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ABSTRACT 

In the first section, focus is an instance of the problem, in which the steady-state gain sign 

may change as a result of large unmeasured external disturbances entering a process with 

input multiplicities.  The conventional approach to design a linear controller for a 

nonlinear system recommends that the controller must be tuned sluggishly.  However, 

such a recommendation resulted in the instability of closed loop.  To explain and 

anticipate closed-loop behavior a theoretical analysis based on nonlinear operator theory 

is used to provide controller design guidelines.  Moreover, it has been demonstrated that 

linear control can be effective for a wide range of operating conditions, if designed 

correctly.  Numerical simulations using a dynamic model calibrated on plant (industrial 

NOx reduction unit) data are used to illustrate the proposed controller design approach. 

The second section proposes a novel, simple and effective scheme to debottleneck 

level control in a system of three tanks in series.  Level control often involves two 

conflicting issues, rejection of disturbance and the minimization of outlet flow variations.  

Normally, the level controller is intentionally designed to response sluggishly to reduce 

flow oscillations in downstream.  However, constraints in level variations restrict 

sluggish tuning of level controller.  The proposed scheme translates system of tanks in 

seris; from multiple, single input single output into a single system of multiple inputs 

multiple outputs.  Feedback controls based on a linear PI controller, are used and 

generalized tuning charts are prepared.  Further, the performance of the proposed control 

structure is compared to the control structures derived from numerical optimization. 

In the last section, the model predictive control concept has been proposed to 

design an optimal central bank interest rate.  The optimization problem which relies on 
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dynamic programming technique can only produce numbers but cannot provide interest 

rate rules.  A multiparametric model predictive control framework is employed to derive 

rules for central bank interest rates bounded by zero.  It has been found that rules are 

actually piecewise linear, finite in number and follow the celebrated Taylor-rule forms 

(Taylor 1993).  Rules with or without inertia are included in the derivation.  The 

proposed approach is illustrated through simulations on US economy data. 
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CHAPTER 1 

1INTRODUCTION 

Automatic system control is considered to be one of the most successful milestones for 

the engineering community in the last few decades.  Whether it is a chemical plant, an 

aerospace industry, an automobile or oil-gas industry; control theory has played a 

significant role in achieving strict quality control, environmental and safety regulations 

and over all better economics of processes.  Over time control theory has become mature 

enough entailing conventional fixed linear and nonlinear control, adaptive control and 

advanced control schemes such as model predictive control (MPC).  Increase in the 

computational power computer aided process control has become a practical and useful 

tool to design the control structure and perform rigorous analysis for large scale industrial 

processes.  This research work focuses on model-based feedback control structure design 

in the presence of implicit or explict process constraints.  In general processes are subject 

to various constraints due to limitations on output process variables to achieve desired 

performance and physical limitations on input variables.  Controller structure design is 

get affected by these process constraints.  This dissertation presents three case studies 

from real life problems and demonstrates how computer aided process control can be 

used in synthesis of control structure which helps to achieve the desired control objective.  

In particular this research work focuses on: 

1. Control of a process with unmeasured disturbances that change its steady-state 

gain sign, 

2. Debottlenecking level control for tanks in series, 
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3. Design of optimal rules for central bank interest rate subject to zero lower bound. 

The following sections present a brief overview and literature review for each of these 

problems. 

 

1.1 Control of a process with unmeasured disturbances that 

change its steady-state gain sign 

Control design has been well studied in literature for nonlinear systems within chemical 

engineering and other disciplines.  Obvious reason is that nearly all processes involve 

systems which are inherently nonlinear in nature.  The design of a controller for nonlinear 

system has always raised a basic question; whether to use a linear controller or a 

nonlinear controller.  Both have their own advantages and disadvantages.  Linear control 

is simple in design and requires low implementation and maintenance costs.  Many times 

the linear feedback controller works very well for nonlinear processes, especially in the 

cases when closed loop operates very near to the steady state or disturbances are not large 

in magnitude.  Several industrial applications of linear controllers have been implemented 

for various nonlinear processes (Nikolaou 1997; Qin and Badgwell 2000).  However, 

linear control has limited application due to the assumption of closed-loop process being 

linear for all operating conditions.  Hence nonlinear control becomes necessary for 

processes where linearity of closed loop is no longer valid.  Such processes are also quite 

common (Sistu and Bequette 1995; Chidambaram and Reddy 1996; Qin and Badgwell 

2000; Golbert and Lewin 2004). 



 27

 One example of nonlinear system is a process which is subject to reversal of 

steady-state gain sign (SSGS).  In this work focus is an industrial situation (Singh and 

Nikolaou 2009), where the SSGS of a controlled process may change as a result of a 

large unmeasured input disturbance.  Such instances of SSGS reversal have also been 

reported (Karra and Karim 2010).  These situations are results of input-multiplicity (same 

output for different inputs) exhibited by this system.  Systems displaying such behavior 

have been studied extensively (see, for example, (Razon and Schmitz 1987; Pearson 

2003) and references therein).  Control of systems involving input-multiplicities can raise 

stability issues or push the system to less desirable operating conditions (Koppel 1982; 

Dash and Koppel 1989).  A number of studies have focused on eliminating input-

multiplicity (Balakotaiah and Luss 1985; Ma, Valdes-Gonzalez et al. 2010), to remedy 

possible control problems.  However, this option is not available when the underlying 

process dynamics inherently entail input multiplicity, hence SSGS reversal.  As a solution 

to this problem nonlinear model predictive control has also been proposed (Sistu and 

Bequette 1995), while nonlinear PI controller is designed by (Chidambaram and Reddy 

1996).  Before, one decides to go for the development of nonlinear controller for any 

nonlinear process; one must carefully examine the possibility of linear control and its 

advantage over nonlinear control.  The basic question that one can ask, 

“What are the limits of disturbances or operating range for which simple linear 

control delivers satisfactory results for given nonlinear process?” 

This question is not new to control design and to answer this; various 

conventional and unique approaches have been adopted in literature in recent years.  

These approaches have developed various nonlinearity measurement methods to capture 
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the inherent nonlinearity of a process in a single parameter for its use in control design.  

(Desoer and Wang 1980) has defined nonlinearity of process as a difference of open loop 

nonlinear and linear process, but they were not concerned for nonlinearity calculation 

rather than its definition.  (Nikolaou 1993; Allgöwer 1996; Helbig, Marquardt et al. 2000) 

proposed nonlinearity measurement calculation for open-loop over different operating 

ranges.  The basic idea behind all of these approaches is that if a nonlinear open loop 

system is not far away from a linearized system, than the probability of corresponding 

closed loop being stable is quite high and vice-versa.  However, an open loop 

nonlinearity measurement cannot guarantee closed-loop stability in general. 

The researchers, (Eker and Nikolaou 2000; Nikolaou and Misra 2003) have 

proposed a general theoretical framework to quantify nonlinearity of closed loop and 

anticipate closed-loop behavior.  The calculation for the bounds of closed-loop 

nonlinearity is presented in terms of open loop process nonlinearity and the IMC 

(Vidyasagar 1985) based feedback controller.  However, in their work process model was 

assumed to have an output disturbance model which basically cannot account for the 

input disturbances.  Due to this limitation of the model their technique is only applicable 

to capture robustness issue fairly well.  The closed-loop behavior for processes having 

SSGS reversal which is due to an input disturbance cannot be explained.  The present 

research work extends their approach for analyzing closed-loop stability with input 

disturbance model.  A theoretical analysis based on nonlinear operator theory is used to 

provide controller design guidelines and hence generalizing the stability theorem 

developed in (Eker and Nikolaou 2000; Nikolaou and Misra 2003). 
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The operator based analysis resulted in stability criterion which is a variant of 

small gain theorem (Desoer and Vidyasagar 1975) but is more meaningful in context to 

industrial applications.  To explain the closed-loop behavior on the basis of stability 

theorem, computer-aided calculations are performed based on a plant model calibrated 

for an actual industrial process.  The analysis provides the basis for controller design and 

finally control scheme was implemented in the plant (Bayer 2008).   

 

1.2 Debottlenecking level control for tanks in series  

Bottlenecking is a practical and serious issue in industries having continuous processes.  

As the throughput of the process increases over time to meet increased production rates, 

the same process may not be able to deliver desired performance.  Many times it is 

possible to debottleneck the system by changing some of the process operating conditions 

or by simple modifications in the existing process.  However, if a process requires 

significant changes with capital investment one must carefully explore if there exists any 

alternatives to debottleneck the system.  In this work the focus is on debottlenecking of 

the level control problem for an industrial process (details are in chapter 3) which entails 

liquid-liquid extraction in three tanks in series (Figure 1.1)  
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Figure 1.1.  Level control of three tanks in series with conventional feedback control 
scheme. 

 

 Liquid level control of a tank system shown in Figure 1.1 has two competing 

control objectives to achieve. A) Minimize the change in the outlet flow rate 3F  in 

comparison to change in the inlet flow rate inF , i.e., disturbance attenuation is required, 

and B) keeping the liquid levels in each tank much closer to the desired setpoint along 

with avoiding the violation of the minimum and maximum level constraints, i.e., tight 

level control is required.  The first objective is important as it helps to filter the flow 

disturbances and disturbance attenuation will avoid upsetting the downstream process.  

The second objective is important to avoid overflow in a tank or in maintaining residence 

time constant in liquid-liquid extraction system (Singh and Nikolaou 2011).  The aim is 

to design PI controllers to achieve the desired performance for step disturbances of 

known magnitude and sinusoidal disturbances of known amplitude and frequency content 

in the inlet flow rate inF .   

 If tank does not have a large capacity as compared to the magnitude of flow 

disturbance present in inF , both of these objectives will conflict with each other.  One 
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such scenario is shown in Figure 1.2 and Figure 1.3 for three tanks in series as shown in 

Figure 1.1 where three PI level controllers manipulate outlet flow rate of each tank for 

tight level control ( 5%± ).  It is clear that level fluctuations increase from tank 1 to 3, as 

do fluctuations in 3F  compared to inF .  Such a performance is not desirable as the closed-

loop system is magnifying the magnitude of disturbance present in inF  and eventually 

results in downstream process experiencing a disturbance large in magnitude.  Extensive 

trail-error method does not produce any tuning setting for PI controller which can 

produce desired performance (i.e., flow rate attenuations).  This raises the question:  

“Is there an alternative configuration of the three PI controllers that would 

provide satisfactory or better performance with appropriate tuning that would be 

relatively easy to determine?”  

 

 
Figure 1.2.  Level fluctuations (actual plant data). 
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Figure 1.3.  Flow rate variations for inlet inF  and outlet flow rate 3F  (actual plant 

data). 
 

The answer to this question has not been well addressed.  There are various 

control schemes in literature for the level control of a single tank but few have addressed 

liquid level control for tanks in series.  The conventional approach proposes a design of 

feedback level controller for each tank by manipulating outlet flow rates of the 

corresponding tank.  Feedback level controller is designed by specifying the maximum 

peak height in tank level and maximum rate of change in outlet for maximum inlet step 

disturbance (McDonald, McAvoy et al. 1986).  The feedback control law can be designed 

by linear PI (Cheung and Luyben 1979) or nonlinear PI (Cheung and Luyben 1980) 

which provides fast action for large errors and slow action for small errors.  (Rivera, 

Morari et al. 1986) have developed a P-only controller using internal model control 

(IMC) theory.  (Shin, Lee et al. 2008) have proposed analytic design of an optimal PI 

controller.  (Sbarbaro and Ortega 2007) have developed control design based on the mass 
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balance approach.  These controller designs are proposed for a single tank and similar 

design approach is adopted to tune all downstream tanks in series by mainly focusing on 

tight level control.  To achieve flow rate attenuation, level controllers are intentionally 

detuned (McDonald, McAvoy et al. 1986).   

 Level control tuning can have various control issues when several cascaded tanks 

are considered as suggested by (Cheung and Luyben 1979) (especially in the case of 

nonlinear control or complex control laws).  The problem becomes more complicated 

with the sinusoidal disturbance (as shown in Figure 1.2 and Figure 1.3).  Another 

approach is to use a variant of linear feedback (discussed in chapter 3) and feedforward 

control scheme as suggested by (Luyben and Buckley 1977; Cheung and Luyben 1979) .  

In the feedforward configuration level remains almost unchanged and by proper feedback 

control tuning outlet flow rate can be made smooth.  However, the feedforward scheme 

proposed in (Cheung and Luyben 1979) requires an additional measurement of inlet flow 

rates inF , 1F , 2F , 3F  and this information may not be available always (Bayer 2008).  

Hence, for practical purposes it will be useful to improve the level control of tanks in 

series without using feedforward information.   

 In this work a design of feedback based control structure with tight level control is 

presented to gain maximum flow attenuation for sinusoidal disturbances and smooth 

change in flow rate for step disturbance.  Model predictive control (MPC) scheme is a 

good candidate to design such controllers as it can handle constraints explicitly while 

achieving desired control objectives (Muske and Rawlings 1993; Edward P. Gatzke 

2000).  However, based on cost consideration this option was not explored in this study.   
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 To debottleneck level control problem discussed above, a novel control scheme is 

proposed which entails multivariate control design.  Control problem is solved for a 

system having three levels as control variable and three flow rates as manipulative 

variables.  Simple generalized tuning rules for control synthesis are presented based on 

desired performance subjected to process constraints and disturbances.  Finally, new 

control scheme was implemented in the plant (Bayer 2008). 

 

1.3 Optimal rules for central bank interest rate subject to zero 

lower bound 

The current US economics condition is the motivation for application of the control 

theory in economics.  In recent years the US economy has suffered one of the largest 

recessions as shown in Figure 1.4.  After the third quarter of year 2008 output gap 

(difference between real gross domestic product (GDP) to its potential GDP) has become 

highly negative and the central bank has pushed interest rate (federal fund rates at which 

banks and other depository institutions lend money to each other, usually on an overnight 

basis) to zero.  This is the first time the US economy has got stuck to zero lower bound.  

The realization of zero lower bound (ZLB) was earlier considered as an academic or 

hypothetical case.  However, now it has become a reality.  Japan has been suffering from 

zero bound on interest rate from the last decade which has slowed down the economic 

growth of Japan (Figure 1.5).  During the last recession, ZLB has constrained the ability 

of central banks to lower the interest rates below zero in many countries including the US 

and Japan.  Interest rate is a primary channel to stabilize the economy and hence once it is 
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constrained by the ZLB it impairs the monetary policy to stabilize output gap and 

inflation rate (Fuhrer and Madigan 1997; Reifschneider and Williams 2000; Williams 

2009).  Japan’s economic data (Figure 1.5) reveals that the ZLB slows down the recovery 

of a weak economy.  Now since the US economy is also facing similar weak economic 

conditions, the question arises how to modify interest rate rules to counter the effect of 

ZLB. 
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Figure 1.4.  Revised data for US output gap, GDP deflator inflation rate and federal 

fund rates in annual percentage for year 1976-2010 (CBO 2011). Solid lines 
corresponds to equilibrium values for * 0, * 2, * 4y iπ= = = . 
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Figure 1.5.  Inflation rate, output gap, and call rate (interest rate) for 1983:Q2–
2002:Q3.  Source (Kato and Nishiyama 2005). 

 

1.3.1 Economy model 

In a simple form economy is described by a linear relationship between GDP,inflation 

rate and interest rate (Ball 1999).  A dynamic IS (Investment-saving relationship) or 

aggregate-spending equation: 

  ( )1 1
y

t t t t ty y i eρ ξ π+ += − − + , (1.1) 

and an accelerationist Phillips curve: 

  1 1t t t ty eππ π α+ += + + . (1.2) 

where output gap y  at time t  is defined as  

  t

Real GDP Potential GDP
= 100

Potential GDP
t t

t

y
⎛ ⎞−

×⎜ ⎟⎜ ⎟
⎝ ⎠

, (1.3) 
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potential GDP refers to the highest level of real GDP that can be sustained over the long 

term and π  represents inflation rate.  There are two notions to measure inflation, 1) GDP 

deflator and 2) price index (consumer price index).  In this context GDP deflator is used 

to measure the average inflation in time period t  and 1t −  and given by 

  1
t

GDP Deflator GDP Deflator
= 100

GDP Deflator
t t

t

π −⎛ ⎞−
×⎜ ⎟⎜ ⎟

⎝ ⎠
. (1.4) 

In eqns.(1.1) and (1.2),  α  and ξ  are positive constants;  [ )0,1ρ ∈ ;  1
y
te +  and 1teπ+  are 

zero-mean white noise signals;  and the sampling period (time interval from t  to 1t + ) is 

one year.  The shock 1
y
te +  captures other influences on spending, such as consumer 

confidence and fiscal policy while the shock 1teπ+  is an inflation or ‘supply’shock, arising 

for example from large changes in commodity prices.   

1.3.2 Central bank interest rate rules 

The best-known example of a proposed rule for setting the interest rates is proposed by 

John Taylor (Taylor 1993), both as a rough approximation of the way that interest rate 

rule had actually been implemented by the US Federal Reserve under Alan Greenspan’s 

chairmanship, and as an optimal policy rule (on the basis of stochastic simulations using 

a number of economic models).  According to the Taylor rule, interest rate ti  at time t  is 

set as a linear function of measures of the current inflation rate and the current output gap 

and it is given by, 

  0.5( 0) 1.5( 2) 4t t ti y π= − + − + . (1.5) 

 Figure 1.6 represents closed-loop structure of economy with generalized Taylor 

rule for interest rate settings.  Output gap and inflation rate are controller variable and 
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interest rate is manipulating variable.  The constants in Taylor’s numerical specification 

indicate an implicit inflation target of 2% per annum and an estimate of the long-run real 

interest rate of 2% per annum as well, so that long-run average interest rate of 4%.  In 

control settings setpoints are * 0y =  and * 2%π =  for output gap and inflation rate 

respectively, while equilibrium interest rate is 4%.  Clearly the Taylor rule in eqn. (1.5) 

belongs to P-controller. 

 

Figure 1.6.  Closed-loop representation of economy with generalized Taylor rule.  
The shaded square represents feedback controller.  In case of Taylor rule πφ , yφ  are 

constant, 0.5 and 1.5 respectively. 
 

 The Taylor rule got much attention because it is a simple rule that prescribes how 

central bank should adjust its interest rate.  Taylor has pointed that the central bank 

should raise its interest rate more than one-for-one with increase in inflation (i.e. 1πφ > ).  

Later on this principle is known as the Taylor principle (Woodford 2001; Davig and 

Leeper 2007).  After this celebrated rule, various versions of the Taylor rules have been 

proposed.  Variants of the above basic Taylor rule have been studied in literature, such as 

rules with an inertia term containing 1ti −  and/or with projected future values of π  and y  
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in the right-hand side of eqn. (1.5) (Taylor and Williams 2010, and references therein).  

The stated objective for inertia-based policies is interest rate smoothing, to avoid large 

variations in interest rates and to produce robust policy rules (Goodfriend 1991; 

Woodford 1999; Orphanides and Williams 2007). Additional variants of the Taylor rule 

containing more lagged terms of i  have also appeared (Judd and Rudebusch 1998; 

Clarida, Gali et al. 2000).   

 While the initial inspiration for the Taylor rule was based on fitting actual 

historical data, Taylor rules and some of its variants can be derived by the application of 

the optimization theory on a quadratic objective function, using a small-scale model of 

the economy to capture the effect of interest rate on inflation and output gap (Ball 1999; 

Orphanides and Wieland 2000; Giannoni and Woodford 2002; Orphanides 2003).  Such 

derivations have mainly focused on the effect of the form of the quadratic objective 

function (terms included and values of weighting factors) on the resulting rule.  This 

approach, however, has not been successful at producing a rigorous derivation of explicit 

Taylor rules when a zero lower bound (ZLB) on the interest rate is included in the 

optimization.  Nevertheless, a number of approaches for determining an optimal interest 

rate subject to ZLB have been proposed, which can be broadly classified into two 

categories:   

 The first category includes explicit rules that rely on truncation to zero of an 

interest rate TR
ti  calculated by a Taylor rule (i.e., TRmax[0, ]t ti i= ), to ensure that a non-

negative interest rate ti  is produced (Reifschneider and Williams 2000).  Another 

commonly addressed rule is augmented Taylor rule (Reifschneider and Williams 2000) 

which suggests settings for interest rate: 
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  ( )1

max[0, ]TR
t t t

TR
t t t t

i i Z

Z Z i i

α

−

= −

= + −
, (1.6) 

where (0,1]α ∈ .  There are several kinds of truncation rules proposed in literature and 

many of them can be found in (Williams 2006; Nakov 2008).  The rationale behind 

approaches in this category relies on qualitative analysis of a ZLB-constrained quadratic 

optimization problem or on other qualitative analysis of optimal policy effects on 

inflation and output gap.   

 The second category does not produce explicit rules; rather, it employs numerical 

simulation, i.e., repeated numerical solution of a ZLB-constrained optimization problem, 

to determine the optimal values of interest rate for inflation and output gap values in a 

range of interest (Orphanides and Wieland 2000; Hunt and Laxton 2003; Jung, Teranishi 

et al. 2005; Kato and Nishiyama 2005; Adam and Billi 2007).  Most studies in this 

category rely on a constrained dynamic programming formulation of the underlying 

optimization problem, whose explicit solution is hard to get.  These simulation studies 

have revealed interesting facts that policies may become nonlinear and aggressive when 

interest rate approaches to ZLB.   

 The focus of this research work is a systemic derivation of optimal interest rate 

rules with ZLB constraint.  The main issue addressed here is the effect of ZLB on the 

optimal interest rate determined by a central bank.  The concept of multiparametric (mp) 

(Pistikopoulos, Dua et al. 2000) model predictive control (MPC) (Rawlings and Mayne 

2009) is introduced to solve constrained optimization problem.  Multiparametric model 

predictive control (mpMPC) framework allows the derivation of explicit feedback rules 

even when inequality constraints are present.  Application of this framework to a simple 
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model of the US economy produced a number of Taylor-like rules, depending on the 

form and parameter values in the objective function employed by MPC. 

 

1.4 Objective of the research 

In summary the present research work has three objectives: 

a) Determination of general closed-loop stability condition using IMC based linear 

control for nonlinear process with input disturbance model, 

b) Design of multivariate level control to debottleneck three tanks in series, 

c) Determination of central bank optimal interest rate with zero lower bound using 

mpMPC framework. 

 The rest of this dissertation is organized as follows.  In chapter 2 the design of a 

linear controller for a nonlinear industrial process is discussed.  Chapter 3 entails the use 

of multivariate control to achieve desired control objectives while overcoming the 

bottlenecking issue in an industrial process.  Chapter 4 extends the idea of MPC in 

economics and presents discussion on determination of the central bank’s optimal interest 

rate to stabilize the US economy in presence of the ZLB.  Chapter 5 has conclusions and 

suggestion for future work. 
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CHAPTER 2 

2CONTROL OF A PROCESS WITH UNMEASURED 

DISTURBANCES THAT CHANGE ITS STEADY-STATE 

GAIN SIGN 

 

2.1 Introduction and motivation 

The steady-state gain sign (SSGS) of a process under feedback control plays an important 

role for closed-loop robustness.  For example, it is well known (Morari and Zafiriou 

1989) that no controller with integral action can be designed that maintains robust closed-

loop stability if the steady-state gain of a controlled process can take any value in a range 

exceeding 100%±  of its nominal value, i.e., if the SSGS is not certain.  The focus of this 

article is an industrial situation where the SSGS of a controlled process may change as a 

result of a large unmeasured disturbance. Such instances of SSGS reversal have also been 

reported elsewhere in literature (Karra and Karim 2010).  The process under 

consideration here is a reactor in a NOx emissions treatment unit (Bayer 2008).  The 

reactor reduces NOx by using CO generated from fuel-rich combustion of a mixture that 

contains natural gas (methane) as the primary fuel as well as hydrogen coming in 

significant amounts from upstream units (Figure 2.1). 
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Figure 2.1.  Schematic of NOx reduction process. 

 

 The amount of hydrogen fed to the reactor is an unmeasured disturbance, i.e., it 

may fluctuate significantly (e.g. it may experience large and sudden drops) and the 

fluctuations are not measured in real time, because of cost and instrument maintenance 

issues.  To ensure proper operation (i.e., maintenance of the NOx reducing environment) 

of this reactor, its temperature is controlled by manipulating the flow rate of inlet air 

(denoted here as the corresponding amount of oxygen in the air).  At normal operating 

conditions the combustion in the reactor is deliberately designed to be fuel-rich (the air-

to-fuel ratio (AFR) is small) and hence the steady-state gain between inlet air (oxygen) 

flow rate and reactor temperature is positive, i.e., increasing air flow by a slight amount 

eventually causes temperature to increase. However, as already mentioned, the hydrogen 

flow rate may decrease considerably without warning, and, as a result, the AFR may 

increase to the point that the SSGS may be reversed.  This is indicated by the simulation 

results shown in Figure 2.2 and Figure 2.3, as described in more detail in section 2.2. 
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Figure 2.2.  Steady–state temperature as a function of O2 flow rate for different 
steady-state flow rates of H2 below the normal operating value of 160 lbmol/hr.  The 
slope of the corresponding curve, i.e., the SSGS, is reversed around the temperature 

peak, but the reversal point depends on the steady-state value of H2 flow rate (Hx 
denotes hydrogen flow rate of x lbmol/hr). 
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Figure 2.3.  3-D counterpart of Figure 2.2, showing the steady-state temperature of 
the CSTR for various combinations of the disturbance (H2 flow rate) and 

manipulated input (O2 flow rate).   
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The nonlinear nature of the process far from the normal operating point can be further 

visualized by observing the response of temperature to step changes of various 

magnitudes in either H2 flow rate (Figure 2.4) or O2 flow rate (Figure 2.5). 
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Figure 2.4.  Temperature response to various step changes in H2 flow rate below the 
normal operating value of 160 lbmol/hr at time 30 min (Hx denotes hydrogen flow 

rate of x lbmol/hr) for constant O2=61 lbmol/hr. ∆  stands for change from the 
initial steady state value. 
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Figure 2.5.  Temperature response to various step changes in O2 flow rate (Ox 
denotes oxygen flow rate of x lbmol/hr) for constant H2=30 lbmol/hr. ∆  stands for 

change from the initial steady state value. 
 

 The manual feedback strategy, currently in use, can be summarized as follows:  

because at the normal operating point the AFR is low and consequently the SSGS is 

positive, the process operator controls temperature by increasing or decreasing the flow 

rate of the air, depending on whether the temperature is below or above its setpoint, 

respectively.  If the temperature ever appears not to respond in the right direction, due to 

SSGS reversal because of large disturbances (large H2 flow rate reduction), the operator 

reverses the feedback law (Bayer 2008).  Clearly, operator experience on detecting the 

SSGS reversal is a key in this scheme for successful temperature control.  However, this 

approach raises cost and performance concerns, because of potential inconsistencies from 
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time to time and from operator to operator.  To reliably replicate or improve the human 

operator strategy by an automatic controller, a number of questions must be answered, 

including the following: 

− What are the limits of disturbances for which simple linear control delivers 

satisfactory results? 

− Can better results be obtained by a control strategy that is not limited to simple 

linear control?  

 In this work we address mainly the first question and discuss the second one, with 

suggestions for further work.  To motivate the approach, a series of closed-loop 

simulations are used to reveal interesting outcomes from various linear controllers and 

disturbance magnitudes for this process.  The simulations involve a virtual process, 

calibrated on the real plant as outlined in section 2.2, and internal model control (IMC) 

feedback (Figure 2.6).  The linear IMC is designed based on a linear model of the 

nonlinear process around the normal operating point (Table 2.1).  

 

Table 2.1.  Steady state values for process N 
 

Variable Steady-state value1 
CH4 flow rate 1,inletN = 2.65 mol/sec (21 lbmol/hr) 

H2 flow rate 2,inletN =20.2 mol/sec (160 lbmol/hr) 

O2 flow rate 3,inletN = 7.7 mol/sec (61 lbmol/hr) 

N2 flow rate 7,inletN = 51.0 mol/sec (400 lbmol/hr) 

Temperature 1500T = K 
Exit pressure exit 90,000P = Pa 

 
1No product species is present in inlet flow. 
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Figure 2.6.  Closed-loop block diagram of IMC for the nonlinear process N .  The 
saturation blocks 1 2,S S  place bounds on both manipulated inputs and input 

disturbances respectively (Morari and Zafiriou 1989).  The block Q  includes the 

IMC filter 1( )
1

F s
sλ

=
+

 and the stable inverse of the linearized model L  of N  

around the normal operating point. 
 

 The interesting result of these simulations is that a properly tuned IMC structure 

can deliver reasonable results over a wide operating range.  However, tuning exhibits an 

interesting behavior, namely, closed-loop stability is achieved for tuning in a narrow 

range that is neither too aggressive nor too sluggish.  While instability for overly 

aggressive tuning is expected and fairly well understood, instability due to sluggish 

tuning is entirely due to the nonlinear nature of the controlled process.  Such behavior has 

been observed in other nonlinear systems as well (Stack and Doyle 1997; Eker and 

Nikolaou 2002). 

 In the remainder of the research work we provide a description of the process 

studied and the model developed for use as a virtual process.  Next, we present computer 
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simulations along with corroborating theory underlying the observed behavior.  Finally, 

we identify opportunities for further development of alternative control strategies.  

Background material and details are provided in appendices. 

 

2.2 Process description and control objective 

The purpose of the reactor model is to serve as virtual process with enough qualitative 

accuracy, so that general trends from control action can be studied via computer 

simulation.  

2.2.1 Dynamic model formulation 

Combustion of natural gas or hydrogen has long been studied in literature, especially for 

internal combustion engines and industrial burners. A simplified low-dimension model 

for this process is developed below.  The combustion process is modelled as a single 

continuous-flow stirred tank reactor (CSTR). All input streams are gaseous and reactions 

are in the gas phase.  Hydrocarbon combustion chemistry entails thousands of free radical 

reactions (Tsang and Hampson 1986) involving many detailed kinetics mechanisms 

(Smith 1999; Konnov, Zhu et al. 2004), which complicate modelling.  However, to 

predict temperature and some of the key component concentrations it is enough to rely on 

a set of just a few global reaction mechanisms (Jones and Lindstedt 1988; Kim 2008).  

We assume that combustion of hydrogen and methane follows the kinetics of such a set 

of four global reactions (Kim 2008):  

  4 2 2CH 0.5O CO 2H+ → + , (2.1) 

  4 2 2CH H O CO 3H+ → + , (2.2) 
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  2 2CO 0.5O CO+ → , (2.3) 

  2 2 2H 0.5O H O+ → . (2.4) 

The rate expressions for these four reactions in a laboratory setting are given in Table 2.2. 

Assuming adiabatic conditions, ideal gases, constant heats of reaction (Table 2.3), and 

constant heat capacities (Table 2.4), standard mass and energy balances result in the 

following equations: 

  
4

,inlet

1

kk
k i ki

i

Ndc Fc r
dt V V

η
=

= − −∑ ,   1,...,7k = , (2.5) 

  ( ) ( )
7 4

, ,inlet
inlet

1 1,mix mix

1 P k k k
i i

k iP

C N dcdT T T RT r H
dt V dtC c R

−

= =

⎛ ⎞⎛ ⎞
= + + ∆⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

∑ ∑ , (2.6) 

  mixP c RT= , (2.7) 

where 

  exit

mix
v

P PKF
ρ
−

= ,  
7

mix
1

k k
k

c Mρ
=

=∑ ,  
7

mix
1

k
k

c c
=

= ∑ ,  
7

,mix ,
1

P P k k
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C C c
=

= ∑ , (2.8) 

  
7

/( )

1

i ikE RT
i i k

k

r K e cα−

=

= ∏ . (2.9) 

Eqns. (2.5) through (2.6) are stiff.  They are solved by the implicit method provided by 

Matlab®.   
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Table 2.2.  Rate expressions for reactions (2.1)-(2.4) 
 
Reaction  Rate Expression (mol/m3-sec) Rate constant  

1r : 4 2 2CH 0.5O CO 2H+ → +  0.5 1.254
1 4 2

[CH ] [CH ] [O ]d K
dt

= −  
9

1 2.47 10 exp( 15098 / )K T= × −
 

2r : 4 2 2CH H O CO 3H+ → +  4
2 4 2

[CH ] [CH ][H O]d K
dt

= −  
5

2 3.1 10 exp( 15098 / )K T= × −

3r : 2 2CO 0.5O CO+ →  0.3 0.5
3 2 2

[CO] [CO][O ] [H O]d K
dt

= −

 

5
3 9.95 10 exp( 8052 / )K T= × −

4r : 2 2 2H 0.5O H O+ →  0.52
4 2 2

[H ] [H ][O ]d K
dt

= −  
9

4 2.5 10 exp( 17614 / )K T= × −
 

 
 

Table 2.3.  Heat of reaction for reactions (2.1)-(2.4) 
 

Reaction 1r  2r  3r  4r  
Heat of Reaction2  
( H∆ ) at 1500K 
[ KJ/mol ] 

 
1 43H∆ =

 
2 226H∆ = −

 
3 280H∆ =  

 
4 249H∆ =

 
2Heat of reactions are positive for exotheric rections  
 
 

Table 2.4.  Molar mass and molar heat capacity of chemical species 
 
Chemical species CH4 H2 O2 CO2 CO H2O N2 
Molar Mass [M] 
(kg/mol) 0.016 0.002 0.032 0.044 0.028 0.018 0.028 

Molar Heat 
Capacity ( PC ) at 
1500K  
[ J/mol-K ]  

86.9 32.3 36.5 58.0 34.9 47.0 34.67 
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2.2.2 Dynamic model calibration and linear model identification 

The model described by the above eqns. (2.5)-(2.9) was calibrated using plant tests.  The 

tests involved multiple step changes made successively on the air (O2) flow rate and 

recording of the resulting temperature response.  The collected data, shown in Figure 2.7. 
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Figure 2.7.  Plant tests for calibration of the dynamic model in eqns. (2.5)-(2.9) and 

of a linear first-order model 1
K
sτ + .  While some nonlinearity is evident in the 

response, it does not appear to be excessive. 
 

The plant in Figure 2.7 were used in two ways. 

- The apparent residence time in the nonlinear model was adjusted (by adjusting 

V ), as shown in Table 2.5.  All other parameters were kept at their literature 

values. 
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- A simple first-order model corresponding to the transfer functions 

  
( )

1

( ) 0
1

l

L

KG s
s

KG s
s

τ

τ

=
+

⎡ ⎤= ⎢ ⎥+⎣ ⎦

, (2.10) 

was developed for use in IMC design.  The resulting values for the gain, K , and time 

constant, τ , are shown in Table 2.5.  It is fairly evident that the process behavior is fairly 

linear for the small range of inputs considered. 

Table 2.5.  Constants 
 

Reactor Volume, V  475 m3 
Valve constant, VK  0.06m2 

Gas constant, R  8.314 J/K-mol 
Linear Process gain, K  K105

mol/sec
 

Linear Process time constant, τ 57 sec 
 

2.2.3 Control objective and controllability  

As pointed above, in order to reduce NOx from different waste streams feeding to the 

reactor, it is necessary to maintain temperature and operate under fuel-rich conditions. 

Indeed, low temperature would result in unburned fuel mixture as reaction rates would 

decrease, whereas at higher temperatures N2 would be oxidized to NOx.  The challenge is 

that the fuel is composed of both CH4, which is manipulated, and H2, which is a 

disturbance, and, as a result, H2 also affects the concentration of CO, the NOx reducing 

agent. Because normal operating conditions are fuel-rich, decreasing the flow rate of H2 

to a small amount would increase temperature, hence the rate of reactions. Combustion 

would then be driven more towards completion, namely less CO would be produced, as 
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shown in Figure 2.8, thus compromising NOx reduction.  Consequently, for desired NOx 

reduction, temperature should be at a particular value (1500K in this case study) and the 

reactor should always be operated at reducing (i.e., fuel-rich) conditions.  

 
 
Figure 2.8.  Open loop simulation for process N with decrease in H2 flow by 50% (80 

lbmol/hr) at time = 30 min. Species concentration denoted by [] are in mol/m3. 
 

 Small to moderate perturbations in the flow rate of H2 will not push the process 

towards fuel-lean conditions.  Under these circumstances, fluctuations in temperature can 

be easily controlled by appropriate adjustment of air flow rate using a standard linear 

controller as discussed in section 2.4.  However, due to changes in upstream processes, 

the H2 flow rate may be reduced to very low values or even stopped. Such a disturbance 

is large in magnitude and usually remains constant for a long period compared to the 



 56

reactor time constant.  To understand the dynamics of such a scenario, corresponding 

simulations are shown in Figure 2.4 and Figure 2.5, which are in agreement with the 

steady-state behavior shown in Figure 2.2.  These results also make clear the input-

multiplicity (same output for different inputs) exhibited by this system.   

2.2.4 IMC design 

Figure 2.6 shows the IMC structure used for this system.  Note that because of system 

nonlinearity, disturbances do not enter linearly as additive output disturbances, but as 

input disturbances, where the dimensions and structure of corresponding vectors and of 

the operators N  (nonlinear plant), L  (linear plant model), and Q  (Youla-Kučera 

parameter of IMC (Vidyasagar 1985) have been adjusted accordingly for compatibility, 

as follows.   
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, (2.11) 

where the vectors d , m , and y , represent the disturbance, manipulated input, and 

controlled output, respectively.  The operators  

  1 :  0 0
mm s

S
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

6 , (2.12) 

  2 2

0 0
:  u

d
S d s

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

� 6 , (2.13) 
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denote diagonal saturation functions for the manipulated input (air or O2 flow rate) and 

disturbance (H2 flow rate) respectively. The values of saturation limits are shown in 

Table 2.6. 

Table 2.6.  Saturation limits 
 

Process inputs Upper limit Lower limit 
O2 flow rate (lbmol/hr) 96 16 
H2 flow rate (lbmol/hr) 176 0 

 

 The idea behind the above representation is that disturbances do not enter the 

plant additively but nonlinearly, hence the composite vector 2e  in Figure 2.6, and that 

bounded values will be considered for both the manipulated input m , and for the 

disturbance d , hence the saturation blocks 1 2,S S .   

 The structure of the linear block Q , eqn. (2.11), is such that it generates signals 

only for the manipulated input vector m .  That is, Q  can be represented as  

  
[ ]1

10 0
q qe

Q y
⎡ ⎤⎡ ⎤

= ⇒ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

, (2.14) 

where q  refers to the standard linear IMC parameter for stable square linear systems.  

 A brief background on corresponding operator theory and terms is provided in 

Appendix A.  The linear model of eqn. (2.10) is used in IMC design, with 1q l F−= , 

where 

  1( )
1FG s

sλ
=

+
, (2.15) 

  ( )
1

1( )
0

Q

s
K sG s
τ
λ
+⎡ ⎤

⎢ ⎥+= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (2.16) 
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2.3 Simulation results 

A number of simulations were conducted using the virtual plant described in sections 

2.2.1 and 2.2.2 along with the controller designed in section 2.2.4.  Two factors were 

varied in these simulations:  The magnitude of the disturbance (H2 flow rate) and 

controller tuning (value of IMC filter time constant λ , eqn. (2.15).   

 To make the simulations more realistic, measurement and actuator delays were 

accounted for in the simulations (but not explicitly used in controller design) by adding 

the transfer function 

  
6

( ) ( )
45 1m a

seT s T s
s

−

=
+

, (2.17) 

where mT  and aT  are measured and actual temperature of the reactor, respectively, and 

time constants are in seconds.  

 The results are summarized in Table 2.7, which indicates whether the observed 

closed-loop response was stable or unstable.  Table 2.7 suggests that for overly 

aggressive control action, corresponding to very small values of λ , the closed loop is 

unstable, as can be observed in the simulations presented in Figure 2.9 through Figure 

2.14.  This kind of closed-loop behavior is well in line with what one would expect from 

feedback control of an open-loop stable process.   
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Table 2.7.  Closed-loop simulation scenarios for steady deviations of H2 flow rate 
from its steady-state value of 160 lbmol/hr and various values for the IMC tuning 

parameter λ  
 

H2 (lbmol/hr) λ  (sec) 176 80 30 10 5 0 
5 Unstable Unstable Unstable Unstable Unstable Unstable 
10 Stable Stable Stable Stable Unstable Unstable 
50 Stable Stable Stable Stable Stable Stable 
105 Stable Stable Stable Stable Stable Unstable 
180 Stable Stable Stable Stable Unstable Unstable 
500 Stable Stable Stable Unstable Unstable Unstable 
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Figure 2.9.  Closed loop responses when H2 flow rate is increased to 176 lbmol/hr, 
namely +10% above its nominal value of 160 lbmol/hr at time 30 min.  The IMC 

filter time constant takes values λ = 5, 10, 50, 180 sec. 
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Figure 2.10.  Closed loop responses when H2 flow rate is reduced to 80 lbmol/hr, 
namely 50% of its nominal value of 160 lbmol/hr ( d = -80 lbmol/hr) at time 30 min. 

The IMC filter time constant takes values λ = 5, 10, 50, 180 sec. 
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Figure 2.11.  Closed loop responses when H2 flow rate is reduced to 30 lbmol/hr, 
namely 81% of its nominal value of 160 lbmol/hr ( d = -130 lbmol/hr) at time 30 min. 

The IMC filter time constant takes values λ = 10, 50,500, 1000 sec. 
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Figure 2.12.  Closed loop temperature response when H2 flow rate is reduced to 10 
lbmol/hr ( d =-150 lbmol/hr) from 160 lbmol/hr of its nominal value at time 30 min.  

The IMC filter time constant takes values λ = 10, 50, 180, 500 sec. 
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Figure 2.13.  Closed loop temperature response when H2 flow rate is reduced to 5 
lbmol/hr from 160 lbmol/hr of its nominal value at time 30 min. The IMC filter time 

constant takes values λ = 5, 10, 50, 180 sec. 
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Figure 2.14.  Closed-loop temperature response when H2 flow rate is reduced to 
0 lbmol/hr ( d =-160 lbmol/hr) from 160 lbmol/hr of its nominal value at time 30 

min.  The IMC filter time constant takes values λ = 5, 10, 50, 105 sec. 
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More interesting is the behavior of the closed loop when control becomes very 

sluggish, for large values of λ , as can also be observed in the simulations presented in 

Figure 2.9 through Figure 2.14.  While for small disturbances (values of H2 flow rate near 

its steady-state value of 160 lbmol/hr) the closed loop becomes and remains stable as λ  

increases above a threshold, for larger disturbances (namely values of H2 flow rate well 

below its steady-state value of 160 lbmol/hr, including zero flow rate) the closed loop 

becomes stable as λ  increases above a threshold, but closed-loop stability is eventually 

lost as λ  becomes very large.  This behavior is clearly the result of process nonlinearity, 

and is analyzed in more detail in the next section.  In the next section, we analyze the 

reasons underlying the observed behavior, in terms of a general framework that makes 

minimal assumptions about the nonlinear system at hand.   

 

2.4 Analysis of simulation results 

The observed closed-loop behavior for different combinations of (a) values of λ  and (b) 

disturbance magnitudes is analyzed in terms of two approaches:  An input-output 

approach that relies on a variant of the small-gain theorem over sets (Nikolaou and 

Manousiouthakis 1989), and a heuristic approach that capitalized on the particulars of the 

system at hand, as captured by the steady-state surface shown in Figure 2.2. 

2.4.1 Input-output analysis of nonlinearity effect 

Based on the preceding formulation of the feedback loop, the following variant of the 

small-gain theorem provides a sufficient condition for closed-loop stability.  The value of 

the theorem is that it places a bound on an expression that entails the nonlinearity of the 
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controlled process, N L− , and the controller design parameter Q .  The idea is based on a 

basic result by Desoer and Liu (Desoer and Liu 1982) that has found a number of 

applications in literature (e.g. in (Eker and Nikolaou 2002)). 

Theorem 1 – Small-gain theorem 

If (a) the linear operators L , Q  are stable; (b) the nonlinear operator N  is incrementally 

stable over the set U  corresponding to the saturation blocks 1 2,S S , i.e. 

  
U

N
∆

< ∞ , (2.18) 

with 1 2

0
{ | }ˆ 0

m
U u u S S d

⎡ ⎤ ⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 ; and (c) the nonlinear operator ( ) 1N L S Q−  is stable 

with  

  ( ) 1 1ˆ N L S Qγ = − < , (2.19) 

then the closed-loop system shown in Figure 2.6 is finite-gain stable, i.e., there exist 

positive constants 1k , 2k , 3k , 4k  such that 

  1 1 1 2 2e k u k u≤ + , (2.20) 

and 

  2 3 1 4 2e k u k u≤ + . (2.21) 

Proof: See Appendix B. 

The following remarks are in order: 

• Theorem 1 is a general closed-loop stability theorem for any stable process, based 

on the IMC structure shown in Figure 2.6. Without loss of generality, the 

disturbance and manipulated input signals are combined in such a way that both 

of these signals can enter the process nonlinearly.  
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• Theorem 1 relies on the operator ( ) 1N L S Q−  having a small gain (namely 

operator norm less than one).  

• It should be noted that the above version of the small-gain theorem is more useful 

than the classical version 1NC F < , which involves a standard feedback loop 

with operators ,N C  (plant and controller, respectively) in the forward path and 

F  in the feedback path (Khalil 2002).  The reason is that the classical version is 

too conservative and will not include controllers with integral action, as 

NC = ∞  for such controllers. 

• As is the case for the classical small-gain theorem, eqn. (2.19) is a sufficient but 

not necessary condition for closed-loop stability.  

• The saturation blocks 1 2,S S  place natural bounds on manipulated inputs and 

disturbances. 

• Theorem 1 does not require linearity of L , Q , or N .  Similarly, the introduction 

of nonlinearity by the saturation blocks 1 2,S S  is not restrictive. 

• For a stable process, eqn. (2.18) is trivially satisfied. Therefore, it is eqn. (2.19) 

which is essential for closed-loop stability. 

• ( ) 1N L S Q−  is cumbersome to compute, an upper bound can be computed via 

approximation of ( ) 1N L S Q
∆

−  using a linearization of the operator 1( )N L S Q−  

around various steady states, following a procedure developed in (Nikolaou and 

Manousiouthakis 1989). 

• Theorem 1 provides a useful assessment of how the magnitude of external 

disturbances affects closed-loop stability when linear control is used.  Depending 
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on the saturation blocks 1 2,S S , i.e., the bounds on ,m d  (Figure 2.6), bounds on 

the signal 1y  can be established for a bounded-input-bounded-output stable closed 

loop.  If 1 2,S S  are such that the resulting 1y  never reaches the saturation bounds 

in the block 1 2,S S , then that block can be removed, and the feedback controller is 

a standard linear IMC controller.  The general finite-gain stability of the resulting 

closed loop can then be assessed based on whether  

  ( ) 1
E

N L Q− < , (2.22) 

where the set E  in the preceding inequality is defined as 1 1,min 1 1,max{ }E e e e e≤ ≤�  

and its function is to ensure that the inequalities in eqn. (2.22) and (2.19) are 

compatible.  Clearly, given a model L , the value of ( )
E

N L Q−  or 

( )
E

N L Q
∆

−  depends on the set E , which in turn depends on (a) the bounds of 

the external disturbances and (b) the tuning of Q , i.e., the value of the time 

constant λ  of the IMC filter, eqn. (2.16).  Consequently, to assess the closed-loop 

stability resulting from a particular design (i.e.,choice of Q  given L ), one can use 

the following procedure. 

a. For a choice of Q  (value of the IMC filter tuning parameter λ ) and E  (bounds 

on 1e ) evaluate ( )
E

N L Q
∆

−  using the procedure developed in (Nikolaou and 

Manousiouthakis 1989). 

b. If ( ) 1
E

N L Q
∆

− < , check whether the resulting closed loop produces signals 1e  

within the set E  for disturbances bounded by the saturation block 2S  (Figure 

2.6). 
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c. If so, retain the above Q , as stabilizing.  Otherwise discard it. 

d. Repeat steps (a) through (c). 

 The results of ( )
E

N L Q
∆

−  computation are shown in Table 2.8, where the 

shaded areas correspond to ( ) 1
E

N L Q
∆

− > .  Table 2.9 shows the corresponding size of 

the set E  over which the value of ( )
E

N L Q
∆

−  is calculated numerically as described 

above. 

 

Table 2.8.  Computation of ( )
E

N L Q
∆

− . 
 

H2 (lbmol/hr) λ  (sec) 176 80 30 10 5 0 
5 1.09 1.12 1.15 1.90 1.95 1.95 
10 0.91 0.95 0.97 0.99 1.02 1.94 
50 0.48 0.55 0.61 0.64 0.68 0.89 
105 0.29 0.36 0.45 0.50 0.60 1.94 
180 0.21 0.25 0.28 0.37 1.91 1.92 
500 0.09 0.11 0.15 1.75 1.75 1.75 

 

Table 2.9.  Computation of the bounds 1,mine , 1,maxe  in the set 

1 1,min 1 1,max{ | ( ) }ˆE e e e t e= ≤ ≤  
 

H2 flow rate (lbmol/hr) λ  (sec) 176 80 30 10 5 0 
5 -118, 179 -250, 54 -332, 0 -356, 790 -344, 836 -350, 883 
10 0, 28 -148, 0 -253, 0 -301, 0 -318, 0 -329, 883 
50 0, 29 -151, 0 -258, 0 -305, 0 -317, 0 -330, 0 
105 0, 28 -152, 0 -263, 0 -319, 0 -313, 0 -215, 883 
180 0, 27 -151, 0 -261, 0 -299, 0 -190, 836 -174, 883 
500 0, 26 -148, 0 -263, 0 -170, 790 -159, 836 -150, 883 

 

 Comparison between Table 2.7 and Table 2.8 suggests that the values of the 

disturbance (H2 flow rate) and λ  for which the observed closed-loop response is stable 
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correspond exactly to values of ( )
E

N L Q
∆

−  less than 1. This suggests that eqn. (2.19) is 

not conservative in this case. For H2 flow rate = 176, 80 or 30 lbmol/hr (corresponding to 

changes of +10%, -50%, and -81% of the steady-state value of 160 lbmol/hr, 

respectively) the closed-loop is stable for large values of λ .  However, for H2 flow rate = 

10, 5 or 0 lbmol/hr the closed-loop is not stable for large enough λ  (Figure 2.12- Figure 

2.14).  It is clear that for 50λ =  the closed loop is stable for any step disturbances in the 

range considered.  As expected, in all cases of an unstable closed loop, the size of set E  

is larger than in cases corresponding to stable closed loop.   

2.4.2 Time-domain nonlinearity analysis 

To understand the behavior of the closed loop when feedback control turns from 

aggressive to sluggish (λ  increases) it is useful to point out the following features in the 

steady-state surface shown in Figure 2.3.   

a. For each value of H2 flow rate, there are clearly two values of O2 flow rate that 

result in the same steady-state temperature (input multiplicity). 

b. Constant-temperature lines at 1500K confirm that there are two values possible 

for O2 flow rate that result in the same temperature, of which only one is 

acceptable, as discussed in the section 2.2.3. 

c. The vertical plane going through O2 = 61 lbmol/hr makes it clear that if the H2 

flow rate is reduced up to a value of 38 lbmol/hr and no feedback action is taken, 

then the corresponding steady-state temperature will reach higher values.  The 

SSGS will remain positive for all of these steady states.  Further reduction of the 

H2 flow rate will result in steady-state temperature values lower than the peak 
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reached at H2 = 38 lbmol/hr.  The corresponding SSGS will now be negative.  

Figure 2.2 represents this observation as well. 

d. The vertical plane going through H2 = 14 lbmol/hr suggests that for values of the 

H2 flow rate higher than that, the two resulting steady-state values of the O2 flow 

rate are to the left and to the right of the nominal steady-state value of O2 = 61 

lbmol/hr.  However, for values of the H2 flow rate below 14 lbmol/hr, both of the 

two resulting steady-state values of the O2 flow rate are lower than the nominal 

steady-state value of O2 = 61 lbmol/hr. Figure 2.2 represents this observation as 

well.   

The following connections can be made between the above observations and closed-loop 

stability. 

• For step disturbances corresponding to H2 flow rate reduction from 160 to 38 

lbmol/hr, the SSGS remains positive, so instability due to SSGS reversal is not an 

issue.  Whatever instability is observed is simply due to overly aggressive control 

action, well in line with expectations based on linear control theory.  If the 

controller is made sluggish enough (λ  made large enough), stability is 

maintained, as shown in Table 2.8. 

• For step disturbances corresponding to H2 flow rate reduction below 38 lbmol/hr 

but above 14 lbmol/hr, the SSGS turns negative, so instability due to SSGS 

reversal might be expected to be an issue.  However, this issue is avoided in 

closed-loop operation, because the corresponding O2 flow rate is monotonically 

(however slowly) reduced towards a new steady-state value below rather than 

above 61 lbmol/hr, as suggested by the above feature (c) and (d).  Closed-loop 
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simulations in Figure 2.11 confirm this.  Again, whatever instability is observed is 

simply due to overly aggressive control action (λ  too small), as shown in Table 

2.8. 

• For steps disturbances corresponding to H2 flow rate reduction below 14 lbmol/hr 

down to 0, the SSGS is again negative, so instability due to SSGS reversal might 

be an issue.  Indeed, because there are now two possible steady-state values of the 

O2 flow rate below the nominal steady-state value of 61 lbmol/hr as suggested by 

the above feature (d) (cf. Figure 2.2), the controller must push the O2 flow rate 

towards the smaller of the two possible values.  If the controller is not aggressive 

enough (i.e.,if λ  is too large), then the O2 flow rate may approach the larger of 

the two possible steady-states, around which the SSGS is negative, resulting in 

closed-loop instability with escape of temperature from its setpoint.  Lowering the 

value of λ  makes the controller aggressive enough for the closed loop to be 

stable, before instability is reached again for overly aggressive control action (λ  

too small).  The resulting closed loop behavior for this case is shown in Figure 

2.12 through Figure 2.14.  Figure 2.15 shows the instantaneous steady-state gain 

of the controlled process linearized around the closed-loop trajectories 

(measurement delay is not considered in the closed loop) shown in Figure 2.16 

when 105λ =  and for 50λ =  for H2 flow reduced to 0. It can be observed that for 

105λ =  the instantaneous SSGS is reversed while for 50λ =  it remains positive, 

which helps make the connection between the observed closed-loop instability 

and stability, respectively. 
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• The closed-loop behavior of the preceding three paragraphs is also shown in the 

phase-plane plot of Figure 2.16.  (again, measurement delays are neglected.)  
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Figure 2.15.  Steady-state gain (SSG) for closed-loop trajectories when H2 flow rate 
is reduced to 0 lbmol/hr ( d =-160 lbmol/hr) from 160 lbmol/hr of its nominal value 

at time 30 min. The IMC filter time constant takes values λ =50,105 sec.  No 
measurement delay is considered in the closed loop. 
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Figure 2.16.  Closed-loop temperature response in phase-plane, when H2 flow rate is 
reduced to 80, 30 and 0 lbmol/hr from 160 lbmol/hr of its nominal value for 

different values of λ .  The gray lines represent steady-state values, cf. Figure 2.2. 
(Hx denotes hydrogen flow rate of x lbmol/hr).  No measurement delay is considered 

in the closed loop. 
 

 Finally, Figure 2.17 shows the real part of the eigenvalues for the instantaneously 

linearized closed-loop when H2 is reduced to 0  and 105λ =  (Figure 2.16). It can be seen 

that after 32 min the closed-loop is not stable as the real part of last eigenvalue becomes 

positive. Similar analysis is performed for 50λ =  and Figure 2.18 shows that the real 

part of all closed-loop eigenvalues is always negative, corroborating the observed closed-

loop stability.  Of course, it should be reminded that stability analysis via eigenvalue loci 

is not conclusive for linear time-varying systems, in that bounds on the rate of change of 

the corresponding linearized dynamics must be ensured for stability results to be 
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conclusive;  however, for many practical applications such analysis has been found to be 

useful (Vidyasagar 1993). 

 

 
 

Figure 2.17.  Closed-loop eigenvalues when H2 flow rate is reduced to 0 lbmol/hr 
( d =-160 lbmol/hr) from 160 lbmol/hr of its nominal value at time 30 min.  The IMC 
filter time constant takes value λ =105 sec.  No measurement delay is considered in 

the closed loop. 
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Figure 2.18.  Closed-loop eigenvalues when H2 flow rate is reduced to 0 lbmol/hr 
( d =-160 lbmol/hr) from 160 lbmol/hr of its nominal value at time 30 min.  The IMC 
filter time constant takes value 50λ =  sec.  No measurement delay is considered in 

the closed loop. 
 
 

2.5 Conclusions  

A computer simulation study was presented for control of an industrial process that 

shows interesting dynamic behavior, in that its SSGS may change as a result of external 

disturbances. Simulation results were supported by a version of the small gain theorem 

(Theorem 1), proven here for the particular problem setting.  The associated stability 

criterion relies on a variant of the small-gain theorem (eqn. (2.19)) for which a 

computational approach was presented.  Analysis based on a simplified first-principles 

model calibrated on plant data provided useful insight into controller design. 
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 The simulations and analysis showed interesting closed-loop behavior, 

summarized as follows:  For disturbances up to a certain magnitude, closed-loop stability 

is ensured if the controller is made sluggish enough.  However, if disturbances exceed 

that magnitude, nonlinearity becomes so strong that instability ensues if the controller 

becomes too sluggish.  It was found that a single linear controller can ensure universal 

stability over the entire range of anticipated disturbance magnitudes (corresponding to 

50λ =  in Table 2.7).  If a more narrow range of disturbances is anticipated, then the 

controller can be tuned more aggressively (e.g., 10λ =  for disturbances corresponding to 

H2 flow rate no less than 5 lbmol/hr, Table 2.7).  
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 CHAPTER 3 
 

3DEBOTTLENECKING LEVEL CONTROL FOR TANKS IN 

SERIES 

 

3.1 Introduction 

Motivation for this work is provided by a liquid-liquid extraction system that is part of an 

industrial process.  The unit entails three tanks in series with a typical set of three 

feedback control loops (Figure 3.1).  Smooth operation of this system requires that the 

outlet flow rate 3F  should fluctuate as little as possible in the presence of significant 

fluctuations in the feed flow rate inF , to avoid upsetting the downstream process (a 

distillation unit).  At the same time, the level of the liquid in each tank must be 

maintained at a setpoint, so that the contact time for the extraction in each tank can 

remain at a desired value.  Unfortunately, these requirements conflict with each other.  

Indeed, control of the level in tank #3 at its setpoint would require manipulation of the 

flow rate 3F , which might induce undesired fluctuations on 3F .  On the other hand, if the 

flow rate 3F  were kept at fixed value, only two manipulated inputs, 1F  and 2F , would be 

left for control of the three liquid levels, which would also be inadequate.  Consequently, 

manipulation of the flow rate 3F  should remain available but fluctuations on 3F  should 

be avoided.   
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 Within the above context, three PI controllers were tuned for the actual process by 

trial and error (section 3.2.4), and found to perform satisfactorily for a period of time.  As 

the throughput of the process increased over time, to meet increased production rates, the 

three PI controllers were retuned by trial and error, to account for the altered dynamics of 

the process (decreased time constants).  The results from this heuristic re-tuning were 

satisfactory.  However, as throughput kept increasing, a value of inF  was eventually  

 

 

Figure 3.1.  Three tanks in series with feedback control scheme.  The solvent flow 
rate does not affect liquid interface level dynamics, as it is practically constant.  The 

brine flow rate inF  is a major disturbance with significant fluctuations.  The 
manipulated inputs are the three intermediate flow rates 1F , 2F , 3F .  The 
compositions of the solvent and brine streams remain constant over time. 

 

reached for which performance became unacceptable, manifest as excessive fluctuations 

on all three levels 1L , 2L , 3L  (Figure 1.2) and on the outlet flow rate, 3F  (Figure 1.3).  In 

fact, it is evident from inspection of Figure 1.2 and Figure 1.3 that level fluctuations 

increase from tank 1 to 3, as do fluctuations in 3F  compared to inF .  After extensive trial-
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and-error simulations, no PI tuning could be found for the existing control structure to 

reduce these fluctuations.  This raised the following questions. 

• What was the underlying reason for the control system’s unsatisfactory 

performance? 

• Could it be that the extensive trial-and-error simulations missed controller tuning 

values that could provide satisfactory closed-loop performance, or can one 

reasonably infer that no such tuning exists? 

• Regardless of the answer to the above question, is there an alternative 

configuration of the three PI controllers that would provide satisfactory or better 

performance with appropriate tuning that would be relatively easy to determine? 

• Under what general conditions can the previous questions be answered? 

It should be mentioned that solutions involving either process redesign (using bigger 

tanks to increase residence time and reduce oscillations as a result) or employment of an 

advanced control system (such as model predictive control) were deemed undesirable, 

based on cost considerations. 

 The aim of this research work is to provide an answer to the questions raised 

above within the outlined context.  Specifically, in the following section we demonstrate 

the debottlenecking issue via computer simulation.  Section 3.3 describes the proposed 

control scheme along with a theoretical justification and various tuning rules.  Section 3.7 

compares the control system design approach proposed here to a standard alternative 

based on numerical optimization.  Section 3.8 illustrates the performance of the proposed 

scheme based on simulations that employ a model calibrated on the actual plant.  Section 

3.9 explores the effects of augmenting the proposed solution by adding feedforward 
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control action to the proposed feedback scheme.  Finally, a summary is presented in 

section 3.10. 

 

3.2 Motivation 

3.2.1 System description 

The system under consideration is shown in Figure 3.1.  The process involves liquid-

liquid extraction in 3 tanks in series.  The purpose of this process is to extract impurities 

present in the brine solution using a solvent.  The brine is pumped from one tank to 

another while solvent flow is gravity driven.  Both brine and solvent solutions are well 

mixed at the inlet.  Brine, being heavier than the solvent settles at the bottom of each 

tank, while the solvent settles on top of the brine, with an interface forming in between.  

The tank volumes are such that enough residence time should be available for the two 

phases to separate.  The interface level in each tank is measured in real time.  It is 

assumed that liquid levels in each tank are always higher than the position of the outlet 

opening, to maintain continuous flow in the process.   

3.2.2 System model 

The three-tank system shown in Figure 3.1 (or its simplified formFigure 1.1) is modeled 

by standard mass balance equations for each tank.  

  

1
1 in 1

2
2 1 2

3
3 2 3

d LA F F
dt

d LA F F
dt

d LA F F
dt

∆
= ∆ −∆

∆
= ∆ −∆

∆
= ∆ −∆

 (3.1) 
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where iL , iA  and iF  for 1,2,3i =  represent interface level, cross sectional area and outlet 

flow rate in each tank, respectively;  and ∆  represents deviation from steady-state 

corresponding to given setpoint.  The solvent flow rates in eqn. (3.1) do not affect the 

interface level, as the solvent is lighter than the brine and hence the interface level 

depends only on the brine flow rate.  Also, solvent rates are assumed to be practically 

constant.  Steady-state and parameter values are shown in Table 3.1.   

 

Table 3.1.  Tank model parameters and constraints for case-1 
 

A  
[m2] 

0F [gpm] stepu [gpm]
inFa [gpm] max min

i iL L∆ = −∆
[%] 

H [m] Time period of 
disturbances [hr] 

16.72 300 50 50 5 2 1-3 
 

3.2.3 Control objectives 

Two forms of the disturbance inF  are considered:  A step of magnitude less than 17% of 

inF  and a sinusoidal disturbance of period 1-3 hours having amplitude less than 17% of 

inF .  These disturbances are due to operating practices of the upstream process feeding 

the brine to the extraction process. 

 The three levels iL  must be controlled at their respective setpoints, which remain 

constant.  The liquid levels must also satisfy the constraints 

  min max
i i iL L L∆ ≤ ∆ ≤ ∆ ,   1,2,3i = , (3.2) 

where min
iL∆  and max

iL∆  are 5%±  away from corresponding setpoints, respectively.  Such 

tight control of interface level is important as significant change in the residence time will 

affect the overall efficiency of the extraction process.  In addition,  
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1) the flow rate 3F  must respond to sinusoidal disturbances in inF  with an amplitude 

ratio no higher than 1 and, 

2) in case of step disturbance, the flow rate 3F  should be manipulated smoothly to 

avoid unwanted oscillations (i.e., avoidance of under damped tuning of level 

controller).  Explicitly closed-loop damping factor ξ  is constrained by 

0.5 2ξ≤ ≤  as suggested in (Shin, Lee et al. 2008) to avoid severe oscillation in 

closed loop or very slow response.   

 In case constraints for both the three levels iL  and the outlet flow rate 3F  can be 

satisfied simultaneously when disturbances are sinusoidal, the controllers can be tuned to 

minimize fluctuations in 3F , to prevent upsetting the downstream process.   

3.2.4 Inadequacy of conventional control 

A conventional control scheme is considered with 

  SP( ) ( )( ( ))i i i iF s K s L L s∆ = ∆ −∆ , (3.3) 

where ( )iK s , 1,2,3i =  represents a PI controller for tank 1, 2 and 3, respectively.   

 Consider the case when the three-tank system is subject to a step disturbance of 

magnitude 25 gpm and sinusoidal disturbance of period 3 hours of amplitude 25 gpm in 

inF .  A simple trial-and-error approach is adapted to tune the three PI controllers for 

satisfaction of the constraints in eqn. (3.2) and minimization of flow variation in 3F .  The 

trial-and-error approach entails these steps: 
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• Consider the tuning of first level controller based on step disturbance so that level 

constraint in eqn. (3.2) is satisfied for the first tank for critically damped closed loop.  

This tuning setting works as first guess. 

• Change the integral time and the gain of level controller to minimize the amplitude 

ratio of 3F  to inF .  While manipulating tuning parameters level constraints should be 

satisfied for both step and sinusoidal disturbances. 

• Consider the same tuning parameter settings for second level controller as a start 

point and change the integral time and the gain to minimize flow fluctuations in 2F  

while satisfying level constraint. 

• Consider the second controller’s tuning parameter settings as a start point and change 

the integral time and the gain to minimize flow fluctuations in 3F  while satisfying 

level constraint. 

 Controllers are designed based on above mentioned procedure and closed-loop 

response is shown in Figure 3.2.  It is evident that this particular tuning performs well.  

Both the level and flow variations are decreasing with down stream tanks.  The amplitude 

ratio is 63% (Figure 3.3) for sinusoidal disturbance of period 3 hours.  The frequency 

response of the closed-loop transfer function between three levels to inF∆  is shown in 

Figure 3.3.  It is clear that even if the sinusoidal frequency is changed to higher or lower 

values controller performance is satisfactory as levels satisfy eqn. (3.2) and amplitude 

ratio is less than 1. 

 Now consider a case when the magnitude of step disturbance and amplitude of 

sinusoidal disturbance is increased to 50 gpm.  The same approach is adopted to re-tune 

the controllers.  However, in this case the amplitude ratio is found to be greater than 1 for 
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sinusoidal disturbance of period 3 hours.  The frequency response for the closed loop 

transfer function between three levels to inF∆  in Figure 3.4 suggests that any disturbance 

which has period greater than 3 hours will not have flow attenuation.  It is clear that the 

increase in the magnitude of disturbance has left fewer margins to attenuate the outlet 

flow rate with tight level control.  This situation is the same as observed in actual plant 

Figure 1.2, Figure 1.3.  Therefore, conventional feedback scheme is not able to perform 

well and hence advanced or multivariate control design is required. 
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Figure 3.2.  Disturbance rejection of sinusoidal and step disturbances of magnitude 

25 gpm by the PI controllers 
I
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Figure 3.3.  Amplitude ratio for the closed-loop transfer functions between inF  and 

1 2 3, ,L L L  (top) and between inF  and 3F  (bottom) around the steady state 

in,ss 1,ss 2,ss 3,ss 25F F F F= = = =  gpm.  Region between vertical dotted lines represents 
frequencies of period 3 hr to 1 hr. 
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Figure 3.4.  Disturbance rejection of sinusoidal and step disturbances of magnitude 

50 gpm by the PI controllers 
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Figure 3.5.  Amplitude ratio for the closed-loop transfer functions between inF  and 

1 2 3, ,L L L  (top) and between inF  and 3F  (bottom) around the steady state 

in,ss 1,ss 2,ss 3,ss 50F F F F= = = =  gpm.  Region between vertical dotted lines represents 
frequencies of period 3 hr to 1 hr. 

 

3.3 Control scheme and controller synthesis 

Before we proceed with presenting the development of an alternative control 

configuration we emphasize the setting of the problem, namely no feed flow rate 

measurements are available to be used for feedforward control  (quite common specially 

in case of surge tanks) (Bayer 2008); levels are the only available measurements; the 

existing hardware can do simple calculations such as adding signals or multiplying by a 
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constant, but not full multivariable control calculations and even less so constrained 

model predictive control calculations. 

 The justification for the development of the proposed control structure is as 

follows.  What forces 3F  to fluctuate is feedback controller response to fluctuations in 2F  

caused by fluctuations in 1F , which are in turn caused by fluctuations in the external 

process disturbance inF .  If the controllers in tanks #1 and #2 are tuned overly 

aggressively, then the fluctuations in 1F  and 2F  are going to be roughly comparable to 

fluctuations in the disturbance inF  (see Appendix C).  Consequently, the third tank is 

going to experience a disturbance 2F  comparable (at least in high-frequency content) to 

inF .  How much 3F  will fluctuate depends on the tuning of the corresponding controller, 

which must be aggressive enough, to ensure that the level in the third tank stays within its 

bounds minL∆  and maxL∆ .  If the capacity of the third tank were increased (by increasing 

3A ), then the corresponding controller could be tuned less aggressively, thus mitigating 

the fluctuations in 3F .  Unfortunately, that could not be an option.  However, the process 

controlled by the third controller can be made to appear to have higher capacity by 

considering all three tanks as one, and using the weighted average of the three tank levels 

( )1 2 1 2 2 3 3YY L Y L L∆ + ∆ + ∆  as the controlled variable for the third controller.  The first two 

controllers, then, can be used to ensure that the weighted levels of all three tanks behave 

as a whole, namely that 2 1 1L Y L∆ − ∆  and 3 2 2L Y L∆ − ∆  remain close to zero.  The proposed 

control scheme is shown in Figure 3.6. 
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Figure 3.6.  Proposed control scheme for three tanks in series. 
 

After normalizing the levels as 

  ˆi i iL X L∆ = ∆� , 1, 2,3i = , (3.4) 

where 
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= , 1, 2,3i = . (3.5) 

New control variables can be defined as 

  ′∆ = ∆L M L� , (3.6) 
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1 2 3ˆ
T

L L L⎡ ⎤= ⎣ ⎦L� � � �  and [ ]1 2 3ˆ TL L L′ ′ ′ ′=L . 

Based on which the process model becomes  

  
( )
( )
( )

( )
1 1

1 1
2 2

2 2 in
3 2 1 2 2 1 2

3 3

1 1 0( )
1 1 1 0( )

1 1( )
3 3 3 3

Y YL s F s
Y YL s F s F s

A s Y YY Y YYL s F s

⎛ ⎞+ − −⎡ ⎤ ⎡ ⎤′∆ ∆⎡ ⎤⎡ ⎤ ⎜ ⎟⎢ ⎥ ⎢ ⎥− + − ⎢ ⎥⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎢ ⎥′∆ = ∆ + ∆⎢ ⎥⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎢ ⎥− − ⎢ ⎥′⎢ ⎥∆ ∆−⎜ ⎟⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

, (3.8) 

and the original constraints in eqn. (3.2) become 

  

min max
1 1 1 1
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3 2
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∆ ≤ ≤ ∆

∆ ∆ ∆
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∆ ∆ ∆
∆ ≤ ∆

+
≤

′+

. (3.9) 

The corresponding controller design will result in  

  '
i i iF K L∆ = ∆ , for 1,2,3i = . (3.10) 

 For tight control of new control variables 1 2,L L′ ′  near their respective setpoints 

1,SP 2,SP 0L L′ ′∆ = ∆ = , the dynamics of 3 tank system is determined by eqn. (3.8) which 

yields 

  ( )3 in 3
3

1( ) ( ) ( )L s F s F s
A sη

′∆ = ∆ −∆ , (3.11) 

where 

  1 1 2

1 2

1 Y YY
YY

η + +
= . (3.12) 

Similarly, for tight control of 1L′  and 2L′  near zero the constraints in eqn. (3.9) reduce to a 

constraint on 3L′  alone, namely 
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( )
( )

min min min
1 2 1 1 2 2 2 31,2,3

max max max
1 2 1 1 2 2

3

2 31,2,3

max , ,

min , ,
i

i

LYY X L Y X L L

YY X L Y X L L
=

=

∆ ∆

≤ ∆ ∆

′∆ ≤ ∆

∆
. (3.13) 

The preceding discussion suggests a transformed control problem, as follows.  

- Controlled output variables:  Eqns. (3.6)-(3.7). 

- Manipulated input variables:  1F , 2F , 3F . 

- Setpoints: 

  
1,SP

2,SP

3,SP 3,SP

0
0

L
L
L L

′ =

′ =

′ =

 (3.14) 

- Constraints:  Eqn. (3.13). 

- Process model:  Eqn. (3.8), simplified as eqn. (3.11). 

Remarks 

1. If weights 1Y  and 2Y  are chosen based on the ratio of maximum capacity of 

adjacent tanks and given by 

  
max max

2 2 2 2
1 max max

1 1 1 1

A L X LY
A L X L
∆ ∆

=
∆ ∆

� , (3.15)  

  
max max

3 3 3
2 max max

2 2 2 2

A L LY
A L X L
∆ ∆

=
∆ ∆

� , (3.16) 

eqns.(3.13) reduces to single linear constraint  

  mi x
3 3

n ma
3LL L∆ ≤ ∆′≤ ∆ . (3.17) 

In this way the three-tank control problem has been reduced to two fairly decoupled 

problems:  
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− Control of the “level” 3L∆ ′  of a “single tank” with capacity 3Aη  subject to 

constraint on 3L∆ ′  similar to the constraints on the original level 3L∆ . 

− Tight control of the relative level differences 1L∆ ′  and 2L∆ ′ . 

The average level controller is the slowest controller in all three controllers and will 

govern the overall performance of closed loop. 

2. Eqn. (3.12) suggests that the value of η  is always great than 1 and hence 

satisfaction of the constraints on 3L∆ ′  in eqn. (3.17) can be achieved by using less 

aggressive manipulation of 3F  in comparison to the original control scheme 

shown Figure 1.1, resulting in improved closed-loop performance.  Eqn. (3.11) 

indicates that if identical tanks are configured as proposed scheme, system of 

tanks in series will have η  times more volume to reject the same disturbance than 

conventional scheme. 

3.  In general, equation similar to eqn. (3.11) can be derived for N  tanks in series 

and corresponding η  can be given by, 

  1 1 2 1 2 3 1 2 1

1 2 1

1 ............ .....
.....

N N

N N

Y YY YY Y YY Y Y
YY Y Y

η −

−

+ + + + +
= , (3.18) 

where 

   
max max

3 3 1 1
max max

2 2

i i
i

i i

A L X LY
A L X L

+ +∆ ∆
=

∆ ∆
�  for 1, 2 , 1i N= −… . (3.19) 
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3.4 Average level controller design 

The closed-loop system expressed by eqns. (3.8) and (3.10) is a set of linear equations 

and can be solved for exact solution to find corresponding controllers which satisfy eqn. 

(3.9).  However, analytic solution to these equations is complex and hence the derivation 

of tuning rules from the exact solution to eqn. (8) and (10) is not trivial.  However as 

shown above that the closed loop described by of eqns. (3.8) and (3.10) is approximated 

by eqns. (3.11),(3.12),  with single constraint given by eqn. (3.17).  Hence an 

approximate solution can easily be found which can be used for controller tuning.  Since, 

the set point of 3
spL′  is constant, and 3 3L L′∆ ≈ ∆  (tight control of 1L′  and 2L′ ), eqn. (3.11) 

and eqn. (3.10) yields 

  
( )

in
3

3

( )( )
( )

F sL s
As K sη
∆

∆ ≈
+

. (3.20) 

Considering the feedback control law is given by the PI controller 

  ,
,

I,

( ) c i
i c i

i

K
K s K

sτ
= + , (3.21) 

the closed-loop transfer function is given as 

  in
3

,3
,3

I,3

( )( )
c

c

F sL s
K

As K
s

η
τ

∆
≈
⎛ ⎞

+ +⎜ ⎟⎜ ⎟
⎝ ⎠

. (3.22) 

The dynamics of eqn. (3.22) is second order and will result in either over damped,  

critical damped or under damped closed loop based on damping factor ξ  defined by 

  I,3 ,31
2

cK
A

τ
ξ

η
= . (3.23) 
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3.5 Controller design criteria  

3.5.1 Step disturbance 

In case of step input, in step
1( )F s u
s

∆ = ⋅  and using eqn. (3.22) the level of tank 3 is given as  

  step step

H H I,3

1( )
1 1

L s
s s

s

γ

τ τ τ

∆ =
⎛ ⎞

+ +⎜ ⎟⎜ ⎟
⎝ ⎠

, (3.24) 

where 

  3
step

3

100* LL
H

∆ = , (3.25) 

  H
,3c

A
K
ητ = , (3.26) 

  V
step

step 0100u F
ητγ =
⋅

, (3.27) 

  V
0

AH
F

τ = , (3.28) 

  I,3

H

1
2

τ
ξ

τ
= . (3.29) 

H  is the height of tank, 0F  is nominal feed flow rate, Vτ  is total hold up time of the tank. 

stepL∆  is the % deviation of level in tank 3.  Eqn. (3.24) is used to plot maximum value of 

step stepLγ ∆  ( max
step stepLγ ∆ ) as a function of tuning parameters Hτ  and I,3τ  for a step change in 

feed of magnitude stepu  and resulting plot is used as a tuning chart (Figure 3.7).  Using 

eqn.(3.29), damping factor ξ  is also plotted in Figure 3.7 as a function of Hτ  and I,3τ . 
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Figure 3.7.  Average controller tuning chart for step change in flow rate. 

 

3.5.2 Sinusoidal disturbance 

For the sinusoidal disturbance of angular frequency ω , 
inin 2 2( ) FF s a

s
ω
ω

= ⋅
+

 and using 

eqn. (3.22), level variation of tank 3 is given as 

  

3

sine sine 2 2

H H I

1( )
1 1

L s
s

s
s

ωγ
ω

τ τ τ

∆ ≈
+⎛ ⎞

+ +⎜ ⎟⎜ ⎟
⎝ ⎠

, (3.30) 

where 

  
in

V
sine

0100Fa F
ητγ =
⋅

 (3.31) 
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 sineL∆  is % deviation in level of tank 3 for sinusoidal disturbance of amplitude 
inFa  and 

angular frequency ω .  For a given ω  sineL∆  is a function of tuning parameters and this 

equation can be used to generate a tuning chart (Figure 3.8) for maximum deviation 

max
sineL∆  in tank level for a given tuning parameter ( Hτ  and I,3τ ).  ξ  is also plotted in Figure 

3.8.  In case of sinusoidal disturbance it is less likely to be the case of disturbance of only 

one particular frequency perturbing the system.  Hence one need to generate charts for all 

frequencies of interest.  This may be a cumbersome process, however, tuning parameters 

can be chosen for worst case frequency for which level deviation is the maximum at 

steady state.  Eqn. (3.30) when solved for steady state yields 

  

3

sine sine 1
2 22

H I H

1

1 1

SSLγ

ω
ωτ τ τ

∆ =
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟− +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

, (3.32) 

where sine
ssL∆  is % deviation in level at steady state for disturbance of angular 

frequencyω .  The worst case frequency can be calculated by maximization of eqn. (3.32)  

 It is clear from eqn. (3.32) that for particular pair of tuning parameters ( H I,3,τ τ ) there 

exists an angular frequency 0ω  for which sine
SSL∆  is maximum.  This angular frequency is 

given by, 

  0
H

1
2

ω
ξτ

= , (3.33) 

and corresponding maximum level variation is geiven by 

  sine sine 0 H( )SSLγ ω τ∆ = . (3.34) 
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Figure 3.8.  Average controller tuning chart for sinusoidal disturbance. 
 

 A general procedure to choose tuning parameter in case of both step and 

sinusoidal disturbance are listed as, 

1. Choose controller tuning parameters ( Hτ  , I,3τ ) based on step disturbance criteria 

(i.e.,use Figure 3.7) 

2. Find the value of 0ω  using eqn.(3.33). If the 0 min maxω ω ω< < , then minω  

(disturbance of maximum time period) will be considered as worst case 

frequency.  If 0 min maxω ω ω> >  (disturbance of minimum time period) will be 

considered as worst case frequency.  Otherwise 0ω  will be worst frequency. 

3. For the worst case frequency, calculate sine worst( )L ω∆ . If sine worst step( )L Lω∆ ≤ ∆  for 

step disturbance, the designed controller settings are accepted. 
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4. If for the worst frequency ( )sine worst stepL Lω∆ > ∆  then controller parameter has to 

be adjusted by tuning chart based sinusoidal disturbance and (Figure 3.8) is used 

to find a new pair of tuning parameters. For this pair of tuning parameter repeats 

the steps from 2 to 4. 

3.5.3 Flow attenuation factor  

For sinusoidal disturbances flow attenuation factor r  is defined as ratio of the amplitude 

of output flow rate to the amplitude of input flow rate at steady state.  In context to 

process under consideration of tanks in series r  is defined by 

  3

in

( )
( )

( )
F

F

a
r

a
ω

ω
ω

= . (3.35) 

where 
3Fa  and 

inFa  are amplitude of 3F  and inF  respectively. 

 For the PI controller r  is expressed by 

  ( )

1
22

2
H H I,3

2

2
H H I,3

1 1

1 1
r

τ ωτ τ
ω

ω
τ ωτ τ

⎛ ⎞
⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟=

⎛ ⎞⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

. (3.36) 

It should be noted that for given frequency ω  , r  is a function of controller tuning 

parameters Hτ  and I,3τ .  Based on eqn. (3.36) a chart (Figure 3.9) can be prepared for 

flow rate attenuation factor. This chart can be used in combination of eqn. (3.24) (Figure 

3.7) or eqn. (3.32) (Figure 3.8) to choose appropriate control tuning settings.  For the ease 

of convenience these charts can be merged into one single chart in Figure 3.10 which is 
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used for controller design based on step disturbances.  Similar combined chart can be 

prepared for sinusoidal disturbance. 
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Figure 3.9.  Flow rate attenuation factor r  for 45.8*10ω −=  rad/s (time period 3 hr). 
 

3.6 Relative level controller design  

The dynamics of relative level controllers (RLCs) is given by first two equations in eqn. 

(3.8).  In the present work setpoint changes are considered to be zero.  In the derivation of 

average level controller it has been assumed that first two equations in eqn. (3.8) are 

always in equilibrium with respect to average level control i.e.,very tight control of 

relative levels at their setpoint is required.  This would result in following conditions for 

tuning of RLCs (see Appendix D). 
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First RLC: 

  ,1
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2

c
c

K
K

Y
� , (3.37) 

  1 ,1
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cY K
Aω

τ ω
� , (3.38) 

  ,1

2 I,1

cK
A

Y
η ω

τ ω
� . (3.39) 
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Figure 3.10.  Tuning chart for step disturbance and sinusoidal disturbance of time 

period 3 hr. 
 

Second RLC: 

  ,3 ,2c cK K� , (3.40) 

   ,2

I,2

cK
Aη ω

τ ω
� , (3.41) 
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  ,1 2 ,2

I,2 I,2

c cK Y K
Aω

τ ω τ ω
− � . (3.42) 

 The closed-loop dynamics is governed by frequency content of the disturbance 

and the tuning of average level controller (the slowest control).  Hence, with the 

knowledge of frequency content of disturbance and design of average controller the eqn. 

(3.37)-(3.39) and eqn. (3.40)-(3.42) provides design recommendations for PI controllers 

for first and second RLCs respectively.  It is clear from eqn. (3.37) that ,1cK  should be 

large in compare to average controller gain and integral time for the same controller 

should satisfy eqn. (3.38) and (3.39) for all input frequencies.  Similar recommendations 

are made for second RLC. 

 Based on eqns. (3.37)-(3.42) tuning parameters can be chosen for relative level 

controllers.  One can choose integral time I,1τ  and I,2τ  to be small (5 -10 time smaller) in 

compare to time period of disturbances and integral time of average controller I,3τ .  Once 

I,1τ  and I,2τ  are decided one can choose ,1cK  and ,2cK  which satisfy eqn. (3.37)-(3.42).   

 

3.7 Optimal control structure  

In previous sections we have proposed a new control structure and claimed that process 

has better control performance subject to control structure.  The formulation of proposed 

control structure comes from physical understanding of the process explained earlier.  In 

this section the focus is on deriving optimal control structure and corresponding 

controller tuning parameters as a solution of optimization problem.  Two different 

objective functions are considered based on controller design criteria.   



 103

Case I  

Objective function is formulated to remove unwanted variations in 3F  by minimization of 

term 3 step

step

( )jF p u
u

∆ −
 for step disturbance of magnitude stepu  in inF .  For sinusoidal 

disturbances the amplitude ratio of 3F  to inF  is minimized at steady state.  Hence 

objective function is given as, 

  3

in

2

3 step

, , 1 1step

step response sine response

( )( )
min

( )

N M
F jj

j j F j

aF p u
w

u a
ω
ω= =

⎛ ⎞
⎜ ⎟⎛ ⎞⎛ ⎞∆ −⎜ ⎟+ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

∑ ∑M K T

�����	����
 ���	��

. (3.43) 

Subject to 

  min max( )i i iL L t L∆ ≤ ∆ ≤ ∆   1,2,3i = , max0 t t≤ ≤  (3.44) 

where ∆  stands for deviation from equilibrium corresponding to the desired setpoint;  

3 ( )jF p∆  represents a peak value of 3F  at time jp  in the interval max0 t t≤ ≤ ;  N  is the 

total number of peaks in the step response over the time interval max0 t t≤ ≤ ;  M  is 

number of frequencies considered in the sinusoidal disturbance inF ;  w  is positive 

weight;  3 3×∈ℜM  is the transformation matrix in eqn. (3.6), which now has to be 

determined through optimization to provide the counterpart of the heuristic solution is 

eqn. (3.7);  and the matrices ,K T  correspond to the three PI controllers to be designed, 

namely 
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,1
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0 0
0 0
0 0

c

c

c

K
K

K

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

K , 

,1

I,1

,2

I,2

,3

I,3

0 0

0 0

0 0

c

c

c

K

K

K

τ

τ

τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T . (3.45) 

Case II 

In this case objective function is formulated to remove unwanted variations in 3F  by 

minimization of rate of change of 3F  for step disturbance of magnitude stepu  in inF .  For 

sinusoidal disturbances, the amplitude ratio of 3F  to inF  is minimized at steady state. 

This yields following objective function, 

  
max

3

in

2
3

, , 10

step response sine response

( )
min

( )

t M
F j

j F j

adFw dt
dt a

ω
ω=

⎛ ⎞
⎜ ⎟⎛ ⎞⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

∑∫M K T
���	��
 ���	��


. (3.46) 

Eqn. (3.46) is subject to inequality constraints in eqn. (3.44).  The optimization variables 

are controller structure matrix M  and controller tuning parameters ,K T  as defined in 

eqn. (3.45).   

 Even though process under consideration is linear, the above formulated 

minimization problem is difficult to solve due to inequality constraints eqn. (3.44), large 

number of optimization variables and non-convexity of objective function (different 

combination of , ,M K T  can yield same objective function).  Multiple initial points are 

considered to achieve global minima.  Upper and lower bounds on initial guess for 

optimization variables , ,M K T  are considered and initial guesses are randomly selected.  
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  In the case of 3 tanks in series there are 15 optimization variables.  Due to non-

convexity of the problem solution to optimization problem is function of initial point and 

not all initial guesses converged to get solution to eqn (3.43) or (3.46).  Many of the 

initial points exploed the objective function indicating that solution to this problem is not 

trivial and it requires significant amount of efforts to reach global minima.  The result 

reported in this work is based on 50 random initial guesses.   

 In Table 3.2 optimal control structures are compared with the control structuare 

developed based on hurestic approach in section 3.3.  It is interesting to note that even 

though numbers are changed in each control structure closed-loop performance reamines 

nearly the same for all three control structures (Figure 3.11, Figure 3.12 Figure 3.13).  

Slight difference is observed in step response where the optimal solution tries to exploit 

dynamics more to achieve more attenuation for sinusoidal disturbance of period 3 hours.  

Another interesting observation is that sum of elements in first two rows of M  (for first 

two controllers) is zero for all structures and it is non zero for third row.  This indicates 

that optimal structure has particular structure which resembles what has been derived as 

huresric approach.   Further, it is revealed that all structaures result nearly same values 

for the sum of attenuation factors for all three sinusoidal disturbances (periods 3, 2 and 1 

hour).   
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Table 3.2.  Control structure comparison 
 

Approach M  ,c iK  I,iτ  
(min) 

Objective 
function 

Attenuation,
3

in

( )
( )

F j

F j

a
a

ω
ω

 

Heuristic 1 1 0
0 1 1

0.33 0.33 0.33

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 
0.2
0.2

0.023

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

10
10
145

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Case I:  
2.2 
 
Case II:  
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0.49 
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Numerical  
optimization, 
Case I 

1w =  

0.84 .0.6 0.23
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− −⎡ ⎤
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⎢ ⎥
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2.15 0.55 
0.33 
0.50 

 
Numerical  
optimization, 
Case II 

1010w =  

0.83 0.83 0
0.70 0.40 1.1
4.37 4.80 0.85

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦
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⎢ ⎥−⎣ ⎦

10
10
300

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Figure 3.11.  Closed-loop simulation for optimal structure derived from proposed 

scheme (Heuristic approach) for level constraint max min( ) 5%L L∆ −∆ =  in all tanks for 
sinusoidal and step disturbance of period 3 hr. 
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Figure 3.12.  Closed-loop simulation for optimal structure derived from Case- I 
scheme for level constraint max min( ) 5%L L∆ −∆ =  in all tanks for sinusoidal and step 

disturbance of period 3 hr. 
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Figure 3.13.  Closed-loop simulation for optimal structure derived from Case-II 
scheme for level constraint max min( ) 5%L L∆ −∆ =  in all tanks for sinusoidal and step 

disturbance of period 3 hr. 
 

3.8 Application of proposed scheme 

Control scheme which was discussed in previous sections is applied to 3 identical tanks 

in series for two different cases. Tuning charts Figure 3.7 and Figure 3.9 and Figure 3.8 

are merged into single chart Figure 3.10 which is used to tune average level controller for 

step and sinusoidal disturbances using procedure described in previous section. Eqn. 

(3.37)-(3.42) are used for tuning of relative level controllers.   
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3.8.1 Case 1- Three tanks in series with same level constraints 

Consider the case of 3 tanks in series with all tanks having the same inventory capacity.  

Process variables and constraints values are shown in Table 3.1.  In this case 

step sine 8.85γ γ= =  and 1 2 1Y Y= = , yields 3η =  from eqn. (3.12).  Thus max
step stepLγ ∆ =  

max
sine sine 26.55Lγ ∆ =  is desirable trajectory for tuning parameter in Figure 3.10.  From the 

same figure it is clear that minimum possible flow attenuation is 0.7r =  and intersection 

of these two curves can be considered as tuning parameter.  There is nearly no effect of 

increase in integral time I,3 145τ =  on flow attenuation.  Hence, the controller setting is 

chosen so that 1ξ = , max
step step 26.55Lγ ∆ =  and 0.7r = .  From the Figure 3.10 this point is 

read as Hlog( ) 3.35τ =  (
3

3
,3

3

/0.0224c
F m sK

L
∆

= −
∆

) and I,3 145τ =  min.  Next step is to 

check whether these settings for PI controller are in agreement to sinusoidal type 

disturbances.  From eqn. (3.33) 4
0 2.23*10ω −= rad/s at which maximum level deviation 

occurs.  This frequency is less than the frequency content of disturbance (1.7*10-3 – 

5.28*10-4 coreesponds to time period 1 hr -3 hr).  Hence in this case 45.28*10worstω −=  

rad/s (corresponds to time period of 3 hours) and Figure 3.10 indicates for 

45.28*10worstω −=  rad/s, max
sineL∆ ≤ max

stepL∆  for the chosen tuning settings.  This suggests that 

design just based on step disturbance is also applicable to sinusoidal disturbances. 

 Tuning of relative level control is determined by eqn. (3.37)-(3.42).  (Table 3.3) 

represents tuning recommendations for relative level controllers.  Integral time of these 

controllers is chosen I,1 I,2 10τ τ= = min.Controllers gain are chosen 
3

1
c,1

1

/0.45 F m sK
L

∆
= −

∆
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and 
3

2
c,2

2

/0.45 F m sK
L

∆
= −

∆
.  Based on these tuning rules closed-loop response are shown 

in Figure 3.11 for the step disturbance and sinusoidal disturbance.  The levels remain 

nearly same for all tanks and attenuation factor 0.7r =  is achieved which is in agreement 

to design criteria. 

 

Table 3.3.  Design of RLCs for case study 1 
 

First RLC Second RLC Resulting tuning rules 
,3 ,1c cK K�  ,3 ,2c cK K�  ,3 ,2 ,1c c cK K K=�  

,1

I,1

3 cK
Aω

τ ω
�  ,2

I,2

3 cK
Aω

τ ω
�  

,1

I,1

cK
Aω

τ ω
�  ,2 ,1

I,2 I,1

c cK K
Aω

τ ω τ ω
+�  

1 2τ τ= ,1 ,1
2 23 3

c cK K
A Aω ω φ

=�  

where 1φ �  so that 

,3 ,2 ,1c c cK K K=�  

 

 In the case of traditional feedback control scheme 1η =  and by eqn. (3.27) 

1.77γ =  and max max
step step sine sine 8.85L Lγ γ∆ = ∆ = .  Figure 3.10 can be used to understand how 

this scheme is ineffective to achieve desired control objectives.  Intersection of lines 

corresponding to 2ξ =  and sine 8.85γ =  (it is noticeable that sinusoidal disturbance has 

more level variation than step disturbance for max max
step step sine sine 8.85L Lγ γ∆ = ∆ = ) results in 

( )Hlog 2.73τ =  and I,3 143τ =  min and this combination results in minimum value 

1.05 1r = > .  It is clear that the proposed scheme perfoms much better as compared to 

traditional feedback scheme.   
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3.8.2 Case 2- Three tanks in series with different level 

constraints  

System under consideration in this example is the same as the previous expect the level 

constraint is different in the second tank (Table 3.4).  This example is corresponding to 

one of the plant implementation of proposed scheme.  It has been realized that level 

variation in tank 1 and tank 3 should be kept at 5% while and most of level variation 

(30%) should happening in tank 2 (Bayer 2008). This yields 1 26, 1/ 6Y Y= =  and 

max
step step 70.8Lγ ∆ =  (it is evident from Figure 3.7 and Figure 3.9 that if combination of 

tuning parameter satisfies level constraint for step disturbance it will always satisfy level 

constraint for sinusoidal disturbance).  For values of ξ  in between 0.5 and 1, the 

minimum value of attenuation factor is 0.24r =  at 0.5ξ =  for max
step step 70.8Lγ ∆ =  and this 

yields tuning parameters as Hlog( ) 3.89τ =  (
3

3
c,3

3

/0.0174 F m sK
L

∆
= −

∆
) and I,3 139τ =  min.  

From eqn. (3.33) 4
0 1.095*10ω −=  for at which maximum occurs for level deviation.  This 

frequency is less than the frequency content of disturbance (1.7*10-3 – 5.28*10-4) and 

hence 4
worst 5.28*10ω −=  rad/s.  Tuning of relative controllers has been performed based 

on Table 3.5 which yields I,1 I,2 10τ τ= =  min, 
3

1
c,1

1

/0.6 F m sK
L

∆
= −

∆
 and 

3
2

c,2
2

/3.6 F m sK
L

∆
= −

∆
.  Closed -loop response for step change and sinusoidal disturbance 

are shown in Figure 3.14.   
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Table 3.4.  Tank model parameters and constraints for case-2 
 
A [m2] 0F [gpm] stepu [gpm]

inFa [gpm] max min( )L L= [%] H [m] Time period of 
disturbances [hr]

16.72 300 50 50 5,30,5 2 1-3 
 

 This particular scheme is implemented in the real plant.  Figure 1.2 and Figure 1.3 

show actual plant data for level and flow variations with tradition feedback scheme.  

Figure 3.15 and Figure 3.16 compare the response of closed loop before and after the 

installation of proposed control scheme.  Level variations in tank # 3 has reduced and 

most of level variation is happening in tank 2.  These results show that the proposed 

scheme has improved the performance of closed loop and it is in agreement to the 

simulated results.   

 

Table 3.5.  Design of RLCs for case study 2 
 

First RLC Second RLC Resulting tuning rules 
,3 ,16c cK K�  ,3 ,2c cK K�  ,3 ,2 ,16c c cK K K=�  

,1

I,1

6
3 cK

Aω
τ ω

�  ,2

I,2

8 cK
Aω

τ ω
�  

,1

I,1

6 cK
Aω

τ ω
�  ,2 ,1

I,2 I,1

c cK K
Aω

τ ω τ ω
+�  

1 2τ τ= ,1 ,1
2 2

6 6
8 8

c cK K
A Aω ω φ

=�  

where 1φ �  so that 

,3 ,2 ,16c c cK K K=�  
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Figure 3.14.  Closed-loop response for sinusoidal and step disturbance of time 
period 3 hr with max 5,30,5%L∆ =  for 1st, 2nd and 3rd tank respectively. 
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Figure 3.15.  Level variations in real plat for traditional and proposed schemes. 

Point of 
implementation 
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Figure 3.16.  Inlet and outlet flow variations in real plat for proposed schemes. 
 

3.9 Feedforward scheme 

 Feedforward scheme is simple to implement for proposed feedback control 

structure.  Since, the closed-loop behavior of tanks in series is represented by a single 

tank (eqns. (3.11)-(3.12)), effectively one has to design feedforward scheme for a single 

tank where flow rate inF  is feedforwarded to the last tank’s level controller.  It is 

important to determine how much information should be forwarded to feedback 

controller.  In Figure 3.17 if ff 0C =  closed loop is feedback only and if ff 1C =  then 

closed loop is feedforward only and controller response will be very fast to any 

disturbance.  In this case level will remain unchanged but there will be no flow 
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attenuation.  Hence, the optimal value of ffC  will be in between 0 and 1 and will depend 

on frequency content of inlet feed disturbance and choice of tuning parameters.  To 

determine ffC  for proposed heurestic scheme, an optimization problem is formulated 

which minimizes the amplitude ratio of 3F  to inF  and given by 

  

1
22

2
H H I,3

2
1 1ff ff

2
H H I,3

1 1

min ( ) min
1 1

M M
j

j
j j

j
j

C C
r

τ ω τ τ
ω

ω
τ ω τ τ

= =

⎛ ⎞
⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟=

⎜ ⎟⎛ ⎞⎛ ⎞
⎜ ⎜ ⎟ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎜ ⎟ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑ , (3.47) 

subject to level constraints in eqn. (3.2) and 

  0.5 2ξ≤ ≤ . (3.48) 

 

 
 

Figure 3.17.  Feedback-Feedforward configuration for level control 
 

 (Cheung and Luyben 1979) have proposed feedback feedforward (FB-FF) control 

structure for several tanks in series.  This controller scheme is designed for step 

disturbance and the objective is only disturbance rejection, hence ff, 1iC =  is considered 

ffC
inF

outF

LC

  + 
+ 
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for tight level control.  However, in the present work sinusoidal disturbance is also 

present and flow attenuation is important.  This requires that optimal values of ff,iC  for 

1,2,3i =  (feedfordward for each tank) are used which can be determined by minimizing 

the amplitude ratio of 3F  to inF , given by 

  

1
22

23
H, H,i I,3

2
1 1 1ff, ff,

2
H, H, I,3

1 1

min ( ) min
1 1

M M
i j

j
j j ii i

j
i j i

C C
r

τ ω τ τ
ω

ω
τ ω τ τ

= = =

⎛ ⎞
⎛ ⎞⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟+ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟= ⎜ ⎟
⎜ ⎟⎛ ⎞⎛ ⎞⎜ ⎟
⎜ ⎜ ⎟ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎜ ⎟ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎜ ⎟

⎝ ⎠

∑ ∑ ∏ , (3.49) 

subject to level constraints in eqn. (3.2) and constraints  

  0.5 2iξ≤ ≤  for 1,2,3i = . (3.50) 

 Based on the above optimized feedforward structure, comparison of FB-FF 

scheme with the proposed heuristic scheme which is based on average level feedback 

feedforward (Avg-FB-FF) scheme is performed for the three tanks in series with 

specification given in Table 3.1.  For simple comparison it is assumed process is subject 

to only disturbance of frequency 5.8*10-4 rad/s and tuning is done for critically damped 

closed-loop (i.e., 1ξ = ).  For Avg-FB-FF ff 0.24C =  and for FB-FF scheme 

ff,1 0.69,C = . ff,2 0.71,C =  ff,3 0.72C =   Controllers are tuned based on optimized values of 

ffC  and ff,iC  for 1,2,3i =  for Avg-FB-FF and FB-FF schemes repectively.  Figure 3.18 

shows closed-loop response of both schemes.  It is clear that both schemes are able to 

achieve flow rate attenuation of 70%.  In FB-FF scheme ff, iC  are nearly three times 

higher than Avg-FB-FF scheme and this compensates for 3 times inventory available in 

Avg-FB-FF scheme.  Therefore it is concluded that both schemes when properly 
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optimized performs similarly for the disturbance they have been optimized.  However, it 

is important to analyze the performance of both schemes at other frequencies.  Figure 

3.19 shows bode plot for attenuation factor defined by optimization problem in 

eqns.(3.47) and (3.49) for Avg-FB-FF scheme and FB-FF scheme respectively.  It is clear 

that Avg-FB-FF scheme has better performance for all the frequencies higher than 

designed frequency (5.8*10-4 rad/s).  This suggests that the performance of FB-FF 

scheme is more sensitive towards the disturbances for which is it not optimized in 

compare to Avg-FB-FF scheme.  This is actually true as effective inventory capacity is 

more in the Avg-FB-FF scheme and hence its dependence on feedforward information to 

achieve attenuation is less in compare to FB-FF scheme (as suggested by ffC  values).  

Any discrepancy in inlet flow will affect the performance of FB-FF shceme more 

significantly than Avg-FB-FF scheme. 
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Figure 3.18.  Comparison of proposed scheme to Luyben’s scheme with 

feedforwardstructure for sinusoidal disturbance of period 3 hr. 
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Figure 3.19.  Attenuation factor r  for proposed and Luyben’s feedforward scheme 

for various frequencies. 



 121

3.10 Conclusions and future work 

Plant bottlenecking is one of practical issues with process industries.  The proposed 

scheme suggests that it is possible to remove bottlenecking of level control without 

increasing equipment capacity, by exploiting the dynamics of closed loop in better way.  

It has been demonstrated that multivariate control structure design has improved the 

performace of the level control in an industrial liquid-liquid extraction process performed 

in three tanks in series.  Eventually whole system works as a single tank and one need to 

design average control based on tuning chart presented in Figure 3.10.  The designing 

criteria for relative level control suggests that these controllers have to be fast enough in 

compared to time period of disturbance and integral time of average controller.   

 The augumentation of feedforward control structure for proposed scheme is 

simple and is less dependent on feedforward strcuture in comparison to other schemes.  

An important finding is that the solutions to numerical optimization to minimize the 

desired control objective for optimal control structure along with tuning parameters of PI 

controller;  result in control structure which resemble to proposed control structure in 

section 3.3. However such an optimization is not at all trivial, even though level control 

process considered here is relatively simple with 3 tanks in series.  This suggests that 

such heuristic approach has practical significance.   

 The proposed control scheme is not limited to debottleneck level control problem 

in tanks in series.  It can be easily used to couple two or more distillations column for 

control of bottom level or reactors for their liquid level.  However, additional attention is 

required in those situations so that coupling does not effect columns/reactors 

performances.   
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CHAPTER 4 

4OPTIMAL RULES FOR CENTRAL BANK INTEREST 

RATE SUBJECT TO ZERO LOWER BOUND 

 

4.1 Introduction and Motivation 

As mention in section 1.3 that central bank interest rate can be expressed by Taylor rule 

Figure 1.6.  The general form of the standard Taylor rule suggests that the short-term 

interest rate ti  applied by the central bank at time t  can be set according to the formula 

  ( *) ( *) * *t y t ti y y rπφ φ π π π= − + − + +  (4.1) 

where y , π , and i  are defined section 1.3.2;  subscript t  refers to the time the rule is 

applied, using information up to that time;  superscript * represents the desired 

equilibrium value;  ˆr i π= −  is the real interest rate;  and yφ , πφ  are coefficients 

associated with the output gap and inflation rate respectively.  In the original publication 

(Taylor 1993) Taylor assumed * 0y = , * 2%π = , * 2%r = , 1.5πφ = , 0.5yφ = , quarterly 

data for output gap, and annual data for inflation rate.  Variants of the above basic Taylor 

rule have studied in literature, such as rules with an inertia term containing 1ti −  and/or 

with projected future values of π  and y  in the right-hand side of eqn. (4.1) (Taylor and 

Williams 2010, and references therein).   

 Taylor has been systemically derived as a solution to minimization of quadratic 

objective function using small economy model when optimization does not involves ZLB 
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constraint (Ball 1999; Orphanides and Wieland 2000; Giannoni and Woodford 2002; 

Orphanides 2003).  However, in the presence of ZLB, no such rules have been derived 

because researchers have focused to solve the constrained optimization problem by 

formulation of dynamic programming whose explicit solution is hard to get.  While 

solution to the optimization problem in the framework of dynamic programming can 

produce optimal numbers for interest rate but it does not provide a rule.  At the same time 

some of the researchers have proposed simple ad-hoc rules that rely on truncation to zero 

of an interest rate TR
ti  calculated by a Taylor rule (i.e., TRmax[0, ]t ti i= )(Reifschneider and 

Williams 2000; Williams 2006; Nakov 2008).  However, such rules may not be optimal.    

 Interesting observations were made in simulation studies.  For example, it was 

observed (Orphanides and Wieland 2000; Kato and Nishiyama 2005) that resulting 

policies may be nonlinear, (rather than piecewise linear, according to truncated Taylor 

rules) and more aggressive for interest rates close to ZLB (a behavior characterized as 

pre-emptiveness).  However, a rigorous derivation of simple explicit Taylor rule subject 

to ZLB is, to our knowledge, not currently available.   

 In this research work, we rigorously derive explicit rules for interest rate subject 

to ZLB.  Our approach relies on a formalism known as multi-parametric programming 

(mp), a technique applied by the engineering community to constrained model predictive 

control (MPC) (Pistikopoulos, Dua et al. 2000) or constrained state estimation problems 

(Darby and Nikolaou 2007).  The following are the key elements of the proposed 

approach. 

• When a ZLB is present, explicit rules can be developed that produce a value for 

the interest rate through application of one from a finite number of explicit 
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formulas.  These formulas entail a finite number of Taylor-like rules as well as the 

value of the lower bound (assumed here to be zero).  To know which of these 

formulas will be applied at any time, one has to simply check which inequality is 

satisfied out of a finite number of a priori developed mutually exclusive linear 

inequalities on the inflation and output gap. 

• Various forms of Taylor-like rules result rigorously from the particular form of 

the quadratic objective used in MPC.  For example, Taylor rules with inertia 

terms arise from inclusion of a quadratic penalty on the rate of change of the 

interest rate (rather than on the interest rate itself). 

• Application of any interest rate policy, Taylor-like or not, on an economy 

essentially creates a closed-loop feedback controlled system.  As such, any policy 

should, at the very least, result in a stable closed loop.  Additionally, it should be 

fairly robust, namely produce sensible results in the presence of discrepancies 

between assumed economy models and the actual economy. 

In the rest of the research work we first provide some background on MPC and mpMPC, 

and elaborate on the small-scale economy model used.  Within this setting, we derive a 

number of Taylor-like rules, based on a number of MPC quadratic objectives, and 

examine their dependence on relative weights of various terms in the MPC objective.  

The effect of these rules on the resulting closed-loop behavior is examined.  Comparison 

with the standard Taylor rule and actual interest rates implemented by the Central bank is 

provided.  Finally, future extensions are proposed. 
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4.2 Preliminaries: Model Predictive Control (MPC) and Taylor 

rules 

MPC is a class of model-based feedback control algorithms for systems with constraints 

(Maciejowski 2000; Rawlings and Mayne 2009). MPC finds the value of the manipulated 

input (interest rate in our case) of a controlled process at each point in time by setting up 

and solving a constrained optimization problem at that time.  The optimization involves 

an objective function (usually quadratic) over a finite future horizon.  The objective 

contains terms involving future predictions of the controlled variables (output gap and 

inflation in our case) as well as penalty terms on manipulated inputs within the finite 

horizon.  Future output predictions are established in terms of a model. 

 As will be made clear below, MPC (also known as “open-loop optimal feedback”) 

differs from stochastic dynamic programming (also known as “closed-loop optimal 

feedback”) in that MPC does not explicitly account for information that is now expected 

to be available in the future, thus avoiding the computational complexity of the nested 

optimization (curse of dimensionality from Bellman’s principle of optimality) which 

burdens stochastic dynamic programming. 

 Next, we first provide a description of the model we use, and subsequently 

explain its use in formulating the MPC optimization.   

4.2.1 Economy model structure 

A semi-empirical linear model around a baseline can describe the evolution of the 

economy as 

  ( )1 1
y

t t t t ty y i eρ ξ π+ += − − + , (4.2) 
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  1 1t t t ty eππ π α+ += + + . (4.3) 

(Ball 1999) where y , π , and i  are as above;  α  and ξ  are positive constants;  

[ )0,1ρ ∈ ;  1
y
te +  and 1teπ+  are zero-mean white noise signals;  and the sampling period 

(time interval from t  to 1t + ) is one year.  The above model is similar in spirit to more 

complicated models used by many central banks.  The model’s main purpose is to capture 

the dynamic causal relationship between the manipulated input i  and the two controlled 

outputs, y , π .   

 At steady state (equilibrium point), *ti i= , 0ty =  and *tπ π= , with 

* * *r i π= − .  Hence in the terms of deviation variables from the equilibrium point, eqns. 

(4.2) and (4.3), can be written as 

  1 1t t t tu+ += + +x Ax B ε , (4.4) 

where 

   
*

ˆ ˆ
*

y y y
π π π

∆ −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥∆ −⎣ ⎦ ⎣ ⎦

x , *ˆ ˆu i i i= ∆ = − , ˆ
ye

eπ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

ε , (4.5)  

  
1

ρ ξ
α
⎡ ⎤
⎢ ⎥
⎣ ⎦

A � , (4.6) 

  
0
ξ−⎡ ⎤

⎢ ⎥
⎣ ⎦

B � . (4.7) 

 Using the above model, the optimal k -step-ahead prediction for the state x  with 

initial condition tx  is  

  
1

1
0

ˆ
k

k
tt k t t k tu

−

+ + − −
=

= +∑x A B A xA
A

A
, (4.8) 
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(Ljung 1999) where ˆ t k t+x  stands for the expected value of x  at time t k+  using all 

information available at time t .  The above prediction will be used in the formulation of 

the MPC objective below. 

 It should be noted that the idea here is not to fully explain the complex dynamics 

of the economy with such a simple linear model.  Rather, the intended use of the above 

model is to help understand how optimal monetary policies are affected by various 

objective functions and by a ZLB on the interest rate when constrained MPC is used to 

derive such policies.  The dimension of the state vector x  is also limited to two, so that 

the solution of the constrained MPC optimization problem can be easily understood 

graphically in 2-D and 3-D plots using the mpMPC approach.   

4.2.2 Economy model calibration 

The economy model expressed by eqns. (4.2) and (4.3) is calibrated based on US revised 

economy data over the time period 1976-2007.  The annual revised output gap data is 

taken from the Congressional Budget Office (CBO 2011). Inflation is calculated as 

annual percentage change in the GDP deflator Q4/Q4 basis (Bureau of economic 

Analysis).  The real interest rate, r , is calculated as the annual average of the interest rate 

(federal fund rate) deflated by the annual inflation rate.  Interest rates are taken from the 

database of the Federal Reserve System.  Figure 1.4 plots these data for the time period 

1976-2010.  Based on these data, Table 4.1 presents estimated values of parameters for 

the economy model, obtained using the prediction error method. Based on the parameter 

estimates in Table 4.1, the matrix A , eqn. (4.6) turns out to be 

  
0.63 0.19
0.12 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A . (4.9) 
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Table 4.1.  Parameter estimates of US economy model 
 

Parameter Estimate Standard Error 
ρ  0.63 0.06 
ξ  0.19 0.05 

*r  1.9 0.74 
α  0.12 0.06 

ye
σ  1.4  

eπ
σ  0.93  

 

The eigenvalues of A  are 0.58 and 1.05, suggesting that the economy model for the US 

economy is unstable.  Consequently, whatever control policy ones chooses to control the 

US economy, such a policy must be, at the very least, a stabilizing policy.  We develop 

such a policy below via MPC.   

4.2.3 Formulation of MPC optimization  
 
The central bank’s generalized loss function projected to infinity at time t  is generally of 

the form  

  
0

ˆ( , )k
t k t t k t

k

L uβ
∞

+ +
=
∑ x . (4.10) 

After minimizing the above objective at time t , the first element opt
|t tu  of the optimal 

sequence opt opt
| 1|{ , ,...}t t t tu u +  is implemented, and the system (i.e.,the economy) runs until the 

next decision making point, nextt .  At time nextt  the optimization problem in eqn. (4.10) is 

reformulated, solved, the first element 
next next

opt
|t tu  of the optimal sequence 

next next next next

opt opt
| 1|{ , ,...}t t t tu u +  is implemented, the system runs until the next time, and the process 

continues to infinity.  The difference nextt t−  is selected here to be one quarter.  It should 
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be stressed that, in general, 
next next

opt opt
| 1|t t t tu u +≠  because of modeling uncertainty and external 

disturbances. 

 It has been shown (Muske and Rawlings 1993) that for quadratic ˆ( , )t k t t k tL u+ +x  

stability of constrained MPC can be ensured if the objective in eqn. (4.10), which 

involves an infinite number of terms, is replaced by an equivalent objective that involves 

summation of a finite number of terms plus a terminal cost and/or terminal constraints.  A 

particular realization of this idea can take the form 

 ( )
1

2 2 2 2 2 2

0

ˆ ˆ ˆ ˆmin
N

k T T N N
t k t t k t t k t t k t t N t t N t t N t

k

R u S u S uβ δ β β δ
−

+ + + + + + +
=

⎧ ⎫+ + + +⎨ ⎬
⎩ ⎭
∑u

x Qx x Qx ,(4.11) 

subject to the model constraints 

  
1

1
0

ˆ
k

k
tt k t t k tu

−

+ + − −
=

= +∑x A B A xA
A

A
, 1,...,k N= , (4.12) 

  ˆ tt t =x x , (4.13) 

the unstable mode stabilization constraints 

  1 2
u u, ,...,T N N T N

t
− −⎡ ⎤ = −⎣ ⎦v A B A B B u v A x� � , (4.14) 

the input move restriction constraints 

 1t k t t m tu u+ + −= , ,..., 1k m N= − , (4.15) 

and the inequality constraints 

 *t k tu i+ ≥ − , 0,..., 1k N= − , (4.16) 

where  
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1

1

.

.

t

t t

t N t

i
i

i

+

+ −

∆⎡ ⎤
⎢ ⎥∆⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∆⎣ ⎦

u � , (4.17) 

  1t k t t k t t k tu u uδ + + + −−� , 0,...,k N= , (4.18) 

  
1 0

0
0
λ

λ
−⎡ ⎤

⎢ ⎥
⎣ ⎦

Q � ; ,  0 1λ< <  (4.19) 

  s s
s2

s

0
1

T
T

sJβ−
v QvQ v v� �� ; , (4.20) 

(see Appendix E) with the vectors sv  and sv�  coming from the diagonalization of the 

matrix A  as 

  uu1
u s

ss

0
0

T

T

J
J

−
⎡ ⎤⎡ ⎤ ⎡ ⎤

= = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦

v
A VJV v v

v
�
� , (4.21) 

where uJ  and sJ  refer to the unstable and stable eigenvalues of the matrix A  with 

corresponding eigenvectors, uv  and sv , respectively. 

 The main rationale behind the above formulation is that closed-loop stability can 

be guaranteed by including the terminal penalty term ˆ ˆT
t N t t N t+ +x Qx  in the objective, eqn. 

(4.11), and by explicitly forcing a terminal constraint, eqn. (4.14), to stabilize the 

unstable mode corresponding to the eigenvalue uJ .  The values of the weights R  and S  

determine the aggressiveness of the resulting control action, with small values of R  and 

S  encouraging more aggressive action and faster closed-loop response, at the cost of 

decreased closed-loop robustness (Orphanides 2003; Orphanides and Williams 2007).  In 
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particular, higher values of S  are preferred when persistent external disturbances force 

the input i  away from its nominal equilibrium value *i .  Finally, the values of 1 λ−  and 

λ  in eqn. (4.19) determine the relative attention paid by the policy to output gap and 

inflation, respectively.   

 

4.3 Taylor rules from MPC 

In this section we show how Taylor rules can be derived from unconstrained MPC.  

Specifically, in section 4.3.1 we derive rules that follow the Taylor structure (eqn. (4.1)) 

while in section 4.5 we show how Taylor rules with inertia can be naturally derived from 

MPC with an additional quadratic penalty on the rate of change of interest rate.  For both 

cases we examine the effects of MPC weights (λ , R , or S  in eqn. (4.11)).   

4.3.1 Taylor rules from MPC without zero lower bound 

In the absence of ZLB, eqn. (4.16), and without penalty on the change of interest rate 

( 0S = ), the MPC optimization with objective function in eqn. (4.11) subject to equality 

constraints in eqns. (4.12)-(4.15) results in the unconstrained quadratic minimization  

  1 1min
2 2m

T T T
m m t m t t

⎡ ⎤+ +⎢ ⎥⎣ ⎦u
u Hu x Fu x Yx , (4.22) 

where ( 1) ( 1)m m− × −∈ℜH , 2 ( 1)m× −∈ℜF , 2 2×∈ℜY  are function of A , B , β , N , m , and the 

weights R  andλ ;  and the decision variable is 



 132
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+
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∆⎡ ⎤
⎢ ⎥∆⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∆⎣ ⎦

u � . (4.23) 

(see Appendix E).  The minimum in eqn. (4.22) is attained at opt 1 T
m t

−= −u H F x , resulting 

in the optimal interest rate, 

  [ ] 1

1

1 0 0 * * ( *) ( *) * *T
t t y t

m

i r y y rππ φ φ π π π−

−

= − + + = − + − + +H F x"���	��
 . (4.24) 

at time t , which is clearly a Taylor-like rule, as in eqn. (4.1).  It is also clear that yφ , πφ  

are functions of the economic model matrices A , B , and of the weights R , λ , given 

N , m  and β .   

4.3.1.1 Choice of prediction horizon length, N  

For an unstable system such as the one described by eqns. (4.2) and (4.3), the horizon 

length, N , should be made long enough to ensure that the MPC optimization problem is 

feasible and ensure closed-loop stability.  Systematic methods can be used for selecting 

N  (Chmielewski and Manousiouthakis 1996; Scokaert and Rawlings 1998; Grieder, 

Borrelli et al. 2004). 

 In all subsequent developments we will consider 80N = . 

4.3.1.2 Choice of control horizon length, m  

 
As eqn. (4.15) indicates, only a small number of inputs are included as decision variables 

in the MPC optimization.  In addition to convenience (i.e., a small number of decision 

variables) there are deeper reasons for this choice.   
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 First, increasing the value of m  (with 1 m N≤ ≤ ) quickly reaches a point of 

diminishing returns, namely no appreciable change in the closed-loop dynamics.  Table 

4.2 substantiates this claim by example, showing that the closed-loop poles remain almost 

unchanged after increasing the value of m  beyond 4.  The associated Table 4.3 shows the 

resulting coefficient for the Taylor-like solution provided by MPC.   

 

Table 4.2.  Closed-loop eigenvalues for Taylor-like rules derived from unconstrained 
MPC for 0.05λ =  and 0.07R =  

 
N  

20 40 60 80 m  

1µ  2µ  1µ  2µ  1µ  2µ  1µ  2µ  

2 0.05 0.95 0.05 0.95 0.05 0.95 0.05 0.94 

3 0.07 0.95 0.07 0.97 0.07 0.96 0.07 0.96 

4 0.07 0.95 0.07 0.97 0.07 0.97 0.07 0.96 

8 0.07 0.95 0.07 0.97 0.07 0.97 0.07 0.97 

12 0.07 0.95 0.07 0.97 0.07 0.97 0.07 0.97 

16 0.07 0.95 0.07 0.97 0.07 0.97 0.07 0.97 

 

 
Table 4.3.  Output gap and inflation coefficients in Taylor-like rules (eqn. (4.1)) 

derived from unconstrained MPC for 0.05λ =  and 0.07R =  
 

N  
20 40 60 80 m  

yφ  πφ  yφ  πφ  yφ  πφ  yφ  πφ  

2 3.2 2.9 3.1 2.4 3.1 2.4 3.1 2.5 

3 3.2 2.9 3.1 2.4 3.1 2.4 3.1 2.5 

4 3.2 2.9 3.1 2.4 3.1 2.4 3.1 2.5 

8 3.2 2.9 3.1 2.3 3.1 2.3 3.1 2.3 

12 3.2 2.9 3.1 2.2 3.1 2.2 3.1 2.2 

16 3.2 2.9 3.1 2.2 3.1 2.1 3.1 2.2 
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 Second, it has been rigorously shown that keeping m  small improves the 

robustness of the closed loop, namely it helps maintain closed-loop stability in the 

presence of discrepancies between the model used by MPC and the actual system under 

control (Garcia and Morari 1982; Genceli and Nikolaou 1993; Vuthandam, Genceli et al. 

1995).   

 In all subsequent developments we will consider 4m = .  

4.3.1.3 Choice of discount factor, β  

 
Following the literature (Jung, Teranishi et al. 2005; Adam and Billi 2007) we use a 

value of the discount factor 0.99β = , except in situations where we explicitly specify a 

different value.  We will comment below on how different values of β  affect the 

resulting Taylor rules and closed-loop stability and performance. 

4.3.1.4 Effects of MPC objective function weights on resulting Taylor rules 

For the choice of 80N = , 4m = , and 0.99β = , discussed in the preceding sections, we 

now proceed to examine the effect of R  and λ  on the resulting Taylor rules, via eqn. 

(4.24).  Following the calculations in Appendix E, the matrices H  and F  in eqn. (4.22) 

are calculated as functions of R  and λ , and coefficients of the output gap and inflation 

in the Taylor rule or eqn. (4.1) are expressed analytically in terms of R  and λ , as  

  
6 4

6

2
,3 ,2 ,1 ,0

2
3 2 1 0

4

( ) ( ) ( )
( ) ( ) ( )

y y y y
y

q R q R q R q
p R p R p R p

λ λ λ
λ λ

φ
λ

+ + +

+
=

+ +
, (4.25) 

  
2

,3 ,2 ,1 ,0
2

3 2

6 4

6 4
1 0

( ) ( ) ( )
( ) ( ) ( )

q R q R q R q
p R p R p R p

π π π π
π

λ λ λ
φ

λ λ λ
+ + +
+ + +

= , (4.26) 
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respectively, where the values of the corresponding parameters are shown in Table 4.4.  

In general, the numerator and denominator for yφ  and πφ  are polynomial functions of 

degree 1m −  in both 2R  and λ . 

Table 4.4.  Polynomial coefficients in eqns. (4.25) and (4.26) as functions of λ   
 

  

( )( )
( )( )( )

( )( )
( )( )( )

,3

,2

,1

4
,0

,3

,3

,1

3
,0

3

2

1

1.04

0.297 0.444
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0.37 2.28
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= − − + +
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( )( )
( )( )( )4

0

8 1.02 0.641

1.32 10 1.03 1.01 0.512p

λ λ

λ λ λ−

− + +

= × − + − + +

 

 
 Figure 4.1 employs the preceding eqns. (4.25) and (4.26) to calculate the policy 

coefficients yφ , πφ  for a range of values of R  and λ .  The point corresponding to 

original Taylor rule ( 0.5yφ = , 1.5πφ = ) is not present in Figure 4.1.  However, various 

values of R  and λ  result in yφ  in the range of 1 to 3 (Figure 4.2) and πφ  in the range of 

2 to 6 (Figure 4.3). 
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Figure 4.1.  Taylor-like interest rate rule for when there is no constraint on interest 

rate for various values of tuning parameters R  and λ . Solid and dotted lines 
represent inflation and output gap coefficient respectively based on eqn. (4.25)-

(4.26). This solution is also valid when no constraint is active in case of constrained 
MPC. 
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Figure 4.2.  Output gap coefficient yφ  for Taylor rule when 0.99β = . 

 

  
Figure 4.3.  Inflation coefficient πφ  for Taylor rule when 0.99β = . 

1πφ =  
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 The following general observations can be made on Figure 4.2 and Figure 4.3: 

• When R  is small (i.e.,control is aggressive) it has a strong effect on yφ  and πφ . 

• The value 0R =  results in large values of yφ  and πφ , i.e.,aggressive policy. 

• When R  is small, the inflation coefficient πφ  is more sensitive to the choice of λ  

than yφ  is. 

• After approximately 1R > , further increase in R  has very small effect on yφ  and 

πφ . 

For the economic model under consideration, the nearest point to the original Taylor rule 

is found at 1yφ = , 2.4πφ =  for 0.55R =  and 0.05λ = .  These values are close to the 

original Taylor rule and other Taylor-like rules (Rotemberg and Woodford 1997; 

Orphanides and Wieland 2000). 

4.3.1.5 Original Taylor rule in MPC framework 

Even though the specific yφ  and πφ  values of the original Taylor rule were not recovered 

in the preceding section for the value of β  used mostly in literature, such values can be 

obtained if a different value of β  is considered.  It turns out that the original Taylor rule 

can be recovered for 0.96β ≤ , for which expressions for yφ  and πφ  similar to eqns. 

(4.25) and (4.26) can be derived in the same way.  As shown in Figure 4.4 and Figure 4.5, 

the original Taylor rule values for yφ  and πφ  can be derived when 0.96β =  for 1.06R =  

and 0.36λ =  in eqn. (4.11).   
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Figure 4.4.  Output gap coefficient yφ  for Taylor rule when 0.96β = .  The location 
of Taylor coefficient 0.5yφ =  is shown by the circle. 

 

0.5yφ =

Taylor 
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In general, determining values of MPC weights that would correspond to specific 

values of yφ  and πφ  is an instance of the inverse linear quadratic regulator problem.  An 

infinite number of solutions generally exist for that problem.  Feasibility and 

characterization of these solutions can be obtained in terms of linear matrix inequality 

algorithms (Boyd, El Ghaoui et al. 1994, section 10. 6, p. 147).  This issue will be 

explored elsewhere. 

 

 
 

Figure 4.5.  Inflation rate coefficient πφ  for Taylor rule when 0.96β = .  The 
location of Taylor coefficient 1.5πφ =  is shown by the circle. 

 

1.5πφ =  

Taylor 
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4.3.1.6 Taylor rules and resulting closed-loop stability  

For any rule proposed, it is important to determine, at the very least, whether such a rule 

results in a stable closed loop.  Combination of the Taylor rule in eqn. (4.1) with the 

simple economy model, eqn. (4.4), yields (Appendix F) the closed loop structure 

  1 CL 1t t t+ += +x A x ε , (4.27) 

where 

  CL ˆ
1

yT πρ ξφ ξ ξφ
α
− −⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

A A + Bc . (4.28) 

It can be shown (Appendix F) that both eigenvalues of CLA  are inside the unit disk, 

i.e.,the closed-loop system is stable, if and only if 

  1πφ > , (4.29) 

  2.1 0.12 8.5 0.06yπ πφ φ φ− + < < + . (4.30) 

as illustrated in Figure 4.6.  This is in agreement with the well established Taylor 

principle that the central bank should raise its interest rate more than one-for-one with 

increase in inflation (Woodford 2001; Davig and Leeper 2007).  Figure 4.3 shows that 

this requirement is satisfied for all combinations of the MPC weighting parameters R  

and λ .  In fact, Figure 4.7 illustrates that the stability conditions, eqns. (4.29) and (4.30), 

are satisfied for all choices of R  and λ  when 0.99β = .  However, this is not the case for 

0.95β ≤ , as illustrated in Figure 4.8, which shows that as the value of β  is reduced, the 

value of R  should not be too small, to avoid closed-loop instability. 

 



 142

 
 

Figure 4.6.  Closed-loop stability region for the US economy model in terms of 
Taylor rule coefficients yφ  and πφ  when 0.99β = . 

 
 

 
 

Figure 4.7.  Closed-loop stability region in terms of MPC tuning parameters R  and 
λ  for 0.99β = . 
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Figure 4.8.  Closed-loop stability region (shaded) in terms of MPC weight 
parameters R  and λ  for various values of 0.95β < .  The location of original Taylor 

rule is shown by circle. 
 

 It is interesting to note that as R →∞ , namely high values of interest rate are 

heavily penalized, the closed loop remains stable, due to the stabilizing equality 

constraint, eqn. (4.14).  For R →∞ , eqns. (4.25) and (4.26) suggest that ,3

3

0.70y
y

q
p

φ ==  

and ,3

3

2.5
q
pπ
πφ = = . 
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 Following the preceding observations, it should be noted that the widespread 

practice of using a discount factor β  may be more problematic than realized, in the sense 

that it may not result in robustly stabilizing strategies.  This situation, namely the need to 

shape weights of the terms in the MPC objective in an increasing rather than decreasing 

fashion in order to ensure robustness, has been rigorously analyzed in the past (Genceli 

and Nikolaou 1993; Vuthandam, Genceli et al. 1995) and should be explored further. 

 

4.4 Taylor rules from MPC with zero lower bound 

When the interest rate must satisfy a ZLB constraint, the optimization problem to be 

solved by MPC entails the objective in eqn. (4.11), the equality constraints  in eqns. 

(4.12)-(4.15), and the inequality constraint in eqn. (4.16).  It can be shown (see Appendix 

G) that for 0S = , the entire optimization problem can be cast in the form 

  1min
2

T

z
z Hz , (4.31) 

subject to 

  t≤ +Gz w Dx , (4.32) 

where 1ˆ T
m t

−= +z u H F x , 1 T−+D E GH F� , and G , w , E  are defined in Appendix G. 

 Eqns. (4.31) and (4.32) suggest that the optimization problems solved by MPC at 

successive points in time differ only by the right-hand side of eqn. (4.32), which is affine 

in the state tx .  No single formula exists for the explicit solution of all of these problems.  

However, the optimal solution can be expressed explicitly at each point as 
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  ( ) ( )1opt 1 1
|

T T
t t A A A A A t

−− −=z H G G H G w + D x , (4.33) 

where AG , Aw , AD  correspond to the set of active inequality constraints in eqn. (4.32), 

and are finite in number.  Which inequality constraints in eqn. (4.32) will be active (i.e 

equalities) at any time point t  depends only on tx  and this can be shown (Pistikopoulos, 

Dua et al. 2000) to be easily determined by checking the conditions 

  ( ) ( )11 1T T
A A A A A t t

−− − < +GH G G H G w + D x w Dx  (4.34) 

and  

  ( ) ( )11 0T
A A A A t

−−− ≥G H G w + D x , (4.35) 

for each of the possible choices of { AG , Aw , AD }.  While the number of combinations 

of active/inactive inequality constraints may be generaly large, we show in the sequel that 

this number is fairly small for the problem at hand, resulting in a small set of explicit 

rules in the form of eqn. (4.33), which are shown to be Taylor-like. 

 More specifically, for a certain { AG , Aw , AD }, the inequalities in eqn. (4.34) and 

(4.35) define a linear polytope, for which the same sets of constraints remain active or 

inactive, and the same formula, eqn. (4.33), can be used to express the optimal solution 

for any tx  in that polytope.  The collection of all polytopes, which are finite in number, 

spans the entire set in which tx  lies and which is bounded for a stable closed loop.  

Therefore, determining the active and inactive constraints in eqn. (4.32), and 

consequently the corresponding AG , Aw , AD , is a simple matter of using a look-up table, 

to determine in which polytope tx  lies, i.e.,for which of the possible { AG , Aw , AD } 
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eqns. (4.34) and (4.35) are satisfied.  Then, eqn. (4.33) can be used to determine the 

optimal interest rate either as 

  
( ) ( )( )11 1

1

[1 0 0] * *

( *) ( *) * *

T T T
t A A A t t

m

y t

i r

y y rπ

π

φ φ π π π

−− −

−

= − − + +

= − + − + +

A AH G G H G w + D x F x"��	�
 , (4.36) 

which is a Taylor-like rule, or as  

  0ti = , (4.37) 

namely at the ZLB value.  

 To our knowledge, the above development is the first rigorous derivation of an 

explicit Taylor-like rule that satisfies the ZLB without resorting to either clipping of the 

interest rate value produced by a Taylor rule (Reifschneider and Williams 2000; Williams 

2006; Nakov 2008) or numerical simulation (Orphanides and Wieland 2000; Hunt and 

Laxton 2003; Jung, Teranishi et al. 2005; Kato and Nishiyama 2005; Adam and Billi 

2007).   

 

4.5 Taylor rules with inertia from MPC 

A simple form of a Taylor-like rule with an inertia term is 

  1( *) ( *) ( *) * *t y t t i ti y y i i rπφ φ π π φ π−= − + − + − + + . (4.38) 

Rules such as the above have been proposed based on empirical arguments and 

simulation studies, in efforts to reduce large interest rate fluctuations (Goodfriend 1991; 

Taylor and Williams 2010, and references therein).  We explain below that such rules 
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result naturally from appropriate tailoring of the MPC objective function to include terms 

that penalize the rate of change of interest rate. 

 To illustrate this, consider again the MPC optimization problem formulated in 

eqn. (4.11) with 0R =  and 0S > , namely no penalty on the interest rate itself, but a 

penalty on its rate of change.  As in section 4.3.1, it can be shown (Appendix H), that the 

resulting MPC optimization in this case becomes 

  1 1min
2 2m

T T T
m m t m t t

⎡ ⎤+ +⎢ ⎥⎣ ⎦u
u Hu x Fu x Yx� � �� � � , (4.39) 

where ( 1) ( 1)m m− × −∈ℜH� , 3 ( 1)m× −∈ℜF� , 3 3×∈ℜY�  are functions of A , B , S , and λ ;  and the 

vector x�  is defined as 

  

1 1

*
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t t

t t t
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y y y
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π π π

− −
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⎢ ⎥ ⎢ ⎥∆ −⎣ ⎦ ⎣ ⎦

x� . (4.40) 

 In the absence of a ZLB, the minimum in the optimization problem in eqn. (4.39) 

is  attained at opt 1 T
m t

−= −u H F x� � � , resulting in the optimal interest rate 
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H F x� � �"���	��

. (4.41) 

which is exactly eqn. (4.38). 

 A parametric analysis similar to that in section 4.3.1.4 can be performed again to 

assess the effect of the MPC weights S  and λ  on the parameters yφ , πφ , and iφ .  Similar 

choices of 80N = , 4m =  and 0.99β =  as before yield 
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respectively, where the values of the corresponding parameters are shown in Table 4.5. 

 

Table 4.5.  Polynomial coefficients in eqns. (4.42) -(4.44) as functions of λ  
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From eqn. (4.44) it is clear that inertial term iφ  is zero for 0S = . Using eqns. (4.42), 

(4.43), and (4.44) all three coefficients yφ , πφ , iφ  are shown in Figure 4.9, Figure 4.10, 

and Figure 4.11 as a function of λ  and S .  The following trends can be observed. 

• The policy coefficients yφ  and πφ  decrease with increase in S . 

• When S  is small the effect of λ  on πφ  is dominant compared to the effect on yφ . 

• After approximately 2S >  further increase on S  does not change the policy 

coefficients by much.  

• The inertial term iφ  increases with increase in S  and eventually converges to 0.7. 

This result can be explained on the basis of stabilizing policy criterion. If iφ  is 

large compared to πφ  and yφ , the closed loop will behave like an open loop and 

due to the unstable nature of the open-loop economy model, related policies will 

not stabilize the economy. These results are consistent with prior literature 

observations (Taylor and Williams 2010, and references therein).   
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Figure 4.9.  Output gap coefficient yφ  for Taylor rules with inertia. 

 

 
Figure 4.10.  Inflation coefficient πφ  for Taylor rules with inertia. 
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Figure 4.11.  Lagged inertest rate coefficient iφ  for Taylor rules with inertia 

 

4.5.1 Inertia-based rules and resulting closed-loop stability  

For Taylor rules with inertia as in eqn. (4.38) the corresponding closed-loop is 

  CL
1t tψ ψ
+

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

x x
A� , (4.45) 

where 

  CL 1 0ˆ ˆ
yT

T
i i

i y i i

π

π

ρ ξφ ξ ξφ ξ
α

φ φ
φφ φφ φ

⎡ ⎤− − −
⎡ ⎤+ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎣ ⎦

A Bc B
A

c
� , (4.46) 

and T
t t tuψ = − c x .  It can be shown (Appendix I) that all eigenvalues of CLA�  are inside 

the unit disk if and only if 
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  1i πφ φ+ >  (4.47) 

  142 142 16.7i yπφ φ φ> − − +  (4.48) 

  176 108 i πφ φ− >  (4.49) 

  33.5 35.5 16.7i y πφ φ φ− + >  (4.50) 

  217.2 10.5 8.33 ( 28.1 5.06 )i y i y πφ φ φ φ φ+ + + − − >  (4.51) 

as shown in Figure 4.12.  As in section 4.3.1.4, it is also found that all combinations of S  

and λ  result in stabilizing monetary policies.  Eqn. (4.47) is the counterpart of eqn. 

(4.29)and has been derived before in a different setting, using a rational expectations 

approach (Woodford 2003). 

 It is again interesting to note that as S →∞ , namely aggressive changes in the 

value of interest rate are heavily penalized, the closed loop remains stable, due to the 

stabilizing equality constraint, eqn. (4.14).  For S →∞ , eqns. (4.42)-(4.44) suggest that 

,3
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q
p
π

πφ ==
�
�

� , and ,3

3

0.71i
iq
p

φ ==
�
�

� , which satisfy the inequalities in 

eqns. (4.48)-(4.51). 
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Figure 4.12.  Closed-loop stability region for the US economy model in terms of 
coefficients yφ , πφ  and iφ  for Taylor rule with inertia. 

 

4.5.2 Taylor rules with inertia from MPC with zero lower bound 

Following the same approach as in section 4.4, the optimization problem with eqn. (4.11) 

with 0R = , 0S > , subject to the equality constraints in eqns. (4.12)-(4.15), and the 

inequality constraint in eqn. (4.16) can be cast in the form 

  1min
2

T

z
z Hz

�
�� � , (4.52) 

subject to 

  t≤ +Gz w Dx�� � , (4.53) 
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where 1 T
m t

−+z u H F x� �� �� , 1 T−+D E GH F� � � ��  (see Appendix H).  Again, an explicit solution 

through Taylor-like formulas can be obtained by applying the mpMPC solution to get 

direct counterparts of eqns. (4.33) through (4.35). 

 

4.6 Taylor rules and stability 

As already mentioned in section 4.3.1.6, the stability of an economy under closed-loop 

control by central bank interest rate adjustment is of primary significance.  For Taylor 

rules this is captured by the Taylor principle, namely that the central bank should raise its 

interest rate more than one-for-one with increase in inflation (Woodford 2001; Davig and 

Leeper 2007).  It appears that proposed interest rate strategies may not explicity address 

this issue.  For example, Giannoni and Woodford (Giannoni and Woodford 2003) derive 

inertial rules based on an economy model that includes future expectations;  assuming 

perfect expectations, the derived rules result in a closed loop with eigenvalues 

{10.1, 1.13, 0.89, 0.10} , which imply closed-loop instability.  As another example, 

Orphanides (Orphanides 2003) has developed Taylor rules that aim to deliver robust 

performance based on an economy model estimated under the assumption of colored 

noise in output gap measurements;  some of the resulting rules, however, violate 

eqn.(4.29), and would result in closed-loop instability. 
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4.7 Numerical Simulations 

The objective of this section is to illustrate the interest rate rules resulting from 

application of the methodology we outlined in the previous section.  Emphasis is placed 

on directly including the ZLB constraint in the development of explicit rules. 

4.7.1 Taylor rules form MPC with ZLB 

The optimization problem defined by eqn. (4.31) with inequality constraints given by 

eqn. (4.32) is solved with the help of the mpMPC framework presented in section 4.4, to 

find the optimal interest rate rule.  For the economic model discussed in section 4.2, the 

solution to the optimization problem depends on the weights λ  and R  in eqn. (4.11), for 

selected values of N , m  and β  (sections 4.3.1.1-4.3.1.3) and with 0S = .  For each 

combination of λ  and R , a small number of Taylor-like rules emerge, depending on the 

linear polytope in which the inflation and output gap lie, as presented in Table 4.6 

through Table 4.11.  The corresponding linear polytopes are illustrated in Figure 4.13 

through Figure 4.18. 

 Comparison of these tables and corresponding figures shows that the following 

four classes of rules emerge: 

• Similar in nature to the standard Taylor rule, eqn. (4.1) (polytope 1), 

• Setting the interest rate at its ZLB while maintaining closed-loop stability 

(polytope 2), 

• Setting the interest rate at its ZLB but with loss of closed-loop stability (polytope 

3) – a case of liquidity trap (Reifschneider and Williams 2000) – and 
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• Piecewise linear rules that are more aggressive than the Taylor-like rules that 

would result from optimization without anticipation of ZLB activation in the 

future (remaining polytopes). 

Of these tables, Table 4.7, corresponding to Figure 4.14, suggests a rule in polytope 1 

closest to the standard Taylor rule, in terms of both the values of { , }y πφ φ  ({1.0,2.4} vs. 

{0.5,1.5} ) and the closed-loop eigenvalues ({0.50,0.94} vs. {0.56,0.97}). 

 

 
 

Figure 4.13.  State space partition for 0.07R =  and 0.05λ = , corresponding rules 
are in Table 4.6, o  represents actual economy data points for period 08Q1-11Q1, +  
represents actual economy data points for period 98Q1:99Q4, solid curve represent 
closed loop response from initial state (-3.7, 1.9), dashed line represents truncated 

solution of unconstrained case. 
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Table 4.6.  mpMPC solution and state space partition for 0.07R = and 0.05λ =  
 

No. Polytope bounds Interest rate ti∆  Closed-loop
Eigenvalues

1 
0.78 0.62 0.98
0.14 0.99 1.71

t

t

y
π
∆− − ⎡ ⎤⎡ ⎤ ⎡ ⎤

≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆− −⎣ ⎦ ⎣ ⎦⎣ ⎦
 [ ]3.12 2.49 t

t

y
π
∆⎡ ⎤
⎢ ⎥∆⎣ ⎦

 0.07 
0.96 

2 

0.78 0.62 0.98
0.27 0.96 3.70

0.76 0.65 1.03
0.62 0.79 1.39

t

t

y
π

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∆− − ⎡ ⎤⎢ ⎥ ⎢ ⎥≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆ −⎣ ⎦
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

3.9−  
0.58 
1.05 

3 [ ]0.27 0.96 3.70t

t

y
π
∆⎡ ⎤

≤ −⎢ ⎥∆⎣ ⎦
 3.9−  (Infeasible) 

0.58 
1.05 

4 
0.76 0.65 1.03
0.20 0.98 2.02

0.14 0.99 1.71

t

t

y
π

− −⎡ ⎤ ⎡ ⎤
∆⎡ ⎤⎢ ⎥ ⎢ ⎥− − ≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

 [ ]3.15 2.70 0.36t

t

y
π
∆⎡ ⎤

+⎢ ⎥∆⎣ ⎦
 0.07 

0.96 

5 
0.62 0.79 1.39
0.13 0.99 4.42

0.20 0.98 2.02

t

t

y
π

− −⎡ ⎤ ⎡ ⎤
∆⎡ ⎤⎢ ⎥ ⎢ ⎥− − ≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

[ ]3.52 4.49 4.05t

t

y
π
∆⎡ ⎤

+⎢ ⎥∆⎣ ⎦
 0.05 

0.92 

6 
0.27 0.96 3.70

0.13 0.99 4.42
t

t

y
π
∆− − ⎡ ⎤⎡ ⎤ ⎡ ⎤

≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆ −⎣ ⎦ ⎣ ⎦⎣ ⎦
[ ]5.55 19.6 71.3t

t

y
π
∆⎡ ⎤

+⎢ ⎥∆⎣ ⎦
 0.00 

0.58 
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Figure 4.14.  State space partition for 0.55R = and 0.05λ = , corresponding rules are 
in Table 4.7, o  represents actual economy data points for period 08Q1-11Q1, +  

represents actual economy data points for period 98Q1:99Q4, solid curve represent 
closed loop response from initial state (-3.7, 1.9), dashed line represents truncated 

solution of unconstrained case. 
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Table 4.7.  mpMPC solution and state space partition for 0.55R =  and 0.05λ =  

No. Polytope bounds Interest rate ti∆  Closed-loop
Eigenvalues

1 
0.39 0.92 1.47
0.28 0.96 1.67

t

t

y
π
∆− − ⎡ ⎤⎡ ⎤ ⎡ ⎤

≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆− −⎣ ⎦ ⎣ ⎦⎣ ⎦
 [ ]1.03 2.44 t

t

y
π
∆⎡ ⎤
⎢ ⎥∆⎣ ⎦

 0.50 
0.93 

2 
0.39 0.92 1.47
0.27 0.96 3.70

0.37 0.93 1.52

t

t

y
π

−⎡ ⎤ ⎡ ⎤
∆⎡ ⎤⎢ ⎥ ⎢ ⎥− − ≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

3.9−  
0.58 
1.05 

3 [ ]0.27 0.96 3.70t

t

y
π
∆⎡ ⎤

≤ −⎢ ⎥∆⎣ ⎦
 3.9−  (Infeasible) 

0.58 
1.05 

4 
0.38 0.93 1.50
0.32 0.95 1.63

0.28 0.96 1.67

t

t

y
π

− −⎡ ⎤ ⎡ ⎤
∆⎡ ⎤⎢ ⎥ ⎢ ⎥− − ≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

[ ]1.13 2.77 0.59t

t

y
π
∆⎡ ⎤

+⎢ ⎥∆⎣ ⎦
 0.50 

0.92 

5 
0.37 0.93 1.52

0.32 0.95 1.63
t

t

y
π
∆− − ⎡ ⎤⎡ ⎤ ⎡ ⎤

≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆ −⎣ ⎦ ⎣ ⎦⎣ ⎦
 [ ]1.34 3.39 1.65t

t

y
π
∆⎡ ⎤

+⎢ ⎥∆⎣ ⎦
 0.48 

0.89 
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Figure 4.15.  State space partition for 0.07R = and 0.8λ = , corresponding rules are 
in Table 4.8, o  represents actual economy data points for period 08Q1-11Q1, +  

represents actual economy data points for period 98Q1:99Q4, solid curve represent 
closed loop response from initial state (-3.7, 1.9), dashed line represents truncated 

solution of unconstrained case. 
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Table 4.8.  mpMPC solution and state space partition for 0.07R = and 0.8λ =  

No. Polytope bounds Interest rate ti∆  Closed-loop
Eigenvalues

1 
0.35 0.94 0.40
0.17 0.98 0.74

t

t

y
π
∆− − ⎡ ⎤⎡ ⎤ ⎡ ⎤

≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆− −⎣ ⎦ ⎣ ⎦⎣ ⎦
 [ ]3.39 9.09 t

t

y
π
∆⎡ ⎤
⎢ ⎥∆⎣ ⎦

 0.22 
0.76 

2 

0.35 0.94 0.98
0.27 0.96  3.70

0.28 0.96 0.57
0.33 0.95 0.45

t

t

y
π

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∆− − ⎡ ⎤⎢ ⎥ ⎢ ⎥≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆ −⎣ ⎦
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

3.9−  
0.58 
1.05 

3 [ ]0.27 0.96 3.70t

t

y
π
∆⎡ ⎤

≤ −⎢ ⎥∆⎣ ⎦
 3.9−  (Infeasible) 

0.58 
1.05 

4 
0.33 0.95 0.45
0.21 0.98 0.76

0.17 0.98 0.74

t

t

y
π

− −⎡ ⎤ ⎡ ⎤
∆⎡ ⎤⎢ ⎥ ⎢ ⎥− − ≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

 [ ]3.65 10.6 1.13t

t

y
π
∆⎡ ⎤

+⎢ ⎥∆⎣ ⎦
 0.21 

0.72 

5 
0.28 0.96 0.57

0.21 0.98 0.76
t

t

y
π
∆− − ⎡ ⎤⎡ ⎤ ⎡ ⎤

≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆ −⎣ ⎦ ⎣ ⎦⎣ ⎦
[ ]5.17 17.5 6.48t

t

y
π
∆⎡ ⎤

+⎢ ⎥∆⎣ ⎦
 0.04 

0.61 
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Figure 4.16.  State space partition for 0.55R =  and 0.8λ = , corresponding rules are 

in Table 4.9, o  represents actual economy data points for period 08Q1-11Q1, +  
represents actual economy data points for period 98Q1:99Q4, solid curve represent 
closed loop response from initial state (-3.7, 1.9), dashed line represents truncated 

solution of unconstrained case. 



 163

Table 4.9.  mpMPC solution and state space partition for 0.55R =  and 0.8λ =  

No. Polytope bounds Interest rate ti∆  Closed-loop
Eigenvalues

1 [ ]0.28 0.96 0.86t

t

y
π
∆⎡ ⎤

− − ≤⎢ ⎥∆⎣ ⎦
 [ ]1.29 4.36 t

t

y
π
∆⎡ ⎤
⎢ ⎥∆⎣ ⎦

 0.56 
0.83 

2 
0.28 0.96 0.86
0.27 0.96 3.70

t

t

y
π
∆ −⎡ ⎤⎡ ⎤ ⎡ ⎤

≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆− −⎣ ⎦ ⎣ ⎦⎣ ⎦
3.9−  

0.58 
1.05 

3 [ ]0.27 0.96 3.70t

t

y
π
∆⎡ ⎤

≤ −⎢ ⎥∆⎣ ⎦
 3.9−  (Infeasible) 

0.58 
1.05 
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Figure 4.17.  State space partition for 0.07R =  and 0.5λ = , corresponding rules are 
in Table 4.10, o  represents actual economy data points for period 08Q1-11Q1, +  

represents actual economy data points for period 98Q1:99Q4, solid curve represent 
closed loop response from initial state (-3.7, 1.9), dashed line represents truncated 

solution of unconstrained case. 
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Table 4.10.  mpMPC solution and state space partition for 0.07R =  and 0.5λ =  

No. Polytope bounds Interest rate ti∆  Closed-loop
Eigenvalues

1 
0.44 0.90 0.49

0.14 0.99 0.72
t

t

y
π
∆− − ⎡ ⎤⎡ ⎤ ⎡ ⎤

≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆−⎣ ⎦ ⎣ ⎦⎣ ⎦
 [ ]3.51 7.11 t

t

y
π
∆⎡ ⎤
⎢ ⎥∆⎣ ⎦

 0.12 
0.84 

2 

0.44 0.90 0.49
0.27 0.96  3.70
0.41 0.91 0.52
0.32 0.95 0.66

t

t

y
π

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∆− − ⎡ ⎤⎢ ⎥ ⎢ ⎥≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆ −⎣ ⎦
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

3.9−  
0.58 
1.05 

3 [ ]0.27 0.96 3.70t

t

y
π
∆⎡ ⎤

≤ −⎢ ⎥∆⎣ ⎦
 3.9−  (Infeasible) 

0.58 
1.05 

4 
0.44 0.91 0.52
0.18 0.98 0.86

0.14 0.99 0.72

t

t

y
π

− −⎡ ⎤ ⎡ ⎤
∆⎡ ⎤⎢ ⎥ ⎢ ⎥− − ≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

[ ]3.67 8.26 0.84t

t

y
π
∆⎡ ⎤

+⎢ ⎥∆⎣ ⎦
 0.12 

0.81 

5 
0.32 0.95 0.66

0.18 0.98 0.86
t

t

y
π
∆− − ⎡ ⎤⎡ ⎤ ⎡ ⎤

≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆− −⎣ ⎦ ⎣ ⎦⎣ ⎦
[ ]4.72 13.95 5.82t

t

y
π
∆⎡ ⎤

+⎢ ⎥∆⎣ ⎦
 0.04 

0.69 
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Figure 4.18.  space partition for 0.55R =  and 0.5λ = , corresponding rules are in 
Table 4.11, o represents actual economy data points for period 08Q1-11Q1, +  

represents actual economy data points for period 98Q1:99Q4, solid curve represent 
closed loop response from initial state (-3.7, 1.9), dashed line represents truncated 

solution of unconstrained case. 
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Table 4.11.  mpMPC solution and state space partition for 0.55R =  and 0.5λ =  
 

No. Polytope bounds Interest rate ti∆  Closed-loop
Eigenvalues

1 
0.31 0.95 1.0
0.29 0.96 1.09
0.27 0.96 1.14

t

t

y
π

− −⎡ ⎤ ⎡ ⎤
∆⎡ ⎤⎢ ⎥ ⎢ ⎥− − ≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆⎣ ⎦⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

 [ ]1.21 3.71 t

t

y
π
∆⎡ ⎤
⎢ ⎥∆⎣ ⎦

 0.53 
0.87 

2 
0.31 0.95 1.00
0.27 0.96 3.70

0.30 0.95 1.04

t

t

y
π

−⎡ ⎤ ⎡ ⎤
∆⎡ ⎤⎢ ⎥ ⎢ ⎥− − ≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

3.9−  
0.58 
1.05 

3 [ ]0.27 0.96 3.70t

t

y
π
∆⎡ ⎤

≤ −⎢ ⎥∆⎣ ⎦
 3.9−  (Infeasible) 

0.58 
1.05 

4 
0.61 0.79 2.03
0 1 4.51
0 1 2.99

t

t

y
π

− −⎡ ⎤ ⎡ ⎤
∆⎡ ⎤⎢ ⎥ ⎢ ⎥− ≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

 [ ]1.4 4.38 0.8t

t

y
π
∆⎡ ⎤

+⎢ ⎥∆⎣ ⎦
 0.53 

0.84 

5 
0.61 0.79 2.03
0 1 4.51
0 1 2.99

t

t

y
π

− −⎡ ⎤ ⎡ ⎤
∆⎡ ⎤⎢ ⎥ ⎢ ⎥− ≤⎢ ⎥⎢ ⎥ ⎢ ⎥∆⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

 [ ]1.77 5.63 2.23t

t

y
π
∆⎡ ⎤

+⎢ ⎥∆⎣ ⎦
 0.51 

0.79 
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 Further comparison of these figures reveals that the optimal rules follow an 

asymmetric pattern for small values of R  (Figure 4.13, Figure 4.15, Figure 4.17), as has 

also been observed in a number of numerical studies with 0R =  (Orphanides and 

Wieland 2000; Kato and Nishiyama 2005; Williams 2006; Taylor and Williams 2010).  

However, this asymmetry practically disappears (i.e.,it would be observable only for 

unrealistically large output gaps) for large values of R  (Figure 4.16, Figure 4.18), 

namely for very sluggish policies. 

 Specifically, for negative output gap, the resulting interest rate value is equal to 

either what a single corresponding Taylor-like rule would produce, if that value were 

positive, or zero when that same Taylor rule would produce a negative value.  While it is 

obvious that a negative interest rate value produced by a Taylor rule cannot be 

implemented, what is shown from the preceding analysis is that a zero value resulting 

from clipping the unconstrained Taylor rule value is optimal.  In addition, for negative 

output gap, when the interest rate is close to zero and future violations of the ZLB are 

anticipated, no more aggressive action is needed;  the same Taylor rule remains optimal. 

 On the other hand, for positive output gap and low inflation, more interesting 

behavior is observed, namely a small number of piecewise linear rules result, 

corresponding to the linear polytopes numbered 4 and above.  These rules become more 

aggressive as the interest rate approaches the ZLB.  This behavior (pre-emptiveness) has 

also been observed in numerical studies (Kato and Nishiyama 2005; Taylor and Williams 

2010, and references therein).  However, in contrast to these numerical simulation 

studies, explicit rules are derived here, and these rules are (piecewise) linear rather than 

nonlinear. 
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4.7.2 Taylor rules with inertia form MPC with ZLB 

For 0.55S =  and 0.5λ = , the resulting piece-wise linear policies and corresponding 

polytopes are shown in Table 4.12.  The parameter space of mpMPC, which is now three-

dimensional, is partitioned in 6 polytopes shown in Figure 4.19.  Polytope 1 corresponds 

to no constraint being active and hence it produces a rule as in eqn. (4.41).  In polytope 2 

the ZLB is active, i.e.,the optimal policy is at zero.  Polytopes 4, 5 and 6 entail rules that 

are different from the Taylor-like rule of polytope 1, in anticipation of future ZLB 

activation.  The infeasibility polytope remains the same.  From Table 4.12 and Figure 

4.19 it can be concluded that in polytopes of low inflation and negative output gap, if the 

lagged interest rate 2 2 2 ( 1) 0y πρ ξφ αξ φ+ − + − >  is high (polytopes 4 and 6), the optimal 

rule becomes less aggressive than the rule in the unconstrained case.  However, for low 

2 2 2 ( 1) 0y πρ ξφ αξ φ+ − + − > , the optimal rule is just a truncation to zero of the 

unconstrained case, eqn. (4.41). Also, in polytope 5, characterized by low inflation, high 

output gap, and high 2 2 2 ( 1) 0y πρ ξφ αξ φ+ − + − > , the optimal rule is more aggressive 

than the rule in the unconstrained case, eqn. (4.41).  Therefore, an important conclusion is 

that for rules with inertia ( 0S > ), the optimal policy becomes asymmetrical with respect 

to both lagged interest rate and output gap for low inflation economic conditions.  
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Figure 4.19.  State-space partition for 0.55S =  and 0.5λ = ; corresponding rules are 

in Table 4.12. 
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Table 4.12.  mpMPC solution and state space partition for 0.55S =  and 0.5λ =  
 

No
. Polytope bounds Interest rate ti∆  

Closed-loop 
Eigenvalues 

1 

1

0.31 0.94 0.16 1.27
0.33 0.95 0.04 0.97
0.29 0.96 0.01 1.21

t

t

t

y

i
π

−

∆− − − ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥∆− − − ≤⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − ∆ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 [ ]
1

0.96 2.88 0.48
t

t

t

y

i
π

−

∆⎡ ⎤
⎢ ⎥∆⎢ ⎥
⎢ ⎥∆⎣ ⎦

 

0.74
0.59 0.20i
0.59 0.20i

+
−

 

2 

1

0.31 0.94 0.16 1.27
0.27 0.96 0 3.70
0.31 0.93 0.19 1.42
0.32 0.92 0.22 1.43

t

t

t

y

i
π

−

−⎡ ⎤ ⎡ ⎤
∆⎡ ⎤⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥∆ ≤⎢ ⎥⎢ ⎥ ⎢ ⎥−

⎢ ⎥∆⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦ ⎣ ⎦

 3.9−  

0.58
1.05
0

 

3 [ ]
1

0.27 0.96 0 3.7
t

t

t

y

i
π

−

∆⎡ ⎤
⎢ ⎥∆ ≤ −⎢ ⎥
⎢ ⎥∆⎣ ⎦

 3.9−  (Infeasible) 

0.58
1.05
0

 

4 

1

0.32 0.92 0.22 1.43
0.28 0.96 0.03 1.33

0.30 0.95 0.04 0.97

t

t

t

y

i
π

−

∆− − − ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥∆− − ≤⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥∆ −⎣ ⎦⎣ ⎦ ⎣ ⎦

 [ ]
1

0.63 1.88 0.44 1.06
t

t

t

y

i
π

−

∆⎡ ⎤
⎢ ⎥∆ −⎢ ⎥
⎢ ⎥∆⎣ ⎦

 

0.87
0.54 0.13i
0.54 0.13i

+
−

 

5 

1

0.31 0.95 0.05 0.89
0.29 0.96 0.01 1.21

t

t

t

y

i
π

−

∆⎡ ⎤
− − −⎡ ⎤ ⎡ ⎤⎢ ⎥∆ ≤⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥∆⎣ ⎦

 [ ]
1

1 3 0.48 0.16
t

t

t

y

i
π

−

∆⎡ ⎤
⎢ ⎥∆ +⎢ ⎥
⎢ ⎥∆⎣ ⎦

 

0.73
0.59 0.21i
0.59 0.21i

+
−

 

6 

1

0.31 0.93 0.19 1.42
0.27 0.96 0.02 3.97
0.31 0.95 0.05 0.89
0.28 0.96 0.03 1.33

t

t

t

y

i
π

−

− − −⎡ ⎤ ⎡ ⎤
∆⎡ ⎤⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥∆ ≤⎢ ⎥⎢ ⎥ ⎢ ⎥−

⎢ ⎥∆⎢ ⎥ ⎢ ⎥⎣ ⎦− −⎣ ⎦ ⎣ ⎦

 [ ]
1

0.71 2.1 0.43 0.69
t

t

t

y

i
π

−

∆⎡ ⎤
⎢ ⎥∆ −⎢ ⎥
⎢ ⎥∆⎣ ⎦

 

0.85
0.54 0.13i
0.54 0.13i

+
−
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4.7.3 Remarks on rules from MPC 

The following can be observed in the results of sections 4.7.1 and 4.7.2. 

• Polytope 1, where no constraint is active, grows in size with increasing R  or S . 

• The policy becomes sluggish and the size of polytopes 2, 4 and higher decreases 

as R  or S  increase. 

• For any MPC formulation, situations may arise in which either a negative interest 

rate would be optimal (when the ZLB is not explicitly included in the 

optimization) or a stabilizing interest rate at or above the ZLB is not feasible 

(when the ZLB is explicitly included in the optimization).  It can be shown 

(Appendix J) that for an economy model such as described by eqns. (4.4)-(4.7) the 

infeasibility polytope is characterized as the set of state values tx  that satisfy the 

inequality 

  u
u *

1

T
T

t
u

i
J

>
−

v Bv x
�� .  (4.54) 

It is clear that the state tx  may satisfy eqn. (4.54) fairly easily for economies with 

low *i , i.e.,such economies at corresponding conditions run the risk of falling 

into the infeasibility polytope where a stabilizing interest rate above the ZLB may 

not exist.  This situation has also been studied in literature numerically (e.g., 

Williams 2009). 

• For tx  in a polytope such that a feasible MPC solution exists but not all of the 

corresponding closed-loop eignevalues are inside the unit disk, the state will 

definitely escape from that polytope and will enter one where stability is 
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guaranteed.  By contrast, for tx  in a polytope such that no feasible MPC solution 

exists and not all of the corresponding closed-loop eigenvalues are inside the unit 

disk, instability will persist.  This is illustrated further in Figure 4.22, discussed 

below. 

• It should be noted that entering into the polytope 2, where the ZLB is active, is an 

alarming situation, as the infeasibility polytope 3 seats next to this polytope.  The 

longer the economy stays at ZLB, the higher the chance of getting into the 

infeasibility polytope (a case of liquidity trap) as a result of sudden adverse 

fluctuations in the economy.  Similar observations have been made through 

numerical simulation (Reifschneider and Williams 2000). 

• In Figure 4.13 through Figure 4.18 real-time economy data are plotted for 

2008Q1:2011Q1. It is clear that from Figure 4.13, Figure 4.15 and Figure 4.17 

( 0.07R = ) that clipping to zero is optimal interest rate for nearly all economic 

points while in Figure 4.14, Figure 4.16 and Figure 4.18 ( 0.55R = ) more of the 

economic data indicate non-zero interest rate due to the policy rule being 

sluggish. 

 

4.8 Closed-loop Simulations 

4.8.1 Illustratiion of proposed approach 

The first set of simulations serves to simply illustrate the effects of ZLB on the closed-

loop system.  Simulations are shown using the rules presented in Table 4.6 through Table 

4.11, as well as the rules with inertia shown in Table 4.12 along with five additional rules 
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with similar structure but different MPC weights R  and S  (not shown in Table 4.12 for 

brevity).  For this set of simulations the economy is considered to be at 3.7y = −  and 

1.9π =  in year 1, corresponding to 2009Q1.  The results are summarized in Figure 4.20 

and Figure 4.21.  The resulting sums of squared errors (discrepancies between actual and 

desired values) are summarized in Table 4.13 and Table 4.14.   

 Based on these simulation results, it is clear that for small values of R  or S , 

optimal interest rate rules are aggressive and more likely to produce interest rate values at 

the ZLB when corresponding conditions arise.  Conversely, increase in the values of R  

or S  results in sluggish response, as expected.  

 
 

Figure 4.20.  Closed-loop simulation for US economy (start point is 2009Q1) for 
0.05λ = . 
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Figure 4.21.  Closed-loop simulation for US economy (start point is 2009Q1) for 
0.8λ = . 

 

Table 4.13.  Sum of squared errors for closed-loop simulations with 0.05λ =  
 

 0, 0.07S R= =  0, 0.55S R= =  0.07, 0S R= =  0.55, 0S R= =  

20 2
2 tt

y
=∑  3.30 4.12 3.29 3.65 

20 2
2
( 2)tt
π

=
−∑  7.21 6.69 7.22 6.52 

19 2
1
( 3.9)tt
i

=
−∑  54.5 53.2 54.4 54.3 

19 2
11

( )t tt
i i −=
−∑  3.63 1.52 3.32 1.54 
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Table 4.14.  Sum of squared errors for closed-loop simulations with 0.8λ =  

 0, 0.07S R= =  0, 0.55S R= =  0.07, 0S R= =  0.55, 0S R= =  

20 2
2 tt

y
=∑  7.14 5.75 7.43 7.99 

20 2
2
( 2)tt
π

=
−∑  3.02 3.72 2.97 2.93 

19 2
1
( 3.9)tt
i

=
−∑  84.0 71.2 85.8 88.4 

19 2
11

( )t tt
i i −=
−∑  4.27 1.43 3.59 2.47 

 

 The second set of simulations illustrates a liquidity trap case.  Figure 4.22, shows 

state-space partition for 0.07R =  and 0.5λ = .  Two different initial conditions of the 

economy are considered.  For the first case we let the initial point be 1 7.1y = − , 1 1.5π =  

(2009Q3), which lies in polytope 2 in Figure 4.22 and hence the corresponding optimal 

interest rate is zero.  For the second case we let 1 7.1y = − , 1 0π = , which lies inside the 

infeasibility polytope 3, namely no non-negative interest rate can stabilize the economy at 

that point.  A zero interest rate alone results in an unstable closed loop.  The only way to 

stabilize the closed loop would be through additional external stimulus.  Given the fact 

that it is practically difficult to exactly quantify the polytope of liquidity trap, the central 

back should focus on external stimulus as soon as the ZLB is reached.  Closed-loop 

simulations, the results of which are shown in  

 

Figure 4.23, confirm the preceding assertions for both cases.  It is also interesting to note 

that even though the interest rate in the first case is stabilizing, recovery of the economy 
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is very slow due to the effect of ZLB (inflation stabilization, in particular, takes many 

years). 

 
 

Figure 4.22.  Closed-loop simulation for ( ),y π =(-7.1, 1.5) 2009Q3 and ( ),y π =(-7.0, 
0) virtual point for 0.07R = , 0.5λ = . The later state lies in infeasibility polytope 

and no positive interest rate can stabilize the closed loop. 
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Figure 4.23.  Closed-loop simulation for Figure 4.22. 
 

4.8.2 Comparison with historical data 
 
We use real-time data available to the central bank at the time of making a decision on 

the interest rate, for the period 1987Q4:2008Q4.  For output gap we use Greenbook data 

over the period 1987Q4:2005Q4;  for the remaining period we consider CBO data 

(Nikolsko-Rzhevskyy and Papell 2011).  The real-time inflation data is also taken from 

the same publication. 

 We focus on the interest rate rule with inertia, eqn. (4.38), with * 1.9r =  and 

* 2π = .  Since the coefficients yφ , πφ  and iφ  are functions of the weights S  and λ  as 

given by eqns. (4.42)-(4.44), these weights and corresponding coefficients are estimated 
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using regression to fit the historical data.  Estimated values over the entire period of data 

are shown in Table 4.15.  Figure 4.24 (and Figure 4.25) compares the interest rate 

resulting from fitting eqn. (4.38) to the interest rate implemented, as well as to the interest 

rate suggested by the standard Taylor rule (eqn. (4.1) with 0.5yφ = , 1.5πφ = ), and by the 

Taylor rule with values fitted over the entire period of data examined (eqn. (4.1) with 

0.77yφ = , 2.0πφ = ).  It is clear that the inertial rule captures the central bank decisions 

better, as also demonstrated by the residuals shown in Figure 4.26.   

 

Table 4.15.  Inertial Policy estimation for US interest rate rule based on real-time 

data.  Standard deviations are reported in brackets. 

 Period S  λ  yφ  πφ  iφ  iπφ φ+

 1987Q4:2008Q4 0.83(0.23) 0.09(0.03) 0.29 0.71 0.62 1.33 

1 1987Q4:1999Q4 1.1(0.43) 0.10(0.06) 0.24 0.67 0.64 1.31 

2a 2000Q1:2004Q4 0.15(0.08) -0.07(0.03) 0.66 0.13 0.47 0.60 

2b 2000Q1:2004Q4 0.3 0 0.48 0.60 0.55 1.15 

3 2005Q1:2008Q4 0.44(0.26) 0.16(0.1) 0.53 1.25 0.55 1.80 

 

 



 180

 
 

Figure 4.24.  Federal funds rate, standard Taylor rule, fitted inertial and fitted 
Taylor rules (fitting period 1987Q4: 2008Q4) for period 1987Q4: 2011Q1.  Note that 

the interest rate reduction in 2008 suggested by the inertial Taylor rule is more 
drastic than that suggested by the standard Taylor rule.  Note also that the actual 

interest rate over the period 2002-2005 is captured fairly well by the inertial Taylor 
rule, while the standard Taylor rule produces significantly larger values, as has been 

studied extensively by Taylor (Taylor 2009). 
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Figure 4.25.  Magnified view of Figure 4.24 when interest rates are near zero. 
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Figure 4.26.  Residuals for policies in Figure 4.24 for fitting period 1987Q4: 2008Q4 
 

It is also interesting to examine whether additional insight may be gained by 

fitting data over short periods for which large residuals result from fitting the entire data 

set.  One such period with large residuals is 2000Q1:2004Q4.  Table 4.15 (line 2a) 

suggests that this period may be problematic, in that the corresponding inertial rule, if 

applicable, is not stabilizing, i.e.,the fitted value of iπφ φ+  is greater than 1, thus violating 

the closed-loop stability condition in eqn. (4.47).  In fact, it is dubious whether the same 

objective as on the average was used over that period, since the value of λ  fitted over 

that period is negative, hence unacceptable.  Constrained fitting (i.e., enforcing 0 1λ≤ ≤ ) 

produces parameter values that do correspond to a stabilizing rule (Table 4.15, line 2b) 
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but nonetheless places all emphasis on output gap (growth).  The actual policy 

implemented over that period and its role on stimulating over-expansion of the economy 

has been the subject of intense discussion (Taylor 2009). 

 

4.9 Conclusions 

The main issue addressed in this work is the effect of zero lower bound on the optimal 

interest rate determined by a central bank.  We address this issue in a multi-parametric 

model predictive control (mpMPC) framework, which allows the derivation of explicit 

feedback rules even when inequality constraints are present.  Application of this 

framework to a simple model of the US economy produced a number of Taylor-like 

rules, depending on the form and parameter values in the objective function employed by 

MPC.  The results suggest that a small number of simple Taylor-like rules can be applied 

at each time, depending on the state of the economy.  However, it was also shown that 

simply setting to zero negative interest rates produced by unconstrained Taylor rules is 

optimal in situations of negative output gap, as happened recently.  Furthermore, it was 

observed, as has been noted elsewhere, that rules with inertia appear to better capture past 

decisions by the Central bank.  Such rules have been systematically derived here by 

considering penalties on the rate of interest rate change in the MPC objective function. 
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CHAPTER 5 

5CONCLUSIONS AND FUTURE DIRECTIONS 

The main results of this research work and the scope for future work are summarized 

below: 

 First part of this research work has demonstrated how linear control can be 

designed for a nonlinear industrial process.  A theoretical framework is developed for 

controller design for a nonlinear process with input disturbances.  Main result of this 

work is a stability criterion for open loop stable nonlinear process which is given by 

  ( ) 1
E

N L Q
∆

− < . (5.1) 

Eqn. (5.1) has similar expression as developed by (Eker and Nikolaou 2000; Nikolaou 

and Misra 2003) for robust controller synthesis.  However, it has been found that size of 

set E  also play significant role to govern the stability of closed loop which was not found 

to be critical in earlier research.  An iterative computational approach is presented here to 

calculate ( )
E

N L Q
∆

− .  A simulation case study has been shown for an industrial NOx 

reduction unit which is required to operate in rich fuel conditions.  The proposed 

framework is used to gain useful insight into linear controller design.  The key for linear 

controller design is that (a) control has to be tight enough (i.e., the controller gain should 

be large enough) to ensure that the process does not escape far from the desired set-point 

trajectory and reversal of the steady-state gain is not realized, hence closed-loop is stable, 

and (b) control must not be too tight (i.e., the controller gain should not be too high) to 

avoid potential problems such as instability and lack of robustness.  Therefore present 

study put an emphasis that excessive detuning of linear controller should be avoided and 
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detuning is limited by nonlinearity of process.  The work presented here can be extended 

in a number of ways, to address issues such as the following: 

• How does the proposed approach perform on multivariable systems? 

• Can closed-loop performance be improved appreciably by automatically detecting 

in real time when aggressive or sluggish control action can be taken and by 

adapting controller action accordingly? 

• Could nonlinear controller design provide appreciable performance improvements 

and be robust enough for practical use in the absence of a detailed nonlinear 

model of the controlled process? 

 
In second part the focus is an industrial process which suffers with bottlenecking 

of level control in three tanks in series.  It has been found that conventional feedback 

scheme is not able to provide desired control performance.  To debottleneck the system, a 

new control scheme is proposed based on multivariate control structure and it is designed 

in such a way so that at the same time inventory capacity of all tanks can be utilized to 

reject sinusoidal or step disturbances.  The scheme basically transforms a system of tanks 

in series into a single tank of larger inventory and hence provides additional flexibility to 

reject disturbance and achieving flow attenuation.  The control scheme can easily be 

extended to N  tank in series as given by eqn. (3.18).  Control tuning charts are prepared 

based on tank level constraints for the step and sinusoidal disturbances.  Computer 

simulations have verified the control performance of proposed scheme is better than 

conventional feedback scheme.  Finally proposed control scheme has been implemented 

in real plant and much better control performance was reported.  Further, an effort has 

been made to derive the optimal control structure based on numerical optimization which 
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minimizes the desired control objective.  The formuletd minimization porblom is non 

convex in nature and the solution to the optimization problem is diffucult to obtain.  

Finally, feedforward action is also included in proposed scheme.  It has been found that 

in general proposed scheme is much easier to tune and has better performance for 

sinusoidal disturbances of various frequencies in compare to conventional feedback 

feedforward scheme. 

 
In third part an effort has been made to derive optimal interest rate rules when 

interest rates determined by a central bank are subject to a zero lower bound.  Particularly 

these questions are answered, (a) how a zero lower bound on interest rate affects the 

optimal interest rate rule, (b) can interest rate rules be interpreted as a linear rule similar 

to Taylor rule in presence of ZLB constraint, (c) how interest rate rule coefficients 

depend on various weights in central bank’s objective function.  Earlier research works 

have tried to address these questions on ad-hoc basis or as a solution to optimization 

problem with the help of dynamic programming.  In this research work answers to these 

questions are addressed in mpMPC framework which allows the derivation of explicit 

feedback rules even when inequality constraints are present.  An application to proposed 

framework is shown using a linear dynamic model of US economy. 

The investigations with mpMPC have revealed that when economy is near to 

ZLB, interest rate rule can deviate from the solution of unconstrained case in anticipation 

that future interest rates can be constrained.  On one side large negative output gap results 

in “zero” as optimal interest rate rule and another side in case of positive output gap we 

observe interest rate rule becomes more aggressive than unconstrained case.  mpMPC 

results in explicit rules which are small in number and follow the same form as Taylor 
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rule eqn (4.36).  Such rules help policy makers to understand how to adopt interest rate 

when economy is near ZLB.  As discussed (Williams 2009) that ad-hoc rules suffers with 

practical problem that public may get confused.  mpMPC is systematic way to derive 

optimal rules and hence eliminate possibility of confusion.  Further, the present work also 

creates the basis for the some of the ad-hoc rules (various truncation rules) being optimal 

for some particular choice of weights in optimization problem. 

The mpMPC frame-work provides explicit interest rate rules which create a link 

between weights in objective function and resulted interest rate rules.  The investigations 

with actual interest rate applied by central bank have revealed that there is a significant 

amount of inertia present in the interest rate rules adopted by central bank.  It is found 

that interest rates are not changed in aggressive manner expect in recent few years when 

economy reached near ZLB (Table 4.15).  This suggests that central bank operates in dual 

mode, i.e., it has long term and short term objectives.  In case of emergency if central 

bank realizes that inflation or output gap need to be stabilized they modify their 

preference based on their choice (more weight on output or inflation or interest rate 

smoothing).  It is evident that mpMPC provides a practical framework for central bank to 

determine how to modify (eqns. (4.25) and (4.26);  eqns. (4.42)-(4.44)) Taylor rules 

based on policy preference and presence of ZLB. 

A number of issues touched in this work warrant further investigation, such as the 

following: 

• The inverse problem:  Given a suggested Taylor-like rule, what objective 

function, as in eqn. (4.11), is minimized?  A promising approach is suggested in 

section 4.3.1.5. 
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• Robust stability and performance:  There is a vast body of work in the automatic 

control community addressing the robustness issue, namely how a controller 

performs when the model assumed in controller design has quantifiable 

uncertainty. 

• Modeling and selection of controlled variables:  Should the pair output gap and 

inflation be the main focus or could variables such unemployment (Orphanides 

and Williams 2007) be central in controlling an economy? 

• Policy adaptation:  The main attractiveness of a fixed rule is its simplicity and 

predictability (Williams 2009).  However, such a rule may become sub-optimal 

over time, as the economy or disturbance models change (Orphanides 2003).  Can 

a fixed rule be replaced by a fixed rule adaptation policy that maintains 

robustness? 

We hope to address the above issues in forthcoming publications. 
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7APPENDICES 

Appendix A.  Background on nonlinear operators (Willems 1971) (Desoer and 

Vidyasagar 1975) 

 

The norm and incremental norm of a nonlinear operator :  N U Y→  over a set V U⊆  

are defined as, 

  
0

supV
u V
u

Nu
N

u∈
≠

= , (A.1) 

and 

  
1 2
1 2

1 2

, 1 2

supV
u u V
u u

Nu Nu
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u u∆
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≠

−
=

−
, (A.2) 

respectively.  The norm function considered here for the right-hand sides of above two 

equations defined on the spaces U  and Y  is 

  
N

( ) if  1
ˆ sup ( ) if  

p

S

t S

x t dt p
x

x t p
∈

⎧ ≥⎪= ⎨ = ∞⎪
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∫
,  (A.3) 

where ( )x t  denotes any norm of the vector ( )x t .  In present work norms are calculated 

for 2p = . 

 

 An operator :  :N U Y u y Nu→ =6  is finite-gain stable if there exists a 

constant k < ∞ , such that, 

  y k u≤ . (A.4) 
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Appendix B.  Proof of Theorem 1 

For the closed-loop structure shown in Figure 2.6, it is clear that  
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If  

  ( ) 1 1ˆ N L S Qγ = − < , (B.2) 

then the above eqn. (B.1) implies 

  1 2
1 1

U
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e
γ
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 Using the above inequality and the fact that 2 2 2 1 1e S u S Qe= +  (Figure 2.6) it 

follows immediately that 
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where the linear operator Q  is assumed to be stable.  

 Together, eqns. (B.3) and (B.4) imply that the closed loop is finite-gain stable. 
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Appendix C.  Justification of control scheme 

 

The transfer functions from inF  to 1F  and 2F  are 

   1 I,1
in 1

I,1 2
I,1

,1

( 1)

1
c

A s s
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s s
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and  
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s s
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respectively.  The corresponding frequency responses have high-frequency asymptotes 

,1cK−  and ,1 ,2c cK K , with break frequencies 1 I,1

,1c

A
K
τ

−
 and 1 I,1 2 I,2

,1 ,2

,
c c

A A
K K
τ τ⎧ ⎫⎪ ⎪

⎨ ⎬− −⎪ ⎪⎩ ⎭
, 

respectively.  For ,1 ,2 1c cK K− ≈ − ≈  fluctuations in the disturbance inF  create comparable 

high-frequency fluctuations in 1F  and 2F . 
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Appendix D.  Control design of RLCs 

Controller design for first RLC 

Refering to Figure 3.6 closed-loop for first RLC is given by, 
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Let us assume that 3 2 2L Y L≈� �  and 3 3 3( )L L L′∆ ≈ ∆ = ∆ � .  Using eqn. (D.1) and eqn. (3.20) 

yields, 
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At steady state ampltitude ratio of 1L∆ �  to 3L∆ �  is given by  
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If  
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and 
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are satisfied eqn. (D.4) can be approximated by  
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 Thus eqn. (D.5)-(D.7) are tuning rules for first RLC. 

 

Controller design for seond RLC 

Refering to Figure 3.6 closed-loop for second RLC is given by 
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Using eqn. (D.1) and (D.9) yields, 
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With the assumption that 3 3 3( )L L L′∆ ≈ ∆ = ∆ � , using eqn. (3.20), 
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The amplitude ratio of 2L∆ �  to 3L∆ �  is given by 
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If 1 ,1
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cY K
Aω

τ ω
�  which is same as eqn. (D.6) and  
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are satisfied, the amplitude ratio of 2L∆ �  to 3L∆ �  is given by 
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Thus eqn. (D.13)-(D.15) are tuning rules for second RLC. 
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Appendix E.  mpMPC formulation for Taylor rules 

Based on the optimization function in eqn. (4.11) and the method discussed in Muske and 

Rawlings (1993) with discount factor β , the terminal penalty weight matrix Q  is 

  
0

iT i i

i
β

∞

=

=∑Q A QA . (E.1) 

Since the unstable mode is constrained to be zero at time k N+ , it follows that 
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From eqns. (E.2) and (E.3) it follows that 
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Further, eqn. (4.14) along with eqn. (4.15) results in 
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and the optimization variable mu  contains the first 1m −  elements of u . 

 Using eqns. (4.12) and (4.15) for the case when k m>  yields 
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 Using eqns. (E.5) and (E.7) yields 
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⎝ ⎠⎪⎝ ⎠= ⎨ < ≤⎪

⎪ < >⎩

∑A A B
h

A B

A A
A

A
A A

A

A

A

, (E.9) 

  

2 ( 1)
,1 , 1

,

......

for 

for 

m
k k k m

k
k k l T

mk
k

k m

k m

× −
−

−

=

⎡ ⎤= ∈ℜ⎣ ⎦
⎧ + ≥⎪= ⎨
⎪ <⎩

∑

f f f

A A Ba
f

A
AA

, (E.10) 

  ( 1) ( 1)
,1 , 1...... m m

k k k m
− × −

−⎡ ⎤= ∈ℜ⎣ ⎦h h h . (E.11) 

Substituting eqns (E.8)-(E.11) into eqn. (4.11) with 0S =  yields eqn. (4.22). 

 The solution to eqn. (4.22) is 

  1 T
m t

−= −u H F x . (E.12) 

where 

  
11

2

1 1

m NN
T k T N T
k k N N R

k
R β ββ β

β

−−

=

⎛ ⎞−
= + + +⎜ ⎟−⎝ ⎠
∑H h Qh h Qh bb D , (E.13) 

  2diag 1 . .ˆ m
R β β −⎡ ⎤= ⎣ ⎦D , (E.14) 

  
11

2

1 1

m NN
T k T N T
k k N N

k

R β ββ β
β

−−

=

−⎛ ⎞= + +⎜ ⎟ −⎝ ⎠
∑F f Qh f Qh ab . (E.15) 
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Appendix F.  Closed-loop stability for Taylor rule  

The standard Taylor rule can be written as 

  T
t tu = c x , (F.1) 

where T
y πφ φ⎡ ⎤⎣ ⎦c � .  

 The characteristic equation for the matrix CLA  in eqn. (4.28) is given by  

  ( ) ( )2( ) 1 y yf πµ µ ρ αξ ξφ αξφ µ ρ ξφ− + + − − + −� , (F.2) 

where µ  is an eigenvalue of the matrix CLA .  For closed-loop stability the eigenvalues of 

the matrix CLA  should lie inside the unit disk, which is guaranteed (by the Jury-Routh–

Hurwitz stability criterion) if and only if 

  2 2 2 ( 1) 0y πρ ξφ αξ φ+ − + − > , (F.3) 

  1 ( 1) 0y πρ ξφ αξ φ− + − − > , (F.4) 

  ( 1) 0παξ φ − > .  (F.5) 

Given that 0αξ > , eqn. (F.5) is satisfied if and only if 1πφ > . 
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Appendix G.  mpMPC formulation for Taylor rules with inertia 

Using the equality constraints in Appendix E, the ZLB constraint given in eqn. (4.16) can 

be written as, 

  m t≤ +Gu w Ex , (G.1) 

where ˆ T

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

I
G

b
; I  is the identity matrix in ( 1) ( 1)m m− × −ℜ ; [ ]* *ˆ T mi i= ∈ℜw " ; 

T

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Θ
E

a
;  ( 1) 20 0

0 0

T
m− ×⎡ ⎤

= ∈ℜ⎢ ⎥
⎣ ⎦

Θ
"
"

.  Therefore, the optimization problem eqn. (4.22) 

subject to the constraint eqn. (G.1) can be formulated as  

  1min
2

T

z
z Hz , (G.2) 

  t≤ +Gz w Dx , (G.3) 

where 1ˆ T
m t

−= +z u H F x , 1ˆ T−= +D E GH F . 
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Appendix H.  mpMPC formulation for Taylor rules with inertia 

Adopting the same approach as shown in Appendix E, a similar kind of expression for the 

optimization problem set-up in eqn. (4.11) can be derived when 0S >  as  

  1 1min
2 2m

T T T
m m t m t t

⎡ ⎤+ +⎢ ⎥⎣ ⎦u
u Hu x Fu x Yx� � �� � � , (H.1) 

where, 

  

1

ˆ
t

t t

t

y

u
π

−

∆⎡ ⎤
⎢ ⎥= ∆⎢ ⎥
⎢ ⎥∆⎣ ⎦

x� , (H.2) 

  
( )( )( )

1

1 1
1

2 1 1
0 0 0

N
T k T N

m m k k N N
k

Tm N TS

β β

β β

−

− × −
=

− −

= + +

− − + +

∑H h Qh h Qh

b b b b bb S

�
, (H.3) 

 where [ ] 1
0 0 0 1 T m−= ∈ℜb " , ( 1) ( 1)

0
m m− × −∈ℜS  is given by,  

  

( )1
,

2
,

0 ,
,

,

1 , , 1

, , 1

, 1

0, 1

i
i j

m
i j

i j
i j

i j

s i j i m

s i j i m
s

s i j

s i j

β β

β

β

−

−

⎧ = + = ≠ −
⎪

= = = −⎪
⎡ ⎤ ⎨⎣ ⎦ = − − =⎪

⎪ = − >⎩

S � , (H.4) 

and 

  
( )( )

1
2 1 1

0
1

3 1
2

2

,0.......0

N
TT T m N T

k k N N
k

m

m

S

S

β β
−

− −

=
× −

−

⎡ ⎤⎛ ⎞ ⎡ ⎤+ + − +⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠= ⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

∑ f Qh f Qh a b b b
F�

�	

. (H.5) 

When there is no inequality constraint, the solution to eqn. (H.1) is given by  

  1 T
m t

−= −u H F x� � � . (H.6) 
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ZLB constraint given by eqn. (4.16) is equivalent to,  

  m t≤ +Gu w Ex� � , (H.7) 

where [ ]0=E E E�  and [ ]0 0 0 T m= ∈ℜE " .  Eqns. (H.1) and (H.7) can be 

formulated as, 

  1min
2

T

z
z Hz

�
�� � , (H.8) 

  t≤ +Gz w Dx�� � , (H.9) 

where 1ˆ T
m t

−= +z u H F x� �� � , 1ˆ T−= +D E GH F� � � � .  Eqn. (H.8) and inequality constraints eqn. 

(H.9) are used for mpMPC formulation to derive explicit inertia-based Taylor rules with 

ZLB constraints. 
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Appendix I.  Closed-loop stability for inertial Taylor-like rule  

The interest rate rule is 

  1
T

t i t tu uφ −= + c x , (I.1) 

The characteristic equation for the matrix CLA�  is given by  

  
( )
( ) ( )( ) ( )

3 2( ) 1

1 1

y i

y i i

f

π

µ µ ρ ξφ φ µ

ρ ξφ ρ φ αξ φ µ ρ αξ φ

− + − +

+ − + + − − − −

� �
. (I.2) 

Closed-loop stability is guaranteed (by the Jury-Routh–Hurwitz stability criterion) if and 

only if 

  2 2 2 (1 ) 2 (1 ) 0i i y i πφ ρ φ ξφ αξ φ φ+ + + − − + − > ,  (I.3) 

  4 4 (1 3 ) 0i i πρφ αξ φ φ− + + − > , (I.4) 

  2 2 2 ( 1 ) 2 (1 3 ) 0i i y i πφ ρ φ ξφ αξ φ φ− + − + + + − − > , (I.5) 

  ( 1) 0iπαξ φ φ+ − > , (I.6) 

  
( ) ( )( )( )
( ) ( )( )

2

2

8 1 1

1 2 1 1 0

i i i i y

i i y π

αξφ ρφ ρ ρφ φ ξφ

αξ ρ φ φ ρ ξφ φ

− + − − + − +

+ − + + − + − >
, (I.7) 



 212

Appendix J.  Infeasibility polytope  

The model decomposition of A  is represented by, 

  uu1
u s

ss

0
0

T

T

J
J

−
⎡ ⎤⎡ ⎤ ⎡ ⎤

= = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦

v
A VJV v v

v
�
�  (J.1) 

where 

  
21 (1 ) 4

1
2uJ

ρ ρ αξ+ + − +
= >  (J.2) 

  
2

s
1 (1 ) 4

1
2

J
ρ ρ αξ+ − − +

= <  (J.3) 

Eqns. (J.1) and (4.8) imply 

  
1

1 1 1
1

0

ˆ
k

k
tt k t t k tu

−
− − −

+ + − −
=

= +∑V x J V B J V xA
A

A
 (J.4) 

From eqn. (J.4) stable and unstable modes can be treated separately.  In terms of the 

unstable mode 

  
1

u u u1
0

ˆ
k

T T k T
u u tt k t t k tJ u J

−

+ + − −
=

= +∑v x v B v xA
A

A

� � �  (J.5) 

If tx  lies in the polytope of attraction, then 

   u ˆlim 0T
k t k t→∞ + =v x�  (J.6) 

and 

  
1

u u 1
0

k
T k T

t u u t k tJ J u
−

−
+ − −

=

= − ∑v x v BA
A

A

� �  (J.7) 

since 1 *t k tu i+ − −− ≤A . 
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 The polytope of attraction is given by 

  
1

u u
0

lim *
k

T k T
t k uJ i

= −
−

→∞
=

⎛ ⎞≤ ⎜ ⎟
⎝ ⎠
∑v x v B
A

A

A

� � ⇒ u
u *

1

T
T

t
u

i
J

≤
−

v Bv x
�� . (J.8) 

 Hence the infeasibility polytope is characterized by, 

  u
u *

1

T
T

t
u

i
J

>
−

v Bv x
�� . (J.9) 

Similarly, in the case of inertial policy the above exercise can be repeated and the 

counterpart of eqn. (J.8) can be derived. 


