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ABSTRACT

Data from population measurements of gene network dynamics have shown that cells exhibit vari-

ability even in clonal lines. A reliable mathematical reconstruction of a biological process requires

the inference of parameters characterizing this process in a single cell while considering the observed

heterogeneity of the population from which data was obtained. Parameter inference, however, is

complicated by the fact the outcomes of constituent reactions in a gene circuit are only partially

observed in time or are detected indirectly in experiments. One approach is to replace unobserved

reactions with time delays, a technique that also simplifies inference through the reduction of model

dimension. This simplification, however, results in a non-Markovian model that requires the devel-

opment of new inference methods. Here, we propose a hierarchical Bayesian inference framework

for quantifying the variability of cellular processes within and across cells in a population in a

non-Markovian setting, such as a reaction system with delays. We demonstrate our framework

using a delayed birth-death process with birth delays which are either fixed or distributed, and

show that a model with distributed delays is better when dealing with experimental systems since

inference assuming fixed delays lead to underestimation when the true delays are variable. Using

synthetic and experimental data, we show that the proposed hierarchical framework is robust and

leads to improved estimates as compared to its non-hierarchical analog. We apply our method to

data obtained using time-lapse microscopy and infer the parameters that describe the dynamics of

fluorescent protein production at the individual cell and population level.
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1 Introduction

No two biological systems are exactly alike. The same principle applies, in a fundamental level, to

cells and cellular processes that are inherently variable, not only in time, but also across individuals

in a population. While each cell in a population is unique, we expect typical cells to exhibit a range

of predictable behaviors when presented with the same stimulus. Hence, a detailed understanding

of cellular behaviors requires a characterization of the observed variability within and across cells, as

well as the quantification of how features of cellular processes covary with phenotype and genotype.

The estimation of such covariability often involves the analysis of time series of measurements

from different cells across a clonal population [33, 47, 87]. These observations must be paired

with an inference framework that can extract features from individual cell processes, and can

explain the cell-to-cell variability of these features. In this study, we aim to develop such an

inference framework: a mathematically principled approach to infer individual- and population-

level properties from a collection of observations of a cell population.

Before we detail how we propose to do inference, we first look at appropriate representations

of the type of processes that we will analyze in this study. Biochemical processes, such as those

occurring in cells like protein production and gene regulation, are stochastic in nature [58]. The

stochasticity in these processes can be attributed to extrinsic noise sources brought by the inter-

action of a cell with its environment [9], or to intrinsic noise of the chemical reactions which are

particularly prominent at low reactant concentrations [39]. Some stochastic phenomena, such as

noise–induced bistability [55], cannot be captured by deterministic chemical rate equation models,

and appropriate representations of these processes must be used for analysis. One such approach is

to model by a biochemical reaction network (BCRN) that is endowed by a kinetics describing the

rate at which reactions occur.

A BCRN describes the evolution of u species Y1, Y2, . . . , Yu, in a volume or domain, through

1



a set of v chemical reactions R1, R2, . . . , Rv. We represent this system as:

R1 : p11Y1 + p12Y2 + . . .+ p1uYu → q11Y1 + q12Y2 + . . .+ q1uYu

R2 : p21Y1 + p22Y2 + . . .+ p2uYu → q21Y1 + q22Y2 + . . .+ q2uYu

...

Rv : pv1Y1 + pv2Y2 + . . .+ pvuYu → qv1Y1 + qv2Y2 + . . .+ qvuYu

(1)

where pkj is the stoichiometric constant associated with reactant j in reaction k, and qkj is the

stoichiometric constant associated with product j in reaction k. Given a vector of molecular counts

of all chemical species at time t, denoted y (t) = (y1 (t) , y2 (t) , . . . , yu (t)), for each reaction Rk,

there is a stochastic rate constant θk and function hk(y(t), θk) that describes the instantaneous

hazard of reaction Rk occurring under some kinetic law. Hence, in a sufficiently small time interval

(t, t+∆t], the probability of reaction k occurring is

P (reaction k occurs in (t, t+∆t]) = hk(y(t), θk)∆t+ o(∆t).

A common assumption about the system described by a BCRN is that the chemical species

are well-mixed and equally likely to be found anywhere in the domain. This assumption leads to

mass-action kinetics in which the rate of a chemical reaction is proportional to the concentrations

of its substrates raised to the power of its stoichiometry [27, 85]. Specifically, the reaction hazard

for reaction k takes the form

hk (y (t) , θk) = θk

u∏
j=1

[yj (t)]
pkj .

As an example, let us look at Michaelis-Menten kinetics [63] that describes a catalytic reaction

which involves the chemical species E, S, ES, and P , respectively pertaining to the enzyme,

substrate, enzyme-substrate complex, and the product. The following reaction system models the

reversible binding of the enzyme E to the substrate S to form a complex ES, and the eventual
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production of P that consumes S and releases E:

R1 : E + S
θ1−−−−→ ES

R2 : ES
θ2−−−−→ E + S

R3 : ES
θ3−−−−→ E + P.

Here, the stochastic rate constants are θ1, θ2, and θ3. Given the vector of molecular counts at time

t, y(t) = (E(t), S(t), ES(t), P (t)), the resulting reaction hazards are

h1 (y(t), θ1) = θ1E(t)S(t)

h2 (y(t), θ2) = θ2ES(t)

h3 (y(t), θ3) = θ3ES(t).

Since the probability of a reaction occurring is determined by the collection of reaction hazards

hk (y(t), θk), then it can be shown that at time t, the time to the next reaction is exponentially

distributed with rate parameter

h0 (y (t) , θ) =
v∑

k=0

hk (y (t) , θk),

and this reaction is of type k with probability
hk (y(t), θk)

h0 (y(t), θ)
[38, 85]. This observation can be used

to develop an exact simulation method called the stochastic simulation algorithm1 [27] that can be

used to generate a sample path from the stochastic process defined by the BCRN. Hence, we can

associate to a BCRN a Markov jump process in which each reaction occurs at a particular rate that

depends only on the current state of the system. Other algorithms to simulate a time-evolution

of the process include approximate methods like tau- and K-leaping [12, 28], and the solution of

chemical Langevin equations [38].

1This is also called Gillespie algorithm.
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Many cellular processes are composed of a sequence of substeps, which are often not of interest

in themselves or are unobservable experimentally. In models, we can often replace such reaction

chains by a single reaction, at the expense of introducing a delay [5, 30, 52]. For instance, consider

a chain of mono-molecular reactions [5, 41, 84] composed of the chemical species Y1, Y2, . . . , YN :

∅ θ1−−−−→ Y1

Y1
θ2−−−−→ Y2
...

YN−1
θN−1−−−−−−→ YN

YN
θN−−−−−→ ∅

(2)

The entire process for the formation of YN can also be described more coarsely as a single reaction,

which, once initiated, takes a random time to complete [57]. As a simplification of the reaction

chain given in (2), we can consider a birth-death process in which the species Y := YN is formed

with delay:

∅ A−−−−→
τ

Y
B−−−−→ ∅. (3)

This delay birth-death process has production rate A, degradation rate B, and birth delay time

τ that may be random or constant. For the modified reaction described by (3), the first N − 1

reactions are lumped into a single birth reaction with delayed completion resulting in the removal of

the intermediate species {Yi}i=1,...,N−1 in the dynamics. This simplification, however, is done so that

the dynamics of YN production is the same on both the processes (2) and (3). We will be seeing the

delay birth-death reaction given in (3) repeatedly in this study as it is our primary model for analysis

and is the model we will use to describe an experimental study of non-instantaneous production of

a regulator protein that involves a sequence of reactions including transcription, translation, and

post-translational steps [29, 46]. While the introduction of delay reduces the number of reaction

and hence simplify the analysis of BCRNs, the resulting dynamics is no longer Markovian. The
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time-evolution of the chemical species being dictated by the completion of a delayed reaction after

a time τ after initiation implies that the system has memory and is non-Markovian.

To answer both practical and theoretical questions, stochastic BRNC models often require that

the rates of constituent reactions and other parameters of interest be estimated from experimental

data. This is one of the key features of the inference technique that we develop in this study: an

inference framework for BCRNs with delayed reactions using partial observations of a biological

process as data. A straightforward way to perform such estimation is by taking the deterministic

analog of the stochastic system and use ordinary least squares or maximum likelihood approaches.

Such approaches, however may not always work very well as the deterministic model may not cap-

ture some features arising from the stochasticity of the original system [76]. One principled method

to perform estimation, which we employ in this study, is Bayesian inference which quantifies knowl-

edge about the true parameter values based both on data and prior belief about the parameters

[49, 84]. This is expressed mathematically through Bayes’ Theorem,

π(θ|Yobs) =
π(Yobs|θ) π(θ)

π(Yobs)
.

With model parameter θ and observations Yobs, the factors in the equation above are described as

follows:

• π(θ|Yobs) is the posterior distribution which quantifies what we know about the parameter,

given the data and any prior information;

• π(Yobs|θ) is the likelihood, i.e. the probability of observing the data Yobs given the parameter

θ; and

• π(θ) is the prior distribution, which represents our knowledge about the parameters before

taking into account the observed data.

The denominator is the normalizing constant π(Yobs) =

∫
θ

π (Yobs |θ )π (θ) dθ.
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The goal, in our case, therefore is to infer the posterior distributions of the parameters of the

BCRN. Depending on the likelihood function and the choice of prior distribution, the posterior may

not always be a standard density function or may be difficult to obtain analytically. In these cases,

there are computational methods to characterize the posterior that allows for the computation

of its conditional and marginal distributions, and their moments. Assuming that the likelihood

is tractable and can be evaluated, a simple way to estimate the posterior distribution is through

the use of sampling algorithms. One such approach is to use one of the Markov Chain Monte

Carlo (MCMC) algorithms which are based on simulating an m-step Markov chain of samples,

θ(0), θ(1) . . . , θ(m), whose stationary distribution is the target posterior. A commonly used method

for perform this task is based on the Metropolis-Hastings algorithm [34, 62]. At any step n, this

iterative method relies on a proposal distribution, q, that is used to generate a new sample θ∗ by

perturbing the sample from a previous step θ(n). Specifically, this method proceeds as follows:

1. Initialize n = 0 and select starting point θ(0).

2. Generate a proposal sample, θ∗ ∼ q(θ|θ(n)).

3. Calculate the acceptance probability α = min

(
1,

π(Yobs|θ∗)π(θ∗)q(θ(n)|θ∗)
π(Yobs|θ(n))π(θ(n))q(θ∗|θ(n))

)
.

4. with probability α, set θ(n+1) = θ∗, and with probability 1− α, set θ(n+1) = θ(n).

5. update step, n = n+ 1.

6. if n > m, terminate simulation, otherwise go to step 2.

Whether the new sample θ∗ is accepted depends on the likelihood ratio between the old value

θ(n) and the new proposed value θ∗, as generated by the proposal distribution q. It is hence critical

to choose q so that a good amount of proposals are accepted while maintaining sufficiently fast

convergence. If the variance of q is too low, then the acceptance rate is high but the parameter

space may not be explored effectively thus resulting in poor convergence. On the other hand, if the

variance of q is too high, proposal will be frequently rejected, again resulting in poor convergence

and wastage of computational resources. A common proposal kernel for a continuous random
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variable is the symmetric Gaussian kernel, N (θ(n), σ), with mean θ(n) and a user-defined standard

deviation σ. Note that the acceptance probability, α, in step 3 of the Metropolis–Hastings algorithm

simplifies to

α = min

(
1,

π(Yobs|θ∗)π(θ∗)
π(Yobs|θ(n))π(θ(n))

)
when using a Gaussian proposal, since symmetry gives q(θ(n)|θ∗) = q(θ∗|θ(n)).

Aside from the choice of proposal distribution, there are other key issues in parameter estima-

tion: size and resolution of data from experiments, overfitting, among others. Both of these relate

to matters of parameter identifiability, which is the unique determination of parameter values from

available data [23]. In this study, we address these issues and discuss checks for their detection and

some possible solutions.

The Metropolis-Hastings method loses efficiency as the number of parameter increases, and

a variant, called Gibbs sampling [26, 79], is oftentimes implemented instead when the number of

parameters is large. Instead of sampling from the joint posterior of θ = {θ1, θ2, . . . , θk, . . . , θu},

Gibbs sampling brings the sampling step to one dimension by picking one of the parameters, θk,

fixing all other parameters θk′ for all k
′ ̸= k, and then sampling from the one-dimensional conditional

posterior

π
(
θk

∣∣∣{θk′}k′ ̸=k , Yobs

)
.

This is implemented by the following algorithm:

1. Initialize n = 0 and select starting point θ(0).

2. For each k = 1, 2, . . . , u, sample θ∗k from π

(
θk

∣∣∣∣{θ(n)k′

}
k′ ̸=k

, Yobs

)
using the steps 2–4 of the

Metropolis-Hastings algorithm. Every new sample, therefore, has the form

θ∗ = {θ(n)1 , θ
(n)
2 , . . . , θ∗k, . . . , θ

(n)
u }.

3. Update step, n = n+ 1.

4. If n > m, terminate simulation, otherwise go to step 2.
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Other alternative methods for sampling in high dimensions, including, but not limited to, Hamil-

tonian Monte Carlo [59, 67] and variational approaches [44, 81], are also widely used in practice,

but are not discussed in this study.

In this study, we consider realizations of a BCRN with delayed reaction completion, collected

from different cells in a population. Hence, the Bayesian inference framework and sampling tech-

niques presented thus far need to be tailored to the inference of parameters of such a BCRN while

also considering population variability in the observations. The development of a framework that

is consistent with these requirements, and compatible with real experimental data requires us to

consider the following:

• likelihood functions must incorporate the correlations brought by the introduction of delays

in the reactions;

• appropriate approximations of the likelihood function must be used since observations of the

biological system from experiments are incomplete and only available at discrete times; and

• inference must be done so that individual and population estimates are obtained simultane-

ously to ensure inference robustness.

The introduction of delays results in a non-Markovian process, making inference challenging. Sev-

eral studies have addressed issues in the inference of such a process. Stochastic delay differential

equations are often used to model processes with delays. The exact stationary probability den-

sities of these equations have been used to identify the components of the systems under study

[20, 21]. Progress has also been made by using artificial neural networks to approximate delay

chemical master equations [42], an approach which works well for the inference of parameters of a

birth-death process with a delayed death reaction. Likelihood-based inference using the chemical

Langevin equation descriptions of the delayed process [36], and linear noise approximations [13]

have also been used. These approaches, however, are effective only when molecule counts are high

and stochastic differential equations accurately capture system dynamics [32]. Choi et al. [2020]
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developed an alternative Bayesian approach using non-Markovian models to develop inference algo-

rithms for rate and delay parameters in common biochemical reactions. This approach works well

with synthetic and experimental data, and is effective even when molecule counts are low because

the model is based on the chemical master equation. However, it relies on treating measurements

from different cells as independent, identically distributed observations of a single cellular process,

thus compounding uncertainty in parameter estimates with variability across the population of

cells.

In order to characterize population variability, we take a hierarchical Bayesian modelling ap-

proach to the inference problem. This framework provides a systematic way to analyze population

level data, and characterize both cell-to-cell and within cell variability [37, 78], as well as improves

the robustness of the estimates of parameters that describe processes within individual cells, by

assuming that these parameters follow an underlying population distribution [17, 25]. For instance,

suppose we are observing a population of cells (Fig. 1), each producing a protein Y instantaneously

through the birth reaction

∅ An−−−−−→ Y ,

where every reaction is individually indexed by n, and An is the rate at which the protein Y is

produced by cell n. Since the cells are members of the same clonal population, one expects them to

produce Y at similar rates that can be described by some probability distribution π(A |ωA ) that is

parameterized by ωA. The individual production rates, An, can be viewed as independent samples

from the same distribution π(A |ωA). In this study, we will refer to individual-level characteristics,

like An, as parameters, and population-level properties, like ωA, as hyperparameters. As we will

explain in what follows, the Bayesian inference using such a multi-level model no longer requires

a specification of a prior for each An, as π(A |ωA ) already serves that role. What remains is to

specify the hyperprior distribution π(ωA) indicating the belief about the hyperparameter ωA. We

describe subsequently how the likelihood and posterior distribution can be formulated in a similar

scenario, but with delayed reactions.
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Figure 1: A hierarchical model where the production rate of a protein Y , An, is assumed to follow a
distribution π(A |ωA ). A hyperprior distribution, π(ωA), describes the belief about the distribution
of An in the population.

We organize the presentation of our results as follows:

• In Chapter 2, we present the basic theoretical framework for the inference of a BCRN with

delayed reactions, and derive the corresponding likelihood function for the process defined by

this reaction network. We also discuss an approximation to this likelihood function that can

accommodate discrete-time observations of the process under study.

• In Chapter 3, we develop a general hierarchical modelling algorithm for a BCRN with

delayed reactions that can simultaneously estimate the posterior distribution of parameters

characterizing processes within individual cells, as well as the distribution of these parameters

across the population. We demonstrate the advantages and shortcomings of our approach

using a delayed birth-death process, which, although it may not fully describe the underlying

biophysical processes, captures the main effects of protein production, and can serve as a

building block for more complex systems. Specifically, we consider two types of delay: fixed

and distributed.

• In Chapter 4 we apply our hierarchical model to experimentally-derived data of protein
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production in E. coli. We also introduce checks and assessments for parameter estimates to

rule out model overfitting.

• In Chapter 5, we summarize the findings of this study, and present ideas for future research

direction.
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2 Bayesian inference of a biochemical network

In this chapter we present the general theoretical framework for the inference of parameters defining

the dynamics of biochemical reaction networks (BCRN). While our approach, utilizing Bayesian

inference, has already been discussed in detail and implemented in many other applications, we find

it practical to present here basic concepts like the likelihood function and posterior distributions

when put in the context of BCRNs. We also discuss the work of Boys et al. [10] on inference using

stochastic models and the extension of this work to models with delays made by Choi et al. [16],

which both serve as the foundation for our hierarchical inference model.

2.1 Likelihood function of a stochastic BCRN

While it is almost straightforward to implement the sampling algorithms introduced in Chapter

1, the process is incomplete without the construction of a likelihood function which describes the

process which generates the observations, Yobs. We also need to specify the prior distribution for

this data. We focus on the construction of the likelihood function for a stochastic BCRN.

Following the discussion of Boys et al. [10], consider the BCRN (1) describing the evolution

of u species Y1, Y2, . . . , Yu through a set of v chemical reactions R1, R2, . . . , Rv. Recall that a

reaction k takes the form

Rk : pk1Y1 + pk2Y2 + . . .+ pkuYu → qk1Y1 + qk2Y2 + . . .+ qkuYu,

with reactant and product stoichiometric constants pkj and qkj . Given a vector of molecular counts

of all chemical species at time t, denoted y (t) = (y1 (t) , y2 (t) , . . . , yu (t)), for each reaction Rk,

there is a stochastic rate constant θk and function hk(y(t), θk) that describes the instantaneous

hazard of reaction Rk occurring under some kinetic law.

First assume that the entire process is fully observable on the time interval [0, T ]. We assume

that time is rescaled so that the reactions are observed at unit intervals. We then partition a

finite interval of length T into subintervals (i, i + 1], for i = 0, 1, . . . , T − 1. We assume that all
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reactions are observed with a complete recording of the time of every reaction occurrence and the

corresponding molecular counts for every chemical species. Denote by rki be the number of reactions

of type k that are completed in the time subinterval (i, i+ 1], and let ρi =

v∑
k=1

rki. Every reaction,

j, occurring within the subinterval (i, i + 1] is associated to reaction time and type (tij , kij), for

j = 1, 2, . . . , ρi. The likelihood function for the complete molecule count trajectory y = {y(t)}t∈[0,T ]

given the parameter θ = {θk}k=1,...,u, is then given by

L (y |θ ) =

T−1∏
i=0

ρi∏
j=1

hkij
(
y (ti,j−1) , θkij

)× exp

[
−
∫ T

0
h0 (y (t) , θ) dt

]
(4)

where

h0 (y (t) , θ) =

v∑
k=0

hk (y (t) , θk).

This formulation follows from the result presented in Chapter 1, that at time t, the time to the

next reaction is exponentially distributed with rate parameter h0 (y (t) , θ) , and that the reaction

is of type k with probability
hk (y(t), θk)

h0 (y(t), θ)
. If the reaction law is mass-action, that is,

hk (y (t) , θk) = θk

u∏
j=1

[yj (t)]
pkj ,

then the likelihood function can factorized so that assuming independent Gamma priors, Γ(ak, bk)

for each parameter θk results in a posterior that is a product of Gamma distributions [85]. In

particular, the posterior for each parameter is given by

θk|y ∼ Γ

ak + rk, bk +

∫ T

0

u∏
j=1

[yj (t)]
pkj dt

 ,

where rk is the number of completed reactions of type k throughout [0, T ]. In such a case, we say

that the Gamma prior is a conjugate prior2 to the given likelihood.

2The term conjugate prior is often used to mean that the posterior is in the same probability distribution family
as the prior probability distribution. In the succeeding chapters, we will use the term more loosely to mean that the
prior leads to a posterior that is a known distribution, not necessarily belonging to the same family as the prior.
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2.2 Inference for a delayed BCRN

Although Bayesian inference has been particularly promising in fitting stochastic models to data

from single-cell assays, the complexity of a biological process may require that a large number of

model parameters be estimated, which can make the inference process difficult: The likelihood

function may be too complex to be tractable, or may be computationally demanding to evaluate.

One remedy to this problem is the simplification of chemical reaction networks by replacing chains

of chemical reactions with a delay distribution [5, 30, 52].

This simplification results in a chemical reaction that does not complete instantaneously. The

introduction of delay accounts for the aggregation of reactions, which individually are not necessarily

instantaneous and almost always take time to complete. For context, take the production of a

certain protein which commences at transcription, but can only be considered as a mature functional

protein once translation and post-translational modifications have been completed. To introduce

delay in a chemical reaction, we suppose that once it is initiated at time tinitial, it takes a fixed or

random time to complete. If the completion time is tfinal, then the delay in reaction completion

is given by tinitial − tfinal, which, in the context of protein synthesis, is the total time between

the initiation of transcription and protein maturation. As we have pointed out in Chapter 1, the

introduction of delays to a chemical reaction makes the system non-Markovian, thereby warranting

a careful treatment of the inference process.

2.2.1 Likelihood function of a reaction with delay

As a delayed system is non-Markovian, the likelihood function presented in Section 2.1 no longer

applies in the present case. Here, we develop a likelihood analogous to (4) that takes into account

the correlation between observations of a system due to the introduction of delays. We follow the

outline of steps as presented by Choi et al. [16]. To each reaction Rk with delayed completion,

we associate a delay measure, ηk, with support on [0,∞). Suppose that the delay distribution

is independent of the time or the state of the system, and that it only depends on a vector of

parameters ∆k = (∆k1,∆k2, ...,∆klk). Schlicht and Winkler [72] have proven the existence of
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reaction completion propensities defined by

fk (t,y, θk,∆k) =

∫ t

0
hk (y (t− s) , θk) dηk (s).

These completion propensities define the effective rate of reaction k at a given time t. We can now

analogously develop the likelihood function as in the case with no delay. Integrating with time, we

have

Λk (t,y, θk,∆k) =

∫ t

0
fk (τ,y, θk,∆k) dτ,

Λ0 (t,y, θ,∆) =

v∑
k=0

Λk (t,y, θk,∆k),

where ∆ = {∆k} is the collection of all delay parameter vectors, and θ = {θk} is the set of all

reaction constants. If complete knowledge of a process y is available for every t ∈ [0, T ], then the

likelihood function for the parameters θ is given by

L (y |θ ,∆) =

T−1∏
i=0

ρi∏
j=1

fkij
(
tij ,y, θkij ,∆kij

)× exp [−Λ0 (T,y, θ,∆)] . (5)

While the likelihood in Eq. (5) is very similar to the likelihood for delay-free systems in Eq. (4)

derived in Section 2.1, the former is obtained by adopting a backward view of delayed chemical

kinetics, assuming that only the reaction completion times are known, and that the corresponding

unobserved reaction initiation times which occurred in the past are random quantities [16]. This

contrasts the forward view in delay-free systems, where only the current reaction times are known

and the time to the next reaction is a random quantity, dictated by the current state of the system.

The evaluation of the likelihood given in Eq. (5) relies on the experimentally infeasible as-

sumption that the entire process y is known. In practice, experimental data is usually recorded

in equally-spaced intervals thereby giving rise to discretely-observed recordings. Suppose that the

process y is observed only at the discrete time points, t = 0, 1, . . . , T − 1, T , and denote by yd the

subset of observations {y(0), y(1), . . . , y(T −1), y(T )}. If only the discrete time observations yd are
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available, an approximation of the completion propensity fk will have to be derived. In order to do

so, we will take an approximation f̂k, which is a propensity that is constant between observations,

obtained by averaging fk over each unit time interval [i, i+ 1]. We thus obtain

f̂k(i,yd, θk,∆k) =

∫ i+1

i

∫ t

0
hk (t− s) dηk (s) dt

=
i∑

n=0

∫ i+1

i

∫ t−n

t−(n+1)
hk (t− s) dηk (s) dt

=
i∑

m=0

∫ m+1

m

∫ t̂

t̂−1
hk
(
t̂+ (i−m)− s

)
dηk (s) dt̂

by substitutions t̂ = t− n and m = i− n. The reader is directed to the Supplementary Material of

[16] for a detailed derivation. The last step specifies how the reaction hazard hk is to be evaluated

between observations. Since hk is to be evaluated from 1+ (i−m) to i−m as s ranges from t̂− 1

to t̂, linear interpolation yields the final approximate completion propensity

f̂k(i,yd, θk,∆k) =
i∑

m=0

∫ m+1

m

∫ t̂

t̂−1

[
(s+ 1− t̂)hk(i−m) + (t̂− s)hk(i−m+ 1)

]
dηk(s)dt. (6)

Conditioned on the entire system history up to time i, we see that the number reactions of type

k which completed in (i, i+ 1], rki, is Poisson-distributed with mean equal to f̂k(i,yd, θk,∆k). As

such, using the approximate completion propensity in Eq. (6), as is also seen in [32], the likelihood

given by Eq. (5) can finally be approximated as

L̂ (yd |θ ,∆) =

[
T−1∏
i=0

v∏
k=1

f̂k(i,yd, θk,∆k)
rki

rki!

]
× exp

(
−Λ̂0 (T,y, θ,∆)

)
, (7)

where

Λ̂0 (T,y, θ,∆) =
v∑

k=1

T−1∑
i=0

f̂k(i,yd, θk,∆k),

and rki is the number of reactions of type k that was completed in the time interval (i, i+ 1].
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2.2.2 Likelihood for pooled observations

Molecule count trajectories from experimentally-derived data usually come from the observation

of a cell population. When cell-to-cell variability can be ignored, the cells can be assumed to

be identical with the reaction rates, and other parameters equal across the population. As a

consequence, the trajectories can be treated as independent realizations of the same stochastic

process thereby limiting the sources of differences in the observations to measurement and intrinsic

noise. We refer to this strategy as data pooling3 [2, 16].

Consider the case of discrete-time observations yd introduced in Subsection 2.2.1. As the

observations are assumed to be independent, the likelihood function for a delayed system can be

obtained by multiplying the likelihood, Eq. (7), for a single trajectory to obtain:

L̂p (yd |θ ,∆) =
N∏

n=1

L̂ (yd,n |θ ,∆)

=
N∏

n=1

{[
T−1∏
i=0

v∏
k=1

f̂k(i,yd,n, θk,∆k)
rnki

rnki!

]
× exp

(
−Λ̂0 (T,yn, θ,∆)

)}
. (8)

Here, n is the index of an individual trajectory obtained from observing a population of N cells.

For a fully observed system, an analogous likelihood function can be formulated by multiplying the

likelihoods of the form given in Eq (5).

This approach to dealing with population data is appropriate when the trajectories are indeed

observations of the same or nearly identical cells: parameters are more accurately estimated, and

posterior distributions are narrow. On the other hand, when we observe a heterogeneous group

of cells, population information, such as cell-to-cell variability cannot be captured using this ap-

proach. Moreover, it is not always clear how the estimate obtained using data pooling is related

to the collection of parameters that define the dynamics of individual cells [2]. Therefore, inferring

population-level properties requires a different treatment, one which we develop in this study.

3These are also referred to as population-averaged assays in the literature.
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2.2.3 The block-updating method

The approximate likelihood given in Eq. (7) remedies the unavailability of complete system infor-

mation, but requires data that is not readily obtainable from partial molecule count trajectories

when there are multiple reactions. This likelihood replaces the unobserved process in the time

interval (i, i + 1] with the specification of the number of completed reactions that may result in

the observations at times i and i + 1. As the number of reactions of type k that completed in

(i, i + 1], rki, in the likelihood given by Eq. (7), are not observed directly, we will infer them by

following the block-updating method introduced by Boys et al. [10] in 2008 for a Lotka-Volterra

system4. Instead of describing the method in general, we will focus on its application to a delayed

birth-death process

∅ A−−−−→
π(∆1)

Y
B−−−−→

π(∆2)
∅, (9)

which is a reaction of interest for the succeeding illustrations and applications5. Here A and B are

birth and death reaction constants respectively, while π(∆1) and π(∆2) are distributions describing

the corresponding reaction delays.

A simplification6 of the block-updating method for the birth-death process (9) uses a random

walk proposal on the number of birth reactions. It is implemented using a Metropolis-Hastings

algorithm with a random walk chain to sample the number of completions of each type of reaction

in a time interval (i, i + 1], i = 0, 1, ...T − 1, given the observed system states y(i) and y(i + 1).

The birth reaction is indexed with k = 1 while the death reaction is indexed with k = 2. For the

ith interval, the joint conditional posterior of r1i and r2i is given by

π (r1i, r2i |yd , A,B,∆) ∝ f̂1(i,yd, A,∆1)
r1i

r1i!
· f̂2(i,yd, B,∆2)

r2i

r2i!
(10)

4Boys et al., developed this for a three-species stochastic kinetic system.
5Refer to Chapter 3.
6The simplification used in [16] departs from the original work of Boys et al. by dropping the Radon-Nikodym

derivative of the true process in the acceptance probability, as well as the replacement of the simulation of an
inhomogeneous Poisson process between observations with just the sampling of the reaction numbers rki.
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which is proportional to the product of the density functions of Poisson random variables. In view of

the complete sampling algorithm for the parameters of a BCRN, the updating of reaction numbers,

rki, at an iteration j, is done after the rate and delay parameters sampling step is completed.

Hence, the current parameter samples A := A(j), B := B(j), ∆1 := ∆
(j)
1 , and ∆2 := ∆

(j)
2 , alongside

yd, are used as data for the posterior in Eq. (10).

Denote by r
(j−1)
1i a sample of r1i from the (j − 1)th iteration. The proposal distribution can

be chosen to be a discrete random walk in which the current value is augmented by u, whose

distribution is the difference of two Poisson random variables with means that are both equal to

some λ which is usually a function of r
(j−1)
1i . For instance, Boys et al. [10], reported that the form

λ = 1 +
r21i
b
,

for some tuning parameter b, induces good chain mixing. The value u is then used to define the

proposed value r∗1i = r
(j−1)
1i + u. In particular, the distribution of the update value u is a Skellam

distribution [10, 43] given by

p
(
u
∣∣∣r1i(j−1)

)
= exp

(
−2r1i

(j−1)
)
Iu

(
2r1i

(j−1)
)
,

where Iu is a regular modified Bessel function of order u. Once r∗1i is chosen, then r∗2i can be

uniquely determined using y(i+1)− y(i) = r∗1i − r∗n2i. The proposed updates r∗1i and r
∗
n2i are then

accepted with probability αr, defined by

αr = min

1,
p (u |r1i∗ ) f̂1(i,yd,A,∆1)

r1i
∗

r1i∗!
· f̂2(i,yd,B,∆2)

r2i
∗

r2i∗!

p
(
u
∣∣r1i(j−1)

) f̂1(i,yd,A,∆1)
r1i

(j−1)

r1i(j−1)!
· f̂2(i,yd,B,∆2)

r2i
(j−1)

r2i(j−1)!

 ,

that implicitly assumes that flat priors are given to both the birth and death reaction numbers.

For more general systems, a similar method can be employed by sampling one of the reaction

numbers and determining the other number of completed reactions by matching the population

sizes at the end of the observation intervals.
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2.3 Summary

For a fully observed non-delayed chemical reaction system that is endowed with mass action kinetics,

the posterior distribution is given by a gamma distribution when the independent priors for the rate

constants are also gamma distributed. This situation, where every reaction is tracked entirely, is

idealized as experimental data and has a different structure. The problem of having only discretely-

observed data, paired with a complicated reaction network structure forms part of the complexities

of inference of BCRNs.

Many cellular process are composed of multiple chemical reactions, and replacing a sequence

of chemical reactions with a delay distribution is one approach to simplify such complex reaction

networks. The introduction of delay makes the associated stochastic process non-Markovian thereby

making the inference process more challenging. Building on the work of Boys et al. [10] and

Choi et al. [16] that address the difficulty of parameter inference in discretely-observed systems,

approximations of the reaction hazards and the resulting completion propensities can be used to

form an approximate likelihood function. This approximate likelihood is dependent on the number

of completed reactions between observations, which are not directly observed, but can be inferred

using a simplified block-updating method based on a Metropolis-Hastings method with a random

walk chain.
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3 Hierarchical Models of a Stochastic BCRN

The results described thus far center on inference from observations of a single individual. When

put in the context of cell recordings, a molecule count trajectory, as discussed in Sections 2.1 and

2.2, can be thought of as a recording of protein counts that dynamically changes in the process of

protein synthesis and degradation. As is common in experimental systems, a collection of recordings

from a cell population may exhibit significant differences which may account for both intrinsic and

extrinsic noise sources.

Recognizing that a cell population is heterogeneous suggests that we need to estimate the

distribution of parameters of interest across an entire recorded population of cells. This problem

was avoided by Choi et al. [16] by assuming that all cells in the population are identical and that

observations are realizations of the same stochastic process, and thus reaction rates are functions of

the same unknown parameters. This is equivalent to the assumption that only intrinsic variability in

the protein production accounts for the observed differences in the trajectories. In contrast, in this

chapter, we propose a hierarchical approach to infer the distribution characterizing the parameters

of a BCRN within individual cells, as well as the distribution of these parameters across the entire

population.

As a system with no delay7 is a special case of a delayed BCRN where the delay distribution is

a Dirac delta function centered at 0, we will no longer talk about delay-free systems. The following

discussion and derivations are done for systems with delay.

A note on notation: For the parameters A and B and τ , a subscript, n, will refer to the parameter

of an individual cell n in the population. The same symbol without a subscript will refer to the

collection of parameters across the population.

3.1 General inference process for a heterogeneous cell population

Suppose that we are observing a population of N cells, each one with a distinct sequence of ob-

servations yn on the time interval [0, T ]. Indexing an individual cell by n, we have a collection of

7In our nomenclature, this falls under the case of a system with fixed delays.
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trajectories {yn}n=1,...,N . While the parameter values that characterize every reaction between cells

may differ, our observations are assumed to be the product of the same set of reactions in every

cell. Hence, every cell is defined by the same number of reactions, with the exact same number and

type of parameters which may vary between the individual cells in the population.

All reactions Rk, for k = 1, . . . , v, are present in each cell n, with each reaction Rk endowed with

a rate constant θnk. Hence the reaction rates in a cell n are fully characterized by the rate vector

θn = (θn1, θn2, . . . , θnk, . . . , θnv). If a reaction Rk in cell n has delayed completion, then we also

couple with that reaction the set of delay parameters ∆nk = (∆nk1,∆nk2, . . . ,∆nklk), and denote

the set of all delay parameters for cell n by ∆n = {∆nk}. We denote by θ the collection {θn} of all

rate constants and by ∆ the collection {∆n} of parameters that define all delay measures.

For instance, consider the birth-death process with birth delays

∅ An−−−−−→
π(∆n1)

Y
Bn−−−−−→ ∅,

where k = 1 corresponds to the birth reaction and k = 2 to the death reaction. When the delay

distribution π(∆n1) is a Gamma distribution, we have ∆n1 = {αn1, βn1}, which are the shape and

rate parameters for the distribution. Since the death reaction is instantaneous, ∆n2 = ∅. Hence, for

each cell n, we have the vector of rate and delay parameters as θn = {An, Bn} and ∆n = {αn1, βn1},

respectively. This is much simpler for a fixed delay distribution where ∆n1 = {τn1}, for some non-

negative constant τn1.

Suppose that the process yn is fully observed over the interval [0, T ]. If we assume that all

individual parameters are identically distributed and independently sampled from their respective

population distributions, then the individual realizations yn are also independent and we can define

the total likelihood

L (y |θ ,∆) =
N∏

n=1

L (yn |θn ,∆n), (11)
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which is the product of likelihoods given in Eq. (5)8 for all N individuals. If only the discrete-time

observations yd,n = (yn (0) , yn (1) , . . . , yn (T − 1) , yn (T )) are available, we can approximate the

total likelihood by

L̂ (yd |θ ,∆) =

N∏
n=1

L̂ (yd,n |θn ,∆n), (12)

which is a product of likelihoods given in Eq. (7)9. The computation of this approximate likelihood,

L̂, requires the number of completed reaction of type k on each interval (i, i + 1] for each cell n,

which we write as rnki. As before, these values are not observed directly, and hence are inferred

through the block-updating method discussed in Subsection 2.2.3.

3.1.1 A hierarchical Bayesian model of a cell population

The discrete-time observations yd,n are a product of the initiation and eventual completion of the

chemical reactions {Rk}k=1,...,v. The observations yd,n therefore are dependent on the individual-

level parameters θnk and ∆nkl, which we assume follow underlying distributions which are them-

selves characterized by hyperparameters, ωθk and ω∆kl
, respectively. We also assume that these

individual parameters are identically distributed and independent for the given hyperparameters,

as we are observing cells that are not closely related.

Bayes’ Theorem paired with the assumption of independence among observations allows for

the factorization of the joint posterior of parameters and hyperparameters, and hence enables us

to take a multilevel approach to inference. Denote the collection {ωθk} and {ω∆kl
} of rate and

delay hyperparameters respectively as ωθ and ω∆. The approximate likelihood expression given in

Eq. (12), and Bayes’ Theorem allow us to write the posterior over the rate and delay parameters

characterizing the biochemical reaction network, to reflect the sequence of observation-parameter

8This is the exact likelihood in Subsection 2.2.1
9This is the approximate likelihood in Subsection 2.2.1
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and parameter-hyperparameter dependencies as

π (θ,∆, ωθ, ω∆ |yd ) ∝ π (yd |θ,∆, ωθ, ω∆ )π (θ,∆, ωθ, ω∆)

= L̂ (yd |θ,∆)π (θ,∆ |ωθ, ω∆ )π (ωθ, ω∆)

= L̂ (yd |θ,∆)π (θ |ωθ )π (∆ |ω∆ )π (ωθ)π (ω∆) , (13)

with

π (θ |ωθ ) :=
N∏

n=1

v∏
k=1

π (θnk |ωθk )

and

π (∆ |ω∆ ) :=
N∏

n=1

v∏
k=1

lk∏
l=1

π (∆nkl |ω∆kl
)

serving as priors for individual rate and delay parameters, and π (ωθ) and π (ω∆) as the hyperpriors.

The factorization of π (θ,∆ |ωθ, ω∆ )π (ωθ, ω∆) into π (θ |ωθ )π (∆ |ω∆ )π (ωθ)π (ω∆) in the last line

of (13) comes from the assumption of independence between the priors and the hyperpriors. The

factorization of the posterior distribution is the basis of the hierarchical inference algorithm that

we present in the next section.

Refer to Fig. 2 for clarity. Let us revisit the birth-death process

∅ An−−−−−→
δ(τn)

Y
Bn−−−−−→ ∅,

now with a single-parameter Dirac delta function as delay distribution, and assume that parameters

all are gamma distributed at the population level. An individual n, has rate parameters θn,1 = An

and θn,2 = Bn, and delay parameter ∆n,1,1 = τn. With a Dirac delta function as delay distribution,

the parameter τn serves as a fixed time delay between the initiation of the birth reaction and its

eventual completion. The nth observation, which is a trajectory of molecule count, is a realization

of the above stochastic process that is parameterized by θn = {An, Bn} and ∆n = {τn}. Each

of the parameters (either rate or delay), is assumed to follow a gamma distribution Γ(aZ , bZ), for
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Z ∈ {A,B, τ}. Therefore, the hyperparameters are ωθ1 = ωA = {aA, bA}, ωθ2 = ωB = {aB, bB},

and ω∆1,1 = ωτ = {aτ , bτ}.

Figure 2: Conceptual model of the observation, parameter and hyperparameter dependencies.
Every observation is a realization of an individual birth-death process, that is described by the
production rate, An, the degradation rate, Bn, and the delay time distribution, δ(τn). At the pop-
ulation level, we assume that these parameters follow gamma distributions each with corresponding
parameter pairs (aZ , bZ) for Z = A,B, τ .

3.1.2 General hierarchical model algorithm

We next describe an MCMC algorithm to generate samples from the posterior distribution of the

model parameters (θ,∆) and corresponding hyperparameters (ωθ, ω∆). The priors and hyperpriors

capture our previous knowledge about the variability of the parameters across the population. As

rate parameters are positive, we use gamma distributions as priors, π (θnk |ωθk ). Thus for every

reaction k, the set of hyperparameters for the corresponding reaction rate is ωθk = (aθk , bθk), where

aθk and bθk are the shape and rate parameters respectively of a gamma distribution. If the reaction

propensity is separable, as in the case of mass-action kinetics where the hazard function can be

factored as hk (yn (t) , θnk) = θnkgk (yn (t)), the gamma distribution defines a conjugate prior for

the parameters θnk [85].

As is typical of hierarchical sampling approaches, our algorithm iteratively produces samples
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of individual parameters and integrates the result across an ensemble of cells to produce a sample

of the hyperparameters that characterize the population distribution. The updated population

distribution is then used to generate new samples of individual cell parameters, and the process

repeats. To sample from the posterior distribution given by Eq. (13), we use Gibbs sampling:

For every individual cell, n, we obtain samples for θn and ∆n from their conditional posterior

distributions by using the Metropolis-Hastings algorithm [34, 62]. As described by Choi et al. [16],

knowledge about the number of completed reactions of type k in the time interval (i, i + 1] for

individual n, rnki, is needed in the sampling of these individual parameters. Since the discrete-time

measurements do not uniquely determine the number of reactions, we infer rnki in each Gibbs step.

To do so, we follow the simplified block-updating strategy [10] discussed in Subsection 2.2.3, and

infer the number of reactions in each interval (i, i + 1] using the posterior distribution generated

by the Metropolis-Hastings algorithm. In this scheme, a proposal is generated by augmenting the

current value by a random variable from the Skellam distribution [10, 43]. Once samples of both

rate and delay parameters for all N cells are obtained, we sample the hyperparameters ωθ and

ω∆ using the Metropolis-Hastings algorithm and the individual-level parameters as data in the

population-level sampling.

The MCMC algorithm to produce samples from the approximate posterior distribution obtained

using the hierarchical model given by Eq. (13) can thus be described by the following steps.

1. For each cell n = 1, 2, . . . , N , reaction number k = 1, 2, . . . , v, and time interval i = 0, 1, . . .,T−

1, initialize the number of reactions rnki. Initialize the parameters θ and ∆, and hyperpa-

rameters ωθ and ω∆.

2. For each n,

(a) Sample, in order, θnk, k = 1, 2, . . . , v, given all rate hyperparameters ωθ, other rate

constants θnm, m ̸= k, delay parameters ∆n, and reaction numbers. If yn(t) and θnk are

separable in hk (yn (t) , θnk), then sample θnk from the conjugate gamma distribution.

Otherwise, use the Metropolis-Hastings algorithm.
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(b) Sample, in order, ∆nkl, k = 1, 2, . . . , v and l = 1, 2, . . . , lk, given all delay hyperparam-

eters ω∆, other delay constants ∆nk′l′ , (k
′, l′) ̸= (k, l), rate parameters θn, and reaction

numbers, using the Metropolis-Hastings algorithm.

(c) Update the number of reactions, rnki, for k = 1, 2, ...v and i = 0, 1, ..., T − 1, given θn,

∆n, and the observed trajectory yn using the simplified block-updating method.

3. For every reaction k,

(a) Sample aθk , given the rate constants {θnk}n from the entire population and the other

rate hyperparameter bθk .

(b) Sample bθk , given the rate constants {θnk}n from the entire population and other rate

hyperparameter aθk .

(c) Sample, in order, ω∆kls
, l = 1, 2, . . . , lk, s = 1, 2, . . . , |ω∆kl

| given the delay parameters

{∆nkl}n from the entire population and other delay hyperparameters ω∆kls′ , s
′ ̸= s.

4. Repeat steps 2-3 until convergence.

When the chemical kinetics specified for the BCRN allows for the separation of yn(t) and θn,k

in hk (yn (t) , θnk), as in mass-action kinetics, our generative model which assumes that individual

parameters are independent samples from a gamma distribution, leads to a conjugate gamma

conditional posterior for θn,k. In this case, step 2(a) of this algorithm simplifies to just sampling

from a known probability distribution. Similarly, depending on the choice of hyperpriors, step 3

is either carried out by sampling from conjugate conditional distributions or using the Metropolis-

Hastings algorithm. In the succeeding sections we provide all likelihoods and resulting posterior

distributions given specific hyperprior distributions and delay measures for a stochastic birth-death

process with birth delays.

3.2 Hierarchical model of a stochastic birth-death process with fixed delay

To demonstrate the effectiveness of our approach in the inference of BCRNs, as well as to catch

potential issues in accuracy and identifiability, we first demonstrate the inference process using data
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generated from a collection of stochastic birth-death processes with fixed birth delays [7, 13, 32, 36],

∅ An−−−−−→
τn

Y
Bn−−−−−→ ∅, (14)

where n = 1, 2, ..., N and N is the number of cells (see also Eq. (9)). By fixed delay, we mean that

it takes a constant time interval between initiation of a birth reaction and its completion, that is,

the delay follows a Dirac delta distribution centered at τn.

Although this delayed birth-death process is simple, it can still explain the dynamics of chem-

ical species, such as proteins, that are produced through a sequence of reactions: transcription,

translation, protein folding, and maturation. Henceforth, we refer to the product, Y , in Eq. (14)

as a protein, consistent with the type of experimental data that we will deal with later in the study.

While many models of protein expression assume that production happens in bursts due to rapid

translation events [66, 75], we suppose a Poissonian production. This assumption is valid if we

are dealing with a system with a high copy gene, as in the experimental systems we will study

subsequently.

In every cell, when a birth reaction occurs, it takes a fixed amount of time, that does not

change throughout the observation window, before a mature protein Y emerges. For brevity, we

say that birth delays, τn, are fixed. While constant within a cell, the fixed delays may differ between

cells. Later we consider distributed delays (see Section 3.3) that vary between reactions within and

between cells.

In the generative model (Fig. 3), a cell is characterized by a triple (An, Bn, τn), with production

rate, An, degradation rate, Bn, and fixed birth delay, τn. Each of these parameters which describe

reaction rate characteristics within individual cells follows a gamma distribution. We assume that

the cognate promoters are not leaky. When the population is induced at time t = 0, the production

rate in each cell n therefore instantaneously changes from 0 to the fully-induced values An. Protein

count reduction comes from growth-induced dilution or enzymatic degradation, and is described by

a death process with rate Bn with an immediately observable effect. We also assume that protein
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numbers, Y , are exactly measurable at discrete times.

Figure 3: Generative model for the birth-death process with fixed birth delays. Individual birth-
death processes, are described by the production rate, An, the degradation rate, Bn, and the
fixed birth delay time, τn. We assumed these parameters follow Gamma distributions each with
corresponding parameter pairs (aZ , bZ) for Z = A,B, τ .

3.2.1 The posterior distribution

For the birth-death process, each individual n has birth (reaction k = 1) parameter An and death

(reaction k = 2) parameter Bn, so that θ = {An, Bn}Nn=1. Delays are fixed in each experiment and

the delay measure ηn,k is the Dirac point mass measure centered at the fixed delay τn,k. Since we

only consider delays in the birth reaction, henceforth we write ηn for ηn,1 and we write τn for τn,1.

Endowing the reaction network with mass-action kinetics, the reaction hazards are given by

h1(yn(t), An) = An,

h2(yn(t), Bn) = Bnyn(t).

With only the discrete-time observations, using Eq. (6), the average completion propensity for

a birth reaction on the interval (i, i+ 1] is

f̂1(i,yd,n, An,∆n) = An

∫ i+1

i

∫ t

0
dηn(s)dt

= An · pn,i, (15)
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where ∆n = {τn} and

pn,i =

 0 if i+ 1 ≤ τn

min (1, i+ 1− τn) otherwise
.

On the other hand, it is straightforward to compute10 that the average completion propensity for

the death reaction is

f̂2(i,yd,n, Bn) =
h2(yn(i), Bn) + h2(yn(i+ 1), Bn)

2

=
Bnyn(i) +Bnyn(i+ 1)

2
, (16)

which is simply the average of the reaction propensities at time points i and i+ 1.

Using Eq. (15) and (16), we obtain the total likelihood for yd = {yd,n}n,

L̂ (yd |θ ,∆) =

N∏
n=1

L̂ (yd,n |θn ,∆n), (17)

where

L̂ (yd,n |θn ,∆n) =
T−1∏
i=0

f̂1(i,yd,n, An,∆n)
rn1i

rn1i!
exp

(
−f̂1 (i,yd,n, An,∆n)

)
×

T−1∏
i=0

f̂2(i,yd,n, Bn)
rn2i

rn2i!
exp

(
−f̂2 (i,yd,n, Bn)

)

and rnki, for k = 1, 2, is the number of reactions which completed in the time interval (i, i+ 1].

Following the generative model, Fig. 3, we use Gamma priors Γ(An|aA, bA), Γ(Bn|aB, bB),

and Γ(τn|aτ , bτ ) for An, Bn, and τn respectively for n = 1, ..., N . We also specify the improper11

joint hyperpriors π(aA, bA) ∝
1

bA
, π(aB, bB) ∝

1

bB
, and π(aτ , bτ ) ∝

1

bτ
. We denote the collection,

{aA, aB, bA, bB}, of reaction rate hyperparameters as ωθ, and the collection of delay hyperparam-

eters, {aτ , bτ}, as ω∆. Putting together all details from Eq. (15), (16), and (17) we arrive at the

10Because of the simplicity of the reaction hazard, one need not use the final form of Eq. (6) and can just
immediately interpolate the hazards between i and i+ 1 before averaging the completion propensities.

11By improper priors we mean priors defined by functions whose integral is not equal to 1, and typically diverges.
We discuss in Subsection 3.3.2 an interpretation of the improper prior given here.
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total posterior distribution over the parameters and hyperparameters

π (θ,∆, ωθ, ω∆ |yd ) ∝ π (aA, bA)π (aB, bB)π (aτ , bτ ) L̂ (yd |θ,∆)

×
N∏

n=1

π (An |aA , bA)π (Bn |aB , bB)π (τn |aτ , bτ )

=
1

bA

1

bB

1

bτ

N∏
n=1

T−1∏
i=0

(Anpn,i)
rn1i

rn1i!
exp (−Anpn,i)

×
N∏

n=1

T−1∏
i=0

[
1

2
Bn (yn (i+ 1) + yn (i))

]rn2i

rn2i!
exp

(
−1

2
Bn (yn (i+ 1) + yn (i))

)

×
N∏

n=1

bA
aA

Γ (aA)
An

aA−1 exp (−bAAn)
bB

aB

Γ (aB)
Bn

aB−1 exp (−bBBn)

×
N∏

n=1

bτ
aτ

Γ (aτ )
τn

aτ−1 exp (−bττn). (18)

Using Eq. (18), we derive the conditional posterior distributions of the parameters and hyper-

parameters. For each An and Bn, we obtain the conditional posteriors which belong to the gamma

family:

An |yd,n , aA, bA, τn ∼ Γ

(
T−1∑
i=0

rn1i + aA, T − τn + bA

)
,

Bn|yd,n, aB, bB ∼ Γ

(
T−1∑
i=0

r2ni + aB ,
T−1∑
i=0

yn(i+ 1) + yn(i)

2
+ bB

)
.

(19)

The conditional posterior for a delay parameter, on the other hand, does not follow a known

distribution and is proportional to:

π (τn |yd,n , aτ , bτ , An) ∝

(
T−1∏
i=0

pn,i
rn1i

)
exp (−An (T − τn)) τn

aτ−1 exp (−bττn) . (20)
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The shape parameters of hyperprior for the reaction constants A and B do not have known distri-

bution as conditional posteriors and are proportional to:

π(aA|bA, A) ∝
bNaA
A

Γ(aA)

N∏
n=1

An
aA−1,

π(aB|bB, B) ∝
bNaB
B

Γ(aB)

N∏
n=1

Bn
aB−1.

(21)

The rate parameters of hyperprior for the reaction constants A and B belong to the gamma family:

bA|aA, A ∼ Γ(NaA ,
N∑

n=1

An),

bB|aB, B ∼ Γ(NaB ,
N∑

n=1

Bn).

(22)

In all these conditional posteriors, the symbols A and B are the collections of reaction rate constants

for all individuals.

The conditional posteriors for the hyperparameters of delay time follow the same form as the

ones for the reaction rate constants:

π(aτ |bτ , τ) ∝
bNaτ
τ

Γ(aτ )

N∏
n=1

τn
aτ−1,

bτ |aτ , τ ∼ Γ(Naτ ,

N∑
n=1

τn).

(23)

3.2.2 MCMC sampling algorithm for the parameters and hyperparameters of a birth-

death process with fixed delays

The MCMC algorithm12 for the hierarchical model of the stochastic birth-death process with fixed

birth delays based on the posterior distribution (18) proceeds as follows.

1. For each n and i, for n = 1, 2, . . . , N and i = 0, 1, . . . , T −1, initialize the number of reactions

by setting rn1i = yn(i + 1) − yn(i) and rn2i = 0 if yn(i + 1) ≥ yn(i), otherwise rn2i =

12A Python implementation of this algorithm is found at https://github.com/mvcortez/Bayesian-Inference.
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yn(i + 1) − y(i) and rn1i = 0. Initialize the hyperparameters aA, aB, aτ , bA, bB, bτ using

appropriate values13, and initialize An and Bn by sampling from their conjugate gamma

posterior distributions (Eq. (19)). Set an appropriate value14 for τn.

2. For each n,

(a) Sample An and Bn from their conditional conjugate posterior distribution given by Eq.

(19).

(b) Since the conditional posterior for τn does not follow a known distribution (Eq. (20)),

use the Metropolis-Hastings algorithm to iteratively draw samples from the conditional

posterior τn |yd,n, aτ , bτ , An . We used the truncated Gaussian distribution with positive

support as proposal distribution.

(c) Conditioned on An, Bn, αn, and βn, for each time index i, update rn1i and rn2i. As the

number of reactions are not observed directly, we will sample over them by following

a block-updating method [10] which uses a random walk proposal on the number of

birth reactions. Use the Metropolis-Hastings algorithm with a random walk chain to

sample the number of completions of each type of reaction in a time interval (i, i + 1],

i = 0, 1, ...T−1, given the observed system states yn(i) and yn(i+1). For the ith interval,

the joint conditional posterior of rn1i and rn2i is given by

π (rn1i, rn2i |yd,n, An, Bn,∆n ) ∝

(
f̂1(i,yd,n, An,∆n

)rn1i

rn1i

[Bn (yn (i) + yn (i+ 1)) /2]rn2i

rn2i!
,

which is proportional to the product of the density functions of Poisson random variables.

Here,

f̂1(i,yd,n, An,∆n) = An · pn,i
13The hyperparameters aZ , bZ for Z = A,B, τ , are shape and rate parameters of a gamma distribution, and are

hence appropriately initialized with positive constants.
14The delay time τn is initialized with a non-negative constant.

33



where ∆n = {τn} and

pn,i =

 0 if i+ 1 ≤ τn

min (1, i+ 1− τn) otherwise
.

Denote by r
(j−1)
n1i the value of rn1i from the (j−1)th iteration. The proposal distribution

can be chosen to be a discrete random walk in which the current value is augmented by

u, that is the difference of two Poisson random variables whose means are both equal to

some λ which is usually a function of r
(j−1)
n1i . This value, u, is then used to define the

proposed reaction number value r∗n1i = r
(j−1)
n1i + u. In particular, the distribution of the

update value, u, is a Skellam distribution [10, 43] given by

p
(
u
∣∣∣rn1i(j−1)

)
= exp

(
−2rn1i

(j−1)
)
Iu

(
2rn1i

(j−1)
)
,

where Iu is a regular modified Bessel function of order u. Once r∗n1i is chosen, then r
∗
n2i

can be uniquely determined using

yn(i+ 1)− yn(i) = r∗n1i − r∗n2i.

The proposed updates r∗1i and r
∗
n2i are then accepted with probability αr, defined by

αr = min

1,
p (u |r1i∗ ) f̂1(i,yd,A,∆1)

r1i
∗

r1i∗!
· f̂2(i,yd,B,∆2)

r2i
∗

r2i∗!

p
(
u
∣∣r1i(j−1)

) f̂1(i,yd,A,∆1)
r1i

(j−1)

r1i(j−1)!
· f̂2(i,yd,B,∆2)

r2i
(j−1)

r2i(j−1)!

 .

3. Sample the hyperparameters which describe the distribution of An, Bn, and τn across the

population.

(a) As the conditional posteriors (Eq. (21)) of aA and aB are not known distributions, draw

samples using the Metropolis-Hastings algorithm. We specified as proposal distribution

the truncated Gaussian distribution with positive support.
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(b) Sample bA and bB from their conditional conjugate posterior distributions given by Eq.

(22).

(c) With Eq. (23), use the Metropolis-Hasting algorithm with a positively-supported trun-

cated Gaussian proposal distribution to generate a sample of aτ from its conditional

posterior. Sample bτ from its conjugate gamma conditional posterior.

4. Repeat steps 1-3 until a desired number of samples are generated.

This process is repeated until convergence. However, there is no universal best method to

check for convergence, but one current practice involves the generation of multiple chains that

are initialized differently, and doing a visual examination of the sample trajectories. The chains

overlapping each other is an indication that samples are representative of the posterior distribution.

3.2.3 Inference in a birth-death process with fixed delays

We now test the performance of the fixed delay algorithm using synthetic data that follows Fig. 3

as generative model. To do so, we sampled 40 triplets of the parameters (An, Bn, τn) from their

corresponding gamma distributions and used them to simulate 40 realizations of the birth-death

process in a 100-min window using the delayed Gillespie algorithm [6]. We then subsampled the

resulting trajectories by recording the molecular counts at unit time intervals (Fig. 4a) in order to

mimic experimentally-derived data.

Using our hierarchical inference algorithm and the synthetic data, we estimated the parameters

and hyperparameters, and compared the estimates to those used to generate the data. We per-

formed our analysis on two versions of the data: one wherein full discrete trajectories up to the

100th min observation (Fig. 4a) were used to do inference, and another using partial trajectories

accounting for the initial 40 min of observation (red box in Fig. 4a). As indicated in Subsection

3.2.1, we used non-informative, rational hyperpriors for all hyperparameters.

When we used full trajectories, the parameters An, Bn, and τn were all accurately estimated

(Fig. 4b and c; blue dots). In contrast, both the birth and death rates (Fig. 4b; orange dots)
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Figure 4: The fixed delay model accurately estimates all individual-level parameters when using
molecule count trajectories that reach saturation. (a) Simulated trajectories of birth-death pro-
cesses with fixed birth delays subsampled every minute. Individual parameters were sampled from
the following gamma distributions in order to generate values that are similar to estimates in a
previous study [16] for yellow fluorescence protein synthesis: An ∼ Γ(8, 0.23), Bn ∼ Γ(9, 625), and
τn ∼ Γ(7, 1). To estimate all three parameters per cell, we implemented the algorithm initially
using the first 40 min (red box in (a)), and then the entire 100 min of observation. The individual
posterior means serve as parameter estimates. In panels b-d we divided each estimate with the
true parameter value, so that a perfect match corresponds to 1. (b-c) With 100 min of data, all
rates (b) and delays (c) are accurately estimated (blue dots). However, 40 min of data lead to
underestimates of the death rates, Bn (b). The birth rates, An, were similarly underestimated
to compensate for the low death rate estimates (b). Estimates of the fixed delay times were still
accurate (c). (d) When the degradation rates, Bn, were assumed known, the estimates for both
birth rate and delay for each cell improved and migrated closer to the true parameter values.

were underestimated when we only used the initial segment of the protein count data. This mutual

underestimation of both reaction rates stems from the rare occurrence of death reactions in the

low protein count regimes: Yn(t), was initially small thereby resulting to a low value for the death

reaction hazard, Bn · Yn(t). An underestimate of the death rate, Bn, leads to an underestimate of

the production rate, An, to compensate for the discrepancy. Delay times, on the other hand, were

estimated well (Fig. 4c; orange dots) despite the inaccurate reaction rate estimates.

Identifiability problems in estimating the reaction rates may thus arise if we observe only the

transient states of the process. This problem is alleviated by using longer observations (Fig. 4b-c;
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blue dots), but possibly at the expense of a higher computational cost. To aid in inference when

shorter trajectories were used, we assumed that the death rates, Bn, are known. This assumption

is not unrealistic as death rates can be estimated from experimental data by measuring dilution

rates through the tracking of cell growth [16]. With such an assumption, both An and τn were

accurately estimated even with the shorter trajectories (Fig. 4d). Hence, inferring delays and birth

rates from realistic amounts of data (e.g., 40 min in this case) is possible [15] if the death rates,

Bn, can be directly measured.

Continuing with the specification of the true death rates in the process and using short 40-min

trajectories, we inferred the population distribution of the cell parameters An and τn. Estimates

of the parameter distributions across the population improved with the number of observed tra-

jectories (Fig. 5a). This was characterized by the apparent convergence of posteriors to the true

distributions as the number of trajectories increases: Population means (triangular makers) be-

came more accurate and distributions became narrower. A similar improvement in both accuracy

and precision of the hyperparameter estimates (Fig. 5b) further strengthened the evidence for the

observed convergence: As the number of trajectories increased, hyperparameter medians moved

closer to the true value and the posterior distributions become narrower. Our hierarchical infer-

ence algorithm, therefore, can be used to simultaneously infer reaction and delay parameters for

individual cells, as well as the variability of these parameters across a population15 from realistic

amount and resolution of data.

Although parameter identifiability has been studied thoroughly for deterministic models, it is

yet to be adequately established for stochastic systems [11]. One key identifiability issue that

comes up in practice, termed practical identifiability, is whether a parameter can be estimated from

a finite amount of noisy data with better accuracy than what is provided by the prior distribution

[40, 70]. The parameters of the delayed birth-death process, at least in the parameter ranges we

considered, are practically identifiable in both the data-rich and data-limited situations, with the

caveat of having additional information on the death rates on the latter. Our hyperpriors are

15See Appendix A for details of the construction of population posterior distributions.
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Figure 5: Increasing the number of cells used in hierarchical inference with fixed delays improved
hyperparameter estimates and the corresponding population distribution of the parameters. (a)
Population-level posterior densities of both the growth rate, A, and delay time, τ, were wider
than the true densities, but their means (triangular markers) were close to the true value. The
inferred population distributions improved with an increase in the number (from 20 to 160) of
observed realizations of the stochastic processes. (b) Samples were normalized by dividing with the
true hyperparameter values. Box plots corresponding to hyperparameter posterior distributions
obtained using data from an increasing number of cells (from 20 to 160) show the convergence of
posteriors to the true hyperparameter values.
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uninformative, providing very little to no information on the model hyperparameters. Yet, our

population posterior distributions are narrow with accurate measures of central tendencies, that

lead to individual parameter estimates that are close to true values. These observations naturally

come with questions about the possibility of the posterior distributions eventually converging to

point masses given sufficiently large, and at the same time, finely-sampled data. Unfortunately, as in

the present case, the finite nature of the time of observations renders such a convergence impossible.

This is because the number of observed reactions over a finite interval is finite, regardless of the

sampling resolution. Moreover, whether the individual parameter estimates converge to their true

values as the observation window diverges, or whether the hyperparameter estimates converge to

their true values as the number of cells diverges, as suggested by Fig. 5, are open questions.

3.3 Hierarchical Distributed Delay Model

Models of delayed systems usually incorporate fixed delays to represent the gap between the initia-

tion and completion times of a process. While this is most certainly an oversimplification for most

biological systems, the use of fixed delays makes it easier to analyze as well as to infer parameters

of a complex model. More specifically, when only mean reaction delays are of interest, the use of

fixed delays becomes even more attractive as it balances analytical and computational complexity

with a possible loss of accuracy. We therefore asked whether a simple, hierarchical fixed delay

model is sufficient to give accurate parameter estimates, even when reaction delays within a cell are

not constant. To answer this question, we considered a model in which individual reaction delays

followed a gamma distribution, τn ∼ Γ(αn, βn) (Fig. 6a), with parameters, αn and βn, that could

differ between individual cells in the population (Fig. 6b).

3.3.1 The posterior distribution

Similar to the stochastic birth-death process with fixed delays, here the reactions within each

individual cell n are characterized by a birth (reaction k = 1) parameter An and death (reaction

k = 2) parameter Bn, so that θ = {An, Bn}Nn=1. We assumed that the completion of a birth reaction
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Figure 6: Generative model for the birth-death process with distributed delays. (a) A birth reaction
(green) in each cell n is initiated at time ti and completed after a delay, ζi. Each delay is a
realization of the random variable τn which follows a Gamma distribution with parameters (αn, βn).
Death reactions (red) are instantaneous. (b) The generative model for a birth-death process with
distributed delays. Each individual process, n, is described by four parameters: the production rate,
An, the degradation rate, Bn, and the two parameters describing the delay distribution, (αn, βn).
All parameters follow Gamma distributions, with respective hyperparameters.

is delayed by a time τn following a gamma distribution Γ(αn, βn), so that∆ = {αn, βn}Nn=1. Since we

only consider delays in the birth reaction, we write ηn for the delay distribution ηn,1 = Γ(τn;αn, βn),

and we write τn for τn,1. With mass-action kinetics, the reaction hazards are given by

h1(yn(t), An) = An,

h2(yn(t), Bn) = Bnyn(t).

In our setup where only discrete-time observations are available, only the birth reaction is

delayed so that the corresponding average completion propensity for a birth reaction on the interval
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(i, i+ 1] is

f̂1(i,yd,n, An,∆n) = An

∫ i+1

i

∫ t

0
dη(s)dt

= An

∫ i+1

i

γ (αn, βnt)

Γ (αn)
dt, (24)

where ∆n = {αn, βn} and γ (αn, βnt) is the lower Gamma incomplete function [1]. On the other

hand, the death reaction propensity is the same as that in Eq. (16), and is given by

f̂2(i,yd,n, Bn) =
h2(yn(i), Bn) + h2(yn(i+ 1), Bn)

2

=
Bnyn(i) +Bnyn(i+ 1)

2
,

which is the average of the delay-free death reaction hazard between the times i and i+ 1.

We use the approximate propensities given by Eq. (24) and (16) to define the total likelihood

which accounts for N individual trajectories, yd = {yd,n}n, given by

L̂ (yd |θ ,∆) =

N∏
n=1

L̂ (yd,n |θn ,∆n), (25)

where

L̂ (yd,n |θn ,∆n) =
T−1∏
i=0

f̂1(i,yd,n, An,∆n)
rn1i

rn1i!
exp

(
−f̂1 (i,yd,n, An,∆n)

)
×

T−1∏
i=0

f̂2(i,yd,n, Bn)
rn2i

rn2i!
exp

(
−f̂2 (i,yd,n, Bn)

)

and rnki, for k = 1, 2, is the number of reactions which completed in the time interval (i, i+ 1].

Following the generative model shown in Fig. 2b, we specify gamma priors Γ(An|aA, bA),

Γ(Bn|aB, bB), Γ(αn|aα, bα), and Γ(βn|aβ, bβ) for n = 1, ..., N . For the reaction rate hyperparam-

eters, we specified the improper joint hyperpriors π(aA, bA) ∝
1

bA
and π(aB, bB) ∝

1

bB
. We leave

for later the specification of delay hyperpriors, and write as π(aα, bα) and π(aβ, bβ) the arbitrary
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hyperpriors for α and β respectively. We denote the collection, {aA, aB, bA, bB}, of reaction rate

hyperparameters as ωθ, and the collection of delay hyperparameters, {aα, aβ, bα, bβ}, as ω∆. Ac-

counting for Eq. (16), (24), and (25), the joint posterior distribution over the parameters and

hyperparameters is given by

π (θ,∆, ωθ, ω∆ |yd ) ∝ π (aA, bA)π (aB, bB)π (aα, bα)π (aβ, bβ) L̂ (yd |θ,∆)

×
N∏

n=1

π (An |aA , bA)π (Bn |aB , bB)π (αn |aα , bα)π (βn |aβ , bβ)

=
1

bA

1

bB
π (aα, bα)π (aβ, bβ)

×
N∏

n=1

T−1∏
i=0

(
An

∫ i+1

i

γ (αn, βnt)

Γ (αn)
dt

)rn1i

rn1i!
exp

(
−An

∫ i+1

i

γ (αn, βnt)

Γ (αn)
dt

)

×
N∏

n=1

T−1∏
i=0

[
1

2
Bn (yn (i+ 1) + yn (i))

]rn2i

rn2i!
exp

(
−1

2
Bn (yn (i+ 1) + yn (i))

)

×
N∏

n=1

bA
aA

Γ (aA)
An

aA−1 exp (−bAAn)
bB

aB

Γ (aB)
Bn

aB−1 exp (−bBBn)

×
N∏

n=1

bα
aα

Γ (aα)
αn

aα−1 exp (−bααn)
bβ

aβ

Γ (aβ)
βn

aβ−1 exp (−bββn).

(26)

Without specifying hyperpriors for the delay parameters ∆, using Eq. (26), we can derive the

conditional posterior of An and Bn, which belong to the Gamma family:

An |yd,n, aA, bA,∆n ∼ Γ

T−1∑
i=0

rn1i + aA,

T−1∑
i=0

i+1∫
i

γ (αn, βnt)

Γ (αn)
dt+ bA

 ,

Bn|yd,n, aB, bB ∼ Γ

(
T−1∑
i=0

rn2i + aB ,

T−1∑
i=0

yn(i+ 1) + yn(i)

2
+ bB

)
.

(27)

The delay parameters αn and βn do not have standard distributions as conditional posteriors which
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are proportional to

αn |yd,n, An, βn ∝
T−1∏
i=0

 i+1∫
i

γ (αn, βnt)

Γ (αn)
dt

rn1i

exp

−An

T−1∑
i=0

i+1∫
i

γ (αn, βnt)

Γ (αn)
dt

αn
aα−1 exp (−αnbα) ,

βn |yd,n, An, αn ∝
T−1∏
i=0

 i+1∫
i

γ (αn, βnt)

Γ (αn)
dt

rn1i

exp

−An

T−1∑
i=0

i+1∫
i

γ (αn, βnt)

Γ (αn)
dt

βn
aβ−1 exp (−βnbβ) .

(28)

The shape parameters of the hyperpriors for the reaction rate constants A and B do not have

conditional posteriors which are known distributions but are proportional to:

π (aA |A, bA ) ∝
bNaA
A

Γ(aA)
N

N∏
n=1

AaA−1
n ,

π (aB |B, bB ) ∝
bNaB
B

Γ(aB)
N

N∏
n=1

BaB−1
n ,

(29)

while the rate parameters of the hyperpriors for A and B belong to the gamma family:

bA |A, aA ∼ Γ

(
NaA,

N∑
n=1

An

)
,

bB |B, aB ∼ Γ

(
NaB,

N∑
n=1

Bn

)
,

(30)

where A and B are the collections of reaction rate constants for all individuals.

3.3.2 Hyperpriors for delay hyperparameters

The choice of hyperpriors for the delay hyperparameters dictates the form of the conditional poste-

rior distributions of aα, aβ, bα, and bβ. We present derivations using three different choices of delay

hyperprior distributions, each representing varying levels of provided information in inference. We

first show the cases of the non-informative rational hyperprior and maximal data information prior,

and afterwards the informative folded normal distribution.
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Rational prior

A typical non-informative joint hyperprior is the rational prior16 which for the pair (a, b) takes

the form

π(a, b) =
1

b
.

This improper prior is equivalent to flat or uniform priors on the first parameter a and the trans-

formed random variable log(b). Such a transformation on b and the assumption of independence

leads to the joint prior

π(a, b) ∝ 1× 1

b
,

as indicated. Setting these hyperpriors for the hyperparameters corresponding to both α and β

yields conjugate conditional posteriors for bα and bβ that belong to the gamma family. This choice

of hyperprior, however, is not conjugate for both aα and aβ. The conditional posteriors for the

hyperparameters are given by

π (aα |α, bα ) ∝
bNaα
α

Γ(aα)
N

N∏
n=1

αaα−1
n ,

π (aβ |β, bβ ) ∝
b
Naβ
β

Γ(aβ)
N

N∏
n=1

β
aβ−1
n ,

bα |α, aα ∼ Γ

(
Naα,

N∑
n=1

αn

)
,

bβ |β, aβ ∼ Γ

(
Naβ,

N∑
n=1

βn

)
.

(31)

Maximal data information prior

The maximal data information prior (MDIP) [68, 88] is derived by maximizing the Kullback-

Leibler divergence between the data density and the prior distribution. As such, the use of this prior

puts emphasis on the information contained in the data density or likelihood function, effectively

rendering the information provided by MDIP weaker in comparison. In our generative model,

16The use of this uninformative improper prior has roots in the inference of the mean and variance, (µ, σ2), of the

one variable Gaussian distribution. Flat priors on µ and log σ2 lead to the joint prior
1

σ2
.
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each of the parameters of an individual delay distribution is sampled from a gamma distribution

Γ(x; a, b) thereby serving as prior distribution in the hierarchical inference. In this case, the MDIP

for the hyperparameters (a, b) becomes

π (a, b) =
b

Γ (a)
exp {(a− 1)ψ (a)− a}

where ψ(a) =
Γ′(a)

Γ(a)
is the digamma function [65]. In this form, the corresponding joint posterior

density is not proper, so Moala et al. [65] suggested the correction

π (a, b) =
b

Γ (a)
exp

{
(a− 1)

ψ (a)

Γ(a)
− a

}
, (32)

so that a proper posterior density can be obtained.

Using the hyperprior (32), the resulting conditional posterior for aα and aβ do not follow known

distributions, however the MDIP is a conjugate prior for both bα and bβ whose conditional posteriors

belong to the gamma family. The conditional posteriors for the hyperparameters are given by

π (aα |α, bα ) ∝
bNaα
α

Γ(aα)
N+1

N∏
n=1

αaα−1
n exp

{
(aα − 1)

ψ (aα)

Γ(aα)
− aα

}
,

π (aβ |β, bβ ) ∝
b
Naβ
β

Γ(aβ)
N+1

N∏
n=1

β
aβ−1
n exp

{
(aβ − 1)

ψ (aβ)

Γ(aβ)
− aβ

}
,

bα |α, aα ∼ Γ

(
Naα + 2,

N∑
n=1

αn

)
,

bβ |β, aβ ∼ Γ

(
Naβ + 2,

N∑
n=1

βn

)
.

(33)

Folded normal distribution

Since the delay hyperparameters are positive, being parameters of a gamma distribution, the

joint folded normal distribution [53, 69] is a candidate hyperprior distribution that can effectively

define an arbitrarily strong joint hyperprior for these hyperparameters. The bivariate version, which

follows naturally from the bivariate Gaussian distribution, describes two non-negative real-valued
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random variables X and Y with probability density function given by

g (x, y) =
1

2πσ1σ2
√

1− ρ2

×

{
exp

(
− 1

2 (1− ρ2)

(
(x− µ1)

2

σ12
− 2ρ

(y − µ1) (x− µ2)

σ1σ2
+

(y − µ2)
2

σ22

))

+ exp

(
− 1

2 (1− ρ2)

(
(x+ µ1)

2

σ12
− 2ρ

(x+ µ1) (x+ µ2)

σ1σ2
+

(y + µ2)
2

σ22

))

+ exp

(
− 1

2 (1− ρ2)

(
(x+ µ1)

2

σ12
+ 2ρ

(x+ µ1) (y − µ2)

σ1σ2
+

(y − µ2)
2

σ22

))

+ exp

(
− 1

2 (1− ρ2)

(
(x− µ1)

2

σ12
+ 2ρ

(x− µ1) (y + µ2)

σ1σ2
+

(y + µ2)
2

σ22

))}
,

where x > 0, y > 0, σi > 0, µi ∈ R, i = 1, 2, and |ρ| ≤ 1.

This distribution is not conjugate for any of the delay hyperparameters and the conditional

posterior distributions resulting from this choice are given by

π (aα |{αn}n, bα ) ∝
bNaα
α

Γ(aα)
N

N∏
n=1

αaα−1
n g(aα, bα;µaα , σaα , µbα , σbα , ρα),

π (aβ |{βn}n, bβ ) ∝
b
Naβ
β

Γ(aβ)
N

N∏
n=1

β
aβ−1
n g(aβ, bβ;µaβ , σaβ , µbβ , σbβ , ρβ),

π (bα |{αn}n, aα ) ∝ bNaα
α exp

(
−bα

N∑
n=1

αn

)
g(aα, bα;µaα , σaα , µbα , σbα , ρα),

π (bβ |{βn}n, aβ ) ∝ b
Naβ
β exp

(
−bβ

N∑
n=1

βn

)
g(aβ, bβ;µaβ , σaβ , µbβ , σbβ , ρβ),

(34)

where the corresponding folded normal hyperprior g(aZ , bZ) is parameterized by µaZ , σaZ , µbZ ,

σbZ , ρZ for Z ∈ {α, β}. The amount of information about a delay parameter Z is controlled by

how close µaZ and µbZ are to the true values, and the magnitude of σaZ and σbZ .
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3.3.3 MCMC sampling algorithm for the parameters and hyperparameters of a birth-

death process with distributed delays

The distributed delay model has a more complex structure than its fixed delay counterpart. While

an analogous algorithm specific to a birth-death process with fixed delays was already developed in

Subsection 3.2.2, it lacks some components that are tailored for a distributed delay model. Here, we

present an MCMC algorithm17 for the stochastic birth-death process with distributed birth delays.

1. For each n and i, for n = 1, 2, . . . , N and i = 0, 1, . . . , T −1, initialize the number of reactions

by setting rn1i = yn(i + 1) − y(i) and rn2i = 0 if yn(i + 1) ≥ yn(i), otherwise rn2i = yn(i) −

yn(i + 1) and rn1i = 0. Initialize aA, aB, bA, bB using appropriate values18. Initialize An

and Bn by sampling from their conjugate gamma posterior distributions (Eq. (27)), and set

appropriate values18 for αn and βn.

2. For each n,

(a) Generate samples An and Bn from their conditional conjugate posterior distribution

given by Eq. (27).

(b) Since the conditional posterior for αn and βn do not follow known distributions (Eq.

(28)), use the Metropolis-Hastings algorithm to draw samples, in order, from the condi-

tional posterior αn |yd,n, An, βn and βn |yd,n, An, αn . We used the truncated Gaussian

distribution with positive support as proposal distribution for αn and a gamma proposal

for βn [16].

(c) The update process for the number of completed reactions rnki is similar to the case of

fixed birth delays19, but change the mean of the Poisson likelihood for the birth reaction

to

f̂1(i,yd,n, An,∆n) =

(
An

∫ i+1

i

γ (an, βnt)

Γ (αn)
dt

)
.

17A Python implementation of this algorithm is found at https://github.com/mvcortez/Bayesian-Inference.
18The hyperparameters aθ, bθ are shape and rate parameters of a gamma distribution, and are hence appropriately

initialized with positive constants. The same is true for the delay parameters α and β.
19Refer to Subsection 3.2.2.
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Hence for the interval (i, i+1] interval, the joint conditional posterior of rn1i and rn2i is

given by

π (rn1i, rn2i |yd,n, An, Bn,∆n ) ∝

(
An

∫ i+1

i

γ (an, βnt)

Γ (αn)
dt

)rn1i

rn1i!

× [Bn (yn (i) + yn (i+ 1)) /2]rn2i

rn2i!
.

3. Generate a sample of the hyperparameters which describe the distribution of An, Bn, αn, and

βn across the population.

(a) As the conditional posteriors (Eq. (29)) of aA and aB are not known distributions, draw

samples using the Metropolis-Hastings algorithm. We specified as proposal distribution

the truncated Gaussian distribution with positive support.

(b) Generate samples bA and bB from their conditional conjugate posterior distributions

given by Eq. (30).

(c) For rational priors, use Eq. (31) to implement the Metropolis-Hasting algorithm with a

positively-supported truncated Gaussian proposal distribution to sample aα and aβ from

their conditional posterior. Sample bα and bβ from their conjugate gamma conditional

posteriors.

In the case of the MDIP, use Eq. (33) to implement the Metropolis-Hasting algorithm

with a positively-supported truncated Gaussian proposal distribution to sample aα and

aβ from their conditional posterior. Generate samples of bα and bβ from their conjugate

gamma conditional posterior.

If folded normal distributions are used as hyperprior for αn and βn, we use Eq. (34),

to implement the Metropolis-Hasting algorithm with a positively-supported truncated

Gaussian proposal distribution to generate samples of aα, aβ, bα, and bβ from their

conditional posteriors.
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4. Repeat steps 1-3 until a desired number of samples are generated20.

3.3.4 Inference in a birth-death process with distributed delays

We next test the performance of the algorithm using our hierarchical models on synthetic data

produced using generative models with distributed birth delays (Fig. 6b). First, we compare

the performance of the fixed and distributed delay models on populations with varying degrees

of heterogeneity, and later on examine the advantages that a hierarchical model provides over a

non-hierarchical counterpart.

We simulated trajectories using a model in which individual reaction delays followed a gamma

distribution, τn ∼ Γ(αn, βn), with shape and rate parameters, αn and βn respectively (Fig. 6a).

These shape and rate parameters, which themselves are samples from their respective gamma

distributions, could differ between individual cells in the population (Fig. 6b). We chose three

sets of parameters αn and βn so that for each set, the mean delay21 across the population was the

same (Table 1), while the variances of the individual delay distributions differed between the sets:

σ2τn ≈ 3.5, σ2τn ≈ 7, σ2τn ≈ 14 min2. In each case, we simulated 40 trajectories, each with 40 min of

observations at 1 min intervals (Fig. 7).

Table 1: Hyperparameter values used to generate the individual delay parameters (αn, βn) that
were used to simulate trajectories which served as data for Fig. 7.

σ2n (aα, bα) (aβ, bβ)

3.5 (84, 6) (10, 5)
7 (63, 9) (10, 10)
14 (35, 10) (10, 20)

In all three cases, the same set of reaction ratesAn andBn were used, withAn ∼ Γ(8, 0.23) andBn ∼

Γ(9, 625). In all cases, the mean delay, µτn , follows a beta prime distribution, β′
(
aα, aβ, 1,

bβ
bα

)
,

with mean 7.78 min.

As it was shown in the fixed delay case that specifying the generative values of the death

20As noted above, there is no universal best method to check for convergence, but the same heuristic methods
discussed previously can be used here as well.

21As both αn and βn are gamma distributed, the mean delay is a ratio of two gamma distributed random variables
whose distribution is a special case of a beta prime distribution.
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Figure 7: Simulated birth-death trajectories with distributed birth delays that follow a gamma
distribution. To generate trajectories, we fixed a set of production and degradation rates, An, and
Bn, and chose three different sets of delay parameters αn and βn. Mean delays were equal for
all cases while delay variances within a cell were approximately equal across each population, but
differed between the three cases (Table 1). For each parameter, set we simulated 40 trajectories
that were subsampled every minute.

rates, Bn, is necessary for identifiability in the data resolution and length at hand, we proceeded by

making them available for use in our algorithms during inference. When we applied the hierarchical

fixed delay algorithm to the current simulated data, we observed that both mean delay times and

birth rates were biased towards smaller values, and that the underestimations increased with the

variance of the individual delay distributions (Fig. 8a-c; orange dots), that is, the wider the true

distribution was, the farther the fixed delay time estimates migrated away from the true delay

mean. This is consistent with the findings of Josić et al. [45] who showed that distributed delays

can accelerate signaling in genetic networks by reducing the time for a process to reach threshold

compared to systems with fixed delay. In the present case, since delay times were distributed,

the earliest detectable signal after induction was likely to be observed before the mean delay time

(Fig. 9). A model with fixed delay interprets the first observation of a molecule of the product

species, Y , as the delay time to the completion of the first birth reaction after initiation. In

addition, in the usual case when the subsampling interval is less than the first nonzero observation

and consequently the mean delay, the discrete-time nature of the observations forces the fixed

delay algorithm to reject22 delay time samples which are larger than the time of the first nonzero

observation. As a consequence, this leads to a Markov chain of samples which are all less than the

22Refer to the completion propensity (15) and conditional marginal posterior (20) to see this.
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Figure 8: A hierarchical distributed delay model leads to accurate estimates of distributed delays,
while a fixed delay model underestimates delays. (a-c) Across all data sets, both the production
rates, An, and mean delay times, µτn , were underestimated when we used the fixed delay model
(orange dots), but were accurately estimated with the distributed delay model with either ratio-
nal hyperpriors (blue dots) or MDIP (red dots) over the delay hyperparameters. With the fixed
delay model, the bias in the mean delay estimate increased with within-cell delay variance, σ2τn .
For comparison, we normalized the estimated parameters by dividing with the true values. We
assumed Bn is known. (d-f) The estimated population distributions of the production rates were
similar for the distributed delay models, with means (triangular markers) close to those of the true
distributions. The posterior obtained with the fixed delay model gave a slight underestimate of the
mean population production rate. (g-i) The pooled posterior delay distributions obtained using
the distributed delay model matched the true distribution. The bias in the pooled posterior delay
distributions obtained using the fixed delay model increased, and the estimated mean population
delay (orange triangular marker) approached zero, as delay variance, σ2τn , increased.
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time of the first observed increase in protein count, and thus less than the mean of the true delay

distribution. These observations suggest a careful treatment and interpretation of inference results

for delayed systems (especially those with large delay variances) that are modeled with fixed delay

[31, 61, 82], as even the inference of mean delay times generally requires an algorithm based on a

distributed delay model.

Figure 9: Initial samples, ζi from the distribution of delay times, Γ(αn, βn), may be less than the
mean delay time µτn . Hence, the molecule count increases earlier than µτn making the fixed delay
model biased toward a smaller delay time estimate.

We next asked whether parameters of a population of birth-death processes with distributed

delays can be accurately estimated using a matching model (Fig. 6b) that specifies individual

gamma distributed delays. With the non-informative rational hyperpriors as in the fixed delay

model, inference resulted in accurate estimates of the individual production rates, An, and mean

delay times, µτn (Fig. 8a-c; blue dots). The delay estimates were further improved by specifying a

non-informative maximal data information prior (MDIP) [68, 88] over the delay hyperparameters

(Fig. 8a-c; red dots). This advantage of the MDIP may be attributed to it being able to incorporate

the dependence structure of the parameters (αn, βn) of the Gamma delay distribution [65], which

are assumed to be independent when using rational priors. At the population level, the distributions

of both the production rate, A, (Fig. 8d-f) and delay time, τ , (Fig. 8g-i) were similar for both

non-informative hyperprior choices, and closely matched the true distributions. Henceforth, we

used the MDIP as the default non-informative delay hyperprior.

The use of hyperpriors that capture pre-existing knowledge about the delay distribution, that

is, specifying informative folded normal priors over the delay hyperparameters, ultimately improved
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estimates of reaction rates and delay parameters (Fig. 10). For the folded normal distribution we

used a mean that was close to values that were used to generate the trajectories, and a variance such

that the generative values are within a standard deviation of the mean (Table 2). While individual

mean delay time estimates, µ̂τn , were similar in both the folded normal and MDIP hyperprior

cases, the non-informative MDIP resulted to more accurate production rate, An, estimates (Fig.

10a-c). This may be due to the fact that the strong folded normal hyperpriors were parameterized

with values that are smaller than the true generative values. Individual delay variances, however,

were considerably better estimated when folded normal delay hyperpriors were specified, and this

effect becomes more prominent when individual delay variances are narrow (Fig. 10d-f). Across

the three data sets considered, population posteriors obtained in both cases resemble the true

population densities for both the production rate, A (Fig. 10g-i), and delay time, τ (Fig. 10j-l),

with posterior means which are close true values (Fig. 10g-l triangular markers).

Table 2: Parameters of the folded normal distribution used to define the informative hyperpriors
for the implementation seen in Fig. 10.

Hyperparameter σ2n ≈ 3.5 σ2n ≈ 7 σ2n ≈ 14
ω (µω, σω) True value (µω, σω) True value (µω, σω) True value

aα (81, 3) 84 (60, 3) 63 (32, 3) 35
bα (6, 3) 6 (6, 3) 9 (7, 3) 10
aβ (7, 3) 10 (7, 3) 10 (7, 3) 10
bβ (2, 3) 5 (7, 3) 10 (17, 3) 20

The parameters were chosen so that an interval around the mean with radius equal to the variance
covers the generative values. In all cases, ρ = 0.

Using a fixed delay model to infer mean delay times introduces bias in inference when delay

itself varies. We conclude that a distributed delay model should be used for inference whether

only the average delay, or more detailed information about the delay distribution, like higher-

order statistics [8, 51], are of interest. An algorithm based on the distributed delay model provided

accurate estimates of mean delays whether individual delay distributions were wide (σ2n ≈ 14 in Fig.

8a) or point-masses (see Fig. 11a-d). In the latter case, the mean of the distributed delay serving

as estimates to the true fixed delay time were overestimated by around 10% (Fig. 11a). Reasoning

53



Figure 10: Informative folded normal delay hyperpriors yielded better estimates of delay parameters
which consequently led to better estimates of individual delay variances. We considered three data
sets with different levels of individual delay variability (See Fig. 8a). We divided the estimates
by their true parameter values to facilitate a comparison between different model versions. (a-
c). Individual mean delay time estimates, µ̂τn , are similar in both the folded normal and MDIP
hyperprior cases, but production rate, An, estimates with MDIP are more accurate. (d-f) Individual
delay variances were better estimated when we used folded normal delay hyperpriors as compared
to when we used MDIP. (g-l) Across the three data sets and hyperpriors considered, population
posteriors resemble the true population densities for both the production rate, A (g-i), and delay
time, τ (j-l). The mean of the posteriors (triangular markers) are close to true population means.
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in the same vein as in the converse situation, when delay time is assumed to be distributed when it

actually is fixed, a process with distributed delay should be able to capture the behavior of one with

fixed time delay, if the distribution has the right level of variability (Fig. 11b) even when the delay

time mean is larger than the true fixed value. Along with all these results at the individual level,

population level posteriors (Fig. 8h-j) also had the accurate mean delay times, but were distributed

more widely than the parameters used to generate the observations. Thus, our hierarchical model is

robust to changes in hyperparameters, and is applicable to populations with varied characteristics.

Figure 11: A distributed delay model with non-informative delay hyperpriors overestimates both
the production rate and mean delay times when fit to data with fixed birth delays. (a) Even with
a misspecified generative model, the distributed delay model is able to accurately infer individual
parameters of a process with fixed birth delays with a slight overestimation of both the production
rates, An, and mean delay times, µτn . (b) Since the delay hyperpriors are wide and uninformative,
delay variances are largely overestimated with average variance of approximately 6.9 throughout
the population, as compared to the true variance which equaled 0. (c-d) The slight overestimation
of An and µτn extends to the population distribution whose means (triangular markers) are around
10% larger than the true values.

3.3.5 A comparison with a non-hierarchical analog

Hierarchical methods lead to robust estimates of population-level parameters by shrinking indi-

vidual parameter estimates towards the average outcome in the population [17]. Despite this

advantage, the integration of individual-level information done at the higher level increases model

complexity by introducing additional hyperparameters that capture population-level information.

An alternative approach is to infer model parameters individually from each observed trajectory

and then perform population-level estimation based on the collected individual estimates. While
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this approach requires less computational resources, it is typically less robust than hierarchical

inference especially when dealing with a few number of individual observations. We therefore asked

what advantages hierarchical inference offers over a non-hierarchical approach, and under what

circumstances these advantages become apparent.

To compare the two inference approaches, we again considered measurements from a collection

of birth-death processes with distributed birth delays (1-min subsampled trajectories with σ2n ≈ 7 in

Fig. 7), and used non-informative priors23 for both cases. While the estimates of the individual birth

parameters, An, were similar for both models, the hierarchical model provided better estimates of

the mean delay times, µτn (Fig. 12a). Although individual delay variances (σ2τn) were overestimated

in both cases, the hierarchical model still provided a better estimate (Fig. 12b). The hierarchical

model also gave better estimates of the production rates and delay times (Fig. 12c and d) at

the population level. The inferiority of the non-hierarchical model in estimating individual delay

variances became even more pronounced when data resolution was low (Fig. 12e and f).

To confirm these observations, we simulated two additional sets of trajectories generated with

parameters that differed from the hyperparameters used to generate the set of trajectories described

above: one with a smaller production rate population mean and narrower individual delay distribu-

tions (Fig. 13a), and another with a larger production rate population mean and wider individual

delay distributions (Fig. 13f). These two data sets resulted in trajectories with different character-

istics, but the hierarchical model still resulted in better estimates of individual-level characteristics

(Fig. 13b,c,d,h) as well as population variability (Fig. 13d,e,i,j).

We next sought to explain the observed difficulty in estimating the individual-level delay vari-

ances using both hierarchical and non-hierarchical approaches. Inference with non-informative

delay hyperpriors on the three sets of trajectories found in Fig. 7 encountered the same issue of

delay variance overestimation (Fig. 14g-i), as a result of the mutual overestimation of the individual

delay parameters, (αn, βn) (Fig. 14a-c). An examination of the sample chain at the individual-level

revealed a strong correlation between the inferred parameters αn and βn, (Fig. 14d-f) for all data

23See Appendix B for details.
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Figure 12: Hierarchical inference outperforms non-hierarchical inference and leads to better esti-
mates of delay variances. Panels (a-b) show the individual parameter estimates normalized by the
true values. (a) Although individual production rate estimates were similar for both approaches,
the hierarchical model produced better estimates of mean delays with fewer outliers. (b) Delay
variances are similarly better estimated by the hierarchical model. (c-d) Comparison of inferred
population-level distributions of production rates, A, and delay times, τ , exhibit the same advan-
tages of the hierarchical model. (e-f) In model implementation using 3-min subsampled trajectories,
the accuracy of inferred production rates, Ân (e), and mean delay times, µ̂τn (f), is similar, but the
hierarchical model has a smaller bias, and produces fewer outlying estimates. With non-hierarchical
inference, there was an extreme outlier which corresponded to overestimates of µτn and σ2τn (f in-
set). The hierarchical model provided better estimates of the individual delay variances. We used
non-informative priors over parameters in all cases.
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Figure 13: The hierarchical model consistently outperforms its non-hierarchical counterpart on
different parameter and hyperparameter sets. (a and f) We generated two additional sets of 40
trajectories, each with 40 min of observation that were subsampled at 1-min intervals. The following
population distributions were used to generate individual data: An ∼ Γ(6, 0.25), Bn ∼ Γ(9, 625),
αn ∼ Γ(84, 6), and βn ∼ Γ(10, 5) for data set 1; and An ∼ Γ(6, 0.2), Bn ∼ Γ(9, 300), αn ∼ Γ(35, 10),
and βn ∼ Γ(10, 20) for data set 2. Data set 1 was obtained using a smaller production rate
population mean and narrower individual delay distributions compared to the data set used Fig.
12a-d. Data set 2, was obtained using a larger production rate population mean and wider individual
delay distributions. (b and g) While individual production rate estimates, Ân, were similar in both
models, the mean delay times were better estimated with a hierarchical model. (c and h) The
same advantage of the hierarchical approach also applies to the estimates of delay variances. (d
and i) Although population mean of production rate (triangular markers), A, is captured in both
approaches, the posterior from the hierarchical model better represent the true density. (e and j)
The non-hierarchical model overestimates the population mean of delay times (triangular markers)
while the hierarchical model gives a more accurate estimate.
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sets. This strong linear relationship between the delay parameters in every individual made an

accurate estimation of both individual delay mean and variance difficult. A similar observation was

made by Choi et al. [16] for estimates from single trajectories. They proposed pooling multiple

recordings to increase estimate accuracy, implicitly assuming that all cells in the population are

identical and that the observations are different realizations of exactly the same birth-death pro-

cess. While this strategy may result in estimates that capture the mean of the parameter across the

population, this approach may can also lead to biased parameter estimates when cell populations

are heterogeneous with large variability, as we show in the Subsection 3.3.6.

When generating synthetic data we used reaction rates, and delay values within an order of mag-

nitude of those measured in biological systems [16, 86], and sampling rates that were consistent

with those obtainable experimentally using time-lapse fluorescence microscopy [14, 24, 29]. In this

range, the frequency of measurements has a strong impact on the accuracy of individual parameter

estimates. We thus expected that the non-hierarchical model performs worse than its hierarchical

counterpart when sampling frequency is low, but both produce similar estimates of parameters

within individual cells at high sampling frequencies, as shown in Fig. 12. We further tested this

prediction by considering the trajectories in Fig. 7 with σ2n ≈ 7 but changed the sample size and

sampling frequency: We decreased the number of individuals to 20 (from the former 40), extended

the observations to 60 min (from the former 40), and considered different sampling frequencies

ranging from 4 per min up to once every 3 min. The hierarchical model yielded consistent results

over the entire range of sampling frequencies we tested: individual parameter estimates were accu-

rate, delay variance estimates did not diverge even with low-resolution data (Fig. 15a-e orange),

and KL-divergence between the the delay population posterior and the true density remained small,

and depended weakly on sampling frequency (Fig. 15f orange). The non-hierarchical model, on the

other hand, produced estimates which decreased in accuracy with the increase in sampling interval

(see Fig. 15a-e grey), produced delay population posteriors that were far from the true distribu-

tions (see Fig. 15f grey), as well as outlying individual parameter estimates (Fig. 15a-e last column

inset). Thus the hierarchical model is more flexible and consistent across different data resolutions
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Figure 14: Variance of individual delay distributions are better captured using rational delay hyper-
priors but this advantage disappears as true delay distributions become wider. In the distributed
delay model, we used two different non-informative delay hyperparameter distributions in three
different implementations: rational priors and the MDIP. (a-c) Estimates of individual delay pa-
rameters (αn, βn) were similar for both choices of non-informative priors. (d-f) Samples of individual
estimates of the delay parameters α and β, for cell 7. The posterior distribution of the parameters
shows a strong correlation between the two. We observed similar correlations in all cells, both when
using the hierarchical, and non-hierarchical model. (g-i) Errors in the estimates of (αn, βn) lead
to the overestimation of delay variances in model implementations using the rational and MDIP
delay hyperpriors. While the errors in the estimates remained small in the case of the rational
hyperpriors in all three data sets considered, the estimates improved for the MDIP case, as true
individual delay variances become larger.
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than its non-hierarchical counterpart. We concluded that the use of a hierarchical model is better

for inferring population level characteristics, especially when computational constraints are not a

major concern.

3.3.6 A comparison with results from pooled data

Another strategy to deal with heterogeneous cell populations is to pool the data24 treating each

trajectory as a realization of the same stochastic process. While this approach to multi-cell data

may be effective for populations with little cell-to-cell variation, it can introduce a large bias when

cells exhibit strong heterogeneity, even in estimates of the population central tendencies. We tested

this hypothesis by performing hierarchical and pooled inference in three populations with increasing

cell-to-cell variability in both the production rates and mean delay times, and keeping the death

rates the same across three different cases.

The approximate likelihood function for pooled data sets is very similar to the likelihood (25)

for hierarchical inference,

L̂p (yd |A,B, α, β ) =
N∏

n=1

T−1∏
i=0

(
A
∫ i+1
i

γ(α,βt̂)
Γ(α) dt̂

)rn1i

rn1i!
exp

(
−A

∫ i+1

i

γ
(
α, βt̂

)
Γ (α)

dt̂

)

×
N∏

n=1

T−1∏
i=0

[
1

2
B (yn (i+ 1) + yn (i))

]rn2i

rn2i!
exp

(
−1

2
B (yn (i+ 1) + yn (i))

)
.

(35)

The crucial difference in the posterior derivation is in the specification of the the prior distribution,

as for each parameter type, all individuals share a common prior distribution unlike in the hierar-

chical approach where a prior is set individually25. With gamma priors for every rate and delay

24Refer to Subsection 2.2.2 for likelihood formulation.
25Refer to Eq. (26).
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Figure 15: A non-hierarchical model is more sensitive to changes in sampling frequency than a hier-
archical model. We implemented the hierarchical model and its non-hierarchical counterpart using
20 min of subsampled data (see σ2n ≈ 7 trajectories Fig. 8a) with decreasing sampling frequency
(from 4 per min, i.e. 0.25-min subsampled, to 1/3 per min, i.e. 3-min subsampled). Although pop-
ulation means of the production rate, A, were very similar for both models across all subsampling
schemes (triangular markers in a-e 1st column), the accuracy of the estimate of the delay distribu-
tion mean from the non-hierarchical model (grey) decreased with sampling frequency while those
from the hierarchical model (orange) exhibited a similar accuracy (triangular markers in a-e 2nd
column). Across all data subsets we considered, the hierarchical model individual parameter esti-
mates for An, µτn (a-e 3rd column), and σ2τn (a-e 4th column) exhibited small deviations. Estimates
from the non-hierarchical model, on the other hand, had reduced accuracy especially in terms of
σ2τn (a-e 4th column) when we decreased the sampling frequency, with extreme outlying estimates
produced at low sampling frequencies (a-e 4th column inset). (f) A comparison of population delay
distributions showed that the hierarchical model produced a mean delay estimate (left - orange
bars ) that was consistently accurate, together with a population posterior with low KL-divergence
between the posterior to the true density (left - green bars) that remained approximately constant
for the different data subsets we considered. Decrease in sampling frequency resulted in reduced
accuracy of the population mean delay estimate from the non-hierarchical model (right - grey bars).
The non-hierarchical delay posterior also exhibited KL-divergence that increased with the subsam-
pling interval (right - green bars).
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parameter, the resulting posterior26 over all the parameters is

π (A,B, α, β |yd ) ∝
N∏

n=1

T−1∏
i=0

(
A
∫ i+1
i

γ(α,βt̂)
Γ(α) dt̂

)rn1i

rn1i!
exp

(
−A

∫ i+1

i

γ
(
α, βt̂

)
Γ (α)

dt̂

)

×
N∏

n=1

T−1∏
i=0

[
1

2
B (yn (i+ 1) + yn (i))

]rn2i

rn2i!
exp

(
−1

2
B (yn (i+ 1) + yn (i))

)
×AaA−1 exp (−AbA)BaB−1 exp (−BbB)

× αaα−1 exp (−αbα)βaβ−1 exp (−βbβ).

Indeed with pooled trajectories, for the population with small cell-to-cell variability (Fig. 16a

red dot), both the mean delay time and production rate estimates closely matched the true popu-

lation means. As the variability increased (Fig. 16b-c red dot), both mean estimates moved farther

away from the true populations means with a particular underestimation in the cases considered.

Whether this underestimation is a universal property remains to be explored in detail. The pop-

ulation central tendencies obtained using the hierarchical approach (Fig. 16 dark blue dots) were

consistently accurate across all degrees of data variability.

3.3.7 The case of data-model incompatibility

The gamma distribution, as specified in our hierarchical model, is frequently used in models that

include time delays in the production of mature functional proteins [13, 48, 50, 77]. To show that

the assumption that reaction delays are gamma distributed does not strongly bias the estimates

of different parameters, we used our model to infer delay parameters when the delay distribution

was misspecified: We considered the beta and inverse gamma distributions for delays to generate

synthetic data but performed inference assuming that delays are gamma distributed. The gamma

distribution generally has infinite support and decays exponentially, while the beta distribution has

compact support and the inverse-gamma distribution is heavy-tailed.

26See Appendix C for the derivation of corresponding conditional marginal posterior distributions.
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Figure 16: While pooling of data produces good estimates of mean parameter values for data with
little variation across the population, errors may increase as cells become more different. Twenty
trajectories accounting for 20-min observations of a delayed stochastic birth-death process served
a data in this comparison. In order of increasing variability, both in terms of mean delays and
production rates, across the population, data 1 (a) has the least variability, next is data 2 (b),
while data 3 (c) has the largest. The following population distributions were used to generate
individual data: An ∼ Γ(8, 0.23), Bn ∼ Γ(9, 625), αn ∼ Γ(63, 9), and βn ∼ Γ(10, 10) for data 1;
An ∼ Γ(8, 0.16), Bn ∼ Γ(9, 625), αn ∼ Γ(7, 1), and βn ∼ Γ(5, 5) for data 2; and An ∼ Γ(8, 0.16),
Bn ∼ Γ(9, 625), αn ∼ Γ(3.3, 0.6), and βn ∼ Γ(2, 2.5) for data 3. As the variability increases, the
estimates from model with data pooling migrate farther away from the true population means
(vertical and horizontal lines in each plot), while the means of the hierarchical model estimates
remain accurate.

With trajectories generated using beta and inverse-gamma delays, our algorithm produced both

population and individual estimates which were overall accurate, but tended to slightly overestimate

individual delay variances (see Fig. 17), as was observed previously when the model used for

inference matched the model used to generate the data (Fig. 8). The overestimation of variances

is larger in the case of the beta delays, which was expected since the beta distribution is finitely

supported while the gamma distribution is supported on the semi–infinite interval [0,+∞).

3.4 Summary

The observed differences between cell phenotype in a population may be attributed to intrinsic and

extrinsic noise. In the presence of such noise sources inference models must account for cell-to-cell

variability not only to characterize population characteristics per se, but to also improve estimation

at the level of individual cells by using population information. To this end, we developed a general,
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Figure 17: The hierarchical model provides accurate estimates even when the delay distribution is
mismatched. We fit the hierarchical model with gamma distributed individual cell birth delays to
data generated using beta (a-d) and inverse-gamma (e-h) distributions for the same. Even when
the delay distributions in the model and data are not matched, population posteriors obtained in
both cases closely resemble the true population densities for both the production rate, A (a and
e), and delay time τ (b and f). The mean of the posteriors (triangular markers) are close to true
population means. Individual estimates of the mean delay, µτn (c and g), are accurate, while delay
variances, σ2τn (d and h), are slightly overestimated, as in when the distributions in the model and
data are matched (Fig. 8).

multi-level approach to inference, a hierarchical model that can be used to infer within cell and

cell-to-cell variability.

We applied our algorithm to a collection of observations of a stochastic birth-death process

with birth delays. First, we developed a model for processes with fixed delays. We showed that

our model is able to accurately infer all parameters, both reaction rate and delay, when data is

sufficient in amount and resolution. When only transient states are known, the fixed delay model

underestimated the reaction rates, a problem that was remedied by specifying the death rates

during inference. The fixed delay model resulted to population posteriors which tended to the true

distributions as the number of observed trajectories were increased. When the delays are in fact

distributed, a fixed delay model underestimated both the production rates and delay times.

Next, we developed an algorithm that is applicable when delay times vary. We assumed that

the death (or dilution) rates are known. We used this model to infer individual reaction rates

and mean delay times accurately. However, using this method of inference produced overestimates

in the delay variance due to the strong correlation between the samples of the delay parameters.
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Regardless of hyperpriors used (be it rational, MDIP, or folded normal), these observations were

verified across a range of generative hyperparameter values that determined population variability.

We showed that our approach performs better than a non-hierarchical analog, especially when data

resolution is low. We obtained better performance with our approach in exchange for additional

complexity and higher computational cost, compared to inference with a non-hierarchical model.

We also demonstrated that our hierarchical approach outperforms data pooling strategies even

when only the population mean of delays and production rates are of interest. Even when the

data does not match the model, as when the delay distribution is misspecified, our model was still

able to accurately infer individual parameters and population distributions, with still a particular

overestimation of delay variances.
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4 Hierarchical inference of transcriptional and translational reg-

ulation

In the previous chapters, we developed a hierarchical algorithm for inferring within cell and cell-

to-cell variability from discrete-time observations of a stochastic process. We have established the

strengths and weaknesses of the hierarchical model using synthetically generated observations of a

birth-death process with delays, and explored how the model performs under different degrees of

population heterogeneity. In the present chapter, we use the hierarchical model with distributed

delays to characterize the variability of delays and production rates in an experimentally observed

clonal population of E. coli. We also examine the quality of parameter estimates by cross-validation

and overfitting analysis. As previously, we assume that protein expression is delayed but Poissonian.

4.1 The YFP circuit

We use a birth-death process with distributed birth delays as a model of yellow fluorescent protein

(YFP) production within individual cells. As with all proteins, the production of YFP is not

instantaneous, as there can be a gap between the time of gene activation until the emergence of a

mature functional protein.

In our analysis, we use fluorescence microscopy data obtained by Cheng et al. [15] in two

independent experiments that measures YFP fluorescence intensity. These experiments used a

PBAD reporter-only circuit in E. coli, constructed by placing the YFP gene under the control of

the PBAD promoter. In this circuit (Fig. 1827), when Arabinose (ARA) is added to the media,

ARA binds with AraC, which in turn promotes the constitutive transcription of YFP [22, 60].

Induction is followed by a sequence of steps including transcription, translation, protein folding,

and maturation, which result in the production a mature YFP after a certain delay.

Although cell growth does not have a strong impact on YFP production [4, 22, 60], it drives

the decrease in YFP through dilution. YFP is a relatively stable protein and was not tagged

27This image is based on a figure found in [16]
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Figure 18: Formation of mature YFP. In the presence of Arabinose (ARA), AraC is activated and
promotes the constitutive transcription of YFP. The process of synthesis involves transcription,
translation, protein folding and maturation, which accounts for the delay in the emergence of a
mature, fluorescing YFP.

for enzymatic degradation in these experiments [3]. Therefore, dilution was the main driver of the

decrease in protein number within a cell. Considering the mechanism of constitutive YFP synthesis

that involved delays, and the process of protein degradation through dilution, Eq. (9) provides a

good representation of YFP dynamics.

4.2 Estimation using YFP trajectories

We worked with data obtained from time-lapse fluorescent microscopy of a population of E. coli that

expresses a YFP upon induction [15] by Arabinose. In two independent experiments, the population

was observed in a microfluidic device, allowing for the recording of flourescence intensity at 1-min

intervals from 39 cells and 27 cells, respectively (Fig. 19). As noted above, the addition of Arabinose

to the media at time t = 0 induced the transcription of YFP within all cells. Following previous

work [15, 16], the recorded fluorescent signal was assumed proportional to the number of mature

YFP molecules, thus allowing us to estimate the delay in the formation of the mature, fluorescing

proteins after induction. In an earlier study, Choi et al. [16] performed a similar analysis assuming

that cells in the population are identical. This assumption allowed for increased inference accuracy

through the pooling of data across cells observed in an experiment. However, the assumption that

all cells are identical may lead to biases in population estimates, and did not allow for the estimation

of the variability in reaction rates and delays across the population.

YFP did not saturate in either of the experiments (Fig. 19). As noted earlier in Subsection

3.2.3, we generally need to observe the saturation in protein number to be able to identify both the
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Figure 19: Data from time-lapse images of YFP expression from two independent experiments
performed previously by Cheng et al [15]. Trajectory of estimated YFP molecule number were
obtained by dividing the total fluorescence level of each cell by a conversion constant.

production and dilution rate. Hence, we specified individual dilution rates Bn, that were separately

measured, and used the hierarchical model to estimate the individual production rates, An, and

birth delays, τn. We used the individual dilution rate estimates obtained by Choi et al. [16] for the

same data set obtained by tracking the rate of cell growth and division.

We performed inference using our hierarchical model with distributed birth delays. Measure-

ment of fluorescence intensity, and thus of mature YFP protein count, in the two experiments

were considerably different, with the second (Fig. 19 green) lower than the first (Fig. 19 blue).

As explained by Choi et al. [16], the cause of this discrepancy in the measurements may be due

to factors affecting the experimental setup. This difference in the measured fluorescence levels in

the two experiments, eventually led to production rate estimates across the population that were

higher in the first experiment (Fig. 20a). This difference in the estimated production rates in the

two experiments, however did not extend to the mean delay times, as when averaged across the

population, the estimates were close: 9.43 and 9.80 min (Fig. 20b).

Our production rate and delay time estimates were higher than estimates previously obtained

using a non-hierarchical model with pooling strategies [16]. In particular, our delay time estimates

were about 3 min longer (Fig. 21a) than previously reported values. We refer to Subsection 3.3.6,

where we applied the two approaches to synthetic data from populations with varying heterogeneity,

to explain this observed discrepancy in estimates. As we have shown in Fig. 16, a hierarchical model

produced good estimates of individual cell parameters, while a model with pooling strategies led
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to an underestimate of both the population birth rate and average delay in the case of a highly

heterogeneous cell population. The underestimates produced in the latter case may explain the

discrepancy between estimates produced with pooled and unpooled data. This thus provided

evidence for the difference in inference method used as a primary contributing factor for the estimate

discrepancy.

Figure 20: Consistent estimates of the time delay distribution of YFP synthesis after induction.
(a-b) We estimated the production rates, An, and mean delay times, µτn , for each cell as the
mean of the individual posterior distributions, obtained by fixing the dilution rate Bn estimated
previously [16]. Because the molecular counts in the first were higher than in the second experiment,
the population posterior mean for A was higher for the first. The population mean of the delay
distributions are similar in the two experiments (9.43 and 9.80 min, respectively).

As the YFP fluorescence data were gathered from separate but identical experiments, we ex-

pected some similarity in the inferred parameters and their variability across the population. The

population distribution of mean delay times in the two experiments were very similar, but the poste-

rior distribution the production rates were different (Fig. 20a and b). To quantify this observation,

we measured the distance between the population posterior densities of both the production rate, A,

and delay time, τ , from the two experiments, by estimating the Kullback-Liebler (KL) divergence

from the posterior samples28 [83]. The KL divergence between the production rate posterior distri-

butions (from the first experiment to the second) was large at 0.43, mainly due to the considerable

difference in YFP levels (Fig. 20a) in the two experiments. In contrast, the posterior delay times

(Fig. 20b) were almost identical with low KL divergence of 0.005, thereby showing a consistency

in the estimation of mean delay times despite the difference in reaction rates. We also found that

28The estimator of divergence developed by Wang et al. [83] is based on k-nearest neighbor distances.
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at the population level, the birth rate, A, has coefficients of variation (CV s) of 0.52 and 0.55 in the

first and second experiment, respectively, while the collection of estimated mean delays, µ̂τn (Fig.

20d), has CV s of 0.31 and 0.21, respectively. The latter is similar to the CV of 0.20 reported for

mean maturation times of YFP measured directly using fluorescent microscopy [15] .

To test for dependence between different parameter pairings we computed the Pearson correla-

tion coefficients (Fig. 21). We did not find any consistent relationships between the parameters,

except for a moderate positive correlation between CV s and mean delay times, µ̂τn , of the individual

delay distribution (Fig. 20b).

Figure 21: Pearson correlation coefficients reveal no consistent linear relationships between indi-
vidual parameters in both experiments. (a) Both the average of the production rates and mean
delay times (gray lines) are higher than previously reported by Choi et al. (red dots). We found
no consistent correlation between Ân and µ̂τn (ρ = 0.33 and ρ = −0.17) in the two experiments.
(b) Individual CV s and µ̂τn are moderately positively correlated (ρ = 0.31 and ρ = 0.30 in the
first and second experiment, respectively). (c) The dilution rate, Bn, and µ̂τn have ρ equal to
−0.08 and −0.43 in the two experiments, respectively. (d) The reaction rates Bn and An, show
no clear evidence of correlation with ρ = −0.03 and ρ = 0.30 in the first and second experiment,
respectively. Shaded regions show the 95% confidence interval for the regression estimate.

To further verify the correctness of our estimates, we also generated an ensemble of trajectories

using the delay Gillespie algorithm and parameters obtained from samples from the posterior distri-

butions for each individual cell (Fig. 22 and 23). Simulated trajectories matched the experimental

data well, with mean trajectories (solid lines in Fig. 22 and 23) that overlap with experimental

data.
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Figure 22: Simulated realizations with estimated parameters fit individual YFP trajectories from
the first experiment. We simulated 100 trajectories for each cell by sampling the parameters from
the 95% high density interval (HDI) of the posterior distributions, using the delayed Gillespie
algorithm [6]. The mean of the realizations (solid lines), per cell, fit the experimental data very
well.
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Figure 23: Simulated realizations with estimated parameters fit individual YFP trajectories from
the second experiment. We simulated 100 trajectories for each cell by sampling the parameters
from the 95% high density interval (HDI) of the posterior distributions, using the delayed Gillespie
algorithm [6]. The mean of the realizations (solid lines), per cell, fit the experimental data very
well.
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4.3 Overfitting analysis

Although trajectories simulated using our parameter estimates showed good agreement with ex-

perimental data, this evaluation of the quality of our estimates does not rule out the possibility

of overfitting. When dealing with in silico data, estimates can be easily compared to generative

values to perform assessment, but in the present case, the true parameter values characterizing the

experimental system are unknown and thus additional cross-validation and overfitting detection

have to be performed.

An important consideration in the subsequent analyses is the complexity of our inference model:

In the case of synthetically generated data, the complexity of the model we are fitting is similar to

that of the generative model in many cases we considered. As the model we proposed is usually an

exact description of the generative process, we do not expect our algorithm to overfit. We typically

expect overfitting when the model we fit to data is more flexible or complicated than the the process

it is supposed to describe [35]. This is, for instance, the case when there is no delay in the generative

model but there is a delay in the model we fit to the data, or when the delay is fixed but the model

we are fitting specifies one that is distributed. We have seen the latter scenario previously in Fig.

11, where the inference algorithm overestimated the production rates to accommodate a delay with

non-zero variance. On the other hand, if the model is insufficiently flexible or complex, we can

expect underfitting, as characterized by the model being unable to explain certain features of the

data.

We subscribe to the principle of parsimony: The models we considered provide a minimal

description of the underlying biological processes with delays. We therefore did not expect these

models to overfit the YFP data, and our tests indicate this is true. We looked at three versions of

the hierarchical model:

1. Model HF: the hierarchical model with fixed delays inferring the individual delay times, τn,

and production rates, An, and their population distributions;

2. Model HD1: the hierarchical model with distributed delays inferring τn and An, and their
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population distributions; and

3. Model HD2: the hierarchical model with distributed delays inferring τn, An, and individual

dilution rates, Bn, and their population distributions.

To test performance, we looked at how the predictions obtained using these models generalize to

previously unseen data and measured the interpolation and extrapolation errors. We considered

three subsets of the experimental data:

1. full 20 min trajectories that are observed at 1-min intervals;

2. full 20 min trajectories that are observed at 2-min intervals; and

3. shorter 15 min trajectories that are observed at 1-min intervals.

The first data subset served as control to show how models perform in a data-rich scenario, and the

second and third served to show model interpolation and extrapolation capabilities, respectively.

The fixed delay model, Model HF, failed to capture system behavior in significant portions of the

data set, indicating high bias in inference (Fig. 24a and b) and underfitting. Although individual

parameter estimates remained realistic and consistent in all data subsets considered (Fig. 24c),

simulated trajectories with these parameters did not exhibit the correct initial development of the

YFP counts. When we fitted the distributed delay model with the death rates, Bn, specified and

fixed, Model HD1 extrapolated well to the unobserved data points (Fig. 25a and b), and was

minimally sensitive to small changes in input data (Fig. 25c). With Model HD2, inference of

the full parameter set, which now included the death rates, Bn, resulted in good recovery of the

trajectories (Fig. 26a and b), but unrealistically large parameter estimates29 (Fig. 26c), which

suggested overfitting.

To measure interpolation and extrapolation errors, we computed the root mean square error of

the mean simulated trajectories against the experimental data per individual cell and averaged over

29Previous estimates of production rate pegged µA at around 35 min−1 [16] while experimental estimates for YFP
variant VENUS maturation is 7 ± 2.5 min [86]. Estimate from HD2 for µA is set at around 180 min−1 and µτ at
around 20 min, which is more than triple the previous estimate for the production rate, and more than double the
maturation time from experimental observations.
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all cells. Model HD1 produced estimates that were consistently best with the lowest interpolation

and extrapolation errors, among the three model versions considered (Fig. 27a orange). Errors

for the fixed delay model, Model HF, on the other hand, were consistently high in all data subsets

(Fig. 27a blue). Model HD2 showed accuracy that is comparable to Model HD1 in terms of

interpolation errors, but was considerably inferior in extrapolation capabilities (Fig. 27a grey).

Next, we compared how individual parameter estimates vary across the data subsets we considered.

We computed the coefficient of variation of the parameter estimates (Fig. 25c, 24c, and 26c)

across the three data subsets per individual, then averaged over all individuals. Model HD1 was

largely insensitive to small changes in input data (Fig. 27b orange) with moderate variation in

estimates, while the fixed delay model, Model HF, showed small changes (Fig. 27b blue) especially

in second experiment. Using the distributed delay model, Model HD2, to infer the full parameter

set, produced results that were sensitive to input data resulting in dramatically different parameter

estimates for the different data sets (Fig. 27b grey).

These observations pointed to the efficacy of the hierarchical distributed delay model when

the death rates, Bn, are specified in inferring parameters of the system under study. Model HD1

extrapolated well to unobserved data, and was largely insensitive to small changes in input data.

This confirmed that the hierarchical distributed delay model generalized well and did not overfit,

when provided with enough information and data. The fixed delay model, Model HF, showed clear

signs of underfitting: extrapolation and interpolation errors were high, and parameter estimates

no longer improved even when presented with better data amount and resolution. The hierarchical

model that infers the full parameter set, Model HD2, resulted in unrealistically high parameter

estimates that exhibited large variations when the data resolution and amount were changed, low

interpolation errors, and high extrapolation errors, which when taken together served as evidence

for overfitting. This indicated that parameters may not be recovered, and that the model can

overfit the data when all parameters need to be inferred [54].
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Figure 24: Simulated realizations of the delayed birth–death process with estimated parameters
from the hierarchical fixed delay model do not exhibit the sigmoidal trajectories that characterize
the YFP data. Setting the death rates, Bn, to their true values during inference, we fit the fixed
delay model to subsets of the experimental data: full 20 min (red background), 20 min with data
subsampled at 2-min intervals (green background), and the first 15 min (yellow background) data.
In both experiments 1 (a) and 2 (b), simulated trajectories closely matched the initial and final
data points but deviated from the data in the middle of the trajectory. (c) Inference results of five
randomly selected cells are shown. Individual estimates of production rates, An, and mean delay
time, µτn , showed small deviations with the change in data amount and resolution. See Fig. 27 for
the analysis of the inference using all cells.
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Figure 25: Simulated realizations with estimated parameters from the hierarchical distributed delay
model fit individual YFP trajectories even when some data points were withheld during inference.
Setting the death rates, Bn, to their true values during inference, we fit the model to subsets of the
experimental data: full 20 min (red background), 20 min with data subsampled at 2-min intervals
(green background), and the first 15 min (yellow background) data. Simulated trajectories for
experiments 1 (a) and 2 (b) using the inferred parameters in all the settings we considered fit
data well. (c) Inference results of five randomly selected cells are shown. Individual estimates of
production rates, An, and mean delay time, µτn , showed small deviations with changes in the data
set indicating that inference is robust. See Fig. 27 for the analysis of the inference using all cells.
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Figure 26: Full parameter set estimation using the hierarchical distributed delay model resulted
in unrealistically large estimates that produced simulated realizations which fit individual YFP
trajectories well. We fit the model to subsets of the experimental data: full 20 min (red back-
ground), 20 min with data subsampled at 2-min intervals (green background), and the first 15 min
(yellow background) data. Simulated trajectories for experiments 1 (a) and 2 (b) using the inferred
parameters across all settings we considered fit data well. (c) Inference results of five randomly
selected cells are shown. Individual estimates of production rates, An, mean delay time, µτn , and
death rate, Bn, all are unrealistically large. See Fig. 27 for the analysis of the inference using all
cells.
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Figure 27: Fixed delay and unspecified death rate lead to underfitting and overfitting respectively.
(a) We computed the root mean square error (RMSE) of the mean simulated trajectories from the
experimental data per individual cell, and averaged over all cells. In both experiments 1 (left) and
2 (right), the RMSE remained low with small changes in the case of the distributed delay model
where Bn was specified. In the case of the fixed delay model the error unexpectedly increased with
the amount of data used to infer the parameters and hyperparameters, indicating a larger bias.
Inference of the full parameter set (including Bn) using the distributed delay hierarchical model
resulted in larger RMSEs compared to when Bn was specified. (b) We computed the coefficient of
variation (CV) of the parameter estimates (Fig. 24c, 25c, and 26c) across the different data subsets
per individual, then averaged over all individuals. The fixed delay model showed the least variation
among the models then followed by the distributed model with Bn specified. The distributed model
where all parameters were inferred exhibited the largest variation in all parameters.
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4.4 Summary

We tested the performance of our hierarchical model on fluorescence data from an experimentally

observed clonal population of E. coli. In this experiment [15], when Arabinose is added to the media

at time t = 0, the transcription of YFP is induced, followed by translation and post-translational

modifications. The time for the completion of this sequence of reactions after induction comprises

the delay time in the formation of mature fluorescing proteins. The number of mature YFP is not

directly counted, and is instead assumed to be proportional to the observed fluorescence intensity.

The dynamics of YFP count can mainly be described by two processes: protein production

with delayed completion, and decrease in count due to dilution. As such, a delayed birth-death

process is a good model of this dynamics. We dealt with data from two independent experiments.

During the observation window, the trajectories did not saturate and so we needed to specify the

dilution rates instead of inferring them simultaneously with the other parameters. We used the

dilution rate estimates obtained by Choi et al. [16] in a previous study. Individual parameters

we obtained for the production rates and delay times were higher than previously reported values

derived from an implementation of a non-hierarchical model using pooling strategies [16]. We argued

that this difference in estimates is caused by the difference in the inference methods used, as the

same level of discrepancy can be observed when dealing with in silico data with high population

heterogeneity. A pairwise test for linear dependence between the individual parameters showed no

strong relationships between the parameters.

We characterized the population distribution of both production rates and delay times and

compared the results in the two experiments by estimating the KL-divergence of the population

posterior distributions. Because of the difference in fluorescence intensities in the two setups, the

distance between the distributions of the production rates was high. Despite this difference, the

distribution of delay times were almost identical with very low KL-divergence.

As a form of evaluation of estimate quality, we generated an ensemble of realizations of the birth-

death process for every individual using samples from the obtained posterior distributions of the

parameters. The trajectories showed good agreement with the experimental data, but additional
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checks for overfitting still had to be performed. We found that when the dilution rates are specified,

a hierarchical model with distributed delay does not overfit as it is highly insensitive to changes

in input data, and produces estimates that result to low interpolation and extrapolation errors.

A fixed delay model, on the other hand, underfitted the data as it cannot explain a considerable

segment of the YFP trajectories. When we tried to estimate the full parameter set, the hierarchical

model with distributed delay displayed signs of overfitting, as characterized by low interpolation

but high interpolation errors.
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5 Conclusions

In this work, we have developed a hierarchical Bayesian model for the inference of parameters of a

biochemical chemical reaction network with delays, and their distribution in a cell population. We

have shown that our inference framework produces accurate and robust estimates of reaction rates,

reaction completion time delays, and their population variability even when the stochastic process

of interest is discretely-observed, as in experimental measurements of gene regulatory networks

obtained via fluorescent microscopy.

We considered a stochastic birth-death process with birth delays to demonstrate the perfor-

mance and limitations of our method. This process, although simple, provides a minimal model

for the experimental system we studied, and also is a building-block for more complex biochem-

ical reaction networks. In this simple setting, we have shown that our method can be used for

the simultaneous inference of the individual-level parameters characterizing the cells, and in the

quantification of the cell-to-cell variability of these characteristics. Our method for deriving the ap-

proximate likelihood and posterior distribution is general, so that the techniques we developed for

the inference of a birth-death process readily extends to more complex systems. In systems with

more complicated structures, however, some other challenges in computation and identifiability

may arise, ones which we may not have encountered in our test scenarios.

In our analyses, we looked at models with fixed and distributed delays. The fixed delay model

has fewer parameters, is easier to implement, faster to run, and performs better when measurements

are generated using fixed delay processes. However, using the fixed delay model for inference leads

to underestimates of birth reaction rates and delay times at the individual and population levels

when reaction delays are in fact variable in time. The hierarchical distributed delay model, on the

other hand, is applicable more widely. It works well with high-resolution data, but at the expense of

high computational cost. We also showed when data is sparsely sampled, the ensemble estimation

allows our hierarchical model to outperform its non-hierarchical counterpart.

Our inference model is applicable to experimental data that can be obtained using fluorescent
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microscopy. In such experiments, cells can vary in growth rates, size, plasmid copy number, and

other factors [2, 64, 71, 73, 74]. Hierarchical models explicitly account for such heterogeneity and

thus provide a suitable framework for inferring the variability and covariability of biochemical

rates and delays across the population [37, 78, 87]. Our estimates of the reaction rates and delays

were higher than previous estimates [16]. This discrepancy may be due to biases introduced by

data pooling without considering cell heterogeneity, as in the case of model implementation with

synthetic data. Despite this difference in the parameter estimates, we were able to closely recreate

the observed YFP molecular counts for all the cells using the resulting values from our hierarchical

approach. Thus, we expect that our robust hierarchical approach can be extended to quantify the

variability and covariability of complex gene network dynamics from experimental data.

Even in the simple cases that we considered, computational cost already comes up as an issue.

A distributed delay model, for instance, has four parameters per individual that needed to be

inferred for dozens of cells, alongside population distribution hyperparameters that characterize

each parameter type. Model dimension increases with the complexity of the biological system,

and with it also grow the required computational resources to perform inference. Related to the

issue of model dimension increase is the selection of a sampling algorithm that can efficiently

explore the parameter space. As one may immediately conclude, an inefficient algorithm may

encounter problems in the convergence of the sample chain to the posterior distribution. Alternative

algorithms such as Hamiltonian Monte Carlo [59, 67], variational approaches [44, 81], or machine

learning methods [18] can be considered by future studies to address these issues.

One key assumption in our model is that cells are independent: We assumed individual cell

parameters are independent samples from some population distribution. While this assumption

worked well in the experimental system that we studied, where cells are not closely related, our

method does not apply to cell lineages where daughter cells have been shown to exhibit correlated

gene expression for a considerable length of time after division [80]. Such a setting necessitates

a significant change in the paradigm that we followed in this study: For instance, the collection

of individual rate parameters for the same reaction can be viewed as a realization of a random
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vector that is described by a multi-dimensional probability distribution, with some covariance

function that accounts for spatio-temporal relationships. This approach, however, requires strong

assumptions about the spatio-temporal structure of the parameters [19]. Research focus now shifts

from determining how different cell parameters are across the population, to how long parameter

correlations are maintained in the lineage.

Cell populations may exhibit different levels of heterogeneity. The population may be homoge-

neous where all cells are identical, or cell-to-cell variable as we assumed in this study. While we

have established the effectiveness of our approach in the later case, we have not explored how the

model performs in cases when subpopulations [56] are present. As descriptions for subpopulations

are commonly given in terms of mixture distributions, developing an inference framework for such

a scenario may require particular steps that are not present in this work.

In sum, we have developed a general hierarchical Bayesian inference framework for delayed

chemical reaction systems that resulted to accurate and robust estimates for the cases we considered.

While we limited our model analysis to a stochastic birth-death process, this simple case is a

fundamental component of more complex biochemical networks and our methods easily extend to

these cases. Future work can look into applications in different processes, address issues related

to model dimensionality, and consider exploring inference for cell lineages and different levels of

heterogeneity.
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A Sampling from population distributions and individual delay

distributions

Here we present the algorithm for generating the posterior population distributions and the in-

dividual delay distributions found throughout the main text. Population distributions are not

directly sampled in the algorithm, and we instead sample from the posterior distribution of the

hyperparameters. Here, we present the algorithm we used to sample from the population marginal

posteriors of the parameters A, α, β, and the delay time τ . We also apply the same strategy to

sample values from the individual delay distributions.

Through the MCMC algorithm we obtain the hyperparameter posterior distributions π(aZ) and

π(bZ), for Z ∈ {A,B, τ} in the fixed delay, and Z ∈ {A,B, α, β} in the distributed delay case. We

employed the algorithm below to sample from the respective population distributions.

1. Take m samples asZ from π(aZ).

2. Take m samples bsZ from π(bZ).

3. For each pair (asZ , b
s
Z), take p samples from Γ(asZ , b

s
Z).

4. Combine all the mp samples taken from step 3. This pooled samples are realizations of the

population distribution of the reaction rate or delay parameter Z.

In the distributed delay case, a similar algorithm was also applied to sample from the individual

delay posterior distributions. For an individual n, the algorithm infers the posteriors π(αn) and

π(βn). We sample from π(τn) as follows.

1. Take m samples αs
n from π(αn).

2. Take m samples βsn from π(βn).

3. For each pair (αs
n, β

s
n), take p samples from Γ(αs

n, β
s
n).

4. Combine all the mp samples taken from step 3. The pooled samples are realizations of the

marginal posterior of the individual delay τn.
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We typically used m = 1, 000, 000 and p = 1 to generate the figures.

B Non-informative hyperpriors for the hierarchical distributed

delay model and non-informative priors for its non-hierarchical

counterpart

The hierarchical model requires the specification of hyperpriors for all the hyperparameters that

describe population variation. In the generative model for the distributed delay case (Fig. 6b), we

have four pairs of hyperparameters (a, b), one for each of A, B, α, and β. As information about these

hyperparameters may be scarce, especially in real biological systems, specifying non-informative

hyperpriors will sometimes be appropriate.

In model implementation, we assumed that the death rates Bn are known and so no longer

inferred their population distributions. For the rate parameter, An, we specified a rational prior

with form π(aA, bA) =
1

bA
. For the delay parameters α and β, we first considered rational priors of

the form π(aα, bα) =
1

bα
and π(aβ, bβ) =

1

bβ
, and afterwards tested changes in estimate accuracy

when these are replaced by the MDIP (32).

In the comparison done between the hierarchical and non-hierarchical models (See Fig. 12),

we implemented both cases all with non-informative hyperpriors and priors, respectively. For the

hierarchical model, we specified a rational joint hyperprior for the pair (aA, bA), and MDIP for

both the pairs (aα, bα) and (aβ, bβ). Similar to Choi et al. [16], we specified non-informative

gamma priors, Γ(0.001, 0.001), for all parameters An, αn, and βn, in the implementation of the

non-hierarchical model.
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C Derivation of marginal posterior distributions for a non-

hierarchical model with data pooling

Consider a collection, y = {yn}n=1,...,N , of N independent realizations of a birth-death process

with delays,

∅ A−−−−→
τ

Y
B−−−−→ ∅,

where the birth delay τ follows a gamma distribution Γ(α, β). For each realization n, we denote

its subset of discrete-time observations as yd,n = (yn (0) , yn (1) , . . . , yn (T − 1) , yn (T )). We assign

the following gamma priors for each of the parameters:

A ∼ Γ(aA, bA)

B ∼ Γ(aB, bB)

α ∼ Γ(aα, bα)

β ∼ Γ(aβ, bβ).

We denote by rn1i the number of birth reaction which completed at interval (i, i + 1] in the nth

realization, and by rn2i the number of death reactions. Following the likelihood (35), the resulting

posterior distribution with the above-specified priors is

π (A,B, α, β |yd ) ∝
N∏

n=1

T−1∏
i=0

(
A

∫ i+1

i

γ
(
α, βt̂

)
Γ (α)

dt̂

)rn1i

rn1i!
exp

(
−A

∫ i+1

i

γ
(
α, βt̂

)
Γ (α)

dt̂

)

×
N∏

n=1

T−1∏
i=0

[
1

2
B (yn (i+ 1) + yn (i))

]rn2i

rn2i!
exp

(
−1

2
B (yn (i+ 1) + yn (i))

)
×AaA−1 exp (−AbA)BaB−1 exp (−BbB)

× αaα−1 exp (−αbα)βaβ−1 exp (−βbβ).
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With this, we derive the conditional marginal posteriors for the rate parameters which both follow

a gamma distribution:

A ∼ Γ

(
N∑

n=1

T−1∑
i=0

rn1i + aA, N
T−1∑
i=0

∫ i+1

i

γ(α, βt̂)

Γ(α)
dt̂+ bA

)

B ∼ Γ

(
N∑

n=1

T−1∑
i=0

rn2i + aB,

N∑
n=1

T−1∑
i=0

1

2
(yn(i) + yn(i+ 1)) + bB

)
.

The posteriors for the delay parameters, on the other hand, do not follow known distributions but

are proportional to

α |yd, A,B, β ∝
N∏

n=1

T−1∏
i=0

[∫ i+1

i

γ(α, βt̂)

Γ(α)
dt̂

]rn1i

exp

(
−NA

T−1∑
i=0

∫ i+1

i

γ(α, βt̂)

Γ(α)
dt̂

)
αaα−1 exp(−αbα)

β |yd, A,B, α ∝
N∏

n=1

T−1∏
i=0

[∫ i+1

i

γ(α, βt̂)

Γ(α)
dt̂

]rn1i

exp

(
−NA

T−1∑
i=0

∫ i+1

i

γ(α, βt̂)

Γ(α)
dt̂

)
βaβ−1 exp(−βbβ).
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