figure 7.3.1c where the 

resistivity is 50 Ωm, and to Figure 7.3.1d where the resistivity is 25 Ωm.  Reservoir resistivity is 

smeared but it clearly reflects the decreasing trend in the simulated models. 

  

a) Base Model – 100 Ωm reservoir 
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b) 75 Ωm reservoir 



59 

 

 

 

c) 50 Ωm reservoir 
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d) 25 Ωm reservoir 

(For each image set: top left – normalized inline horizontal electric field amplitude for 

Canonical Model w/o reservoir, top right – EM-Radon for Canonical model w/o 

reservoir; bottom left – normalized inline horizontal electric field amplitude for 

Canonical Model, bottom right – EM-Radon for Canonical Model [normalized 

volts/meter for all images].) 

Figure 7.3.1: EM-Radon plots for various reservoir resistivities 

  



61 

 

8 EM-Radon and T-equivalence 

8.1     T-equivalence tests 

It is well-known (cf. e.g., Constable and Weiss, 2006) in the CSEM community that (for a 

resistive layer that is thin relative to its depth measured from the surface) DC resistivity 

sounding resolves only the resistivity-thickness product.   This is commonly known as “T-

equivalence”, defined by T d  , where d  is the thickness of the resistive layer.  

Constable and Weiss (2006) show that, for the Canonical Model studied in this thesis, strict T-

equivalence breaks down for frequencies above 0.1 Hz.  For the impulse responses in this thesis, 

Figure (3.1.1) above shows that energy remains above 0.1 Hz at all offsets.  Consequently, one 

might wonder whether the EM-Radon transform will exhibit true T-equivalence. 

This section presents EM-Radon transforms for Canonical Model variations that preserve 

T-equivalence at T = 104 Ωm2.  To facilitate comparison, in all three cases, the reservoir lies 

below a 1 km sediment overburden, rather than (for example) at the same average reservoir 

depth.  Figure 8.1a shows transforms for the base Canonical Model where   is 100 Ωm, d  is 

100 m (T = 104 Ωm2), and the reservoir lies from 1 km to 1.1 km below the seabed.  For Figure 

8.1b   is 50 Ωm, d  is 200 m (T = 104 Ωm2), and reservoir lies from 1 km to 1.2 km below 

the seabed.  For Figure 8.1c   is 125 Ωm, d  is 80 m (T = 104 Ωm2), and reservoir lies from 1 

km to 1.08 km below the seabed.  As suggested by Constable and Weiss (2006), the EM-Radon 

transform results are very similar in all three cases, so, near T-equivalence is observed. 
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a) Base Model – 100 Ωm by 100 m thick reservoir lying 1 km to 1.1 km below the seabed 

 

 

b) 50 Ωm by 200 m thick reservoir lying 1 km to 1.2 km below the seabed 
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c) 125 Ωm by 80 m thick reservoir lying from 1 km to 1.08 km below the seabed 

 

(For each image set: left – normalized inline horizontal electric field amplitude for Canonical 

Model, right – EM-Radon for Canonical Model [normalized volts/meter for all 

images].) 

 
Figure 8.1.1: EM-Radon T-equivalence plots 

Swidinsky and Edwards (2009) show that T-equivalence is a natural theoretical 

consequence of 2-D boundary conditions.  In Appendix C.1, below, it is shown that their 

argument is consistent with the importance of lateral waves in CSEM.   

On the other hand, T-equivalence requires that moveout of the reservoir lateral wave be a 

function of reservoir thickness as well as resistivity.  This further stretches the concept of 

“lateral wave” in this thesis.  In Appendix C.2, below, phase gradients nonetheless illustrate a 

high degree of moveout linearity in the Canonical Model. 

It follows that all of the previous EM-Radon plots showing inferred “resistivity” should be 

understood more precisely as showing “T-equivalent resistivity”, rather than actual, in-situ 

resistivity.   
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Furthermore, T-equivalence is seen to be an approximate extrinsic measure of hydrocarbon 

presence.  Archie’s equation (Archie, 1942) enables an estimate for a reservoir’s Oil In Place 

(OIP) per acre: 

 1 1
m m

w wn n
OIP

d T
acre

       
       
      

    


  
  (8.1.1) 

where   is porosity, w  is brine resistivity, R  is formation resistivity, m and n  are empirical 

constants.  All of Archie’s parameters are intrinsic to the wellbore in which they are measured, 

and are routinely extrapolated over reservoir dimensions to estimate reservoir value.  Because 

T-equivalence does not allow estimating these intrinsic parameters, it provides only an 

approximate indication of OIP.  
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9 Conclusion  

9.1     Suggestions for future work 

Most importantly: all work has been done on 1-D synthetic data for isotropic media.  It 

would be useful to try these techniques on 2.5-D synthetic data that have been offered by Kerry 

Key from Scripps Institute.  This would allow creating images that could be overlaid on seismic 

cross-sections. Subsequently, 3D models should be computed and tested, prior to any field 

work. 

More study of the effects of aliasing in the  , p  domain would be useful to understand 

time and offset sampling requirements to achieve desired resistivity resolution with EM-Radon. 

For this Canonical Model, EM-Radon appears to be responding to transverse resistance.  

Further study could determine how this comes about. 

The simple normalization chosen has been effective in demonstrating that ISEM data is 

amenable to seismic-style processing.  However, the data normalization has affected the results, 

by coloring offset-dependence.  As regards the Fourier frequency transform of the original un-

normalized data, the transform of the normalized data will be scaled by  s x  according to the 

Addition theorem (Bracewell, 1978).  As regards the Fourier wavenumber transform of the 

original data, the transform of the normalized data will be the convolution of  s   with the 

original data transform according to the Convolution theorem (Bracewell, 1978).  It is possible 

that improvements could accrue from taking these effects into account.  

It may be possible to define a “figure of merit” such as semblance (Neidell and Taner, 

1971) to simplify choosing the best resistivity moveout correction. 
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It would be interesting to try combinations of Radon transform filtering for frequency-

independent moveout (air wave, and environmental noise), with EM-Radon transform filtering 

for resistivity (reservoir, and sediment waves, etc.). 

Spectral decomposition is one of the few seismic processing techniques designed to handle 

dispersion.  Preliminary research into its use for this problem is the subject of current research 

with Professor Castagna and his associate Dr. Arnold Oyem. 

The opportunity also exists to relax the isotropy assumption by generating 1-D simulations 

for VTI resistivity anisotropy using code made available by the SEG in connection with a recent 

Geophysics article by Hunziker et al. (2015). 

Professor Jackson has suggested a processing technique that identifies wavenumbers 

present in  ,t x  data.  The generalized pencil of functions (Sarkar et al., 1995) is used in 

electrical engineering for this purpose. 

Closed-form solutions for homogeneous layered media derived via the spectral domain 

method Scott (1988) might yield insight when compared with those presented in Ward et al. 

(1987). 

The ultimate test, of course, would be to create an image of real-world data. 

9.2     Conclusion 

This thesis has shown that synthetic 1-D EM data generated for a Canonical Model and 

using simulation software well-accepted by the geophysical EM community can be processed 

by seismic algorithms commonly used in the geophysical seismic community, yielding 

estimates of T-equivalent subsurface resistivity without formal mathematical inversion. Further, 

simple modification to some of these algorithms, to account for EM dispersion, appears to 
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enhance their effectiveness substantially. This validates an argument made over the years by 

Thomsen et al. (2007, 2009), Strack et al. (2008), and Thomsen (2014), and can hopefully serve 

as a bridge, and provide avenues for cross-fertilization, between these two branches of the 

geophysical community.  
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11 Appendix A 

 A.1     EM and anelastic seismic in mathematical terms 

The primary connection between EM and anelastic seismology is that the dissipative wave 

equation describes both of these two physically unrelated phenomena.  As a result, the two 

solutions share the same form for Fourier basis terms.   Methods and measures used to describe 

and interpret the wave equations and Fourier basis terms apply equally to both phenomena.  

These include wavenumber, phase velocity, quality parameter, wavelength, skin depth, index of 

refraction, reflection coefficients, critical angles, and so on.  This mathematical commonality 

provides a way to understand and quantify differences and similarities.  The differences are 

important, but the similarities are striking. 

In broad 1-D overview, both EM and anelastic seismic wave equations are expressed as 

variations on the canonical form of Maxwell’s equations: 

 

2 2

2 2
0

w w w
A B

x t t

  
  

  
  (A.1.1) 

In EM, w  is the intensity of the electric field E  or of the magnetic field H , both of which are 

polarized transverse to x .  In anelastic seismology, w  is the longitudinal “P-wave” 

displacement (within the wave), with polarization oriented parallel to x , or the transverse “S-

wave” displacement, with polarization oriented in the plane normal to x .    

Geophysicists have chosen different ways to incorporate attenuation and dispersion into 

EM and anelastic wave equations, e.g., Keller (1988) and Aki and Richards (2009).  As 

mentioned above, A  and B  can, in principle, be real- or complex-valued.  

For EM, real A  and complex B are chosen: 
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
  (A.1.2) 

where the medium permeability   (Henry/meter), and medium conductivity 

(Siemens/meter) are real, and the medium permittivity   (Farad/meter) is complex.  


 


 

E E
A

t t
 is called the “conduction” term, and 

2 2

2 2


 


 

E E
B

t t
 is called the 

“polarization” or “displacement” term.  For surface-based experiments designed to probe deeply 

into the sedimentary crust, the frequency band is from about .01 Hz to about 10 Hz, due to 

severe attenuation in most earth media and relatively deep targets.  As mentioned above, for 

most earth media excepting air, and other gasses, the displacement term can be ignored (see 

Equation (A.3.1), below), leaving only the conduction term.  Thus, Equation (A.1.1) 

degenerates into the diffusion equation: 

 

2

2
0

E E

x t


 
 

 
  (A.1.3) 

For anelastic seismology, A  is set to zero, and B is the complex-valued “modulus” term: 

 

0

c

A

M
B

m




  (A.1.4) 

where cM  is complex medium modulus (Pascal, or kg/(ms2)), and m  is medium density 

(kg/m3) (note that 1


  is reserved for resistivity in the EM problem).  P-wave modulus 

differs from S-wave modulus.  Thus, Equation (A.1.1) can be expressed: 

 

2 2

2 2
0cMu u

x m t
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 
  (A.1.5) 
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Both Equations (A.1.3) and (A.1.5) admit plane-wave solutions expressed as sums of 

Fourier basis terms: 

       
0,

i t k x
w x w e

 
 


   (A.1.6) 

where 
0w  is a complex amplitude defined at a time and space origin, and k is a complex-valued 

wavenumber .  It is convenient to name the real and imaginary parts of k : 

      k i        (A.1.7)  

The explicit minus sign in Equation (A.1.7) ensures that the material parameter  is 

positive, as required by the 2nd Law of Thermodynamics. 

For EM diffusion, we can verify by direct substitution that
EM is equal to

EM : 

 

 

 

2

2

EM

EM


 


 





  (A.1.8) 

In the anelastic seismic case, defining: 

      Re ImcM M iM      (A.1.9) 

we find that: 
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  (A.1.10) 

As a sanity check, in the perfectly elastic case, 
ImM is zero so that  

    
 Re 

      seis seis
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M M
k

m m
  (A.1.11) 

is real. 

Now we note various measures in common between the two cases: 
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  (A.1.12) 

Here, Q  is dimensionless quality parameter,   is skin depth (at which amplitude drops by the 

fraction 
1e
 to about 37% of its original value),   is wavelength, phsv  is (real) phase velocity, 

and n  is index of refraction. 

A.2     Motivation for complex seismic modulus 
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In elastic seismology, the medium itself is characterized by its frequency-independent 

phase velocity, and infinite seisQ , as can be seen from Equation (A.1.12): 

 
seis

phs

M
v

m
   (A.2.1) 

The elastic moduli are derived using a linearly elastic form of Hooke’s law, which in a 

homogeneous and isotropic medium can be expressed: 

 M    (A.2.2) 

where   is stress (force per unit area), and   is strain (deformation due to stress), (Note: the 

symbol   (sometimes used to denote elastic strain) is reserved for electrical permittivity, 

above).   

Thomsen (2014) motivates Equation (A.1.5) by allowing v , and therefore M , to be 

complex, noting that the physical mechanisms behind complex M  are poorly understood.  As a 

result, seisQ  is normally estimated from the data itself.  Equation (A.1.6) can be expressed: 

    
     2

0, phs phs seis

x x
i t

v v Q
u x u e e

 
  

 

   
     
   
      (A.2.3) 

A possible physical mechanism for complex-valued cM  is put forth in Liu et al. (1976) 

where Equation (A.2.2) is replaced by a standard linear solid model, in which:  

 
F R D

d d
t M t

dt dt

 
 

 
   

 
  (A.2.4) 
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where 
Ft  is the stress relaxation time under constant strain, and 

Dt  is the strain relaxation time 

under constant stress, and 
RM  is the fully-relaxed modulus.  The complex modulus 

cM  is 

defined by:  

  
   

R
c

M
M

a ib


 



  (A.2.5) 

where a  and b  are functions of 
Ft  and 

Dt .   It is noted by Liu et al. (1976) that:  

  
 

 
seis

a
Q

b





   (A.2.6) 

cM  is postulated to vary across frequency ranges that correspond to different relaxation 

mechanism regimes.  Liu et al. (1976) present Figure A.2.1, where the observed relative 

constancy of seisQ  is reproduced for a solid with twelve relaxation mechanisms. 
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Figure A.1.1: (a) Internal friction coefficient, (b) phase and group velocity dispersion, (c) 

attenuation factor as a function of frequency, for a solid with twelve relaxation 

mechanisms, from Liu et al. (1976), Figure 3. 

This relatively high value for seisQ over a typical range for seismic frequencies is why, as 

Thomsen (2014) notes, in exploration geophysics the approximation is commonly made that

seisQ    , and Equation (A.1.5) reduces to: 
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A.3     Motivation for ignoring EM displacement current 

Thomsen (2014) develops the 1-D EM diffusion equation as a specialization to earth media 

of Maxwell’s wave equation.  He writes the 1-D wave equation for the electric field (within a 

non-magnetic material), retaining the inertial term, as: 
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x t c t
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  
  (A.3.1) 

where c  is the speed of light in free space, n  is the index of refraction (>1) of the medium, 0  

is the magnetic permeability of free space (4π x 10-7 N/A2), and   is the electrical resistivity of 

the medium.  Note that the inertial term is complex-valued since: 

 

2

02

n

c
     (A.3.2) 

and   is the complex-valued electric permittivity of the medium.  Postulated physical 

mechanisms behind permittivity yield qualitatively satisfactory results, but in the end, as in the 

seismic case, the complex inertial parameter is measured from the data. 

Just as in the seismic case, all solutions to Equation (A.3.1) can be represented as a sum of 

Fourier basis terms: 
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  (A.3.3)   

This expression solves Equation (A.3.1) if and only if wavenumber 
EMk  satisfies: 
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Thus, complex phase velocity 
EMv  can be expressed: 
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  (A.3.5) 

Thomsen (2014) notes that the imaginary term in Equation (A.3.5) dominates the real term 

at low frequencies (the conduction regime), while the real term dominates at high frequencies 

(the displacement regime).  This is illustrated in Figure A.3.1, for parameters n  and   suitable 

for sediments: 

 

Figure A.3.1: 
EM

phsv conduction and displacement regimes, with n =10 and  =1 Ωm, Thomsen 

(2014) Figure 1.   

Finally, Thomsen (2014) notes that no matter what frequencies are created by the source, only 

the low frequencies penetrate deeply into the subsurface.  Therefore, the conduction regime 

applies: 
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  
0

2EM

phsv





   (A.3.6) 

thus justifying Equation (A.1.3).  

In the modeling described above, we apply this equation in the air, as well as in the 

sediments. It is easy to show that, for air, the “knee” in the graph above occurs at very low 

frequencies, well below the frequencies required for deep penetration.  Consequently, in spite of 

the high resistivity (1012 Ωm) ascribed to it, for air the displacement regime applies.  The 

modeling, therefore, is not strictly proper for air, but the inaccuracy is minor due to its high 

resistivity. 

The value of CSEM data for hydrocarbon exploration stems from the fact that 
EM

phsv

depends on the resistivity  , which is anomalously high for hydrocarbon-rich rocks (this is the 

basis for the utility of resistivity logging).  Hence, CSEM has the potential to be a “direct 

detector” of hydrocarbons. 
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12 Appendix B 

B.1     Quality factors 

An overriding theme is that seismic wavenumbers lie close to the real axis in the complex 

wavenumber plane, while EM wavenumbers lie along the 45° line in that plane (Figure B.1.1).  

This is reflected in Q  values.  For Earth media 
P

seisQ  and 
S

seisQ  are material parameters which 

generally exceed 30 (Futterman, 1962) and are relatively frequency-independent over the 

seismic frequency band.  As shown above, 
EMQ  is always ½; it is a property of the diffusion 

equation, not the material.   

  

Figure B.1.1: A comparison of anelastic seismic and EM wavenumbers 

B.2     Phase velocities 

Low-frequency EM and seismic phase velocities are comparable in magnitude but possess 

very different degrees of dispersion, so much so that dispersion is normally ignored in standard 

seismic processing.  In both cases, phase velocity phsv  is:  

  
 Re{ }

phsv
k





   (B.2.1) 
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For the EM case, phase velocity is highly dispersive and depends on the square root of 

frequency: 

  
0

2EM

phsv





   (B.2.2) 

For the seismic case, phase velocities vary only mildly with frequency, e.g., less than a 2% 

increase with a 100-fold increase in frequency (Aki and Richards, 2009): 
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  (B.2.4) 

where 0  is a reference frequency, 
PM  is P-wave modulus, 

SM  is S-wave modulus, and m  

is mass density.  This mild velocity dispersion is generally ignored, yielding: 

 

P
P

phs

M
v

m
   (B.2.5) 
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phs

M
v

m
   (B.2.6) 

Seismic phase velocities typical to sedimentary basins from Mavko et al. (2011) are 

presented in Table B.2.1. 
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(Velocities in km/s)              
P

phsv               
S

phsv  

Chalk            1.53    to 4.30  1.59    to    2.51 

Dolomite                   3.41    to 7.02  2.01    to    3.64 

Sandstones                 3.13    to 5.52  1.73    to    3.60 

Tight-gas sandstones          3.81    to 5.57  2.59    to    3.50 

Limestone                  3.39    to 5.79  1.67    to    3.04 

High-porosity sandstones               3.46    to 4.79  1.95    to    2.66 

Poorly consolidated sandstones         2.43    to 3.14  1.21    to    1.66 

Table B.2.1: Examples of typical seismic phase velocities (from Table A.1, Mavko et al. (2011)) 

EM phase velocities, computed for a range of resistivities and frequencies are presented in 

Table B.2.2. 

                                   EM

phsv   in km/sec 

Resistivity (Ωm)     @0.01 Hz     @ 0.1 Hz       @ 1.0 Hz        @10.0 Hz 

          1                         0.2             0.7         2.2               7.1                

         10         0.7             2.2      7.1             22.4 

  100         2.2        7.1    22.4             70.7 

       1000         7.1      22.4    70.7           223.6 

Table B.2.2: Examples of EM phase velocities at various frequencies and resistivities 

These velocities must be put into the context of the resistivity ranges of various earth materials, 

as presented in Palacky (1987) and reproduced in Table B.2.3.  As noted by Palacky (1987), for 

sedimentary rocks the range of resistivities is very broad and is often highly dependent on the 

volume and arrangement of porosity and on the salinity of brine contained therein (see Archie, 

1942). 
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Table B.2.3: Typical ranges of resistivities of earth materials (Fig. 2: Palacky, 1987) 

It is worth noting, here, that phase velocities in EM can be more than an order of magnitude 

greater than those typical in seismology. 

B.3     Skin depths 

The difference in seismic and EM phase velocities results in much smaller EM skin depths.  

For both cases, skin depth   is: 

  
 

 21
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
 

 


    (B.3.1) 

In the seismic case, with seisQ  virtually constant over seismic frequencies, and seismic phsv  

only mildly dispersive, we can write: 
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For example, if we use 200seisQ   and 30 Hz, skin depth ranges from 3 km to 11 km for P-

waves, and from 2.5 km to 7 km for S-waves: 

 2P P

seis phsv    (B.3.4) 

 2S S

seis phsv    (B.3.5) 

In the EM case: 
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    (B.3.6) 

At 1 Hz the skin depth ranges from 350 m at 1 Ωm to 10 km at 1000 Ωm. 

B.4     Reflection and transmission coefficients 

For incident plane waves impinging normally on a planar interface separating two half-

spaces, in both cases the reflection coefficient  R   and the transmission coefficient  T   

are functions of the impedances above and below the interface:  
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In the seismic case (Morozov, 2011): 
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As mentioned above, 
P

seisQ  and 
S

seisQ  generally exceed 30, and phase velocities are 

approximately frequency-independent, so: 
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which is real-valued and independent of frequency.  Please note that this definition of 

impedance differs from the definition customary in the seismic literature by the factor i .  

However, as we see in Equations (B.4.7) and (B.4.8), above, this does not affect the reflection 

coefficients.  

In the EM case, following Harrington (2001) for plane wave characteristic (intrinsic) 

impedance, and specializing to low-frequency dispersion using Equation (B.2.2):  

      * 0 1
2

EM EMZ k i
 

       (B.4.9) 
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which is also real-valued and independent of frequency. 

In the seismic case, borrowing from Mavko et al. (2011), rock impedances vary between 

that of poorly consolidated sandstone (min. 4.89e6 kg/m2s) and that of limestone (max. 1.43e7 

kg/m2s).  Seismic processing is designed to handle the relatively small (10%) reflection 

coefficients typical in sandstone/shale sequences; however, processing can be problematic when 

limestone, salt, or basalt produce reflection coefficients as high as 0.95 in magnitude.  Seismic 

reflectivity is, in principle, frequency-dependent as well, because of the multiple reflecting 

layers lying close together in the subsurface. 

For EM, we are looking for anomalously high resistivity contrasts associated with 

hydrocarbons, so high EM reflection coefficients are prospective.  The contrast between 

resistivity in a typical shale (1 Ωm) and a typical sandstone with porosity containing a desirable 

oil fraction (perhaps 100 Ωm) produces an 82% reflection coefficient.  However, in a typical 

sedimentary basin, problematic EM reflection coefficients of the same or greater size can also 

be produced by fresh water lenses, coal seams, limestones, and basalt intrusions.  EM 

reflectivity is frequency-independent, unless these problematic lithologies occur in problematic 

geometries. 

B.5     Critical angles 

Snell’s Law and the critical angle crit  are expressed in terms of a layer’s index of 

refraction in  or wavenumber ik : 

 
 

 

 

 
2 21

2 1 1

sin( )

sin( )

n k

n k

 

  
    (B.5.1) 



88 

 

  
 

 

 

 
2 21 1

1 1

sin sincrit

n k

n k

 
 

 

 
   

       
   

  (B.5.2) 

Citing Mavko et al. (2011), P-wave phase velocities vary between that of poorly 

consolidated sandstone (min. 2.43 km/s) and that of limestone (max. 5.79 km/s), so critical 

angles will seldom be less than 25°, and are usually much larger.  For EM, allowing resistivity 

to vary by 2 orders of magnitude (as in the modeling below) produces a critical angle of 7°.  

Consequently, critically and post-critically refracted waves are much more likely in EM than in 

seismology. 
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13 Appendix C 

 C.1     Lateral waves and T-equivalence 

It is well-accepted in the CSEM community that, from the point of view of surface 

receivers, deep reflectors appear like horizontal resistive sheets (Constable and Weiss (2006)).  

Reflection amplitudes associated with these sheets are governed by T, defined as reflector 

layer thickness multiplied by reflector resistivity.  This can be viewed as confirmation that 

angles of incidence are beyond critical, and we are observing lateral wave behavior. 

Swidinsky and Edwards (2009) show that T-equivalence is a natural theoretical 

consequence for 2-D boundary conditions.  The authors consider a layer of thickness   and 

conductivity  , with upper and lower surface depths 1d  and 2d , respectively.   The authors 

make a first-order Taylor approximation (in  ) for the change in electric and magnetic field 

components from depth 
1d  to 

2d .  They then insert implied expressions for the field 

derivatives with respect to depth into Maxwell’s equations for TE sources (where the vertical 

electric field component is zero) and for TM sources (where the vertical magnetic field 

component is zero).  For the present TM case, the authors produce the following boundary 

conditions in terms of  E  and H  (cf. Appendix A.1) (using our sign convention): 
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  (C.1.1) 
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  where S  and T  are defined by: 
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  (C.1.2) 

The authors argue that, for a thin resistive sheet, ( 0S  ), and for skin depth large 

compared with the source-receiver separation (
2

0 T L   where L  is the source-receiver 

separation) the TM boundary conditions simplify to: 
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  (C.1.3) 

The authors conclude, since Equation (C.1.3) contains only the product T   ,  that the 

TM mode boundary conditions are consistent with T-equivalence.  Other experiments, e.g. with 

receiver not polarized inline with receiver dipoles, would lead to different conclusions. 

How does this relate to the 1-D “lateral” waves in this thesis?   In the present TM case 

0xE  at critical incidence angles and beyond; hence, zE  is governed by its T-equivalent 

boundary condition in Equation (C.1.3). 

C.2     Numerical evidence of linear lateral wave moveout 

A frequency-domain implementation of 1D diffusion code called “WHAM” is freely 

available on the website of Marine EM laboratory at Scripps Institution of Oceanography 

http://marineemlab.ucsd.edu .  Like the MATLAB code used to generate Sections 2.4 and 2.5 

time-domain simulations, the WHAM code follows Key (2009).  The time-domain MATLAB 

http://marineemlab.ucsd.edu/
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solutions are assembled via Fourier superposition of 60 frequency-domain solutions over 4 

decades of frequency running from 0.01 Hz to 100 Hz.  Note that when the solutions are within 

numerical noise, their contribution is set to zero. 

In this section, WHAM frequency-domain solutions generated at the five decade 

frequencies are examined for evidence supporting the importance of critically-incident waves 

travelling laterally at the phase velocity of the higher resistivity medium at the ocean-sediment, 

sediment-reservoir, and air-ocean interfaces.  Positive evidence is presented by overlaying 

lines with slopes appropriate to the three phase gradients onto plots of phase versus offset in 

these simulations (Table C.2.1). 

                              
 

360

phs

f

v f
 (°/km) 

Decade frequencies (Hz)      Sediment                  Reservoir                Air* 

@ resistivity (Ωm)   1  50 100 125  very high 

...................................................................................................................................................

  

0.01 Hz   11.38  1.61 1.14 1.02  ~flat  

0.1 Hz               36.00  5.09 3.60 3.22  ~flat 

1 Hz   113.84  16.10 11.40 10.18  ~flat 

10 Hz   360.00  50.91 36.00 32.20  ~flat 

100 Hz   1138.42  161.00 113.84 101.82  ~flat 

Table C.2.1: Phase gradient of critically-incident waves travelling laterally at three interfaces 

(* note that the phase of the air wave should not depend on frequency). 

 

Figures C.2.1 through C.2.5 show the WHAM phase plots with these phase gradients 

overlaid.  Note that the plots are of field components produced for the Canonical Model for 

offsets to 20 km.  For our purposes, this important component is the red Inline E field.  The 

overlaid slopes are quite close in the 0.01 Hz, 0.1 Hz, and 1 Hz plots suggesting that for short 
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offsets the sediment lateral wave dominates, for medium offsets the reservoir lateral wave 

dominates, and for long offsets the air lateral wave dominates.  That they are not exact may 

indicate the influence of post-critical incidence angles and of finite layer thicknesses.  In the 10 

Hz plot, the sediment lateral wave is confirmed but the scale on the WHAM plot does not go 

high enough to see the other two lateral waves.  In the 100 Hz plot, numerical noise appears to 

dominate; curiously, at far offsets there is the suggestion of a flat air lateral wave section. 

 

Figure C.2.1: WHAM offset gradient of electric field phase for Canonical Model at 0.01 Hz 

[note that the left axis is the phase lag in degrees]. 
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Figure C.2.2: WHAM offset gradient of electric field phase for Canonical Model at 0.1 Hz [note 

that the left axis is the phase lag in degrees].  
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Figure C.2.3: WHAM offset gradient of electric field phase for Canonical Model at 1 Hz [note 

that the left axis is the phase lag in degrees].  
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Figure C.2.4: WHAM offset gradient of electric field phase for Canonical Model at 10 Hz [note 

that the left axis is the phase lag in degrees]. 
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Figure C.2.5: WHAM offset gradient of electric field phase for Canonical Model at 100 Hz 

[note that the left axis is the phase lag in degrees]. 

C.3     Numerical evidence of linear moveout with T-equivalence 

WHAM comparison plots are presented for the T-equivalent models from Section 8 

where T is held constant at 10,000 Ωm2.  As in the preceding section, lines with critical angle 

lateral wave phase slope gradients are overlaid on plots of phase versus offset for single-

frequency model simulations.  Here, we focus on simulations at 1 Hz. 

Figure C.3.1 compares the Canonical Model, where   is 100 Ωm, d  is 100 m, and the 

reservoir lies from 1 km to 1.1 km below the seabed, to a T-equivalent model, where   is 50 

Ωm, d  is 200 m, and the reservoir lies from 1 km to 1.2 km below the seabed.  For both 

models, the pure 50 Ωm reservoir lateral wave phase slope gradient is closer to that observed 

in the simulations than that for the pure 100 Ωm reservoir lateral wave. 
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Figure C.3.1: WHAM 1 Hz offset gradient of electric field phase for Canonical Model and T-

equivalent model with 50 Ωm, 200 m thickness, and the reservoir lies from 1 km to 1.2 

km below the seabed [note that the left axis is the phase lag in degrees]. 

  

Figure C.3.2 compares the Canonical Model to a T-equivalent model where   is 125 

Ωm, d  is 80 m, and the reservoir lies from 1 km to 1.08 km below the seabed.  In this case, 

neither the pure 100 Ωm reservoir lateral wave phase slope gradient nor that for the pure 125 

Ωm reservoir lateral wave is closer to that observed in the simulations. 
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Figure C.3.2: WHAM 1 Hz offset gradient of electric field phase for Canonical Model and T-

equivalent model with 125 Ωm, 80 m thickness, and the reservoir lies from 1 km to 1.2 

km below the seabed [note that the left axis is the phase lag in degrees]. 

 

While the T-equivalent models are remarkably similar, they are not identical, and their 

subtle differences may yield clues to differentiating between them.  
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14 Appendix D 

 D.1     Radon transform sampling considerations 

Our temporal sampling at 2 ms produces a 250 Hz Nyquist frequency.  This would appear 

to be overkill given the rapid loss of frequency content with depth. 

Our spatial sampling at 50 m produces a 100 m Nyquist wavelength.  This corresponds to a 

1 km/s phase velocity at 10 Hz, and a 1 m/s phase velocity at .01 Hz.  Again, this seems more 

than adequate for this problem. 

The reader may be less familiar with requirements to avoid aliasing in the p   

transform.  Turner (1990) points out that insufficient spatial sampling causes events to plot at 

multiple p  values in the p   domain, dependent on temporal frequency. 

In order to allow unaliased reconstruction with the range of slants, for time-domain 

processing (Turner, 1990): 

 
max

1

r

p
x f

    (D.1.1) 

where p  is the p  spacing, rx  is the range of offset values, and max Nyquistf f  .  Thus, in our 

EM case, taking effective maxf  to be 10 Hz, the p  spacing must be less than 0.01 s/km.   

In this context, spatial aliasing refers to the multiple p  values that can be attributed to a 

signal due to insufficient sampling.  In order to avoid this problem (Turner, 1990): 

 
max max

1 1
r

r

x p
p f xf

   


  (D.1.2) 
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where 
rp  is the range of slowness chosen.  In our case, 

rp must be less than 2 s/km. 

D.2     EM-Radon transform sampling considerations 

The Turner (1990) anti-aliasing criteria for p , for EM data can be recast in terms of 

resistivity.  Equation (D.1.1) becomes: 

 
0 max

1 4 1

rx f




 
   (D.2.1) 

and (D.1.2) becomes: 

 

0 max

1 4 1

r
x f



 

 
    

  (D.2.2) 

Inverting and squaring, we have, respectively: 

 

2

0 max

4

rx f



   (D.2.3) 

 
 

2

0 max

4
r

x f





   (D.2.4) 

In our case, for maxf  = 10 Hz,   must exceed 100 Ωm, and r  must be equal to or greater 

than 0.00025 Ωm.  The requirement on r  is not restrictive, but using the current parameters, 

there is little resolution between resistivity at 60 Ωm and 256 Ωm.  This issue represents an 

opportunity for further study.  


