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Abstract 

This research is concerned with functional magnetic resonance 

imaging (fMRI) of the brain during auditory information processing. The main 

focus is the exploration of the brain areas involved in sensory gating, i.e., the 

ability of the central nervous system (CNS) to inhibit or modulate its sensitivity 

to incoming irrelevant sensory auditory input, as measured using a paired 

auditory stimulus paradigm.  

It is well-known that the brain’s responses are variable from trial-to-trial. 

This calls into question the current practice of using a single, representative 

response function (canonical HRF) to model fMRI data. Therefore, a 

correlation-based method was developed to deal with the variability of the 

HRF in response to repeated presentation of identical auditory stimuli. The 

goal of the analysis technique is to identify ‘active’ trials among all single trials. 

We verified that this correlation-based method can find significant differences 

between brain areas and brain states in actual fMRI data. 

Second, we determined if the cluster-based method can improve 

conventional fMRI analysis by exploring the brain regions involved in 

processing single stimuli using both methods. Data was collected from 14 

healthy subjects listening to auditory tones. Our results indicated that by 

focusing on ‘active’ trials only, as determined by the clustering method, we 

obtained better statistical maps and that the sensitivity of the fMRI data 

analysis was increased through the identification of activated areas.  
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The results indicated that the superior temporal gyrus (STG), inferior 

frontal gyrus (IFG), dorsolateral prefrontal cortex (DLPFC), and thalamus 

(THA) were involved in auditory information processing and sensory gating in 

general. While the conventional analysis could not find any regions involved in 

gating, the correlation-based method confirmed the involvement of bilateral 

STG, right THA and left DLPFC in sensory gating. Specifically, the right THA 

relays the sensory signal to the STG, with the bilateral STG involved in the 

first stage of auditory processing and the left DLPFC involved in the inhibitory 

circuit of sensory gating processing.  

Our findings suggest that the correlation-based single trial analysis 

method provides quantitative assessment of the neuronal origins of the 

sensory gating. It also improves the current fMRI analysis technique.  
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Chapter 1: Introduction 

1.1 Background 

1.1.1 Introduction to fMRI 

Functional magnetic resonance imaging is a powerful noninvasive tool 

for the study of the functioning of the brain, which can provide high spatial 

resolution (on the order of millimeters) of activity in the brain resulting from 

sensory stimulation or cognitive function. It works by detecting the changes in 

blood oxygenation that occur in response to neural activity (Ogawa et al., 

1990). Changes in the blood oxygenation level-dependent (BOLD) signal 

reflect neural activity, because firing neurons need more oxygen to be brought 

in quickly. This process is called the hemodynamic response.  

Hemoglobin is diamagnetic (i.e., it is repelled by an externally applied 

magnetic field), when oxygenated but paramagnetic (i.e., it is attracted by a 

magnetic field) when deoxygenated. Putting an object with magnetic 

susceptibility into a magnetic field causes spin de-phasing, resulting in a 

decay of transverse magnetization which depends on the time constant T2*. 

(T2* is a measure of the loss of coherence in an ensemble of spins that 

include the effect of transverse relaxation caused by spin-spin interaction, T2, 

and changes in spin precession frequency of protons due to inhomogeneities 

in the magnetic field). The flipped oxyhemoglobin protons de-phase slower 

than the unflipped deoxyhemoglobin protons. Therefore, the T2* signal is 

retained longer in a region which has more oxygenated blood than regions 

http://en.wikipedia.org/wiki/Hemodynamic_response
http://en.wikipedia.org/wiki/Hemoglobin
http://en.wikipedia.org/wiki/Diamagnetic
http://en.wikipedia.org/wiki/Paramagnetic
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where there is less oxygenated blood. This change in signal intensity is called 

the blood oxygenation level dependent (BOLD) effect (Buxton, 2002; Huettel, 

2004).  

The BOLD signal can be measured in functional Magnetic Resonance 

Imaging (fMRI) scanners. Subjects participating in an fMRI experiment are 

asked to lie still in the scanner while they are subjected to sensory stimulation 

or participating in cognitive and/or behavioral experiments. Their head is 

usually restrained with soft pads to prevent movement; although small head 

movements can be corrected for in post-processing of the data, large 

transient motion cannot be corrected.  

1.1.2 Variability of the fMRI signal 

FMRI has a relatively poor signal-to-noise ratio. Therefore, functional 

brain imaging studies make use of ensemble-averaged activity over many 

trials and often across several subjects to enhance the signal-to-noise ratio of 

the small BOLD response hidden in the background noise. However, 

ensemble averaging may not be able to represent the true response from any 

single event, and it may obscure potentially significant inter- and intra- subject 

variability that may be important to capture. Actually, the BOLD signal has 

been found to show a large variability between subjects, sessions, and brain 

regions (Aguirre et al., 1998; Miezin et al., 2000).  

The hemodynamic response variability can result from several factors. 

It has been known that the vascular response does not remain constant 

throughout the human brain because of the variability in vascular architecture 
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(Huettel et al., 2004). Study results have uncovered dissimilarities in different 

cortical regions within the individual brain or in different individuals (Buxton, 

2002). In addition, other factors including global magnetic susceptibilities, 

neural activity differences, pulse of respiration differences or slice timing 

differences can also cause a variation in the hemodynamic response (Levin et 

al., 1998; Noseworthy et al., 2003). 

1.1.3 Sensory gating 

The ability of the brain to filter out repeated stimuli is referred to as 

sensory gating. Failure of the gating mechanism could lead to the central 

nervous system (CNS) being overloaded with irrelevant information and 

ultimately to a total dysfunction of the system (Freedman et al., 1991).  

The gating capability is typically measured by the auditory paired-

stimulus paradigm, in which P50 auditory evoked potentials (scalp-recorded) 

are measured (Adler et al., 1982). In a paired-stimulus paradigm, two identical 

stimuli (S1 and S2) are delivered with a short inter-stimulus interval of 500 ms 

and a longer inter-pair interval of 8 seconds. The second stimulus of a pair is 

suggested to be an irrelevant sensory input since it contains no new 

information. A decrement in the response to the second stimulus relative to 

the first is taken to indicate the operation of the gating out neural mechanism. 

Sensory gating is operationally defined as the ratio of the amplitude of the 

response to the second (S2) stimulus to the amplitude of responses to the first 

(S1) stimulus. In healthy subjects, responses to the second stimulus in the 

pair are suppressed compared to the first one. In contrast, subjects suffering 

from schizophrenia show a diminished inhibition of the responses to the 
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second stimulus (Adler et al. 1990; Boutros et al., 1991). Although the good 

temporal resolution of electrophysiological techniques allows for the 

disambiguation of S1 and S2 responses, these techniques are limited by their 

spatial resolution. Neuroimaging techniques such as fMRI, with higher spatial 

resolution and the ability to independently evaluate activation on a voxel-by-

voxel basis, provide additional critical information on the role of the regions of 

interest such as prefrontal cortex and hippocampus in sensory gating. 

1.1.4 SPM and General linear model (GLM) 

Compared to many electrophysiological techniques, fMRI has a 

relatively poor signal-to-noise ratio (SNR). A very robust stimulus (such as a 

contrast taken between an auditory stimulus and no stimulus) may produce 

changes on the order of 2%-5% in the BOLD signal. The low SNR requires 

extensive post-processing and fMRI studies are always averaged over time 

and smoothed across space using Statistical Parametric Mapping (SPM). 

SPM was developed by the Welcome Trust Center for Neuroimaging for 

Matlab (Mathworks Inc). The objective of such analysis is to generate a brain 

image identifying the areas which present significant percentage signal 

change in response to the task. To estimate the BOLD signal in an 

experimental paradigm, the cross-correlation or t test within a general linear 

model (GLM) has been used (Friston et al., 1995). 

The statistical analysis in SPM consists of a number of steps. First of 

all, the BOLD fMRI response must be modeled. Secondly, the parameters of 

this model must be estimated using GLM. Finally, it must be determined 

whether there is any evidence for a statistically-significant increase in the 
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BOLD fMRI response in response to a task condition. These processes 

normally need prior knowledge of the hemodynamic response and then 

proceed to explain the measured data by parameter estimation. SPM makes 

use of a canonical hemodynamic response function (HRF) to represent the 

hemodynamic response (HR) after neural activation. The canonical HRF in 

the SPM software package is a typical BOLD impulse response modeled by 

the difference of two gamma functions, one modelling the peak and one 

modelling the undershoot. As shown in Figure 1.1, the canonical HRF exhibits 

an increase peaking around 5 sec, followed by an undershoot that lasts for a 

considerable period.   

 

Figure 1.1: Canonical HRF as used in SPM. The y-axis is in percentage signal 
change (PSC), and the x-axis is in second. 

 

Extensive statistical modeling, referred to as first-level analysis (see 

Appendix 1), is done to obtain t-statistic images that provide an indication 
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whether the response to the stimulus condition differ from a second one. 

When making inferences about the population, a second level analysis 

dealing with random effects can be implemented in SPM2 using the one-

sample t-test function. The between subjects effect of diagnosis can be 

evaluated by entering parameter estimates from each individual's first level 

analysis into a second level model. Finally, the functional results can be 

overlaid onto the group averaged anatomical images for visualization. 

1.2 Research Objectives 

This research is concerned with functional magnetic resonance 

imaging (fMRI) of the brain during auditory information processing. The main 

focus is the exploration of the brain areas involved in sensory gating, as 

measured using a paired auditory stimulus paradigm. It is well-known (see 2.1) 

that the brain’s responses are variable from trial-to-trial. Therefore, we will 

develop a cluster-based method to deal with this variability. This method will 

be evaluated on simulated and actual fMRI data. We will also show that it can 

improve conventional fMRI analysis, and that it can produce information not 

obtainable by conventional method. The specific tasks and studies to be 

performed include:  

Specific Aim A: (Chapter 3) Development and evaluation of a single 

trial analysis method.  

1. Development: Design and implement a correlation-based method to 

analyze single trial HRFs. The proposed clustering approach will use 

correlation as a measure of similarity between a template and single trials. 
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Trials with a high correlation coefficient with the template are grouped 

together and will be considered to represent ‘active’ trials, i.e., cases where a 

brain response to stimulation occurred. Then the ensemble average will be 

computed for each class, and the active subject-specific HRF can be obtained.  

2. Evaluation: Determine the sensitivity of the cluster-based method 

using simulated and actual fMRI data obtained from different subjects and 

different brain areas. 

First, the sensitivity of the cluster-based method will be assessed by 

analyzing “activated” brain regions, i.e., those from the auditory cortex, and 

“non-activated” brain regions, e.g., the visual cortex (occipital cortex) and 

comparing the activation levels. It is reasonable to assume that the auditory 

cortex will produce more responses to single auditory tones than the occipital 

cortex, and we will determine if the clustering method finds the same.  

We also determine the sensitivity of the cluster-based method by 

analyzing different paradigm (e.g., listening to single tones or listening to 

double tones). Specifically, we expect that the auditory cortex produces more 

activation in response to double tones than single tones, and we will seek to 

confirm this with the clustering method. 

Specific Aim B: (Chapter 4) Determine if the cluster-based method 

can improve conventional fMRI analysis.  

This will be achieved by exploring the brain regions involved in 

processing single stimuli using conventional fMRI analysis, using data 

collected from healthy subjects listening to single tones. The same data will 
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be analyzed using the cluster-based method and the results will be compared. 

We expect that by focusing on ‘active’ trials only, as determined by the 

clustering method, we will obtain better statistical maps and that the sensitivity 

of the fMRI data analysis will be increased through the identification of 

activated areas with a low signal-to-noise ratio.  

Secondary objectives will be to determine if a BOLD signal due to 

auditory stimuli can be robustly measured or not in the noisy MRI scanner 

using the conventional EPI sequence, which regions are involved in 

processing single and double stimuli, and which regions are involved in 

sensory gating in healthy subjects.  

Specific Aim C: (Chapter 5) Acquiring new knowledge using the 

single-trial method. 

Use the new method to examine sensory gating and test whether we 

can provide more information than conventional fMRI analysis. First, we will 

re-examine the sensory gating network by using active trials only, and 

comparing the results with conventional analysis. Second, a string-based 

analysis will be carried out to examine the cooperation between these ROIs. 

This method assigns a string of zeros and ones to each trial, indicating which 

ROI was active (encoded by a one) and which was not (encoded by a zero). 

These strings can then be searched to determine if a particular pattern of 

active/non-active ROIs is more prevalent for the single tone experiments than 

the double tone experiments, thus providing insight in what activation patterns 

are characteristic for gating and which are not.  
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1.3 Dissertation outline 

Chapter 2 presents a review of previous work done on fMRI analysis. 

This includes the studies of BOLD signal variability, methods for modeling the 

hemodynamic response and fMRI studies of auditory sensory gating. Chapter 

3 presents the developed cluster based methods followed by an evaluation of 

this method using simulated data and real fMRI data. Chapter 4 presents the 

comparison between the cluster-based method and the conventional fMRI 

analysis. In chapter 5, the correlation-based method is applied to investigate 

sensory gating network. Finally, Chapter 6 summarizes the findings and offers 

conclusions for this study.  
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Chapter 2: Literature Review 

The first two sections of this chapter review the literature on the studies 

pertinent to the variability of the BOLD hemodynamic response and modeling 

the hemodynamic response of fMRI data. The third section discusses the ROI 

analysis methods. The fourth section reviews the fMRI studies on auditory 

sensory gating in healthy and schizophrenia subjects.  

2.1 Variability of BOLD Hemodynamic response 

Several groups have indicated that hemodynamic responses to visual 

stimuli differ from subject to subject (Boynton et al., 1996; Kim et al., 1997; 

Aguirre et al., 1998) and that responses appear to be more stable during a 

single scanning session within a single subject (Kim et al., 1997; Aguirre et al., 

1998). For example, Aguirre et al. (1998) found that the inter-individual 

variations in the peak latency and magnitude can be as large as 3.5 s and 2%, 

respectively, in the hemodynamic responses from the central sulcus. However, 

little variability within the same subject across different days or scanning 

sessions was found. This was confirmed by Menz et al. (2006) using 

prolonged (120 min) functional measurements. Relatively small differences 

have also been observed in the HRF from different brain regions of the same 

subject (Buckner et al., 1996; Miezin et al., 2000; Neumann et al., 2003; 

Handwerker et al., 2004). For example, Buckner et al., (1996) noted a delay of 

0.5-1 s between visual and prefrontal regions. 

Therefore, any application of the GLM using the canonical HRF may 

not be appropriate as it assumes that the BOLD response is invariant 
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between trials. Such variance due to regional or inter-subject differences in 

the HR can be reduced by individual-specific modeling or voxel-specific 

modeling which creates a single GLM with a specific HRF for every subject or 

ROI (Josephs et al., 1997). 

In this study, we will quantify the inter-subject and intra-subject BOLD 

response variability to auditory stimuli using the new proposed cluster-based 

model. To the best of our knowledge, this is the first study to quantify the 

BOLD variability in the auditory fMRI field. 

2.2 Modeling Hemodynamic Response 

Function shapes that are typically used to model the HRF as the 

canonical hemodynamic response include the Poisson function (Friston et al., 

1994), the Gaussian function (Rajapakse et al., 1998), spine-like function 

(Gossl et al., 2001), Fourier basis functions (Josephs et al., 1997) and the 

gamma function used as SPM’s canonical HRF (Friston et al., 1998). These 

functions are usually selected prior to the analysis and assumed fixed over 

time and through brain regions. Given the relatively higher stability of the 

hemodynamic response observed within a single subject, a promising 

analysis approach is to predict the hemodynamic response information from 

the measured data for every subject, and then use that subject-specific 

response to further analyze BOLD fMRI data from that subject. These 

methods have been termed “recognition models”, and include the selective 

averaging method (Anders et al., 1997), deconvolution method (Lu et al., 

2006, Wink et al., 2008), principal component analysis-PCA (Hossein et al., 
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2003), and the Bayesian method (Ciuciu et al., 2003; Marrelec et al., 2003). 

The merit of recognition models lies in the power of estimating the subject-

specific or even region-specific HRF. If such an approach is followed, much 

better results can be obtained.  

For example, Aguirre et al. (1998) compared the use of the Poisson 

function (Friston et al.. 1994), the gamma function (Boynton et al., 1996), and 

an empirical subject-specific HRF. Aguirre et al. (1998) found that the Poisson 

function, on average, explained only 25% of the variance present in the 

evoked responses, and the gamma model accounted for 70% of the variance. 

In contrast, subject-specific models on average explained nearly 92% of the 

variance. 

Kang et al. (2003) compared the activated areas and t-statistical scores 

obtained with a standard HRF to those obtained with a patient-specific HRF. 

The activated areas obtained with the patient-specific HRFs were larger or 

similar to the originally activated areas. The results show that using patient-

specific HRFs brings increased sensitivity to the analysis of epileptic spikes by 

EEG-fMRI. 

Lu et al. (2006) introduced a deconvolution method for EEG-fMRI 

activation detection, which can be implemented with voxel-specific HRFs. A 

comparison of performance was made between three fixed HRFs and the 

deconvolution method. The authors found that the volume of detected regions 

from the deconvolved HRFs was larger, and the deconvolution technique 

found areas of activation that were not detected with the three fixed HRFs. 
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Several problems remain with modeling the HRF: (1) some methods 

use fixed HRFs assuming that the shape of the hemodynamic response is 

known a priori and invariant throughout the brain and subjects. This is a 

strong constraint since it is known that HRFs can vary as a function of brain 

region, age, and gender. (2) It is often assumed that the HRFs are identical 

from one response to another which is unlikely to be the case (Aguirre et al., 

1998). (3) Some methods obtained the subject-specific HRF by projecting the 

actual fMRI signal onto a Fourier basis which is probably only a rough 

approximation of the BOLD response.  

The HRF cluster method to be developed here has the advantages that 

(1) It is data-driven instead of model-driven. It does not rely on any 

assumptions of the HRF: the extracted HRFs are determined only by the fMRI 

signal and the stimuli and it is not biased by any a priori model. (2) In this 

method, no assumption is made that all the single trials are the same. Thus 

the proposed method can provide a more complete picture of the different 

kinds of HRFs that may exist during an experiment. (3) No rough 

approximation is needed in this method. The subject-specific HRFs described 

here are derived from the clusters of data itself. (4) In addition, this method 

has the advantage of simplicity compared to the methods described above, 

since all the calculations are done within GLM. Finally, the proposed cluster 

method removes the non-active trials which can increase the signal to noise 

ratio (SNR). 
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2.3 ROI analysis 

In complex designs with more than two conditions, it can often be 

difficult to detect the patterns of activity across conditions from an overall map 

(Poldrack, 2007). However, in case we know where the activation is likely to 

be, it is often useful to see the signal in regions of interest (ROI) plotted for 

each condition or plotted against other variables of interest. So we will first 

need to define an ROI, and then analyze the data within the ROI.  

A key problem in an ROI analysis is to define the right ROI. There 

exists substantial variability between individuals in the shape and location of 

anatomical regions, and the relationship between function and anatomy is 

very unclear in many regions of the brain, especially the prefrontal and 

association cortex. One approach to address this issue is to use the 

individual’s own activation pattern to define the ROIs for each subject and use 

this ROI to analyze other scans from the same subject. This approach is 

called functional ROI (Saxe et al., 2006; Heller et al., 2006). However, it 

requires that the functional data used for defining the ROI is independent of 

data used to test the hypotheses of interest on the ROIs. In other words, it 

needs extra scans to identify which voxels in a particular anatomical region 

represent a particular response. 

Another approach is to use a group-defined functional ROI instead of 

an individual’s ROI. This means selecting functionally-activated voxels from 

the group results and using those voxels as an ROI to extract information from 

individuals. The activated voxels in the group will have some activation in 

most subjects. Also this method requires less processing time than 
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individually-defined ROIs. However, these group-level ROIs are not as reliable 

as the individually-created ones (Swallow et al. 2003) since it does not take 

into account the inter-individual functional variability.  

The third approach is to a priori define a set of anatomical ROIs, and 

then measure the signal within the entire ROI (Tregellas et al., 2007). Regions 

specified in this approach will be relatively large (e.g., the entire superior 

temporal gyrus), and even if the region is significantly active, maybe only a 

small proportion of the voxels in the ROI is activated. By averaging across the 

entire ROI, the signals could be cancelled out. This approach also assumes 

that the particular region is functionally homogeneous and it does not consider 

that the subregions may behave differently.  

This suggests that using the subject’s own activation pattern to define 

the subject-specific ROI within main anatomical ROIs will be a good choice. 

This will compensate for inter-subject anatomical variability and offer better 

localization. Further the number of activated voxels in each region can be 

counted and compared between different conditions. (Poldrack et al., 2007) 

Another key problem in ROI-based analysis is how to calculate an 

overall summary measure of the response in a ROI. There are two types of 

measurements used to quantify brain activation. The first one is to calculate 

the number of activated voxels (NAV) that exceeds a pre-defined statistical 

threshold (Wang et al., 2011). The NAV offers a spatial measurement to 

quantify the degrees of activation in a cortical ROI (Luft et al., 2002). This 

method has been used in many neuroimaging studies (Carey et al., 2002; 

Brodtmann et al., 2007; Pell et al., 2008).  
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The second one is to measure the averaged image intensity (AII) in a 

ROI. This approach decreases the noise since AII averages the image 

intensity across certain voxels, and it leads to making inferences about the 

response of the ROI as a whole rather than specific voxels within the ROI. In 

general, there are three main methods to obtain the AII of a ROI.  

The first is called peak-averaging. In this case, signals are extracted 

from the voxels that have maximum activation and the average response is 

obtained. This provides a set of exploratory spheres that span the clusters of 

interest. The spheres are often masked with the thresholded statistical 

parametric map to ensure that they only contain voxels that are truly activated. 

This method is biased and the underlying assumption is that the ROI is 

homogeneous and the activation patterns are the same across all the voxels 

within this ROI.  

The second method is called first eigenvariate. Principal components 

analysis (PCA) is applied to the region data, and the first eigenvariate is 

obtained. PCA is a mathematical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables 

into a set of uncorrelated variables, referred to as principal components. The 

time points are the observations and the voxels are the variables. Each 

component is associated with a vector of weights reflecting the contribution of 

each voxel to that component. The first eigenvariate reflects the time course 

of the main component that contributes to a ROI’s response. However, the 

same problem exists as with peak-averaging, namely, that the eigenvariate 

may only reflect a small portion of the ROI, rather than the overall region’s 

http://en.wikipedia.org/wiki/Orthogonal_transformation
http://en.wikipedia.org/wiki/Orthogonal_transformation
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response if the area is not homogeneous. In that case, the spatial weights of 

the component must be analyzed carefully. The most common method is the 

thresholded-average approach which averages the response across all the 

voxels passing a pre-determined threshold within the ROI. The advantage of 

this approach is that it can adapt flexibly to detect regions with almost any 

size or shape (Saxe et al., 2006). This method will be applied in this study. 

2.4 fMRI studies of auditory sensory gating  

Both animal and invasive human neuroimaging techniques (Boutros et 

al., 2005; Grunwald et al., 2003) suggest that sensory gating is mediated by a 

network including the auditory cortex (AC), prefrontal cortex and hippocampus. 

In contrast, the majority of results from non-invasive electrophysiological 

studies have not implicated the prefrontal cortex and/or hippocampus in 

gating (Mayer et al., 2009).  

Despite the noisy environment of the scanner, hemodynamic correlates 

of auditory stimuli have been successfully recorded by several research 

groups (Mayer et al., 2009; Inan et al., 2004; Tregellas et al., 2007). Inan et al. 

(2004) compared two identical 1000 Hz tones (100 ms duration) separated by 

one, four, or six-second inter-stimulus intervals (ISIs) with 17 to 20 s between 

single or pairs of tones, and reported both a smaller amplitude and delayed 

onset to the second of each pair of stimuli at all ISIs. It is unclear to what 

degree this reflects sensory gating as the intra-pair intervals exceeded those 

used in the paired stimulus paradigm. They also observed that the response 

to repeated stimuli caused the allocation of additional neural resources.  
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Tregellas et al. (2007) investigated the neuro-anatomical substrates of 

sensory gating deficits in schizophrenia using fMRI. This study involved 12 

schizophrenia patients and 12 healthy subjects while performing a sensory 

gating task. Hemodynamic responses were obtained utilizing a click-train 

paradigm in which nine clicks were presented over a 4-second interval, each 

0.5 s apart, respectively. Comparing these responses with healthy subjects, 

schizophrenia patients had greater activation in the hippocampus, thalamus 

and dorso-lateral prefrontal cortex than healthy subjects. No group difference 

was found in the superior temporal gyrus. Mayer et al. (2009) examined the 

effects of distinct, compared to repeated, paired stimuli by using pairs of 

identical (first tone: 2000 Hz; second tone: 2000 Hz) and non-identical tones 

(first tone: 2000 Hz; second tone: 3000 Hz). In addition, single tones of the 

same two fundamental frequencies (2000 Hz or 3000 Hz) were used as a 

control non-gating condition. The empirical HRFs were obtained from paired-

tone responses. The estimated HR was obtained from a HRF for the single-

tone conditions to which the same HRF delayed by 500 ms was added. The 

estimated HRF serves as a control non-gating condition. The authors used 

the estimated HRFs compared to the empirically determined HRFs to identify 

regions that exhibited gating responses for both identical and non-identical 

paired-tone. Results indicated that the gating response for both paired-tone 

conditions was primarily mediated by the auditory and prefrontal cortex, with 

potential contributions from the thalamus. Results also showed that the left 

auditory cortex may play a preferential role in determining the stimulus to be 

inhibited (gated) or to receive further processing due to novelty of information. 

In contrast, there was no evidence of hippocampal involvement. These fMRI 
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studies suggest that a network including the superior temporal gyrus (STG), 

prefrontal cortex (PFC), thalamus (THA) and hippocampus (HPC) involved in 

sensory gating. Chapter 4 investigates which ROIs mentioned above 

contribute to sensory gating using conventional analysis, and chapter 5 

provides further analysis of sensory gating using the correlation-based 

method. Chapter 6 provides a summary of the major findings, a critical review 

of the results and a look at the future. 
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Chapter 3: Methods and Sensitivity Evaluation 

In this chapter, we present a data-driven method to extract the active 

single trials from fMRI time series, based on a clustering technique. In section 

3.1, we give the flowchart of the overall procedure, and the details of the 

analysis steps. In section 3.2, the performance assessment of the method 

using simulated data is presented, and an evaluation using actual fMRI data is 

presented in section 3.3.  

3.1 Development of the Analysis Technique 

The goal of the analysis technique is to identify ‘active’ trials among all 

single trials. In this context, an active trial is the one showing a response to an 

external stimulus. The overall procedure is presented in the Figure 3.1. Briefly, 

a correlation-based method is used to identify groups of trials with similar 

post-stimulus characteristics on a trial-by-trial basis. Correlation is used as a 

measure of similarity between a template, resembling activity typically-

associated with robust fMRI responses, and single trials. Trials that show a 

high correlation with the template are grouped together as active trials. Then 

the ensemble average is computed for each class, resulting in the active 

subject-specific HRF and/or active region-specific HRF. A detailed description 

is presented next.  
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Figure 3.1: Flowchart of analysis procedures. 

The template is obtained as follows. The group-averaged statistical 

maps of all subjects are generated using the canonical HRF. The main areas 

of activation at p ≤ 0.001 during processing of single tones are found and the 

time series within the ROIs are extracted and ensemble averaged across all 

voxels in the ROIs. A 32 s discrete cosine transform (DCT) is applied to 

remove low-frequency noise introduced by unavoidable factors like scanner 

drift and physiological processes. The 16 s signal following stimuli delivery is 

taken as the single trial response. The timeseries are normalized to 

percentage signal change and all the single trials as well as the ensemble 

averaged HRFs are adjusted to set the value of the first sample of the time 
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window to zero for display purposes. The ensemble average across all the 

single trials is used as the template.  

The correlation between the template and each single trial over the 

fixed window of 2 s - 8 s post-stimulus is computed. This window was 

selected because the hemodynamic responses reach their peak in this 

interval, and the signal-to-noise ratio will thus be maximal. The correlation Ri 

for trial i is given by                

                              
∑   ( )  ( ) 

    
,                                     (3-1) 

where   ( ) is the template hemodynamic response,   ( ) represents 

the single trial i, and sT and si are the standard deviation of the template and 

single trial, respectively. 

Two criteria need to be met by a single trial response to be classified 

into the active group. First, the correlation between the single trial and the 

template must exceed a certain threshold (e.g., 0.5). Second, the standard 

deviation (STD) of the single trial within the window [2s 8s] must be greater 

than a threshold. The first criterion ensures the selection of trials that are 

similar in shape to the template, while the second criterion ensures that the 

activation level is sufficiently large. Experiments were conducted on simulated 

and actual data to determine an acceptable correlation threshold and STD 

threshold. 

Each of the trials from a specific ROI can be labeled as active (1) or 

non-active (0) using the clustering method. Combining the results across 
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ROIs, each trial can be represented by a string of characters. The strings are 

equal in length to the number of ROIs, and each character in the string 

identifies the type of response seen for the corresponding ROI. For example, 

the string ‘1001’ could mean that the STG is active, the DLPFC is not, the IFG 

is not, and the THA is active. These strings can be searched to see if a 

particular pattern of active/non-active ROIs is more prevalent for one 

paradigm than another.  

3.2 Performance evaluation on simulated data 

3.2.1 Data generation 

Simulated data were generated using data obtained from an auditory 

fMRI experiment in which fourteen healthy subjects were listening to single 

auditory pure tones of 1000 Hz (4 ms in duration with a 2 ms rise and fall time) 

in the scanner. The auditory cortex was selected as the ROI, and the 0 s to 8 

s interval of each trial following stimulus presentation was considered ‘active’, 

while the 8 s to 16 s intervals were considered as ‘non-active’ responses. The 

reason to use 0-8 s windows as the active responses is that BOLD signal 

normally peaks 4-6 s after stimulus begins, and the BOLD signal will have 

basically died out during the 8-16 s interval. To verify that a response was 

present or not, the ensemble average for each of the two groups was 

computed. Next, ten ‘active’ responses were randomly selected and 

ensemble-averaged to generate one new ‘active’ response and this was 

repeated until 500 new ‘active’ responses were obtained. The same 
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procedure was applied to the non-active group of trials. Figure 3.2 shows the 

trials thus generated.  

 

Figure 3.2: Left panel: simulated ‘active’ responses; right panel: ‘non-active’ 
responses. 

Noise was added to the simulated responses with different signal-to-

noise ratios. The residual error  of ε in the GLM (see Eq. A1-2) was used to 

simulate the noise. The reason not to use white noise is that the noise in fMRI 

is complicated. The sources of noise include intrinsic thermal noise, system 

noise, artifacts resulting from head motion and physiological processes, 

variability in neuronal activity associated with non-task-related brain 

processes, and changes in behavioral performance and cognitive strategy 

(Huettel et al., 2004).  

The time series were extracted and averaged across all voxels in 

auditory cortex. A 32 s DCT filter with cut-off frequency 0.03 Hz was used to 

remove low frequency component from the signal and GLM was applied to all 

14 subjects. Figure 3.3 presents the power spectrum of an fMRI time series 

averaged across voxels in a specific ROI from one subject. The averaged 
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spectrum (Bartlett Method) was obtained to reduce estimation variance and 

improve measurement accuracy. The spectrum shows a clear peak at 0.057 

Hz, corresponding to the frequency with which the auditory stimuli were 

presented, i.e., once per 16 to 18 s (0.0556 to 0.0625 Hz). The power 

spectrum of the residual error for the same subject after GLM was applied is 

also shown in Figure 3.3. As expected the peak frequency was suppressed.  

A total of 1000 noise segments of 8 s in length were randomly selected 

from the residual error obtained from 14 subjects. The ensemble average of 

these noise segments is presented in Figure 3.4 (left panel) and the power 

spectrum was computed for each segment and averaged, with the result also 

shown in Figure 3.4 (right panel). As one can see, the noise is canceled out in 

the time domain and the averaged power spectrum is extremely small.  

 

Figure 3.3: Power spectrum of time series (blue) and residual error (red) for 
one subject.  
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Figure 3.4: The averaged signal of 1000 noise segments (left panel) and the 
averaged power spectrum of the noise (right panel). 

3.2.2 Sensitivity evaluation 

The effect of Signal-to-Noise Ratio (SNR) on the clustering results was 

studied. SNR is defined as the ratio between the power in a signal 

(meaningful information) and the background noise (unwanted signal). We 

selected SNRs ranging from 0.1 to 4 to match noise levels seen in fMRI 

(Huettel et al., 2004). The noisy trials were classified using varying correlation 

thresholds and STD criteria. The number of correctly and incorrectly classified 

trials was obtained and a confusion matrix (see Table 3.1) was generated for 

each SNR/correlation threshold/STD criterion. 

Table 3.1: Confusion matrix. TP: True Positives, FP: False Positives, TN: True 
Negatives, and FN: False Negatives. 

  
Test Result 

  
1 0 

True status 
1 TP FN 

0 FP TN 

 

http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Noise_(electronic)
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Traditionally, the sensitivity and specificity are used to measure the 

performance of the test and they are defined as 

                    Specificity (TNR) = TN / (TN + FP),                               (3-2) 

                    Sensitivity (TPR) = TP / (TP + FN),                               (3-3) 

where TP stands for true positives, FP indicates false positives, TN 

denotes true negatives, and FN false negatives. However, in our case, we 

seek to identify a set of single trial responses that are most likely ‘active’, i.e., 

we want to minimize the number of false positives, while maximizing the true 

positives. Therefore we seek to maximize the true active rate (TAR) defined 

by 

                                   TAR = TP / (TP + FP).                                    (3-4) 

The correlation between single trial and template, and the STD were 

obtained for all single trials, including both active and non-active trials, at 

different SNR levels. Figures 3.5 through 3.7 show the scatter plot at SNR 4, 

SNR 0.5 and SNR 0.2, respectively.  
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Figure 3.5: Scatter plot (correlation versus STD) of all single trials at SNR=4. 
Red dots: active trials; blue dots: non-active trials. 

 

Figure 3.6: Scatter plot (correlation versus STD) of all single trials at SNR=0.5. 
Red dots: active trials; blue dots: non-active trials. 
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Figure 3.7: Scatter plot (correlation versus STD) of all single trials at SNR=0.2. 
Red dots: active trials; blue dots: non-active trials. 

These figures show that at high SNR, the active and non-active trials 

could almost be perfectly separated on the basis of the correlation coefficient. 

As the SNR decreased, the two groups of trials become less and less 

separable. Also, the STD range increased from [0 0.5] to [0 2.3] as the SNR 

decreased.  Furthermore, it appears that active trials at the high end of the 

correlation scale have a somewhat larger STD than inactive trials with similar 

correlation values. 

By way of an example, the template for the active group using a SNR 

equal to 0.5 is shown in Figure 3.8. All single trials with cross-correlation 

larger than 0.5 with this template and STD larger than the STD of the template 

were clustered into the active group, and all other single were clustered into 

the non-active group. The clustering results are shown in Figure 3.9, and the 

corresponding confusion matrix is presented in table 3.2. 
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Figure 3.8: Template for active group at SNR=0.5. 

 

Figure 3.9: Clustering results with correlation threshold 0.5 at SNR=0.5; left 
panel: active cluster; right panel: non-active cluster. 

Table 3.2: Confusion matrix at SNR=0.5, Threshold=0.5. 

SNR=0.5   prediction outcome 

    T1(A) T2(NA) total 

actual 
value 

1 242 258 500 

0 56 444 500 

  Total 298 702 1000 

        The specificity (TNR) for this example is 88.8% (444/500) and the 

sensitivity (TPR) is 48.4% (242/500). In our case, we seek to identify a set of 

single trial responses that are most likely ‘active’, i.e., we want to minimize the 

number of false positives, while maximizing the true positives. Thus, for the 
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case shown in Table 3.2, The TAR is 81% (242/298) which indicate 81% of 

the trials classified as ‘active’ where truly active, with 19% TNR (56/298) trials 

incorrectly assigned to the active group. At the same time, we also want to 

maximize TPR, which guarantees we can find enough active trials.   

As mentioned before, different brain areas have different SNR values. 

This requires us to evaluate our method using different SNRs. Our experiment 

was repeated for different SNRs from 0.1 to 4. Different correlation thresholds 

from 0.1 to 0.9 and difference STD value from minimum STD to four times the 

STD of the template among all single trials were also evaluated.  

First, experiments were done keeping the STD criterion fixed, but 

varying the SNR from 0.1 to 4. The correlation threshold was varied from 0.1 

to 0.9 and the STD threshold was set to that of the template (0.235). The TAR 

and TPR were obtained and the results are presented in Figure 3.10.   

  

 

 

0

.9 

0

.8 
0

.7 

0

.6 

0

.5 

0

.4 

0

.3 

0

.2 

0

.1 



32 

 

 

Figure 3.10: True active rate (TAR) and True positive rate (TPR) for different 
SNRs and correlation thresholds (red number) at STD = 0.235. 

The result shows that the TAR was not sensitive to the threshold, but 

the TPR was sensitive to the threshold at certain SNR. For example, at 

SNR=1, when the threshold varied from 0.1 to 0.9, the TAR only varied from 

90% to 96%. However, the TPR decreased from 71% to 18%. This means by 

using a large threshold we can get a higher TAR (96%), while ending up with 

very few active trials (18%). This suggests the use of a lower threshold which 

can guarantee an acceptable TAR, while maintain a relatively high TPR.  
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Figure 3.10 will be used to set the correlation threshold once the SNR 

has been determined for the fMRI data to be analyzed.  

Next we studied the effect of the STD threshold, while keeping the 

correlation threshold fixed. To obtain a realistic correlation threshold the SNR 

was estimated from our auditory experiment as follows. The GLM was applied 

and the residual was taken to represent the noise. The signal power was 

obtained by computing the mean square value of the ensemble averaged time 

series from all voxels in the STG. The average SNR across all subjects was 

found to be 0.23. By using correlation threshold criterion only, we can achieve 

a 73% TAR (235/322) and 47% TPR (235/500) at correlation threshold = 0.4. 

Next, we assessed whether the STD could be used to improve the TAR while 

maintain the same TPR.  

Data with a SNR of 0.23 were generated, and clustering was done with 

a correlation threshold of 0.4. The STD of the template is 0.235. The TAR and 

TPR were obtained by varying the STD from minimum STD (0.15) to four 

times of the STD of the template. The results are shown in Figure 3.11.  
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Figure 3.11: TAR and TPR for different STD thresholds at fixed SNR (0.23) and 
fixed correlation threshold (0.4). 

 

As mentioned before, the STD threshold needs to be selected such 

that we obtain the largest possible TAR while having the largest number of 

true actives. The TAR did not improve when STD below 0.3 was used. As the 

STD increased from 0.3 to 0.9, the TAR increased from 73% to 88%, at the 

same time, the TPR decreased from 47% to 21%. Therefore, we need to 

consider the tradeoff between TAR and TPR. When we choose the STD equal 

to two times the standard deviation of the template (around 0.5), TAR will be 

increased from 73% to 81%, while the TPR only decreases from 47% to 44%.   

Therefore, we decided to use an STD threshold of 0.5, which is around 

two times the standard deviation of the template. The active trials obtained by 

0

.3 

0

.4 

0

.5 

0

.6 

0

.8 

0

.9 

0

.7 

0

.2 



35 

 

applying these two criteria (STD>0.5; threshold = 0.4) fall in the orange box 

shown in Figure 3.12.  

 

Figure 3.12: Scatter plot of all single trials at SNR=0.2 with two criteria STD>0.5; 
and threshold =0.4. Red dots: active trials; blue dots: non-active trials. 
The active trials by applying the criteria fall in the orange box.  

3.3 Evaluation using actual fMRI data 

Here we test if the correlation-based method can find differences 

between brain areas and conditions.  

3.3.1 Comparison between visual and auditory cortex 

It is reasonable to assume that the auditory cortex will produce more 

responses to single auditory tones than the occipital cortex, and we will 

determine if the clustering method finds the same.  
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FMRIs were obtained from 14 healthy subjects listening to auditory 

pure single tones of 1000 Hz (4 ms in duration with a 2 ms rise and fall time). 

A 16 s interval between events was used to guarantee that the BOLD 

responses had returned to baseline before the next stimulus was presented. 

The main area of activation was the auditory cortex (AC) which was selected 

as the ‘active’ dataset (Figure 3.13). This area included 438 voxels. The 

averaged time series across voxels was calculated for each subject. A DCT 

filter with cut-off frequency 0.03 Hz was used to remove the low frequency 

noise. Nearly 50 trials were available for each subject, and a total of 566 

single trials were obtained across all subjects (Figure 3.14 left panel). The 

single-trial HRFs were normalized to percentage signal change and Figure 

3.14 (right panel) shows the average signal of all the 566 single trials. This 

collection of single trials HRFs is referred to as the ‘active’ dataset. 

 

Figure 3.13: Statistical maps for the auditory cortex. 
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Figure 3.14: All the single trials from the auditory cortex (left panel) and the 
ensemble-averaged HRF from AC (right panel). 

 

A second data set, the so-called ‘non-active’ (NA) one, was obtained in 

a similar manner using data from the fusiform gyrus in the occipital cortex 

(Figure 3.15 left panel). The total number of voxels in this region was 430, 

which is comparable with AC. The occipital cortex (OC) was selected because 

we used an auditory activation experiment which did not involve any visual 

stimulation, so we do not expect to find activity related to the presentation of 

auditory stimuli. The same number of trials was obtained from the OC as for 

the AC, and the ensemble-averaged signal is shown in Figure 3.15 (right 

panel). This figure confirms the absence of a meaningful response.  
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Figure 3.15: Spatial location of the occipital cortex (OC) (left panel) and the 
ensemble averaged HRF obtained from the OC (right panel). 

 

Both datasets were analyzed using the correlation procedure with the 

template shown in Figure 3.16. First of all, to quantify the difference between 

the ‘active’ dataset and ‘non-active’ dataset, the histograms of the correlation 

coefficient between the averaged HRF across all trials in AC and each single 

trial in both groups of datasets were generated. The number of bins was set 

equal to the square root of the number of data points in the sample. 
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Figure 3.16: Ensemble-averaged windowed HRF across all trials in AC.  

 

Figure 3.17 (a) shows the histogram of the correlation coefficients 

between the averaged HRF in AC and all the single trials in AC. Figure 3.17 

(b) shows the same for the OC. The histogram shown in Figure 3.17 (b) 

appears uniformly distributed while the histogram in panel (a) is skewed 

towards larger, positive correlations. Theoretically speaking, when we select 

0.5 as correlation coefficient threshold, the number of trials that are classified 

as activate should be close to 25% in OC, and above 25% in AC based on the 

histogram.  
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Figure 3.17: (a) Histogram of correlation coefficient between template and each 
single trial in the auditory cortex. (b) Histogram of correlation coefficient 
between template and each single trials in the visual cortex. 

 

The scatter plot was used to assess the distribution of the values for 

both criteria. The scattergrams showing the correlation coefficient versus STD 

for all single trials in AC and OC are presented in Figure 3.18 and 3.19, 

respectively. It appears that STD spans a much larger range in AC than OC.  
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Figure 3.18: Scatter plot (correlation versus STD) of all single trials for AC.   

 

Figure 3.19: Scatter plot (correlation versus STD) of all single trials for OC. 
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Next, the single trials were classified using the ensemble average of all 

single trials from AC as template (Figure 3.16). A cross-correlation threshold 

of 0.4 and 2 times of the STD of the template was used in this test.  

The number of active trials in AC was 278 and 288 trials were 

designated as inactive. The left panels in Figure 3.20 and 3.21 show all the 

active trials and all the non-active trials obtained from AC, respectively. The 

right panels in Figure 3.20 and 3.21 show the ensemble average of all the 

active trials and the ensemble average of all the non-active trials obtained 

from AC, respectively. The active trials showed a clear peak around 4 s, and 

the ensemble average of all active trials resembled the canonical HRF. On the 

other hand, the ensemble average of non-active trials did not show a 

response.  

 

Figure 3.20: All active trials from AC (left panel) and the ensemble average HRF 
of all active trials from AC (solid line) with the canonical HRF (dash line) 
(right panel). 
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Figure 3.21: All non-active trials from AC (left panel) and ensemble averaged 
HRF of all non-active trials from AC (right panel). 

The number of active trials in OC was 88 with 478 inactive trials. The 

left panels in Figure 3.22 and 3.23 show all the active trials and all the non-

active trials obtained from OC, respectively. The right panels in Figure 3.22 

and 3.23 show the ensemble average of all the active trials and the ensemble 

average of all the non-active trials obtained from OC, respectively. Note that a 

response can be seen in Figure 3.22 (right panel), and that it is only slightly 

smaller than the response seen over the AC (Figure 3.20 right panel). This 

shows a weakness of our correlation-based method. This weakness is not 

unexpected, as even random, band-pass filtered time series will occasionally 

show a correlation with a template. However, as long as the number of such 

trials will be small (or least much smaller than genuinely active trials), there is 

really no problem. Also, the ensemble average of non-active trials did not 

show a response. This result further confirms that the correlation-based 

method can successfully find distinct active and non-active clusters. We 

further compared the number of active trials in AC and OC. 
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Figure 3.22: All active trials from OC (left panel) and the ensemble averaged 
HRF of all active trials from OC (solid line) with the canonical HRF (dash 
line) (right panel). 

  

 

Figure 3.23: All non-active trials from OC (left panel) and the ensemble 
averaged HRF of all non-active trials from OC (right panel). 

 

Table 3.3 presents the results of number of activated trials in AC and 

OC for each subject. It can be seen that the number of activated trials in AC 

was larger than the number of activated trials in OC. Two-sided t-test showed 

that the difference reached significance at threshold 0.4 (t=7.4, p<0.05, 
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df=13,). These results prove that AC produces more active responses than 

OC.  

Table 3.3: Number of activated trials assigned to AC and OC for each subject 
and the p value, t value and degrees of freedom for comparing the 
number of activated trials between AC and OC at correlation threshold 
0.4. 

Sub AC OC 

1 25 10 

2 12 4 

3 17 13 

4 31 5 

5 15 8 

6 10 5 

7 17 9 

8 25 7 

9 15 5 

10 18 9 

11 24 11 

12 23 7 

13 27 9 

14 19 8 

t 7.4 

p <0.0001 

df 13  

 

In conclusion, the ‘active’ dataset produced more active responses 

than the ‘non-active’ dataset, showing that the correlation method can find 

significant difference between ROIs. 
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3.3.2 Comparison between different conditions 

Next we determined the sensitivity of the cluster-based method by 

analyzing a different paradigm (e.g., listening to single tones or listening to 

double tones). Specifically, we expect that the auditory cortex produces more 

activation in response to double tones than single tones, and we will seek to 

confirm this with the clustering method. 

The signal selection procedure is the same as chapter 3.3.1. The 

responses to single tones were the same as used in Section 3.3.1 (566 

responses). The dataset for double tone response was obtained from the 

statistic map shown in Figure 3.24 (left panel). The statistical maps were 

thresholded at a p = 0.001 and any voxels within the ROI that exceeded this 

threshold were identified. This resulted in 447 voxels as being identified to 

make up the STG (left and right combined). The average time-series from the 

ROI was obtained and a DCT with cut-off frequency of 0.03 Hz was used to 

remove low-frequency noise. In all, 546 responses to double tones were 

obtained from 14 subjects. Finally, all trials were normalized to percentage 

signal change. Figure 3.24 (right panel) is the average signal of all trials for 

the double stimuli. Using the right panel of Figure 3.24 as template, the 

correlation coefficient and STD were computed and the scattergram is 

presented in Figure 3.25, which can be compared with Figure 3.18. 
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Figure 3.24: Statistical maps of AC for double stimuli at p<0.001 (left panel) and 
the averaged HRF from AC for double stimuli (right panel). 

 

 

Figure 3.25: Scatter plot for single trial responses to double stimuli 
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Comparing Figure 3.18 and Figure 3.25, is appears that the difference 

between the double and single condition is much less than the difference 

between AC and OC. Both the single and double condition produced a more 

dense distribution toward the positive end of the correlation coefficient, but the 

double stimuli appeared to have more responses with a higher correlation 

coefficient than the single stimuli. There was no obvious difference between 

the two paradigms for the STD distribution.  

To test the hypothesis that the different paradigms produced different 

activity patterns and that double stimuli are more active than the single stimuli, 

we compared the active clusters obtained from the ‘single’ dataset and 

‘double’ dataset. For example, Figure 3.26 presents the active trials for the 

single and double stimulus paradigm using correlation threshold 0.4. The 

number of active trials for single stimuli was 278 (49.11%) and the number of 

active trials for double stimuli was 341 (60.24%). The ratio of the number of 

active trials for the double versus the single paradigm was 1.23.  
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Figure 3.26: Active trials for single stimuli (left) and double stimuli (right) at 
threshold 0.4 

 

Table 3.4 presents the number of active trials for the single stimuli 

dataset and the double stimuli for each subject at threshold 0.4. Two-sided t-

test showed that the double stimulus paradigm produced significant more 

active trials than the single stimulus paradigm (t=3.44, p<0.05, df=13).  
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Table 3.4: Number of active trials for single and double stimuli for each subject, 
the t values, p values, and the degrees of freedom for comparing the 
number of active trials between single and double stimuli at correlation 
threshold 0.4. 

sub D S 

1 30 25 

2 14 12 

3 32 17 

4 26 31  

5 31 15 

6 17 10 

7 23 17 

8 21 25 

9 20 15 

10 19 18 

11 29 24 

12 27 23 

13 28 27 

14 24 19 

mean 24.36 17.64 

t 3.44 

p 0.004 

df 13  

 

The results show that 12 out of 14 subjects produced more active trials 

for double stimuli than single stimuli in STG, and the group difference reached 

a significant level. This result suggests that the correlation-based method can 

also be used to quantitatively distinguish the difference between two 

conditions. 
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Chapter 4: Comparison between conventional fMRI 

analysis and correlation-based analysis 

4.1 Introduction 

The focus of this chapter is to determine if the cluster-based method 

can improve conventional fMRI analysis. This will be achieved by exploring 

the brain regions responded to single stimuli using conventional fMRI analysis, 

using data collected from healthy subjects listening to single tones and paired 

tones. The same data will be analyzed using the cluster-based method and 

the results will be compared. We expect that by focusing on ‘active’ trials only, 

as determined by the clustering method, we will obtain better statistical maps 

and that the sensitivity of the fMRI data analysis will be increased through the 

identification of activated areas with a low signal-to-noise ratio.  

Secondary objectives will be to determine if a BOLD signal due to 

auditory stimuli can be robustly measured or not in the noisy MRI scanner 

using the conventional EPI sequence; which regions are involved in 

processing single and double stimuli; and which regions are involved in 

sensory gating in healthy subjects.  
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4.2 Event-related fMRI experiment 

4.2.1 Data acquisition 

Fourteen healthy (5 female, 9 male) subjects participated in the fMRI 

experiments. The average age of the subjects was 24.6 years with a range of 

20 years to 32 years. The standard deviation of the age distribution was 3 

years. Each subject was interviewed before the scans, and had no self-

reported history of neurological disease, major psychiatric disturbance, 

substance abuse, or psychoactive prescriptive medication usage.  

4.2.2 Auditory stimulation paradigm 

          The study participants listened to auditory tones delivered through (air-

driven) ear phones to both ears simultaneously while the subjects were in 

3.0T research-dedicated, head-only Allegra Siemens fMRI scanners in the 

Human Neuro-Imaging Laboratory at Baylor College of Medicine. No 

behavioral responses were needed. The paradigm consisted of 80 

randomized single or paired tones of 1000 Hz (4 ms in duration with a 2 ms 

rise and fall time, 0.5 s between tones in a pair); the average number of single 

and paired tones was maintained equal. The time between any two 

consequent events (single tone or pair of tones) was randomly chosen to be 

16, 16.5, 17, 17.5, or 18 s which allows for the complete recovery of the HRF 

(Figure 4.1). The interval of at least 16s between events guarantees that the 

BOLD responses will have returned to baseline before the next stimulus is 

presented. A mixed paradigm (singles and pairs mixed randomly) ensures the 

comparability of certain uncontrollable factors such as attention fluctuations 
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and habituation for the two types of stimulus. The sound was adjusted to a 

high level to ensure that subjects were able to hear the stimulus clearly before 

the beginning of the scanning session and all subjects were instructed to 

report troubles with hearing the stimulus immediately to the experimenter by 

squeezing an emergency squeeze bulb provided to them beforehand. 

 

 

 

Figure 4.1: Auditory stimulation paradigm 

4.2.3 MR imaging 

High resolution T1-weighted 3-D anatomical scans were acquired for 

each subject using an MP-RAGE sequence (Siemens). Then continuous 

whole brain imaging was performed on the participants. Structural run details 

were as follows: fast spoiled gradient echo pulse sequence, 192 transversal 

slices, repetition time (TR) of 1200mm and echo time (TE) of 2.93ms; 256 x 

208 matrix. Functional run details were as follows: echo-planar imaging, 

gradient recalled echo with 26 transversal slices, a repetition time (TR) of 

2000ms and echo time (TE) of 40ms; flip angle=90o; 64x64 matrix, 4mm thick 

axial slices acquired parallel to the anterior/posterior commissural line for 

measurement of the BOLD effect. This yielded functional 3.3 mm x 3.3 mm x 

4.0 mm voxels. Head motion was minimized with a head-conforming vacuum 

cushion.  

16-18 s  0.5 s 

Single Paired 1000Hz tones  

tonetones 
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4.2.4 FMRI data analysis 

The fMRI data was analyzed using SPM2 (Welcome Dept. of Imaging 

Neuroscience, London). Data from each subject was realigned to the first 

volume using a six-parameter rigid body transformation within subjects to 

correct for subject movement. The average motion-corrected images were co-

registered to each individual’s structural image using a 12 parameter affine 

transformation. Slice timing artifacts were corrected depending on scan 

parameters and the images were spatially normalized to the Montreal 

Neurological Institute (MNI) template by applying a 12 parameter affine 

transformation, followed by a nonlinear warping using basis functions. The 

images were also re-sampled to 4 mm x 4 mm x 4 mm voxels during 

normalization. The images were smoothed with an 8 mm isotropic Gaussian 

kernel and a 128 s high pass filter was applied to remove low-frequency 

fluctuation in the BOLD signal. 

The general linear model (GLM) was applied to estimate first-level 

measures identifying the effects of condition for each subject which can be 

used to determine what brain areas were involved in processing single tones 

and paired tones. Data were modeled with the canonical HRF included in 

SPM2. 

A second level analysis - random effects was implemented using the 

one-sample t-test function to evaluate between subjects effect. Functional 

results were overlaid onto the group-averaged T1-weighted anatomical 

images for visualization and threshold at p ≤ 0.01, uncorrected and minimum 

cluster size of 5 voxels. The p threshold was selected to be consistent with 
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other auditory sensory gating studies for the purpose of comparison. 

(Tregellas et al., 2007) 

Masks were used to obtain the regions of interest (ROI). Masks are 3D 

image sets in which voxels belonging to a ROI have an intensity of one and 

background voxels an intensity of zero. One mask image was created per ROI. 

The mask and statistical parametric map produced using the canonical HRF 

were superimposed. Then the time series were extracted from the voxels in 

the corresponding ROIs and averaged across those voxels. Linear detrending 

was used to remove low-frequency trends introduced by unavoidable factors 

like scanner drift and physiological processes. Then, time series were 

interpolated by a factor of 4 to obtain a 500 ms interval. Single trial HRFs 

were obtained by using the stimuli time function. The single trials were 

normalized to percentage signal change and adjusted to set the value of the 

first point to zero for display purposes. All analyses were conducted in Matlab.  

4.3 Results 

4.3.1 Conventional fMRI analysis 

4.3.1.1 Determine if a BOLD signal can be measured or not 

First we determined if a BOLD signal due to auditory stimuli can be 

robustly measured in the noisy MRI scanner using the conventional EPI 

sequence. A fundamental problem of using fMRI to examine auditory system 

is the interference of the scanner’s acoustic noise caused by the gradient 

switching of conventional echo-planar fMRI sequences with the experimental 
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stimulus. In the relatively few auditory fMRI studies of sensory gating, special 

procedures were designed to avoid the stimulus and noise interaction. 

Tregellas et al. (2007) used the clustered volume acquisition technique, which 

applied a silent period in the middle of an acquisition period. This technique 

requires a longer acquisition time than the conventional technique. Also, the 

temporal sampling rate will decrease dramatically and this will decrease the 

temporal resolution of HRF as well. A continuous EPI sequence that emits 

continuous noise rather than pulsed noise was used in Mayer et al. (2009). 

Compared to conventional fMRI, continuous fMRI reduced auditory cortex 

BOLD baseline and produced stronger responses with pure tones (Seifritz et 

al., 2006). Here we test whether a BOLD signal can be detected using 

conventional fMRI EPI sequences. 

At the group level, the activation map for single stimuli was computed 

using random effects analyses. Results demonstrated that single stimuli 

consistently activated several regions (STG, THA, IFG and DLPFC) across 

the healthy subjects as shown in Figure 4.2. In particular, there were a 

significant numbers of voxels involved in the activation of STG.  
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Figure 4.2: p<0.01, group (healthy controls) level statistical parametric map for 
single stimuli. 

 

Table 4.1: Areas that demonstrated activation due to single stimuli 
(coordinates represent the most significant voxel in each cluster. 
p<0.01). 

Region  Side Coordinate           
X, Y, Z 

Cluster size 
( no.  voxels) 

Z score T value 

STG R 64 -32 12 317 4.43 6.98 

STG L -60 -40 12 292 4.7 7.9 

THA R  4 -4 8 23 3.87 5.65 

THA L -12 -20 12 43 3.47 4.7 

IFG R 35 32 4 13 2.5 2.89 

IFG L -36 52 16 13 3.13 3.92 

DLPFC R 44 48 16 10 2.62 3.09 

DLPFC L -36 52 16 13 3.13 3.92 

 

To test whether robust responses to pure tones can be measured, two 

mask images were created: STGR and STGL, representing the right and left 

STG, respectively. The time series were extracted from the voxels in each 

ROI, and spatially averaged for each subject. The averaged power spectra of 

the time series within the STGR and STGL for 14 subjects were also 
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calculated and are presented in Figure 4.3. The peak of the spectra (0.0625 

Hz) matches the frequency of the stimulus delivery (randomly chosen from 16, 

16.5, 17, 17.5, or 18 s).  

 

Figure 4.3: Power spectrum of time series from STGL (blue) and STGR (red) 

 

The fact that the power spectrum of the time series from STGL and 

STGR contained the frequency of stimulus delivery indicated that the 

activation of the voxels was in response to the stimuli. These results show 

that robust BOLD signals reflecting auditory processing can be obtained in the 

noisy MRI environment. 
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4.3.1.2 Regions involved in processing single and double stimuli using 

conventional EPI sequence  

Several areas were found to exceed the significance threshold (p<0.01; 

5 voxels) during both processing the single (Figure 4.2) and paired tones 

(Figure 4.4). Double stimuli consistently activated STG, THA and DLPFC 

across healthy subjects, with a large number of voxels involved in STG 

activation. The common area results showed good concordance of activation 

areas across conditions in the bilateral auditory cortex (superior temporal 

gyrus -STG- and the transverse temporal gyrus -TTG-), and thalamus (THA) 

(Figure 4.5). The auditory cortex represents the auditory stimuli processing 

station. The thalamus is believed to both process and relay sensory 

information to the auditory cortex (Steriade et al., 1988). Both single and 

double tones activated the dorsolateral prefrontal cortex (DLPFC). The 

DLPFC is roughly equivalent to Brodmann areas 9 and 46 and provides 

inhibitory modulation of the auditory cortex (Knight et al., 1989). Also, the 

single tones activated the bilateral Inferior Frontal Gyrus (IFG). The IFG 

includes Brodmann areas 44 and 45, also known as Broca’s area. Its function 

is linked to speech production (Plaza et al., 2009). The left IFG has been 

shown by a number of fMRI studies to play an important role in semantic 

processing (Poldrack et al., 1999).  
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Figure 4.4: p<0.01, group level statistical map for double stimuli 

 

Table 4.2: Areas that demonstrated activation due to double stimuli 
(coordinates represent the most significant voxel in each cluster. p<0.01) 

Region  Side Coordinate           
X, Y, Z 

Cluster 
size ( no.  
voxels) 

Z 
score 

T 
value 

STG R 60 -24 4 477 5.49 11.35 

STG L -44 -32 12 422 5.14 9.63 

THA R  12 -6 4 23 3.14 4.03 

THA L -8 -12 4 9 2.89 3.56 

DLPFC R 36 52 24 9 2.96 3.07 

DLPFC L -36 56 12 5 2.57 3.05 
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Figure 4.5: Group (healthy controls) level common statistical parametric map 
for single and double stimuli: p<0.01 

 

Table 4.3: Areas that demonstrated activation due to single and double stimuli 

Region Side Coordinate           X, Y, Z 
Cluster size 
( no.  voxels) 

z score t value 

STG R 64 -20 4 203 5.43 11.05 

STG L -44 -36 12 239 5.43 11.03 

THA R 8 -24 -8 5 4.1 5.80 

THA L -16 -28 -4 4 3.47 4.58 

 

Several brain regions were found involving in processing single and 

double stimuli using conventional EPI sequence including STG, THA, IFG and 

DLPFC.   

Worth notice, random and unknown systematic effects could lead to 

the differences in spatial location in response to single or double stimuli. For 

example, the location of DLPFC activation was slightly different for single and 

double stimuli. The common region may not reach the voxel threshold and 
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disappeared from the map. In this study, we separately selected the ROIs 

activation in response to single or double stimuli. 

4.3.1.3 Brain regions involved in sensory gating using conventional analysis 

One issue in examining sensory gating is the low temporal resolution 

(in the order of seconds) of fMRI technique. This makes it difficult to separate 

the response to the paired tone by only 500 ms which is used in traditional 

sensory gating paradigm. To address this issue, Mayer et al., (2009) 

empirically obtain HRF of paired tones (double tone) which was then 

compared to an estimated paired tone HRF. The estimated HRF for a double 

stimulus was obtained by interpolating and summing the HRF for the single-

tone conditions to the same HRF delayed by 500 ms (single tone+single tone).  

In healthy subjects, the electrophysiological response to a stimulus pair, 

as measured from the scalp is as shown in Figure 4.6. As one can see, the 

response to the second tone is smaller than for the first tone. We hypothesize 

that the corresponding HRF would follow the pattern shown in Figure 4.7 if 

gating happened. In other words, the HRF for S2 would be smaller than for S1. 

The total response, as obtained by fMRI, would then be the summation of the 

two responses. However, in the non-gating condition, the S2 response would 

be the same as S1, as shown in Figure 4.8 and the S1+S2 response in non-

gating condition would be greater than the S1+S2 response in the gating 

condition. Therefore, we can use the Estimated HRF (as defined by Mayter et 

al.) as a control non-gating condition. We hypothesize that the magnitude of 

the Observed HRF would be smaller than the magnitude of Estimated HRF in 

the brain regions involving in sensory gating. We will use this technique to 
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examine the sensory gating network in healthy subjects. Specifically, the 

hypothesis was tested on the ROIs identified in 4.3.1.1 and 4.3.1.2 including 

the STG, IFG, DLPFC, and THA in healthy subjects. 

 

Figure 4.6: The underlying electrophysiological response for double tones in 
healthy subject. S1 response is the response to the first tone in a 
paired-tone. S2 response is the response to the second tone. S2 
response is suppressed compared to S1 response in the normal gating 
condition. 
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Figure 4.7: The gating condition. The HRFs are in percentage signal change 
(PSC) as a function of time (S). S1 is the theoretical HRF to the first tone 
in a paired-tone paradigm, and S2 is the theoretical HRF to the second 
tone. S1+S2 is the theoretical HRF for a paired-tone.  

 

Figure 4.8: The non-gating condition. The HRFs are in percentage signal 
change (PSC) as a function of time (S). S1 is the theoretical HRF to the 
first tone in a paired-tone paradigm, and S2 is the theoretical HRF to the 
second tone. S1+S2 is the theoretical HRF for a paired-tone. 
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Figure 4.9 presents the grand averaged (across 14 subjects) of the 

Estimated HRF (blue curve) and the Observed HRF (red curve) obtained from 

4 ROIs. Error bars represent the standard error. Two-sided t-test comparing 

the peak value of Estimated HRF and Observed HRF were done, p values 

were corrected for multiple comparisons using Bonferroni correction, and the 

results are presented in Table 4.4. 

 

Figure 4.9: Estimated HRF (blue curve) and Observed HRF (red curve) for each 
ROI. Error bars represent standard deviations across the 14 sample 
subjects. 
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Table 4.4: Two sided t test for the peak value of the Estimated HRF and the 
Observed HRF for each ROI.   

   STG THA IFG DLPFC 

Estimated 
HRF  

mean 0.31 0.13 0.10 0.14 

sd 0.03 0.02 0.02 0.03 

Observed 
HRF  

mean 0.29 0.11 0.05 0.10 

sd 0.03 0.04 0.02 0.04 

  t 0.39 0.41 1.83 0.80 

  p 0.70 0.69 0.08 0.43 

 

No significant difference between the Estimated HRFs and Observed 

HRF were found in any ROIs (p>0.05, Bonferroni correction was applied).  

To our knowledge there have been no fMRI studies that investigated 

the hemispheric generators of sensory gating in the healthy subjects. In this 

follow up test, we examined the possible lateralized differences in the peak 

amplitude of Estimated HRFs and Observed HRF, and in the number of active 

trials for all four ROIs.   

The lateralization analysis was carried out for the all ROIs STG, 

DLPFC, IFG and THA. Each ROI was further divided into a right side ROI and 

a left side ROI. The Estimated HRFs and the Observed HRFs are presented 

in Figure 4.10 for each ROI. The mean value, standard deviation and degree 

of freedom of the peak value of Estimated-HRF and Observed-HRF are 

presented in Table 4.5 and the two-sided t-test results are presented in Table 

4.6, p values were corrected for multiple comparisons using Bonferroni 

correction. 



67 

 

 

Figure 4.10: Estimated HRF (blue curve) and Observed HRF (red curve) for 
each ROI. Error bars represent standard deviations across the 14 
sample subjects. 
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Table 4.5: The mean, standard deviation (sd) and degree of freedom (df) of 
peak value of the Estimated HRF (E) and the Observed HRF (O) for each 
left and right ROI.   

  
STG DLPFC IFG THA 

  
L R L R L R L R 

E 

mean 0.31 0.31 0.16 0.15 0.08 0.11 0.08 0.18 

sd 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.03 

O 

mean 0.28 0.30 0.11 0.10 0.05 0.05 0.08 0.15 

sd 0.04 0.03 0.04 0.03 0.03 0.02 0.03 0.04 

 
df 13 13 13 13 13 13 13 13 

 

Table 4.6: The t values and p values of peak value for comparing Estimated 
HRF (E) and the Observed HRF (O) for each left and right ROI.   

    STG DLPFC IFG THA 

    L R L R L R L R 

E vs. O t 0.62 0.09 0.92 1.00 1.00 2.46 -0.08 0.68 

  p 0.54 0.93 0.37 0.33 0.33 0.02 0.94 0.50 

 

The results show that the Estimated HRFs were not significantly 

different (larger) than Observed HRFs in either the left or right side ROIs 

(p>0.05, Bonferroni correction applied) (Table 4.5 and Figure 4.10).  

Two-sided t-test were also carried out to compare the difference of the 

peak value between the left and right hemisphere for both Estimated HRF and 

Observed HRF. P values were corrected for multiple comparisons using 

Bonferroni correction, and the results are presented in Table 4.7. 
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Table 4.7: T values and p values for comparing the peak value of the left and 
right hemisphere for both Estimated HRF (E) and Observed HRF (O). 

  
STG DLPFC IFG THA 

  
E O E O E O E O 

L vs. R t 0.00 -0.40 0.28 0.20 -1.06 0.00 -2.77 -1.40 

 
p 1.00 0.69 0.78 0.84 0.30 1.00 0.01 0.17 

 

Again, no significant difference was found between the left and right 

ROIs for both Estimated HRF and Observed HRF (p>0.05, Bonferroni 

correction applied).  

In summary, we found that a conventional fMRI can be used to detect 

robust BOLD signal associated with auditory information processing. Brain 

areas involved in processing single and double stimuli included STG, DLPFC 

and THA. Previous evidence of STG, DLPFC and THA involvement in 

processing pure auditory tones has been reported by others (Tregellas et al., 

2007; Mayer et al. 2009). The IFG involvement was also reported in Mayer’s 

finding.  

We were not able to determine which brain areas were involved in 

sensory gating. THA, DLPFC involvement in sensory gating has been 

suggested in prior fMRI studies of gating (Mayer et al., 2009; Tregellas et al., 

2007). In addition, STG was reported to be involved in gating by Mayer et al. 

(2009). No IFG involvement in gating was reported in auditory fMRI studies.    

In Chapter 5, we will conduct the same analysis using correlation-

based method to determine if more conclusive information can be found.   
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4.3.2 Comparison between conventional fMRI analysis and correlation-

based analysis 

Here we tested whether the cluster-based method can improve upon 

conventional fMRI analysis by analyzing the same data using the cluster-

based method and using conventional fMRI analysis and comparing the 

results.  

The comparison was done in two stages. First, we determined if the 

cluster-based method resulted in HRF estimates that modeled the data better 

than the canonical HRF or the subject-specific HRF (ensemble averaged). 

Next, we compared the SPM results using the cluster-based approach and 

the conventional analysis. 

In the following, we will use several HRF estimates. First, there is the 

canonical HRF (C-HRF). Second, there is the ensemble averaged, subject-

specific HRF (ES-HRF). The ES-HRF is obtained by averaging all trials for a 

given subject and voxel (or ROI). The third average is the active, subject-

specific HRF (AS-HRF) obtained by ensemble-averaging the active trials only 

for a given subject and voxel (or ROI).  

4.3.2.1 Subject-specific HRF in healthy subjects 

First, we recovered the ES-HRF and AS-HRF in STG for each subject. 

Time series from all voxels in the STG were extracted, and an averaged time 

series was computed for each subject over all voxels in the STG. All trials in 

response to single tones were used to characterize the subject-specific HRFs. 

The ES-HRF was obtained by averaging all trials for a given subject. The AS-
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HRF was obtained using the correlation-based method with the ES-HRF as 

template. The ensemble average of the active trials served as AS-HRF. 

Based on the evaluation results presented in Chapter 3, the correlation 

threshold was set at 0.4 and standard deviation was set as two times the 

standard deviation of the template. As an example, Figure 4.11 shows all 

single trials for subject 1 (left) and the trials deemed active for the same 

subject (right). As expected, the right panel of Figure 4.11 shows that the 

active trials appear more consistent in the 2 s to 8 s interval than the 

unprocessed trials. 

 

Figure 4.11: All trials from subject 1 (left), and the active trials for subject 1 
(right) at threshold 0.4 and STD 0.4. 

Figure 4.12 presents the C-HRF, ES-HRF and AS-HRF, respectively 

for each subject. The results indicate that the C-HRF, ES-HRF and AS-HRF 

have different time to peak. While the shapes are very similar before peak 

time, after peak time, the C-HRF used in SPM has a broader first peak, the 

subject-specific HRFs have deeper undershoots and the AS-HRF has higher 

amplitudes than the other two HRFs. 
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Figure 4.12: The ensemble-averaged subject-specific HRF (ES-HRF) for each 
healthy subject (red line), the active subject-specific HRF (AS-HRF) for 
each healthy subject (blue line) and the canonical HRF (C-HRF) (green 
line). 

 

Across the subjects, the percentage signal change of the peak of ES-

HRFs was 0.22% ± 0.1% (n=14, range 0.075% to 0.37%) and the mean time-

to-peak value was 5 s ± 0.57 s (n=14, range: 4 s to 6 s).  
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The mean peak signal change of AS-HRF from baseline was 0.49% ± 

0.18% (n=14, range 0.22% to 0.97%) and the mean time-to-peak value was 

4.7 s ± 0.38 s (n=14, range: 4 s to 5.5 s).   

The time-to-peak value of the canonical HRF was 5.5 s. The results 

show that the ES-HRFs and AS-HRFs have earlier time-to-peak than the C-

HRF, and the time-to-peak ranges of the ES-HRFs were wider than the AS-

HRFs. 

The goodness of fit (R) for each type of HRF was determined using 

                                        (   ),  with                                   (4-1) 

                                           

                                              ∑ (    ̂ )
  

    ,                              (4-2) 

 

where SSE is the residual sum of squares, n is the number of 

observations and p is the number of explanatory variables used in the models. 

In equation 4-2, yi is the ith value of the BOLD signal and  ̂  is its predicted 

value. Roughly speaking, R is a measure of the discrepancy between the data 

and an estimation model. A small R indicates a tight fit between the model 

and the data. The HRF that has the smallest R is the best HRF. We expect to 

find significant differences between the AS-HRF and the other two HRFs, with 

the AS-HRF having the best fit and providing the smallest R among these 

three HRFs. 

 The R values for each HRF and each subject are shown in Table 4.8 

and Figure 4.13. The results show that the AS-HRF’s R values are the 
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smallest among the three.  ES-HRF and C-HRF provide similar mean R value 

for all subjects (0.101 versus 0.105). Paired t test found a significant 

difference between the AS-HRF and ES-HRF (p = 0.007, t=2.84, df=13). The 

difference between the AS-HRF and C-HRF was also significant (p=0.006, 

t=2.92, df=13). However, no significant difference was found between ES-

HRF and C-HRF (p=0.174, t=0.97, df=13). Thus, the AS-HRFs provide the 

best fit between the model and the data in all subjects. 

It should be noted that subject 3 shows comparatively large R values 

indicating a great deal of discrepancy between the data and all of the three 

HRF models i. Examination of the activation map of subject 3 showed no 

activity in STG (at p<0.01), and the single trials displaying large variability, 

thus explaining the outlier status of this subject.  

Table 4.8: The R values and the degree of freedom (df) for the AS-HRF, ES-HRF 
and C-HRF for each subjects. 

 
AS- HRF ES-HRF C-HRF 

sub1 0.039 0.041 0.048 

sub2 0.052 0.079 0.087 

sub3 0.231 0.376 0.412 

sub4 0.044 0.048 0.053 

sub5 0.041 0.041 0.043 

sub6 0.072 0.086 0.084 

sub7 0.035 0.055 0.053 

sub8 0.025 0.032 0.031 

sub9 0.106 0.179 0.149 

sub10 0.106 0.124 0.130 

sub11 0.056 0.058 0.060 

sub12 0.057 0.095 0.084 

sub13 0.047 0.062 0.063 

sub14 0.088 0.138 0.176 

mean 0.071 0.101 0.105 

df 13 13 13 
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Figure 4.13: R value for AS-HRF, ES-HRF and C-HRF. The AS- HRF’s R values 
are smallest among the three. 

4.3.2.2 Comparing conventional versus correlation-based SPM  

In this section, we investigated if using AS-HRFs rather than C-HRF 

increased detection sensitivity, and thus could delineate more precisely the 

activated areas.  

First, we obtained an estimate of the AS-HRF in the AC for each 

healthy subject (see 4.3.2.1 and Figure 4.12). Second, the t-statistic maps 

were estimated using the AS-HRF and compared with regard to the activated 

areas and t-statistical scores obtained with a standard C-HRF. A standard 

anatomical mask of STG from WFU_pickatlas was used to count the active 

voxels in that region. The group level activity maps were obtained for the C-

HRF (Figure 4.14) and AS-HRF (Figure 4.15). 
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Figure 4.14: Group level statistical parametric map for single stimuli using C-
HRF: p < 0.001 

 

 

Figure 4.15: Group level statistical parametric map for single stimuli using AS-
HRF: p < 0.001 

We found that the use of AS-HRF increased sensitivity compared to 

the canonical HRF. Specifically, as shown in Table 4.9, the detection 

sensitivity, as judged by the average number of active voxels, increased by 

58.2% in the AC (p<0.002), the mean t scores increased by 12% (p<0.09) and 

the maximum t scores increased by 15.9% (p<0.07). 
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Table 4.9: The activated number of voxels in STG, mean t scores and maximum 
t scores across active voxels obtained with the C-HRF (Top table) and 
the AS-HRFs (bottom table). 

  C-HRF AS- HRF 

Sub # voxel mean t Max t # voxel mean t Max t 

1 102 3.3 5.73 189 3.5 6.26 

2 145 3.54 6.86 205 3.5 6.33 

3 0 0 0 169 3.5 5.47 

4 290 3.77 7.64 381 4.5 9.92 

5 422 4.73 9.64 425 4.9 9.62 

6 52 2.7 4 22 2.5 2.8 

7 109 3.4 5.3 102 3.3 6.1 

8 152 3.1 5.7 256 3.6 7.3 

9 100 3.14 4.86 145 3 4.98 

10 130 3.9 8 115 3 4.7 

11 150 4 7.4 230 3.8 7.9 

12 100 3.3 6.2 219 3.9 6.7 

13 117 3.5 5.5 212 3.8 8 

14 4 2.5 2.5 298 3.4 5.9 

mean 134 3.201 5.666 212 3.6 6.568 

 

Figure 4.14 and 4.15 show that most of the voxels (93.33%) in the STG 

of the t-map using the C-HRF overlapped with the t-map using the AS-HRF 

(common activated voxels: 252, C-HRF activated voxels: 270, Subject-

specific HRF activated voxels: 482). The AS-HRF detected larger activated 

regions. Worth noticing is that, subject 6, 7 and 10 showed a decreased 

number of active voxels. We further examined these three subjects and found 

their activation regions were toward the posterior of STG, and the standard 

anatomical mask only covered part of the activation regions. Even through the 

activation region increased by using the AS-HRF, we did not capture it by only 

counting the number of active voxels within the mask.  
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In summary, by removing the non-active trials, we obtained an increase 

in the volume of responses, and thus improved the SPM processing. One may 

argue that the AS-HRF improves on the C-HRF in two ways; the AS-HRF is 

subject-specific and it is based on active responses only. However, since we 

did not find a significant difference between the C-HRF and ES-HRF in terms 

of the goodness fitness of data, the increase in performance must be primarily 

due to the use of active trials.  
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Chapter 5: Acquiring new knowledge using the single-

trial method 

5.1 Introduction 

In Chapter 4, we successfully identified the brain areas that are 

involved in auditory information processing using conventional fMRI analysis. 

However, the conventional method was not able to determine which areas are 

involved in sensory gating. Given that the correlation-based analysis is 

demonstrably more sensitive than the conventional analysis, we reanalyzed 

the data focusing on the active trials only. We also took advantage of the 

added analysis capabilities of the clustering method, such as measuring the 

number of active trials and the string-based approach (see Chapter 3) to 

further investigate the sensory gating network. 

5.2 Methods  

The data and auditory stimulation paradigm that were used in this 

experiment are the same as described in section 4.2.1 and 4.2.2, respectively.  

Our results presented in Chapter 4 suggest the involvement of the 

superior temporal gyrus (STG), the bilateral inferior frontal gyrus (IFG), 

dorsolateral prefrontal cortex (DLPFC), and thalamus (THA) in auditory 

information processing and sensory gating in general. Therefore, these four 

ROIs were used to further investigate the difference in activity patterns 

between single and double stimuli paradigms.  



80 

 

First, we obtained the active trials for single and double stimuli for each 

ROI using the correlation-based method. The grand ensemble average of the 

active trials in response to double stimuli across all subjects was computed 

and is referred to as the Active-Observed HRFs. We also obtained the Active-

Estimated HRFs for double stimuli by adding the average computed from the 

active trials in response to single stimuli across all subjects, to the same HRF 

delayed by 500 ms (single tone + single tone). The percentage of active trials 

for single and double stimuli for each ROI was also calculated. To investigate 

possible lateralization effects, each ROI was further divided into a right side 

and left side ROI.  

Next, the string-based analysis was carried out on the ROIs. Each of 

the trials from a specific ROI was labeled as active (1) or non-active (0) using 

the clustering method with the template and threshold as used in 4.3.2.1. 

Combining the results across the ROIs, each trial was represented by a string 

of characters. These strings were searched to see if a particular pattern of 

active/non-active ROIs is more prevalent for the single tone experiments than 

the double tone experiments, thus providing insight into what activation 

patterns are characteristic for gating and which are not. The number of trials 

in each category (000 to 111) was also calculated.  
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5.3 Results  

5.3.1 Brain regions involved in sensory gating  

First, we obtained the region-specific templates for each single and 

double stimuli, by computing the grand average across all single and double 

stimulus responses, respectively, and the results are shown in Figure 5.1. It 

should be noted that the grand averages (across all 14 subjects) are rather 

small for all ROIs except for the STG.  

 

Figure 5.1: Templates for single (blue) and double (red) stimuli for each ROI.  

 

Next, the active trials for each ROI and each stimulus paradigm were 

obtained using the corresponding templates, and the grand-averaged Active-

Estimated HRF for the single and double stimuli were computed, respectively. 
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The results, presented in Figure 5.2, show that the peak latency for the THA 

response to double stimuli is delayed by several seconds compared to the 

single tone responses. This is physiologically unlikely and suggests a problem 

with the template matching technique. As we already observed before, the 

templates shown in Figure 5.1 are rather small (except for STG), and the 

double stimulus template for THA in particular does not show a clear peak but 

continues to increase to 8 s, whereas the single stimulus template has a peak 

at 5 s. As a result, the THA double-stimulus trials identified as active will peak 

much later than the single stimulus ones. To remedy this situation, it may be 

better to use the template as the ensemble average computed from the ROI 

with the most robust response, rather than ROI-specific templates.  

 

Figure 5.2: Grand averages of the HRFs for single stimuli (blue curve) and 
HRFs for double stimuli (red curve) for each ROI. Error bars represent 
standard deviations across the 14 sample subjects. 
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Given the rather small responses seen for some ROIs, we further 

examined the THA’s subject-specific templates for the single and double 

stimuli shown in Figure 5.3.    

 

Figure 5.3: The template for single (blue) and double (red) stimuli for each 
subject for THA.  

 

Figure 5.3 shows that large variability exists in the templates across all the 

subjects with several subjects not showing a clear response to the stimuli (for 

example subjects 2, 4, 6, 8, 10 and 13). Similar observations were made for 
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the other ROIs, calling into question the use of subject-specific templates.  

Therefore, for the remainder of this study, we decided to use the STG 

template, obtained from the grand-averaged responses to single stimuli. Since 

the DLPFC, IFG and THA have smaller responses as the STG, the standard 

deviation threshold was adjusted for these ROIs in proportion to the peak 

amplitude (see Table 5.1). The grand average (across 14 subjects) of the 

Active-Estimated HRFs (green curve), the Active-Observed HRFs (red curve) 

and the HRFs for the active single stimuli (blue curve) obtained from the four 

ROIs are presented in Figure 5.4. As one can see, comparing Figure 5.4 with 

Figure 5.2, the peak latency differences between single tone and double tone 

responses have been largely resolved. 

 

Table 5.1: The peak amplitude for each template, and the proportion of the 
standard deviation thresholds adjustment in each ROI. 

    Peak amplitude 

 
S D 

STG 0.15 0.28 

DLPFC 0.03 0.10 

IFG 0.04 0.04 

THA 0.05 0.09 

Proportion 

 
S D 

DLPFC 4.68 2.71 

IFG 3.85 6.65 

THA 2.87 2.99 
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Figure 5.4: Active-Estimated HRF (green), Active-Observed HRF (red) and the 
HRF for single stimuli (blue) for each ROI using the STG template for 
single stimuli. Error bars represent standard deviations across the 14 
sample subjects. 

 

Two-sided t-test were done comparing the peak value of the Active-

Estimated HRF and Active-Observed HRF, correcting the p values for multiple 

comparisons using Bonferroni correction, and the results are presented in 

Table 5.2. 
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Table 5.2: T values and p values for comparing the peak value of the Active-
Estimated HRF and the Active-Observed HRF for each ROI.  

  
STG DLPFC IFG THA 

A_E 

mean 0.77 1.07 0.55 0.91 

sd 0.07 0.04 0.05 0.06 

A_O 

mean 0.46 0.58 0.23 0.50 

sd 0.02 0.05 0.03 0.05 

 
df 13 13 13 13 

 
t 4.391 7.439 5.493 5.463 

 
p 0.00073 4.91E-06 1E-04 1E-04 

 

Table 5.2 shows that the Active-Estimated HRF had significantly larger 

amplitude than the Active-Observed HRF for all ROIs (p<0.05, Bonferroni 

correction applied) (Table 5.2). The corresponding percentages of active trials 

were also obtained and are shown in Figure 5.5. A two-sided t-test comparing 

the percentage of active trials for single and double stimuli was performed and 

the results (Bonferroni correction applied) are listed in Table 5.3. 
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Figure 5.5: The percentages of active trials of STG, DLPFC, IFG and THA for the 
single stimuli (black) and double stimuli (white).   

 

Table 5.3: T values and p values for comparing the percentages of active trials 
in response to double and single stimuli.  

    STG DLPFC IFG THA 

S 

mean 49.21 38.83 35.11 37.9 

sd 12.28 8.768 10.9 6.715 

D 

mean 56.3 47.66 39.81 46.54 

sd 13.06 11.19 11.38 11.58 

  df 13 13 13 13 

  t 3.657 2.944 1.323 2.927 

  p 0.003 0.011 0.209 0.012 

 

Significant differences were found in STG, DLPFC and THA, but not for 

IFG. First of all, the results confirm that all the four ROIs responded to single 

and double stimuli. Recall that we showed in section 3.3.1, that the occipital 

cortex (OC) only produced 88 active trials out of 566 trials (15.5%), while 
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these ROIs produced at least two times more active trials than OC (all above 

35%).  

Combining the finding that all ROIs produced a smaller amplitude 

Active-Observed HRF than the Active-Estimated HRF, with the observation 

that only STG, DLPFC and THA produced significantly more active trials for 

the double stimuli than the single stimuli, leads to the conclusion that STG, 

DLPFC and THA were responsive to the second stimulus in the paired tone 

paradigm, but that the hemodynamic responses to the second stimulus was 

smaller than for the first stimulus in a pair. Thus, this may indicate the 

involvement of STG, DLPFC and THA in sensory gating. As outlined in 

Chapter 4, conventional fMRI analysis could not identify the brain areas 

involved in sensory gating, showing the advantage of our correlation-based 

method. 

To further refine the source of sensory gating, we examined the 

possible lateralized differences in the peak amplitude of the Active-Estimated 

HRFs and the Active-Observed HRF, and in the number of active trials for 

STG, DLPFC, IFG and THA by dividing each ROI into a right side and a left 

side.  

First, the lateralized Active-Estimated HRFs and the Active-Observed 

HRFs are presented in Figure 5.6 for each ROI. The mean, standard deviation 

and degree of freedom for the peak values of the Active-Estimated HRF and 

the Active-Observed HRF are presented in Table 5.4. Two-sided t-test on the 

peak value of Active-Estimated HRF and Active-Observed HRF was done for 
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each ROI, p values were corrected for multiple comparisons using Bonferroni 

correction and the results are presented in the Table 5.5.  

 

Figure 5.6: Active-Estimated HRF (green), Active-Observed HRF (red) and the 
HRF for single stimuli (blue) for each ROI using the STG template for 
single stimuli. Error bars represent standard deviations across the 14 
sample subjects. 
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Table 5.4:  Mean, standard deviation (sd) and degree of freedom (df) for the 
peak value of the Active-Estimated HRF and the Active-Observed HRF 
for each left and right ROI.   

    STG DLPFC IFG THA 

    L R L R L R L R 

A_E m 0.79 0.77 1.13 1.02 0.51 0.56 0.36 1.26 

sd 0.08 0.07 0.12 0.09 0.06 0.05 0.08 0.07 

A_O m 0.47 0.49 0.51 0.56 0.20 0.31 0.20 0.73 

sd 0.03 0.02 0.06 0.04 0.03 0.02 0.04 0.06 

  df 13 13 13 13 13 13 13 13 

 

Table 5.5: T values and p values for peak value of the Active-Estimated HRF 
and the Active-Observed HRF for each left and right ROI.   

    STG DLPFC IFG THA 

    L R L R L R L R 

E vs O t 3.754 3.866 4.576 4.732 4.393 4.966 1.728 5.598 

  p 0.002 0.002 5E-04 4E-04 7E-04 3E-04 0.108 9E-05 

 

The results show that the amplitude of the Active-Estimated HRF was 

significantly larger than for the Active-Estimated HRF for all eight ROIs, 

except for the left THA (p<0.05, Bonferroni correction applied).  

Next, the corresponding percentages of active trials for each ROI are 

presented in Figure 5.7. The mean, standard deviation and degree of freedom 

of the percentages of active trials for the single and double stimuli for each 

ROI are presented in Table 5.6. Two-sided t-test comparing the percentage of 

active trials for the single and double stimuli for each ROI was done and the 

results are listed in Table 5.7. 
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Figure 5.7: The percentages of active trials in the left and right STG, DLPFC, 
IFG and THA for single and double stimuli (Black: single; White: double). 

 

Table 5.6: Mean, standard deviation (sd) and degree of freedom (df) of the 
percentages of active trials for the single and double stimuli for each 
ROI 

    STG DLPFC IFG THA 

    L R L R L R L R 

S 

m 45.75 46.51 30.60 38.66 34.16 34.33 37.60 33.50 

sd 10.56 12.50 8.27 12.34 10.82 11.18 9.22 8.42 

D 

m 53.84 55.97 42.06 40.81 33.05 33.15 37.76 41.97 

sd 15.37 14.36 13.20 14.20 8.99 10.28 13.69 14.94 

  df 13 13 13 13 13 13 13 13 

 

Table 5.7: T values and p values for comparing the percentage of active trials 
for single and double stimuli for each ROI.         

  STG DLPFC IFG THA 

S vs. D L R L R L R L R 

t 3.578 3.725 3.983 0.675 0.424 0.356 0.110 2.996 

p 0.003 0.003 0.002 0.511 0.679 0.727 0.914 0.010 
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  Significant differences were found in the left and right STG, left DLPFC and 

right THA. The amplitude analysis and the percentage of active trial analysis, 

point to an involvement of the bilateral STG, left DLPFC and right THA in 

sensory gating. We also compared the percentage of active trials between the 

left side and right side ROI. Two-sided t-test were done for the single stimuli 

and the double stimuli for each ROI and the p values for each comparison are 

summarized in Table 5.8.    

Table 5.8: T values and p values for comparing the percentage of active trials 
between the left side and right side ROI for single and double stimuli. 

 

  STG DLPFC IFG THA 

 L VS. R S D S D S D S D 

t 0.176 0.364 2.706 0.077 0.011 0.086 2.171 0.686 

p 0.863 0.722 0.018 0.94 0.991 0.933 0.049 0.505 

 

 

Significant differences were found in the DLPFC and THA for the single 

stimuli. However, those p values did not reach significant after Bonferroni 

correction was applied. The analysis above showed that neither the right nor 

left hemisphere STG presented priority in processing single or double stimuli. 

This result indicates normal involvement of auditory processing in both 

hemispheres in the healthy subjects.  

The results also showed that left hemisphere of the DLPFC responded 

to single stimuli less frequently than its right counterpart, while no significant 

difference was found for the double stimuli. This indicates that the left 

hemisphere was responsive to the double stimuli as frequently as the right 
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hemisphere. This result further confirmed that the left DLPFC plays an 

important role in sensory gating.  

Also, the right THA showed significantly smaller number of active trials 

than the left hemisphere for the single stimuli. However, no significant 

difference between the left and right THA for the double stimuli was found. 

This result confirmed that the right THA played an important role in sensory 

gating.  

Compared to the results of the conventional analysis, it appears that 

the correlation-based method uncovers additional information and it appears 

to have a higher resolving power. 

5.3.2 String-based analysis  

Here we reanalyze the data once more using the string-based analysis. 

Section 5.3.1 suggests the involvement of sensory gating in DLPFC and THA. 

From the literature we know that the STG represents the auditory stimuli 

processing station, the thalamus processes and relays sensory information to 

the auditory cortex and DLPFC provides inhibitory modulation of the auditory 

cortex. Also, the DLPFC has been shown to have extensive connections with 

the STG (Romanski et al., 1999). Therefore, in this section, we will use the 

string-based analysis on these areas only. In each string, the first digit 

represents STG, the second digit represents DLPFC, and the third represents 

THA. Eight string categories are possible, ranging from 100 to 111. The same 

sensory gating paradigm was used (Estimated HRF versus Observed HRF) 

as used in 4.3.1.2.  



94 

 

Figure 5.8 presents the Active-Estimated HRF (blue curve) and Active-

Observed HRF (red curve) of the double stimulus responses for each ROI for 

category “100” through “111”. The two-sided t test was done comparing the 

peak amplitudes between Active-Estimated HRFs and Active-Observed HRFs 

for each category, the t value and p value of active groups are presented in 

the Table 5.9.  
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Figure 5.8 (continued): Active-Estimated HRF (blue curve) and Active-Observed 
HRF (red curve) for each ROI for category “100” (STG: NA, DLPFC: NA, 
and THA: NA), through “111”, (STG: A, DLPFC: A, and THA: A). 
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Table 5.9: T values and p values of the peak amplitudes for Active-Estimated 
HRFs and Active-Observed HRFs for all active categories. 

T   STG DLPFC THA 

100 

t 5.01 NA NA 

p 0.0002 NA NA 

101 

t 0.96 NA 1.71 

p 0.35 NA 0.111 

110 

t 4.71 4.74 NA 

p 0.0004 0.0004 NA 

111 

t 1.82 3.81 3.66 

p 0.09 0.002 0.003 

  

Please note that the DLPFC in Figure 5.8 categories “101” was 

considered inactive, even though the Active-Observed HRF of the double 

stimuli shows a late response peaking at 7 s. The reason this group of trials 

was not classified as active is that we used a windowed template from 2 s to 8 

s, and only trials that have a high correlation with this template (and have 

large variance) will be classified as active trials. In this case, the late response 

was primarily outside the window considered and thus not classified as active.   

We found significant differences between Active-Estimated HRFs and 

Active-Observed HRFs for DLPFC and THA in all categories (p<0.05). This 

further supported the previous results (Section 5.3.1). STG indicated the 

existence of two patterns, in category “100” and “110”, no significant 

difference was found, while in category “101” and “111”, a significant 

difference was found. A clear interaction between STG and THA can also be 

observed; when THA is non-active, STG shows similar peak amplitudes for 

the Estimated HRFs and the observed HRFs, but when THA is active, STG 

shows greater peak amplitude for the Estimated HRFs than the observed 

HRFs. 



97 

 

The corresponding percentage of active trials for the single and double 

stimuli in categories “000” to “111” are summarized in Figure 5.9. The results 

of the two-sided t-test comparing the percentage of active trials for the single 

and the double stimuli for each category are presented in the Table 5.10.  

 

Figure 5.9: The percentages of active trials for the single (black) and double 
(white) stimuli in categories “000” to “111”. 

 

Table 5.10: T values and p values for comparing the percentage of active trials 
for the single and double stimuli for each category. 

  
000 001 010 011 100 101 110 111 

S 

m 31.46 9.39 7.95 4.02 16.35 10.06 11.22 9.55 

sd 7.83 4.40 4.07 6.08 5.57 5.95 5.71 4.55 

D 

m 21.93 6.00 7.86 9.34 15.71 9.24 9.81 20.10 

sd 9.11 3.69 4.98 5.05 5.80 4.07 5.70 12.51 

 
df 13 13 13 13 13 13 13 13 

 
t 3.59 1.92 0.05 2.44 3.88 0.52 0.64 3.47 

 
p 0.003 0.075 0.957 0.029 0.002 0.609 0.534 0.004 
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The results showed that the single stimuli produced significantly more 

active trials than the double stimuli in category “000” (t=3.59, p=0.003, df=13), 

and the double stimuli produced significantly more active trials than the single 

stimuli in category “011” (t=-2.44, p=0.029, df=13), category “100” (t=3.88, 

p=0.001, df=13), and category “111” (t=-3.47, p=0.004, df=13). 

In summary, several results were found using the string-based method: 

first, we verified that the THA and the DLPFC showed suppressed responses 

for the observed HRF than the Estimated HRF in all categories which 

confirmed the involvement of sensory gating in these ROIs. Second, a clear 

interaction between STG and THA was found. Third, we found three 

categories (“011”, “100” and “111”) were more prevalent for double stimuli 

than the single stimuli.  

5.4 Conclusion 

To our knowledge, this was the first event-related fMRI study to 

examine cortical regions that are involved in sensory gating using single trial 

analysis in healthy subjects during a classical sensory gating paradigm. In this 

chapter, we applied the correlation-based method to examine sensory gating 

and confirmed the involvement of STG, THA and DLPFC in sensory gating. 

The lateralization analysis provided additional information that only the 

bilateral STG, left DLPFC and right THA were involved in gating.  

Thalamic involvement in sensory gating has been suggested in prior 

animal studies (Hinman et al., 1983; Erwin et al., 1987), as well as fMRI 

studies (Mayer et al., 2009; Tregellas et al., 2007). In addition to THA 
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involvement, our results indicated that sensory gating may also occur in the 

DLPFC. Previous evidence of DLPFC’s involvement in gating has been 

reported in surface and intracranial recordings (Knight et al., 1999; Grunwald 

et al., 2003) as well as two fMRI studies (Tregellas et al., 2007; Mayer et al., 

2009). In addition, STG involvement in gating has been reported by Mayer et 

al., (2009). Our results also support Mayer’s findings. Finally, the involvement 

of HPC in sensory gating is still under debate in fMRI studies. Tregellas et al., 

(2007) found evidence of gating in HPC, but they used a train of clicks instead 

of classic pairs of tones. In contrast, (Mayer et al., 2009) applied the classic 

double tone paradigm and they did not find HPC involvement in both 

processing single or double tones. Our results did not find HPC involvement 

which further support Mayer’s finding. 

Grunwald et al. (2003) proposed a sensory gating model which 

indicated that the STG processes the basic stimulus properties during the first 

stage of auditory sensory gating. Whereas the PFC further inhibit the sensory 

information flow within the cortex. Our lateralization analysis provides 

additional information that the right THA relayed the sensory signal to STG in 

healthy subjects. Then, the bilateral STG is involved in the first stage of 

auditory processing. Finally, the left DLPFC may be involved in the inhibitory 

circuit of sensory gating processing.  

Compared with conventional fMRI analysis, the correlation-based 

single trial analysis provides quantitative assessment of the neuronal origins 

of the sensory gating and offers additional information.  
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Chapter 6: Discussion and Future work 

6.1 Discussion and Conclusions 

We introduced a correlation-based single trial analysis method for the 

analysis of auditory fMRI data. This method provides a way to remove the 

non-active trials and thus improving the sensitivity of the statistical analysis.  

This method goes beyond existing approaches aimed at improving the 

analysis of BOLD fMRI data including the parametric methods such as 

canonical HRF and its partial derivatives (Friston et al., 1998) and the non-

parametric methods such as averaging method (Kang et al., 2003), 

deconvolution method (Lu et al., 2006, Wink et al., 2008), principal component 

analysis-PCA (Hossein et al., 2003), and the Bayesian method (Ciuciu et al., 

2003; Marrelec et al., 2003).  

The correlation-based method developed here has the advantages that 

it is data-driven instead of model-driven and it does not rely on any 

assumptions regarding the HRF. In the case of parametric methods, these 

functions are usually selected prior to the analysis and fixed over time and 

through brain regions. In the correlation-based method, the extracted HRFs 

are determined only by the fMRI signal and the stimuli, and they are not 

biased by any a priori model.  

The correlation-based method also has the advantage that no rough 

approximation is needed. In contrast, the PCA method (Hossein et al., 2003) 

requires the signal to be transformed into several orthogonal components, 

with the first few components (with the largest eigenvalues) selected to model 
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the HRF. However, the maximum-variance variables may not always 

maximize information and using the first few components may not able to 

capture the true response. In the case of the averaging method (Kang et al., 

2003), the subject-specific HRF is obtained by projecting the actual fMRI 

signal onto a Fourier basis which is probably only a rough approximation of 

the BOLD response. Our correlation-based method uses a template, derived 

from the data (essentially the ensemble average across all responses), to 

measure the similarity between the template and all trials. The subject-specific 

HRFs are then obtained by averaging the active trials. Thus, our method does 

not require the a priori estimation of the HRF.  

Furthermore, the correlation-based method has the advantages that 

only two parameters need to be selected; the correlation threshold, and the 

standard deviation threshold. In contrast, four parameters are needed using 

the canonical HRF and its partial derivatives (Friston et al., 1998). In the case 

of the deconvolution method (Lu et al., 2006), the number of parameters is 35, 

and all the parameters have to be manually selected to improve the fit of the 

model. 

Also, in the correlation-based method, no assumption is made that all 

the single trials are the same. The problem with methods such as the 

Bayesian method is that it is often assumed that the HRFs are identical from 

one response to another which is unlikely to be the case (Aguirre et al., 1998). 

The correlation-based method quantifies the single-trial variability, thus it can 

capture all different kinds of HRFs that may exist during an experiment. 

Hence, it provides a great deal of flexibility and variability in the type of 
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response that can be detected. In addition, this method has the advantage of 

simplicity compared to the methods described above. 

Several limitations of the current study should be considered. First, we 

have to pre-define ROIs to extract the single trials. We reviewed the SPM 

produced using the canonical HRF, and the main areas of activation were 

selected. So the subject-specific HRFs were unlikely to differ a lot from the 

canonical HRF. Therefore, this approach may be biased toward activated 

regions that have a HRF similar to the canonical HRF.  

Second, it should also be noted that this approach seems to overfit the 

data and be biased since the AS-HRFs were obtained from the data itself and 

could match the data more accurately. However, both the correlation-based 

method and the conventional analysis using canonical HRF use the least 

squares method to estimate the parameters β (equation A1-7). So the 

comparison between the subject-specific HRF and the canonical HRF is 

unbiased.  

Third, we evaluated the performance of the correlation-based method 

on simulated data. The data were generated using data obtained from an 

auditory experiment. The 0 s to 8 s interval of each trial following the stimulus 

presentation was used as active responses, and the 8 s to 16 s intervals were 

used as “non-active” responses. However, many of the hemodynamic 

responses exhibit a (small) undershoot in the 8 s to 16 s intervals. This results 

in a tendency to have negative-amplitude responses in the “non-active” group, 

thus potentially biasing the clustering results. In future tests, one may 

consider using data from non-active ROIs.    
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The ability of the correlation-based method for detecting brain 

activation was demonstrated on real fMRI data in healthy subjects listening to 

single tones. The same data was also analyzed using the conventional fMRI 

analysis which applied canonical HRF. It was found that the HRF obtained 

with the correlation-based method had the best goodness of fit (R) of the 

model to the data in all subjects. Also, the AS-HRF-based SPM increased 

detection sensitivity as compared to the C-HRF-based SPM and thus could 

delineate more precisely the activated areas. This comparison analysis 

confirmed the improvement of the SPM processing using the new method.  

The correlation-based method was also applied to investigate sensory 

gating network. While the conventional analysis could not find any regions 

involved in gating, the correlation-based method provides quantitative 

assessment of the neuronal origins of sensory gating and provided additional 

information that the right THA and left DLPFC were involved in sensory gating.  

Our research showed that only 51% of the responses in the auditory 

cortex were active. This result is consistent with electrophysiological studies 

that show that not all stimuli produce evoked potentials in healthy subjects 

(Hu et al., 2009). The inconsistency of the response in time may due to the 

physiological or neural adaptation to the stimuli, since one must collect many 

trials and the subjects become adapted to the stimuli and may not respond 

anymore. It is also possible that true active responses are buried in the noise 

and cannot captured using the correlation-based method. As a matter of fact, 

a simulation was conducted to test how big a percentage of true active 

responses could be detected at different SNR, and the results showed that 
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only 80% of true active responses among all the “active” responses could be 

identified at SNR 0.2. Therefore, we should keep in mind that the correlation-

based method still misclassified some non-active trials into the active group 

due to the low SNR in fMRI data. To test the feasibility of this method, we 

compared the percentage of active trials obtained from active brain regions 

(AC) and non-active regions (OC). The correlation-based method detected 

significantly more active trials in AC than OC. So, it is potentially a powerful 

exploratory method. 

To our knowledge, there is no other single trial analysis of auditory 

fMRI data has been done. The objective of this study was to introduce the 

correlation-based method to the fMRI data analysis field. Compared with the 

conventional technique, the correlation-based technique increased detection 

sensitivity. By applying this new proposed method to investigate sensory 

gating, additional information can be obtained.  

6.2 Future Work 

The correlation-based method used the AS-HRF which obtained from 

STG only. However, variability of HRF has been observed from different brain 

regions within the same subject. Future studies might seek to address 

whether the Active Region-Specific or Voxel-Specific HRF can improve the 

current method.  

In this study, we did not use anatomical masks for the group level 

activation maps. Therefore, the activation regions shown in Table 4.1 and 4.2 

contain voxels that are not part of the anatomically-defined STG, IFG, DLPFC 
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or THA. For example, the single stimuli activated 317 voxels in the greater 

STG area, however, only 189 of these were STG, with the others situated in 

the postcentral gyrus, insula, middle temporal gyrus, inferior parietal lobule, 

extra-nuclear, etc.. We suggest that if using the group-level SPM, the 

anatomical mask could be used to identify ROIs precisely.    

Also, some studies have shown that these group-level ROIs are not as 

reliable as the individually-created ones (Swallow et al. 2003) since it does not 

take into account the inter-individual functional variability. This issue could be 

addressed by using individual-level ROIs. Another application of the 

correlation-based method is to study patient populations, e.g., schizophrenia 

patients. One problem in fMRI data analysis of patients is that a significant 

proportion of the patients do not show any activation (Krakow et al., 2001). 

Potential reasons may lie in the large variability of the HRFs, and the shape of 

patient-specific HRF could be significantly different from healthy subjects. In 

the future, we could apply the correlation-based method on activation 

detection of patients with schizophrenia in order to see if the detection 

sensitivity can be increased by using the patient-specific HRF. Lastly, to 

confirm that the correlation-based method can differentiate between active 

and non-active trials, simultaneous EEG/fMRI studies need to be conducted. 

One would expect to see no BOLD signal if the electrophysiological response 

is absent. Also, such a study may be used to determine if an 

electrophysiological response is putatively associated with a BOLD response. 

For example, if a stimulus results in additive neural activity, a BOLD response 

should be seen as well. However, if the response to a stimulus is primarily 
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dues to phase reorganization of the ongoing activity, no BOLD response may 

be seen.   
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Appendix 

A1: First-level analysis 

The canonical HRF is given by 

                                  
)

)()(
(

2

2
1

1

1
1 222111







 

gamma

et
c

gamma

et
AY

tt 


 ,                   (A1-1) 

where t is the time in seconds, gamma ( ) is the standard gamma 

variate, A controls the amplitude, α and β control the shape and scale, 

respectively, and c determines the size of the undershoot (Friston et al. 1998). 

A common way to plot the impulse hemodynamic response is in 

percentage signal change from a baseline condition. GLM expresses the 

observed response variable in terms of a linear combination of explanatory 

variables plus an error term. For a simple model with an explanatory variables 

xi, the general linear model can be written as 

                                       iii
xy   ,                                       (A1-2) 

where yi is the observed value for voxel i, β is the scaling of the linear 

regression line, and  i is the error term in volume i. In the statistical analysis 

of fMRI, this formula is in essence solved for each voxel in each volume in the 

fMRI time series separately. If the model includes more variables it is 

convenient to write the general linear model in matrix form using 
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                                         XY  ,                                       (A1-3) 

where Y is a matrix containing all the observed data with a column for 

each voxel and a row for each fMRI volume,  is the parameter matrix and  is 

a matrix of error terms. The matrix X is known as the design matrix containing 

the predicted data. It has one row for each fMRI volume and one column for 

every explanatory variable in the model. In analyzing an fMRI experiment, the 

columns of X contain vectors corresponding to the 'on' and 'off' elements of 

the stimulus presented. By finding the magnitude of the parameters in , we 

can detect the presence or absence of activation (Friston et al., 1995).  

Estimates of the  parameters ̂  are obtained using a least squares 

method, minimizing the squared error given by 

                                      
22    j j

S .                                    (A1-4) 

To obtain the best possible fit of the model to the data, the “stimulus 

function” (which is often a sharp on or off waveform) is normally convolved 

with the standard HRF. The stimulus function is known from the experimental 

setup. The parameter  can be determined by solving the 'normal equations'  

                                 ̂)( XXYX TT  .                                   (A1-5) 

Provided that (XTX) is invertible then ̂ is given by  

                             YXXX TT 1)(ˆ  .                                     (A1-6) 
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After determine the error term, statistical inference can be made as to 

whether the  parameter corresponding to the model of an activation 

response is significantly different from zero.  

To convert a parameter estimate (the estimated β value) into a useful 

statistic, the t statistic is obtained using                      
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The vector cT= [c1, c2, …. ci], where i is the number of parameters in X, 

is referred to as the contrast vector. The word “contrast” is used for the result 

of the operation cT
̂ . The standard error is estimated using the variance of 

the residuals ( ) divided by the appropriate degrees of freedom ( N ). If the 

parameter estimate is low relative to its estimated uncertainty, the fit is not 

significant. The above process is known as the first-level analysis.  


