Copyright @ by Chen Chuan J Kuo (aka J. C. Kuo) 2015 All Rights Reserved.

Evaluation of the Best Equation of State for Enhanced Oil Recovery Use in Ultra-high Pressure Hydraulic Calculation

A Dissertation Presented to The Faculty of the Department of Civil and Environmental Engineering University of Houston

> In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy In Civil Engineering

By Chen Chuan J Kuo (aka J. C. Kuo) May 2015

Evaluation of the Best Equation of State for Enhanced Oil Recovery Use in Ultra-high Pressure Hydraulic Calculation

Chen Chuan J Kuo (aka J. C. Kuo)

Approved:

Chair of the Committee Keh-Han Wang, Professor, Civil and Environmental Engineering

Committee Members:

Mo Li, Assistant Professor, Civil and Environmental Engineering

Yandi Hu, Assistant Professor, Civil and Environmental Engineering

Ali K. Kamrani, Associate Professor, Industrial Engineering

Doug G. Elliot, President, DGE Associate

Suresh K. Khator, Associate Dean Cullen College of Engineering Roberto Ballarini, Professor and Chair, Civil and Environmental Engineering

Acknowledgements

I would never have been able to finish my dissertation without the guidance of my committee chair and the other committee members, assistances from my friends and colleagues, and supports from my wife and family.

First, I would like to express my deepest gratitude and thanks to my advisor, Dr. K. H. Wang, for suggesting this research topic and for his kind assistance and support while at UH. I appreciate his excellent guidance on this research and great help during this investigation. Similarly, I appreciate the time and helpful suggestions of the members of my dissertation committee: Dr. Mo Li, Dr. Yandi Hu, Dr. Ali K. Kamrani P. E., and Dr. Doug Elliot P. E. My sincere thanks go to each of them for serving on the committee, providing direction for me, and evaluating my dissertation. Special thanks go to Dr. Elliot. He has been my supervisor, mentor, manager, partner and friend for the last 35+ years. He has trained me from a young engineer with little experience to the technical senior advisor of a global oil company today. I think it is inspiring that he has served as a committee member even after completing his own Ph. D degree from UH about 40 years ago. I would like to also specifically thank Dr. Babatunde Oyenekan. His assistance with the design and simulation of the equipment used during this study for my dissertation was most helpful.

Secondly, I would like to thank my parents, parents-in-law, sister, brothers, sister's and brother's in-laws, nieces and nephews. They have always supported me and encouraged me with their best wishes behind the scenes. One could not ask for more support or kindness from the Kuo' and Lin's families.

For many years, nearly a decade, it has been very busy for me. I have had to miss many family activities due to the workload presented by my part time MS degree (1979-1983) and part time Ph. D. degree with its numerous courses, home works, quizzes, reports, tests, and other hurdles such as the GRE, presentation, thesis, qualifying examination and dissertation. I understand that I have a habit of working on most weekends and popular holidays and would like to thank my children and grandchildren for their understanding and support. Last but not least, I would like to thank my wife of 40 years, Mae, for always cheering me up and standing by my side throughout the bad and the good.

Evaluation of the Best Equation of State for Enhanced Oil Recovery Use in Ultra-high Pressure Hydraulic Calculation

An Abstract

Of a

Dissertation

Presented to

The Faculty of the Department of Civil and Environmental Engineering

University of Houston

In Partial Fulfillment

Of the Requirements for the Degree

Doctor of Philosophy

In Civil Engineering

By Chen Chaun J Kuo (aka J. C. Kuo) May 2015

Abstract

Enhanced oil recovery (EOR), is an essential part of oil and gas production nowadays. Gases used include carbon dioxide (CO₂), natural gas, or nitrogen (N₂). The discharge pressure of the platform injection compressor could be as high as 12,000 psi. The proper selection of the size of the gas injection system and platform becomes critically important and is found to be heavily affected by the simulated results from process involving the equation of state (EOS). The EOS of a system has been proven to be very reliable in predicting the properties of most hydrocarbon based fluids. An engineering design starts with EOS selection, process simulation, heat and material balance calculation, equipment sizing and finally detailed engineering. This study focuses on the investigation of the most probable and applicable equations of state (EsOS) such as GERG-EOS, BWRS-EOS, LKP-EOS and PR-EOS in the high pressure compression simulation industry.

Aspen HYSYS is a commercial process modeling tool for conceptual design, optimization, and performance monitoring for oil & gas production, gas processing, petroleum refining, and air separation industries. Because the critical thermodynamic properties including enthalpy, entropy, vapor pressure and density are shown to be related to the compressibility factor, this study adopted Aspen HYSYS as the simulation tool to evaluate all four EsOS. The predicted compressibility factors (Z) from the different EsOS were compared to experimental data obtained from a wide variety of sources. The results suggest that for the case of pure CO₂ and pure N₂, all EsOS tested within the low

viii

pressure range up to 1000 psia can produce accurate results. For high pressure conditions up to 12,000 psia, the GERG can provide the most accurate predictions. Considering the hydrocarbon/CO₂ mixture and hydrocarbon/N₂ mixture, for low pressure system it is found the results from GERG, LKP and PR EsOS fit better with the experimental data than those from BWRS. However for high pressure system, it appears that GERG, BWRS and LKP can provide good prediction. Furthermore, for high temperature case, the LKP proves to give the most accurate results. It is recommended to use LKP for offshore EOR gas injection operations.

Table of Contents

Acknowledgementsv
Abstract viii
Table of Contents x
List of Figuresxiv
List of Tablesxvi
List of Symbols and EOS Parametersxvii
ldeal gas lawxvii
Van der Waals, Soave-Redlich-Kwong and Peng-Robinsonxvii
Benedict-Webb-Rubin-Starlingxviii
Lee Kesler Plockerxviii
GERG (2008) xviii
Subscriptsxix
Component Abbreviations and Chemical Formulasxix
List of Acronymsxxi
Chapter 1. Introduction1
1.1 Problem Statement1
1.2 Literature Review

1.2.1	Enhanced oil recovery (EOR)	10
1.2.2	Carbon Dioxide (CO ₂):	15
1.2.3	Nitrogen (N ₂):	16
1.2.4	Natural Gas:	17
1.3 A	ssessment of Nitrogen Removal Technologies on Feed Gas	17
1.3.1	Different NRU Technologies	19
1.3.2	Technology Selection	32
1.4 C	bjectives and Scope of Research.	37
1.5 C	Outline of the Dissertation	39
Chapter 2	2. Process Simulators and Equations of State (EsOS)	41
2.1 P	Process Simulators	41
2.2 E	quations of State (EsOS)	46
2.2.1	Activity Models	47
2.2.2	Chao Seader & Grayson Streed Models	48
2.2.3	Vapor Pressure Models	48
2.2.4	Miscellaneous Types Models	49
2.2.5	EsOS for Oil and Gas Hydrocarbon Industries	49
2.2.6	Equations Used for Different EsOS	50
2.2.7	Methods to Calculate the Z Factor	65
Chapter 3	3. Methodology	71

3.	1	EsOS Selected for Evaluation	1
3.:	2	Selection of Process Simulator and Hydraulic Discharge Pressure7	3
3.	3	Steps in Developing Aspen HYSYS Model74	4
3.4	4	Offshore Oil/Gas Production and EOR Gas Injection	5
Cha	pte	r 4. Results	2
4.	1	Z Factor for Different EsOS Comparison82	2
4.:	2	Impact of Different EsOS on the FGC, BGC and IGC 100	5
Cha	pte	r 5. Conclusions, Recommendation and Further Research	8
5.	1	Conclusions	3
5.2	2	Recommendations)
5	.3	Further Research 11	1
Refe	eren	nces	3
Арр	endi	lices	1
Ap	oper	ndix A. Procedure of Using Equation of State to Determine the	
Tł	nerm	nodynamic Properties Containing Derivatives (Pratt, 2001)	1
Ap	oper	ndix B. HYSYS Simulation Model Outputs Summaries	5
:	Stre	am Summaries Printouts12	5
	Oil F	Production Separator Printouts132	2
ļ	Expo	ort Oil Pumps Printouts130	3
	Gas	Dehydration Tower Printouts13	Э

	IGC 3 rd Stage Compressor Printouts	142
	IGC 2 nd Stage Discharge Cooler Heat Exchanger Printouts	145
	Heat and Material Balance Printouts (Sample Streams Only)	153
A	Appendix C. Samples of Binary Interaction Parameters	154

List of Figures

Figure 1.1 Different Platforms for Offshore Oil Production and EOR (National
Oceanic and Atmospheric Administration, 2010)4
Figure 1.2 EOR (2b1st company website http://www.2b1stconsulting.com/about-
us/, 2014)5
Figure 1.3 Typical Reservoirs (Math/Science Nucleus, 2014)5
Figure 1.4 BFD for offshore oil production and EOR gas injection platform6
Figure 1.5 NRU Block Flow Diagram (Elliot et al.,2008)
Figure 1.6 Single Column Cryogenic Distillation (Elliot et al., 2008)
Figure 1.7 Double Columns Cryogenic Distillation (Elliot et al., 2008)
Figure 1.8 Pre-fractionator (Triple Columns)(Costain,2005)24
Figure 1.9 Membrane Technology and Research (MTR) (2-Stage Membrane.
2009)
2009)
2009)
2009)
2009)26Figure 1.10 Nitro-Sep™ Process (MTR,2009)26Figure 1.11 Molecular Gate® system, Removing the N2 (or N2 plus CO2)28Figure 1.12 AET Process® NRU29Figure.1.13 Rollout of a Nitrogen Sponge Unit (IACX Energy)30
2009)26Figure 1.10 Nitro-Sep™ Process (MTR,2009)26Figure 1.11 Molecular Gate® system, Removing the N₂ (or N₂ plus CO₂)28Figure 1.12 AET Process® NRU29Figure.1.13 Rollout of a Nitrogen Sponge Unit (IACX Energy)30Figure 2.1 Standing-Katz Z Factor Chart (1942)67
2009)26Figure 1.10 Nitro-Sep™ Process (MTR,2009)26Figure 1.11 Molecular Gate® system, Removing the N2 (or N2 plus CO2)28Figure 1.12 AET Process® NRU29Figure.1.13 Rollout of a Nitrogen Sponge Unit (IACX Energy)30Figure 2.1 Standing-Katz Z Factor Chart (1942)67Figure 2.2 Generalized Z Chart for 10 Common Gases (Ortega,2014)68
2009)26Figure 1.10 Nitro-Sep™ Process (MTR,2009)26Figure 1.11 Molecular Gate® system, Removing the N₂ (or N₂ plus CO₂)28Figure 1.12 AET Process® NRU29Figure 1.13 Rollout of a Nitrogen Sponge Unit (IACX Energy)30Figure 2.1 Standing-Katz Z Factor Chart (1942)67Figure 3.1 Offshore 2 Stages Flash Gas Compressor (FGC)77
2009)26Figure 1.10 Nitro-Sep™ Process (MTR,2009)26Figure 1.11 Molecular Gate® system, Removing the N2 (or N2 plus CO2)28Figure 1.12 AET Process® NRU29Figure 1.13 Rollout of a Nitrogen Sponge Unit (IACX Energy)30Figure 2.1 Standing-Katz Z Factor Chart (1942)67Figure 3.1 Offshore 2 Stages Flash Gas Compressor (FGC)77Figure 3.2 Offshore 2 Stages Booster Gas Compressor (BGC)77
2009)26Figure 1.10 Nitro-Sep™ Process (MTR,2009)26Figure 1.11 Molecular Gate® system, Removing the N2 (or N2 plus CO2)28Figure 1.12 AET Process® NRU29Figure 1.13 Rollout of a Nitrogen Sponge Unit (IACX Energy)30Figure 2.1 Standing-Katz Z Factor Chart (1942)67Figure 3.1 Offshore 2 Stages Flash Gas Compressor (FGC)77Figure 3.2 Offshore 3 Stages Injection Gas Compressor (IGC)78

Figure 3.5 Offshore Water Production and Treatment79
Figure 3.6 Offshore Vapor Recovery System (VRS) 80
Figure 3.7 Offshore Overall Simulation Process Flow Diagram
Figure 4.1 Compressibility Factor for Pure CO ₂ at 98 °F84
Figure 4.2 Compressibility Factor for Pure CO_2 at 350 °F85
Figure 4.3 Compressibility Factor for Pure N ₂ at 77 $^{\circ}$ F86
Figure 4.4 Compressibility Factor for Pure N ₂ at 170 $^{\circ}$ F87
Figure 4.5 Compressibility Factor for Pure N ₂ at 260 $^{\circ}$ F88
Figure 4.6 Compressibility Factor for 20% C3/80% CO ₂ at 100 °F90
Figure 4.7 Compressibility Factor for 20% C3/80% CO ₂ at 340 °F91
Figure 4.8 Compressibility Factor for 80% $C_3/20\%$ CO_2 at 100 °F
Figure 4.9 Compressibility Factor for 80% $C_3/20\%$ CO_2 at 340 °F
Figure 4.10 Compressibility Factor for 33% C ₂ /67% CO ₂ at 100 $^{\circ}$ F95
Figure 4.11 Compressibility Factor for 33% C ₂ /67% CO ₂ at 340 $^{\circ}$ F96
Figure 4.12 Compressibility Factor for 67% $C_2/33\%$ CO ₂ at 100 °F97
Figure 4.13 Compressibility Factor for 67% $C_2/33\%$ CO ₂ at 340 °F98
Figure 4.14 Compressibility Factor for 27% $C_2/73\%$ N_2 at 100 $^{\circ}F$
Figure 4.15 Compressibility Factor for 23% $C_2\!/73\%$ N_2 at 340 oF 100
Figure 4.16 Compressibility Factor for 73% C ₂ /27% N ₂ at 100 $^{\circ}$ F 101
Figure 4.17 Compressibility Factor for 73% C_2/27% N_2 at 340 $^{\circ}F$ 102
Figure 4.18 Z factor average deviation for 27% C2/73% N ₂ mixture

List of Tables

Table 1.1 NRU technologies Comparisons	34
Table 2.1 Available Process Simulators	41
Table 2.2 Gas compositions for Z factor calculation	66
Table 2.3 Z factor and MW, P_c and T_c Calculation	69
Table 2.4 Z factor at different pressure	70
Table 3.1 Descriptions of 4 EsOS for This Research	72
Table 4.1 Compressor Horsepower Required by PR and LKP EOS1	06
Table 4.2 Compressor Discharge Cooler Duty Required by PR and LKP 1	07

List of Symbols and EOS Parameters

Ideal gas law

P: Absolute pressure

V: Volume

- n: Number of moles
- R: Universal gas constant, R=10.731 (ft3 *psi)/ (°R *lb-mol)
- T: Temperature (in °R, Degree Rankin)

Van der Waals, Soave-Redlich-Kwong and Peng-Robinson

a or b : Substance-specific constants. It can be calculated from the critical properties including T_c and P_c .

- T_c : Critical temperature
- P_c : Critical Pressure
- ω : Acentric factor for the species.
- T_r : Reduced temperature; =T/T_c
- P_r : Reduced Pressure; =P/P_c
- X_i : Mole fraction
- k_{ii} : Binary interaction coefficient

 m_i : Dimensionless parameter and can be calculated by acentric factor.

 a, b, m_i, α_i , A, and B: PR-EOS parameters.

Benedict-Webb-Rubin-Starling

- γ : Parameter and can be calculated by $\gamma = \frac{1}{\rho_c^2}$
- ρ: Molar density.
- ho_c : Critical molar density

Ao, Bo, Co, Do, Eo, *a*, *b*, *c*, *d* :BWRS EOS parameters.

Lee Kesler Plocker

 $V_r = \frac{P_c V}{RT_c}$ is the reduced volume $b_1, b_2, b_3, b_4, c_1, c_2, c_3, d_1, d_2, \beta \gamma$ and ω :LKP EOS twelve parameters.

GERG (2008)

- *a* : Molar Helmoltz free energy; A parameter of the Peng-Robinson EOS.
- A : Parameter of total Helmholtz free energy
- b: Parameter of the Peng-Robinson EOS (molar co-volume) Coefficient
- B: Second virtual coefficient
- α : Reduced molar Helmholtz free energy
- X: Molar composition (vector of mole fractions)
- τ : Inversely reduced temperature ($\tau = \frac{T}{T_r}$).
- N = The number of components in the mixture,

Subscripts

- c : At the critical point such as critical temperature or pressure.
- Exp : Exponential term
- i : Serial number
- *j* : Serial number
- r : Reducing property

Component Abbreviations and Chemical Formulas

- Ar: Argon
- C₁: CH₄ : Methane
- C₂: C₂H₆ : Ethane
- C₃: C₃H₈ : Propane
- CO : Carbon monoxide
- CO₂ : Carbon dioxide
- H₂: Hydrogen
- H_2O : Water
- H₂S: Hydrogen Sulfide
- He : Helium
- $i-C_4$: Isobutane (2-Methylpropane) or $i-C_4H_{10}$
- $i-C_5$: Isopentane (2-Methylbutane) or $i-C_5H_{12}$
- N₂: Nitrogen
- $n-C_4$: n-Butane or $n-C_4H_{10}$
- $n-C_5$: $n-Pentane or <math>n-C_5H_{12}$

 $n-C_6$: n-Hexane or $n-C_6H_{14}$

n-C7: n-C7H16 or n-Heptane

n-C₈: n-C₈H₁₈ or n-Octane

NOx : Oxides of nitrogen or Nitrogen oxide

O₂: Oxygen

SOx: Sulfur Oxides

List of Acronyms

AET: Advanced Extraction Technology. NRU technology provider.

AGRU: Acid Gas Removal Unit. Usually remove the CO₂ and H₂S.

ASPEN: Enterprise optimization software and services include integrated supply chain management solutions. For the design, operation, management of manufacturing facilities. <u>WWW.apenstech.com</u>

ASU: Air Separation Unit (co-produces oxygen & nitrogen from air)

Bbl : Barrel of liquid

BFD: Block Flow Diagram

BTU / SCF: BTU / Standard Cubic Feet (measure of heating value)

BTU: British Thermal Unit

CAPEX: Capital Expenditure

CCS: Carbon Capture & Sequestration

CMS: Carbon Molecular Sieve

Compressibility factor : Z factor as PV=ZRT

DEG: Di-ethylene Glycol

Degree API or ^O API or API gravity: Degrees API (measure of crude density, inverse scale). Degree API= (141.5/Specific Gravity)-131.5

EG: Ethylene Glycol

EOR: Enhanced oil Recovery (also called Improved Secondary Oil Recovery)

EOS: Equation of State

EsOS: Equations of State.

GHG: Green House Gas. It is a gas in an atmosphere that absorbs and emits radiation within the thermal infrared range.

GOR:Gas Oil Ratio (SCF/Bbl)

GTI: Gas Technology Institute in USA

HHV: Higher Heating Value

HMB: Heat and Material Balance

IGGU: Inert Gas Generation Unit

JT: Joule Thomson Effect. Gas expands from high pressure to low pressure and usually results to lower temperature.

LNG: Liquefied Natural Gas

LPG: Liquefied Petroleum Gas (usually refers to propane & butane)

MMSCFD: Million Standard Cubic Feet per Day

MRU: Mercury Removal Unit.

MTPA: Million Tonne per Annum for LNG base load plant

MTR: Membrane Technology Research. NRU technology provider

NGL : Natural Gas Liquids

NRU: Nitrogen Removal Unit

OPEX: Operating Expense

PSA: Pressure Swing Absorption (process for gas purification)

PSI or psi: Pounds per Square Inch

PSIG or psig: Pounds per Square Inch Gauge

PVT: pressure, P, volume, V, and temperature, T relation

 $P\rho T$: pressure, P, Density, ρ , and temperature, T relation

RVP: Reid Vapor Pressure

SCF: Standard Cubic Feet per Day

SOR: Secondary Oil Recovery

Specific Gravity: Density of crude/ water density at 60 °F

TEG: Tri-Ethylene Glycol

The ten most popular EsOS used by the oil and gas industry are GERG-EOS, Benedict-Webb-Rubin-Starling (BWRS-EOS), Lee-Kessler Plocker (LKP-EOS), Peng-Robinson (PR-EOS), Kabadi-Danner (KD-EOS), Peng-Robinson-Stryjek-Vera (PRSV-EOS), Soave-Redlich-Kwong (SRK-EOS), Aspen RefProps (NIST-EOS), Generalized Cubic (GC-EOS), and Zudkevitch Joffee (ZJ-EOS).

USA: United States of America

USD: USA dollar

- VLE: Vapor-Liquid Equilibrium states.
- VRS: Hydrocarbon (Vapor Recovery System)

Chapter 1. Introduction

1.1 Problem Statement

Producing oil and gas from deep-water reservoirs creates numerous engineering, technical, and project cost challenges. Many oil companies have been exploring in deep water (>1,200 feet (>366 meters)) for over 25 years. Today many operations are deeper than 7,000 feet (2,134 m) of water (Larino, 2014, British Petroleum website). The oil and gas reservoir itself can be an additional 35,000 feet below sea level underneath layers of hard rock, thick salt and tightly-packed sands. Massive production platforms with specially designed systems and pipelines are required. Platform costs can be in the multiple billion dollar range depending on water depth and environmental conditions (British Petroleum, 2014). Enhanced oil recovery (EOR), also known as improved oil recovery or tertiary recovery (as separated from primary and secondary recovery), is an essential part of production. By using EOR, 30 to 60 % or more of the reservoir's original oil can be extracted compared with 20 to 40 % using the primary and secondary recovery method (Wikipedia (b),2014).

The Equation of State (EOS) of a system is the relationship between the thermodynamic variables like pressure, P, volume, V, and temperature, T (PVT). (Reid et al.,1987). EOS has been proven to be very reliable in predicting the properties of most hydrocarbon based fluids over a wide range of operating conditions. The accurate knowledge of the thermodynamic properties of natural gas and other mixtures of natural gas components is of indispensable

importance for the basic engineering consideration and performance of technical processes. This requires thermodynamic property calculations for a wide range of mixture compositions and operating conditions in the homogeneous gas, liquid, and supercritical regions, and also for Vapor-Liquid Equilibrium (VLE) states. These data can advantageously be calculated from EOS. An engineering design starts with EOS selection, process simulations, heat and material balance (HMB) preparation, equipment sizing, and finally detailed engineering analysis. Currently, there are not any Equations of State (EsOS) for natural gases that are appropriate for all of the exemplified applications and that satisfy the demands concerning the accuracy in the description of thermodynamic properties over the entire fluid region. An appropriate EOS that can adequately model the PVT and VLE calculations at ultra-high pressure nearly 10,000 psi is required to do the simulation. The ten most popular EsOS used by the oil and gas industry are GERG-EOS, Benedict-Webb-Rubin-Starling (BWRS-EOS), Lee-Kessler Plocker (LKP-EOS), Peng-Robinson (PR-EOS), Kabadi-Danner (KD-EOS), Peng-Robinson-Stryjek-Vera (PRSV-EOS), Soave-Redlich-Kwong (SRK-EOS), Aspen RefProps (NIST-EOS), Generalized Cubic (GC-EOS), and Zudkevitch Joffee (ZJ-EOS). (ASPEN HYSYS, 2011).

Historically, the development of GERG-EOS was intended to provide high accuracy for typical natural gas components (Wagner, 2014). While it is considered to be very accurate, it has not been widely implemented in most commercial process simulators. In fact, only HYSYS by Aspen Technology has this EOS for usage. Furthermore, the PR-EOS has generally been the most

widely used for oil, gas, and petrochemical industries. Many engineering contractors working in process design have used PR extensively. Compressor manufacturers, such as General Electric (GE) and Dresser-Rand (D-R), have also tested the accuracy of EOS for high pressure compression applications and compared the accuracy of Relich-Kwong (RK-EOS), Lee-Kessler Plocker (LKP-EOS) and Peng-Robinson (PR-EOS) in predicting compressor performance (Colby, 1987; Sandberg 2005).

Oil will last only another 100 to 150 years depending on world consumption. Furthermore, most of the oil production has already been applied with the primary or secondary recovery methods for production. In many areas the more challenging EOR procedure is followed to improve the production of oil. Assuming that a platform under consideration in Figure 1.1, 1.2 and 1.3 is located at a water depth of 7,000 feet , the oil and gas reservoir itself adds an additional 24,000 feet below sea level. The developed block flow diagram (BFD) for testing EsOS in offshore oil production and an EOR gas injection process scheme is presented in Figure 1.4. Depending on the circumstances such as water depth and environmental conditions, the platform may be fixed to the ocean floor, may consist of an artificial island, or may float. There are ten different kinds of types as shown. Detail study is required to determine the most economical type of platform to be used for project. Many deep water platforms could cost over multi-billion USD.

Figure 1.1 Different Platforms for Offshore Oil Production and EOR (National Oceanic and Atmospheric Administration, 2010)

Figure 1.2 EOR (2b1st company website http://www.2b1stconsulting.com/aboutus/, 2014)

Figure 1.3 Typical Reservoirs (Math/Science Nucleus, 2014)

As shown in Figure 1.4, the onshore N_2 supply going to offshore platform through the onshore pipeline first and then the offshore subsea pipeline. The Injection Gas Compressors (IGC) will compress the makeup N_2 and the recycle gas to ultrahigh pressure and inject to the gas injection well. High pressure N_2 will mix with the oil inside the reservoir and then going to the platform production separator. This is a three phase separator to separate the oil, water and gas. Water is then carried to the water treating facilities to remove the hydrocarbon before transporting to the water injection pump to inject to the water disposal well. Oil however is delivered to the oil treating unit to remove the water before going for sale. The gas is sent to the Flash Gas Compressors (FGC) which compresses the gas from the vent recovery unit to Booster Gas Compressors (BGC). The discharge of the flash gas compressors (FGC) will be further compressed by the BGC. Gas from BGC discharge can be used as the fuel gas after removing the water by the gas dehydration unit. Any excess gas can be sold by going through Export Gas Compressors. In the later stage of the platform production, as the hydrocarbon gas production is reduced, some imported gases are used as fuel gases. All fuel gas supplies are required to go to the fuel gas treating unit before serving as fuel gases. The dehydrated gas can be combined with the N_2 supplies and further compressed through the IGC as injected gas for EOR purpose.

Because of the density and molecular weight differences between CO₂, natural gas, and N₂, the estimated compressor discharge pressure required to inject the corresponding gas into the reservoir is around 9,000, 14,000 and 12,000 psia respectively. For EOS comparison, for example, if N₂ is used, the platform injection compressor discharge pressure required is 12,000 psia. The size of injection equipment system including the separators, compressors, and air coolers can be heavily impacted by the simulated results from different EsOS. Furthermore, the deep-water platform is very expensive (in multiple billion dollar range). Larger gas injection equipment means a larger platform is required. The cost difference of the overall project based on different EsOS may be in the range of 5% to 10% depending on the water depth, environmental conditions, and the injection gas flow rate. Because the engineering analysis must provide process simulations for both surface production and gas injection facilities, it is therefore necessary to compare the different EsOS with actual experimental data

to examine the performance of various EsOS model. After the system evaluation and study, the most appropriate EOS can ultimately be selected for use in simulation and equipment design.

The following questions or data sources must be answered or obtained to determine "the best EOS for use in ultra-high pressure compression hydraulic calculation."

- 1) There are nearly 30 different EsOS available for different systems. What are the types of EsOS? Which one is the best for ultra-high pressure process simulation, equipment design and engineering details design?
- 2) Can a technically sound process simulator be selected to test the EsOS? There are 40+ process simulators available; which is the most appropriate one to use?
- 3) There are many laboratory test data available for low pressure up to 1000 psia. However, there are not many test data available for ultra-high pressure (>12,000 psia). Gathering the limited data under the condition of ultrahigh pressure become necessary to valid the EOS models (Aleksandrov, 2011).
- 4) How high is the hydraulic pressure required for gas injection discharge including the 7000-ft water depth and 24,000-ft reservoir thickness? The cost impact is very high by using various EsOS. What are the corresponding hydraulic profiles under different pressures for gas injection?
- 5) What factor can be used to evaluate the performance of EsOS tested?

6) Under an ultra-high pressure condition, the investigation on types and number of sets of compressors is especially needed.

Some current production techniques for maintaining crude oil recovery from a reservoir utilize the injection of nitrogen as enhanced oil recovery (EOR) method. Gradually, the equilibrium nitrogen dissolved in the crude oil will come to the surface as associated gas when the nitrogen breaks through. Therefore nitrogen removal on feed gas having high N₂ content is also an important subject to be investigated.

For any gas or LNG plant, higher levels of nitrogen within the feed gas mean lower profitable volumes or additional capital investment. (Obrien,2004) Nitrogen Removal Unit (NRU) can be expensive to build and difficult to operate. The challenges facing the gas industry are highlighted by the Gas Technology Institute (GTI, USA) in their estimates that 11% of current daily gas production and 16% of all known gas reserves in the USA contain some nitrogen. Recent gas reservoir discoveries around the world were also found to contain significant levels of nitrogen up to the 15% range. Gas companies typically set the maximum concentration limits on nitrogen content in the pipeline between 4.0 to 7.0 percent depending on the local product specifications. Therefore, in general, the nitrogen levels that are greater than 7.0 percent must undergo removal. (Pahade ,1985) (Pahade et al.,1991).

The assessment of the design criteria, such as (1) feed gas nitrogen concentrations, (2) NRU inlet pressure, (3) NRU capacity, (4) product specifications, (5) approaches for the final disposition of the recovered

hydrocarbon stream: (e.g., as fuel gas, re-injection or recycle back to feed gas), (6) environmental NO_x emissions impact, and (7) allowable methane concentration in the nitrogen vent, to be considered for the selection of an optimum NRU technology is also addressed in this study. The available technologies including both commercially demonstrated NRU technologies as well as the future developments are introduced by way of process flow diagrams, descriptions, technology highlights, pre-treatment requirements, strength and weakness and technology licensor/vendor lists.

1.2 Literature Review

Producing oil and gas from deep-water reservoirs is necessary for future energy industries. Massive production platforms with specially designed systems and pipelines are required and its costs can be in the multiple billion dollar range depending on water depth and environmental conditions. (British Petroleum , 2014.

1.2.1 Enhanced oil recovery (EOR)

Worldwide there are an estimated 50 billion barrels of oil recoverable by EOR methods from offshore oil reservoirs. Up until now, gas injection for EOR has proven successful onshore, but had only had limited applications offshore. CO₂, N₂ and/or natural gas injection are considered to be the gas of choice for offshore EOR because of its availability, successful experience, and lower cost (Watts, 2014). EOR is an essential part of production for future energy

requirements. By using EOR, 30 to 60 % or more of the reservoir's original oil can be extracted compared to 20 to 40 % using the primary and secondary recovery method. (Electric Power Research Institute, 1999)

Also known as Tertiary Oil Recovery, Improved Oil Recovery, and Advanced Secondary Recovery, EOR is generally applied after the primary and secondary Recovery Techniques have been employed. While the demarcation between Primary, Secondary and Tertiary Recoveries has some overlaps, EOR is generally considered for application in mature or depleted fields as a means of enhancing and prolonging liquids production. Flaring of produced gas is not considered viable in almost all geographic locations. Therefore the motivations for EOR may be one of those listed below:

• A depleted field that must be abandoned unless the liquid production can be boosted by EOR.

• Development of a new field for production of liquids may not be economic without EOR.

• A distance to market which renders a pipeline for selling associated gas uneconomic.

• The Gas to Oil Ratio (GOR) may be too low to justify pipelining of the surplus associated gas (after meeting internal fuel needs).

• The incremental liquids production may be more valuable than monetizing the gas.

• The cost of cleaning up a high level of impurities (CO₂, N₂, and H₂S) in the gas may make monetization of the gas uneconomic.

• As an outlet for CO₂ if CO₂ sequestration is to be pursued.

 Synergy with waste streams from a Gas to Liquid (GTL) plant. Hydrogen plant, or even boiler stacks, which can provide a relatively low-cost gas medium for EOR.

Any combinations of the above.

Sometimes, for instance, in the reservoir formation, the predicted primary production rate is so low that EOR needs to be included in the base development plan and is generally initiated soon after the start of production. Indeed, with the larger reservoirs (the "elephants") having been mostly already discovered, the new reservoirs that will be explored and developed in the future will be smaller ones, and the increase in production and recovery of the oil-in-place due to EOR may be a vital aspect of the justification for the large capital investment necessary for field development.

EOR enhances oil production by the injection of an external medium – gas, chemicals, polymers, surfactants, or other chemicals. This study addresses the EOS issues related to the injection gas such as CO₂, N₂ and natural gas. The gas flood may operate in miscible or immiscible mode. Gas may also be used for pressure-maintenance in a reservoir to enhance recovery or prolong production of liquids.

Miscible flood involves injecting gas into the reservoir so that it dissolves in the oil. The dissolved gas causes several changes in the reservoir performance. It lowers the density and viscosity of the oil phase, and accordingly reduces the hydrostatic head from the reservoir to the wellhead. It also reduces

the frictional pressure drop for the oil flowing from the outer reservoir areas to the wellbore, thereby increasing oil production. Two miscibility-generating mechanisms have been identified: enriching mechanism (when using rich gas) and a vaporizing mechanism (which uses lean gas). Volume swell due to the dissolved gas and immiscible gas displacement are additional mechanisms that could be contributing to the overall gas EOR phenomenon. The injected gas results in an increase in the Gas to Oil Ratio (GOR), therefore, have to be continually injected into the reservoir for sustained production gains.

Offshore EOR requires several large and significant enhancements. These include the supply or manufacturing of large volumes of gas, compression to high pressures for injection, and purification of the associated gas to meet sales specification and to possibly recover some gas for reinjection. Considering the space and weight limitations by code on an existing platform, it will generally not allow the addition of much new equipment as this will require either extensive modifications of the existing structure or the addition of a new platform or structure.

Gas-based EOR has been employed in many locations worldwide. Carbon Dioxide (CO₂) is the most widely used gas for EOR. Other gases used in EOR production include Nitrogen (N₂), acid gas (a mixture of CO₂ & Hydrogen Sulphide), associated gas, and natural gas, including Sour Gas. Steam is used extensively in California. In the rest of the world, steam is the primary media in Venezuela, Indonesia, Trinidad and Brazil, with CO₂ and hydrocarbons being minor contributors to EOR production. CO₂ is the most widely used gas in the
USA for EOR, mostly in Texas, Wyoming, and Mississippi. Hydrocarbon gas has been used in Alaska, and nitrogen, chemicals, polymers and surfactants are minor contributors to EOR production. In Canada, steam dominates EOR production due to the colder climate and the large reserves of heavy oil in Western Canada. Hydrocarbons and CO_2 are the other dominant media used in Canada. EOR projects in the planning stages focus on CO_2 and steam.

Taber, Martin & Seright (Society of Petroleum Engineer (SPE),1996) have discussed the EOR screening criteria in details. They stated that EOR is most suited to reservoirs having sandstone or carbonate formations with high permeability streaks and a minimum of fractures. Generally, nitrogen works better with lighter oils (> 35 American Petroleum Institute (API) gravity), in deeper reservoirs (10,000 to 18,500 feet depth), and with higher oil saturation of the pore volume (>40%). Carbon dioxide is more effective with heavier oils (>22 API gravity), in intermediate depth reservoirs (2,500 to 4,000 feet depth), and lower oil saturation (>20%). Hydrocarbon miscible flood is effective with heavier oils (>23 API gravity), in shallower reservoirs (4,000 to 16,000 feet depth), and moderate oil saturation (>30%). Regardless of which gas is used for EOR, there will be a tendency for the gas to strip out some additional light ends from the reservoir, and recovery of these light ends for sales (as opposed to re-injecting them) will require changes to the topsides.

1.2.2 Carbon Dioxide (CO₂):

 CO_2 may be naturally occurring or produced from a system man-made. Naturally occurring CO_2 is obtained from underground reservoirs and is available in the US Gulf Coast area. Man-made CO_2 is probably most economically recovered from refinery waste vents, for example, from the Steam Methane Reforming-based Hydrogen plant vent. It must be noted only the older hydrogen plants – those having a "wet" system on the back-end for hydrogen purification vent a pure CO_2 stream. The newer plants use a Pressure Swing Adsorption (PSA) system for hydrogen purification, and the CO_2 produced in these plants is contained in the PSA off-gas - a low-BTU fuel gas, which is typically fired in the reformer furnace. The CO_2 vent stream will need cooling and significant compression.

A high quality CO_2 stream can also be readily recovered from a gasification plant – whether it is for producing synthesis gas or power. Other large sources of man-made CO_2 , for instance, boiler stacks, contain a mixture of N₂ (87%), CO_2 (10%), water (saturated) and Oxygen (3%). In addition to cooling, the stack vent gases will need to be purified; because while N₂ and CO_2 both assist EOR, they do not work in conjunction unless the reservoir depth and pressure are high enough to render nitrogen miscible. A number of older EOR projects used flue gas initially but experienced significant problems (corrosion) and have since switched to nitrogen. Flue gas is not being used for EOR according to available literature.

Use of man-made CO_2 also helps reduce Green House Gas (GHG) emissions and reduces the corporate GHG footprint. As CO_2 is supplied from onshore sources, the distance from shore will be a key factor. It should be noted that the sequestration aspect of CO_2 injection will be effective for a few years only until the gas saturated with CO_2 breaks through. Then the removal of CO_2 becomes necessary (for meeting inert gas specifications in the sale gas), resulting in recycling recovered CO_2 back into the reservoir. If longer-term sequestration is sought, the CO_2 injection is suggested to be moved to other reservoirs at some point since only a small amount of the injected CO_2 may remain in a producing reservoir.

For offshore EOR, the CO_2 has one major safety concern. Because it is heavier than air, CO_2 will not raise and disperse. In the case of CO_2 release due to the emergency shut down or leakage, the dispersed but still high concentrated CO_2 could form a cloud which could hurt or kill the operating personnel on the platform. This is especially true in a very high pressure system which contains a lot of CO_2 in small volume.

1.2.3 Nitrogen (N₂):

Nitrogen may be supplied from the onshore sources such as purchased from existing Inert Gas Generation Units (IGGU) which provide nitrogen for inserting facilities via pipeline. When N_2 is injected, the injected gas will eventually break through (sufficient quantity of the injected gas will be seen in the associated or co-produced gas), which will affect the composition of the associated gas to a significant extent that gas cleanup will be necessary. The

topsides therefore require to be modified in order to render the product gas suitable for sales. Some form of purification such as Nitrogen Removal Unit (NRU) can be employed. The additional benefit of producing a recycle gas for injection lowers the purchased gas requirements, thereby saving operating cost. This applies in case of N_2 , and natural gas injection.

1.2.4 Natural Gas:

Natural gas may be supplied from the onshore sources or extracted from internally produced associated gas, while H₂S, acid gas, and sour gas will be generally co-produced. Because the molecular weight of the natural gas is the lightest, the injection compressor discharge pressure is the highest at nearly 14,000 psi.

1.3 Assessment of Nitrogen Removal Technologies on Feed Gas

Dismissed as a useless by-product of crude oil production until the second half of the 20th century, natural gas now accounts for about 23 percent of the world's energy consumption. An environmentally friendly and efficient energy source, natural gas is the cleanest-burning conventional fuel, producing lower levels of greenhouse gas emissions than heavier hydrocarbon fuels such as coal and oil. Historically, natural gas also has been one of the most economical energy sources. Natural gas fuels electric power generators, heats buildings, and is used as a raw material in many consumer products, such as those made of traditional plastics. The natural gas demand is growing. The International Energy Agency predicts that the demand for natural gas will grow by approximately 44

percent through 2035. Recent gas reservoir discoveries around the world were found to contain significant levels of nitrogen up to the 15% range. Also, as mentioned above, some current production techniques for maintaining crude oil recovery from a reservoir utilize the injection of nitrogen as enhanced oil recovery (EOR) method. Gradually, the equilibrium nitrogen dissolved in the crude oil will come to the surface as associated gas when the nitrogen breaks through. The challenges facing the gas industry are highlighted by the Gas Technology Institute (GTI, USA) in their estimates that 11% of current daily gas production and 16% of all known gas reserves in the USA contain some nitrogen.

Nitrogen Removal Unit (NRU) is a required facility to separate the nitrogen and hydrocarbon. (Finn, 2007) For any gas or LNG plant, higher levels of nitrogen within the feed gas mean lower profitable volumes or additional capital investment. NRU can be expensive to build and difficult to operate. Gas companies typically set maximum concentration limits on nitrogen content in the pipeline between 4.0 to 7.0 percent depending on the local product specifications. Therefore, in general, nitrogen levels of greater than 7.0 percent must undergo removal. Nitrogen removal processes for natural gas using cryogenic processing, membrane, adsorption, and liquid solvents are currently available, but all of these methods most likely require high recompression of the methane product, which penalizes their economics. Many other companies are trying to find a more economical way to remove the nitrogen from the natural gas.

For example, on a 5.0 Million Tonne per Annum (MTPA) LNG plant where 1.0 % more nitrogen in the feed gas will result in anywhere from 0.6 to

1.0 percent lower LNG production. The projected loss in revenues could approach 200 million in US dollars over an assumed 20 year plant life cycle, based on an assigned value of 208 USD / Tonne (assumes a value pricing difference of 4.0 USD per Million BTU between feed gas and LNG).

All currently available technologies (Hahn, et al., 2007), considering both commercially demonstrated NRU technologies as well as those in the developments to be evaluated by way of process flow diagrams, descriptions, technology highlights, pre-treatment requirements, strength and weakness and technology licensor/vendor include

- Cryogenic Distillation,
- Membranes (Membrane Technology and Research (MTR),
- Molecular Gate System,
- Solvent Absorption,
- Nitrogen Sponge,
- Pressure Swing Adsorption (PSA), Carbon Molecular Sieve (CMS),
- Lean Oil Absorption,
- Chelating Chemical.

1.3.1 Different NRU Technologies

1.3.1.1 Cryogenic Distillation

The Cryogenic Distillation technology is the most commonly used on a commercial scale (Millward et al., 2004). Multiple contractors can provide the Engineering, Procurement and Construction (EPC) such as APCI, Bechtel/IPSI, Linde, KBR, BCCK, Costain and some other EPC companies worldwide (Costain

Energy &Process, 2005). Many distillation technologies have long been used to separate nitrogen from natural gas. It achieves 99+% hydrocarbons (majority is Methane) recovery within a wide range of nitrogen feed content and is typically used for high feed gas rate applications.

A NRU block flow diagram example is shown in Figure 1.5 (Elliot, et al., 2008). The technology typically consists of five major steps: inlet receiving/compression, pre-treatments, J-T or expander chilling, cryogenic fractionation, and recompression (Low et al., 2000) (Swallow, 1983). Commonly used schemes include single column (Figure 1.6) (Elliot, et al., 2008)., double columns (Figure 1.7) (Jones et al., 1999) and triple columns (aka pre-separator with two columns or pre-fractionator with two columns) (Figure 1.8) (Hahn et al., 2007) (Costain Energy & Process., 2005). One of the primary contributors to NRU facility cost is the required compression for the inlet gas and the sales gas. (Henley et al., 1981) This is the most expensive technology to build but with the most flexibility in term of the design parameters such as feed gas composition, inlet pressure, vent hydrocarbon concentration. Due to the greenhouse effect, continuous venting hydrocarbon causes a lot of concerns. In some old NRU, the N2 vent has 3.0% of hydrocarbon. However in the new NRU, the vent could be limited to 1.0% or even 0.1%. (Gas Processors Suppliers Association, 2011) Furthermore additional thermal oxidizer or incinerator is required to destruct the hydrocarbon in order to minimize the Green House Gas (GHG) effect. This makes this technology even more expensive.

Figure 1.5 NRU Block Flow Diagram (Elliot et al.,2008)

Figure 1.6 Single Column Cryogenic Distillation (Elliot et al., 2008)

1.3.1.1.1 Inlet Receiving/Compression

Depending on the source of feed gas to the NRU, the nitrogen removal system will require some types of inlet receiving equipment. Many projects require equipment such as a slug catcher, a vapor/liquid separator and/or a compression system to raise the inlet pressure.

1.3.1.1.2 Pre-treatments

The feed to the nitrogen rejection unit is pre-treated to remove components that could freeze in downstream cryogenic equipment. The CO₂ is typically removed to 50–100 Part Per Million by Volume (PPMV) levels using amine treating. Acid gas such as H_2S is also removed to less than 4 PPMV to meet sales gas specification. After amine treating in the acid gas removal unit (AGRU), the sweet gas is most often dehydrated with a solid desiccant. Molecular sieves are generally specified because of their ability to dry the gas stream to a water dew point well below the required specification.

A Mercury Removal Unit (MRU) may then be required to remove mercury (Hg) to very low levels. Hg concentration below 1 Part Per Trillion by Volume (PPTV) or 0.001 Part Per Billion by Volume (PPBV) is often required to avoid mercury corrosion which would destroy downstream brazed aluminum exchangers. Typically removal is accomplished with an adsorbent bed using sulphur-impregnated activated carbon located just downstream of the dehydration unit. Depending on the feed composition, heavy hydrocarbons can be extracted at an intermediate temperature level during the chilling step. Tri-Ethylene Glycol (TEG), which is also commonly used for dehydration, has also

been commercially demonstrated for bulk removal of aromatic hydrocarbons prior to the chilling/condensation step. (McKenzie et al.,1997)

1.3.1.1.3 J-T or Expander Chilling

Following pre-treatment, the dry, clean gas is successively chilled to condensation temperature by heat exchange with the product streams in brazed aluminum heat exchangers. The chilling process is accomplished by using any or all of the following:

- Adiabatic expansion (JT valve)
- Isentropic expansion (turbo expander).

1.3.1.1.4 Cryogenic Fractionation

The cryogenic fractionation section of the NRU is normally located inside a cold box. It is the heart of the NRU because it controls (1) the nitrogen in the methane-rich product stream, (2) the hydrocarbon losses in the rejected nitrogen stream, and (3) the overall thermal efficiency of the process.

1.3.1.1.5 Recompression

For typical applications, recompression of the sales gas (or fuel gas) is usually required unless the gas can be marketed at 20 barg or less. The main force for NRU separation is provided by the pressure differential between the feed gas and the product streams. The product streams, such as sales or fuel gas and N₂, when exit the unit at a pressure lower than the feed gas, possibly require recompression.

Figure 1.7 Double Columns Cryogenic Distillation (Elliot et al., 2008)

Figure 1.8 Pre-fractionator (Triple Columns) (Costain, 2005)

1.3.1.2 Membrane Solution, Membrane Technology and Research (MTR)

(Membrane Technology and Research Inc., 1999)

In this technology, membranes are used to selectively permeate methane and reject nitrogen in the gas stream. The process relies on proprietary membranes that are significantly more permeable to methane, ethane, and other hydrocarbons than to nitrogen. (Elliot et al., 2008). As illustrated in Figure 1.9, MTR describes a two-stage membrane case that can produce pipeline-quality gas and nitrogen rich fuel from raw natural gas. Gas containing 15.0% nitrogen is firstly passed through a set of membrane modules. The permeated gas, which contains 4.0 mol.% nitrogen, is sent to the pipeline after compression. The nitrogen-rich residue gas then passes through a second set of membrane modules. This second set of modules produce a waste gas containing 50.0 mol. % nitrogen and a nitrogen-depleted gas containing about 10.0-20.0 mol.% nitrogen. The permeated gas is used as fuel. This case achieves about 90% hydrocarbon recovery of the feed gas heating British Thermal Unit (BTU) value (majority is methane) into the pipeline product. Recovery values as high as 95% or higher can be achieved depending on the composition of the inlet gas.

The pressure drops going through the membranes are at 12 bar to 50 bar per stage depending on the feed gas pressure. Another limitation for membranes is the maximum design pressure which is currently at 85 barg. Any feed pressure which is higher than 76.5 (90% of 85) barg needs to be throttled down before sending to the MTR.

Figure 1.09 Membrane Technology and Research (MTR) (2-Stage Membrane,2009)

Figure 1.70 Nitro-Sep[™] Process (MTR,2009)

An example of the MTR is the MTR's NitroSep[™] system (Figure 1.10) which produces pipeline-quality or pipeline-acceptable gas and a nitrogen-rich fuel from raw natural gas.

1.3.1.3 Molecular Gate Systems

The Engelhard Molecular Gate system (Figure 1.11) offers a prefabricated, modular plant based on patented adsorbent materials. It is functioned to trap N_2 with this adsorbent while letting methane flow through. It has generated significant interest in the natural gas industry. It is easy to start-up. The unattended operation and cost-effectiveness are the advantages of the Molecular Gate technology.

Molecular Gate methane stream only has a minor pressure drop of about 0.7 bar. It often requires pre-treatment including inlet receiving, Acid Gas Removal Unit (AGRU) and Molecular Sieve Dehydration. The recovery of methane is about 90%. Because the sieve bed sizes are proportional to the gas volume being treated, this process has been used for smaller feed gas rate applications. Current flow is limited at 80 Million Standard Cubic Feet per Day (MMSCFD) per train due to a vessel diameter of 12.5 ft. The maximum design pressure is 55 barg. The optimum operating pressure is between 17 and 41 barg. The methane product is produced at low pressure of less than 55 barg. Also, the waste nitrogen stream may have a higher amount of hydrocarbons than allowed for venting of the nitrogen. If fuel use is not required for utilizing the waste

nitrogen stream, hydrocarbon loss through venting of CO_2 mixed with N_2 could be a major concerns due to the greenhouse gas hydrocarbon penalty.

Figure 1.81 Molecular Gate® system, Removing the N₂ (or N₂ plus CO₂).

Figure 1.92 AET Process[®] NRU

This solvent absorption process as shown in Figure 1.12 has the advantage of not requiring CO₂ removal (AGRU) or deep dehydration. The hydrocarbon components are actually absorbed and regenerated at low pressure. For large capacity plants (>15 MMSCFD) AET may not be able to compete with Cryogenic fractionation with cold box according to some studies.

1.3.1.5 Nitrogen Sponge (IACX Energy)

The process of Nitrogen Sponge Unit (Figure 1.13) has been typically used under low pressure (around 4 barg) and low volumes (< 5 MMSCFD). IACX Energy introduced the Nitrogen Sponge[™] process. This non-cryogenic and environmentally friendly nitrogen removal unit is a small scaled and extremely mobile. It removes nitrogen and water vapor from natural gas to meet stringent pipeline specifications. Inlet feed nitrogen concentrations can vary between 4% and 40%. The Sponge will remove nitrogen with only minimal hydrocarbon losses. The maximum design pressure is 4 barg.

Figure.1.103 Rollout of a Nitrogen Sponge Unit (IACX Energy)

1.3.1.6 Pressure Swing Adsorption, Carbon Molecular Sieve (CMS)

Pressure swing adsorption is a technology used to separate nitrogen from other gases including natural gas components under pressure according to its molecular characteristics and attraction to an adsorbent material at near-ambient temperatures. Special adsorptive materials are used as a molecular sieve, adsorbing the hydrocarbon components at high pressure. The process then swings to low pressure to desorb the adsorbent material. Typical Carbon Molecular Sieve (CMS) uses this process to separate the methane from nitrogen and others. The adsorption/desorption cycle is quite similar to molecular sieve dehydration. Such a process could be instrumented quite easily for unattended operation. Methane is released during the desorption step at relatively low pressure near atmospheric (~1 barg) or even under vacuum in some cases. This technology also tolerates CO₂ and water but needs a larger bed. CMS is not economical to treat the high nitrogen feed gas rates due to the low methane product pressure. Extremely high recompression horse power is required for the methane product.

1.3.1.7 Lean Oil Absorption

This cryogenic absorption process uses chilled hydrocarbon oil to absorb the bulk of the methane and achieves a separation of nitrogen from natural gas. The absorbed methane is stripped off the oil in a regenerator and subsequently compressed back to the pipeline pressure. The need to absorb the bulk of methane requires large cryogenic oil circulation. This process has not been widely used commercially (Elliot et al., 2008,) and is not currently being marketed.

1.3.1.8 Chelating Chemical

The chelating chemical process is in the early research and developmental stage. This process uses a solvent containing a chelating agent to

absorb nitrogen from the natural gas, leaving the methane and other hydrocarbons behind. The chelating agents are expensive and of questionable stability; there are no known research activities going on recently.

1.3.2 Technology Selection

As the NRU technologies vary widely, the selection of an optimum NRU technology may depend on the following design criteria. (Pervier et. al.,1983)

- 1) Feed gas nitrogen concentrations,
- 2) NRU inlet pressure,
- 3) NRU capacity,
- 4) Product specifications,
- Approaches for the final disposition of the recovered hydrocarbon stream: (e.g., as fuel gas, re-injection or recycle back to feed gas),
- 6) Environmental NOx emissions impact,
- 7) Allowable methane concentration in the nitrogen vent.

The above items are generally the main factors considered in selecting a NRU technology. However, evaluations of other factors as shown below are also required to select a NRU technology,

- 1) Capital cost
- 2) Required compression power (the main operating cost)

- 3) Technology maturity
- 4) Hydrocarbon loss and the greenhouse gas penalty impact
- 5) Required operator attention
- 6) Required maintenance effort
- 7) Health, Environmental and Safety (HES) issues

Among the NRU technologies described above, the cryogenic fractionation has been widely used for providing an efficient and reliable means to upgrade natural gas. The use of membrane technology has progressed significantly in the last several years. While membranes (MTR) and Molecular Gate technologies have advanced, neither can produce high purity nitrogen when compared to cryogenic distillation. Cryogenic distillation can provide -

- High hydrocarbon recovery over 99+%.
- Minimal emissions of hydrocarbon methane Green House Gas (GHG) to atmosphere.
- High thermodynamic efficiency (lower power consumption).

A comparison summary of the above described NRU technologies is given in Table 1.1.

Table 1.1 NRU technologies Comparisons

NRU Technology	Technology Highlights	Application/ Limitation	Comments
Cryogenic Fractionation	J-T or expander, chilling and distillation at cryogenic temperatures. Re- compression is required. Cold box installation with Brazed Aluminum Heat Exchanger (BAHE).	Wide range feed gas inlet pressure and flow rate No design pressure limitation. May not be competitive for low gas throughput (<25 MMSCFD per Finn's ³ paper). Very low methane concentration (100 PPM to 1.5%) in N ₂ vent stream.	Can achieve high hydrocarbon recovery of 99+%. Pre-treatment required including inlet receiving/compression, AGRU, Molecular Sieve Dehydration and MRU. Cryogenic distillation and re- compression also required. Many proven commercial installations. Multiple contractors can provide the EPC such as APCI, Bechtel/IPSI, Linde, KBR, BCCK, Costain and many other EPC companies worldwide.
Membranes (Membrane Technology and Research, MTR)	Single or multiple membranes modules used to separate nitrogen from hydrocarbon. Re- compression may be required, especially for multiple membrane modules installation.	Max. Design pressure is 85 barg. Currently. Max. Design through put is 100 MMSCFD/per train. Pressure drop for hydrocarbon is very high between 12 to 50 Bar per stage depending on feed N ₂ concentration and pressure. Preferred N ₂ concentration is 4% to 50%.	Hydrocarbon recovery is near 90% depending on the feed gas N_2 concentration. No pre-treatment required except for inlet receiving usually. CO ₂ removal may be required depending on the feed CO ₂ concentration. Many proven commercial installations. MTR is the only EPC contractor.

Table 1.1	Continued	inued NRU technologies			
			Comparisons		
Molecular Gate	Similar to Molecular Sieve Adsorption. Re- compression most likely required.	Max. Design pressure is 55 barg. Preferred operating pressure is between 17 and 41 barg. Not designed for and cannot be used to remove gas stream with more than 30% N ₂ Max. Design through put is 80 MMSCFD/per train. Hydrocarbon pressure drop is low at about 0.7 Bar	Hydrocarbon recovery is about 90%. Pre-treatment required including inlet receiving, AGRU for CO2 removal and Molecular Sieve water Dehydration. Could remove N ₂ and CO ₂ in single step with larger bed. Many proven commercial installations. Guild associate is the EPC contractor.		
Solvent Absorption (AET)	Separation of hydrocarbons from nitrogen using an absorbent solvent. The absorbed hydrocarbons are flashed off from the solvent by reducing the pressure on the processing stream in multiple gas de- compression steps.	Max. design pressure range is 70 barg. Currently. Largest installed capacity is 15 MMSCFD.	Can achieve high hydrocarbon recovery of 99+%. No pre-treatment required other than inlet receiving. Some commercial success with 50 mol. % nitrogen. For higher feed gas rate, higher recompression may be required for AET comparing with Cryogenic Distillation. AET is the EPC contractor.		

Table 1.1	Continued		NRU technologies Comparisons
Nitrogen Sponge	Nitrogen sponge absorbs water and nitrogen	Max. Design pressure is 4 barg. Max. Design through put is 5 MMSCFD/per train.	Can achieve high hydrocarbon recovery of 92+%. Pre-treatment is not required other than inlet receiving, For low-pressure (around 4 barg), low-volume (<5 MMSCFD) natural gas streams only. This non- cryogenic, nitrogen rejection unit is for lower feed gas rate. Some commercial success. IACX energy is the EPC contractor.
Cryogenic Lean oil absorption	Absorption of methane into cryogenic lean oil.	No commercial applications. Wide range of feed gas pressures tolerated. (Elliot et al., 2008).	This is a new process and no commercial applications are operational. There are no marketing activities going on recently.
Pressure swing adsorption. Carbon Molecular Sieve (CMS)	Adsorbing the hydrocarbon components at high pressure. The process then swings to low pressure to desorb the adsorbent hydrocarbon material.	No commercial applications. (Elliot et al., 2008).	High recompression horse power is required for the hydrocarbon product.
Chelating solvent absorption	Selective absorption of nitrogen into a chelating solvent	No commercial applications. (Elliot et al., 2008).	This process is in the research and development stage. Stability of the solvent is suspect.

1.4 Objectives and Scope of Research.

The purpose of this study is to find the most popular and applicable EOS in the ultra-high pressure compression simulation industry for EOR purpose (Plocker et al.,2002). This will include checking with subject matter experts (SME) in gas processing, rotating equipment, flow assurance, reservoir engineering, and technical support of simulators professionals. Because the critical and fundamental thermodynamic related properties such as enthalpy, entropy, vapor pressure and density are shown to be related to the compressibility factor, process models need to be developed and used to evaluate different EsOS. With the selected pure CO_2 , pure N_2 , or hydrocarbon/injection gas (CO_2 or N_2 , natural gas) mixtures, the predicted compressibility factors (Z) from different EsOS under various pressure and temperature conditions are compared with the gathered experimental data for the evaluations of EOS models (Kiseley et al., 2002). The proposed tasks are listed in the following.

a) Gather available actual experimental data about Z factor through literature search, requisition and research. For examples, there are many actual experimental data about Z factor. There are many research centers which can accurately measure those thermo-physical properties such as the density of gas. (Mantilla et al., 2010(a), 2010 (b)) and (Reamer et al.,1945,1951, 1952). Apparatuses for the accurate measurement of density of gases and liquids as well as for the measurement of viscosity of gases were operated in many countries. From density, the Z factor can be calculated. Those Z factors

gathered for different gas composition at different pressures and temperatures can be used to compare to the Z factors calculated by different EsOS. The comparisons of Z factors can not only tell us how accurate the Ideal gas law is, but also serve as a correction factor for the Ideal gas law. The more accurate correlation between P, V, and T can be obtained.

b) Construct and evaluate a list of EsOS that can be applied to ultra-high pressure compression simulation.

c) Select the most appropriate process simulators for building the simulation model.

d) Establish the hydraulic profile for gas injection discharge including the 7000-ft water depth and 24,000-ft reservoir thickness and set the required discharge pressure.

e) Build the simulation model to test the identified EsOS. The model tested include the effects of

- Reservoir production,
- Oil production and oil pump-out,
- Water production and disposal including water treatment,
- Gas production and gas consumption,
- Injection gas make up,
- Injection of gas to reservoir, and
- Gas breakthrough and recycle.

As the simulation covers from almost atmospheric pressure to 12,000 psia, the Vapor Recovery Unit (VRU, 1 stage), Flash Gas Compressor

(FGC, 2 stages), Booster Gas Compressor (BGC, 2 stages) and Injection Gas Compressor (IGC, 3 stages) are also needed to be included.
f) Evaluate and compare the results (e.g., Z factor) obtained from use of the selected EsOS and actual experimental data to determine the most appropriate EOS to be used in ultrahigh pressure process simulations, equipment sizing and design purpose. The cases include using pure CO₂, pure N₂, and hydrocarbon/injection gas (CO₂ or N₂, natural gas) mixtures.
g) Examine the impact of different EsOS on the FGC, BGC and IGC horse power and the inter-stage cooler duty. This is to determine the impact of using different EsOS for the cost comparison.

1.5 Outline of the Dissertation

The general introduction of the study is described in Chapter 1. The problem statement, literature review which includes the EOR and three most popular gases CO₂, N₂ and natural gas served as EOR injection gas are also discussed in Chapter 1. For the offshore EOR, if the nitrogen is used as the injection gas, eventually the nitrogen will saturate, break through and come out with the oil and associate gas. Nitro Removal Unit (NRU) will be required to separate the nitrogen and hydrocarbon. Chapter 1 also provides all currently available NRU technologies. All of those available technologies are introduced by way of process flow diagrams, descriptions, technology highlights, pre-treatment requirements, strength and weakness and technology licensor/vendor lists.

Process modeling is important for conceptual design, optimization, and performance monitoring for oil and gas production, gas processing and

petroleum refining. Furthermore, various Equations of State (EsOS) have been proposed for different systems and different industries. Chapter 2 presents process simulators and a list of available EsOS.

The methodology for evaluating identified EsOS with Aspen's HYSYS model is addressed in Chapter 3. This includes gathering available actual experimental data and simulating the EsOS model for the compressibility factor, Z. Those lab measured Z factors for different gas composition at different pressures and temperatures are compared with the Z factors calculated by different EsOS. The hydraulic profile for gas injection discharge including the 7000-ft water depth and 24,000-ft reservoir thickness are analyzed and set the required discharge pressure for injection compressor.

Simulation runs and results are reported in Chapter 4. The results (e.g., Z factor) obtained from use of the selected EsOS and actual experimental data are compared to evaluate the EOS model performance. The completed simulation model was also applied to examine the impact of different EsOS on the FGC, BGC and IGC horse power and the inter-stage cooler duty. This is to determine the impact of using different EsOS for the cost comparison. The presented study is summarized in Chapter 5 with conclusions, recommendation and future study. Following a complete list of references, an Appendix A is provided to summarize the calculation procedures given by Pratt (2001) for thermodynamic properties by the PR EOS. Example outputs from HYSYS model simulation printouts and samples of binary interaction parameters are presented respectively in Appendix B and Appendix C.

Chapter 2. Process Simulators and Equations of State (EsOS)

2.1 Process Simulators

Process simulators are tools for conceptual design, optimization, and performance monitoring for oil and gas production and gas processing. A list of available process simulators, including the name of the software and application areas are given in Table 2.1 below. (Wikipedia (c), 2014)

Because the critical and fundamental thermodynamic related properties such as enthalpy, entropy, vapor pressure and density are heavily depend on the use of EOS. Various EsOS models have been included in the process simulator to obtain the thermodynamic variables. Simulation by the selected process simulator can be carried out to evaluate the accuracy of different EsOS. It is aimed in this study to identify the best EOS, especially under the ultrahigh pressure condition for producing the most accurate compressibility Z. The engineering design will be based on the best simulator as well as the best EOS. Table 2.1 Available Process Simulators

Software	Developer	Applications	Operative system	License
Ariane	<u>ProSim</u>	Utilities management and power plant optimization		
<u>APMonitor</u>		Data reconciliation, real-time optimization, dynamic simulation and nonlinear predictive control		

Aspen Plus	<u>Aspen</u> Technology	Process simulation and optimization		
Table 2.1		Continued		
<mark>Aspen</mark> HYSYS	Aspen Technology	Process simulation and optimization		
ASSETT	<u>Kongsberg</u> <u>Oil & Gas</u> Technologie <u>s AS</u>	Dynamic process simulation		
BatchColumn	<u>ProSim</u>	Simulation and Optimization of batch distillation columns		
BatchReactor	ProSim	Simulation of chemical reactors in batch mode		
D-SPICE	Kongsberg Oil & Gas Technologie s AS			
K-Spice	Kongsberg Oil & Gas Technologie s AS	Dynamic process simulation and multiphase pipeline simulation		
CADSIM Plus	<u>Aurel</u> Systems Inc.	Steady-state and dynamic process simulation		
ChromWorks	<u>ChromWork</u> <u>s, Inc.</u>	Continuous/Batch chromatography process simulator		
CHEMCAD	<u>Chemstatio</u> <u>ns</u>	Software suite for process simulation		
Cycle-Tempo	Asimptote	Thermodynamic analysis and optimization of systems for the production of electricity, heat and refrigeration		
<u>COCO</u> simulator	AmsterCHE M	Steady state simulation		free of charge
<u>Design II for</u> <u>Windows</u>	WinSim Inc.	Process simulation		

Table 2.1		Continued		
Distillation expert trainer	ATR	Operator training simulator for distillation process		
DWSIM	Daniel Medeiros, Gustavo León and Gregor Reichert	Process simulator	Windows, Linux, Mac	open-source
DynoChem	<u>Scale-up</u> <u>Systems</u> <u>Ltd.</u>			
<u>EMSO</u>	<u>ALSOC</u> Project	Modelling, simulation and optimization		
<u>Dymola</u>	CATIA Systems Engineering	Dynamic modelling and simulation software		
Flowtran simulation	Monsanto			
gPROMS	PSE Ltd	Advanced process simulation and modelling		
HSC Sim				
INDISS	RSI			
ICAS: integrated computer- aided system	CAPEC			
IDEAS	Andritz Automation			
iiSE Simulator	<u>VRTech</u>			
LIBPF		C++ LIBrary for process flow sheeting		
<u>JModelica.or</u> g	Modelon AB			open-source

Table 2.1		Continued		
METSIM	Proware	General-purpose dynamic and steady state process simulation system	Windows	
MiMic	MYNAH Technologie s			
Mobatec Modeller	<u>Mobatec</u>			
Clearview	Mapjects			
OLGA	SPT Group (Schlumber ger)			
Omegaland	<u>Yokogawa</u>			
OpenModelic a	Open- Source Modelica Consortium			open-source
PIPE-FLO Professional	Engineered Software Inc.			
PEL Software Suite				
Petro-SIM	<u>KBC</u> Advanced Technologie <u>s</u>			
PETROX	<u>Petrobras</u>	General Purpose, Static, Sequential- Modular Process Simulator	Windows	internal users only
Prode Properties	<u>Prode</u> Software			
Prode simulator	<u>Prode</u> <u>Software</u>			

Table 2.1		Continued	
ProSim DAC	ProSim	Dynamic Adsorption Column Simulation	
ProSimPlus	ProSim	Process simulation and optimization	
ProSimulator	Sim Infosystems		
Pro-Steam	<u>KBC</u> Advanced Technologie <u>s</u>		
<u>ProMax</u>	<u>Bryan</u> Research and Engineering		
TSWEET	<u>Bryan</u> Research and Engineering		
PROSIM			
PRO/II	SimSci		
DYNSIM	SimSci		
<u>ROMeo</u> (process optimizer)	SimSci		
RecoVR	VRTech		
Simulis Thermodyna mics	ProSim	Mixture properties and fluid phase equilibria calculations	
SimCreate	TSC Simulation		
SPEEDUP	Roger W.H. Sargent and students		
SolidSim	SolidSim Engineering GmbH	Flow sheet simulation of solids processes	

Table 2.1		Continued		
SuperPro	Intelligen			
Designer				
SysCAD				
System7	Epcon Internationa I			
UniSim design	<u>Honeywell</u>			
Shadow plant	Honeywell			
Usim Pac	<u>Caspeo</u>			
VMGSim	<u>Virtual</u> <u>Materials</u> <u>Group</u>			
<u>Wolfram</u> SystemModel <u>er</u>	<u>Wolfram</u> <u>Research</u>		Windows, Mac, Linux	

2.2 Equations of State (EsOS)

As described by Peng and Robinson (Peng et al.,1976), In the field of physics and thermodynamics, an equation of state (EOS) is a relation between state variables and thermodynamic properties. More specifically, an EOS is a thermodynamic equation describing the state of matter under a given set of physical conditions. It is a constitutive equation which provides a mathematical relationship between two or more state functions associated with the matter, such as its temperature, pressure, volume, density or internal energy. EsOS are useful in describing the properties of fluids, mixtures of fluids, solids, and even the interior of stars." Use of a properly selected and tested EOS can provide important thermodynamic gas properties for the EOR studies.

The most prominent use of an EOS is to correlate densities of gases and liquids to temperatures and pressures (Edmister,1984). One of the simplest equations of state for this purpose is the ideal gas law, which is roughly accurate for weakly polar gases at low pressures and moderate temperatures. However, this equation becomes increasingly inaccurate at higher pressures and lower temperatures, and fails to predict condensation from a gas to a liquid. Therefore, a number of more accurate EsOS have been developed for gases and liquids. At present, there is no single equation of state that accurately predicts the properties of all substances under all conditions. Furthermore, there are nearly 30 different EsOS available for different systems and different industries in Chemical, Electrolyte, Environmental, Oil and Gas, Mineral and Metallurgical, Petrochemical, Power and Refining areas (Aspen HYSYS, 2011).

2.2.1 Activity Models

An activity coefficient is a factor used in thermodynamics to account for deviations from ideal behavior in a mixture of chemical substances. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g., Raoult's law. Deviations from ideality are

accommodated by modifying the concentration by an activity coefficient. The Activity Models handle highly non-idealized systems and are much more empirical in nature when compared to the property predictions in the hydrocarbon industry. Polar or non-idealized chemical systems are traditionally handled using dual model approaches. In this type of approach, an EOS is used for predicting the vapor fugacity coefficients and an activity coefficient model is used for the liquid phase. Since the experimental data for activity model parameters are fitted for a specific range, these property methods cannot be used as reliably for generalized application. Those EsOS include <u>Chien Null</u>, <u>Extended NRTL</u>, <u>General NRTL</u>, <u>Margules</u>, <u>NRTL</u>, <u>UNIQUAC</u>, <u>Van Laar</u> and <u>Wilson</u>.

2.2.2 Chao Seader & Grayson Streed Models

Both the Chao Seader and Grayson Streed EsOS are older and semiempirical base models. The Grayson Streed correlation is an extension of the Chao Seader EOS with special emphasis on hydrogen. Only the equilibrium data produced by those correlations are used by HYSYS. The Lee-Kesler method is used for liquid and vapor enthalpies and entropies.

2.2.3 Vapor Pressure Models

Vapor Pressure K-value models may be used for ideal mixtures at low pressures. Ideal mixtures include hydrocarbon systems and mixtures such as ketones and alcohols where the liquid phase behavior is approximately ideal. The model equations were traditionally applied for heavier hydrocarbon fractionation

systems and consequently provide a good means of comparison against rigorous models. The models may also be used as first approximations for non-ideal systems. They should not be considered for Vapor Liquid Equilibrium (VLE) predictions for systems operating at high pressures or systems with significant quantities of light hydrocarbons. Those EsOS are listed as <u>Antoine</u>, <u>Braun K10</u> and <u>Esso Tabular</u>.

2.2.4 Miscellaneous Types Models

The Miscellaneous group contains Property Packages that are unique and do not fit into the groups previously mentioned. For example, for acid gas removal, many Amines related EsOS have been developed. <u>Amine Package, DBR Amine Package, ASME Stream, Glycol Package, NBS Stream, MBWR and OLI Electrolyte are considered as miscellaneous type EOS.</u>

2.2.5 EsOS for Oil and Gas Hydrocarbon Industries

Some EsOS have proven to be very reliable in predicting the properties of most hydrocarbon based fluids over a wide range of operating conditions. The ten most popular EsOS used by the oil and gas industries are GERG-EOS, Benedict-Webb-Rubin-Starling (BWRS-EOS), Lee-Kessler Plocker (LKP-EOS), Peng-Robinson (PR-EOS), Kabadi-Danner (KD-EOS), Peng-Robinson-Stryjek-Vera (PRSV-EOS), Soave-Redlich-Kwong (SRK-EOS), Aspen RefProps (NIST-EOS), Generalized Cubic (GC-EOS), and Zudkevitch Joffee (ZJ-EOS). (Aspen HYSYS, 2011).
Historically, GERG-EOS is designed to provide high accuracy for typical natural gas components. While it is considered to be very accurate, it has not been widely implemented in most commercial process simulators. Furthermore, the PR-EOS has generally been the most widely used for oil, gas, and petrochemical industries. Compressor manufacturers, such as General Electric (GE) and Dresser-Rand (D-R), have tested the accuracy of EOS for high pressure compression applications and compared the accuracy of Relich-Kwong (RK-EOS), Lee-Kessler Plocker (LKP-EOS) and Peng-Robinson (PR-EOS) in predicting compressor performance. (Sandberg, 2005) (Kumar et al.,1999).

2.2.6 Equations Used for Different EsOS

The thermodynamic properties of mixtures can be calculated in a very convenient way from EOS. Most of these equations are explicit in pressure, as for example, the well-established PR EOS. Cubic equations with cubic power of Z such as the one used for PR EOS are still widely used in many technical applications due to their simple mathematical structure. For technical applications with high demands on the accuracy of the calculated mixture properties, these equations show major weaknesses with respect to the representation of thermal properties in the liquid phase and the description of caloric properties.

2.2.6.1 Ideal Gas Law (1834)

An ideal gas is defined as one in which all collisions between atoms or molecules are perfectly elastic and in which there are no intermolecular attractive forces. One can visualize it as a collection of perfectly hard spheres which collide but otherwise do not interact with each other. In such a gas, all the internal energy is in the form of kinetic energy and any change in internal energy is accompanied by a change in temperature. An ideal gas can be characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them may be deduced from kinetic energy theory as

$$PV = n RT, (2-1)$$

where

P = Absolute pressure,

V = Volume,

n = number of moles,

R = universal gas constant. R=10.731 (ft³ *psi)/(R⁰*lb-mol),

T = temperature.

2.2.6.2 Van der Waals (1873)

In 1873, J. D. Van der Waals introduced the first EOS derived by the assumption of a finite volume occupied by the constituent molecules. His new formula revolutionized the study of EOS, and was most famously continued via the Redlich-Kwong (RK) EOS and the Soave modification of Redlich-Kwong SRK EOS. This was the first EOS to describe the properties of fluids over a wide pressure range. It predicts the existence of a critical point, and also that when

liquids exist. While it is an improvement on the Ideal Gas law, it is still not particularly accurate. The formulation of Van der Waals EOS is given as

$$P = \frac{RT}{V-b} - \frac{a}{V^2} \tag{2.2a}$$

where

$$a = \frac{27R^2T_c^2}{64P_c} \text{ and}$$
(2.2b)
$$b = \frac{RT_c}{8P_c}.$$
(2.2b)

And variables with subscript c indicate the one at the critical point (Temperature or Pressure)

2.2.6.3 Soave-Redlich-Kwong (1972)

In 1972 G. Soave replaced the $1/\sqrt{(T)}$ term of the Redlich-Kwong equation with a function α (T, ω) involving the temperature and the acentric factor. The resulting equation is also known as the Soave-Redlich-Kwong (SRK) equation. The α function was derived to fit the vapor pressure data of hydrocarbons and the equation does fairly well for those materials. The SRK equation is given as

$$P = \frac{RT}{V-b} - \frac{a}{V(V+b)},$$
 (2.3a)

where

$$a = 0.42748 \frac{R^2 T_c^2}{P_c} (1 + (0.480 + 1.574\omega - 0.176\omega^2)(1 - \sqrt{\frac{T}{T_c}}) \text{ and } (2.3b)$$

$$b = 0.08664 \frac{RT_c}{P_c} , \qquad (2.3c)$$

 ω = acentric factor for the species.

The acentric factor (omega) is a conceptual number introduced by Kenneth Pitzer in 1955 and was proven to be very useful in the description of matter. It has become a standard for the phase characterization of single & pure components. The other state description parameters are molecular weight, critical temperature, critical pressure, and critical volume. The acentric factor is said to be a measure of the non-sphericity (centricity) of molecules. Also the parameter " *a* " is given more complicated temperature dependence than that assumed in the Redlich-Kwong equation. The parameters giving the dependence of *a* on ω were found by fitting experimental data on a variety of compounds to the equation. This equation is still frequently used for predicting the properties of pure substances, mixtures and vapor-liquid equilibrium. It is not expected to be accurate for highly polar species or molecules that exhibit hydrogen bonding.

2.2.6.4 Peng-Robinson (1976)

The PR EOS was developed in 1976 at The University of Alberta in order to satisfy the following goals:

1. The parameters should be expressible in terms of the critical properties and the acentric factor.

2. The model should provide reasonable accuracy near the critical point, particularly for calculations of the compressibility factor and liquid density.

3. The mixing rules should not employ more than a single binary interaction parameter, which should be independent of temperature, pressure and composition (Reid et al., 1987).

4. The equation should be applicable to all calculations of all fluid properties in natural gas processes.

The PR equation in most cases exhibits performance similar to the SRK, although it is generally superior in predicting the liquid densities of many materials, especially nonpolar ones. This EOS is fairly similar to the SRK EOS, but with a modification of the denominator of the second term on the right hand side of equation (2.3a). Again, the parameter "a" has a temperature dependence, and the parameter giving its dependence on ω has been found by comparing the predictions of the equation with experimental boiling points. The Peng-Robinson equation is particularly accurate for predicting the properties of hydrocarbons including the behavior of mixtures and vapor-liquid equilibrium (VLE). It is not expected to be accurate when predicting properties of highly polar molecules, particularly those that are capable of hydrogen bonding.

The PR property package rigorously solves any single-, two-, or threephase system with a high degree of efficiency and reliability and is applicable over a wide range of conditions:

- Temperature Range > -456 °F
- Pressure Range < 14,000 psia

Interaction parameter is a measure of the interaction energy between different groups. The PR property package also contains enhanced binary interaction parameters for all library hydrocarbon-hydrocarbon pairs (a combination of fitted and generated interaction parameters), as well as for most hydrocarbon-non-hydrocarbon binaries. For oil, gas, or petrochemical applications, the PR EOS is generally the recommended property package. The PR property package is used for the following simulations:

- Tri-Ethylene Glycol (TEG) Dehydration
- TEG Dehydration with Aromatics
- Cryogenic Gas Processing
- Air Separation
- Atmospheric Pressure (ATM) Crude Towers
- Vacuum Towers
- High H₂ Systems
- Reservoir Systems
- Hydrate Inhibition
- Crude Systems

The PR EOS applies functionality to some specific component-component interaction parameters. Key components receiving special treatment include He, H₂, N₂, CO₂, H₂S, H₂O, CH₃OH, Ethylene Glycol (EG), Di-Ethylene glycol (DEG), and Tri-Ethylene Glycol (TEG).

Formulations for pressure, P, and compressibility factor ,Z, used in HYSYS for the PR EOS are given as

$$P = \frac{RT}{V-b} - \frac{a}{V(V+b)+b(V-b)}$$
 and (2.4)

$$Z^{3} - (1 - B)Z^{2} + (A - 2B - 3B^{2})Z - (AB - B^{2} - B^{3}) = 0,$$
 (2.5)

where

$$A = \frac{aP}{(RT)^2},\tag{2.6b}$$

$$B = \frac{bP}{RT} , \qquad (2.6c)$$

$$b = \sum_{i=1}^{N} X_i(b_i) = \sum_{i=1}^{N} X_i\left(0.077796 \ \frac{RT_{ci}}{P_{ci}}\right),$$
(2.6d)

$$a = \sum_{i=1}^{N} \sum_{j=1}^{N} X_i X_j \left(a_i^{0.5} a_j^{0.5} \right) \left(1 - k_{ij} \right),$$
(2.6e)

$$a_i = a_{ci} \, \alpha_i, \tag{2.6f}$$

$$a_{ci} = 0.457235 \frac{(RT_{ci})^2}{P_{ci}},$$
 (2.6g)

$$\alpha_i^{0.5} = 1 + m_i (1 - T_{ri}^{0.5}) \text{ or } \alpha_i = (1 + m_i (1 - T_{ri}^{0.5}))^2 \text{ and}$$
 (2.6h)

$$m_i = 0.37464 + 1.54226\omega_i + 0.26992\omega_i^2, \tag{2.6i}$$

N is the total number of the components.

The subscript *i* is the *ith* component of the gas mixture.

 X_i is the mol fraction of the component.

 k_{ij} is the interaction parameter between different component.

 $T_r = T/T_c$ = reduced temperature.

When an acentric factor ω > 0.49 is present, HYSYS uses following corrected form for m_i :

$$m_i = 0.379642 + (1.48503 - (0.164423 - 1.016666\omega_i)\omega_i)\omega_i$$
 (2.6j)

 a, b, m_i, α_i , A, and B, are PR-EOS parameters and can be calculated by above formulas.

The compressibility factor (*Z*), also known as the compression factor, is a useful thermodynamic property for modifying the ideal gas law to account for the real gas behavior. In general, deviations from ideal behavior become more significant when the gas is closer to a phase change. This is at the lower temperature, or at higher pressure.

2.2.6.5 Benedict-Webb-Rubin-Starling (BWRS) (1940)

The BWRS EOS has been used in fluid dynamics applications (Benedict et al., 1940). Working at the research laboratory of M. W. Kellogg Limited, the three researchers (Manson Benedict, G. B. Webb, and L. C. Rubin) rearranged the Beattie-Bridgeman EOS and increased the number of experimentally determined constants. Professor Kenneth E. Starling of the University of Oklahoma later modified the Benedict–Webb–Rubin (BWR) EOS by using eleven compound-specific coefficients along with binary interaction parameters to formulate BWRS EOS. Although usually not the most convenient EOS, the viral equation is important because it can be derived directly from statistical mechanics. This equation is also called the Kamerlingh Onnes equation. If appropriate assumptions are made about the mathematical form of intermolecular forces, theoretical expressions can be developed for each of the coefficients.

The BWRS model is commonly used for compression applications and studies. It is specifically used for gas phase components. (Wu et.al,2003). The BWRS EOS can handle the complex thermodynamics that occur during compression and is useful in both upstream and downstream industries. The BWRS EOS can be expressed as

$$P = \rho RT + \left(B_0 RT - A_0 - \frac{C_0}{T^2} + \frac{D_0}{T^3} + \frac{E_0}{T^4}\right)\rho^2 + \left(bRT - a - \frac{d}{T}\right)\rho^3 + \alpha \left(a + \frac{d}{T}\right)\rho^6 + \frac{c\rho^3}{T^2}(1 + \gamma\rho^2)\exp(-\gamma\rho^2).$$
(2-7)

Here, ρ is the molar density which is related to the compressibility factor (Z). Ao, Bo, Co, Do, Eo, *a*, *b*, *c* and *d* are the BWRS EOS parameters and γ can be calculated by $=\frac{1}{\rho_c^2}$.

The BWRS EOS calculates fugacity coefficients, enthalpy departure, entropy departure, and molar volume for both the vapor and the liquid phases. The BWRS property package uses 11 pure-component parameters. Coefficients and binary interaction parameters are available for 15 compounds that are builtin to the property package and stored in the database. The 15 compounds are

- Methane
 I-Pentane
- Ethane · n-Pentane
- Propane · n-Hexane
- I-Butane
 n-Heptane
- n-Butane
 n-Octane
- · N₂ · Ethylene
- · CO₂ · Propylene
- H₂S

The coefficient for each compound is obtained from multi-property (vaporliquid-equilibrium (VLE), enthalpy, PVT, etc.) data regressions. Coefficients for chemicals common to natural gas mixtures are available from Starling book, page 270 (Starling, 1973). The value is ranging from 0.0000 to 0.2170. Sample of the interaction parameter is provided in the Appendix D for reference. Non hydrocarbon such as N_{2} , CO_{2} and $H_{2}S$ usually has higher interaction energy. If pure component coefficients are not supplied, they are automatically estimated using Tc, Vc and acentric factor with Han-Starling correlations proposed by Starling, or user specified coefficients for each compound.

2.2.6.6 Lee Kesler Plocker (LKP) (1978)

The Lee-Kesler Plocker model is the most accurate general method for non-polar substances and mixtures.(Li et al.,2011). LKP EOS is an extension of Lee-Kesler model, where the Vapor Liquid Equilibrium (VLE) is calculated by the LKP model and the Lee Kesler model is used to calculate enthalpy and entropy. The formulation of compressibility factor from LKP EOS is

$$Z = 1 + \frac{B}{V_r} + \frac{C}{V_r^2} + \frac{D}{V_r^5} + \frac{C}{T_r^3 V_r^2} \left[\beta + \frac{\gamma}{V_r^2}\right] \exp\left[\frac{-\gamma}{V_r^2}\right],$$
 (2-8)

where

$$V_r = \frac{P_c V}{RT_c} \quad , \tag{2-9a}$$

 $T_r = T/T_c$ = reduced temperature., (2-9b)

$$B = b_1 - \frac{b_2}{T_r} - \frac{b_3}{T_r^2} - \frac{b_4}{T_r^3} , \qquad (2-9c)$$

$$C = c_1 - \frac{c_2}{T_r} + \frac{c_3}{T_r^3}, \qquad (2-9d)$$

$$D = d_1 + \frac{d_2}{T_r} , (2-9e)$$

and b_1 , b_2 , b_3 , b_4 , c_1 , c_2 , c_3 , d_1 , d_2 , $\beta \gamma$ and ω are the LKP EOS twelve parameters. Those parameters can be obtained in the API Data book (American Petroleum Institute), (API; 2005) or from Table 8 of Robert's (Robert, 2001) book.

2.2.6.7 GERG (2008)

(Kunz et al., 2007) and (Wagner; 2014)

A new EOS for the thermodynamic properties of natural gases, similar gases, and other mixtures, the GERG-2008 EOS, had been implemented from Europe recently. As a function of density, temperature and composition, GERG-2008 EOS is indicated in the Helmholtz free energy. It provides a robust new algorithm suitable for dry gas and as opposed to American Gas Association (AGA-8) for wet gas and liquids, e.g., Liquefied Natural Gas (LNG). The equation is based on 21 natural gas components: methane, nitrogen, carbon dioxide, ethane, propane, n-butane, isobutene, n-pentane, isopentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, hydrogen, oxygen, carbon monoxide, water, hydrogen sulfide, helium, and argon. Those components are listed in the AGA-8 algorithm.

2.2.6.7.1 Structure of the GERG-2008 EOS

The GERG EOS equations are based on a multi-fluid mixture model which is indicated in the dimensionless form of reduced Helmholtz free energy $\alpha = a/(RT)$ with the independent mixture variable of the density ρ , the temperature Tand the composition x (mole fractions) of the mixture. Symbol a is the Helmholtz free energy. The equations related to GERG EOS model is given as

$$\alpha(\delta,\tau,x) = \alpha^{\circ}(\rho,T,x) + \sum_{i=1}^{N} x_i \ \alpha_i^r(\delta,\tau) + \Delta \alpha^r(\delta,\tau,x), \quad (2-10)$$

where

 $\rho = \text{density}$

T= temperature

 χ = composition (mole fractions)

 $\alpha^{\circ}(\rho, T, x)$ = properties of the Ideal gas mixture.

 α_i^r = residual part of the reduced Helmholtz free energy for component i

 $\sum_{i=1}^{N} x_i \ \alpha_i^r(\delta, \tau)$ is the contribution of pure substance.

 $\Delta \alpha^r(\delta, \tau, x)$ = Departure function.

 $\delta = \rho / \rho_r(x)$ = Reduced mixture density.

 $\tau = T_r (x)/T$ = Inverse reduced mixture temperature.

N = Number of components in the mixture.

Those reducing functions of δ and τ for the density and temperature depend only on the composition of the mixture. Three more elements as shown below are needed to set up a multi-fluid mixture model:

(1) Pure substance equations of state for all components;

(2) Reducing functions for density and temperature; and

(3) Departure functions.

The reducing functions as well as the departure function were developed to describe the behaviour of the mixture, substance and mixture specific parameters. From the reducing functions, the reducing values ρ_r and T_r for the density and the temperature of the mixture can be calculated. They depend on the mixture composition and are reduced to the critical properties ρ_c and T_c , respectively, for the pure components. As noted in equation 2-10, the departure function depends on the reduced mixture density ρ_r , the inverse reduced mixture temperature τ , and the composition x of the mixture. For the mixture in a mulfluid system, the departure function as proposed by Wagner; (2014) can be expressed as

$$\Delta \alpha^r(\delta, \tau, x) = \sum_{j=i+1}^N \sum_{i=1}^{N-1} \Delta \alpha^r_{ij} \quad (\delta, \tau, x).$$
(2-11)

Equation (2-11) is a double summation over all binary specific and generalized departure functions developed for the binary subsystems.

In order to obtain a reference EOS that yields accurate results for various types of natural gases and other multi-component mixtures over wide ranges of composition, the reducing and departure functions were developed using only data for binary mixtures. The 21 pure components are covered by GERG-2008 result in 210 possible binary mixture combinations. Departure functions $\Delta \alpha_{ij}^r$ (δ, τ, x) were developed only for such binary mixtures for which accurate experimental data existed. For binary mixtures with limited or poor data, no departure functions has been developed, and only the parameters of the reducing functions $\rho_r(x)$ und $T_r(x)$ were fitted. In the case of very poor data, simplified reducing functions without any fitting were used. The multi-fluid model used enables a simple inclusion of additional components in future developments. This means that, for example, fitted parameters of the existing equation of state do not have to be refitted when incorporating new components. This also holds for the departure function with its optimized structure which remains unchanged when expanding the model.

In terms of the performance of GERG-2008 EOS, in the gas region, the uncertainties in density and speed of sound are 0.1%, in enthalpy differences (0.2-0.5)% and in heat capacities (1-2)%. In the liquid region, the uncertainty in density is (0.1-0.5)%, in enthalpy differences (0.5-1)% and in heat capacities (1-2)%. In the two-phase region, vapour pressures are calculated with a total uncertainty of (1-3)%, which corresponds to the uncertainties of the experimental VLE data. For mixtures with limited or poor data, the uncertainty values stated above can be somewhat higher. These accuracy statements are based on the fact that GERG-2008 represents the corresponding experimental data to within their experimental uncertainties (with very few exceptions).

Over the entire composition range, GERG-2008 covers the gas phase, liquid phase, supercritical region, and VLE states for mixtures of these

components. The normal range of validity of GERG-2008 includes temperatures from -370 °F to -10 °F and pressures up to 5,076 psia. The extended validity range reaches from - 400 °F to 240 °F and up to 10,152 psia. In principle, the given numerical information enables the use of GERG-2008 for all of the various technical applications. Moreover, the equation can be reasonably extrapolated beyond the extended range, and each component can basically cover the entire composition range, i.e., (From 0 to100 %).

2.2.7 Methods to Calculate the Z Factor

Different from the ideal gas law (PV=nRT), the introduction of compressibility factor, Z, making the formula become PV=ZRT. This equation covers wide range of composition, temperature and pressure. The calculations of Z-factors fall into three main methods.

- By measuring the density in the laboratory at certain composition, temperature and pressure. The volume of 1 lb-mole of this gas is given by V =ZRT/P. Knowing the density, Z can be calculated by Z=PV/RT=P/ρ RT. For any new research and study, this is method to obtain the Z factor.
 - 2.By using one of the EsOS as described in previous section 2.2.6. This is the most accurate and convenient method nowadays with computer and simulator.
 - 3.By curve fitting using the Standing- Katz isotherms as shown on Figure2.1 (Standing- Katz, 1942).

The Standing-Katz Z-factor chart is based on the method 1 performed on gas mixture. After many decades, the Z-factor chart, although has some limitations, is still widely used as a practical source for obtaining natural gas compressibility factors. A generalized Z chart for 10 most common gases is also provided in Figure 2.2 (Ortega, 2014). As an example showing the procedure of finding the Z factor using the Z factor chart, let us consider a natural gas with the following composition:

Component	Mole Fraction, X _i		
N ₂	0.0224		
CO ₂	0.0180		
H ₂ S	0.0352		
CH ₄	0.8383		
C_2H_6	0.0510		
C ₃ H ₈	0.028		
i-C ₄ H ₁₀	0.003		
n-C ₄ H ₁₀	0.003		
i-C ₅ H ₁₂	0.0002		
n-C ₅ H ₁₂	0.0002		
C ₆ H ₁₄	0.0001		
C ₇ +	0.0006		

Table 2.2 Gas compositions for Z factor calculation

where

 CH_4 = methane= C_1 , C_2H_6 = ethane= C_2 , C_3H_8 = propane= C_3

With the reservoir temperature at 350 °F and reservoir pressure of 8,500 psia, the following properties such as reduced temperature and reduced pressure can be calculated. Finally, we can find the Z-factor from Standing-Katz chart.

Figure 2.1 Standing-Katz Z Factor Chart (Standing-katz, 1942)

Generalized Compressibility Chart

The $p-\overline{v}$ -T relation for 10 common gases is shown in the generalized compressibility chart.

Figure 2.2 Generalized Z Chart for 10 Common Gases (Ortega, 2014).

Table 2.3 Z factor and MW, P_c and T_c Calculation

Compo	Mol.%	MW	Mol.%*	Pc	X _i *P _c	T _c	X _i *T _c
nent	(X _i)		MW				°R
			X _i ∗MW				
C1	0.8383	16.04	13.446	673	564.18	344	288.38
C2	0.0510	30.07	1.534	709	36.16	550	28.05
C3	0.0280	44.09	1.235	618	17.30	666	18.65
i-C4	0.0030	58.12	0.174	530	1.59	733	2.20
n-C4	0.0030	58.12	0.174	551	1.65	766	2.30
i-C5	0.0002	72.15	0.014	482	0.10	830	0.17
n-C5	0.0002	72.15	0.014	485	0.10	847	0.17
n-C6	0.0001	86.17	0.009	434	0.04	915	0.09
n-C7	0.0006	100.2	0.060	397	0.24	973	0.58
n-C8	0.0000	114.2	0.000	361	0.00	1024	0.0
N ₂	0.0224	28.02	0.628	492	11.02	227	5.08
CO ₂	0.0180	44.01	0.792	1072	19.30	548	9.86
H ₂ S	0.0352	34.08	1.200	1306	45.97	673	23.69
Total	1.000		19.28		698		379

1. The mixture molecular weight is 19.28 as calculated in the Table 2.3.

2. The specific gravity is 19.28/28.97 = 0.666

3. The reduced pressure and temperature without adjustment are

P_r= P/P_c=8500/698= 12.2

 $T_r = T/T_c = (350 + 460)/379 = 2.14$

From Figure 2-1 the Standing and Katz Z-factor is obtained to be 1.265. The results of calculated Z factor for other pressures are shown in Table 2.4 Table 2.4 Z factor at different pressure

P,	14.7	100	300	500	1000	4000	6000	8500
psia								
Z	1.000	1.000	0.989	0.983	0.972	1.016	1.114	1.265

The results in Table 2.4 show that the compressibility factors decreases with an increase of pressure until it reach a minimum at about 1,000 psia. The compressibility factor then increase with further increase of pressure. As indicated in the Table 2.4, the Z factors reduce from 1.000 to 0.972 at the pressure of 1,000 psia and then increase to 1.265 at 8,500 psia.

Chapter 3. Methodology

3.1 EsOS Selected for Evaluation

Among the EsOS described in Chapter 2, engineering groups such as the Gas Technology, Rotating Equipment, Flow Assurance, Reservoir Engineering SMEs and Aspen Technology Technical Support Professionals suggest that the highly popular and potential EsOS applicable in ultrahigh pressure compression simulation are GERG, BWRS, LKP, and PR models. (Colby, G. M., 1987) These four models are selected for simulation and evaluation. Table 3.1 gives a description of each of the EsOS analyzed. Stream component composition, temperature and pressure will be specified to match the experimental condition. By using different EOS in the simulator, the Z factor can be calculated. In addition, the computed compressibility factors (Z) from the four EsOS are compared with the experimental data obtained from a wide variety of sources (Mantilla, et al., 2010) and (Reamer, et al., 1951). Those data sources present P- ρ -T data for gases such as CO₂, N₂ and mixture measured with a highpressure single-sinker Magnetic Suspension Densimeter (MSD).(Hacum et al., 1988) The data covered different isotherms at different temperatures. The MSD technique yields data with less than 0.03 % relative uncertainty over the pressure range from 1,450 to 29,006 psia.

Table 3.1 Descriptions of 4 EsOS for This Research

Equation of State	Description
GERG-2008 (GERG) (2008)	This model was originally developed in Europe for their gas transmission industry and has been expanded to higher pressures and other gases.
	and Technology (NIST) have strongly endorsed its use. It is designed to provide high accuracy of typical natural gas components. The GERG-2008 is a standard (ISO-20765) international reference equation suitable for natural gas applications.
	It is considered to be very accurate but has not been widely implemented in commercial process simulators. Only one process simulator, Aspen Technology provides this EOS. (Aspen HYSYS 2014)
Benedict-Webb-Rubin- Starling (BWRS) (1940)	This model is commonly used for compression applications and studies. It is specifically used for gas phase components that handle the complex thermodynamics during compression and is useful for upstream and downstream industries.
	This EOS has been historically used by General Electric (GE) and Dresser Rand (D-R) for compressor calculations due to its greater accuracy in purely gas phase applications.
Lee-Kesler-Plocker (LKP) (1978)	This model is the most accurate general method for polar substances and mixtures.
	This EOS has been used by General Electric (GE) and Dresser Rand (D-R) compressor vendor for compressor calculations.
Peng Robinson (PR) (1976)	This model is ideal for Vapor Liquid Equilibrium (VLE) calculations and liquid densities for hydrocarbon systems. It is the most widely used EOS for the oil, gas and petrochemical industries as it describes the single, two or multiphase behavior accurately and reliably.

3.2 Selection of Process Simulator and Hydraulic Discharge Pressure

Process simulation through applicable software or models increases indepth knowledge for process industries and helps engineers to not only to plan the system successfully, but also create sustainable designs. However, not all process simulators are developed with similar applications. Many simulators also provide the dynamic simulation model as well as operator training model. In general, process simulators can provide insight into processes that:

- Optimizes process design, engineering, operational analysis and commissioning time which allows a process to become profitable sooner.
- Increases profit potential with advanced planning & scheduling applications that consider the different feedstock processing requirements and processing capabilities.
- Increases plant availability, monitors performance, and assists in troubleshooting operational issues, resulting in minimal downtime.
- Minimizes unplanned outages, it allows the workforce to adeptly deal with plant disturbances.

The most common usage includes the rigorous heat and material balance (H&MB) calculations. Typical equipment provided by simulator includes process reactor, separator, piping, reactors, distillation columns, heat exchanger, tank and pumps. Software typically includes chemical and physical properties components, mixtures, reactions, and mathematical models that allow a process model to be calculated by computers. In this study, the HYSYS simulator provided by Aspen was used to simulate the designed process system and the corresponding Z factor under the selected EsOS for comparison. Among the software available to the industries for the simulation of the material and energy balances of chemical processing plants, only the Aspen HYSYS 2012 simulator has the GERG-2008 EOS as a source of thermodynamic EOS. In other word, other simulators do not provide GERG EOS and will not be able to obtain the GERG EOS results. Furthermore, HYSYS is a worldwide available program. The cost is slightly higher than the other simulators but it is acceptable and reasonable.

Because of the density and molecular weight differences between CO_2 , natural gas, and N₂, the estimated compressor discharge pressure required to get into the reservoir is 9,000, 14,000 and 12,000 psia respectively. The reservoir pressure is about 20,000 psia. At those ultrahigh pressure conditions, the compressibility factor (Z), is a useful thermodynamic property for modifying the ideal gas law to account for the real gas behavior. The calculated compressibility factor (Z) from the different EsOS at different pressure, temperature and composition are compared with experimental data to evaluate the accuracy and capability of the EsOS.

3.3 Steps in Developing Aspen HYSYS Model.

Steps in developing the Aspen's HYSYS model for this study are listed as below.

1. Select the units to work with, e.g., specify the popular English unit used in USA such as pounds for weight, psia for pressure and ^oF for temperature.

2. Select the thermodynamic EsOS to be used for predicting physical properties. The EsOS include GERG, BWRS, LKP, and PR models.

3. Specify the chemical species and component mole fraction that are present in the process. This includes all hydrocarbon and impurities such as N_2 , CO_2 and H_2S .

4. Specify the process conditions such as pressure, temperature and flow rate.

5. Build the model by adding streams and equipment one at a time. This includes different streams and equipment such as separator, compressor, pump, heat exchanger and distillation tower.

6. Add recycle loops, to take care the gas breakthrough from reservoir.

7. Use the HYSYS utilities to get additional information such as the mechanical design of distillation column trays or hydrate prediction.

8. Run the model. Print necessary reports which are the results of the simulation. This includes the streams properties, equipment data sheet and Heat and Material Balance (H&MB).

3.4 Offshore Oil/Gas Production and EOR Gas Injection

The individual module process flow diagram (PFD) and overall simulation PFD used for simulation are presented as in Figure 3.1 to Figure 3.7. Figures 3.1, 3.2 and 3.3 provide the configurations of different compressor schemes including the flash gas compressor (FGC), the booster gas compressor (BGC), and injection gas compressor (IGC) configuration. Typically, in one stage of

compression, with the compressor, it also includes the suction drum to remove any liquids to protect the compressor and the compressor discharge cooler to cool down the gas to prevent the damage of the compressor seal gas system. Multiple stages of compression which include FGC,BGC and IGC, are required to compresses the gas from very low pressure (about 30 psia, 15 psig) to ultrahigh pressure (12,000 psia or 11,985 psig).

There are 2, 2 and 3 stages respectively for FGC, BGC and IGC systems depending on the compressor compression ratio (discharge pressure/suction pressure) required. Typical centrifugal compressor compression ratio is limited about 3 (between 2 to 4) depending on the heat capacity ratio. One of the N₂ simulation cases shows that FGC used two stages to compress from 27.6 Pisa to about 118.9 psia. BGC also used two stages to compress from 109.6 psia to about 1,115.1 psia. After the gas dehydration, the IGC needs to use three stages to compress from 1,096.2 psia to about 12,000 psia (Figure 3.3). Because the critical pressures of the CO₂, N₂ and methane (close to natural gas) are 1,070.0 psia, 492.8 psia and 667.0 psia respectively, the IGC compression basically occurs in the dense phase. Some of the inputs and outputs such as stream properties, equipment data sheet and H&MB from the HYSYS simulations are provided in the appendix C.

Figure 3.1 Offshore 2 Stages Flash Gas Compressor (FGC)

Figure 3.3 Offshore 3 Stages Injection Gas Compressor (IGC)

The simulation module for oil production and oil pump out is shown in Figure 3.4. Basically, to carry out the simulation, the system includes a series of three phase separator (Hydrocarbon gas, liquids (oil) and water), heat exchangers and pumps. Oil required pump to increase the pressure for shipping purpose. Water production and disposal including water treatment can be simulated with separator, filter and hydrocarbon removal unit as illustrated in Figure 3.5.

Figure 3.4 Offshore Oil Production Facilities

Figure 3.5 Offshore Water Production and Treatment

There are vent gases that come out from very low pressure separator, storage tank or water treating facilities. These gases are collected by the vent gas system and then compressed by the Vapor Recovery System (VRS) as shown in Figure 3.6. This system includes the suction drum and compressor but no discharge air cooler because of the low compression ratio.

Figure 3.6 Offshore Vapor Recovery System (VRS)

The overall simulation PFD, which includes all those modules in Figure 3.1 to 3.6 is in Figure 3.7. The simulation PFD given in this figure represents a complete system for offshore oil/ gas production and EOR gas injection.

Figure 3.7 Offshore Overall Simulation Process Flow Diagram

Chapter 4. Results

For EOR applications, the composition of the produced gas can vary significantly from pure hydrocarbon gas before the breakthrough of injection gas to very high concentrations (80%+) of the injection gas (CO_2 , N_2 , or natural gas) in the later year of the EOR operation. To examine the effect of injection gas on the process of EOR operation in terms of the use of identified EsOS, the following basis in the simulations were considered.

- Evaluation considerations included pure CO₂, pure N₂, and hydrocarbon/ injection gas (CO₂ or N₂, natural gas) mixtures over a wide range of temperatures 77 °F to 350 °F and pressures 200 psia to12, 000 psia.
- Mixtures of C₃H₈/CO₂ (C₃/CO₂), C₂H₆/CO₂ (C₂/CO₂), and C₂H₆/N₂ (C₂/N₂) were selected as proxy for the gas stream. Molecular Weight (MW) similarity is the basis (Staby et al,1991).
- The dimensionless compressibility factors (Z) using each of the identified four EsOS was computed to compare to the experimental data (Brugge,1997).

4.1 Z Factor for Different EsOS Comparison

The computed compressibility factors (Z) were compared to experimental data obtained from a wide variety of sources (Mantilla et al., 2010) and (Reamer et al., 1951) to evaluate the accuracy of the identified EsOS models. Figures 4.1 through 4.17 show the comparisons of the experimental data to EOS predictions for pure CO₂, pure N₂, propane (C₃)/CO₂ mixtures, ethane (C₂)/CO₂ mixtures, and ethane (C₂)/N₂ mixtures over a wide range of temperatures and pressures.

Considering the pure CO₂ as the injected gas, the variations of compressibility factor versus gas pressure from the EsOS of GERG, BWRS, LKP and PR for a temperature of 98 °F are presented in Figure 4.1. The results for pure CO₂ but under a higher temperature consideration, i.e. 350 °F are given in Figure 4.2. The pressure range for results in Figure 4.1 covers from 300 psia to 11,000 psia. For case shown in Figure 4.2, the pressure ranges from 700 psia to 11,000 psia. The measured data are also included in Figures 4.1 and 4.2 for comparisons. (Hwang et al.,1997). From Figures 4.1 and 4.2, we notice that GERG associated EOS can produce the most accurate results. The BWRS and LKP are slightly less accurate in predictions, while the PR is the least accurate model.

For the cases of pure N₂, the computed compressibility factors are plotted versus gas pressure in Figures 4.3, 4.4 and 4.5 respectively for the conditions of T=77 °F,1,450 psia≤ P≤ 12,000 psia; T=170 °F,400 psia≤ P≤ 11,000 psia; T=260 °F,150 psia≤ P≤ 11,600 psia. The gathered data are also included in those figures for comparisons. The results indicate again that GERG produces the most accurate solutions. The LKP also gives good results when compared to the data while the BWRS and PR results are deviated from the data. Furthermore, as indicated in Figures 4.3, 4.4 and 4.5 the compressibility factors for pure N₂ get larger as the pressure get higher. However as in Figures 4.1, and 4.2, the compressibility factors firstly show the decreasing trend then increase with further increase of pressure. For example, in Figure 4.2 the compressibility factors decreases as pressure increase from 700 psia to about 3,800 psia.

compressibility factor reversely shows the increasing trend as pressure increase from 3,800 psia to 11,000 psia.

Figure 4.1 Compressibility Factor for Pure CO₂ at 98 °F

Figure 4.2 Compressibility Factor for Pure CO2 at 350 $^{\circ}\text{F}$

Figure 4.3 Compressibility Factor for Pure N_2 at 77 $^{\circ}\text{F}$

Figure 4.4 Compressibility Factor for Pure N_2 at 170 $^{\circ}\text{F}$

Figure 4.5 Compressibility Factor for Pure N_2 at 260 $^{\circ}\text{F}$

Figures 4.6 and 4.8 present respectively the results of compressibility factors for the case of 20% $C_3/80\%$ CO₂ and 80% $C_3/20\%$ CO₂. The results in Figure 4.6 show that the compressibility factors decreases with an increase of C_3 /CO₂ pressure until it reach a minimum at about 1,200 psia. The compressibility factors then increase with further increase of pressure. Figures 4.8 reveals similar variation trend of compressibility factor as in Figure 4.6, however, the Z factor approaches a minimum when gas pressure reaches about 500 psia. For these relatively low temperature cases at 100 °F, the GERG results fit best to the data. In general, the BWRS and LKP also give reasonable predictions. The PR model produces the results with largest errors.

When the temperature increases to 340 °F, the variations of compressibility factor for 20% C₃/80% CO₂ and 80% C₃/20% CO₂ are presented in Figure 4.7 and 4.9 respectively . For the case of 20% C₃/80% CO₂ (Figure 4.7), GERG and LKP produce similar results, which fit best to the data. BWRS results are under predicted. For the case of 80% C₃/20% CO₂ (Figure 4.9), the results obtained from GERG, BWRS and LKP are similar and fit well with the data. For both cases, PR results are least accurate.

Figure 4.6 Compressibility Factor for 20% C3/80% CO2 at 100 $^{\circ}\text{F}$

Figure 4.7 Compressibility Factor for 20% C3/80% CO2 at 340 $^{\circ}\text{F}$

Figure 4.8 Compressibility Factor for 80% $C_3\!/20\%$ CO_2 at 100 $^\circ\text{F}$

Figure 4.9 Compressibility Factor for 80% C₃/20% CO₂ at 340 °F

For the pressure range from 200 psia to 10,000 psia, considering C_2/CO_2 , but changing the mixture to make it different from the results given in Figure 4.6 to 4.9, the cases with 33% C2/67% CO2 and 67% C2/33% CO2 were also investigated. The computed compressibility factors are presented in Figure 4.10 to 4.13. For the ethane (C₂)/ CO₂ mixtures at 100 °F (Figures 4.10 and 4.12), the LKP and BWRS were the most accurate with the GERG giving slightly overestimated results. The PR has the least accuracy of all the EsOS tested. However, at 340 °F (Figures 4.11 and 4.13), the LKP is the most accurate model. The GERG and the BWRS are slightly less accurate in calculation, while the PR was the least accurate model.

For the ethane (C₂)/ N₂ mixtures at 100 °F, the results of compressibility factors are presented in Figures 4.14 for the 27% C₂/73% N₂ case and Figure 4.16 for 73% C₂/27% N₂ case. Overall it is noted that GERG, LKP, and BWRS can produce reasonable results when compared to the experimental data. Again the PR model fails to provide good results.

Similar to the ethane (C₂)/ N₂ mixtures tested in Figures 4.14 and 4.16 but increasing the temperature to 340 °F , the results of compressibility factors are presented in Figures 4.15 for the 27% C₂/73% N₂ case and Figure 4.17 for 73% C₂/27% N₂ case. Basically the GERG, BWRS and LKP models generate similar results and fit reasonably well with data, although the LKP gives the best fitted results. The PR results however are deviated away from the data and cannot produce reasonable estimation of the compressibility factor under the cases of C2/N2 mixture.

Figure 4.10 Compressibility Factor for 33% $C_2/67\%$ CO₂ at 100 °F

Figure 4.11 Compressibility Factor for 33% $C_2\!/67\%$ CO_2 at 340 oF

Figure 4.12 Compressibility Factor for 67% C₂/33% CO₂ at 100 °F

Figure 4.13 Compressibility Factor for 67% $C_2/33\%$ CO2 at 340 $^{\circ}\text{F}$

Figure 4.14 Compressibility Factor for 27% $C_2\!/73\%$ N_2 at 100 $^\circ F$

Figure 4.15 Compressibility Factor for 23% $C_2/73\%$ N_2 at 340 °F

Figure 4.16 Compressibility Factor for 73% $C_2\!/27\%$ N_2 at 100 $^\circ\text{F}$

Figure 4.17 Compressibility Factor for 73% $C_2\!/27\%$ N_2 at 340 $^\circ\text{F}$

In summary, from Figures 4.1 to 4.5, it is evident that for pure CO_2 and pure N_2 cases, all the equations of states (EsOS) tested represent the data very well when pressures is less than 1,000 psia and below. However, when the pressure increases to above 1000 psia (e.g., between 1,000 to 12,000psia) the GERG can provide the most accurate predictions when compared to the experimental data. The LKP and BWRS are slightly less accurate, and the PR was the least accurate EOS in estimating the compressibility factors. Furthermore, for the pure N_2 case, the Z factor increase when the pressure increase. For the pure CO_2 case, the Z factor actually reduce it value first to a minimum and then increase with the pressure. The Standing-Katz Z factor chart has shown the similar pattern. Nevertheless, the gas going to the production platform for injection purpose in general will contain different components and may not be pure CO_2 , Natural gas or N_2 . Therefore most of the EOR injection gas will have the similar pattern as CO_2 .

For the hydrocarbon/CO₂ and hydrocarbon/N₂ mixtures (Figures 4.6 to 4.17) at the pressure range of 1,000 psia and below, the four EsOS – GERG, LKP, BWRS and PR can generally provide good estimation of compressibility factors. Relatively, the results from GERG, LKP and PR fit better to the data. For 1,000 to12,000 psia pressure ranges at 100 °F, the GERG generally give the most accurate results and compare well with the experimental data. The LKP and BWRS also give good predictions while the PR model produces the results with the largest error. Between 1,000 and 12,000psia at 340°F the LKP prove to give the most accurate representation of the experimental data. The results from

GERG and BWRS are reasonable but not as accurate as those from LKP. The PR is identified again as the least accurate EOS.

For N₂ as the injection gas, some of the Z factor average deviations are plotted for comparison purpose. For the 27% C₂/73% N₂ case at different temperature of 100 °F, 220 °F and 340 °F, the compressibility factor average deviation percentage versus the pressure is plotted in Figure 4.18. It is evident that the GERG produce the most accurate representation of the experimental data and as a result has the lowest deviation which is less than 1.00% even at high pressure region. The results from LKP and BWRS are slightly less accurate but in the acceptable range, and the PR is the least accurate EOS with some absolute deviation reach nearly 9.0%. Especially, for the temperature of 340 °F and at high pressure condition above 5,000 psia, the PR has the error greater than about 4.5%. For compressor simulation and actual compressor operation, the compressor discharge temperature could reach 340 °F. In other word, using the PR EOS actually could under estimate the design duty requirement for all discharge cooler.

Figure 4.18 Z factor average deviation for 27% C2/73% N2 mixture

4.2 Impact of Different EsOS on the FGC, BGC and IGC.

From study presented in previous section (section 4.1) we note that GERG, BWRS and LKP models generally produce similar and more accurate results in compressibility factor. However the PR model in most cases gives poor prediction. The horsepower of compressor and cooling duty actually reflect directly the cost impact. It would be interested in examining the difference of horsepower and cooling duty outputs from FGC, BGC and IGC by using one of the EOS from GERG, BWRS and LKP models against the PR EOS. However, the GERG was not selected as it was not available for the complicated operation such as compressor and recycle loop unit operation in HYSYS simulator. Rather the LKP EOS was selected together with PR EOS to examine the compressor and cooling duty impact. The compressor power computed from LKP and PR EsOS for each stage of FGC, BGC and IGC are summarized in Table 4.1. The more accurate LKP EOS estimates the required total power as 68,310 horse power (HP). However the less accurate PR EOS predicts the total power of 64,620 HP which is underestimated by 5.4%.

	FGC 1 st	FGC 2 nd	BGC 1 st HP	BGC 2 nd	IGC 1 st HP	IGC 2 nd HP	IGC 3 rd HP	Total HP,
	HP	HP		HP				IGC
PR EOS	37	59	15,870	15,050	19,350	21,550	23,720	64,620
LKP EOS	37	59	15,870	15,050	19,710	22,510	26,090	68,310
% Shortage	0.0%	0.0%	0.0%	0.0%	1.8%	4.3%	9.1%	5.4%

Table 4.1 Compressor Horsepower Required by PR and LKP EOS

For the cooling duty, the results from LKP and PR EsOS for each stage of FGC, BGC and IGC are presented in Table 4.2. The LKP EOS estimates the required total cooling duty of 176.9 MMBTU/Hr. However the PR EOS predicts the total cooling duty of 171.2 MMBTU/Hr. which is underestimated by 3.2%. Therefore it is critically important to select the most accurate EOS for engineering design.

Duty in MMBtu/Hr.	FGC 1 st Duty	FGC 2 nd Duty	BGC 1 st Duty	BGC 2 nd Duty	IGC 1 st Duty	IGC 2 nd Duty	IGC 3 rd Duty	Total Duty IGC
PR EOS	0.5	57.0	50.2	46.8	67.4	60.0	43.8	171.2
LKP EOS	0.5	57.0	50.2	46.8	68.9	62.0	46.0	176.9
% Shortage	0.0%	0.0%	0.0%	0.0%	2.1%	3.2%	4.8%	3.2%

Table 4.2 Compressor Discharge Cooler Duty Required by PR and LKP

Higher duties mean larger equipment which required larger platform. For a multiple billion dollar offshore EOR project, the cost impacts due to the difference of estimated total compressor horsepower and cooling duty can be very high ,e.g., in the multiple million dollar range. Furthermore, as seen in the comparison results, it is recommended to not only use the LKP EOS for design purposes. It is also recommended that a 10% process margin as minimum which is an industry standard to account for the uncertainties MUST be added. Please note that this is not including the mechanical margin that manufacture implemented.

Chapter 5. Conclusions, Recommendation and Further Research.

5.1 Conclusions

Offshore EOR in deep water is one of the ways to go for next decade to produce oil. Today many operations are deeper than 7,000 feet of water. Massive production platforms are required. By using EOR, 30 to 60 % or more of the reservoir's original oil can be extracted compared with 20 to 40 % using the primary and secondary recovery methods. The study reservoir pressure is about 20,000 psi. Because of the density and molecular weight differences between CO2, natural gas, and N2, the estimated compressor discharge pressure required to get into the reservoir is 9,000, 14,000 and 12,000 psia respectively.

An engineering design starts with EOS selection. An EOS that can adequately model the PVT and calculations at ultra-high pressure nearly 12,000 psi is required to do the offshore EOR simulation. GERG, BWRS, LKP, and PR four EsOS are selected for simulation and evaluation. By using different EOS in the simulator, the Z factor can be calculated. In addition, the computed compressibility factors (Z) from the four EsOS are compared with the experimental data in order to evaluate the accuracy of the related EOS. For this study, the HYSYS simulator has been selected to simulate the designed process system.

It is evident that for pure CO2 and pure N2 cases, all the equations of states (EsOS) tested represent the data very well when pressures is less than

1,000 psia and below. However, when the pressure increases to above 1000 psia (e.g., between 1,000 to 12,000 psia) the GERG can provide the most accurate predictions. The LKP and BWRS are slightly less accurate, and the PR was the least accurate EOS in estimating the compressibility factors.

For the hydrocarbon/CO2 and hydrocarbon/N2 mixtures at the pressure range of 1,000 psia and below, the four EsOS – GERG, LKP, BWRS and PR can generally provide good estimation of compressibility factors. For 1,000 to 12, 000 psia pressure ranges at 100 °F, the GERG generally give the most accurate results and compare well with the experimental data. The LKP and BWRS also give good predictions while the PR model produces the results with the largest error. Between 1,000 and 12,000psia at 340°F the LKP prove to give the most accurate representation of the experimental data. The results from GERG and BWRS are reasonable but not as accurate as those from LKP. The PR is identified again as the least accurate EOS.

This study finds that overall the GERG produces the most accurate representation of the experimental data and as a result has the lowest deviation which is less than 1.00% even at high pressure region. The results from LKP and BWRS are slightly less accurate but in the acceptable range, and the PR is the least accurate EOS with some absolute deviation reach nearly 9.0%. The required horsepower of a compressor and cooling duty actually reflect directly the cost impact. The LKP EOS was selected together with PR EOS to examine the compressor and cooling duty impact. The more accurate LKP EOS estimates the required total horsepower (HP) of a system designed for the power requirement

study to be 68,310 HP. However the less accurate PR EOS predicts 64,620 HP as the required total compressor power which is underestimated by 5.4%. The LKP EOS estimates the required total cooling duty of 176.9 MMBTU/Hr. However the PR EOS predicts the total cooling duty to be 171.2 MMBTU/Hr. which is underestimated by 3.2%. Therefore it is critically important to select the most accurate EOS for engineering design. Higher duties mean larger equipment which required larger platform. For a multiple billion dollar offshore EOR project, the cost impacts due to the difference of estimated total compressor horsepower and cooling duty can be very high,e.g., in the multiple million dollar range.

5.2 Recommendations.

It is interesting to note that the Peng Robinson EOS (PR-EOS), although is widely used in the oil, gas and petrochemical industries due to its capability of describing in general the single, two or multiphase behaviors reasonably well, is not the EOS to be used for ultrahigh pressure compression application because the Z factor deviation could reach as high as 9% and the required compressor power could be underestimated. After evaluating the compressibility factor predictions over the wide range of temperatures and pressures as presented in this study it is recommended that for low pressure system and up to 1,000 psia two EsOS – LKP and PR which predict the experimental data well and can be used for the simulations of production operations. In fact, nowadays, many companies prefer the use of PR for oil and gas simulation purpose. GERG is considered to be very accurate but has not been widely implemented in

commercial process simulators. Only one process simulator HYSYS provides this EOS.

For the consideration of high pressure system from 1,000 and Up to 12,000 psia, the LKP would be suggested for the simulations of the operating systems (primarily gas compression). The LKP is selected over the GERG because:

- a. The LKP predicts the compressibility factors of pure CO₂, pure N₂, hydrocarbon/CO₂, hydrocarbon/N₂ at 100° F fairly well,
- b. The LKP gives the best prediction of the compressibility factors of the hydrocarbon/CO₂, hydrocarbon/N₂ mixtures at 340°F, and
- c. The GERG has not been implemented in most commercial simulators.

For simulations using different EOS package, at appropriate sections of the simulation, a "stream cutter" or "EOS cutter" could be inserted to transform the properties of a stream in a given EOS package to another EOS. The results of the initial implementation of this concept have been accepted as satisfactory for design. Furthermore, as seen in the comparison results, it is recommended to use the LKP EOS for design purposes. It is also suggested that a 10% process margin as minimum which is an industry standard to account for the uncertainties in the EOS MUST be added. It should be noted that this does not include the mechanical margin that manufacture implemented.

5.3 Further Research

The GERG EOS is the newest and only available in 2008. It provides 21 pure components for binary mixture combination. The fact is that the National

Institute of Standards and Technology (NIST) have strongly endorsed the usage of GERG especially for the gas industry. It is considered to be very accurate but has not been widely tested and implemented in commercial process simulators. Only one process simulator, Aspen Technology HYSYS provides this EOS. However, there are some computational related issues need to be resolved to make this EOS more flexible. In contrast, the most popular EOS is PR model which is fully developed and available for the industry since 1976. Most of the simulators providers have the PR EOS available for selection. However, this study proves that under the ultrahigh pressure conditions, the PR EOS fails to provide good estimations on compressibility factor and compressor power for systems especially with hydrocarbon/CO₂ and hydrocarbon/N₂ mixtures. Further research on the PR EOS should be carried out to define the limitation of the model. In addition, more research on improving the implementation capability of the GERG model should be considered. As the technology advanced, the computer system with better and faster computational capability and with more robust data bank from HYSYS model for GERG, further study to use the GERG model for more process simulations and testing is recommended. More comparisons between LKP and GERG on the actual design calculations are required to further define the design capabilities of the LKP and GERG models and to potentially reduce the design margin.

References

- Aleksandrov, I. S., Gerasimova, A. A., and Grigor, B. A. (2011). "Using Fundamental Equations of State for Calculating the Thermodynamic Properties of Normal Undecane", *Thermal Engineering*, Vol. 58(8), pp. 691–698.
- American Petroleum Institute (API) (2005). <u>Technical Data Book</u>, 7th edition, by EPCON International Houston Texas.
- Aspen Tech (2011). <u>Aspen HYSYS Simulation Basis Guide Documentation</u>, pp. A-2 to A-4.
- Benedict, M., Webb, G. B., and Rubin, L. C. (1940). "An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures: I.
 Methane, Ethane, Propane, and n-Butane", *Journal of Chemical Physics*, Vol. 8(4), pp. 334–345.

British Petroleum (BP) company website (2014).

http://www.bp.com/en/global/corporate/about-bp/bp-worldwide/bp-inamerica/our-us-operations/exploration-and-production/deepwater-gulf-ofmexico.html

- Brugge, H. B., Holste, J.C., Hall, K. R., Gammon, B. E., and Marsh, K. N. (1997). "Densities of Carbon Dioxide+ Nitrogen from 225 K to 450 K at Pressures up to 70 MPa", *Journal of Chemical Engineering Data*, American Chemical Society, Vol. 42, pp. 903-907.
- Colby, G. M. (1987). "Hydraulic Shop Performance Testing of Centrifugal Compressors- Hydrocarbon Versus Inert Gas", International Mechanical

Engineering Congress & Exposition (IMECE) proceedings Paper Number CI 02/87, pp. 1-8.

- Costain Energy & Process (2005). "Pre-Separation (Triple Column): Nitrogen Rejection from Natural Gas", Presented at GPA, 24 page power point presentation., pp14 and 21.
- Edmister, W. C. and Lee, B. I. (1984). <u>Applied Hydrocarbon Thermodynamics</u>, Volume I, Second Edition , Houston, Texas, Gulf Publishing Company, pp 36-47.
- Electric Power Research Institute, Palo Alto, CA (1999). "Enhanced Oil Recovery Scoping Study", Final Report, No. TR-113836.
- Elliot, D., Kuo, J.C., and Nasir, P. (2008). <u>Plant Processing of Natural Gas</u>, University of Texas Continuing Education Petroleum Extension Service, Austin, Texas, pp. 146 -152.
- Finn, A.J. (2007). "Adrian Finn, Costain Oil, Gas & Process, UK, Discusses the Cryogenic Removal of Nitrogen from Natural Gas," *Hydrocarbon Engineering*, pp. 49-51.
- Gas Processors Suppliers Association (2011). <u>GPSA Engineering Data Book</u>, Volume 2, Tulsa, Oklahoma, pp. 13-1 to 13-46.

Hacurn, A., Yoon, J. H., and Baglin, F. G. (1988). "Density Values of Carbon Dioxide and Nitrogen Mixtures from 500 to 2500 Bar at 323 and 348 K", *Journal of Chemical Engineering Data*, American Chemical Society, Vol. 33, pp.152-154.

Hahn, P.R., Richie, P.D., Yao, J., Lee, R.J., Eaton, A.P., and Low, W.R. (2007). "LNG System with Warm Nitrogen Rejection", U.S. Patent 7,234,322.

- Hamad-Allah S. M, and Reshag, M. N. (2010). "Calculation of Volumetric and Thermodynamic Properties for Pure Hydrocarbons and Their Mixtures Using Cubic Equations of State, Journal of Engineering, Vol. 16(1), pp. 4707-4725.
- Henley, E. J. and Seader, J. D. (1981). <u>Equilibrium-Stage Separation</u> <u>Operations in Chemical Engineering</u>, John Wiley and Son, New York, New York, pp.147-157.
- Hwang, C. A., Iglesias-Silva, G. A., Holste, J.C., Hull, K. R . Gammon, B. E., and Marsh, K. N. (1997). "Densities of Carbon Dioxide+ Methane Mixtures from 225 K to 350 K at Pressures up to 35 MPa", Journal of Chemical Engineering Data, American Chemical Society, Vol. 42, pp. 897-899.
- Jones, S., Lee, R., Evans, M., and Chen, R. (1999). "Simultaneous Removal of Water and BTEX from Feed Gas for a Cryogenic Plant", Proceedings of the Seventy-Eighth Annual Convention of the Gas Processors Association, Tulsa, OK, pp.1-6.
- Kiselev, S. B., Ely, J. F., Abdulagatov, M., Bazaev, A. R., and Magee, J. W. (2002). "Equation of State and Thermodynamic Properties of Pure Tolueneand Dilute Aqueous Toluene Solutions in the Critical and Supercritical Regions", *Ind. Eng. Chem. Res.*, Vol. 41, pp. 1000-1016.

- Kumar, S. K., Kurz, R., and O'Connell, J.P. (1999). "Equations of State for Gas Compressor Design and Testing", ASME Paper Number 99-GT-12, pp.1-10.
- Kunz, O., Klimeck, R., and Wagner, W. (2007). "The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures", GERG TECHNICAL MONOGRAPH 15, pp. 12-16 and pp. 193-198.
- Larino, J. (2014). "BP, Chevron Strike Oil at Major Deep-Water Gulf of Mexico Prospect Site", NOLA.com, website:

http://www.nola.com/business/index.ssf/2014/10/chevron_bp_strike_oil_at _major.html

- Lee, B. I. and Kesler, M.G. (1975). "A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States", *AIChE Journal*, Vol. 21(3), pp 510-527.
- Li, C., Jia, W., and Wu X. (2012). "Application of Lee-Kesler Equation of State to Calculating Compressibility Factors of High Pressure Condensate Gas", *Energy Procedia*, Vol. 14, pp. 115-120.
- Low, W.R., Yao, J., (2000). "Nitrogen Rejection System for Liquefied Natural Gas," U.S. Patent 6,070,429.
- Mantilla, I. D., Cristancho, D. E., Ejaz, S. and Hall, K. R. (2010a). "P-p-T Data for Carbon Dioxide from (310 to 450) K up to 160 MPa", *Journal of Chemical Engineering Data*, American Chemical Society, Vol. 55, pp. 4611–4613.

Mantilla, I. D., Cristancho, D. E., Ejaz, S. and Hall, K. R. (2010b). "New P-p-T Data for Nitrogen at Temperatures from (265 to 400) K at Pressures up to 150 MPa", *Journal of Chemical Engineering Data*, American Chemical Society, Vol. 55, pp. 4227–4230.

Math/Science Nucleus. (2014) Non-profits organization <u>www.msnucleus.org</u>.

- McKenzie, D. and Brown, B. D. (1997). "Actual Operating Experience with a New NRU Unit", 76th Annual GPA Convention, San Antonio, Texas, March 10-12, pp. 1-4.
- Membrane Technology and Research, Inc. (1999). "Nitrogen Removal from Natural Gas," Phase II Draft Final Report to U.S. Department of Energy, Contract Number DE-AC21-95MC32199-02.
- Millward, R. J. and Dreaves, B. (2004). "A boost from N2 rejection", Hydrocarbon Engineering, July issue, pp. 1-4.
- Mushrif S. H. (2004). <u>Determining Equation of State Binary Interaction</u> <u>Parameters Using K- and L Points</u>, Master Thesis, University of Saskatchewan, Saskatchewan, Canada.
- National Oceanic and Atmospheric Administration, Office of Ocean Exploration and Research (2010). "Types of Offshore Oil and Gas Structures", NOAA Ocean Explorer: Expedition to the Deep Slope.
- Obrien, J. V. (2004). "Separating Nitrogen from Methane in the Production of LNG", U.S. Patent 6,758,060.
- Pahade, R.F., "Process to separate Nitrogen from Natural Gas," U.S. Patent 4,501,600, 1985.

- Pahade, R. F., Maloney, J.J. (1991). "Feed Processing for Nitrogen Rejection Unit", U.S. Patent 5,051,120.
- Peng, D. Y. and Robinson, D. B. (1976). "A New Two-Constant Equation of State", Industrial Engineering Chemistry Fundamentals, American Chemical Society, Vol. 15(1), pp. 59-64.
- Pervier, J. W., Vines, H. L., Marano, V., and Patterson, M. A. (1983). "Nitrogen Rejection from Natural Gas," U.S. Patent 4,411,677.
- Pratt, R. M. (2001). Thermodynamic Properties Involving Derivatives sing the Peng-Robinson Equation of State. ChE Division of ASEE, pp. 112-115.
- Plocker, U., Knapp, H., and Prausnitz, J. (2002). "Calculation of High-Pressure Vapor-Liquid Equilibria from a Corresponding States Correlation with Emphasis on Asymmetric Mixtures", American Chemical Society, *Industrial Engineering Chemistry Process Design and Development*, 17(3), pp. 324-332.
- Reamer, H. H., Sage, B. H., and Lacey, W. N. (1945). "Phase Equilibria in Hydrocarbon Systems – Volumetric and Phase Behavior of the Ethane-Carbon Dioxide System", *Ind. and Eng. Chem.* Vol. 37(11), pp. 688-691.
- Reamer, H. H., Sage, B. H., and Lacey, W. N. (1951). "Phase Equilibria in Hydrocarbon Systems – Volumetric and Phase Behavior of the Propane-Carbon Dioxide System", *Ind. and Eng. Chem.*, Vol. 43 (11), pp. 2515-2520.

- Reamer, H. H., Sage, B. H., and Lacey, W. N. (1952). "Phase Equilibria in Hydrocarbon Systems – Volumetric and Phase Behavior of the Ethane-Nitrogen System", *Ind. and Eng. Chem.*, Vol. 44(1), pp198-201.
- Reid, R. C., Prausnitz, J. M., and Poling, B. E. (1987). <u>The Properties of Gases</u> <u>and Liquids</u>, Fourth Edition, McGraw-Hill, New York, New York, pp. 2-6 and pp. 26-42.
- Robert, C. R. (2001). <u>The Properties of Gases and Liquids</u>, McGraw-Hill Book Company, New York, New York, Table 8.
- Sandberg, M.R. (2005) "Equation of State influences on compressor performance determination" Proceedings of 34th Turbomachinery Symposium, pp121-129.
- Smith, J. M., Van Ness, H. C., and Abbott, M. M. (1996). <u>Introduction to</u> <u>Chemical Engineering Thermodynamics</u>, 5th Edition, McGraw-Hill, New York, New York.
- Staby, A. and Mollerup, J. M. (1991). "Measurement of the Volumetric Properties of Nitrogen-Methane-Ethane Mixture at 275, 310, und 345 K at Pressures to 60 MPa", *Journal of Chem. Eng. Data*, American Chemical Society, Vol. 36, pp. 89-91.
- Swallow, B. R. (1983). "Process to separate Nitrogen from Natural Gas," U.S. Patent 4,415,345.
- Taber, J. J., Martin F. D. and Seright, R. S. (1996). "EOR Screening Criteria Revisited", SPE/DOE 35385, Proceedings of SPE/DOE 10th Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April. 21-24, pp 387-415.

- Wagner, W. (2014). "Reference Equations of State GERG-2004 and GERG-2008 for Natural Gases and Other Mixtures", Ruhr University at Bochum Germany, University website.
- Wagner, W., Thol, M. (2013). "The behavior of IAPWS-95 at Temperatures from 250 K to 300 K and Pressures up to 400 MPa. Journal. Phys. Chem.
 Ref. Data, The International Association for the Properties of Water and Steam (IAPWS), pp 5-7.
- Watts, K. (2014). "50 Billion Barrels of Oil Waiting for EOR in Offshore Areas?",
 Business Development for Linde group.
 http://www.offshoreenergytoday.com/50-billion-barrels-of-oil-waiting-for-eor-in-offshore-areas/
- Wu, Y. and Chen B. (2003). "The Application of BWRS Equation in Calculating the Thermo-physical Properties of Natural Gas", OGST, Vol. 22 (10), pp. 16-21.

Appendices

Appendix A. Procedure of Using Equation of State to Determine the Thermodynamic Properties Containing Derivatives (Pratt, 2001)

Summarized below is a procedure and applied examples presented by Pratt (2001) for the determination of thermodynamic properties involving derivatives, such as $(\partial P / \partial V)_T$, $(\partial T / \partial P)_V$, and $(\partial V / \partial T)_P$, using the formulation of equation of state. This calculation procedure provides a useful and simple tool for engineers to use in their design and process analyses. To demonstrate the methods, Pratt (2001) adopted Peng-Robinson (PR) EOS applied to a binary vapor hydrocarbon mixture.

The PR EOS as described in Chapter 2 is written as

$$P = \frac{RT}{V-b} - \frac{a}{V(V+b) + b(V-b)} ,$$
 (A1)

where

R = universal gas constant T = absolute temperature V = molar volume $a = a_c \left[1 + m \left[1 - \sqrt{T/T_c}\right]\right]$ $a_c = 0.45723553 R^2 T_c^2 / P_c$ $m = 0.37464 + 1.54226 \omega - 0.26992 \omega^2$ $b = 0.077796074 RT_c / P_c$
As an example, Pratt (2001) considered a binary vapor mixture of n-butane and n-pentane at 390 °K and 11 bar where 35.63 mole % is n-butane. The critical properties for the two components indicated above are given in Table A.1 (Smith et al., 1996).

Table A.1		
Critical Property	y Data for n-butane and	n-pentane
	n-butane	n-pentane
T _c (°K)	425.1	469.7
P _c (bar)	37.96	33.7
ω	0.200	0.252

For convenience, the PR EOS can be written in a cubic polynomial form for the compressibility factor Z = PV/RT as

$$f(Z) = Z^3 + \alpha Z^2 + \beta Z + \gamma = 0, \tag{A2}$$

where

 $\alpha = B - 1$ $\beta = A - 2 B - 3B^{2}$ $\gamma = B^{3} + B^{2} - AB$ and

 $A = aP/(RT)^2$

B = bP / RT

Under the case of an N-component fluid with composition, { w_i }, the mixture parameters, a and b, can be calculated from the following empirical formula

$$a = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \sqrt{a_i a_j} (1 - k_{ij}) \text{ and } b = \sum_{i=1}^{N} w_i b_i$$
 (A3)

In principle, the binary interaction coefficient, k_{ij} , is exactly zero for i = j and k_{ij} is close to zero for hydrocarbons when $i \neq j$. It is therefore reasonable to take $k_{ij} = 0$. From Eq. (A1), we have the pure component parameters using R=83.14 cm³-bar/mol-K as

$$\begin{array}{ll} a_1 = 15911115 \ cm^6 \ bar/mol^2 & a_2 = 23522595 \ cm^6 \ bar/mol^2 \\ b_1 = 72.43235 \ cm^3/mol & b_2 = 90.14847 \ cm^3/mol. \ , \ and \\ \end{array}$$
 Then, the use of Eq. (A3) gives

 $a = 2063 \ 1852 \ cm^6 \ bar/mol^2$ $b = 83.836216 \ cm^3/mol^3$

The compressibility factor, Z, can be calculated by solving Eq. (A2). For the example case, the largest of the three real roots of the vapor phase of the compressibility factor is determined to be 0.7794. As a result, the molar volume, V, of the vapor mixture is ZRT/P = 2297.54 cm³/mol. By knowing the molar volume and compressibility, the thermodynamic properties containing derivatives, $(\partial P/\partial V)_T$, $(\partial T/\partial P)_V$, and $(\partial V/\partial T)_P$, can be calculated from the following equations,

$$\left(\frac{\partial P}{\partial V}\right)_{T} = \frac{-RT}{(V-b)^{2}} + \frac{2a(V+b)}{[(V(V+b)+b(V-b)]^{2}}$$
(A4)

$$\left(\frac{\partial T}{\partial P}\right)_{V} = 1/\left(\frac{\partial P}{\partial T}\right)_{V} = 1/\left[\frac{R}{V-b} - \frac{a'}{V(V+b)+b(V-b)}\right]$$
(A5)

and

$$\left(\frac{\partial P}{\partial V}\right)_{T} \left(\frac{\partial T}{\partial P}\right)_{V} \left(\frac{\partial V}{\partial T}\right)_{P} = -1$$
(A6)

where

$$a' = \frac{da}{dT}$$

The computed values are

$$\left(\frac{\partial P}{\partial V}\right)_{T} = -0.0035459 \text{ bar / (cm3/mol)}$$
$$\left(\frac{\partial T}{\partial P}\right)_{V} = 2.99558 \text{ K/bar}$$
$$\left(\frac{\partial V}{\partial T}\right)_{P} = 12.26396 \text{ cm}^{3}/(\text{mol} - \text{ K}).$$

With formulations provided by Pratt (2001), other thermodynamic properties, such as the heat capacities of C_v and C_P can also be computed.

Appendix B. HYSYS Simulation Model Outputs Summary

Stream Summaries P	rintouts
--------------------	----------

1			Case Name:	PHD.HSC		
2	CHEVRON USA	A	Unit Set:	NewLiser		
4			Data (Times	Man Ann 08 40-04-40 01		
5			Date/Time:	Mon Apr 00 10:04:42 20	/15	
0 7 8	Material Stream	: Feed F	rom Well		Fluid Package: Property Package:	Main Basis Peng-Robinson
9 10			CONDITIONS			
1		Overall	Vapour Phase	Liquid Phase	Aqueous Phase	
12	Vapour / Phase Fraction	0.2979	0.2979	0.0876	0.6145	i
13	Temperature: (C)	42.11	42.11	42.11	42.11	
14	Pressure: (bar)	12.05	12.05	12.05	12.05	
15	Molar Flow (MMSCFD)	5/9.1	1/2.5	50.74	300.9	
10 17	Mass Flow (Kg/n) Std Ideal Lin Vol Flow (m3/b)	1.0620+000	2.444e+005 412.5	0.181e+005 811.0	3.1938+005	
18	Molar Enthalpy (Btu/SCE)	-253 B	-40.22	-494.2	320.0	
19	Molar Entropy (kJ/komole-C)	121.7	150.9	489.2	58.03	
20	Heat Flow (kJ/h)	-6.456e+009	-3.051e+008	-1.102e+009	-5.049e+009	1
21	Liq Vol Flow @Std Cond (m3/h)	1358 *	2.028e+005	606.0	314.7	
22 23			PROPERTIES			
24		Overall	Vapour Phase	Liquid Phase	Aqueous Phase	
15	Molecular Weight	37.51	28.45	205.0	18.02	
26	Molar Density (kgmole/m3)	1.498	0.4693	4.087	55.21	
27	Mass Density (kg/m3)	56.20	13.35	833.7	994.7	
28	Act. Volume Flow (m3/h)	1.925e+004	1.831e+004	621.4	321.0	
29	Mass Enthalpy (kJ/kg)	-5968	-1248	-2127	-1.581e+004	
50 34	Mass Entropy (kJ/kg-C)	3.240	0.304	2.269	3.221	
21 22	Mass Heat Capacity (kU/kg/C)	2.557	40.00	2 008	4 215	
33	I HV Molar Basis (Std) (Btu/SCE)	2.001	1.100	2.000	3 288e-005	
34	LHV Mass Basis (Std) (kJ/kg)				1.610e-003	
35	Phase Fraction [Vol. Basis]	0.3076	0.3076	0.4544	0.2380	
36	Phase Fraction [Mass Basis]	0.2259	0.2259	0.4789	0.2952	
37	Partial Pressure of CO2 (bar)	2.241e-002				
38	Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000	0.0000	
39	Act. Gas Flow (ACT_m3/h)	1.831e+004	1.831e+004	-	-	
40	Avg. Liq. Density (kgmole/m3)	21.45	20.78	4.138	55.39	
41	Specific Heat (kJ/kgmole-C)	95.92	40.68	411.3	77.74	
4Z 43	Stu. Gas Flow (STD_m3/n) Std. Ideal Lin. Mass Density (kn/m2)	0.820E+005 804 7	2.0320+005	0.9/00+004	4.1910+005	
44	Act Lin Flow (m3/s)	0.2818		0 1728	8.918002	
45	Z Factor	0.2010	0.9792	0.1120	8.323e-002	
46	Watson K	10.59	10.09	11.66	6.682	
47	User Property					
48	Partial Pressure of H2S (bar)	0.0000				
49	Cp/(Cp - R)	1.095	1.257	1.021	1.120	
50	Cp/Cv	1.031	1.299	1.162	1.158	
51 10	Heat of Vap. (Btu/SCF)	107.2	4.470	7 000		
ΩZ	Lia Mass Density (Std. Cond) (ks(m2))	708.5	1.1/3	1.330	0.0294	
54	Lin, Vol. Flow (Std. Cond) (Kg/m3)	/ 30.0	2 028+005	808.0	314.7	
55	Liquid Fraction	0 7021	0.0000	1 000	1 000	
6	Molar Volume (m3/kgmole)	0.6674	2.131	0.2459	1.811e-002	
57	Mass Heat of Vap. (kJ/kg)	2522				
58	Phase Fraction [Molar Basis]	0.2979	0.2979	0.0876	0.6145	
59	Surface Tension (dyne/cm)			20.07	69.12	
-	Thermal Conductivity (W/m-K)		2.784e-002	0.1108	0.6341	
50	Vienerity (aD)		1.565e-002	6.117	0.6261	
60 51	Viscosity (CP)					

4	~			Case Name:	PH	D.HSC		
3		Burlington, M	USA IA	Unit Set:	Nev	vUser		
4	Caspentee	USA		Date/Time:	Mor	n Apr 06 10:04:42 20	015	
6	•• •						Fluid Package: M	Aain Basis
7 8	Mater	rial Strea	m: Feed F	From Well	(cor	ntinued)	Property Package: F	eng-Robinson
9				PROPERT	FS			•
10 11			Overall	Vapour Phase		Liquid Phase	Aqueous Phase	
12	Mass Cv (Semi-Ideal)	(kJ/kg-C)	2.338	1.1	38	1.966	3.853	
13	Cv	(kJ/kgmole-C)	93.06	31	32	353.9	67.22	
14	Mass Cv	(kJ/kg-C)	2.481	1.1	01	1.726	3.731	
15	Cv (Ent. Method)	(kJ/kgmole-C)				-	66.39	
16	Mass Cv (Ent. Method)	(kJ/kg-C)					3.685	
7	Cp/Cv (Ent. Method)						1.171	
8	Reid VP at 37.8 C	(bar)	149.2			2.604		
19	True VP at 37.8 C	(bar)	567.2			11.79	7.343	
20	Liq. Vol. Flow - Sum(Std.	Cond) (m3/h)	2.036e+005	2.026e+0	05	606.0	314.7	
21	VISCOSITY Index	(Ptu/PCE)	5.591e-002					
22 12	HUV Moral Basis (Std)	(BIU/SCF)					40.40	
	CO2 Loading	(KJ/Kg)					22/0	
	CO2 App ML Cop	(kamole/m2)				1 1240-002	3 926004	
26	CO2 App ME Con	(kamol/ka)				1.360e-006	3.947e-007	
27	Phase Fraction [Act. Vol.	Basisl	0.9510	0.95	10	3 228e-002	1.668e-002	
8	Mass Exergy	(kJ/kg)	52.69					
9								
30				COMPOSIT				
31				Overall Pha	92		Vapour	Fraction 0.2979
32								
53 34	COMPONENTS	(kgmole/h	W MOLE FRACT	ION MASS FI		MASS FRACTION	V F FIQUID VOLUME	
			,	(Kg/I	1)		FLOW (m3/h)	FRACTION
35	Nitrogen	5357.3	2284 0.	(Kg/r 1857 15007	0 2.0405	0.138	FLOW (m3/h) 7 186.1072	FRACTION 0.1384
35 36	Nitrogen CO2	5357.3	2284 O. 3164 O.	(Kg/ 1857 1500 0006 74	1) 72.0405 10.0849	0.138	FLOW (m3/h) 7 186.1072 7 0.8967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ELIQUID VOLUME FRACTION 0.1384
35 36 37	Nitrogen CO2 H2S	5357.1 16.0 0.0	2284 0. 3164 0. 3000 0.	(Kg/r 1857 15007 0006 74 0000 0000	1) 12.0405 10.0849 0.0000	0.138	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000	ELIQUID VOLUME FRACTION 0.0007 0.0000
35 36 37 38	Nitrogen CO2 H2S Methane	5357.1 16.0 0.0 1847.0	2284 0. 3164 0. 0000 0. 5811 0.	(Kg/) 1857 15007 0006 74 0000 0841 2984	1) 72.0405 10.0849 0.0000 10.5585	0.138 0.000 0.000 0.027 0.015	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 48.177	ELIQUID VOLUME FRACTION 0.0007 0.0007 0.0007
35 36 37 38 39	Nitrogen CO2 H2S Methane Ethane	5357.1 18.1 0.0 1847.1 546.1	2284 0. 8164 0. 1000 0. 100	(kg/) 1857 1500 0006 74 0000 0841 2964 0189 1642 0172 219	1) 12.0405 10.0849 0.0000 10.5585 14.5955 12.9482	0.138 0.000 0.000 0.027 0.015	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 2 43.2075	LIQUID VOLUME FRACTION 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
35 36 37 38 39 40	Nitrogen CO2 H2S Methane Ethane Propane i-Butane	5357.3 16.4 0.0 1847.4 546.3 497.4	2284 0. 3164 0. 1000 0. 5811 0. 2138 0. 1084 0.	(kg/) 1857 15007 0006 74 0000 0641 2964 0189 1642 0173 2194 0028 466	1) 12.0405 10.0849 0.0000 10.5585 12.9482 16.7403	0.138 0.000 0.027 0.015 0.020 0.020	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3044	LIQUID VOLUME FRACTION 0.0000 0.0738 0.0343 0.0343 0.0322
35 36 37 38 39 40 41	Nitrogen CO2 H2S Methane Ethane Propane i-Butane n-Butane	5357.3 118.4 0.0 1847.4 548.3 497.0 80.2 278.4	2284 0. 3164 0. 3000 0. 3811 0. 2138 0. 3064 0. 2894 0.	(kg/) 1857 15007 0008 74 0000 0641 2984 0189 1642 0173 2194 0028 486 0097 1819	1) 12.0405 10.0849 0.0000 10.5585 14.5955 14.5955 14.5955 12.9482 16.7403 19.2821	0.138 0.000 0.020 0.027 0.015 0.020 0.020 0.020	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3076 3 8.3043 0 27.768.3043	LIQUID VOLUME FRACTION 0.0000 0.0000 0.0343 0.0343 0.0322 0.0062 0.0062 0.0062
35 36 37 38 39 40 41 42 43	Nitrogen CO2 H2S Methane Ethane Propane i-Butane i-Pentane	5357.3 18.4 0.4 1847.4 548.3 497.4 80.3 278.4 278.4	2284 0. 3164 0. 3000 0. 3811 0. 1138 0. 3064 0. 3297 0. 1746 0.	(Kg/ 1857 15007 00006 74 00000 0641 2964 0189 1642 0173 2194 0028 466 0097 1618 0042 888	1) 72.0405 10.0849 0.0000 10.5585 12.9482 16.7403 19.2621 15.0178	0.138 0.000 0.000 0.027 0.015 0.020 0.004 0.015 0.015	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7683 1 14.1392	LIQUID VOLUME FRACTION 0.0384 0.0007 0.0007 0.0322 0.0322 0.0322 0.0065 0.0206
35 36 37 38 39 40 41 42 43	Nitrogen CO2 H2S Methane Ethane Propane i-Butane i-Putane i-Pentane n-Pentane	5357.3 18.4 0.4 1847.4 546.3 497.4 80.3 278.2 122.2 221.3	1 1 3164 0. 3000 0. 3811 0. 12138 0. 3064 0. 3294 0. 3297 0. 1746 0. 3295 0.	(Kg/) 1507 1500 0006 7 0000 0841 296 0189 1842 0189 1842 0173 219 0028 466 0097 1611 0042 881 0042 881	1) 72.0405 10.0849 0.0000 10.5585 14.5955 12.9482 16.7403 19.2821 15.0178 19.1489	0.138 0.000 0.000 0.027 0.015 0.020 0.004 0.015 0.008 0.014	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 48.177 3 43.3075 3 8.3043 0 27.7683 1 14.1393 8 22.5588	LIQUID VOLUME FRACTION 0.032 0.0007 0.0007 0.0322 0.0322 0.0322 0.0062 0.0206 0.0108 0.0108
35 36 37 38 38 39 40 41 42 43 44	Nitrogen CO2 H2S Methane Ethane Propane i-Butane i-Butane i-Pentane n-Pentane n-Pentane n-Hexane	5357 1847. 1847. 5445. 278 278 122 221. 304	1284 0. 3164 0. 3000 0. 3811 0. 2138 0. 3084 0. 2894 0. 3297 0. 1746 0. 3295 0. 3295 0.	(Kg/) 1500 1500 1500 0006 7 0000 0641 296 0189 1642 0173 249 0028 466 0097 1611 0042 88 0097 169 0042 88 0077 1599 0106 2622	1) (2.0405 (0.0849 0.0000 (0.5585 (2.5455 (2.5482 (3.5482	0.138 0.000 0.027 0.015 0.020 0.004 0.015 0.008 0.014	FLOW (m3/h) 7 188.1072 7 0.8987 0 0.0000 4 99.0018 2 48.177 3 43.3075 3 8.3043 0 27.7583 1 14.1393 8 25.3588 3 3.36548	LIQUID VOLUME FRACTION 0.0000 0.00000 0.00000 0.000000000000
35 36 37 38 39 40 41 42 43 44 45	Nitrogen CO2 H2S Methane Ethane Propane i-Butane i-Butane i-Pentane n-Pentane n-Hexane C7s*	5357.3 18.4 0.0. 1847.3 546. 497.4 80.3 278.8 278.8 278.4 278.3 278.3 278.4 221.3 221.3 304.4 304.4 241.1	1 0 3164 0. 3000 0. 3811 0. 2138 0. 3084 0. 3287 0. 3297 0. 3295 0. 3295 0. 3254 0. 3254 0.	(K9/) 1857 15001 1857 15001 0006 7 00000 0841 2984 0189 1842 0173 219 0028 466 0097 1618 0042 88 0097 1598 0077 1598 0077 1598 0078 2322 0084 2322	12.0405 12.0405 10.0849 0.0000 10.5585 14.5955 12.9482 16.7403 19.2621 15.0178 19.1469 17.8311 21.3133	0.138 0.000 0.027 0.015 0.020 0.020 0.020 0.040 0.015 0.008 0.014 0.024 0.024	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 44.177 3 43.3075 3 8.3043 0 27.7583 1 14.1393 8 25.5588 3 39.6544 5 32.9964	LIQUID VOLUME FRACTION 0.0000 0.00000 0.00000000000000000000
35 36 37 38 39 40 41 42 43 44 45 44 45 44	Nitrogen CO2 H2S Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane C7s* C8s*	5357 18.1 0.1 1847.4 548 278.4 122. 221.1 304.3 241.1 196.3	1 0 164 0. 1000 0. 1811 0. 1813 0. 10084 0. 1297 0. 1746 0. 12255 0. 3254 0. 1101 0. 1197 0.	(K9/) 1857 15001 1857 15001 10006 7 00000 0041 296 0173 219 0173 219 0028 466 0097 1618 0042 88 0097 1618 0042 88 0097 1596 00106 262 0084 2322 0084 2325 0084 2158 0084 0084 0084 0084 0084 0084 0084 00	12.0405 12.0405 10.0849 0.0000 10.5585 14.5955 12.9482 18.7403 19.2621 15.0178 19.2621 15.0178 19.1469 17.8311 21.3133 17.1355	0.138 0.000 0.027 0.015 0.020 0.044 0.015 0.008 0.014 0.024 0.021 0.021	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7583 1 14.1393 8 25.3588 3 39.6548 5 32.99640 0 29.6002	LIQUID VOLUME FRACTION 0.0322 0.032 0.0322
35 36 37 38 39 40 41 42 43 44 45 45 46 47 48	Nitrogen CO2 H2S Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane C7s* C3s* C9s*	5357 18.1 0.0 1847.4 548 497.4 80.0 278.4 122.1 221.2 304.4 241.1 199.3 140.4	1 1284 0.000 38184 0.000 3811 0.1138 3084 0.1238 3084 0.1238 3084 0.1239 3297 0.124 3295 0.12254 0.1101 0.1297	(K9/) 1857 1500 1857 1500 0006 7 00000 0641 296 0173 219 0028 466 0097 1618 0042 88 0097 159 0042 88 0077 159 0106 2652 0084 2325 0088 235 0084 2325 0084 2325 0084 2325 0084 2325 0084 2325 0084 2325 0084 2325 0084 2325 0084 0084 0084 0084 0084 0084 0084 008	0) 72.0405 10.0849 0.0000 10.5585 14.5955 12.9482 14.5955 12.9482 19.2621 15.0178 19.2621 15.0178 19.2621 15.0178 19.2621 15.0178 19.2631 19.2631 19.2635 19.26555 19.26555 19.26555 19.26555 19.26	0.138 0.000 0.027 0.015 0.020 0.044 0.015 0.008 0.014 0.021 0.021 0.021	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7583 1 14.1393 8 25.3588 3 3.0.6548 5 32.9964 0 23.0434	LIQUID VOLUME FRACTION 0.0384 0.0007 0.0000 0.0322 0.0322 0.0000 0.0322 0.0000 0.0100 0.0100 0.0100 0.0290 0.0290 0.0222 0.0220 0.0222 0.02200 0.02000 0.02200 0.02200 0.02200 0.02200 0.02200 0.0200000000
35 36 37 38 39 40 41 42 43 44 45 44 45 44 45 44 45 49	Nitrogen CO2 H2S Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Hexane C7s* C8s* C3s* C10s*	5357 18. 0. 18. 0. 18. 0. 18. 0. 18. 0. 19. 10. 10. 10. 10. 10. 10. 10. 10	1 0 3164 0. 3000 0. 3811 0. 12138 0. 3064 0. 3295 0. 3254 0. 3254 0. 3101 0. 3255 0. 3254 0. 3197 0. 3362 0. 3411 0.	(Kg/) 1857 15000 0006 7 0000 0 0841 2964 0189 1642 0183 1642 00028 466 0097 1611 0042 881 00077 1596 0106 2622 00084 2322 00088 2162 0042 872 00084 2322 00043 1675	0 72.0405 10.0849 0.0000 10.5585 14.5955 12.9482 18.7403 19.2821 15.0178 19.2821 15.0178 19.2821 15.0178 19.2821 15.0178 19.28311 21.3133 17.1355 17.2378 15.7046	0.138 0.000 0.000 0.027 0.015 0.020 0.004 0.015 0.008 0.014 0.024 0.021 0.020 0.016	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7683 1 14.1393 8 25.3588 3 39.6548 5 32.9964 0 23.0434 5 21.5890	LIQUID VOLUME FRACTION 0.0324 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0102 0.0102 0.0102 0.0242 0.0242 0.0272 0.0272 0.0272
35 36 37 38 39 40 41 42 43 44 45 445 445 445 445 50	Nitrogen CO2 H28 Methane Ethane Propane i-Butane n-Butane n-Pentane n-Hexane C7s* C8s* C9s* C10s* C11s*	5357 18.4 0.0. 1847 546 497 80 278 122 221 304 241 196 149 198 98	1 0 3164 0. 3000 0. 3811 0. 3183 0. 3064 0. 3094 0. 3295 0. 3295 0. 3295 0. 3197 0. 3362 0. 3411 0.	(Kg/) 1857 15000 0006 7 0000 0 0841 296 0189 1842 0173 219 00028 466 0097 1611 0042 88 00106 2852 0084 2322 0084 2322 0049 1752 0043 1675 0034 1453	0 (2.0405 (0.0849 0.0000 (0.5585 (2.5955 (2.59482 (0.7403) (0.740)	0.138 0.000 0.027 0.015 0.020 0.004 0.015 0.015 0.016 0.014 0.024 0.021 0.020 0.021 0.021 0.021	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7583 1 14.1393 8 25.3588 3 39.6548 5 32.9964 0 23.0434 5 21.5890 4 18.4288	LIQUID VOLUME FRACTION 0.0320 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0292 0.0000 0.0000 0.0000000000
35 36 37 38 39 40 41 42 43 44 44 44 44 5 6 44 5 50 51	Nitrogen CO2 H28 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Hexane C7s* C8s* C9s* C10s* C12s*	5357 1847. 1847. 5445. 497 80 278 122 221 304 241 196 1495 125 98 82 82	1 0 3164 0. 3164 0. 3000 0. 3811 0. 2138 0. 3084 0. 2894 0. 3295	(Kg)/ 1500 0006 0000 0641 089 0189 0189 0002 0002 0003 00041 0028 00173 0219 00028 0007 1610 0042 0077 1589 00106 2622 0084 0043 1675 0029 133 0029	0 72.0405 10.0849 0.0000 10.5585 14.5955 12.9482 18.7403 19.0221 15.0178 19.2621 15.0178 19.2621 15.0178 19.2621 15.0178 19.2621 15.0178 19.2625 10.255 10	0.138 0.000 0.027 0.015 0.020 0.020 0.020 0.015 0.020 0.014 0.024 0.021 0.020 0.015 0.013 0.013	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 44.177 3 43.3075 3 43.3075 3 43.3075 3 43.3075 3 43.3075 3 43.3075 3 3.3043 0 27.7583 1 14.1393 8 22.5588 3 39.6548 5 32.9964 0 23.0434 5 21.6890 0 23.0434 5 21.6883 3 10.6881 3 10.6881	LIQUID VOLUME FRACTION 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0017 0.0017 0.0013 0.0013
35 36 37 38 39 40 41 42 43 44 45 44 45 46 47 48 49 50 51 52	Nitrogen CO2 H2S Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane C7s* C8s* C9s* C10s* C12s* C13s*	5357. 1847. 1847. 5495. 278. 278. 278. 278. 122. 221. 304. 241. 199. 140. 125. 38. 82. 82. 76. 177.	1 0 164 0. 3164 0. 3000 0. 3811 0. 2138 0. 3064 0. 3297 0. 3295 0. 3295 0. 3295 0. 3197 0. 3362 0. 3362 0. 3411 0. 3982 0. 3171 0.	(Kg)/ 1500 0006 0000 0841 089 0189 0173 2199 00028 0007 0841 0097 0173 2199 0028 0097 1818 00042 00106 2292 0084 2322 0068 2158 0043 1872 0029 1334 0027 134	0 72.0405 10.0849 0.0000 10.5585 14.5955 12.9482 18.7403 19.2621 15.0178 19.2621 15.0178 19.2621 15.0178 19.2621 11.3133 17.1355 17.2376 18.7046 18.0343 19.6569 13.9543 19.465	0.138 0.000 0.027 0.015 0.020 0.044 0.015 0.008 0.014 0.024 0.021 0.020 0.020 0.015 0.015	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7683 3 8.25.5588 3 39.6548 5 32.9964 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.802 1 18.4268 1 18.4268 4 10.8.782 0 10.	LIQUID VOLUME FRACTION 0.0000 0.0000 0.0073 0.0043 0.00343 0.00343 0.00343 0.00343 0.00343 0.00343 0.0020 0.0100 0.0100 0.0101 0.0121 0.0121 0.0121
35 36 37 38 39 40 41 42 43 44 45 45 45 45 50 51 52 53	Nitrogen CO2 H2S Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane C7s* C8s* C9s* C10s* C12s* C13s* C14s* C45*	5357 18.1 0.0. 1847.4 548 497. 80.0. 278.4 122. 221 304.4. 241 1993 140 125 382 76 87	1 0 2284 0. 3164 0. 3000 0. 3811 0. 2138 0. 3064 0. 3084 0. 32894 0. 3297 0. 3295 0. 3295 0. 3295 0. 3197 0. 3982 0. 9171 0. 3226 0. 3276 0.	(K9/) 1857 1500 1857 1500 1857 1500 0000 0841 296 0189 1842 0173 219 0028 466 0097 1618 0042 88 0097 1618 0042 88 0097 1596 0108 282 0068 2155 0068 215 0068 215 0068 215 0068 215 0068 215 0068 215 0068 215 0068 215 0068 215 0068 215 0068 215 0068 215 0068 215 0068 215 0068 0068 215 0068 0068 215 0068 0068 215 00068 0068 215 0068 215 0	0 72.0405 10.0849 0.0000 10.5585 14.5955 12.9482 14.5955 12.9482 15.0178 19.1469 17.8311 11.3133 17.1355 17.2376 15.7046 18.0343 18.0343 18.0429 18.0543 18.4029 19.4565 18.029 19.4565 19	0.138 0.000 0.007 0.015 0.027 0.015 0.020 0.004 0.016 0.016 0.021 0.021 0.021 0.021 0.021 0.012 0.012	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7583 1 14.1393 8 25.3588 3 3.30.6548 5 32.9964 0 28.000 0 23.0434 5 21.6890 4 18.6782 4 18.6782 8 15.5955 0 28.002	LIQUID VOLUME FRACTION 0.0384 0.0007 0.0000 0.0322 0.0322 0.0000 0.0322 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000
35 36 37 38 39 40 41 42 43 44 45 44 45 44 45 46 47 48 49 50 51 52 53 54	Nitrogen CO2 H2S Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane C7s* C8s* C10s* C12s* C13s* C14s* C15s*	5357 18. 0.0. 18.47.4 546 497.4 80 278 221 304.9 241 199.6 140.9 125 98.1 82 76.3 87 125	1 0. 3164 0. 3000 0. 3811 0. 3881 0. 3064 0. 3084 0. 3084 0. 3297 0. 3295 0. 3295 0. 3197 0. 3382 0. 3411 0. 3982 0. 39362 0. 3735 0. 4463 0.	(Kg/) 1500 0006 0841 09841 0189 0189 0189 00028 0007 0611 00028 0007 0106 0077 0106 0084 0007 0084 00042 0088 0106 0084 0033 1675 0029 0034 1465 0027 034 1465 0023 023 128 0020 116	0) 72.0405 10.0849 0.0000 10.5585 14.5955 14.5955 14.5955 14.5955 14.5955 14.5955 14.5955 15.0178 19.1469 17.8311 11.3133 17.1355 17.2376 15.0178 10.313 11.3133 17.1355 17.2376 15.046 18.0343 19.0569 19	0.138 0.000 0.007 0.015 0.027 0.015 0.020 0.014 0.021 0.015 0.021 0.021 0.015 0.015 0.015 0.015 0.012 0.012 0.012	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7683 1 14.1339 2 25.3588 3 39.6548 5 32.9964 0 23.0434 5 21.8590 4 18.4288 3 16.6881 4 116.57625 8 15.5955 8 14.0335 7 14.0355	LIQUID VOLUME FRACTION 0.0384 0.0007 0.0000 0.0322 0.0322 0.0006 0.0322 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0108 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0117 0.0112 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124
35 36 37 38 39 40 41 42 43 44 45 45 46 47 48 49 50 51 52 53 54 55 55	Nitrogen CO2 H2S Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane C7s* C8s* C10s* C11s* C12s* C15s* C15s* C15s* C15s* C15s* C15s* C15s*	5357 18. 0. 18. 0. 18. 0. 18. 0. 18. 0. 18. 0. 19. 122. 221. 304. 241. 190. 140. 140. 125. 125. 58. 0. 125. 12	12284 0. 3164 0. 3000 0. 3811 0. 3894 0. 3297 0. 3295 0. 3295 0. 3197 0. 3362 0. 3411 0. 3982 0. 3197 0. 3362 0. 3411 0. 3226 0. 3197 0. 3255 0. 3411 0. 3414 0. 3414 0. 3414 0. 3414 0. 3414 0.	(Kg)/ 1500 0006 0041 0841 0189 0189 0189 0189 00028 00028 0007 0106 00077 0106 2007 00084 20080 00043 0043 1677 0029 0334 1455 0027 134 0022 139 0020 1167 0018 1157	9 2.0405 2.0405 10.0849 0.0000 10.5585 14.5955 12.9482 18.7403 19.2621 15.0178 19.1489 19.1489 19.1489 19.1489 17.8311 11.3133 17.1355 17.2376 18.0343 19.6589 13.9543 13.9545 13.9545 13.9545 13.9545 13.9545 13.9545 13.9545 14.9555 15.9545 15.9545 15.9545 15.9545 15.9545 15.9545 15.9545 15.9545 15.9545 15.9545 15.9545 15.9545 15.95555 15.95555 15.95555 15.955555 15.95555 15.955	0.138 0.000 0.000 0.027 0.015 0.020 0.004 0.015 0.008 0.014 0.024 0.021 0.020 0.015 0.015 0.015 0.013 0.012 0.011 0.010	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7683 1 14.1393 8 25.3588 3 39.6548 5 32.9964 0 29.30434 5 21.5890 0 23.0444 18.4258 16.8881 4 16.5955 8 14.0335 7 13.7983 9 14.2978	LIQUID VOLUME FRACTION 0.032 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.00170 0.00170000000000
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 55	Nitrogen CO2 H2S Methane Ethane Propane i-Butane n-Butane n-Pentane n-Hexane C7s* C8s* C3s* C10s* C11s* C13s* C18s* C18s* C18s* C18s* C18s* C17s*	5357 184 0.0. 1847 546 497 80 278 122 221 304 241 198 1425 98 76 98 67 67 67 67	1284 0. 3164 0. 3000 0. 3811 0. 2138 0. 2138 0. 2894 0. 2895 0. 3295 0. 3295 0. 3295 0. 3362 0. 3982 0. 3982 0. 3171 0. 3735 0. 1418 0. 3980 0.	(Kg)/ 1500 0006 0007 0841 0984 0189 0189 00028 466 00097 01028 00028 00028 00027 0106 0077 0084 2322 0088 0106 0042 00034 1675 00043 1675 00023 128 0020 134 0021 1455 0023 128 00216 018 016 0015	9) 72.0405 72.0405 72.0405 72.0405 72.0405 72.0405 72.0405 72.0405 74.59555 74.5955 74.5955 74.5955 74.59555 74.59555 74.59555 74.5	0.138 0.000 0.027 0.015 0.020 0.044 0.024 0.015 0.020 0.014 0.024 0.024 0.021 0.022 0.015 0.013 0.012 0.012 0.011 0.010 0.010	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7683 1 14.1393 8 25.3588 3 39.6548 5 32.9964 5 21.5890 4 18.4268 3 16.8881 4 18.4268 3 16.8881 4 16.5782 8 15.5955 8 14.0335 9 12.6335 9 12.6335	LIQUID VOLUME FRACTION 0.0343 0.0343 0.0343 0.0343 0.0343 0.0343 0.0343 0.0343 0.0343 0.0343 0.0343 0.0062 0.0106 0.0106 0.0226 0.0246 0.0227 0.0171 0.0161 0.0121 0.0121 0.0122 0.0012 0.0010 0.00120 0.00120 0.00120000000000
35 36 37 38 39 40 41 42 43 44 45 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Nitrogen CO2 H2S Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane C7s* C8s* C9s* C10s* C12s* C13s* C15s* C16s* C17s* C18s* C17s* C18s* C19s*	5357 118.1 0.0. 11847.4 548 497.1 80 278.3 122. 221.1 304.3 241.1 196.3 140.3 125 98.8 82.9 76.4 656.0 52 445. 42.0	1 0 164 0. 3164 0. 3000 0. 3811 0. 2138 0. 2138 0. 2138 0. 2894 0. 2895 0. 2297 0. 1746 0. 3295 0. 3295 0. 3295 0. 3362 0. 3982 0. 9171 0. 3225 0. 9171 0. 9226 0. 9171 0. 9225 0. 91418 0. 91418 0. 91418 0. 91418 0. 91418 0.	(Kg)/ 1500 0006 0000 0641 089 089 0841 0984 0000 00028 0007 00173 00173 00173 00173 00173 00173 00173 00173 00173 00106 2620 00108 0106 0043 10029 1334 00020 1185 00018 1105 0016 108 0018 1016 0018	9) 72.0405 10.0849 0.0000 10.5585 14.5955 12.9482 18.7403 19.2621 15.0178 19.1469 19.1469 19.1469 19.1469 19.1469 19.1469 19.1469 19.1469 19.1469 19.1455 17.2376 19.78311 11.3133 17.1355 17.2376 19.7046 19.6569 13.9543 18.4029 14.7420 19.49543 18.4029 14.7420 19.49543 18.4029 14.7420 19.49543 18.4029 14.7420 19.49543 18.4029 14.7420 19.49543 18.4029 14.7420 19.49543 19.49545 19.4954 19.49545 19.49545 19.49545 19.49545 19.49545 19.49545 19.49545 19.49545 19.49545 19.49545 19.49545 19.49545 19.49545 19.49545 19.49545 19.495555 19.495555 19.49555 19.49555 19.49555 19.495555 19.495555	0.138 0.000 0.027 0.015 0.020 0.044 0.015 0.008 0.014 0.024 0.021 0.020 0.015 0.012 0.021 0.020 0.015 0.013 0.012 0.012 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7683 3 8.25.5588 3 3.96548 5 21.6890 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 0 29.8002 1 18.4038 1 19.738 1 10.7393 9 12.6	LIQUID VOLUME FRACTION 0.0343 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0018 0.0225 0.00245 0.0225 0.00245 0.0225 0.0017 0.0112 0.0012 0.00010 0.00010 0.00000
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 51 52 53 54 55 55 55 55 55 55 55 55 55 55 55 55	Nitrogen CO2 H2S Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane C7s* C8s* C9s* C10s* C12s* C13s* C14s* C15s* C18s* C18s* C18s* C19s*	5357 118.1 0.0. 1847.4 548 497.4 304.5 221 2241 1993 140 140 140 140 125 382 76 76 76 76 76 76 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 78 78 78 78 78 78 78 78 78 78	1 0 1284 0. 3164 0. 3000 0. 3811 0. 12138 0. 3064 0. 32894 0. 3297 0. 3295 0. 3295 0. 3295 0. 3197 0. 3982 0. 39171 0. 3735 0. 4148 0. 1418 0. 1993 0.	(K9/) 1857 15000 1857 15000 0000 0 0841 2984 0189 1842 0007 1818 00042 889 00042 889 0007 1618 0042 889 00106 2262 0084 2322 0088 2158 00043 1675 0029 1334 0027 1344 0023 1281 00018 1085 0015 1077 0016 1085 0015 1071 0016 1085 0015 1071 0014 1091	0 72.0405 10.0849 0.0000 10.5585 12.9482 12.9482 12.9482 12.9482 12.9482 12.9482 12.9482 12.9482 12.9482 12.9482 12.9482 12.9482 13.9555 13.9543 14.04589 13.9543 18.0343 18.0343 18.04029 14.7420 19.3088 10.9549 11.9413 11.9414	0.138 0.000 0.007 0.015 0.027 0.015 0.024 0.044 0.024 0.024 0.021 0.020 0.016 0.015 0.012 0.021 0.021 0.012 0.012 0.012 0.012 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7583 1 14.1393 8 25.3588 3 3.90548 5 32.9964 0 22.8002 0 23.0434 5 21.5890 0 22.8002 0 23.0434 5 21.5890 4 18.6782 8 15.9956 7 13.7933 9 12.6738 1 12.7343 5 10.645782	LIQUID VOLUME FRACTION 0.0384 0.0007 0.0000 0.0322 0.0000 0.0322 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0101 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.00000 0.00000 0.00000 0.000000
35 36 37 38 39 40 41 42 43 44 44 44 44 44 44 44 44 50 50 51 52 53 54 55 55 55 55 55 55 55 55 55 55 55 55	Nitrogen CO2 H2S Methane Ethane Propane i-Butane i-Pentane n-Pentane C7s* C8s* C9s* C10s* C12s* C13s* C14s* C15s* C18s* C19s* C18s* C19s* C18s* C19s* C20s* C20s* C20s*	5357 118 0 1847 546 497 278 2273 221 304.9 241 199 140 122 304.9 241 199 140 125 36 98 98 98 125 76 67 67 67 67 76 67 76 76 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67	12284 0. 3164 0. 3000 0. 3811 0. 3084 0. 3084 0. 3084 0. 3084 0. 3297 0. 3295 0. 3295 0. 3295 0. 3197 0. 3982 0. 3982 0. 3982 0. 1411 0. 3935 0. 1418 0. 1418 0. 1418 0. 1418 0. 1993 0. 2774 0.	(Kg)/ 1857 15002 0006 7 0000 0 0841 2964 0189 1642 0189 1642 0007 1613 0042 883 00106 2622 00084 2322 00084 2322 00043 1675 0029 1334 4455 00029 0023 128 0020 1161 0015 1077 0016 1089 0015 1077 0014 1099 0015 1077 0014 1099 0015 1077	9 2.0405 2.0405 10.0849 0.0000 10.5585 14.5955 14.5955 14.5955 14.5955 15.0178 19.1489 19.1489 19.1489 19.1489 19.1489 17.8311 11.3135 17.2376 19.5689 18.04343 19.6589 18.9543 18.9643 18.9643 18.9643 18.9643 18.9643 18.9643 18.9643 18.9643 18.9643 19.3088 19.3088 19.3088 19.3088 11.9413 11.2413 12.2415 12	0.138 0.000 0.007 0.015 0.027 0.015 0.020 0.014 0.021 0.021 0.021 0.021 0.021 0.015 0.013 0.012 0.012 0.012 0.012 0.012 0.011 0.010 0.010 0.010 0.010 0.009 0.009 0.009	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7583 1 14.1393 8 25.3888 3 39.6548 5 32.9804 0 23.0434 5 21.8890 0 23.0434 5 21.8890 0 23.0434 1 16.6818 1 16.782 8 15.5956 8 14.0335 7 13.7983 9 12.6736 1 12.7343 5 10.6185 0 9.9887	LIQUID VOLUME FRACTION 0.0324 0.0007 0.0000 0.0322 0.0322 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0101 0.0101 0.0100 0.0100 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 53 54 55 55 55 55 55 55 55 55 55 55 55 55	Nitrogen CO2 H2S Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane C7s* C8s* C10s* C11s* C12s* C14s* C15s* C18s* C19s* C19s* C19s* C19s* C19s* C19s* C20s* C20s* C20s* C20s* C22s*	5357 5357 18. 0.0. 18.47.4 548 278 2278 2278 221 304.3 221 304.3 241 198 125 38 76 56 67 67 67 42 42 42 42 77 57 42 77 57 42 77 57	12284 0. 3164 0. 3000 0. 3811 0. 1238 0. 3094 0. 3295 0. 3254 0. 3255 0. 3197 0. 3362 0. 3362 0. 3411 0. 3982 0. 3197 0. 3195 0. 3411 0. 3982 0. 39362 0. 3197 0. 39362 0. 39362 0. 39362 0. 39362 0. 39363 0. 39364 0. 39365 0. 39361 0. 39362 0. 39363 0. 39364 0. 39365 0. 39366 0.	(Kg/) 1500 0006 0017 00189 0189 0189 0189 0189 0189 0189 00028 00097 010173 00028 00097 01016 2622 00084 00049 0106 00120 0134 1455 00020 0134 1455 0012 0134 1165 00120 1165 0018 1016 1018 1015 0015 0101 012 914 0010	9 2.0405 2.0405 0.0849 0.0000 0.5585 24.5955 24.5955 24.29482 36.7403 39.2621 15.0178 39.2621 15.0178 39.1489 77.8311 21.3133 39.1489 39.1489 45.7046 45.7046 45.7046 45.7046 45.4029 44.7420 75.4904 49.3088 16.6973 11.9413 11.2789 37.3559 19.2140	0.138 0.000 0.007 0.015 0.027 0.015 0.020 0.014 0.024 0.021 0.024 0.021 0.020 0.015 0.015 0.015 0.015 0.015 0.012 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.015 0.020 0.015 0.020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000	FLOW (m3/h) 7 188.1072 7 0.8967 0 0.0000 4 99.0018 2 46.1776 3 43.3075 3 8.3043 0 27.7683 1 14.139 5 32.9964 0 23.0434 5 21.6890 0 23.0434 5 21.6890 4 16.4208 3 16.6881 4 16.7955 8 15.6955 8 14.0335 9 12.6353 9 12.6798 1 12.7343 5 10.6165 0 9.9883 8 9.7107	LIQUID VOLUME FRACTION 0.0324 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0322 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0102 0.0110 0.0112 0.0012 0.0012 0.0012 0.0000 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0002 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000

	<u>_</u>			Case Name: PHD	.HSC		
1	(enertech	Burlington, MA		Unit Set: New	User		
-	Caspenteen	USA		Date/Time: Mon	Apr 06 10:13:05 2015		
t					- Elui	id Package: Main	Rasis
1	Materia	al Stream:	Feed From	Well (conti	inued) 🏻 💭	nerty Packane: Pen	Robinson
ł					110	perty roomage. Ten	ritooniaon
				COMPOSITION			
			Overall Ph	ase (continued)		Vapour Fra	action 0.2979
	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW	MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME
	C28e*	(Kgmole/n) 18.5185	0.0008	(Kg/n) 6408 4048	0.0059	7 1528	PRACTION 0.0053
	C295*	15 6616	0.0005	6295 9666	0.0058	7.0037	0.005
	C30L+*	284 1999	0.0099	207014 0898	0.1914	208 9847	0.0001
t	C30H+*	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	H2O	17791.0530	0.6168	320507.6077	0.2963	321,1544	0.2389
	Argon	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
t	Oxvgen	0.0004	0.0000	0.0131	0.0000	0.0000	0.000
t	Total	28843.5543	1.0000	1.081822497e+08	1.0000	1344.4302	1.0000
t			Van	our Phase		Phase Fra	ction 0.2979
ł	COMPONENTS	MOLAR FLOW	MOLE ERACTION	MASS FLOW	MASS FRACTION		
1	COMPONENTIO	(kgmole/h)	MOLL FIGHT	(kg/h)		FLOW (m3/h)	FRACTION
	Nitrogen	5315.7366	0.6187	148909.7319	0.6092	184.6658	0.4466
	CO2	15.9860	0.0019	703.5396	0.0029	0.8524	0.0021
	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Methane	1817.7246	0.2116	29161.5740	0.1193	97.4020	0.2356
L	Ethane	512.6425	0.0597	15415.1100	0.0631	43.3395	0.1048
	Propane	416.9553	0.0485	18386.4776	0.0752	36.2883	0.0878
	i-Butane	55.4807	0.0065	3224.7809	0.0132	5.7384	0.0139
	n-Butane	176.3189	0.0205	10248.3598	0.0419	17.5719	0.0425
	i-Pentane	52.1292	0.0061	3761.1756	0.0154	6.0329	0.0146
j	n-Pentane	82.4024	0.0096	5945.4162	0.0243	9.4412	0.0228
	n-Hexane	52.1916	0.0061	4497.7655	0.0184	6.7874	0.0164
8	C7s*	20.0849	0.0023	1934.3784	0.0079	2.7487	0.0088
	C85"	0.2004	0.0007	089.3/13	0.0028	0.9912	0.0023
	C40-*	1.8000	0.0002	221.0833	0.0009	0.2904	0.0007
ł	Citist	0.0460	0.0001	00.0000	0.0004	0.0407	0.0003
	012-1	0.2233	0.0000	33.7110	0.0001	0.0427	0.0001
-	C12s*	0.0546	0.0000	7 9000	0.0001	0.0191	0.000
	C14e*	0.0199	0.0000	3,7787	0.0000	0.0046	0.0000
í	C15s*	0.0088	0.000	1 3508	0.000	0.0040	0.000
	C16s*	0.0024	0.0000	0.5391	0.000	0.0006	0.000
	C17s*	0.0009	0.0000	0.2084	0.0000	0.0002	0.0000
t	C18s*	0.0004	0.0000	0.0930	0.0000	0.0001	0.0000
	C19s*	0.0002	0.0000	0.0475	0.0000	0.0001	0.0000
1	C20s*	0.0001	0.0000	0.0201	0.0000	0.0000	0.0000
	C21s*	0.0000	0.0000	0.0078	0.0000	0.0000	0.0000
1	C22s*	0.0000	0.0000	0.0035	0.0000	0.0000	0.0000
	C23s*	0.0000	0.0000	0.0016	0.0000	0.0000	0.0000
	C24s*	0.0000	0.0000	0.0007	0.0000	0.0000	0.0000
	C25s*	0.0000	0.0000	0.0003	0.0000	0.0000	0.0000
ſ	C28s*	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000
	C27s*	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000
	C28s*	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	C29s*	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	C30L+*	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	C30H+*	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	H2O	65.1071	0.0076	1172.9104	0.0048	1.1753	0.0028
	Argon	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
- M			Asses UNDV	C. Marrian 0. 0. (00. 0.)	1.0015)		Deep 2 of 7

	easpentech	CHEVRON USA Burlington, MA		Unit Set: New	User		
		USA		Date/Time: Mon	Apr 06 10:13:05 2015		
t					. Flui	d Package: Main	Basis
	Materia	al Stream:	Feed From	Well (cont	inued) _{Proj}	perty Package: Peng	J-Robinson
			(OMPOSITION			
			Vapour Ph	ase (continued)		Phase Fra	ction 0.297
	COMPONENTS	MOLAR FLOW (kgmole/h)	MOLE FRACTION	MASS FLOW (kg/h)	MASS FRACTION	LIQUID VOLUME FLOW (m3/h)	LIQUID VOLUME FRACTION
I	Oxygen	0.0004	0.0000	0.0129	0.0000	0.0000	0.000
4	Total	8591.8814	1.0000	244421.9879	1.0000	413.4809	1.000
			Liq	uid Phase		Phase Fra	ction 8.761e-00
	COMPONENTS	MOLAR FLOW (kgmole/h)	MOLE FRACTION	MASS FLOW (kg/h)	MASS FRACTION	LIQUID VOLUME FLOW (m3/h)	LIQUID VOLUME FRACTION
I	Nitrogen	40.1814	0.0159	1125.6028	0.0022	1.3959	0.002
l	CO2	0.7044	0.0003	30.9985	0.0001	0.0376	0.000
ſ	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
ł	Methane	29.8558	0.0118	478.9744	0.0009	1.5998	0.002
ł	Ethane	33.5713	0.0133	1009.4853	0.0019	2.8382	0.004
ł	Propane	80.6511	0.0319	3558.4708	0.0069	7.0192	0.011
ł	n-Butane	24.808/	0.0098	5940 9022	0.0028	2.0000	0.004
	i-Dutane	70.0454	0.0404	5053.8422	0.0098	8 1064	0.010
t	n-Pentane	138 9271	0.0550	10023 7308	0.0193	15,9175	0.076
t	n-Hexane	252.7338	0.1000	21780.0656	0.0420	32.8674	0.053
t	C7s*	221.0252	0.0875	21288.9348	0.0411	30.2477	0.049
	C8s*	190.0533	0.0752	20907.7643	0.0404	28.8490	0.0472
I	C9s*	139.1297	0.0551	17065.6543	0.0329	22.7480	0.037
	C10s*	124.6926	0.0493	16708.8059	0.0323	21.4773	0.035
ł	C11s*	98.6689	0.0390	14504.3233	0.0280	18.3840	0.030
ł	C12s*	82.8223	0.0328	13334.3958	0.0257	16.6690	0.027
ł	C13s*	76.7775	0.0304	13438.0543	0.0259	16.5685	0.027
	C145*	07.4404	0.0207	12814.0202	0.0247	10.0909	0.025
ł	C18st	52 1294	0.0224	11574 9512	0.0223	19.0313	0.023
t	C17s*	45.1439	0.0179	10699.1004	0.0223	12.6332	0.020
t	C18s*	42.6956	0.0169	10716.6044	0.0207	12.5797	0.020
1	C19s*	41.4901	0.0164	10911.8938	0.0211	12.7343	0.020
I	C20s*	33.2773	0.0132	9151.2587	0.0177	10.6165	0.0174
I	C21s*	29.7523	0.0118	8657.9281	0.0167	9.9863	0.016
ł	C22s*	27.7679	0.0110	8469.2105	0.0163	9.7127	0.015
ł	C23s*	24.4162	0.0097	7764.3488	0.0150	8.8536	0.014
ł	0245"	22.0564	0.0087	/300.6814	0.0141	8.28/1	0.013
ł	C26s*	20.0043	0.0082	6778 6027	0.0138	5.0020	0.013
t	C27s*	18.8709	0.0075	6982 8971	0.0135	7.8200	0.012
t	C28s*	18.5165	0.0085	6408.4045	0.0124	7.1526	0.011
t	C29s*	15.6616	0.0062	6295.9666	0.0122	7.0037	0.011
1	C30L+*	284.1999	0.1125	207014.0696	0.3996	206.9647	0.338
l	C30H+*	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
l	H2O	2.7349	0.0011	49.2694	0.0001	0.0494	0.000
1	Argon	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
ļ	Oxygen	0.0000	0.0000	0.0002	0.0000	0.0000	0.000
	Iotāl	2527.0249	1.0000	5180/2.81/8	1.0000	610.9672	1.000
3							
1							

2		CHEVRON USA		Case Name:	PHD.H	ISC			
		Burlington, MA		Unit Set:	NewUs	er			
		USA		Date/Time:	Mon Ap	or 08 10:13:05 2015			
	Matoria	Etroamu	Food From	Well (ee	ntin	Flui	id Package:	Main Basis	
	Materia	i Su'eani.	reeu rioin	wen (co	mun	iueu) _{Pro}	perty Package:	Peng-Robin	nson
0			(COMPOSITION					
2			Aque	ous Phase			Pha	se Fraction	0.614
3	COMPONENTS	MOLAR FLOW (kgmole/h)	MOLE FRACTION	MASS FLOW (kg/h)	/	MASS FRACTION	LIQUID VOLU FLOW (m3)	/ME LIQI /h) F	UID VOLUME RACTION
5	Nitrogen	1.3103	0.0001	36.70	058	0.0001	0.0	0455	0.000
6	CO2	0.1260	0.0000	5.54	469	0.0000	0.0	0067	0.000
7	H2S	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
8	Methane	0.0006	0.0000	0.01	101	0.0000	0.0	0000	0.000
-	Etnane	0.0000	0.0000	0.00	002	0.0000	0.0	0000	0.000
1	riopane i Rutana	0.0000	0.0000	0.00	200	0.0000	0.0	0000	0.000
,	n-Butane	0.0000	0.0000	0.00	000	0.0000	0.0	1000	0.000
	i-Dotane	0.0000	0.000	0.00	000	0.0000	0.0	1000	0.000
	n-Pentane	0.000	0.000	0.00	000	0.000	0.0	0000	0.000
	n-Hexane	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
	C7s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
	C8s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
3	C9s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
)	C10s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
)	C11s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
	C12s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
2	C13s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
3	C14s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
	C15s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
5	C105"	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
2	01/5"	0.000.0	0.0000	0.00	000	0.0000	0.0	0000	0.0000
	C105"	0.0000	0.0000	0.00	000	0.0000	0.0	000	0.0000
	C20e*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.0000
	C203	0.000	0.0000	0.00	000	0.0000	0.0	0000	0.000
	C22s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
	C23s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
	C24s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
	C25s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
5	C26s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
5	C27s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
	C28s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
3	C29s*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
)	C30L+*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
)	C30H+*	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
	H2O	17723.2110	0.9999	319285.42	2/9	0.9999	319.9	1298	0.999
-	Argon	0.0000	0.0000	0.00	000	0.0000	0.0	0000	0.000
-	Total	17724 8400	0.0000	240007 00	000	0.0000	0.0	000	0.000
5	rvtar	17724.0460	1.0000	315327.05	~~~	1.0000	319.3	1020	1.000
5				K VALUE					
4	COMPONE	NTS	MIXED)		LIGHT		HEAV	Y
3		Nitrogen		302.0			38.91		836
		CO2		45.38			6.675		261.1
0		H2S							
1		Methane		143.5			17.91		5.940e+00
2		Ethane		35.99			4.491		2.097e+00
5		Propane		12.19			1.521		1.988e+010
4		i-Butane		9.271			1100/1		0.301e+012

1			Case Name:	PHD.HSC				
3			Unit Set:	NewUser				
4 5	USA		Date/Time:	Mon Apr 08 10:13:0	5 2015			
6	Material Stream: E	eed From	n Well (cc	ontinued)	Fluid Pac	kage:	Main Basis	
8	Material Sciediff. 14	eeurion	i wen (cc	minueuj	Property I	Package:	Peng-Robins	on
9			K VALUE					
1	COMPONENTS	MIX		LIGHT			LIEWAY	
2	n-Butane	MIA	4.066	LIGHT	0.5074		HEAV1	3.278e+012
13	i-Pentane		1.754		0.2189			1.179e+015
4	n-Pentane		1.398		0.1745	j		1.035e+015
5	n-Hexane		0.4868		6.074e-002	!		4.835e+017
6	C7s*		0.2142		2.673e-002	2		1.674e+020
7	C8s*		7.772e-002		9.698e-003			1.378e+023
8	C9s*		3.060e-002		3.819e-003			1.694e+025
9	C10s*		1.226e-002		1.530e-003			
0	C11s*		5.478e-003		0.836e-004			
2	C125"		2.0988-003		3.300e-004			
4	C135"		1.300E-003 8.947= 004		0.880-005			
4	0145*		2 727=-004		3.4026-005			
5	C18+*		1.0986-004		1.370=-005			
6	C17s*		4.592e-005		5.729e-008			
7	C18s*		2.044e-005		2.551e-006			
8	C19s*		1.027e-005		1.282e-006			
9	C20s*		5.187e-006		6.472e-007	'		
0	C21s*		2.127e-006		2.654e-007	·		
1	C22s*		9.760e-007		1.218e-007			
2	C23s*		4.725e-007		5.896e-008			
3	C24s*		2.307e-007		2.879e-008			
4	C25s*		1.067e-007		1.331e-008			
5	C28s*		4.900e-008		6.115e-009			
6	C27s*		2.115e-008		2.639e-009			
-	C28s*		9.030e-009		1.202e-009			
0	C295"		2 4110-000		3.000×.024	· · · · · · · · · · · · · · · · · · ·		
0	C30L+*		2.4118-020		3.008e-021			
1	U30H+*		8 657=-003		7 003			7 578002
2	Argon				1.002			
3	Oxygen		174.8		21.98			1.917e+004
4			NIT OPERATION	IS				
5	FEED TO		PRODUCT FROM			LOGICAL CO	NNECTION	
7	Heat Exchanger: Production Heater	Mixer:		MIX-101-2				
8			UTILITIES					
9		(No uti	ities reference this	stream)				
1				r v				
2			NOCEOS UTILI					
ю і4								
6			DYNAMICS					
6 7	Pressure Specification (Inactive): 12.05 bar Flow Specification (Inactive) Molar:	579.1 M	MSCFD Mass:	1.082e	+006 ka/h	Std Ideal Lie	volume:	1344 m3/h
8			llser Variables					
9 0			soor carrantee	-				
51			NOTES					
2 3								
4			Description					
• T	Aspen Technology Inc.	Aspen HYS	YS Version 8.2.0	28.0.1.8215)			P	age 6 of 7

Oil Production Separator Printouts

2		SA		Case Name:	PHD.HSC		
3		Ă		Unit Set:	NewUser		
5	- USA			Date/Time:	Mon Apr 06 10:33:51 2015		
5	3 Phase Separato	r: Prod	luctio	on Separat	or		
6 0				CONNECTIONS			
1				Inlet Stream			
3	Stream Name				From Unit Operation	n	
4	100-0003		Heat Ex	changer:			Production Heate
5	100-0052R		Recycle	Cutlet Streem			RCY-
7 8	Stream Name			Outlet Stream	To Unit Operation		
5	100-0005		Valve:		To one operation		VLV-11
)	100-0010		Valve:				VLV-10
1	100-0015		3 Phase	Separator:		Productio	on Hydrocyclone
2				Energy Stream			
	Stream Name				From Unit Operation	n	
			1				
1				PARAMETERS		-	
3	Vessel Volume:	Lev	el SP:		50.00 % Liquid Vo	lume:	
9	Vessel Pressure: 8.598 bar Pre	essure Drop:	0	.0000 psi Duty:	0.0000 kJ/ł	Heat Transfer Mode	2: Heating
Ì				User Variables	•		
2 3				RATING			
5				Sizing			
5	Cylinder			Horizontal	Separat	or has a Boot: Yes	
7	Boot Diameter:	Die		Boot H	leight:		-
9	volume.	Dia	meter:	Nozzlee	Length:		
	Page Flouring Politics to Council Lough			NOZZIES		Leveth	
2	Base Elevation Relative to Ground Lever			100-0003	100-0052R	- Lengun 10	0-0005
3	Diameter	(m)		5.000e-002	5.000e-002	5.0	00e-002
¢	Elevation (Base)	(m)		0.0000	0.0000	0	.0000
5	Elevation (Ground)	(m)		0.0000	0.0000	0	.0000
7	Elevation (% of Height)	(%)		100-0010	100-0015		
8	Diameter	(m)		5.000e-002	5.000e-002		
9	Elevation (Base)	(m)		0.0000	0.0000	-	
)	Elevation (Ground)	(m)		0.0000	0.0000		
1	Elevation (% of Height)	(%)					
3		L	evel Tap	os: Level Tap Sp	ecification		
1	Level Tap F	V High		PV Low	OP High	(OP Low
5		Lev	el Taps:	Calculated Leve	el Tap Values		
7	Level Tap			Liquid Level		Aqueous Level	
9				Options			
2	PV Work Term Contribution	(%)		100.00 *			
1 2				CONDITIONS			
3	Name	1	0.2450	100-0052F	100-0010	100-0005	100-001
4.8.			0.3405	0.0000	0.0000	1.0000	0.0000

		CUEVDON US		Case Name: PHE	D.HSC		
	(Paspenter	Burlington, MA	~	Unit Set: New	/User		
ł	- and a state	USA		Date/Time: Mon	Apr 06 10:33:51 2015		
t							
1	3 Phase	Separator	: Productio	on Separator	(continued)		
				CONDITIONS			
1	Temperature	(C)	87,7778 *	86,8898 *	87,7241	87,7241	87,7241
2	Pressure	(bar)	8.5978	8.5978 *	8.5978	8.5978	8.5978
3	Molar Flow	(MMSCFD)	579.1055	74.0845 *	112.3008	200.2723	340.6168
4	Mass Flow	(kg/h)	1081822.4966	66562.7124	534916.9078	307397.7272	306070.5740
	Std Ideal Liq Vol Flow	(m3/h)	1344.4302	66.7103	600.3517	504.0313	306.7574
,	Molar Entraipy	(Btu/SCF)	-240.8	-318.8	-403.7	-03.03	-318.7
3	Heat Flow	(kJ/kgmole=C) (kJ/h)	-6.2825e+09	-1.0383e+09	-1.9931e+09	-5.5494e+08	-4.7728e+09
Ì		(PROPERTIES			
1	Name		100-0003	100-0052R	100-0010	100-0005	100-0015
	Molecular Weight		37.51	18.04	95.63	30.82	18.04
8	Molar Density	(kgmole/m3)	0.8211	53.16	8.765	0.2914	53.11
	Mass Density	(kg/m3)	30.80	958.9	838.3	8.981	958.2
2	Act. Volume Flow	(m3/h)	3.513e+004	1 580e+004	038.1	3.423e+004	-1 5590+004
	Mass Entropy	(kJ/kg-C)	3 743	3 795	2 755	5 411	3.805
3	Heat Capacity	(kJ/kgmole-C)	98.51	78.73	234.0	48.81	78.76
)	Mass Heat Capacity	(kJ/kg-C)	2.626	4.365	2.447	1.584	4.366
)	LHV Molar Basis (Std)	(Btu/SCF)					
	LHV Mass Basis (Std)	(kJ/kg)					
2	Phase Fraction [Vol. Ba	sis]	0.3750	0.0000	0.0000	1.000	0.0000
5	Phase Fraction [Mass B	asis	0.2842	0.0000	0.0000	1.000	0.0000
	Cost Based on Flow	(Cost/s)	0.0000	0.0000	0.0000	0.0000	0.0000
5	Act. Gas Flow	(ACT m3/h)	3.424e+004			3.423e+004	0.0000
	Avg. Liq. Density	(kgmole/m3)	21.45	55.31	9.317	19.79	55.30
3	Specific Heat	(kJ/kgmole-C)	98.51	78.73	234.0	48.81	78.76
)	Std. Gas Flow	(STD_m3/h)	6.820e+005	8.725e+004	1.323e+005	2.359e+005	4.011e+005
)	Std. Ideal Liq. Mass Der	isity (kg/m3)	804.7	997.8	891.0	609.9	997.8
,	Z Factor	(m3/s)	0.2407	1.9288-002	0.1773	3.4800-000	8.873e-002
	Watson K		10.59	11.44	11.65	10.44	11.13
	User Property						
5	Partial Pressure of H2S	(bar)	0.0000	0.0000	0.0000	0.0000	0.0000
5	Cp/(Cp - R)		1.092	1.118	1.037	1.205	1.118
	Cp/Cv	(2) (225)	1.034	1.172	1.138	1.231	1.172
5	Heat of Vap.	(Btu/SCF)	100.0	52.90	213.2	28.59	57.03
1	Lin Mass Density (Std.	(cord) (kn/m3)	798.5	1016	928.6	1 309	1016
	Lig. Vol. Flow (Std. Con	d) (m3/h)	1358	65.56	577.3	2.348e+005	301.3
2	Liquid Fraction	, ,,	0.6541	1.000	1.000	6.288e-006	1.000
5	Molar Volume	(m3/kgmole)	1.218	1.881e-002	0.1141	3.431	1.883e-002
	Mass Heat of Vap.	(kJ/kg)	2508	2588	1968	818.9	2790
j	Phase Fraction [Molar B	asis]	0.3459	0.0000	0.0000	1.0000	0.0000
,	Surface Lension	(dyne/cm)		0.8725	0.4224	2.020=.002	0.8720
	Viscosity	(W/m-K) (cP)		0.0725	7.872	1.841e-002	0.0725
	Cv (Semi-Ideal)	(kJ/kamole-C)	90.20	70.42	225.7	40.50	70.45
)	Mass Cv (Semi-Ideal)	(kJ/kg-C)	2.405	3.904	2.380	1.314	3.905
	Cv	(kJ/kgmole-C)	95.29	67.20	205.9	39.66	67.22
2	Mass Cv	(kJ/kg-C)	2.541	3.725	2.153	1.287	3.726
3	Cv (Ent. Method)	(kJ/kgmole-C)		65.09			65.08
	Mass Cv (Ent. Method)	(kJ/kg-C)		3.608			3.608

,			Case N	ame: PHD	.HSC			
	(leven	n USA I, MA	Unit Set	t: New	User			
			Date/Tir	me: Mon	Apr 06 10:33:51 2015			
	3 Phase Separa	tor: Produc	tion Sep	parator	(continued)		
	•		PROPI	ERTIES		-		
	Name	100-0003	100-005	52R	100-0010	100-000	5	100-0015
	Cp/Cv (Ent. Method)			1.210		100-000		1.210
	Reid VP at 37.8 C (bar)	149.2		6.266	1.086			15.83
	True VP at 37.8 C (bar)	587.2		2.217	6.595			5.55
i I	Liq. Vol. Flow - Sum(Std. Cond) (m3/h)	2.357e+005		65.61	599.1	2.348	Be+005	301.7
5	Viscosity Index	-7.654		-18.94	15.99		-18.19	-19.25
	HHV Molar Basis (Std) (Btu/SCF)		· _					
3	HHV Mass Basis (Std) (kJ/kg)		·					
	CO2 Loading CO2 Apparent Mole Conc. (kamole/m2)		10	 108e-004	3.8950-004			1 390-00
	CO2 Apparent Wt. Conc. (kgmol/ko)		1.0	49e-007	4.408e-007			1.440e-00
2	Phase Fraction [Act. Vol. Basis]	0.9747		0.0000	0.0000		1.000	0.000
	Mass Exergy (kJ/kg)	64.80		25.41	15.23		180.9	28.0
			DYNA	MICS				
5			DTAA					
		Vessel P	arameters:	Initialize fro	m Product			
	Vossol Volumo	(m2)		Lovel Colou	atar			Harizantal avdinda
	Vessel Volume Vessel Dismeter	(m)		Eraction Cal	culator		llee	Horizontal cylinde
, 1	Vessel Length	(m)		Feed Delta	P	(nsi)	036	0.000
	Liquid Level Percent	(%)	50.00	Vessel Pres	sure	(bar)		8.59
2			Holdup: Ve	ssel Levels	;			
	Phase	Level			Percent		Vol	ume
	Vanaur	(11)			(/0)		0.0	000
,	Liquid			1			0.0	000
8	Aqueous						0.0	000
)			Holdup:	Details				
	Phase	Accumulati	ion		Moles		Vol	ume
-	V	(MMSCFL))		(kgmole)		(n	13)
1	Liquid	0.0000			0.0000	-	0.0	000
	Aqueous	0.0000			0.0000	-	0.0	000
j	Total	0.0000			0.0000		0.0	000
1	•		NO	TES				
8			au					
-								
		Carry Ove	er Calculatior	n - Feed Fra	ction Basis			
					Carry Over	as Fraction of	of Feed	
	Light liquid in gas							0.000
	Heavy liquid in gas							0.000
5	Gas in light liquid							0.000
	Heavy liquid in light liquid							0.1800
	Gas in heavy liquid							0.000
	Light liquid in neavy liquid		Ne					0.0010
	Garry Over to Zero Flow Streams:		INO	1				
1		Carry Ov	er Calculatio	on - Results	Summary			
		Feed Fraction	Product	Fraction	Product FI (MMSCFI	ow D)	Mass	(kg/m3)

Burington, MA Unit Set: NewGlaer Date/Time: Non Apr 08 10:33:81 2015 3 Phase Separator: Production Separator (continued) Heavy liquid in gas 0:000 0:000 0:000 Bas in light liquid 0:000 0:000 0:000 0:000 Heavy liquid in gas 0:000 0:000 0:000 0:000 0:000 Bas in light liquid 0:000 <		CHEVRON USA	Case Name: PHD.HSC	C	
Date/Time Mon Apr 08 10:33:81 2016 3 Phase Separator: Production Separator (continued) Heavy liquid in gas 0.000 0.0000	C aspentech	Burlington, MA	Unit Set: NewUser		
3 Phase Separator: Production Separator (continued)		035	Date/Time: Mon Apr (08 10:33:51 2015	
Feed Fraction Product Fraction Product Flow (MMSCPD) Mass Per Volume (kg/m3) Heavy liquid 0.0000 0.0000 0.0000 0.000 Gas in light liquid 0.0000 0.0000 0.000 0.000 Gas in light liquid 0.0000 0.0000 0.000 0.000 0.000 Gas in heavy liquid 0.0000 0.0000 0.0000 0.000 0.000 Light liquid heavy liquid 0.0010 0.0001 0.758-002 1.4 Total liquid in gas 0.0000 0.0000 0.0000 0.000	3 Phase S	eparator: Product	ion Separator (co	ontinued)	
Heavy lquid in gas 0.0000 0.0000 0.000 Sas in light lquid lquid in light lquid lqq		Feed Fraction	Product Fraction	Product Flow (MMSCFD)	Mass Per Volume (kg/m3)
Gas in light liquid 0.0000 0.0000 0.000 Heavy liquid 0.0000 0.0000 0.000 0.000 Gas in heavy liquid 0.0001 0.0001 3.768+002 1.4 Light liquid in heavy liquid 0.0000 0.0000 0.000 0.000 Total liquid in gas 0.0000 0.0000 0.0000 0.0000	Heavy liquid in gas	0.0000	0.0000	0.0000	0.000
Heavy liquid 0.1800 0.0867 7.4.78 105 Gas in heavy liquid 0.0000 0.0000 0.0000 0.0000 Light liquid in heavy liquid 0.0010 0.0001 3.758e-002 1.4 Total liquid in gas 0.0000 0.0000 0.0000 0.0000 0.0000	Gas in light liquid	0.0000	0.0000	0.0000	0.000
Less in neavy liquid 0.0000 0.0000 0.0000 Light liquid in leavy liquid 0.0000 0.0000 0.0000 Total liquid in gas 0.0000 0.0000 0.0000 0.0000	Heavy liquid in light liquid	0.1800	0.6657	74.76	105
Total liquid in gas 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	Gas in heavy liquid	0.0000	0.0000	2 75% 002	0.00
	Total liquid in neavy liquid	0.0010	0.0001	0.0000	0.00

Export Oil Pumps Printouts

2			Case Name:	PHD).HSC			
3			Unit Set:	New	User			
4	USA		Date/Time:	Mon	Apr 06 10:43:	12 2015		
6 7	Pump:	Exp	ort Oil Pumps	;				
8				-				
10			CONNECTIO	DNS				
12			Inlet Strea	m				
13 14	Stream Name 100-0071		Mixer		From U	nit Operation		MIX-112
15 16			Outlet Stre	am				
17	Stream Name				To Uni	it Operation		
18 19	100-0072		Tee					TEE-102
20	2		Energy Stre	eam	Euro II	-3.0		
21 22	Q-P102 Stream Name				From U	nit Operation		
23			PARAMET	RS				
24 25	Adiabatic Efficiency (%): 75.0	0° De	lta P:		4145 psi	Duty:		6532 kW
26 27			CURVES	5				
28	Delta P:		4145 psi Di	ity:				6532 kW
29	Coefficient A: 0.000	01 Co	efficient B:		0.0000 *	Coefficient C:		0.000
30 31	Parameter Preferences Units for	r Delta P	t ft Fl	ow Basis		ActVolFlow Unit	s for Flow:	barrel/day
32			User Varial	oles				
33 34			RATING	i				
35	Head Offset:		0.0000 m Ef	ficiency (Offset:			0.000
30 37			Characteristic	Curves				
38	Elaur		Sp	eed:			Efficiency (%)	
40	Flow		NDSH				Ernolency (76)	
41 42	NPSH Required	- NF	SH Available		434.2 m	Enable NPSH Cur	Vec.	No
43	n orricejuica		NPSH Curv	es	101.21			
44 45								
46			Nozzle Param	naters				
47 48	Base Elevation Relative to Ground Level		100-0071		10	0-0072		0.0000 m
49	Diameter	(m)	5.00	0e-002		5.000e-002		
50	Elevation (Base)	(m)		0.0000		0.0000		
51 52	Elevation (Ground)	(m)		0.0000		0.0000		
53			Inertia					
54 55	Rotational inertia (kg-m2) 0.5000 Radius	of gyrati	on (m) 0.1000 Ma	ass (kg)	5	0.00 Friction los	s factor (kg-m2/	s) 5.000e-002
56			Start Up)				
57	Design Flow Typical Operating Capacity							10.00 m3/ł
59			CONDITIO	NS				
60	Name		100-0071		100-0072	Q	-P102	
61 62	Vapour Temperature ((3	42 8979		43.3890			
63	Pressure (ba	r)	4.8263		290.5931			
64	Molar Flow (MMSCFE)	41.8242		41.8242			

		CA.	Case Na	me:	PHD.HSC			
			Unit Set:		NewUser			
			Date/Tim	e:	Mon Apr 06 10:43:	12 2015		
	Pump	: Export	Oil Pum	ps (d	continued	1)		
			CONDIT	FIONS				
	Mass Flow	(kg/h)	529938.8636		529938.8636			
	Std Ideal Lig Vol Flow	(m3/h)	602.2258		602.2258			
4	Molar Enthalpy (Btu	J/SCF)	-612.3		-599.5			
	Molar Entropy (kJ/kgm	iole-C)	590.4		587.3			
1	Heat Flow	(kJ/n)	-1.12098+09		-1.1023e+09		2.30100+07	
			PROPE	RTIES				
	Name Molecular Weight	100-0071	100-007	2				
	Molecular Weight Molar Density (komole/m3)	3.375		3.470				
t	Mass Density (kg/m3)	858.6		882.8				
	Act. Volume Flow (m3/h)	617.2	1	600.3				-
	Mass Enthalpy (kJ/kg)	-2125		-2080				
	Mass Entropy (kJ/kg-C)	2.321		2.308				
i.	Heat Capacity (kJ/kgmole-C)	505.9		502.2				
	Mass Heat Capacity (kJ/kg-C)	1.989		1.974				
	LHV Molar Basis (Std) (Btu/SCF)							
	Phase Fraction (Vol. Basis)	0.0000		0.0000				
	Phase Fraction [Mass Basis]	0.0000		0.0000				
	Partial Pressure of CO2 (bar)	0.0000		0.0000				
2	Cost Based on Flow (Cost/s)	0.0000		0.0000				
5	Act. Gas Flow (ACT_m3/h)							
4	Avg. Liq. Density (kgmole/m3)	3.459		3.459				
j	Specific Heat (kJ/kgmole-C)	505.9		502.2				
	Std. Gas Flow (STD_m3/h)	4.925e+004	4.923	5e+004				
	Act Lia Elew (m2/s)	0.1714		0 1887				
í	Z Factor							
)	Watson K	11.67		11.67				
	User Property							
2	Partial Pressure of H2S (bar)	0.0000		0.0000				
5	Cp/(Cp - R)	1.017		1.017				
	Cp/Cv	1.139		1.156				
	Kinematic Viscosity (cSt)	511.0 12.81		12 78				
1	Lin Mass Density (Std. Cond) (kn/m3)	878.6		878.6				
3	Lig. Vol. Flow (Std. Cond) (m3/h)	603.2		603.2				_
)	Liquid Fraction	1.000		1.000				
)	Molar Volume (m3/kgmole)	0.2963		0.2882				
4	Mass Heat of Vap. (kJ/kg)	1775		-128.8				
2	Phase Fraction [Molar Basis]	0.0000		0.0000				
	Surface Lension (dyne/cm)	0.4402		0.4400				
	Viscosity (V/m-K)	10.93		11 29				
	Cv (Semi-Ideal) (kJ/komole-C)	497.6		493.9				
	Mass Cv (Semi-Ideal) (kJ/kg-C)	1.956		1.942				
1	Cv (kJ/kgmole-C)	444.1		434.6				
J	Mass Cv (kJ/kg-C)	1.746		1.708				
)	Cv (Ent. Method) (kJ/kgmole-C)							
	Mass Cv (Ent. Method) (kJ/kg-C)							
2	Cp/Cv (Ent. Method)							
3	Reid VP at 37.8 C (bar)	0.3533		0.3533				
1	inue vir at 37.0 G (bar)	0.9133	1	0.0133				

Unit Set: NewUser Date/Time: Mon Apr 08 10.43:12 2015 PROPERTIES Name Out: Second Dial Pumps (continued) Vacond Dial Pumps (continued) 00.0007 00.0007 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000	Pressure Read Burington, MA Unit Set: NewUser Date/Time: Non Apr 08 104/81 22015 PROPERTIES Name Name 100-0071 Unit Set: Name Name 100-0071 Use Vol Flow - Sum(Std. Condy (m3h) 000-0071 Use Vol Flow - Sum(Std. Condy (m3h) Velocity Index 2 Colspan="2">Colspan="2" Colspan="2" Colspan="2" <t< th=""><th></th><th>CHEVRON</th><th>USA</th><th>Case Na</th><th>ame:</th><th>PHD.HSC</th><th></th><th></th><th></th></t<>		CHEVRON	USA	Case Na	ame:	PHD.HSC							
Date/Time: Man Apr 08 10:43:12 2015 Pump: Export Oil Pumps (continued) PROPERTIES Name 100-0071 100-0072 Image: Continued Viscosity Index 24.80 24.87 Image: Continued HHY Mass Basis (Sta) (EluiSCP) - - Image: Continued CO2 Loading - - - Image: Continued Continued CO2 Apparent Mole Conc. (kulkg) - <th>Date/Time: Mon April 08 10:43:12 2016 Pump: Export Oil Pumps (continued) PROPERTIES Name 100-0071 100-0072 Image: Continued (Continued (Continued Continued Conterinin Contonteres Continued Continued Continued Continued Cont</th> <th>1</th> <th>espentech Burlington,</th> <th>MA</th> <th>Unit Set</th> <th></th> <th>NewUser</th> <th></th> <th></th> <th></th>	Date/Time: Mon April 08 10:43:12 2016 Pump: Export Oil Pumps (continued) PROPERTIES Name 100-0071 100-0072 Image: Continued (Continued (Continued Continued Conterinin Contonteres Continued Continued Continued Continued Cont	1	espentech Burlington,	MA	Unit Set		NewUser							
Pump: Export Oil Pumps (continued) PROPERTIES Name 100-0071 100-0072 Image: Continued (Continued) Lin, Vol. Flow - Sum(Std. Cond) (m3/h) 603.1 Image: Continued (Continued) Image: Continued (Continued) Viscosity Index 24.80 24.87 Image: Continued (Continued) Image: Continued (Continued) HHV Mase Basis (Std) (Btu/SCF) Image: Continued (Continued) Image: Continued (Continued) HHV Mase Basis (Std) (Btu/SCF) Image: Continued (Continued) Image: Continued (Continued) CO2 Apparent Wit Conc. (kgmolking) 1.338-007 1.438-007 Image: Continued (Continued) Image: Continued (Continued) Phase Fraction (Act. Vol. Basis] 0.0000 0.0000 Image: Continued (Continued) Image	Pump: Export Oil Pumps (continued) PROPERTIES Name 100-0071 100-0072 Image	1	USA		Date/Tin	ne:	Mon Apr 06 10:43:12	2015						
PROPERTIES Name 100-0071 100-0072 Image: Colspan="2">Colspan="2" Presume data (ki/kg) Colspan="2">Colspan="2" Pressure data (ki/kg) Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Pressure Mead Colspan="2" Velocity Head Colspan="2" Colspan="2" Colspan="2" Velocity Head Colspan="2	PROPERTIES Name 100-0071 100-0072 Image: Colspan="2">Image: Colspan="2" Image: Co		Pun	np: Export (Dil Pum	ips (d	ontinued)							
Name 100-0071 100-0072 Liq. Vol. Flow - Sum(Std. Cond) (m3/h) 603.1 603.1 603.1 Viscosity Index 24.80 24.87 HHY Mass Basis (Std) (Ru/Kg) CO2 Loading CO2 Apparent Mole Conc. (kgmole/m3) 1.235e-004 1.270e-004 CO2 Apparent Wt. Conc. (kgmolkg) 1.439e-007 Phase Fracton JAct Vol. Basis 0.0000 0.0000 Phase Fracton JAct Vol. Basis 0.0000 0.0000 Phase Fracton JAct Vol. Basis 0.0000 0.0000 Phase Fracton JAct Vol. Basis 0.0000 Total Head	Name 100-0071 100-0072 Liq, Vol, Flow - Sum(Std, Cond), (m3/h) 603.1 603.1 603.1 Viscosity Index 24.80 24.87 HVV Mass Basis (Std) (Rtu/SCF) HVV Mass Basis (Std) (Rtu/SCF) HVV Mass Basis (Std) (Rtu/Rg) CO2 Loading CO2 Apparent Mole Conz. (kgmole/m3) 1.238-004 1.2708-004 Phase Fracton fAct. Vol Basis) 0.0000 0.0000 Vasosity Index Velocity Head Phase Fractoring Act. Vol Basis) 0.0000 0.0000 Vasosity Vol. Conc. (kgmole/m3) 1.833 49.87				PROPE	RTIES								
Itq. vol. Flow - Sum(Std. Cond) (m3/h) Model	Liq. Vol. Flow - Sum(Std. Cond) (m3/h) Head Head Head Head Head Head Head Head Head PERFORMANCE Colspan="4">Or Not Active Perse Fractin [Act. Vol. Basis] 0.0000 0.	1	Name	100-0071	100-00	72								
Viscosity Index 24.80 24.87 Image: Construction of the state	Visionity Index 24.80 24.87	2	Liq. Vol. Flow - Sum(Std. Cond) (m3/h)	603.1		603.1								
HHV Molar Basis (Std) (Btu/SCF) C02 Loading C02 Apparent Mole Conc. (kgmole/m3) 1.235e-004 1.270e-004 C02 Apparent Mole Conc. (kgmole/m3) 1.235e-004 1.270e-004 C02 Apparent Wic Conc. (kgmole/m3) 1.439e-007 Phase Fraction [Act. Vol. Basis] 0.0000 0.0000 0.0000 Mass Exergy (kJ/kg) 1.683 49.67 Velocity Head -21.02 DYNAMICE OYNAMICS Dynamic Specifications Lead 2 Not Active Power (kJ/h) 2.352e+007 Not Active <td <="" colspan="2" td=""><td>HHV Molar Basis (Std) (Kul/kg) </td><td>3</td><td>Viscosity Index</td><td>24.80</td><td></td><td>24.87</td><td></td><td></td><td></td><td></td></td>	<td>HHV Molar Basis (Std) (Kul/kg) </td> <td>3</td> <td>Viscosity Index</td> <td>24.80</td> <td></td> <td>24.87</td> <td></td> <td></td> <td></td> <td></td>		HHV Molar Basis (Std) (Kul/kg)	3	Viscosity Index	24.80		24.87						
Hrvin Mass Easis (stol) (kJ/kg) CO2 Lagarent Mic Conc. (kgmole/m3) 1.235e-004 1.270e-004 CO2 Apparent Mic Conc. (kgmole/m3) 1.335e-007 1.439e-007 Phase Faction (Act. Vol. Basis) 0.0000 0.0000 Phase Faction (Act. Vol. Basis) 0.0000 0.0000 Total Head Total Head Delta P exoluting Static Head Results Total Head Delta P exoluding Static Head Results Total Fluid Head Delta P exoluding Static Head Results Dynamic Specifications Not Active Power (kJ/h) 2.352e+007 Not Active Adiabatic Efficiency (%) 75.00 Not Active Capacity Mot Active Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active Phase Accumustion (kgmole) (m3)<	Prink Mass Basis (stu) (KJ/Rg) </td <td>4</td> <td>HHV Molar Basis (Std) (Btu/SCF)</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	4	HHV Molar Basis (Std) (Btu/SCF)					_						
O Southam Image: South	Colouring Colouring 1.235e-004 1.270e-004 Image: Colouring Image: Colouring: Colouring <t< td=""><td>0 6</td><td>CO2 Loading</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></t<>	0 6	CO2 Loading					_						
C02 Apparent Wt. Conc. (kgmol/kg) 1.439e-007 1.439e-007 0.0000 0.0	C02 Apparent Wt. Conc. (kgmol/kg) 1.438e-007 1.438e-007 0.0000 0.0	7	CO2 Apparent Mole Conc. (kgmole/m3)	1.235e-004	1.2	70e-004								
P Phase Fraction [Act, Vol. Basis] 0.0000 0.0000 0.0000 Mass Exergy (kJ/kg) 1.883 49.67 PERFORMANCE Colspan="2">PERFORMANCE Colspan="2">Velocity Head -21.02 Total Head	Phase Fraction [Act. Vol. Basis] 0.0000 0.0000 Mass Exergy (kJ/kg) 1.663 49.67 PERFORMANCE Results Velocity Head -21.02 n DYNAMICE DYNAMICS Mot Active Power Power (KJ/h) 2.352e+007 Not Active Capacity Mot Active Waster Not Active Not Active Polytropic Efficiency (%) 75.00 Active Moles Not Active (m3) Not Active (m3)	8	CO2 Apparent Wt. Conc. (kgmol/kg)	1.439e-007	1.4	39e-007								
Mass Exergy (KJ/Kg) 1.063 49.07 PERFORMANCE PERFORMANCE Results Colspan="2">Velocity Head -21.02 Total Fluid Head	Mass Exergy (KJ/kg) 1.003 49.07 PERFORMANCE Results Total Head	9	Phase Fraction [Act. Vol. Basis]	0.0000		0.0000								
PERFORMANCE Results Velocity Head -21.02 DYNAMICS DYNAMICS DYNAMICS Dynamic Specifications Adiabatio Efficiency Not Active Fluid Head Not Active Capacity More (kJ/h) 2.352e+007 Not Active Capacity Mot Active Use Characteristic Curves Not Active (MMSCFD) Holdup Details Phase Accumulation (MMSCFD) Moles Volume (m3) NOTES	PERFORMANCE Results Total Head Velocity Head -21.02 n 2 Delta P excluding Static Head Results - Pressure Head 3394 m Delta P excluding Static Head Results - 2 DYNAMICS - DVNAMICS - 3 DYNAMICS - - Not Active - 4 (m) Not Active Power (kJ/h) 2.352e+007 Not Active 4 Adiabatic Efficiency (mm) Not Active Capacity (m3/h) 602.2 4 Delta P excluding as a Turbine Not Active Velocity Head Not Active Not Active 9 Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active 9 Phase Accumulation Moles Volume (m3) 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	1	Mass Exergy (KJ/Kg)	1.003		49.07								
Results Velocity Head -21.02 Total Fluid Head	Results Velocity Head -21.02 n Total Fluid Head	2			PERFOR	MANCE								
S Total Head	Total Head Velocity Head -21.02 n Pressure Head 3394 m Delta P excluding Static Head Results - DYNAMICS Dynamic Specifications - - Head (m) Not Active Power (kJ/h) 2.362e+007 Not Active Head (kJ/kg) Not Active Capacity (m3/h) 802.2 Head (kJ/kg) Not Active Capacity (m3/h) 802.2 Adiabatic Efficiency (%) 75.00 Active Pump is Acting as a Turbine Not Active Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active Phase Accounulation Moles Volume (m3) 0.0000	3			Res	ults								
Total Fluid Head Image: model of the second se	5 Total Fluid Head Pressure Head 3394 m · Delta P excluding Static Head Results OYNAMICS Dynamic Specifications 2 Delta P excluding Static Head Results OYNAMICS Dynamic Specifications Lead (m) Not Active Fluid Head (k.J/kg) Not Active Capacity (m3/h) 602.2 Not Active Polytropic Efficiency (%) 75.00 Active Use Characteristic Curves Not Active Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active Phase Accumulation Moles Volume (m3) Vapour 0.0000 0.0000 0.0000 0.0000 Aqueous 0.0000 0.0000 0.0000 0.0000 Aqueous 0.0000 0.0000 0.0000 0.0000 Aqueous 0.0000 0.0000 0.0000 0.0000 <td col<="" td=""><td>5</td><td>Total Head</td><td></td><td></td><td>Velocity</td><td>/ Head</td><td></td><td></td><td>-21.02 m</td></td>	<td>5</td> <td>Total Head</td> <td></td> <td></td> <td>Velocity</td> <td>/ Head</td> <td></td> <td></td> <td>-21.02 m</td>	5	Total Head			Velocity	/ Head			-21.02 m			
Pressure Head 334 m () Class Control (MDM) 0 DYNAMICS 0 Dynamic Specifications 2 Head (m) 4 Adiabatic Efficiency (rpm) 4 Adiabatic Efficiency (rpm) 5 Polytropic Efficiency (%) 75.00 - 6 Pressure Increase (psi) 4145 Active 7 Pressure Increase (psi) 4145 Active 8 Phase Accumulation Moles Volume 1 Vapour 0.0000 0.0000 0.0000 2 Liquid 0.0000 0.0000 0.0000 3 Aqueous 0.0000 0.0000 0.0000 4 Total 0.0000 0.0000 0.0000	Pressure read 3334 m Curve declaring basis 0 DYNAMICS 0 Dynamic Specifications 2 Head (m) 4 Not Active Power (kJ/h) 2.352e+007 Not Active 5 Fluid Head (kJ/kg) Not Active Capacity (m3/h) 602.2 Not Active 1 Adiabatic Efficiency (%) 75.00 Active Use Characteristic Curves Not Active 2 Polytropic Efficiency (%) 75.00 Active Pump is Acting as a Turbine Not Active 3 Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active 4 Holdup Details 4 (MMSCED) (kgmole) (m3) 2 Phase Accumulation Moles Volume (kgmole) (m3) 3 Vapour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 <td< td=""><td>6</td><td>Total Fluid Head</td><td></td><td></td><td>Delta P</td><td>excluding Static Hea</td><td>d Results</td><td></td><td></td></td<>	6	Total Fluid Head			Delta P	excluding Static Hea	d Results						
Adiabatic Efficiency (m) Not Active Power (kJ/h) 2.352e+007 Not Active 4 Adiabatic Efficiency (rpm) Not Active Capacity (m3/h) 602.2 Not Active 5 Polytropic Efficiency (%) 75.00 Active Pump is Acting as a Turbine Not Active 6 Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active 7 0 Active Pump is Acting as a Turbine Not Active Not Active 9 Phase Accumulation Moles Volume (m3) 1 Vapour 0.0000 0.0000 0.0000 0.0000 0.0000 2 Liquid 0.0000	DYNAMIC S Dynamic Specifications Pluid Head (kJ/kg) Not Active Adiabatic Efficiency (rpm) Not Active Adiabatic Efficiency (%) 75.00 * Active Polytropic Efficiency (%) 75.00 * Active Pressure Increase (psi) 4145 Active Power (kJ/h) 2.352e+007 Not Active Capacity (m3/h) 602.2 Vertice Capacity (m3/h) 602.2 Not Active Polytropic Efficiency (%) 75.00 * Active Pressure Increase (psi) 4145 Active Holdup Details Moles Volume (MMSCED) Vapour Not Active Phase Accomulation (MMSCED) Moles (kgmole) Volume (m3) Vapour 0.0000 Icity 0.0000 0.0000 Accumulation (MMSCED) Moles Volume (m3) Volume (MMSCED) NOTES NOTES	27 Pressure Head 3394 m * Denair excluding Static Fread Resoluts												
Dynamic Specifications 2 Head (m) Not Active Power (kJ/h) 2.352e+007 Not Active 4 Adiabatic Efficiency (rpm) Not Active Capacity (m3/h) 602.2 Use Characteristic Curves Not Active 5 Polytropic Efficiency (%) 75.00 Active Pump is Acting as a Turbine Not Active 6 Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active 8 Phase Accumulation Moles Volume (m3) 1 Vapour 0.0000 0.0000 0.0000 0.0000 2 Liquid 0.0000 0.0000 0.0000 0.0000 0.0000 3 Aqueous 0.0000 0.0000 0.0000 0.0000 0.0000 5 Total 0.0000 0.0000 0.0000 0.0000 0.0000	Dynamic Specifications 2 Head (m) Not Active Power (kJ/h) 2.352e+007 Not Active Adiabatic Efficiency (rpm) Not Active Capacity (m3/h) 602.2 Not Active Adiabatic Efficiency (rpm) Not Active Use Characteristic Curves Not Active 5 Polytropic Efficiency (%) 75.00 Active Pump is Acting as a Turbine Not Active 7 Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active 8 Phase Accountulation Moles Volume (m3) 1 Vapour 0.0000 0.0000 0.0000 0.0000 0.0000 2 Phase 0.0000 0.	29 DYNAMICS												
2 Head (m) Not Active Power (kJ/h) 2.352e+007 Not Active 3 Fluid Head (kJ/kg) Not Active Power (kJ/h) 2.352e+007 Not Active 4 Adiabatic Efficiency (rpm) Not Active Capacity (m3/h) 602.2 4 Polytropic Efficiency (%) 75.00 Active Vactores Not Active 6 Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active 7 6 Holdup Details Volume (m3) 9 Phase Accumulation Moles Volume (m3) 1 Vapour 0.0000 0.0000 0.0000 0.0000 0.0000 2 Liquid 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 <td>2 Head (m) Not Active Power (kJ/h) 2.352e+007 Not Active 3 Fluid Head (kJ/kg) Not Active Capacity (m3/h) 802.2 Not Active 4 Adiabatic Efficiency (rpm) Not Active Use Characteristic Curves Not Active 5 Polytropic Efficiency (%) 75.00 Active Pump is Acting as a Turbine Not Active 6 Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active 7 Phase Accumulation Moles Volume (m3) 1 Vapour 0.0000 0.0000 0.0000 0.0000 0.0000 2 Phase 0.00000 0.0000 0.0000<!--</td--><td>0</td><td></td><td>I</td><td>Dynamic Sp</td><td>ecificati</td><td>ons</td><td></td><td></td><td></td></td>	2 Head (m) Not Active Power (kJ/h) 2.352e+007 Not Active 3 Fluid Head (kJ/kg) Not Active Capacity (m3/h) 802.2 Not Active 4 Adiabatic Efficiency (rpm) Not Active Use Characteristic Curves Not Active 5 Polytropic Efficiency (%) 75.00 Active Pump is Acting as a Turbine Not Active 6 Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active 7 Phase Accumulation Moles Volume (m3) 1 Vapour 0.0000 0.0000 0.0000 0.0000 0.0000 2 Phase 0.00000 0.0000 0.0000 </td <td>0</td> <td></td> <td>I</td> <td>Dynamic Sp</td> <td>ecificati</td> <td>ons</td> <td></td> <td></td> <td></td>	0		I	Dynamic Sp	ecificati	ons							
Image: Second	S Fluid Head (kJ/kg) Not Active Capacity (m3/h) 602.2 Adiabatic Efficiency (rpm) Not Active Use Characteristic Curves Not Active Polytropic Efficiency (%) 75.00 Active Pump is Acting as a Turbine Not Active Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active Page 1 Moles Volume (m3) (m3) (m3) Vapour 0.0000 0.0000 0.0000 0.0000 0.0000 Aqueous 0.0000 <td< td=""><td>2</td><td>Head (m)</td><td></td><td>Not Active</td><td>Power</td><td></td><td>(kJ/h)</td><td>2.352e+007</td><td>Not Active</td></td<>	2	Head (m)		Not Active	Power		(kJ/h)	2.352e+007	Not Active				
Idiabatic Efficiency (rpm) Not Active Use Characteristic Curves Not Active Polytropic Efficiency (%) 75.00 Active Use Characteristic Curves Not Activ Polytropic Efficiency (%) 75.00 Active Pump is Acting as a Turbine Not Active P (psi) 4145 Active Pump is Acting as a Turbine Not Active P Phase Accumulation Moles Volume 0 Phase Accumulation Moles (m3) 1 Vapour 0.0000 0.0000 0.0000 2 Liquid 0.0000 0.0000 0.0000 3 Aqueous 0.0000 0.0000 0.0000 4 Total 0.0000 0.0000 0.0000	Adiabatic Efficiency (rpm) Not Active Use Characteristic Curves Not Active Polytropic Efficiency (%) 75.00 Active Pump is Acting as a Turbine Not Active Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active Phase Accumulation Moles Volume (MMSCFD) (m3) Vapour 0.0000 0.0000 0.0000 0.0000 0.0000 Liquid 0.0000	3	Fluid Head (kJ/kg)		Not Active	Capacit	У	(m3/h)	602.2					
Total Total Total Total Not Active Pump is Acting as a Turbine Not Active Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active P Holdup Details Holdup Details Volume (m3) P Phase Accumulation Moles Volume (m3) Vapour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Liquid 0.0000	Indexter Participation Point Pump is Acting as a Turbine Not Active Pressure Increase (psi) 4145 Active Pump is Acting as a Turbine Not Active Holdup Details Holdup Details Volume (m3) Volume Phase Accumulation Moles Volume (m3) Vapour 0.0000 0.0000 0.0000 0.0000 Liquid 0.0000 0.0000 0.0000 0.0000 Aqueous 0.0000 0.0000 0.0000 0.0000 Total 0.0000 0.0000 0.0000 0.0000	4	Adiabatic Efficiency (rpm) Polytropic Efficiency (%)	75.00 *	Not Active	Use Ch	aracteristic Curves			Not Active				
Holdup Details B Accumulation (MMSCFD) Moles (kgmole) Volume (m3) 1 Vapour 0.0000 0.0000 0.0000 2 Liquid 0.0000 0.0000 0.0000 3 Aqueous 0.0000 0.0000 0.0000 4 Total 0.0000 0.0000 0.0000 5 NOTES NOTES 0.0000 0.0000	Holdup Details Phase Accumulation (MMSCFD) Moles (kgmole) Volume (m3) Vapour 0.0000 0.0000 0.0000 Liquid 0.0000 0.0000 0.0000 Aqueous 0.0000 0.0000 0.0000 Total 0.0000 0.0000 0.0000 NOTES 1 1 1	6	Pressure Increase (psi)	4145	Active	Pump is	Acting as a Turbine			Not Active				
8 Accumulation (MMSCFD) Moles (kgmole) Volume (m3) 1 Vapour 0.0000 0.0000 0.0000 2 Liquid 0.0000 0.0000 0.0000 3 Aqueous 0.0000 0.0000 0.0000 4 Total 0.0000 0.0000 0.0000 5 NOTES 7 1	Phase Accumulation (MMISCFD) Moles Volume (m3) Vapour 0.0000 0.0000 0.0000 Liquid 0.0000 0.0000 0.0000 Aqueous 0.0000 0.0000 0.0000 Total 0.0000 0.0000 0.0000 NOTES 1 1 1	7			Holdup	Details		•		•				
0 (MMSCFD) (kgmole) (m3) 1 Vapour 0.0000 0.0000 0.0000 2 Liquid 0.0000 0.0000 0.0000 3 Aqueous 0.0000 0.0000 0.0000 4 Total 0.0000 0.0000 0.0000 5 NOTES 7 1	Chance (MMSCFD) (kgmole) (m3) 1 Vapour 0.0000 0.0000 0.0000 2 Liquid 0.0000 0.0000 0.0000 3 Aqueous 0.0000 0.0000 0.0000 5 Total 0.0000 0.0000 0.0000	8 9	Phase	Accumulation			Moles		Volume					
Vapour 0.0000 0.0000 0.0000 2 Liquid 0.0000 0.0000 0.0000 3 Aqueous 0.0000 0.0000 0.0000 4 Total 0.0000 0.0000 0.0000 5 NOTES 7 1	Vapour 0.0000 0.0000 0.0000 Liquid 0.0000 0.0000 0.0000 Aqueous 0.0000 0.0000 0.0000 Total 0.0000 0.0000 0.0000 NOTES 1 1 1	0		(MMSCFD)			(kgmole)		(m3)					
Z Liquid 0.0000 0.0000 - 0.0000 3 Aqueous 0.0000 0.0000 - 0.0000 4 Total 0.0000 0.0000 0.0000 5 NOTES 7	2 Liquid 0.0000 - 0.0000 2 Aqueous 0.0000 0.0000 - 0.0000 1 Total 0.0000 0.0000 0.0000 0.0000 5 NOTES -<	1	Vapour	0.0000			0.0000	*	0.0000					
3 Aqueous 0.0000 0.0000 0.0000 4 Total 0.0000 0.0000 0.0000 5 NOTES 7 7 7	Aqueous 0.0000 0.0000 0.0000 4 Total 0.0000 0.0000 0.0000 5 NOTES 1 </td <td>2</td> <td>Liquid</td> <td>0.0000</td> <td></td> <td> </td> <td>0.0000</td> <td>*</td> <td>0.0000</td> <td></td>	2	Liquid	0.0000			0.0000	*	0.0000					
NOTES	NOTES	3	Total	0.0000			0.0000	-	0.0000					
6 NOTES 7	NOTES	5	Total	0.0000			0.0000		0.0000					
7	7 3 1	6			NO	IES								
		7												
		2												
		3												
		4												
		5												
		7												
		8												
		9												
		0												
		2												
		3												

Gas Dehydration Tower Printouts

1			Case	Name: PHD.HSC		
3	Ortect	Burlington, MA	Unit S	iet: NewUser		
4 5		USA	Date/	Fime: Mon Apr 06	8 10:51:03 2015	
6 7 8	Compone	ent Splitter: (€as Dehydrat	on		
9 10			CONN	ECTIONS		
11			Inlet	Stream		
13	STRE	AM NAME		FRO	M UNIT OPERATION	
14	400-0050		Separator			Dehy. inlet Dru
15			Outle	t Stream		
10	STD					
18	from Dehy	AMINAME	Valve		DONIT OPERATION	VI V-1
19	500-0550		varve.			
20			Energ	v Stroom		
21			Energ	y stream		
22	STR	AM NAME		FRO	M UNIT OPERATION	
23						
24			PARA	METERS		
20 18						
20			Stream S	pecifications		
28	Overhead Pressure:		76 12 bar	Overhead Vapour	Fraction:	1.00
29	Bottoms Pressure:		76.12 bar	Bottoms Vapour Fr	raction:	0.00
30						
81			5	PLITS		
32			Component Fra	ction To Overhead		
33			Component ria	cuon to overneau		1
34	Component	Split Basis	Split Type	from Dehy		
35	Nitrogen	Molar	FeedFrac. to Products	1.000		
27	L02	Molar	FeedFrac. to Products	1.000		
28	Methane	Molar	FeedFrac. to Products	1.000	•	
39	Ethane	Molar	FeedFrac. to Products	1.000	•	
40	Propane	Molar	FeedFrac. to Products	1.000	•	
41	i-Butane	Molar	FeedFrac. to Products	1.000	•	
42	n-Butane	Molar	FeedFrac. to Products	1.000	•	
13	i-Pentane	Molar	FeedFrac. to Products	1.000	•	
44	n-Pentane	Molar	FeedFrac. to Products	1.000	•	
10 10	n-Hexane	Molar	FeedFrac. to Products	1.000	-	
0	C/s*	Molar	FeedFrac. to Products	0.0000	•	
47	C9s*	Molar	FeedFrac to Products	0.0000	•	
47 48	C10s*	Molar	FeedFrac. to Products	0.0000	-	
47 48 49	C11s*	Molar	FeedFrac. to Products	0.0000	•	
47 48 49 50	012-1	Molar	FeedFrac. to Products	0.0000	•	
47 48 49 50	0123		FeedFrac. to Products	0.0000	•	
47 48 49 50 51 52	C12s*	Molar		0.0000	•	
47 48 49 50 51 52	C12s C13s* C14s*	Molar Molar	FeedFrac. to Products		• 1	1
47 48 49 50 51 52 53 54	C12s* C13s* C14s* C15s*	Molar Molar Molar	FeedFrac. to Products FeedFrac. to Products	0.0000	-	
47 48 49 50 51 52 53 54 55	C12s C13s* C14s* C15s* C15s* C15s*	Molar Molar Molar Molar	FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products	0.0000	•	
47 48 49 50 51 52 53 54 55 56 57	C12s C13s* C14s* C15s* C16s* C16s* C17s* C12-*	Molar Molar Molar Molar Molar	FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products	0.0000 0.0000 0.0000	•	
47 48 50 51 52 53 54 55 56 57 58	C12s* C13s* C14s* C15s* C16s* C16s* C18s* C18s*	Molar Molar Molar Molar Molar Molar	FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products	0.0000 0.0000 0.0000 0.0000	•	
47 48 49 50 51 52 53 54 55 56 57 58 59	C13s* C14s* C14s* C15s* C16s* C17s* C17s* C18s* C19s*	Molar Molar Molar Molar Molar Molar Molar	FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products FeedFrac. to Products	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	•	
47 48 49 50 51 52 53 54 55 56 57 58 59 50	C123 C135* C145* C155* C165* C175* C185* C185* C195* C205* C215*	Molar Molar Molar Molar Molar Molar Molar Molar	FeedFrac. to Products FeedFrac. to Products	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	- - - - - - - - - - - - - - - - - - -	
47 48 49 50 51 52 53 54 55 56 57 58 59 50 51 50 51 50 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50	C123 C133* C145* C155* C175* C175* C175* C175* C195* C205* C215* C215*	Molar Molar Molar Molar Molar Molar Molar Molar Molar	FeedFrac. to Products FeedFrac. to Products	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	• • • • • •	
47 48 49 50 51 52 53 54 55 56 57 58 59 50 51 52 55 56 57 58 59 50 51 52 55 56 57 58 59 50 51 52 55 56 57 50 50 50 50 50 50 50 50 50 50 50 50 50	C123 C133* C145* C165* C165* C175* C185* C185* C195* C205* C215* C215* C225* C235*	Molar Molar Molar Molar Molar Molar Molar Molar Molar Molar	FeedFrac. to Products FeedFrac. to Products	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	• • • • • • •	
47 48 49 50 51 52 53 54 55 56 57 58 59 50 51 57 58 59 50 51 52 53 54 55 56 57 58 50 51 52 53 54 55 50 51 52 53 54 55 50 51 54 55 56 57 56 57 57 57 57 57 57 57 57 57 57 57 57 57	C123* C145* C155* C165* C175* C185* C185* C205* C205* C215* C225* C23* C23*	Molar Molar Molar Molar Molar Molar Molar Molar Molar Molar Molar	FeedFrac to Products FeedFrac to Products	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		

,				Case Na	ime: F	PHD.HSC			
1	(eachertech Burling	ton, MA		Unit Set	: N	NewUser			
				Date/Tir	me: N	Mon Apr 06 10:5	1:03 2015		
	Component Spl	itter: G	as Deh	ydratio	on (co	ntinued)			
5				SPL	ITS				
ĺ	Component Split	Basis	Split	Туре	fro	m Dehy			
2	C26s* M	olar	FeedFrac.	to Products	C	.0000 *			
3	C27s* M	olar	FeedFrac.	to Products	0	00000			
;	C285* M	olar olar	FeedFrac.	to Products		0.0000			
3	C30L+* M	olar	FeedFrac.	to Products	C	.0000 *			
1	C30H+* M	olar	FeedFrac	to Products	C	.0000 *			
3	H2O M	olar	FeedFrac.	to Products	1.0	00e-002 *			
í	Argon Mi Oxvaen Mi	olar	FeedFrac.	to Products		1.000			
I		-		User Va	riables				
2					DAMETE				
	Prov Elevation Palation to Oracad L			NUZZLE PA	KAIVIETEI	ĸs			0.0000
1	Base Elevation Relative to Ground Li	evel		400-0050		50	0-0550		from Dehv
1	Diameter		(m)	5	.000e-002		5.000e-002		5.000e-00
8	Elevation (Base)		(m)		0.0000		0.0000		0.000
	Elevation (Ground)		(m)		0.0000		0.0000		0.000
í				CONDI	TIONS				
2	Name			400-0050		from Dehy	500-	0550	
3	Vapour			1.0000		1.0000	0.	0000	
	Temperature	(C)		46.0951		48.3367	48.	3360	
ŝ	Molar Flow	(MMSCFD)		175.3013		174.7714	0.	5299	
1	Mass Flow	(kg/h)	24	49527.6765		248741.4386	786.	2379	
3	Std Ideal Liq Vol Flow	(m3/h)		425.1859		424.2390	0.	9469	
1	Molar Enthalpy (A	(Btu/SCF)		-41.03		-40.22	2	2.54	
i	Heat Flow	(kJ/h)	4	3.1621e+08		-3.0901e+08	-7.1959	e+06	
2				PROPE	RTIES				
١	Name	400	0050	from De	ehy	500-0550			
į	Molecular Weight		28.58		28.58	2	9.79		
7	Molar Density (kgmole/m3 Mass Density (kgmole/m3	5)	3.178		3.140	2	14.2		
9	Act. Volume Flow (m3/h) 1)	2747		2772	0.9	857		1
)	Mass Enthalpy (kJ/kg	3)	-1267		-1242	-9	152		
	Mass Entropy (kJ/kg-0	3)	4.653		4.657	2	.771		
,	Heat Capacity (kJ/kgmole-C	<i>)</i>	48.14		47.92	9	294		
3	LHV Molar Basis (Std) (Btu/SCF				604.9	3.			
	LHV Mass Basis (Std) (kJ/kg	a)		1.868	8e+004				
	Phase Fraction [Vol. Basis]		1.000		1.000	0.0	000		
1	Phase Fraction [Mass Basis]	-	1.000		1.000	0.0	000		-
	Cost Based on Flow (Cost/	5)	0.0000		0.0000	0.0	000		-
7	Act. Gas Flow (ACT_m3/r)	2747		2772				
7 3	· · · · · · · · · · · · · · · · · · ·	3)	20.54		20.52	2	7.87		
7 3	Avg. Liq. Density (kgmole/m3	/			47.92	9	8.14		
7	Avg. Liq. Density (kgmole/m3 Specific Heat (kJ/kgmole-C))	48.14			-			
7 3 1 2	Avg. Liq. Density (kgmole/m3 Specific Heat (kJ/kgmole-0 Std. Gas Flow (STD_m3/l) Std. Ideal Lin. Marc Density (kgmole/m3/l)	2) 1) 2.	48.14 064e+005	2.058	Be+005	6	24.1		

2	CHEVRON US	A	Case Name: PH	D.HSC	
	espentech Burlington, M.	A	Unit Set: Ne	wUser	
	P 03A		Date/Time: Mo	on Apr 06 10:51:03 2015	
	Component Splitter	: Gas Dehy	dration (cor	tinued)	
			PROPERTIES		
í	Name	400-0050	from Dehy	500-0550	
2	Z Factor		0.9070		
3	Watson K	10.18	10.18	12.34	
5	Dertial Pressure of H2S (bar)	0.0000	0.0000	0.0000	
8	Cp/(Cp - R)	1.209	1.210	1.093	
7	Cp/Cv	1.470	1.460	1.140	
B	Heat of Vap. (Btu/SCF)	14.00	13.96	30.95	
9	Kinematic Viscosity (cSt)		0.2020	1.784	
0	Liq. Mass Density (Std. Cond) (kg/m3)	1.212	1.212	889.2	
1	Liq. Vol. Flow (Std. Cond) (m3/h)	2.059e+005	2.053e+005	0.8842	
2	Liquid Fraction (m2/kample)	1.9/56-005	0.0000	2,859-002	
4	Mass Heat of Vap. (kJ/kg)	432.5	431.3	917.1	
5	Phase Fraction [Molar Basis]	1.0000	1.0000	0.0000	
В	Surface Tension (dyne/cm)				
7	Thermal Conductivity (W/m-K)	3.301e-002	3.314e-002	0.2392	
В	Viscosity (cP)	1.805e-002	1.812e-002	1.453	
5	Cv (Semi-Ideal) (kJ/kgmole-C)	39.83	39.61	89.82	
1	Mass CV (Semi-ideal) (kJ/kg-C)	1.394	1.380	3.010	
2	Mass Cy (kJ/kg-C)	1 148	1 149	2 889	
3	Cv (Ent. Method) (kJ/kamole-C)				
4	Mass Cv (Ent. Method) (kJ/kg-C)				
5	Cp/Cv (Ent. Method)				
6	Reid VP at 37.8 C (bar)			0.1389	
7	True VP at 37.8 C (bar)			0.2037	
5	Liq. Vol. Flow - Sum(Std. Cond)(m3/h)	2.059e+005	2.053e+005	0.9397	
0	HHV Molar Basis (Std) (Btu/SCE)		657.4	-3.508	
1	HHV Mass Basis (Std) (kJ/kg)		2.031e+004		
2	CO2 Loading				
3	CO2 Apparent Mole Conc(kgmole/m3)			0.0000	
4	CO2 Apparent Wt. Conc. (kgmol/kg)			0.0000	
5	Phase Fraction [Act. Vol. Basis]	1.000	1.000	0.0000	
0 7	Mass Exergy (kJ/kg)	362.9	363.4	12.92	
8			DYNAMIC S		
9				_	
0		PI	essure specificatio	n	
1	Attached Streams		Press	ure	Active
2	400-0050		76.12	bar	No
3 4	from Dehy		/6.12	bar	No
5	500-0550		70.12	bar	NO
6	Com	p. Splitter Vessel V	olume: 0.0000 m3		
7					
B					
9					
0					
1					
2					
4					

1				Case Na	ame: PH	ID.HSC			
3	(espentech	Burlington, MA		Unit Set	t: Ne	wUser			
4		USA		Date/Ti	me: Mo	on Apr 06 10:55:	10 2015		
6									
7	Co	mpressor:	IGC	3rd stage Co	ompres	ssor			
9 10				DES	IGN				
11				Conne	ctions				
13				Inlet S	tream				
14 15	STREA	M NAME				FROM UNIT	OPERATION		
16	900-0040			Separator				IGC 3rd Stage	Suction Drur
17 18				Outlet	Stream				
19	STREA	M NAME				TO UNIT (OPERATION		
20 21	Injection Wells			Heater				IGC 3r	d stage coole
22				Energy	Stream				
23	STREA	M NAME				FROM UNIT	OPERATION		
24 25	Q-K95								
26				Param	eters				
27	Speed:				Duty:			1	9459e+04 k\
28 29	Adiabatic Eff.:			75.00 1.518o+004 m	PolyTropic	CEff.:			76.6
30	Adiabatic Fluid Head:	•		148.7 kl/kg	Polytropic	Fluid Head:			151.9 ki/k
31	Polytropic Exp.	5.52	3 Ise	ntropic Exp.	- organization	4.346	Poly Head Factor		0.997
32 33 24				User Va	ariables				
34 35				RAT	ING				
38 37				Cur	ves				
38 29	Compressor Speed:			Efficiency:	Adiabatic	Official		Curves Enabled:	Ye
40	Head Offset:			0.0000 m	Speed:	Onset:			0.000
41	Flow	l.		He	ad			Efficiency (%)	
42				Flow	imits				
44				Surge Curve:	Inactive				
45	Speed	Flow		Speed	1	Flow	Speed		Flow
46	Canad	<u>Elaw</u>	_	Stone Wall Curve:	Inactive		Canad		Flam
+/ 48	Surge Flow Rate	Field Fl/	w Rate	765 2 ACT m3/b	Stone We	II Flow	speed	noressor Volume	0.0000 m
49	oligenointate	There is a	211 Hand	Nozzle Pa	ramaters		001	pressor volume	0.0000 m
51	Base Elevation Relative to	Ground Level							0.0000 r
52				900-0040)	Injecti	on Wells		
53	Diameter		(m)	5	000e-002		5.000e-002		
55	Elevation (Base)		(m) (m)		0.0000		0.0000		
-				Ine	rtia				
30	Detetioned in all a final and				Destinant				0.000
57	Rotational inertia (kg-m2) Mass (kg)			5.000 150.0	Friction Io	gyration (m) ss factor (rad/mir	n) (ka-m2/s)		0.200 6.000e-00
50 57 58 59				WORK	SHEET				0.0002-00
50 57 58 59 60									
50 57 58 59 60 61 62				Cond	itions				
50 57 58 59 60 61 62 83 84	Name			Cond	itions	oction Wolls		1/05	

IGC 3rd Stage Compressor Printouts

	CUEVRON			Case Nar	ne:	PHD.HSC				
(Pasnenter	Burlingtor	, MA		Unit Set:		NewUser				
	USA			Date/Tim	ie:	Mon Apr 06 10:55	5:10 2015			
(Compress	or: IGC 3	rd st	tage Co	mpr	essor (cor	ntinue	d)		
				Condit	ions					
Vapour				1.0000		1.0000				
Temperature		(C)		37.7778		120.5698				
Pressure		(bar)		620.5283		1383.4125*			_	
Molar How Mass Flow	(N	(ko/b)	263	249.7714		249.7714				
Std Ideal Lig Vol Flow		(m3/h)	000	554.0098		554.0098			-	
Molar Enthalpy	(Btu/SCF)		-30.18		-23.80				
Molar Entropy	(kJ/k	gmole-C)		141.9		145.6				
Heat Flow		(kJ/h)	-3.	3133e+08		-2.6128e+08		7.0052e+07		
				Proper	rties					
Name		900-0040		Injection W	/ells					
Molecular Weight		28	.41		28.41					
Molar Density	(kgmole/m3)	16	.26		18.80					
Mass Density	(kg/m3)	46	1.8		533.9					
Act. Volume Flow	(m3/n) /k1/ka)	/0	0.2		739.4					
Mass Entropy	(kJ/ka-C)	4	995		5.128					
Heat Capacity	(kJ/kgmole-C)	49	.51		47.80					
Mass Heat Capacity	(kJ/kg-C)	1.	743		1.683					
LHV Molar Basis (Std)	(Btu/SCF)	42	3.2		423.2					
LHV Mass Basis (Std)	(kJ/kg)	1.315e+	004	1.315	e+004					
Phase Fraction [Vol. B Phase Fraction [Mass P	asisj Rociel	1.	000		1.000					
Partial Pressure of CO2	2 (bar)	0.8	292		1.849					
Cost Based on Flow	(Cost/s)	0.0	000	(0.0000.					
Act. Gas Flow	(ACT_m3/h)	76	5.2		661.8					
Avg. Liq. Density	(kgmole/m3)	22	2.46		22.48					
Std. Gas Flow	(STD m3/h)	2.941e+	005	2.941	e+005					
Std. Ideal Liq. Mass De	ensity (kg/m3)	63	7.9		637.9					
Act. Liq. Flow	(m3/s)									
Z Factor					2.248					
Watson K		9.	044		9.044					
Partial Pressure of H29) (bar)	0.0	000	(0.0000					
Cp/(Cp - R)	x1	1.	202		1.211					
Cp/Cv		1.	813		1.446					
Heat of Vap.	(Btu/SCF)	0.000			7.068					
Lig. Mass Density (Std.	(CST) Cond) (kn/m3)	9.980e- Ar	1.55	(60.55					
Liq. Vol. Flow (Std. Co	nd) (m3/h)	5	836		5836					
Liquid Fraction		0.0	000	(0.0000					
Molar Volume	(m3/kgmole)	6.151e-	002	5.320	e-002					
Mass Heat of Vap.	(kJ/kg) Resist	-1	154		219.6					
Surface Tension	(dyne/cm)	1.0		1	.0000					
Thermal Conductivity	(W/m-K)	7.805e-	002	(0.1003					
Viscosity	(cP)	4.609e-	002	5.758	5e-002					
Cv (Semi-Ideal)	(kJ/kgmole-C)	41	.20		39.49					
Mass Cv (Semi-Ideal)	(kJ/kg-C)	1.	450		1.390					
CV Mars Cv	(kJ/kgmole-C)	30	0.70		33.05					
Cv (Ent. Method)	(kJ/kgmole-C)	30	.71		31.77					
Asses Technology In				V0V/0 \/	- 0.0 /0	0.0.4.0046)				Deer Def

2	CHEVRO	USA	Case Na						
5	Sapentech Burlingtor	i, MA	Unit Ser	t:	NewUser				
j			Date/Ti	me:	Mon Apr 06 10:5	5:10 2015			
1	Compress	or: IGC 3rd	stage C	ompr	essor (co	ntinued			
)			3						
0			Prope	erties					
1	Name	900-0040	Injection	Wells					
2	Mass Cv (Ent. Method) (kJ/kg-C)	1.081		1.118					
3 4	Cp/CV (Ent. Method) Reid VP at 37.8 C (bar)	1.013		1.000					
5	True VP at 37.8 C (bar)	9.934		9.934					
6	Liq. Vol. Flow - Sum(Std. Cond)(m3/h)	5836		5836					
7	Viscosity Index								
8	HHV Molar Basis (Std) (Btu/SCF)	460.0		460.0					
9	HHV Mass Basis (Std) (kJ/kg)	1.429e+004	1.42	9e+004					
U 1	CO2 Apparent Mole Constrangle (m2)								
2	CO2 Apparent Wt, Conc. (komol/ko)								
3	Phase Fraction [Act. Vol. Basis]	1.000		1.000					
4	Mass Exergy (kJ/kg)	560.6		719.9					
5			PERFOR						
6									
/ 0			Res	ults					
9	Adiabatic Head	(m) 1.516e	+004	Power	Consumed		(kW)	1,946	e+004
0	Polytropic Head	(m) 1.549e	+004	Polytro	pic Head Factor		()	0.9	977
1	Adiabatic Fluid Head (k	J/kg) 148	.7	Polytro	pic Exponent			5.	523
2	Polytropic Fluid Head (k	J/kg) 151	.9	Isentro	pic Exponent			4.	346
3	Adiabatic Efficiency	75		Speed			(rpm)		
4	Polytropic Efficiency								
B			Power/	Torque					
7	Total Rotor Power	(kW) 1.946e	+004	Total F	Rotor Torque		(N-m)		
8	Transient Rotor Power	(kW) 0.00	00	Transie	ent Rotor Torque		(N-m)		
9	Friction Power Loss	(kW) 0.00	00	Friction	n Torque Loss		(N-m)		
0	Fluid Power	(kW) 1.946e	+004	Fluid 1	orque		(N-m)		
1			DYNA	MICS					
3									
4			Dynamic Sp	ecificati	ations				
5	Duty (kJ/h)	7.005e+007	Active	Head		(m) 1		.549e+004	Not Active
6	Adiabatic Efficiency	75	Not Active	Fluid H	lead	(kJ/kg)	151.9		Not Active
/	Polytropic Efficiency	77	Active	Capac	ty (ACT_m3/h)		765.2	Not Active
d q	Pressure Increase (psi)	1.106e+004	Not Active	Speed	producistic Curre	(rpm)			Not Active
0			Holdun	Detaile	aracteristic Gurve	3			INO
1	Phase	Accumulatio	noidup	Jotuna	Moles			Volume	
3	1 11255	(MMSCFD)		(kgmole)			(m3)	
4	Vapour	0.0000			0.0000	•		0.0000	
5	Liquid	0.0000			0.0000	•		0.0000	
6	Aqueous	0.0000			0.0000	•		0.0000	
/ 0	l otal	0.0000			0.0000			0.0000	
9			NO	TES					
0									
1									
2									
3									
4									

IGC 2nd Stage Discharge Cooler Heat Exchanger Printouts

1			CHEVE			Case N	ame: PHD.H	ISC				
3	(Pasn	entech	Burlingto	n, MA		Unit Set	: NewUs	ser				
4	<u> </u>		USA			Date/Tir	ne: Mon Aj	pr 06 13:20	0:34 2015			
6 7		Heat Exc	han	ger: IG	C 2n	d Stage	Dischar	qe Co	oler			
8				5								
10 11						CONNE	LIIONS					
12			Tube	Side					Shell	Side		
13		Inlet			Outlet			Inlet			Out	let
14	Name From On	90 Ind Stage Come	0-0030	Name To Op	rd Stage	900-0035 Suction Drum	Name Erom On		CW in 11	Name To Op		CW out 11
16	Op. Type	Comp	ressor	Op. Type	iu orage	Separator	Op. Type			Op. Typ	pe	
17	Temp	14	4.09 C	Temp		37.78 C *	Temp		32.22 C *	Temp		40.56 C
18						PARAN	IETERS					
20	Heat Exchance	ner Model:					Simple Weight	ed				
21	Tube Side De	ltaP:		5 000 nei 1	Shall Side	a DaltaP	cample weight	5 000 nei *	LIA:			954e±008 k.UC-k
23	Heat Leak/Lo	ss: Nor	e	0.000 psi	Tolerance	e Deltar . E:	1.	0000e-04	UA.			.30484000 K3/04
24				I	In	dividual Heat	Curve Detail	s				
25 26	Pass Name		1	900-0030-9	900-0035	CW in	11-CW out 11	-				
27	Intervals				5 *	011_11_	51					
28	Dew/Bubble P	Pt.			Enabled		Enabled					
29	Step Type			Equal 8	Enthalpy	1	Equal Enthalpy					
30	Pressure Prot	file	Tube Cir	Con to Data	ist dPdH		Const dPdH		Chall Ci	de Dete		
32	Heat Transfer	r Coeff	Tube Sit	Je Data			Heat Transfer	Coeff	onen or	de Data		-
33	Tube Pressure	e Drop				5.00 psi *	Shell Pressure	Drop				5.00 ps
34	Fouling				0.000	000 C-h-m2/kJ	Fouling				0	.00000 C-h-m2/k.
35	Tube Length				6.00 m	Shell Passes						
37	Tube O.D. Tube Thickne	55				2.000 mm	Shell Parallel					1
38	Tube Pitch					50.0000 mm	m Baffle Type					Single
39	Orientation					Horizontal	Baffle Cut(%A	vrea)				20.00
40	Passes Per S	ihell				2	Baffle Orientation Horizo					Horizonta
41	Layout Angle	ell			Trianoula	100 - ar (30 degrees)	Diameter					739 0488 mm
43	TEMA Type					AEL	A E L Area					60.32 m2
44						SPE	CS					
45				Snap Value		Com	Value		Ral Error		Active	Estimate
47	E-100 He	at Balance		0.0	000 kJ/h	-2	184e-002 kJ/h		-3.338	e-010	On	Off
48	E-1(00 UA				1.95	4e+006 kJ/C-h				On	Off
49 50						Detailed Sp	ecifications					
51						E-100 Hea	t Balance					
52		Type: Duty				Pass:	Error			Spec Valu	e: 0.0000	kJ/h
53		Type: UA				E-10	Overall		-	Snec Valu	e'	
55		igget of								opeo valu		
56						User Va	riables					
57						RAT	ING					
58												
60						Siz	ing					
61						Overa	II Data					
62						Config	uration					
63	# of Shells in	Series		1	Tube Pas	ses per Shell		2	Elevation (E	Base)	Direction	0.0000 m
U 9	# or oneits IN			1	Exchange	e Unentation	1	ronzontal	I First Tube h	ass FIOW	Direction	Counter

, I.	<u> </u>	CHEVEO	NURA		Case Na	ame: Pl	HD.HSC				
3	(easentech	CHEVRO	N USA		Unit Set	E N	ewUser				
	Caspenter	USA			Date/Tir	ne: M	on Apr 06 13:20	:34 2015			
	Heat E	xchand	ier: IC	C 2nd	Stage	Disch	arge Co	oler (c	ontinu	ed)	
	TEN				3-			(-		,	
0	1 EN	in Type.			Calculated	Information		-			
1	Shell HT Coeff					Tube HT (Coeff				
2	Overall U			3.239e+00	4 kJ/h-m2-C	Overall U	A			1.9	54e+008 kJ/C-ł
3	Shell DP Shell Val por Shell				5.000 psi *	Tube DP	oor Sholl				5.000 psi
5	HT Area per Shell				60.32 m2	Tube vol	per onen				0.1550 ma
6					Shell	Data					
7					Shell and T	ube Bundle					
8	Shell Diameter		739.0	Tube Pitch			50.00	Shell Foulin	g		0.0000
	(MM) # of Tubes per Shell		180 -	(mm) Tube Lavor	it Anala			(G-n-m2/KJ) Triangular	(30 degrees	e)
í	# of Tubes per oneil		100	rube cayot	Shell F	Baffles			mangular	(or degrees	7
2	Shell Baffle Type				Single	Shell Baft	fle Orientation				Horizontal
3	Baffle Cut (%Area)				20.00	Baffle Sp	acing				800.0 mm
4					Tube	e Data					
5	00		10		Dimer	nsions			Tube Loop	46	
7	(mm)	20.00	(mm)		16.00	(mm)	Kness	2.000	(m)	Itn	8.000
В	()	I	()		Tube Pr	operties			()		
9	Tube Fouling	0.0000	Thermal Co	nd.	45.00	Wall Cp			Wall Dens	ity	
0	(C-h-m2/kJ)	0.0000	(W/m-K)		40.00	(kJ/kg-C)			(kg/m3)	-	
1					Nozzle Pa	rameters					
2	Page Elevation Polative t	o Ground Louis									0.0000 m
ì	Dase Elevation Relative t	o Ground Level			900-0030		CI	N in 11		900-	0.0000 m
5	Diameter			(m)	5.000e-00	2	5.0	000e-002	_	5.000)e-002
6	Elevation (Base)			(m)	0.0000		(0.0000		0.0	000
7	Elevation (Ground)			(m)	0.0000		(0.0000		0.0	.000
	Elevation (% of Height)			(%)	0.00			0.00		0.	.00
8				(m)	CW_out_1 5.000=00	2					
9	Diameter			(m)	0.0000-00	2					
8 9 0	Diameter Flevation (Rase)				0.0000						
8 9 1 2	Diameter Elevation (Base) Elevation (Ground)			(m)	0.0000						
8 9 1 2 3	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height)			(m) (%)	0.0000						
8 9 1 2 3	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height)			(m) (%)	0.0000 0.00 CONDI	TIONS					
8 9 1 2 3 5	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name			(m) (%)	0.0000 0.00 CONDI 900-0030	TIONS	CW in 11		900-0035		CW out 11
8 9 0 1 2 3 4 5 5 5	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour			(m) (%)	0.0000 0.00 CONDI 900-0030 1.0000	TIONS	CW_in_11 0.0000		900-0035		CW_out_11 0.0000
B D 1 2 3 4 5 5 7 8	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature		(C)	(m) (%)	0.0000 0.00 CONDI 900-0030 1.0000 144.0920	TIONS	CW_in_11 0.0000 32.2222-		900-0035 1.0000 37.7778	<u> </u>	CW_out_11 0.0000 40.5556
8 9 1 2 3 4 5 5 5 5 7 8 9	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure		(C) (bar)	(m) (%)	0.0000 0.00 CONDI 900-0030 1.0000 144.0920 620.8731	TIONS	CW_in_11 0.0000 32.2222 - 4.4606 -		900-0035 1.0000 37.7778 620.5283	*	CW_out_11 0.0000 40.5556 4.1159
8 9 1 2 3 4 5 5 5 7 8 9 9	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure Molar Flow	((C) (bar) MMSCFD)	(m) (%)	0.0000 0.00 CONDI 900-0030 1.0000 144.0920 620.8731 - 249.7714	TIONS	CW in 11 0.0000 32.2222 - 4.4606 - 2030.1848		900-0035 1.0000 37.7778 620.5283 249.7714	*	CW_out_11 0.0000 40.5556 4.1159 2030.1648
8 9 1 2 3 4 5 5 5 7 8 9 0 1	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure Molar Flow Mass Flow Sold Ideal Lie Vel Eleve	((C) (bar) MMSCFD) (kg/h)	(m) (%)	0.0000 0.00 CONDI 900-0030 1.0000 144.0920 820.8731 * 249.7714 5554.0000	TIONS	CW_in_11 0.0000 32.2222 4.4606 - 2030.1648 1821625.4277 1825.3015		900-0035 1.0000 37.7778 820.5283 249.7714 55335.2074	<u> </u>	CW_out_11 0.0000 40.5556 4.1159 2030.1648 1821625.4277 1825.2015
8 9 1 2 3 4 5 5 5 5 7 8 9 9 1 2 3	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure Molar Flow Mass Flow Std Ideal Lig Vol Flow Molar Enthalov	((C) (bar) (bar) (kg/h) (Btu/SCF)	(m) (%)	0.0000 0.00 CONDI 900-0030 140.0920 620.8731 * 249.7714 553.0078 554.0098 -24.22	TIONS	CW in 11 0.0000 32.2222 4.4606 2030.1648 182162.4277 1825.3015 -323.6	3	900-0035 1.0000 37.7778 620.5283 249.7714 353385.2074 554.0098 -30.18	*	CW_out_11 0.0000 40.5556 2030.1848 1821625.4277 1825.3015 -322.9
8 9 0 1 2 3 4 5 5 5 5 7 8 9 0 1 2 3 4	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Enthalpy	(kJ/	(C) (bar) MMSCFD) (kg/h) (Btu/SCF) kgmole-C)	(m) (%)	0.0000 0.00 CONDI 900-0030 1.0000 144.0920 620.8731 - 249.7714 353.385.2074 554.0098 -24.22 158.4	TIONS	CW in 11 0.0000 32.2222 - 4.4608 - 2030.1648 1821625.4277 1825.3015 -323.6 55.56		900-0035 1.0000 37.7778 620.5283 249.7714 353385.2074 554.0098 -30.18 141.9	*	CW_out_11 0.0000 40.5556 4.1159 2030.1648 1821625.4277 1825.3015 -322.9 57.65
B 9 1 2 3 4 5 5 5 7 8 9 0 1 2 3 4 5 5	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure Molar Flow Molar Flow Molar Enthalpy Molar Enthalpy Heat Flow	(kJ/	(C) (bar) MMSCFD) (kg/h) (Btu/SCF) (kJ/h)	(m) (%)	0.0000 0.00 CONDI 900-0030 1.0000 144.0920 620.8731 - 249.7714 353.385.2074 554.0098 -24.22 158.4 -2.8590e+08	TIONS	CW in 11 0.0000 32.2222 - 4.4606 - 2030.1648 1821625.4277 1825.3015 -323.6 55.56 -2.8884e+10		900-0035 1.0000 37.7778 620.5283 249.7714 553385.2074 554.0098 -30.18 141.9 -3.3133e+08		CW_out_11 0.0000 40.5556 4.1159 2030.1648 1821625.4277 1825.3015 -322.9 57.65 -2.8819e+10
8 9 0 1 2 3 4 5 5 5 7 8 9 0 1 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure Molar Flow Molar Flow Molar Enthalpy Molar Enthalpy Heat Flow	(kJ/	(C) (bar) MMSCFD) (kg/h) (Btu/SCF) (kJ/h)	(m) (%)	0.0000 0.00 CONDI 900-0030 144.0920 620.8731 - 249.7714 554.0098 -24.22 158.4 -2.8590e+08	TIONS	CW in 11 0.0000 32.2222 - 4.4608 - 2030.1648 1821625.4277 1825.3015 -323.8 55.56 -2.8884e+10		900-0035 1.0000 37.7778 620.5283 249.7714 453385.20714 554.0098 -30.18 141.9 -3.3133e+08	•	CW_out_11 0.0000 40.5556 4.1159 2030.1648 1821625.4277 1825.3015 -322.9 57.65 -2.8819e+10
B 9 0 1 2 3 4 5 5 5 7 8 9 0 1 2 3 4 5 5 5 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 8 7 8 7	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure Molar Flow Molar Flow Std Ideal Lig Vol Flow Molar Enthalpy Molar Entropy Heat Flow	(k.J/	(C) (bar) MMSCFD) (kg/h) (Btu/SCF) (kJ/h) (kJ/h)	(m) (%)	0.0000 0.00 CONDI 900-0030 144.0920 620.8731 - 249.7714 554.0098 -24.22 158.4 -2.8590e+08 PROPE		CW in 11 0.0000 32.2222 - 4.4608 - 2030.1648 1821625.4277 1825.3015 -323.8 55.56 -2.8884e+10		900-0035 1.0000 37.7778 820.5283 249.7714 353.305.2074 554.0098 -30.18 -30.18 141.9 -3.3133e+08		CW_out_11 0.0000 40.5556 4.1159 2030.1648 1821625.4277 1825.3015 -322.9 57.85 -2.8819e+10
B 9 0 1 2 3 4 5 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 5 7 8 9 0 1 2 3 4 5 5 5 7 8 9 0 1 2 3 4 5 5 7 7 8 9 9 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure Molar Flow Molar Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Enthalpy Heat Flow Name Name	((kJ/	(C) (bar) (MMSCFD) (kg/h) (Btu/SCF) (kgmole-C) (kJ/h) 900	(m) (%)	0.0000 0.00 CONDI 900-0030 1.0000 144.0920 620.8731 - 249.7714 353385.2074 554.0098 -24.22 156.4 -22.6590e+08 PROPE CW in	ERTIES	CW_in_11 0.0000 32.2222 - 4.4606 - 2030.1648 1821625.4277 1825.3015 -323.6 55.56 -2.8884e+10 900-0035	3 	900-0035 1.0000 37.7778 820.5283 249.7714 353.385.2074 554.0098 -30.18 -30.18 -41.19 -3.3133e+08 2W out 11 19		CW_out_11 0.0000 40.5556 4.1159 2030.1648 1821625.4277 1825.3015 -322.9 57.65 -2.8819e+10
8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 6 7 7 8 9 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure Molar Flow Molar Flow Molar Enthalpy Molar Enthalpy Molar Enthalpy Heat Flow Name Molecular Weight Molar Density	(kJ/	(C) (bar) MMSCFD) (kg/h) (Btu/SCF) (kgmole-C) (kJ/h) 900	(m) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	0.0000 0.00 CONDI 900-0030 1.0000 144.0520 620.8731 - 249.7714 554.0098 -24.22 156.4 -24.5590e+08 PROPE CW in	TIONS	CW_in_11 0.0000 32.2222 4.4606 2030.1648 1821625.4277 1825.3015 -323.6 55.56 -2.8884e+10 900-0035 2 1	8.41 6.26	900-0035 1.0000 37.7778 620.5283 249.7714 85385.2074 554.0098 -30.18 141.9 -3.3133e+08 2W out 11 18. 55.	02	CW_out_11 0.0000 40.5556 4.1155 2030.1648 1821625.4277 1825.3015 -322.9 57.85 -2.8819e+10
88 99 1 1 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 7 7 8 8 9 9 9 9 9 0 0 1 1 1 2 2 1 5 5 5 5 5 5 5 1 1 1 1 5 5 5 5	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure Molar Flow Molar Entwo Molar Enthalpy Molar Density Molar Density Mass Density	(kJ/ (kJ/ (kg/m3) (kg/m3)	(C) (bar) (kg/h) (kg/h) (Btu/SCF) (kJ/h) (Btu/SCF) (kJ/h)	(m) (%) -0030 28.41 12.68 380.1	0.0000 0.00 CONDI 900-0030 1.0000 144.0520 620.8731 - 249.7714 554.0098 -24.22 158.4 -2.6590e+08 PROPE CW in	TIONS	CW_in_11 0.0000 32.2222 4.4606 2030.1648 1821625.4277 1825.3015 -323.6 55.58 -2.8884e+10 900-0035 2 1 4	8.41 6.29 61.8	900-0035 1.0000 37.7778 620.5283 249.7714 353385.2074 554.0098 -30.18 141.9 -3.3133e+08 200 out 11 18. 55. 984	02	CW_out_11 0.0000 40.5558 2030.1849 1821825.4277 1825.3015 -322.9 57.85 -2.8819e+10
88 99 00 1 2 2 3 3 3 4 4 5 5 5 5 5 5 5 5 7 7 7 7 8 8 9 9 0 0 1 1 2 2 3 3 3 4 4 1 2 2 1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure Molar Flow Molar Flow Molar Enthalpy Molar Enthalpy Molar Enthalpy Molar Enthalpy Heat Flow Name Molecular Weight Molar Density Mass Density Act. Volume Flow	(kJ/ (kJ/ (kgmole/m3) (kg/m3) (m3/h)	(C) (bar) (kg/h) (MSCFD) (m3/h) (Btu/SCF) (kJ/h) 900	(m) (%) 	0.0000 0.00 CONDI 900-0030 1.0000 144.0520 620.8731 - 249.7714 554.0098 -24.22 156.4 249.6590e+08 PROPE CW in	TIONS	CW in 11 0.0000 32.2222 4.4608 2030.1848 182162.4277 1825.3015 -323.6 55.58 -2.8884e+10 900-0035 2 1 4 7 7	3 3 6.28 6.28 6.2	900-0035 1.0000 37.7778 620.5283 249.7714 353385.2074 554.0098 -30.18 141.9 -3.3133e+08 200 out 11 18. 55. 554.0098 18. 200 out 11 18. 55. 554.0098 18. 200 out 11 18. 55. 554.0098 18. 554.0098 18. 554.0098 18. 554.0098 19. 19. 19. 19. 19. 19. 19. 19.	02 27 5.6 30	CW out 11 0.0000 40.5556 4.1159 2030.1648 1821625.4277 1825.3015 -322.9 57.65 -2.8819e+10
8 9 0 1 2 2 3 3 4 4 5 5 5 5 7 7 7 2 3 3 4 4 1 2 2 3 3 1 1 2 2 3 3 1 1 2 5 5 5 5 5 7 7 7 7 7 7 9 9 0 0 1 1 2 2 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Diameter Elevation (Base) Elevation (Ground) Elevation (% of Height) Name Vapour Temperature Pressure Molar Flow Molar Flow Molar Enthalpy Molar Enthalpy Molar Enthalpy Molar Enthalpy Molar Enthalpy Molar Enthalpy Molar Enthalpy Molar Enthalpy Molar Enthalpy Molar Density Mass Density Act. Volume Flow Mass Enthalpy	(kgmole/m3) (kg/m3) (m3/h) (kJ/kg)	(C) (bar) (kg/h) (m3/h) (Btu/SCF) (kJ/h) 900	(m) (%) (%) 	0.0000 0.00 CONDI 900-0030 1.0000 144.0520 820.8731 * 249.7714 85385.2074 554.0098 -24.22 156.4 -2.8590e+08 PROPE CW in -1.58	TIONS	CW in 11 0.0000 32.2222 4.4608 2030.1648 182162.4277 1825.3015 -323.6 55.58 -2.8884e+10 900-0035 2 1 4 7 -9	8.41 6.26 86.2 37.8	900-0035 1.0000 37.7778 620.5283 249.7714 353385.2074 554.0098 -30.18 141.9 -3.3133e+08 200 out 11 18. 55. 964 18. 54. 964 19. 18. 19. 19. 19. 19. 19. 19. 19. 19	02 27 5.6 30 04	CW_out_11 0.0000 40.5556 4.1159 2030.1848 1821625.4277 1825.3015 -322.9 57.65 -2.8819e+10

CHEVE CHEVE	ON USA	Case Name:	PHD.HSC		
	on, MA	Unit Set:	NewUser		
USA		Date/Time:	Mon Apr 06 13:20:34 201	5	
Heat Exchan	ger: IGC 2nd	Stage Disc	harge Coolei	r (continued	I)
	•	-	-	•	•
		PROPERTIES			
Name	900-0030	CW_in_11	900-0035	CW_out_11	
Heat Capacity (kJ/kgmole-C	() 49.44	77.70	49.51	77.75	
Mass Heat Capacity (kJ/kg-C	5) 1.741	4.313	1.743	4.316	
LHV Molar Basis (Std) (Btu/SCF) 423.2	0.0000	423.2	0.0000	
LHV Mass Basis (Std) (kJ/kg) 1.315e+004		1.315e+004		
Phase Fraction [Vol. Basis]	1.000	0.0000	1.000	0.0000	
Partial Proceure of CO2 (ba	0 0 0 2 0 7	0.000	0.000	0.0000	
Cost Based on Flow (Cost/s	0.0201	0.0000	0.0232	0.0000	
Act Gas Flow (ACT m2/	0.0000	0.0000	785.2	0.000	
Ava, Lia, Density (kamole/m)	301.2	55.40	22.48	55.40	
Specific Heat (kJ/komole-C	49.44	77.70	49.51	77.75	
Std. Gas Flow (STD m3/	i) 2.941e+005	2.391e+006	2.941e+005	2.391e+008	
Std. Ideal Liq. Mass Density (kg/m3	3) 637.9	998.0	637.9	998.0	
Act. Liq. Flow (m3/s	i)	0.5050	-	0.5082	
Z Factor	1.412	3.159e-003	1.476	2.855e-003	
Watson K	9.044		9.044		
User Property					
Partial Pressure of H2S (ba	r) 0.0000	0.0000	0.0000	0.0000	
Cp/(Cp - R)	1.202	1.120	1.202	1.120	
Cp/Cv	1.488	1.151	1.613	1.158	
Heat of Vap. (Btu/SCF	•)	43.74		43.92	
Kinematic Viscosity (CS	t) 0.1051	0.7591	9.980e-002	0.64/4	
Liq. Mass Density (Std. Cond) (kg/ma	5) 00.00 -> 5008	1015	00.00	1015	
Liq. Vol. Flow (Std. Cond) (m3/r	0 0000	1/90	0 0000	1/35	
Molar Volume (m3/komole	a) 7.888e-002	1.000 1.798e-002	6 151e-002	1.809e-002	
Mass Heat of Vap. (kJ/kg	-1154	2143	-1154	2152	
Phase Fraction [Molar Basis]	1.0000	0.0000	1.0000	0.0000	
Surface Tension (dyne/cn	i)	70.85		69.40	
Thermal Conductivity (W/m-ł	() 6.961e-002	0.6213	7.805e-002	0.6322	
Viscosity (cF) 3.784e-002	0.7606	4.609e-002	0.6446	
Cv (Semi-Ideal) (kJ/kgmole-C	() 41.13	69.39	41.20	69.43	
Mass Cv (Semi-Ideal) (kJ/kg-C	5) 1.448	3.852	1.450	3.854	
Cv (kJ/kgmole-C	33.23	67.49	30.70	67.26	
Mass Cv (kJ/kg-C	i) 1.170	3.748	1.081	3.734	
Wass Cy (Ent. Method) (KJ/Kgmole-C	-) 30.31 -) 4.279	-	30.71		
Cn/Cy (Ent. Method) (KJ/Kg-C	1 282		1.001		
Raid VP at 37.8 C (ha	1.002	8 487=-002	1.010	8 487=-002	
True VP at 37.8 C (ba	r) 9.934	6 467e-002	9.934	6 467e-002	
Liq. Vol. Flow - Sum(Std. Cond) (m3/	5836	1795	5836	1795	
Viscosity Index		-0.8230		-3.485	
HHV Molar Basis (Std) (Btu/SCF) 460.0	46.46	460.0	46.46	
HHV Mass Basis (Std) (kJ/kg) 1.429e+004	2276	1.429e+004	2276	
CO2 Loading					
CO2 Apparent Mole Conc. (kgmole/m3	3)	0.0000		0.0000	
CO2 Apparent Wt. Conc. (kgmol/kg)	0.0000		0.0000	
Phase Fraction [Act. Vol. Basis]	1.000	0.0000	1.000	0.0000	
Mass Exergy (kJ/kg) 593.1	0.7773	560.6	2.057	
		DETAILS			
1					
Aspen Technology Inc.	Aspen H	VSVS Version 8 2 (2	8 0 1 8215)		Page 3 of 9

	2	CHEVO	ONLINA	Case N	Case Name: PHD.HSC							
1 (•	espentech	Burlingto	on, MA	Unit Set	Unit Set: NewUser							
		USA		Date/Tir	Date/Time: Mon Apr 08 13:20:34 2015							
	Heat E	xchan	ger: IG	C 2nd Stage	Discharge Co	oler (c	ontinue	d)				
				Overall/Detaile	d Performance							
Du	ty:			6.543e+07 kJ/h	UA Curv. Error:			8.44e+02 kJ/C-h				
He	at Leak:			0.000e-01 kJ/h	Hot Pinch Temp:			37.78 C				
He	at Loss:			0.000e-01 kJ/h	Cold Pinch Temp:			32.22 C				
UA				1.954e+06 kJ/C-h	Ft Factor:							
Lm	1. Approach:			33.49 C	Uncorrected Lmtd:							
	Terreter			Shell Side - C	Verall Phase			Fatheless				
	(C)			(bar)	(kJ/h)			(Btu/SCF)				
		32.22		4.48		0.00		-323.64				
		33.89		4.39	1	13086574.93		-323.50				
		35.56		4.32	2	201/41/7.09		-323.35				
		38.89		4.20		52348850 BB		-323.20				
		40.56		4.12	6	35432874.63		-322.91				
	UA		N	Iolar Vap Frac	Mass Vap Fra	c	H	leat of Vap.				
	(kJ/C-h)							(Btu/SCF)				
-		0.00		0.0000		0.0000						
		393273.92		0.000		0.0000						
		635974.24		0.0000		0.0000						
	1	813576.63		0.0000		0.0000						
	1	953678.60		0.0000		0.0000						
				Shell Side - V	/apour Phase							
	Mass Flow (kg/h)	Molecu	ular Wt	Density (kg/m3)	Mass Sp Heat (kJ/kg-C)	Visco (c	sity P)	Thermal Cond (W/m-K)				
							-	-				
								-				
-												
	Std Gas Flow (STD_m3/h)	Z Fa	actor	Pseudo Pc (bar)	Pseudo Tc (C)	Pseud	lo Zc	Pseudo Omega				
-												
-												
				Shell Side - Lig	ht Liquid Phase							
	No 5	-		Union dido - Lig		-	101					
	Mass Flow (kg/h)	Den (ka/	sity (m3)	Mass Sp Heat (kJ/kg-C)	Viscosity (cP)	Therma (W/r	n-K)	Surface Tens (dyne/cm)				
								70.85				
								70.56				
								70.27				
-							-	69.98				
							-	69.69				
						1		DN 40				

1	<u> </u>	CHEVRON US		Case	Name:	PHD.HSC						
		Burlington, MA		Unit S	let:	NewUser						
5	- aspontoon	USA				Date/Time: Mon Apr 06 13:20:34 2015						
5	Heat E	vehander		C 2nd Stage		bargo Co	oler (c	ontinue	d)			
3	Heat E	xchanger.	19	o znu stage	5 013	sharge 60		onunue	ч)			
9				Shell Side - Li	ight Liq	uid Phase						
1	Molecular Wt	Sp Gravity		Pseudo Pc	<u> </u>	Pseudo Tc	Pseud	lo Zc	Pseudo Omega			
2				(bar)		(C)			, in the second s			
3												
4	-					-			-			
5 6												
7												
8									-			
9	·			Shell Side - He	avy Liq	uid Phase		•				
1	Mass Flow	Density		Mass Sp Heat		Viscosity	Therma	I Cond	Surface Tens			
2	(kg/h)	(kg/m3)		(kJ/kg-C)		(cP)	(W/i	m-K)	(dyne/cm)			
3	1821625.43	100	1.99	4.31		0.76		0.62	70.85			
4	1821625.43	100	0.72	4.31		0.73		0.62	70.56			
5	1821625.43	99	9.45	4.31		0.71		0.63	70.2			
	1821625.43	998.18		4.31		0.69		0.63	69.98			
7 0	1821025.43	990.91		996.91 995.63 Sp Gravity		4.31		0.07		0.63	09.03	
9	Molecular Wt	Sn Gravity				Sp Gravity	7.05	Pseudo Po		Pseudo To	Peour	0.05
0	molecular vvi	op clavity		(bar)		(C)	1 Seut	020	r seddo omega			
1	18.02		1.00	221.20)	374.15		0.26	0.34			
2	18.02	1.00		221.20)	374.15		0.26	0.34			
3	18.02	1.00		221.20		374.15		0.26	0.34			
4	18.02	1.00		221.20		374.15		0.26	0.34			
5	18.02	1.00		221.20	221.20 3/4.15		0.20		0.34			
7	10.02			221.20 Chall Cida		Jinuid		0.20	0.34			
8		-		Shell Side	- mixeu	Liquid	_					
9	Mass Flow	Density (he (m2))		Mass Sp Heat		Viscosity	Thermal Cond		Surface Tens			
4	(Kg/n)	(kg/ma)		(KJ/Kg-C)		(0P)	(٧٧/	m-rx)	(ayne/cm)			
2												
3												
4												
5					•							
6												
7 8	Molecular Wt	Sp Gravity		Pseudo Pc (bar)		Pseudo Tc Pseu (C)		lo Zc	Pseudo Omega			
9												
0					•							
1					•			-				
2					•							
5					•							
5					•							
6				Tube Side	Overal	Phase						
7	Temperature			Pressure		Heat Flow			Enthalpy (Btu(SCE)			
8 9	(0)	37.78		(Dar) 800.50		(KJ/N)	0.00		(BIU/SUP)			
0		59.00		620.63		1	3073809.00		-30.10			
1		80.26		620.67		2	26165076.89		-27.79			
2		101.53		620.74	+	3	9258508.57		-28.60			
3		122.81		620.80)	5	2346299.72		-25.4			
.1		144.09		620.87		6	35432874.66		-24.22			

A	CHEVE		Case Na	ame: PHD.HSC						
(Paspentech	Burlingto	n, MA	Unit Set	:: NewUser						
Caspontos	USA		Date/Tin	Date/Time: Mon Apr 06 13:20:34 2015						
Heat E	xchan	ger: IG	C 2nd Stage	Discharge Co	oler (co	ontinue	d)			
			Tube Side - C	Overall Phase			last of Mar			
(kJ/C-h)		м	olar vap Frac	Mass vap Frac	·	н	(Btu/SCF)			
	0.00		1.0000		1.0000		-			
	1007717.92		1.0000		1.0000					
	1393070.38		1.0000		1.0000					
	1813548.23		1.0000		1.0000					
	1953678.60		1.0000		1.0000					
			Tube Side - V	/apour Phase						
Mass Flow	Molecu	lar Wt	Density (ka(m2)	Mass Sp Heat	Viscos	sity	Thermal Cond			
353385.21		28.41	461.81	1.74	(0	0.05	0.0			
353385.21		28.41	437.99	1.74		0.04	0.0			
353385.21		28.41	415.94	1.74		0.04	0.0			
353385.21		28.41	395.67	1.74		0.04	0.0			
353385.21		28.41	377.11	1.74		0.04	0.0			
353385.21		28.41	360.14	1.74	0.04		0.07			
Std Gas Flow (STD_m3/h)	Z Fa	ctor	Pseudo Pc (bar)	Pseudo Tc (C)	Pseudo	o Zo	Pseudo Omega			
294145.90		1.48	36.88	-107.82		0.29	0.0			
294145.90		1.46	36.88	-107.82		0.29	0.0			
294145.90		1.44	36.88	-107.82		0.29	0.0			
294145.90		1.43	38.88	36.88 -107.82		0.29	0.0			
294145.90		1.42	30.88	-107.82		0.29	0.0			
234140.50		1.41	30.66	-107.62		0.25	0.0			
			Tube Side - Lig	nt Liquid Phase						
Mass Flow (kg/h)	Den: (kg/	sity m3)	Mass Sp Heat (kJ/kg-C)	Viscosity (cP)	Thermal (W/m	Cond 1-K)	Surface Tens (dyne/cm)			
							-			
							-			
							-			
							-			
Molecular Wt	Sp Gr	avity	Pseudo Pc	Pseudo Tc	Pseudo	o Zc	Pseudo Omega			
			(Dar)	(C)						
				-			-			
							-			
							-			
			Tube Older II							
Mass Flow	Dee	-it.	Tube Side - Hea	Vy Liquid Phase	Theorem	Cond	Curless Tree			
Mass Flow (kg/h)	Den: (kg/	sity m3)	Mass Sp Heat (kJ/kg-C)	(cP)	(W/m	Cond 1-K)	(dyne/cm)			
						-	-			
							-			
							-			
Asses Taskaslass las			Aspen UVSVS Versi	00 9 2 (29 0 1 9215)			Dana 6 of 0			

,				Case Na	ame: PHD.HSC							
	(Paspentech	Burlington, MA	1	Unit Set: NewUser								
				Date/Tin	ne: Mon Apr 06 13:20:3	4 2015						
	Heat Exc	hanger:	IGC 2nd S	Stage	Discharge Coo	oler (conti	nued)					
				Basic	Model		,					
)				Model Pa	rameters							
2	Tube Volume	(m3)	0.1000		Shell UA	(kg/h)	-	-				
	Shell Volume	(m3)	0.1000		Tube UA Minimum Eleve Seale Easter	(kg/h)	-					
5	Overall UA ((h) (kJ/C-h)	1.954e+00	6	Minimum Flow Scale Factor			~~~				
j				Sum	mary							
3	Shell [Duty:			Tu	be Duty:						
)	Pressure Flow Specifications											
2			Sh	ell Side S	pecification							
	Delta P (psi) 5.000 *				k kg/hr/so	rt(kPa-kg/m3)		Not Active				
5			Tut	be Side Sj	pecifications							
5	Delta P	(psi)	5.000 *	Active	k kg/hr/so	rt(kPa-kg/m3)		Not Active				
				Hole	dup							
		Shell Holdup										
	Phase		Accumulation		Moles		Volume					
2	Vanour		(MMSCFD)		(kgmole)		(m3)					
	Liquid		0.0000		0.0000	-	0.0000					
5	Aqueous		0.0000		0.0000	-	0.0000					
5 7	Total		0.0000	Tubal								
8	8		A	Tuber	loidup		Mahara					
0	Phase		(MMSCFD)		(kgmole)		volume (m3)					
	Vapour		0.0000		0.0000	-	0.0000					
2	Liquid		0.0000		0.0000	-	0.0000					
	Aqueous		0.0000		0.0000	-	0.0000					
j	Total	l	0.0000	NO	0.0000		0.0000					
1												
3				нт	FS							
9												
1			Fucha		ing and Dating							
2			Excha	inger Des	lign and Rating							
3												
5												
7												
3												
1												
2												
3												
4												

Heat and Material Balance Printouts (Sample Streams Only)

Name	to Facility	from reservoir	0	Feed From Well
Vapour Fraction	0.3883	0.3291	0.3102	0.2979
Temperature [C]	117.5	18.11	43.33	42.11
Pressure [bar]	12.39	1.014	12.05	12.05
Molar Flow [MMSCFD]	552.9	552.9	552.9	579.1
Mass Flow [kg/h]	1.022e+006	1.022e+006	1.022e+006	1.082e+006
Liquid Volume Flow [m3/h]	1261	1261	1261	1344
Heat Flow [kJ/h]	-5.856e+009	-6.184e+009	-6.133e+009	-6.456e+009

Name	Q-K100	Q-P101	Q-P102	Q-P100
Heat Flow [kJ/h]	9.927e+004	5.873e+005	2.352e+007	3.287e+008
Name	Q-K101	Q-K102	Q-K103	Q-K104
Heat Flow [kJ/h]	1.588e+005	4.260e+007	4.041e+007	5.290e+007
Name	Q-107	Q-100	Q-101	Q-102
Heat Flow [kJ/h]	1006	1.725e+005	4.214e+007	3.848e+004
Name	Q-108	Q-109	Q-110	Q-111
Heat Flow [kJ/h]	76.79	2.588e+005	2042	690.5
Name	ROS_ PumpQ	Q-K903	Q-K95	Q-WH
Heat Flow [kJ/h]	3.878e+004	6.043e+007	7.005e+007	-6.691e+005

Appendix C. Samples of Binary interaction Parameters

Mushrif has provided one of the methods to determine the EOS binary interaction parameters using K- and L points in his 2004 paper (Mushrif, 2004). Sample of binary interaction parameters for the PR and SRK EOS is shown on table below.

		H_2S	CO ₂	CH_4	C_2H_6	C_3H_8
CO ₂	PR	0.0974	0.0000			
	SRK	0.0989	0.0000			
CH ₄	PR	0.0840	0.0919	0.0000		
	SRK	0.0849	0.0933	0.0000		
C ₂ H ₆	PR	0.0833	0.1322	-0.0020	0.0000	
	SRK	0.0852	0.1363	-0.0078	0.0000	
C ₃ H ₈	PR	0.0878	0.1241	0.0330	-0.0067	0.0000
	SRK	0.0855	0.1289	0.0289	-0.0100	0.0000

Hamad-Allah has also provided binary interaction parameters as below in their 2010 paper (Hamad-Allah et al., 2010).

Comp	C ₂	C3	i-C ₄	n-C ₄	i-C5	n-C5	C ₆	C7	C ₈	C ₉	C ₁₀	N ₂	CO2	H ₂ S
-onent														
C ₁	0.005	0.01	0.035	0.025	0.050	0.030	0.030	0.035	0.040	0.040	0.045	0.025	0.105	0.070
C2		0.005	0.0	0.010	0.010	0.010	0.020	0.020	0.020	0.020	0.020	0.010	0.130	0.085
C3			0.0	0/0	0.015	0.002	0.010	0.005	0.005	0.005	0.005	0.090	0.125	0.090
i-C ₄				0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.095	0.115	0.075
n-C ₄					0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.095	0.115	0.075
i-C5						0.0	0.0	0.0	0.0	0.0	0.0	0.100	0.115	0.070
n-C ₅							0.0	0.0	0.0	0.005	0.0	0.100	0.115	0.070
C6								0.0	0.0	0.0	0.0	0.110	0.115	0.070
C ₇									0.0	0.0	0.0	0.115	0.115	0.060
C ₈										0.0	0.0	0.120	0.115	0.060
C9											0.0	0.120	0.115	0.060
C10												0.125	0.115	0.055
N_2													0.0	0.130
CO ₂														0.135