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Abstract

The seismic wavelet phase can be estimated by histogram matching between seis-

mically inverted reflectivity and well log reflectivity. Histogram matching is based

on the convolutional model and assumes the wavelet is constant. If these assump-

tions are correct, the method is able to recover the wavelet phase information from

seismic data with an error of less than 20 degrees if given high-quality seismic data

and accurate wavelet amplitude spectrum estimation. As compared to maximum

kurtosis phase estimation, this method doesn’t need a super-Gaussian-distribution

assumption for the reflectivity series. The model tests show that a large amount of

data is needed to stabilize the kurtosis phase estimation method. For 1000-sample

traces, kurtosis phase estimation can estimate phase with an error of less than 20

degrees for only 57 of 100 tests. For 2000-sample traces, this number increases to

60 out of 100, and 74 out of 100 for the 4000-sample traces; whereas the accuracy

of histogram matching phase is relatively insensitive to trace lengths of this order.

Compared to the optimum Wiener filter wavelet estimation methods, the histogram

matching method is not sensitive to an inaccurate timing relationship between seis-

mic data and well logs. A high-quality seismic dataset with high S/N is preferred to

ensure an accurate phase estimation output. In addition, reflectivity skewness can

be used to help identify polarity of the seismic wavelet.
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Chapter 1

Introduction and Background

1.1 Introduction

1.1.1 Motivations for Wavelet Phase Estimation

The seismic wavelet plays an important role in various aspects of seismic analysis.

From the point of view of seismic data processing, a wavelet must be reliably esti-

mated so that it can generally be deconvolved or shaped to some desired output with

a digital filter, and thus approximate the reflectivity series. The data resolution is

improved (i.e. improve the ability to separate two features that are close together,

from Sheriff, 2002) by increasing the sharpness of the seismic reflection. For a seis-

mic interpreter, knowledge of the wavelet character and phase is important since any

phase ambiguities may result in incorrect identification of low-and high- impedance

layers in a seismic section (Brown, 2004).

Different methods have been developed and applied to estimate and remove the
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wavelet (Robinson, 1957; Anstey 1958; Treitel and Robinson, 1967; White and

O’Brien 1974; Ziolkowski, 1991). However these methods focus more on the am-

plitude estimation of the wavelet and leave the phase to the assumption that the

seismic wavelet is either minimum phase or zero phase. Since this assumption is not

always valid and both amplitude and phase are needed to characterize a wavelet, a

reliable wavelet phase estimation method is necessary.

1.1.2 Approaches to the Problem

Various approaches to phase determination have been proposed and applied. We will

consider three different methods which are based on different philosophies.

The traditional method of phase estimation is to use the optimum Wiener filter

required to produce the seismogram from a given reflectivity series obtained from

well logs.

A kurtosis based phase estimation method has been recently studied by Van der

Baan et al. (2010), Van der Baan and Fomel (2009), Edgar (2008,) Van der Baan

and Pham (2008) and Van der Baan (2008) following the work of Wiggins (1978).

This method allows phase estimation without well logs.

In this thesis a hybrid method is developed, whereby the well log reflectivity is

used to establish the distribution of reflection coefficients, and the wavelet phase that

upon reflectivity inversion most closely reproduces this distribution is selected.
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1.2 Background

1.2.1 Phase

Phase is a technical term that has been extensively used across different disciplines

with various meanings. Before discussing phase estimation methods, it is necessary

and helpful to clarify the meanings of phase, specifically the top four senses in seismic

research and application (Liner, 2002).

Phase of the complex number. Phase is mathematically defined with the

complex number:

z = x+ iy (1.1)

where x and y are real numbers and i is the square root of negative one. A complex

number could also be written as:

z = Aeiθ (1.2)

where A is the amplitude, and θ is the phase of the complex number z. From a

geometric point of view, z is a point in a coordinate plane, A is the distance from the

origin to the point and θ is the angle measured counterclockwise from the horizontal

axis as demonstrated in Figure 1.1.

Phase of the wavefield. Assuming a simplest situation with a point source

in an infinite homogeneous isotropic medium, the wavefield generated by the point

source could be mathematically expressed as:

f =
1

r
δ(t− r/c) (1.3)

where r is the distance from the source, t is the time since the source started, and

c is the speed of wave propagation. The function δ () is called the delta function

3



Figure 1.1: A plot illustrating amplitude and phase of a complex number in a coor-
dinate plane.

which describes the wavefront location. Applying a Fourier transform over time, the

wavefield could be expressed in frequency domain as:

f =
1

r
eiwr/c (1.4)

which is in the familiar form Aeiθ . So we see the wavefront location (t − r/c) can

be thought of as the phase of the wavefield.

Phase of a time series. The phase of a time series, such as a wavelet, is

a description of its relative shape and time position (Badley, 1985). Applying a

Fourier transform to a time series generates a phase spectrum which is a measure

of how the timings of various frequency components of the time series relate (Simm

and White, 2002). It might be zero phase, or minus 30◦ or it might change with

frequency. A wrapped phase spectrum will stay bounded between −180◦ and +180◦
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since it is defined by an inverse tangent function. For the fully processed seismic

data, the phase of the wavelet is assume to be zero for all frequencies which gives a

symmetric wavelet, centered on the reflection from an acoustic impedance boundary,

thus making it the most desirable wavelet for interpretation. This kind of phase is

what we are trying to estimate from seismic data in this thesis. Figure 1.2 and Figure

1.3 show two examples of how phase spectrum relates to the timing of wavelet: a

linear phase shift is equivalent to a constant time shift, and a constant phase shift

over all the frequencies will change the shape of a wavelet. In particular, a 90-

degree phase shift converts a symmetric wavelet to an antisymmetric wavelet, while

a 180-degree phase shift changes its polarity (Yilmaz 2001).

Minimum, mixed and maximum phase. Minimum, mixed, and maximum

phase are used to describe casual signals. It has nothing to with the quantity of phase,

saying 180 degrees is the maximum phase or zero phase is the minimum phase. In

this case, phase indicates that the energy in the causal wavelet has a certain delay

from the beginning of the wavelet. A minimum phase wavelet has minimum delay, a

mixed phase wavelet builds up in the middle and a maximum phase wavelet builds

up at the end as shown in Figure 1.4.

1.2.2 The Convolutional Model of the Seismogram

This study is based on the classic convolutional model of the seismogram. The

recorded seismogram s(t) can be modeled as the convolution of the Earth’s impulse

response or reflectivity r(t) with the seismic wavelet w(t) plus recorded noise n(t):

s(t) = w(t) ∗ r(t) + n(t) (1.5)

5



Figure 1.2: Linear phase shifts are applied to shift the wavelet in time without
changing its shape. The slope of the linear phase function is related to the time shift
(modified after Yilmaz 2001).
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Figure 1.3: Starting with the zero-phase wavelet (a), its shape is changed by applying
constant phase shift. A 90-degree phase shift converts the zero-phase wavelet to an
antisymmetric wavelet (b), while a 180-degree phase shift reverses its polarity (c)
(modified after Yilmaz 2001).
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Figure 1.4: (a) Minimum phase wavelet, (b) mixed phase wavelet, (c) maximum
phase wavelet (Liner 2004).

This impulse response of the Earth is what would be recorded if the wavelet

were just a delta function or spike. A number of assumptions are made for this

convolutional model (Yilmaz 2001), therefore, they are also applied to this whole

study.

Assumption 1 The Earth is comprised of horizontally deposited lithological

layers that exhibit constant velocity.

Assumption 2 An impulsive seismic source generate a compressional pressure

wave that impinges on lithological layers at normal incidence, therefore, no shear

waves are generated.

Assumption 3 The wavelet does not change as it travels in the Earth’s sub-

surface; that is to say, the seismic source signature is stationary. So the constant

8



wavelet phase estimation will be studied.

Assumption 4 The random noise component in a recorded seismogram is zero

or can essentially be reduced to zero by processing.

Assumption 5 Reflectivity is a random process. This implies that the seismo-

gram has the characteristics of the seismic wavelet in that their autocorrelations and

amplitude spectra are similar.

Certain other assumptions for each specific method will be further discussed in

the next chapter.

1.2.3 Inverse Filtering

If there is a filter a(t) such that r(t) = a(t) ∗ s(t) , that is to say, to recover the

reflectivity by filtering seismic data with a(t), then the convolutional model of the

Earth becomes s(t) = w(t) ∗ a(t) ∗ s(t). The noise component is neglected here.

Simplifying this equation by eliminating s(t) gives

w(t) ∗ a(t) = δ(t) (1.6)

It implies a(t) = δ(t) ∗w′(t), where w′(t) is the inverse wavelet. So the inverse of

the seismic source signature is the operator required to recover the Earth’s impulse

response from a recorded seismogram. So one way to perform deconvolution is to

transform the seismic trace and known wavelet to the frequency domain and divide.

Taking into account the noise, the inverse filter in frequency domain is given by:

A(f) =
W (f)

|W (f)|2 + σ2
n

(1.7)

where capitalized letters represent their lower-case time-domain counterparts in the
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frequency domain, σ2
n is the stabilization factor and the bar indicates a complex

conjugate.

1.2.4 Optimum Wiener Filters

The optimum Wiener filter is designed by solving so-called normal equations:

r0 r1 r2 · · · rn−1

r1 r0 r1 · · · rn−2

r2 r1 r0 · · · rn−3
...

...
...

. . .
...

rn−1 rn−2 rn−2 · · · r0





a0

a1

a2
...

an−1


=



g0

g1

g2
...

gn−1


(1.8)

Here ri, ai, and gi, i = 0, 1, 2, · · · , n− 1 are the auto-correlation lags of the input sig-

nal, the Wiener filter coefficients, and the cross-correlation lags of the desired output

with the input signal, respectively. The optimum Wiener filter is optimum in that

the least-square error between the actual and desired outputs is minimum. So when

the input signal and desired output is given, for example, the reflectivity as input

and seismogram as output, the optimum Wiener filter could be designed to minimize

the difference between input and desired output, giving a wavelet estimation in this

example. The Wiener-Levinson algorithm could be exploited to solve the equation

for the filter coefficients.
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Chapter 2

Statistical Signal Analysis

2.1 Zero-phase Wavelet Estimation

A zero-phase wavelet could be extracted from seismic data. The amplitude of

a wavelet is based on the windowed auto-correlation of the seismic data. Auto-

correlation is a measure of similarity between the events on a time series at different

time positions. It is a running sum given by the expression

cε(τ) =
1

N

N−1∑
t=0

etet+z (2.1)

where τ is time lag. A random time series is an uncorrelated series. Therefore,

cε(τ) = 0, τ 6= 0

cε(0) = r0 = constant
(2.2)

Equation 2.2 states that auto-correlation of a perfect random series is zero at all lags

except at zero lag.

11



Consider the z-transform of the convolutional model in equation 1.3:

S(z) = W (z)R(z) (2.3)

By putting 1/z in place of z and taking the complex conjugate, we get

S(1/z) = W (1/z)R(1/z) (2.4)

where the bar denotes the complex conjugate. By multiplying both sides of equations

2.3 and 2.4, we get

S(z)S(1/z) = [W (z)R(z)]
[
W (1/z)R(1/z)

]
(2.5)

By rearranging the right side,

S(z)S(1/z) =
[
W (z)W (1/z)

] [
R(z)R(1/z)

]
(2.6)

Finally,by definition,equation 2.6 yields

cs = cw ∗ cr (2.7)

where cs, cw, and cr are the auto-correlations of the seismogram, seismic wavelet,

and impulse response, respectively. Based on the white reflectivity series assumption

(equation 2.2), we have

cs = c0cw (2.8)

Equation 2.8 states that the auto-correlation of the seismogram is a scaled version

of that of the seismic wavelet.

Do the Fourier transform in equation 2.8

|S(ω)|2 = c20|W (ω)|2 (2.9)

12



so the zero-phase wavelet can be extracted by (1) averaging the amplitude spectra

of all traces in each time window and (2) multiplying the averaged window in the

time domain by a Hanning taper for enhanced robustness, while (3) ensuring that

the amplitude at the Nyquist frequency remains zeros. The Hanning filter smooths

the spectral estimate, thus ensuring extra robustness and it allows for the inclusion

of any a priori information on the expected wavelet length (Van der Baan 2008).

2.2 Kurtosis and Central Limit Theorem

In statistics, kurtosis is a fourth-order statistic which measures the sharpness of the

probability distribution of a real-valued random variable. It quantifies the devia-

tion of a probability distribution from Gaussian distribution (Figure 2.1). Negative

kurtosis describes a sub-Gaussian distribution, while positive kurtosis indicates a

super-Gaussian distribution. A normal distribution will, therefore, have zero kurto-

sis. (Edgar 2008). It is commonly approximately by:

kurt(x) = n

∑
x4(t)

[
∑
x2(t)]2

− 3 (2.10)

where x(t) is a discrete time series, n is the number of time samples and t is the

discrete time (Van der Baan, 2008). As a higher-order statistic, kurtosis holds infor-

mation about the wavelet phase (Sacchi and Ulrych, 2000), so it is an obvious choice

of norm for statistical wavelet approximation (Longbottom et al., 1988).

The Central Limit Theorem states that the sum of a large number of indepen-

dent and identically distributed random variables will be approximately normally

distributed if the random variables have a finite variance (Halmos, 1944). Applying

13



Figure 2.1: The relationship between Kurtosis and Gaussian distribution (Edgar
2008).

this to the convolutional model, the seismogram is less white and more Gaussian

compared to the white reflectivity series. Thus, the kurtosis of a seismogram is

smaller than the reflectivity series (Figure 2.2).

2.3 Skewness

In statistics, skewness is a third-order statistic which measures the asymmetry of

the probability of a real-valued random variable. The skewness value can be positive

or negative. Qualitatively, a negative skew indicates that the probability density

function has a longer tail on the left side than the right side and the bulk of the

values lie to the right of the mean. A positive skew indicates that the tail on the

right side is longer than the left side and the bulk of the values lie to the left of the

mean. A zero value, therefore, typically indicates a symmetric distribution (Figure

2.3).

14



Figure 2.2: The amplitude distribution of seismogram is more Gaussian and has a
smaller kurtosis compared to reflectivity series.

Figure 2.3: Negative skew has a longer tail on the left side and positive skew has a
longer tail on the right side.
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Chapter 3

Wavelet Phase Estimation

Methods

Several wavelet phase estimation techniques have been proposed and studied. In

this chapter, we discuss three different approaches: kurtosis phase estimation first

developed by Wiggins (1978), recently studied by Van der Baan (2008) and Edgar

(2008); a new phase estimation method developed in this thesis; and wavelet esti-

mation through optimum Wiener filter. The theory, assumptions and limitations are

described specific to each method of wavelet estimation tested.

3.1 Kurtosis Phase Estimation

3.1.1 Description and Theory

As previously described in section 2.2, the fourth-order statistic kurtosis holds infor-

mation about the wavelet phase, therefore it could be used for wavelet estimation.

16



Based on the central limit theorem, the phase rotation which maximizes the kurtosis

of the seismic amplitude distribution is the optimum wavelet phase.

First, a zero-phase wavelet is extracted from seismic data using the method de-

scribed in section 2.1. The wavelength could be determined based on any a priori

knowledge. Then a frequency-domain deconvolution is performed using an inverse

filter as described in section 1.2.3. The deconvolution output, considered as inverted

reflectivity is phase rotated in the time domain from -180 degrees to 180 degrees.

The kurtosis after each rotation is extracted using equation 2.10. The phase rota-

tion at the maximum kurtosis value is considered as the wavelet phase according to

the central limit theorem. Therefore, the final wavelet is produced using the initial

zero-phase wavelet amplitude spectrum, but with a phase rotation obtained from the

maximum kurtosis scan.

3.1.2 Assumptions and Limitations

The most critical assumption of the Kurtosis Phase Estimation method is that a

reflectivity series of the earth will have a super-Gaussian amplitude distribution so

that maximizing the non-Gaussianity of the deconvolved output results in a more

faithful representation of the subsurface geology. So the limitation of this method is

that it is not applicable to near-Gaussian or Gaussian distributed reflectivity.

A further limitation of this method is that the polarity of the estimated wavelet

is inherently ambiguous as it does not affect the kurtosis of the reflectivity. External

control is required to determine the wavelet polarity.

The method requires a large amount of data for accurate kurtosis estimation. As

17



a high-order statistic, the kurtosis of a distribution needs to be determined from a

large sample from the distribution.

3.2 Skewness for Polarity Determination

The polarity of a wavelet is a matter of convention. Here we use the SEG standard

that for a zero-phase wavelet, a positive reflection coefficient is represented by a cen-

tral peak. The caution is necessary since the European conventions are the opposite

of the SEG standard.

As discussed in the last section, external information is needed to determine the

polarity of the wavelet. It is found that the third-order statistic skewness could be

used for wavelet polarity determination. Two synthetic seismograms produced by

convolving the same reflectivity with two wavelets that have opposite polarity will

have opposite skewness. So when the reflectivity is given, a synthetic seismogram is

constructed by convolving estimated wavelet with reflectivity. Then the skewness of

the synthetic seismogram is compared to the skewness of the real seismic data. If

they have skewness with the same sign, i.e. either positive or negative, the polarity

of the estimated wavelet is correct. If not, the polarity of the wavelet needs to be

reversed.

18



3.3 Histogram Matching Phase Estimation

3.3.1 Description and Theory

This new method of wavelet estimation is based on the assumption that the optimum

wavelet phase is that which makes the inverted reflectivity amplitude distribution

have a better match with known reflectivity distribution. The use of the histogram

matching, rather than kurtosis, has the immediate advantage that it does not require

a super-Gaussian amplitude distribution for reflectivity.

Similarly to the KPE method, this method starts with zero-phase wavelet estima-

tion. Then the frequency-domain deconvolution is performed in a bandwidth which

contains the major part of wavelet energy (Figure 3.1). By doing this, the influence

Figure 3.1: The frequency domain deconvolution is performed within a bandwidth
containing major part of wavelet energy, as the red part shown in the wavelet power
spectrum.

of the noise is reduced while enhancing the deconvolution output, thus increasing
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the histogram match between inverted reflectivity and known reflectivity from well

logs. The inverted reflectivity is phase rotated from -180 degrees to 180 degrees.

The least-square error between histograms of inverted reflectivity with observed re-

flectivity histograms in wells after each rotation is calculated and a graph of the error

variation with phase rotation is produced. The phase rotation at the minimum error

value is the optimum wavelet phase.

3.3.2 Assumptions and Limitations

The histogram matching method assumes that a major part of the difference between

inverted reflectivity amplitude distribution with observed reflectivity amplitude dis-

tribution is caused by the incorrect phase of wavelet. The reflectivity series is as-

sumed to be white so the wavelet amplitude spectrum could be well determined by

the average amplitude spectra of all wavelets in all traces of the input seismogram.

In this case, the wavelet is assumed to be stationary in time and spatially invariant.

3.4 Optimum Wiener Filter Wavelet Estimation

3.4.1 Description and Theory

As described in Section 1.2.4, the optimum Wiener filter could be designed to min-

imize the least-square error between the actual and desired output. So the wavelet

could be considered as a filter that minimizes the difference between the reflectivity

series and input seismogram. Given the reflectivity from well logs and real seismic

data, the wavelet could be estimated by solving the normal equation (equation 1.6).

20



Unlike the previously discussed two methods, this method estimates the wavelet in

a one-step procedure instead of separating it into phase and amplitude.

3.4.2 Assumptions and Limitations

One critical limitation of this method is that it requires a perfect timing match

between the input and desired output. In other words, if a wrong timing relationship

exists between the reflectivity series and seismogram, the estimated wavelet could be

significantly deviated from the true wavelet. This wrong timing relationship could

be easily introduced by small errors in the well or seismic datum, or a systematic

error in the check-shot measurements.

Similar to the other two methods, the wavelet is assumed to be stationary in time

and spatially invariant. The noise in seismic data is considered to be negligible. The

convolutional model is assumed to be valid.
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Chapter 4

Results and Discussions

The three wavelet estimation methods are tested on different data sets. The first

part of this chapter describes the implementation processes specific to each method of

wavelet phase estimation tested. It aims to illustrate the work flow of each method.

Of particular importance to the interpretation of the results are the assumptions

and limitations of each method, thus special data sets are designed to justify their

presentation in the second part.

4.1 Implementation and Program Testing

The data set used in this section is a synthetic trace (Figure 4.3) generated by the

convolutional model. The reflectivity is from a random number generator and follows

a Laplace distribution (Figure 4.2). The wavelet is 20Hz Ricker wavelet and phase

rotated by 30 degrees (Figure 4.1). Wavelength is 120ms and the trace length is 2s

with 2ms sampling rate.
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Figure 4.1: Ricker wavelet used in convolutional model.
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Figure 4.2: Reflectivity generated by Laplacian random number generator.
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Figure 4.3: Theoretical synthetic trace by convolving wavelet with reflectivity. Phase
spectrum shows a 30 degrees difference between reflectivity and synthetic trace.
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4.1.1 Kurtosis Phase Estimation

First the zero-phase wavelet is extracted from seismic data using the method de-

scribed in section 2.1 (Figure 4.4).

Figure 4.4: Estimated zero-phase wavelet from seismic data.

Extracted zero-phase wavelet is deconvolved from seismic data to get inverted

reflectivity (Figure 4.5). The inverted reflectivity is phase rotated in the time domain

from -180 degrees to 180 degrees. The kurtosis after each rotation is extracted (Figure

4.6). The phase rotation at the maximum kurtosis value is considered as the wavelet

phase. The final wavelet is produced using the initial zero-phase wavelet amplitude

spectrum, but with a phase rotation obtained from the maximum kurtosis scan

(Figure 4.7).
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Figure 4.5: Deconvolution output using inverse filter in frequency domain.

Figure 4.6: Kurtosis after each rotation is extracted using equation 2.10. The kurtosis
reaches maximum at 31 degrees which corresponds to the wavelet phase. Notice that
another maximum point appears at -149 degrees with a reverse polarity.
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Figure 4.7: The comparison between the final estimated wavelet and true wavelet.
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4.1.2 Histogram Matching Phase Estimation

First the zero-phase wavelet is extracted from seismic data. The bandwidth chosen

for frequency-domain deconvolution is set so that the energy contained in the band-

width is larger than a quarter of maximum power (Figure 4.8). Other frequency

components are zeroed out.

Figure 4.8: The Zero-phase wavelet is extracted from seismic data. Frequency-
domain deconvolution is performed within a bandwidth where energy is larger than
one quarter of maximum power indicated by vertical lines in the amplitude spectrum.

After deconvolution, the frequency components out of deconvolution bandwidth

for reflectivity are also zeroed out to obtain narrow-band reflectivity (Figure 4.9).

After we get inverted reflectivity from deconvolution and narrow-band reflectiv-

ity, the amplitude histogram of narrow-band reflectivity is fitted using the kernel
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Figure 4.9: For both deconvolution output and reflectivity, frequency components
outside of deconvolution bandwidth are zeroed out.
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smoothing density estimate (Figure 4.10). The inverted reflectivity is phase rotated

from -180 degrees to 180 degrees. The least-square error between the amplitude

histogram of phase-rotated inverted reflectivity and the fit of narrow-band reflectiv-

ity’s histogram is calculated and a graph of the error variation with phase rotation

is produced (Figure 4.11).The comparison between estimated wavelet by histogram

matching and true wavelet is shown in Figure 4.12.

Figure 4.10: The amplitude histogram of narrow-band reflectivity is fitted using the
kernel smoothing density estimate. These two histograms are compared to find the
phase of the wavelet.

4.1.3 Optimum Wiener Filter Wavelet Estimation

As described in section 3.4.1, given the reflectivity and seismic data, the wavelet

could be estimated as a match filter which matches reflectivity and seismic data in

the least squares sense (Figure 4.13).

Notice that the optimum Wiener filter wavelet estimation is nearly perfect. This
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Figure 4.11: The least-square error between histograms of inverted reflectivity with
observed reflectivity histograms in wells after each rotation is calculated. The mini-
mum error is found at 37 degrees which is close to the true phase 30 degrees.

Figure 4.12: The comparison between estimated wavelet by histogram matching and
true wavelet.

32



Figure 4.13: Optimum Wiener filter wavelet estimation.
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is because the synthetic trace is created by the convolutional model and no noise is

considered.

4.2 Limitations and Assumptions Test

First a Gaussian distributed reflectivity series is generated using a random number

generator. A synthetic trace is constructed based on the convolutional model (Figure

4.14).

Figure 4.14: Gaussian distributed reflectivity from random number generator.

A 90 degree phase-rotated Ricker wavelet is used to construct synthetic trace

(Figure 4.15). Estimated wavelets using three different methods are shown below:

It is noticed that the Kurtosis phase estimated wavelet is far from the true wavelet
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Figure 4.15: Synthetic trace is constructed using convolutional model.

due to the Gaussian distributed reflectivity. The other two methods can still give

reasonable phase estimation.

Secondly, the same data set is used but a 20ms-time shift in synthetic trace

is introduced (Figure 4.16). Estimated wavelets using three different methods are

shown below:

Because of the inaccurate timing relationship between reflectivity and seismic

data, optimum Wiener filter cannot estimate wavelet accurately. In both cases, the

wavelet estimated using the method of histogram matching has good agreement with

the true wavelet.

Furthermore reflectivity observed from 10 different wells are used to test these

three methods on more realistic cases. Here shows one example from well A4. A 90-

degree wavelet is used in the convolutional model (Figure 4.17). Estimated wavelets
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Figure 4.16: Comparison of wavelet estimation results on Gaussian distributed re-
flectivity.

Figure 4.17: A 20ms-time shift is introduced to synthetic trace to simulate the
situation with a wrong time-depth conversion.

36



Figure 4.18: Comparison of wavelet estimation results on time shifted synthetic trace.
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using three different methods are shown in figure 4.18. It is clear from visual inspec-

tions that there is good agreement between the true wavelet and estimated wavelets

using histogram matching and optimum Wiener filter. But a large phase discrepancy

exists between the kurtosis phase estimated wavelet and the true wavelet.

Table 4.1 shows all the wavelet phase estimation results using the histogram

matching method in ten wells. Except for well A3, there is good agreement between

the estimated wavelets and true wavelets. A phase difference less than 20 degrees is

hard to see with the naked eye.

The poor performance of kurtosis phase estimation may be caused by insufficient

data. To validate it, further tests are conducted on kurtosis phase estimation. We

use synthetic traces with time length 2s, 4s, and 8s respectively. The sampling rate is

2ms for all traces. For each time length, 100 synthetic traces are randomly generated

using the Laplace random number generator. The true phase of the wavelet is 90

degrees. The result is shown in Figure 4.19. It is noticed that, with an increasing

time length, the accuracy of kurtosis phase estimation increased. For time length 2s,

only 57 percent of phase estimation has an error of less than 20 degrees. For time

length 4s, it increased to 60 percent and 74 percent for time length 8s.
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Figure 4.19: Reflectivity from well logs and synthetic traces using 90-degree wavelet.

Figure 4.20: The comparison of true wavelet and estimated wavelet using three
different methods. Notice that a large phase discrepancy exists between the true
wavelet and the KPE estimated wavelet.
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Figure 4.21: With an increasing time length, the errors for phase estimation are more
confined within 20 degrees.
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Histrogram Matching (True phase: 90 degrees)
Well Estimated phase Error
A1 75 15
A2 103 13
A3 44 46
A4 83 7
A5 85 5
A6 83 7
A9 86 4
B1 108 18
B2 93 3
B3 109 19

Table 4.1: Results of phase estimation using histogram matching for 10 different
wells. The true phase is 90 degrees. Except well A3, all estimated phase have errors
of less than 20 degrees.
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Chapter 5

Conclusions

Seismic wavelet phase information is important to seismic data processing and in-

terpretation. There are several wavelet phase estimation methods, including the

kurtosis phase estimation method recently studied by Vander Baan et al. (2008) and

the optimum Wiener filter. I developed and studied a new phase estimation method

based on histogram matching. This method compares histograms of inverted reflec-

tivity obtained using different wavelets having the same amplitude spectrum with

observed reflectivity histograms in wells. The method gives accurate seismic wavelet

phase estimation with an error of less than 20 degrees provided reflectivity distribu-

tion.

I tested the kurtosis phase estimation method, optimum Wiener filter wavelet

estimation method and histogram matching phase estimation method on synthetic

traces. Synthetic traces are built based on the convolutional model and both ran-

domly generated reflectivity and well-extracted reflectivity are used. The histogram

matching method successfully estimated the wavelet phase from synthetic traces
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generated from Gaussian distributed reflectivity, Laplace distributed reflectivity and

well-extracted reflectivity. A time shift between reflectivity and seismic traces does

not affect phase estimation results. Random generated synthetic traces with three

different time length (2s, 4s, 8s) are used to test the stability of kurtosis phase esti-

mation. For each time length, 100 synthetic traces are created by convolution of the

90-degree Ricker wavelet and the reflection series, which is generated by the Laplace

random number generator. For 2s-length traces, kurtosis phase estimation can esti-

mate phase with error less than 20 degrees for only 57 of 100 tests. For 4s-length

traces, this number increases to 60 out of 100, and 74 out of 100 for the 8s-length

traces. When a perfect timing relationship is given between reflectivity and synthetic

traces, the optimum Wiener filter could estimate the wavelet nearly identical to the

true wavelet. However, a 20ms second time shift significantly lowers the accuracy of

phase estimation. The model tests also show that a white reflectivity generated by

a random number generator provides a better phase estimation since the amplitude

spectrum of the wavelet is well estimated. However, the histogram matching method

is insensitive to the polarity of the data. Thus, the polarity is determined from the

skewness of the inverted distribution.
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