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6. Conclusions
• This research project explores control performance of a conventional pendulum

damper and our newly designed pendulum damper with viscoelastic pounding
effects, namely, pounding pendulum damper (PPD).

• Structural vibration responses illustrate the PPD can suppress free vibrations
dramatically faster than a conventional pendulum damper.

• PPD can suppress more than 85% of uncontrolled structural vibration motions
over a wide range of frequency domain, while the conventional pendulum
damper induces two worse resonance peaks.

• Therefore, PPD has been demonstrated to be a more effective and robust
structural control device.
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2. Research Goal
• Design a pounding pendulum damper (PPD) consisting of a flexible steel

wire, viscoelastic (VE) tapes, and a small tuned mass to increase the
damper’s damping capacity for effective control performance.

• Conduct a comparative study between a conventional pendulum damper
and pounding pendulum damper to evaluate the effectiveness and
robustness in vibration suppression on a shear building model.

• The significance of vibration suppression in building structures and
pipeline systems is crucial to ensure the longevity of the system and also
to prevent catastrophic failures.

• Current solutions to vibration suppression include various passive, active
and semi-active dampers. However, the passive control typically has the
advantages of mechanical simplicity, effective performance without
requiring any external power source. Some of the passive dampers are
traditional pendulum style dampers, tuned mass dampers (TMD), tuned
liquid dampers (TLDs) and pounding tuned mass dampers (PTMD) with a
rigid L-shaped beam.

• The traditional pendulum dampers inherently have light damping to
dissipate vibrating energy which results in two worse resonant vibration
amplitudes over a wide range of excitation frequencies. Figure 4. Structural response of free vibration

5. Viscoelastic Pounding Study
3. Experimental Setup

Figure 1. A Conventional Pendulum Damper Figure 2. A New Pounding Pendulum Damper

Figure 3. Experimental Testing Setup
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Figure 5. Zoomed-in view of structural response of free vibration

Figure 6. Structural response with and without control of PPD Figure 7. Structural response in frequency domain
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Figure 8. Force vs Displacement During Impact 

Figure 9. Hysteresis Loop of Pounding Model 
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