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ABSTRACT
We present new connections among anomalous diffu-

sion (AD), normal diffusion (ND) and the Central Limit
Theorem (CLT). This is done by defining new canoni-
cal Cartesian-like position and Cartesian-like momentum
variables and canonically quantizing these according to
Dirac to define generalized negative semi-definite and self-
adjoint Laplacian operators. These lead to new general-
ized Fourier transformations (GFT) and associated gener-
alized probability distributions, which are form invariant
under the corresponding transform. The new Laplacians
also lead us to postulate generalized diffusion equations
(GDE), which imply a connection to the CLT. We show that
the derived diffusion equations have the O’Shaughnessy-
Procaccia equations (OPE) as a special case. We also show
that AD in the original, physical position is actually ND
when viewed in terms of displacements in an appropri-
ately transformed position variable. These tools allow us
to prove the CLT for this class of diffusion equations.

THEORY
The physical interpretation of the CLT has its origins in

Einstein’s work on Brownian motion. In it he assumed the
motion of particles to be random and modeled on discrete
space-time, with the position being the sum of indepen-
dent identically distributed (iid) variables and then taking
the continuum limit, thus invoking the CLT, leading to a
Gaussian distribution. An assumption that may be unwar-
ranted was the independence of the variables and the equal
weight given to various configurations, these assumptions
becoming very relevant in the study of strongly correlated
systems, open systems, long range systems, and in the sub-
ject of this poster, anomalous diffusion. Our method of
attack uses generalized FTs and eigenfunctions suited to
study these systems the main of which being the Φn trans-
form [1]

Φng(ω) =

∫
R
ϕn(ωt)g(t) dt

whereϕn(ωt) ≡ cn(ωt)+isn(ωt) and the real and imaginary
parts are given by
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where Jν(x) is the Bessel function of the first kind of order
ν. In the case ν = 1 we obtain the usual FT. What’s useful
is that the kernel of this integral transform give the eigen-
functions of the laplacian − d
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to define the GDE. To fully prove the CLT though we will
need a second family of transforms.

APPLICATIONS AND FUTURE RESEARCH
Given the results presented we have a few major direc-

tions in which we want to generalized our work:

1. Extending the presented procedure to more general
anomalous diffusion processes, including those with
nonlinear characteristics.

2. Establishing the analogous thermodynamic results
and interpretations for these processes (entropy, gen-
eralized statistics, and the like).

3. The exploration of the theory behind these families of
transforms and their connection with quantum me-
chanics.

THEORY CONT.
The second family of transforms, or the canonical FT,

was derived using a canonical transform to obtain new
variables that were then used to build the transform. The
integral transform is of the form

FW f(ω) =
1√
2π

∫
R
f(t)e−iW (ω)W (t)W ′(t) dt

with W (x) being a canonical transform constructed as a bi-
jective polynomial. When W (x) = x this is again the stan-
dard FT.

In classical mechanics a standard technique to solving
difficult problems is via the canonical transform in which
variables are transformed such that x → W (x) and p →
PW subject to the constraint {W,PW } = 1. Another way
to think about such a procedure is that when dealing with
anomalous phenomena it is better to look at the problem
from the perspective of generalized variables, with integral
transforms presented here doing just that.

Some of the properties of these families are as follows:

1. Both the Φn and canonical Fourier transforms are uni-
tary thus preserving the L2 norm.

2. (Φn)4f(t) = f(t) and (FW )4f(t) = f(t) so that both
transforms have eigenvalues +1,+i,−1,−i.

3. The eigenfunctions of the two transform form a com-
plete basis and are dense in L2(R)

4. Both families of transforms have uncertainty princi-
ples of the form ∆T∆Ω ≥ 1

2 . Notably this also estab-
lishes previously conjectured results about the uncer-
tainty principle of the Fourier-Bessel transform.

The two transforms together allowed us to solve the
GDE ∂

∂tf(η, t) = − ∂
∂η
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about the solutions such as the CLT. They also provide
the tools necessary to numerically evaluate nonlinear equa-
tions of the form ∂
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how this connects to more widely studied GDEs consider
the OPE
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By substituting W (r) = rd we have
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Where α = 2+θ
2d . From here we are able to solve the OPE

and use the canonical FT to establish the CLT for the attrac-
tor solution to this equation using standard fourier tech-
niques [3][4].
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Figure 1: Plot of the real

and imaginary parts of eiωt

for ω = 1.

Figure 2: Plot of the real

and imaginary parts of ϕ2

for ω = 1.

Figure 3: Plot of the func-
tion exp(−ω
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6 ). Figure 4: Plot of the real
and imaginary parts of
exp(−iω3).
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