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Abstract

In the emerging smart grids, production increasingly relies on a greater number of

decentralized generation sites based on renewable energy sources. The variable nature

of the new renewable energy sources will require a certain form of distributed energy

storage, such as batteries, flywheels, compressed air and so on to help maintain sup-

ply security. Moreover, integration of demand response programs in conjunction with

distrusted generation makes an economic and environmental advantage by altering

end-users’ normal consumption patterns in response to changes in the electricity price.

These new techniques change the way we consume and produce energy also enable

the possibility to reduce the greenhouse effect and improve grid stability by optimiz-

ing energy streams. In order to accommodate these technologies, solid mathematical

tools are essential to ensure robust operation of heterogeneous and distributed nature

of smart grids. In this context, game theory could constitute a robust framework that

can address relevant and timely open problems in the emerging smart grid networks.

In this dissertation, three dynamic game-theoretical approaches are proposed for dis-

tributed control of generation and storage units and demand response applications in

smart grid networks.

We first study the competitive interactions between an autonomous pumped-

storage hydropower plant and a thermal power plant in order to optimize power

generation and storage. Each type of power plant individually tries to maximize its

own profit by adjusting its strategy: both types of plants can sell their power to the

market; or alternatively, the thermal-power plant can sell its power at a fixed price

to the pumped-storage hydropower plant by storing the energy in the reservoir. A

stochastic differential game is formulated to characterize this competition. The solu-

tions are derived using the stochastic Hamilton-Jacobi-Bellman equations. Based on

the effect of real-time pricing on users’ daily demand profile, the simulation results

demonstrate the properties of the proposed game and show how we can optimize

consumers’ electricity cost in presence of time-varying prices.
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Second, we focus on controllable load types in energy-smart buildings that are

associated with dynamic systems. In this regard, we propose a new demand response

model based on a two-level differential game framework. At the beginning of each

demand response interval, the price is decided by the upper level (aggregator, util-

ity, or market) given the total demand of lower level users. Given the price from

the upper level, the electricity usage of air conditioning unit and the battery stor-

age charging/discharging schedules are controlled for each player (buildings that are

equipped with automated load control systems and local renewable generators), in

order to minimize the user’s total electricity cost. The optimal user strategies are

derived, and we also show that the proposed game can converge to a feedback Nash

equilibrium.

Finally, the problem of distributed control of the heating, ventilation and air con-

ditioning (HVAC) system for multiple zones in an energy-smart building is addressed.

This analysis is based on the idea of satisfaction equilibrium, where the players are

exclusively interested in the satisfaction of their individual constraints instead of in-

dividual performance optimization. This configuration enables a HVAC unit as a

player to make stochastically stable decisions with limited information from the rest

of players. To achieve satisfaction equilibrium, a learning dynamics based on trial-

and-error learning is proposed. In particular, it is shown that this algorithm reaches

stochastically stable states that are equilibria and maximizers of the global welfare

of the corresponding game.
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Chapter1

Introduction and Background

1.1 Overview

The concept of Smart Grids [1, 2, 3, 4] refers to a network system, which is able to

effectively satisfy all the new requirements and functions of a future network system

by using advanced Information and Communications Technologies (ICT) technologies.

The traditional electricity distribution network is a passive network that delivers elec-

tricity from the generation point to the consumption point. In future, the network

system has to be changed to an active network, which is able to intelligently integrate

the actions of all the users connected to it including generators and consumers, in

order to efficiently deliver sustainable and secure supply. The network must be able

to adapt small-scale distributed generation and enable two-way power flow inside the

grid. It has to be able to support all new functions of the electricity market in order

to make the operation of the network and electricity market more efficient and flexi-

ble. Figure 1.1 depicts the interaction between consumer devices with communication

capabilities, energy providers, and transmission and distribution functions enabled by

Smart Grid network operations. The end-use devices receive information such as price

signals and respond by adjusting their operation accordingly. Consumer communi-

cation devices facilitate load aggregation and control from. The distribution part

models system operation. All the subsystems interact by two-way communications

through the grid operator [5]. A smart grid can be characterized to [6]:

• Enable active participation by consumers

• Accommodate all generation and storage options

• Enable new products, services, and markets

• Provide power quality for the digital economy
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Figure 1.1: Smart grid concept [10]

• Optimize asset utilization and operate efficiently

• Anticipate and respond to system disturbances (selfheal)

• Operate resiliently against attack and natural disaster.

Achieving the vision is dependent upon participating entities and empowers con-

sumers as well as improving reliability of the distribution system. The primary assets

of a smart grid are [7]:

• Demand response (DR): communications and controls for end-use devices and

systems to reduce (or, in special cases, increase) their demand for electricity at

certain times.

• Distributed generation (DG): small engine or turbine generator sets, wind tur-

bines, and solar electric systems connected at the distribution level.
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• Distributed storage (DS): batteries, flywheels, super-conducting magnetic stor-

age, and other electric and thermal storage technologies connected at the dis-

tribution level.

• Distribution/feeder automation: distribution and feeder automation expand

SCADA (Supervisory Control and Data Acquisition) communications in sub-

stations and into the feeders with remotely actuated switches for reconfiguring

the network, advanced protective relays with dynamic and zonal control capa-

bilities, dynamic capacitor bank controllers, and condition-based transformer-

management systems (to name a few).

• Transmission wide-area visualization and control: transmission control systems

that rapidly sense and respond to disturbances.

• Electric and plug-in electric hybrid vehicles (EVs/PHEVs): the batteries in EVs

represent both a new type of load that must be managed and an opportunity

for them to discharge as energy storage resources to support the grid.

Investments in a number of enabling assets are also necessary to support the use of

the primary assets for smart grid applications, hence the function of a smart grid.

Among these cross-cutting technologies are [8]:

• Wide-area communications networks, servers, gateways, etc.

• Smart meters could also

– support shorter metering intervals approaching 5 minutes or less to sup-

port provision of ancillary services and distribution capacity management

(rather than the hourly interval generally considered adequate for peak

load management at the bulk power systems level)

– full two-way communications including to a home-area network to com-

municate to smart thermostats and appliances
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– instantaneously read voltage, current, and power factor to support distri-

bution state estimation and optimized system voltage control

• Local-area home, commercial building, and industrial energy management and

control systems and networks.

• Consumer information interfaces and decision support tools.

• Utility back-office systems, including billing systems.

The objective operations are the benefits or applications to which smart grid assets

are engaged to improve cost effectiveness, reliability, and energy efficiency of the power

system. These can be summarized in broad categories including managing peak load

capacity for generation, transmission, and distribution, reducing costs for wholesale

operations and corresponding providing enhanced reliability/adequate reliability at

less cost [9].

1.2 Green Smart Grids

The intelligence of a Smart Grid will facilitate greater utilization of intermittently

available renewable resources such as solar and wind, from which will accrue reduc-

tions in CO2 emissions. As a result of the intermittent nature of wind and solar, their

operation causes minute fluctuations in power generated as wind speeds change or

clouds affect solar exposure. These fluctuations in power, if not counterbalanced in

real time, can lead to frequency imbalance and disturb the stability of the electrical

system [11, 12]. To smooth out the intermittency of renewable energy production,

low-cost electrical energy storage will become necessary. Energy storage has been

considered as a key enabler of the smart grid or future grid, which is expected to in-

tegrate a significant amount of renewable energy resources while providing fuel (i.e.,

electricity) to hybrid and electrical vehicles, although the cost of implementing energy

4



Figure 1.2: Features of a green grid [16].

storage is of great concern. Another major step toward achieving green grid is the

energy efficiency of residential buildings which plays a significant role in addressing

the climate change. In U.S. for example, 27.3 % of total greenhouse gas emission is at-

tributed to buildings in 2003, where residential and commercial buildings account for

15.3% and 12% accordingly. For a sustainable building, the energy management units

should be designed to achieve significant reductions in non-renewable resources, also

minimum usage of Heating, Ventilation, and Air conditioning (HVAC) units which

are accounted for the main electricity consumption factor in buildings[13].

Development and incorporation of demand response and energy-efficiency resources,

deployment of ŞsmartŤ technologies (real-time, automated, interactive technologies

that optimize the physical operation of appliances and consumer devices) for metering,

communications concerning grid operations and status, and distribution automation

are some other approaches for developing a smart grid to help address climate change

[14, 15].
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1.3 Smart Buildings

The building and the electricity grid sector are the most important sectors of

interest since they are responsible for the greatest energy waste. Great energy savings

can be achieved through sophisticated algorithms that control and schedule power

tasks from smart devices in a dynamic manner. These processes provide the necessary

foundations for demand response (DR) and self-adaptable smart grids [17, 18]. Smart

devices are responsible in real time monitoring and actuation under command flow

arriving from the smart grid. In general, the greatest the number of deployed smart

devices is, more flexibility is given to the grid and thus more vibrant the grid operation

is expected to be. In this regard, information technologies play an important role

specifically with respect to to the followings [19, 20]:

• Integration with the smart grid via demand response: allows the system to

manage consumption in response to supply conditions including price by, for

example, selectively turning off appliances or reducing non-essential or nontime-

critical services. Demand response helps balancing supply and demand by re-

ducing the peak load and allowing increased use when production exceeds de-

mand. Energy suppliers could avoid costly capital investments for generation

capacity; and consumers would benefit from sharing the savings resulted from

the lower operational cost of energy production.

• Autonomous building operations through continuous sense and respond. This

enables the system to fully manage building energy consumption. This oppor-

tunity integrates the dynamic information of users activities (e.g., occupancy

information), ambient conditions (e.g., weather, light), and energy supply condi-

tions (e.g., real-time prices) while considering various building users constraints

(e.g., business mission, cost, preferences, safety, comfort, convenience). The

result is optimized building operation with the greatest energy efficiency.
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Towards these directions, the role of the building energy management systems

(BEMS) significant, due to their contributions to the continuous energy management

and therefore to the achievement of the possible energy and cost savings. The BEMS

are generally applied to the control of active systems, i.e., HVAC systems, while

also determining their operating times. In the above efforts, the performance of the

BEMS is directly related to the amount of energy consumed in the buildings and the

comfort of the buildings occupants [21]. A BEMS basic model includes the following

components [22]:

• Indoor sensors: Sensors that measure and record temperature, humidity, and

CO2 mass in the building areas.

• Outdoor sensors: Sensors for the outdoor weather conditions such as tempera-

ture, humidity and luminance, which are essential for the efficient operation of

the system.

• Controllers: This component category contains switches, contacts, valves, and

actuators.

• Decision support unit: A real time decision support unit is included, with the

following capabilities: 1) Interaction with the sensors for the diagnosis of the

building state and therefore the formulation of the building energy profile. 2)

Incorporation of intelligent system technologies to select the appropriate inter-

ventions, depending on the building requirements. 3) Communication with the

buildings controllers based on the application of the decision.

• Database: It includes the database for the building energy characteristics and

the knowledge database for all recording information.

An example of a BEMS is shown in Figure 1.3. This system receives information

from light, humidity, temperature, and camera sensors. Moreover the real time prices

7



Figure 1.3: A building energy management system[23].

that are sending from market to the smart meters reported to the BEMS unit. Based

on users constraints, cost and energy efficiency metrics the optimal control decisions

will be sent to various control units in the building.

1.4 Motivations and Thesis Contribution

The smart grid is envisioned to be a large-scale cyber-physical system that can

improve the efficiency, reliability, and robustness of power and energy grids by inte-

grating advanced techniques from various disciplines such as power systems, control,

communications, signal processing, and networking. Inherently, the smart grid is a

power network composed of intelligent nodes that can operate, communicate, and

interact, autonomously, in order to efficiently deliver power and electricity to their

consumers. This heterogeneous nature of the smart grid motivates the adoption of
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advanced techniques for overcoming the various technical challenges at different lev-

els such as design, control, and implementation. In this respect, game theory is

expected to constitute a key analytical tool in the design of the future smart grid,

as well as large-scale cyber-physical systems. Game theory is a formal analytical as

well as conceptual framework with a set of mathematical tools enabling the study of

complex interactions among independent rational players. For several decades, game

theory has been adopted in a wide number of disciplines ranging from economics and

politics to psychology[28, 29]. In particular, there is a need to deploy novel models

and algorithms that can capture the following characteristics of the emerging smart

grid: 1- the need for distributed operation of the smart grid nodes for communication

and control purposes, 2- the heterogeneous nature of the smart grid which is typi-

cally composed of a variety of nodes such as micro-grids, smart meters, appliances,

and others, each of which having different capabilities and objectives, 3- the need

for efficiently integrating advanced techniques from power systems, communications,

and signal processing, and 4- the need for low-complexity distributed algorithms that

can efficiently represent competitive or collaborative scenarios between the various

entities of the smart grid. In this context, game theory could constitute a robust

framework that can address many of these challenges [30]. Following are the main

contributions of this dissertation:

Stochastic dynamic hydrothermal scheduling in smart grid networks

We study the competitive interactions between an autonomous pumped-storage

plant as an energy storage and a thermal-power plant in order to optimize power

generation and storage. A stochastic dynamic game is formulated to characterize this

competition. The simulation results demonstrate the properties of the proposed game

and suggest how to optimize the amounts of generation in hydropower and thermal

power plants over time with the fluctuations of price. The proposed framework and

games can reduce the peak to average ratio and total energy generation for the thermal

9



plant, which helps power plant operation and reduces CO2 emission.

Autonomous demand response using stochastic differential games

We propose a two level dynamic game framework is proposed to model distributed

energy management of smart residential buildings. At the beginning of each hour,

the price is decided by the upper level (market) given the total demand of users in

the lower level from the previous hour. At the lower level, for each player (i.e., one

building), given the price from the upper level, the electricity usage of air condition-

ing unit and the battery storage charging and discharging scheduled are controlled

in order to minimize the user total cost. Based on the effect of real-time pricing

on users daily demand profile, the simulation results demonstrate the properties of

the proposed game and show how we can optimize the household electricity cost in

presence of time-varying prices.

Distributed control of HVAC systems in smart buildings

The problem of distributed control of HVAC systems in an energy-smart building

is addressed. Using tools from game theory the interaction among several autonomous

HVAC units is studied and simple learning dynamics based on trial-and-error learning

are proposed to achieve equilibrium. In particular, it is shown that this algorithm

reaches stochastically stable states that are equilibria and maximizers of the global

welfare of the corresponding game. Simulation results demonstrate that dynamic dis-

tributed control for the HVAC system can significantly increase the energy efficiency

of smart buildings.

1.5 Thesis Organization

The remainder of this thesis is organized as follows: In Chapter 2, An overview

of analysis methods used in this dissertation is presented. The problem of grid inte-

gration of energy storages is studied for specific case of pumped-storage plant using

stochastic differential game theory in Chapter 3. In Chapter 4, we proposed a game

10



theoretic demand response scheme for energy-smart buildings. Using this game, the

optimal control decisions for controllable load to minimize the consumption cast while

satisfying users’ constraints are achieved. In Chapter 5, using satisfaction game theory

which requires minimum information of players, we designed a scheme for distributed

control of HVAC units of multiple zones in large-scale buildings. Finally in Chap-

ter 6 we explain the future researches and conclude this thesis. Table 1.1 shows the

abbreviations used in this thesis.

Table 1.1: Thesis abbreviation.

(BEMS) Building Energy Management Systems
CC Control Center
DG Distributed Generation
DS Distributed storage
DR Demand Response

ECC Energy Control Center
ED Economic Dispatch
EV Electric Vehicle

FTR Financial Transmission Right
HJB Hamilton-Jacobi-Belman Equation

HVAC Heating, Ventilation and Air Conditioning
ICT Information and Communications Technologies
ILP Integer Linear Programming
ISO Independent System Operator
LMP Locational Marginal Price
NE Nash Equilibrium

OPF Optimal Power Flow
PHEV Plug-in Hybrid Electric Vehicle
PJM Pennsylvania, New Jersey, Maryland
PDE Partial Differential Equation
RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition
SE Satisfaction Equiblirium

SVD Singular Value Decomposition
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Chapter2

Game Theory Preliminaries

2.1 Overview of Differential Games

Optimization theory deals with the case where there is only one individual, making

a decision and achieving a payoff. Game theory, on the other hand, is concerned with

the more complex situation where two or more individuals, or "players" are present.

Each player can choose among a set of available options. His payoff, however, depends

also on the choices made by all the other players [31].

Game can be static or dynamic. In static games, each player makes one choice and

this completely determines the payoffs. In other relevant situations, the game takes

place not instantaneously but over a whole interval of time. This leads to the study of

dynamic games. The study of differential games as a special class of dynamic games,

was initiated by Rufus Isaacs in the early 1950’s. Basically a differential game is a

mathematical model designed to solve a conflicting situation that changes with time.

In differential games, there are more than one player, each having separate objective

functions which each is trying to maximize and it is subjected to a set of differential

equations which model the dynamic nature of the system [32].

Differential game is an extension of static noncooperative game theory by adopt-

ing the methods and models developed in optimal control theory. Optimal control

theory has been developed to study the optimal solution of optimization problem of

dynamic system (i.e., state evolves over time). Therefore, optimal control can be

applied to game theory to obtain the equilibrium solution for rational entities with

different objective or payoff functions. One major approach to solve for optimal solu-

tion in optimal control theory is the dynamic programming. This approach has been

adopted in differential game in which the payoff of player depends on the state (i.e.,

constrained by the state) which evolves over time. The common solution concepts of
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differential game are Nash equilibrium and Stackelberg solution for non-hierarchical

and hierarchical structures, respectively. Using techniques in optimal control theory,

these solutions can be obtained [33].

2.1.1 Optimal Control Problem

In optimal control, each player has an optimization problem with single objective

(e.g., to maximize payoff) over a period of time. This optimization problem considers

the actions of the other players to be fixed at the equilibrium.

In the standard model of control theory, the state of a system is described by a

variable x. This state evolves in time, according to an Ordinary Differential Equation

(ODE)[34]:

ẋ(t) = f(x(t), u(t)) + ρw (2.1)

x(0) = x0,

where w is control function. A basic problem in optimal control is to find a control

function which maximizes the payoff:

L[u(.)] =
∫ T

0
g(x(t), u(t))dt + h(x(T )), (2.2)

where h is a terminal payoff, while g accounts for a running payoff.

2.1.2 Differential Games

Differential games are the extension of the basic optimal control problem to the

situation where more than one player participate at the game, and each one of them

tries to maximize his own pay. The system state x evolves through the time according
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to the following ODE:

ẋ(t) = f(x(t), u1(t), ..., ui(t), ..., uN(t)) (2.3)

x(0) = x0,

where ui is the control function of the player i and N is total number of players.

Player i chooses his control function in a way that maximizes its payoff:

Li[u(.)] =
∫ T

0
gi(x(t), u1(t), ..., uN(t))dt + hi(x(T )). (2.4)

The analysis of differential games relies heavily on concepts and techniques of optimal

control theory. Equilibrium strategies in feedback form are best studied by looking

at a system of Hamilton-Jacobi-Bellman (HJB) for the value functions of the various

players, derived from the principle of dynamic programming. Dynamic programming

is based on the principle of optimality. With this principle, an optimal action1 has

the property that whatever the initial state and time are, all remaining decision must

also constitute an optimal action. To achieve this principle, the solution can be

obtained backwards in time. That is, we starting at all possible final states with

the corresponding final times (e.g., stages). The optimal action at this final time is

selected, then we proceed back one step in time and determine the optimal action

again. This step is repeated until the initial time or stage is reached. The core of

dynamic programming when it is applied to continuous time optimal control is a the

partial differential equation (PDE) of HJB.

In order to derive the optimal control functions for each player using dynamic

programming, first the value functions should be defined as follows:

vi(x, t) = max
u(·)

Li[u(·)] (2.5)
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and

vi(x, t) = hi(x). (2.6)

For players to play the game, the available information is required. In differential

game, there are three cases of available information.

• Open-loop information: With open-loop action, the players have common knowl-

edge of the values of state variables at initial time t = 0. At this initial state,

each player chooses the control variable path by taking into account the ex-

pected behavior of all other players. All players commit themselves to their

action paths before the game starts.

• Close-loop information: With close-loop information, players are assumed to

know the values of state variables from time 0 to t, i.e., [0, t) without delay.

• Feedback information: At time t, players are assumed to know the values of

state variables at time t − ϵ, where ϵ is positive and arbitrarily small. The

information set at time t can be estimated from the vector of value of state

variables of all players at time t − ϵ.

At this stage, a natural assumption is that the strategies adopted by players have

the feedback form: ui = u∗
i (x∗); in other words, they depend only on the current state

of the system, not the past history. For a Nash non-cooperative solution in feedback

form, one can show that the value functions, vi, satisfy HJB equations derived from

the principle of dynamic programming.

Theorem 2.1. [33] The optimal solutions u∗
i , i = 1, ...N lead to a feedback Nash

equilibrium solution to the game, and x∗(t) is the corresponding state trajectory, if

there exist suitably smooth functions vi satisfying the following rectilinear parabolic
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partial differential equations:

−∂vi(x, t)
∂t

= max
ui(t,x)

{
∂2vi(x, t)

∂x2 + ∂vi(x, t)
∂x

f [t, x, Ui, U∗
j ̸=i] + gi[t, x, ui, u∗

j ̸=i]
}

. (2.7)

The HJB equation is usually solved backwards in time, starting from t = T and

ending at t = 0. In general case, the HJB equation does not have a classical (smooth)

solution. Several notions of generalized solutions have been developed to cover such

situations, including viscosity solution [35], minimax solution [36]. For the special

case of affine-linear quadratic game, the value function has the unique solution which

should satisfy a set of first order differential equations. The closed form solution for

the optimal action can be obtained for this special case.

2.1.3 Stochastic Differential Games

A stochastic formulation for dynamic defined in continuous time of prescribed

duration involves a stochastic differential equation describes the evolution of the state

as follows,

ẋ(t) = f(x(t), u1(t), ..., ui, ..., uN) + ρw (2.8)

x(0) = x0,

where w represents random fluctuations modeled as Gaussian noise with zero mean

and variance σ2. The value functions of players for the stochastic scenario can be

written as:

vi(x, t) = max
ui(t)

Li = Ew

{∫ T

0
gi(t)dt + hi[x(T )]

}
. (2.9)
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Finally for the optimal control functions can be obtained using stochastic HJB equa-

tions as follows:

−∂vi(x, t)
∂t

= max
ui(t)

{
(ρ)2σ2

2
∂2vi(x, t)

∂x2 + ∂vi(x, t)
∂x

f [t, x, ui(t)] + gi[t, x, ui(t)]
}

. (2.10)

For special case of quadratic payoff function, the closed-form solutions can be derived.

For this case the standard form of the game can be written as follows [37]:

ẋ = f [x(t), u1(t), ..., uN ] + ρw

= Ax(t) + B1u1(t) + B2u2(t) + ... + BNuN(t) + C + ρw. (2.11)

The affine-quadratic cost function can be rewritten as follows:

gi = 1
2

Qx2 + ΣiRiui
2 + N (2.12)

and

hi = 1
2

Qfx2. (2.13)

Finally, for the value function, we have:

vi(x, t) = max
ui(t)

L (2.14)

= max
ui(t)

Ew

{∫ T

0
µ[x(t), ui(t)(t)]dt + h[x(T )]

}
.

According to [33], the value function for an affine linear quadratic problem has a

unique solution for vi(t):

vi[t] = 1
2

Ti(t)X(t)2 + x(t)ζi(t) + ξi(t) + mi(t), (2.15)
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where Ti(t) satisfies the following Riccati differential equations

dTi

dt
+ 2TiFi + Qi + T 2

i B2
i

Ri

= 0, (2.16)

Ti(T ) = Qf
i , (2.17)

and

Fi = A − TiBi
2

Ri

. (2.18)

ζi and mi can be obtained from the following differential equations, respectively:

dζi

dt
+ Fiζi + TiζiBi

2

Ri

+ TiBi = 0, (2.19)

ζi(T ) = 0, (2.20)

dmi

dt
+ αiζi + ζ2

i Bi
2

2Ri

= 0, (2.21)

mi(T ) = 0 (2.22)

and

αi = C − ζiBi
2

Ri

. (2.23)

Finally, ξi statistics the equation below,

dξi

dt
= −Riσ

2ui

2
. (2.24)

The optimal control variable can be obtained as follows:

u∗
i = −Bi

Ri

∂vi

∂x
= −Bi(Tix + ζi)

Ri

. (2.25)

As it is shown, the optimal control function constitutes a feedback Nash Equilibrium

to the stochastic differential game.
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2.2 Overview of Satisfaction Games

In real life distributed systems, agents generally do not have knowledge of their

opponents strategies. In this context, most game theoretic solution concepts are

hardly applicable. Therefore, it is needed to define equilibrium concepts that do not

require complete information and are achievable through learning, over repeated play.

The satisfaction form is a game theoretical formulation which models systems where

players are not interested in maximizing their own utility, rather in satisfying their

own constraints [24].

Let us define the game as

G ′ =
(
K, AK , {fk}k∈K

)
, (2.26)

where K and AK follow the previous definitions and the correspondence fk : A(K−1) →

A, called satisfaction correspondence, is defined as

fk(a−k) =

ak ∈ A :
∑

ℓ∈Lk

∞{ξℓ(ak,a−k,)≥Γ} = Lk

 . (2.27)

Basically (2.27) is a correspondence which, given the action chosen by the other

players, selects all the actions that satisfy the individual constraints. Here, a player

can use any of its actions independently of all the other players. The dependence on

the other players’ actions plays a role only in determining whether a player is satisfied

or not.

In this game formulation, the solution concept we adopt is the satisfaction equi-

librium (SE) [24] defined as follows:

Definition 2.2. (Satisfaction equilibrium). A satisfaction equilibrium of game G ′ is
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an action profile a′ ∈ AK such that ∀k ∈ K,

a′
k ∈ fk

(
a′

−k

)
. (2.28)

The SE is an action profile where all players are simultaneously satisfying their

constraints. In other words, if there exists at least one SE, then L∗ = L, since all

players can be satisfied. However, an SE does not always exist for a given game.

For instance, if not all the communications can simultaneously take place with the

minimum required QoS in the network modeled by the game G, an SE simply does

not exist. An extensive discussion on the existence and multiplicity of an SE in finite

games is provided in [25].

2.2.1 Efficient Satisfaction Equilibrium

Consider that player k assigns a cost to each of its actions ak, which we denote

by ck(ak). For all k ∈ K, the cost function ck : Ak → [0, 1] satisfies the following

condition: ∀(ak, a′
k) ∈ A2

k, it holds that

ck (ak) < ck (a′
k) , (2.29)

if and only if, ak requires a lower effort than action a′
k when it is played by player

k. In the QoS problem, the effort can be associated with the transmit power or

the processing time required to implement a given transmit/receive configuration

[26]. Thus, considering the effort or cost of individual actions, one SE which is

particularly interesting in the QoS provisioning problem is the one that requires the

lowest individual effort.

Definition 2.3 (Efficient Satisfaction Equilibrium). An action profile a∗ is an ESE
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for the game G, with cost functions {ck}k∈K, if for all k ∈ K,

(i) a∗
k ∈ fk

(
a∗

−k

)
and (2.30)

(ii) ∀ak ∈ fk(a∗
−k), ck(ak) ≥ ck(a∗

k). (2.31)

The effort associated by each player with each of its actions does not depend on

the choices made by other players. Thus, an ESE a∗ ∈ A, if it exists, is one SE at

which player k is satisfied by using the action a∗
k that requires the minimum effort

among all the actions in fk(a−k). Nonetheless, the existence of an SE does not imply

the existence of an ESE.

2.2.2 Modeling Drop-ins and Drop-outs

Consider a game played only by a subset J ⊂ K of the players of the game G and

denote it by

G(J ) =
(

J , {Ak}k∈J ,
{
f

(J )
k

}
k∈J

)
. (2.32)

The function f
(J )
k : AJ → 2Ak determines the set of actions that satisfy the individual

constraints of player k given the actions adopted by the subset of players J . In the

game G(J ), players in K \ J do not play any role in the decisions adopted by the

players in J . More precisely, the game G(J ) is obtained when the players in the set

K \ J have decided to drop out of the original game G [27].

A player j drops out of the game G by playing the action corresponding to a

standby state of the link which is denoted by A
(0)
j . In the game G, such an action

A
(0)
j satisfies the following condition for all j ∈ J :

f
(J )
k (aJ \{j}) = fk

((
aJ \{j}, A

(0)
K\J

))
, (2.33)

where the action profile A
(0)
K\J represents an action profile in which all players k ∈
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K \ J use the action A
(0)
k . The equality in (2.33) shows that when a set of players

K \ J choose to play their actions A
(0)
k in the game G, they do not play any role in

the choice of the actions of the players in J .

The relevance of a game G(J ), given a set J ⊆ K, stems from the fact that if

the game G does not have an SE, the set J can be chosen in order to allow the

satisfaction of the largest population of players. That is, J can be constructed such

that the sub-game G(J ) is the game with the largest population that possesses an

SE. We refer to these action profiles as N -Person Satisfaction Points (N -PSPs) of the

game G.

Definition 2.4 (N -Person Satisfaction Point (N -PSP)). Assume the game in sat-

isfaction form G does not possess an SE. Then, an action profile (a∗
J , A

(0)
K\J ) is said

to be an N -PSP, if |J | = N and G(J ) =
(

J , {Ak}k∈J ,
{
f

(J )
k

}
k∈J

)
is the sub-game

with the largest set of players that has an SE.

When a game G possesses at least one SE, any SE is a K-PSP. That is, when the

simultaneous satisfaction of all individual constraints is feasible, SE and K-PSP are

identical notions.
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Chapter3

Stochastic Dynamic Hydrothermal Scheduling in a Smart Grid

network

3.1 Introduction

Recent efforts on smart grids [1, 2, 3, 13, 14, 15, 28] are motivated in part by

the increasing demand for electric power, growing interest in finding pollution-free

and sustainable energy supply sources, and inadequacy of the current transmission

system. Energy storages can balance supply and demand of the electricity market,

and mitigate supply side uncertainties. Among grid energy storages, pumped-storage

plants generally have the largest available capacity. A pumped storage plant stores

off-peak energy using water which is later used for generation during peak periods.

Other types of energy storing devices and plug-in electrical vehicles have limited use

in power systems due to their relatively small capacity and high costs.

Pumped-storage plants are usually operated within an overall system which con-

tains thermal generation due to very high operating cost of thermal power plants

compared to the operating cost of hydro power plant. The hydrothermal generation

scheduling is concerned with both hydro plant scheduling and thermal plant dispatch-

ing. A variety of optimization methods have been proposed for planning the optimal

operations of hydrothermal power systems. The scheduling problems considering de-

terministic and stochastic programming models have been studied for different time

horizons. The planning horizons considered are long-medium term (1 to 3 years)

[38, 39, 40], or short-term (weeks to a day) [41, 42]. For short-term models, the opti-

mal operation scheduling of the available generating plants is defined for the following

24 hours. Specifically, authors in [43] introduced the stochastic programming mod-

els for the short-term hydro-thermal scheduling problem under uncertain demand.
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Authors in [44] developed the stochastic scheduling models for the short-term hy-

dropower production considering the uncertainty of natural inflows in reservoirs.

A widely used paradigm for modeling the hydrothermal power plants behavior

in the oligopolistic electricity markets is so called the Nash-Cournot model, dealing

with the analysis of the market equilibria [45]. The Nash-Cournot approach assumes

that each strategic power plants decides its generation level supposing the energy

outputs by the remaining strategic power plants are known. The market scheme is

thus simulated through a game: the first strategic power plant chooses its profit-

maximizing output under the assumption that the production of the other strategic

power plants is known. This is repeated for each strategic power plant that decides

its generation level based upon the most recent decisions of the others, until reaching

a Nash equilibrium, where no power plant can profit from changing its output levels

given the output of all other strategic power plants [46]. In [47], some theoretical

results concerning the Cournot model applied to short-term electricity markets are

presented. Authors in [48] address a short term hydrothermal scheduling problem

using differential dynamic programming but not in a game fashion. The problem is

decomposed into a thermal subproblem and a hydro subproblem that are solved in

parallel through a constraint relaxed iterative algorithm not in a game fashion. A

hydrothermal power exchange market that incorporates network constraints is pro-

posed in [49], the Nash-Cournot equilibrium solution of the market is achieved using

the Nikaido-Isoda function, which is derived from the profit maximization functions

calculated by the generating companies. The reservoir dynamic is not incorporated

in the system model.

In this chapter, we study the competitive interactions between an autonomous

pumped-storage hydropower plant and a thermal-power plant in order to optimize

power generation and storage. The instantaneous market price can be modeled as a

Cournot duopoly game [29, 30]. Here, the dynamic comes from the water volume in
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the reservoir, and the stochastic captures the natural inflow and loss to the reservoir.

The hydro plant decides how much power to produce, and the thermal plant decides

how much to sell to the market or sell to the hydro plant for pump-up storage. The

major contributions of this section are:

• We propose a game-theorical framework in which the thermal and pumped-

storage power plants are networked and the thermal plant has the choice to sell

the power to the pumped-storage plant.

• We solve the stochastic the Hamilton–Jacobi–Bellman (HJB) equation and ob-

tain an optimal closed-form solutions for both thermal and hydro players.

• We analyze the outcome of interactions between two players and prove it con-

stitutes a feedback Nash equilibrium solution.

• We demonstrate through simulations that the proposed framework can reduce

the peak to average ratio and total energy generation of the thermal plant,

which help plant operation and reduce CO2 emission with respect to the case

that hydro and thermal power plants are working in isolation.

The rest of this chapter is organized as follows: In Section 3.2, the system model

is given, and the game is constructed. In Section 3.3, we study the close-form solu-

tions and properties of the proposed game. Simulation results are shown in Section

3.4. Finally, conclusions are drawn in Section 3.5. For better readability, important

variables and parameters used in this section are listed in Table 3.1.

3.2 System Model and Game Formulation

We consider a smart grid network with one pumped-storage hydro power plant

and one thermal power plant as two price makers. Each price maker power plant

has autonomy to maximize its own profit by adjusting its generation volume. The
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Table 3.1: Variables and parameters for system model.

Symbol Description
x reservoir volume
rH water discharge rate
sH water spillage rate
pg

T thermal plant output to sell to the market
ps

T thermal plant output to store
pH pumped-storage output
w natural inflows to the storage
D the total demand
β storage leakage rate
η1 turbine efficiency
η2 generator efficiency
g acceleration of gravity
p market price
K fixed price from thermal to hydro

power can be sold in the market, and the unit power price depends on the demand

and supply, and is dynamic over different periods of time. Alternatively, the thermal

power plant can sell its power at a fixed price to the pumped-storage hydro plant

by storing the energy in the reservoir. The state of available hydroelectric energy

depends on the amount of water stored in the reservoirs. The uncertainty of natural

inflows and outflows to the reservoir is modeled as stochastic processes. The overall

system model is illustrated in Figure 3.1.

Based on the system setup, a quantitative 2-player differential game is defined with

the following components1: A time interval [0, T ] is specified a priori and denotes the

duration of the evolution of the game. In this section, [0, T ] represents each hour in a

one-day duration. An infinite set with some topological structure is defined for each

power plant and is called the action space, whose elements are the control functions.

For the pumped-storage hydro plant the action u1(t) = rH(t) is the discharged water

from the dam; and for the thermal plant, the action u2(t) = pg
T (t) is how much power

1Here, we consider a two-player game, and multiple price maker player games will be studied in
our future study.
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Figure 3.1: System and game model.

to sell to the market from its output. Notice that we define u1 and u2 here since

the definitions will make the analysis clear in the following sections. The actions of

the power plant and thermal plant will affect the market price as well as the storage

volume in the reservoir. The goal is to study the optimal strategies to control the

actions, and analyze the interaction between the two plants.

In the rest of this section, we first discuss the dynamic model for the stored water

volume of the reservoir in Section 3.2.1. Then we study how the market price is

obtained in Section 3.2.2. Next, we formulate the controls for the hydro plant and

thermal plant, in Section 3.2.3 and Section 3.2.4 respectively. Finally, we change the

problem formulation in the standard form to simplify analysis in Section 3.2.5.

3.2.1 Dynamic Model

An infinite set X with a certain topological structure is called the trajectory space

of the game. Its elements are denoted as {x(t), 0 ≤ t ≤ T} and constitute the
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permissible state trajectories of the game. In our case, x(t) ≥ 0, ∀t ∈ [0, T ] is the

current volume of the pumped-storage plant’s reservoir 2. The reservoir dynamics can

be characterized as a linear differential equation [48]:

dx(t)
dt

= −ρ0βx(t) + ρ1p
s
T (t) + ρ2(w − ϑH), (3.1)

where x is the reservoir volume in (m3), β is reservoir leakage rate, ρ0, ρ1 and ρ2 are

the constant factors, w represents random fluctuations modeled as Gaussian noise

with zero mean3 and variance σ2. In addition, pT is the total power generated by the

thermal plant and ps
T represents the amount power that the thermal plant decides

to store. We assume the initial state x0 is known. It is important to note that, this

dynamic model of reservoir is applicable to the normal operation of the pumped-

storage power plant and does not consider extreme cases, such as dead storage level

or flooding condition. Alternatively boundary conditions can be coped by adding

barrier functions [29]. However, there will be no closed-form solution as derived in

the sequel and only numerical solutions can be obtained.

Since the generation of the thermal power plant has a slow response to load

changes, for simplicity, we assume pT = pg
T (t) + ps

T (t) to be constant in this sec-

tion. If pT changing slowly over time, a similar approach applies. Finally, the total

water released at time t is shown by ϑH(t) which can be obtained as:

ϑH = rH + sH , (3.2)

where rH is the water discharge rate in (m3/s), and sH is water spillage rate in (m3/s)

assumed to be constant over time. 4 The pumped-storage power plant generation at
2Here, we omit the maximal power storage constraint due to the difficulty of analysis. From the

simulation results, we show the dynamic range of the storage, which is within practical ranges.
3non-zero mean case can be studied by adding a constant in (3.1).
4In practice, spillage rate is not a constant. However, we can model the randomness together

with w.
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time t, pH(t), can be estimated as [51]:

pH(t) = η(x(t))rh(t), (3.3)

where η is function of the net head or, equivalently, the volume of the stored water

in the reservoir. Since x and rH perturbations are small compared with the normal

values of these parameters (operating point) for large reservoirs, the linear small

disturbance approximation [52] can be used to write the hydro generation as:

pH(t) = W1rH(t) + W2x(t) = W1u1(t) + W2x(t). (3.4)

Let the operating point be (x†, rh
†), W1 and W2 can then be computed as follows [52]:

W1 = gη1η2x
† (3.5)

and

W2 = gη1η2rh
†. (3.6)

Replacing equations (3.2) and (3.4) in equation (3.1), the storage dynamic equa-

tion can be rewritten as function of the system state and control variables as follows:

dx(t)
dt

= f [x(t), u1(t), u2(t)]dt + ρ2w (3.7)

= {−ρ0βx(t) + ρ1[pT − pg
T (t)] − ρ2{rH(t) + sH}} + ρ2w.

3.2.2 Market Price Model

Using the market price model introduced in [45], we assume the price takers have

a quadratic operating cost

C(O) = O2

2α
, (3.8)
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where O is total generation of price taker power plants and α is a scalar parameter.

Using this assumption, given a market spot price p, the price taker plant generation

can be obtained by setting their marginal generation cost equal to the market price.

The marginal generation cost can be obtained the derivative of with respect to O.

Therefore, the price taker plants generation is a linear function of the spot price p,

i.e., O(p) = αp.

Consider D as the total demand, and O(p) as the total generation of price takers

as discussed above. The total output of price maker power plants, pH(t) + pg
T (t),

should satisfy the residual demand:

Dr = D − O(p) = D − αp. (3.9)

Therefore, the spot price can be obtained as:

p = {D − [pH(t) + pg
T (t)]}/α. (3.10)

Without loss of generality, we assume α = 1 in the rest of this section for simplicity.

3.2.3 Control for Hydro Plant

The revenue of the hydro plant, given the generation of other plants as given is:

g1(t) = [D − pH(t) − pg
T (t)] pH(t) − Kps

T (t), (3.11)

where the first term in (3.11) is the profit of selling power to the market, and the

second term is the cost that the thermal player sells to the hydro player to store the

power in the reservoir (by pumping water up). Here K represents the constant price

(e.g. per a long-term contract) for selling from the thermal player to the hydro player.
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We can rewrite (3.11) with state (x(t)) and control (u1(t) and u2(t)) as

g1(t) = {D − W1u1(t) − W2x(t) − u2(t)} [W1u1(t) + W2x(t)] − K[pT − u2(t)].(3.12)

The stochastic dynamic game of the pumped-storage hydro player is to control its

discharged water rH so as to maximize the following utility over the time interval

v1(x) = max
u1(t)=rH(t)

L1 = Ew

{∫ T

0
g1(t)dt

}
. (3.13)

3.2.4 Control for Thermal Plant

Similarly, the stochastic dynamic game of the thermal player is to control its

selling u2(t) = pg
T (t) and storing ps

T so as to maximize its utility. Since we assume

pT to be a constant, the thermal plant’s action can be uniquely determined by u2(t).

The thermal plant tries to maximize the following:

g2(t) = {D − pH(t) − pg
T }pg

T (t) + Kps
T (t){ϵ2p

2
T + ϵ1pT + ϵ0} (3.14)

and

v2(x) = max
u2(t)=pg

T (t)
L2 = Ew

{∫ T

0
g2(t)dt

}
. (3.15)

In (3.14), the first term is the profit to sell in the market, the second term is the profit

to sell to the hydro player, and the third term is the power generation cost [53]. Here

ϵ0, ϵ1 and ϵ2 are constants. We can rewrite (3.14) as

g2(t) = {D − W1u1(t) − W2x(t) − u2(t)}u2(t) + K[pT − u2(t)] (3.16)

−{ϵ2p
2
T + ϵ1pT + ϵ0}.
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3.2.5 Standard Form Notation

Table 3.2: Change of variables table.

X 3W2x√
2 + P [e]−ug

T

2
√

3

U1 W1rH + W2x
2 + P [e]−ug

T

2
U2 ug

T − D−(W1rH
∗+W2x)−K
2

A 5ρ0β−ρ1W2−3ρ2W2
−4W2( 3√

2
+ 1

4
√

3
)

B1
−

√
2ρ0β−6

√
3ρ1W2+(

√
2−12

√
3)ρ2W2

−W2(12
√

3+
√

2)

B2
2ρ0β+12

√
3ρ1W2+(

√
2+6

√
3)ρ2W2

−W2(12
√

3+
√

2)

C ρ1uT −ρ2sH + P [e](A+
√

3B1−
√

3B2)
2
√

3 +
B2K

2
QH ,RH 2
QT ,Qf

H ,Qf
T , 0

NH −Kus
T − (D−ug

T
∗)2

3
RT -1
NT KuT − {ϵ2[ug

T (t) + us
T (t)]2 +

ϵ1[ug
T (t) + us

T (t)] + ϵ0} +
(D−(W1rH

∗+W2x∗)−K)2

4

Notice that the utility functions are not in a standard form of the controls. So we

change the variables as shown in Table 3.2. By changing the variable, the problem in

(3.7) is an affine-quadratic differential game [33] with dynamics in the form of5

dX

dt
= f(X, U1, U2)dt + ρ2w = (AX + B1U1 + B2U2 + C) + ρ2w. (3.17)

From (3.12) and (3.14), the pumped-storage and thermal plants payoff functions are,

respectively, in forms of

g1 = 1
2

QHX2 + RHU1
2 + NH , (3.18)

h1 = 1
2

Qf
HX2, (3.19)

5for notational simplicity time index t is omitted
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g2 = 1
2

QT X2 + RT U2
2 + NT , (3.20)

and

h2 = 1
2

Qf
T X2. (3.21)

In summary, the pumped-storage plant and thermal plant control u1(t) = rH(t)

and u2(t) = pg
T (t), respectively. The dynamics in (3.17) is a linear function of state

x(t) and those two controls, and the utility functions are in the linear quadratic forms

of the controls.

3.3 Game Analysis and Performance

As an overview, differential games are the extension of the optimal control problems[33].

The Nash feedback equilibrium strategies are derived from a system of The Hamilton-

Jacobi-Bellman (HJB) equations for the value functions of the players. The solution

is obtained backwards in time using dynamic programming. That is, starting from all

possible final states, the optimal action at each final time is selected, we then induce

backward one step at time and determine the optimal action at each stage. This

process is repeated until the initial time or stage is reached.

In this section we analyze the nonzero sum stochastic differential game of the ther-

mal and pumped-storage power plants based on the models in the previous section.

In the sequel, we will study the payoff maximization of pumped-storage plant and

thermal plant given the other’s strategy is fixed in Section 3.3.1 and Section 3.3.2,

respectively. Finally, we discuss the outcome of the proposed games in Section 3.3.3.

3.3.1 Pumped-Storage Player Payoff Maximization

First, given the thermal plant’s strategy, the pumped-storage plant calculates its

the best strategy through the stochastic HJB equation. This equation is considered
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to be the first-order necessary and sufficient condition obeyed by the optimal value

function and can be used to find the optimal time paths of the state, costate, and

control variables. If the HJB equation is solvable (either analytically or numerically),

an optimal feedback control can be obtained by taking the maiximizer involved in the

HJB equation [33]. To optimize the utility function in (3.13), the HJB equation for

the pumped-storage power plant can be written as follows:

−∂v1

∂t
= max

U1

{
(ρ2)2σ2

2
∂2v1

∂X2 + ∂v1

∂X
f(X, U1, U2

∗) + g1

}
(3.22)

and

v1[X(T )] = h1[X(T )]. (3.23)

In order to obtain the optimal action for each player of game, first the related value

functions have to be derived, for the special case of affine-linear quadratic game, the

value function has the unique solution [33] which should satisfy a set of first order

differential equations. The closed form solution for the optimal action of hydro plant

is presented through the following lemma.

Lemma 3.1. Using the HJB equation, the optimal control policy for the pumped-

storage hydro plant can be obtained as:

U∗
1 = − B1

RH

∂v1

∂X
= −B1(THX + ζH)

RH

. (3.24)

Proof. The value function of the hydro player can be written as:

v1[t] = 1
2

TH(t)X(t)2 + X(t)ζH(t) + ξH(t) + mH(t), (3.25)

where TH(t) satisfies the following Riccati differential equations [33]

dTH

dt
+ 2THFH + QH + T 2

HB2
1

RH

= 0, (3.26)
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TH(T ) = Qf
H , (3.27)

and

FH = A − THB1
2

RH

. (3.28)

ζH and mH can be obtained from the following differential equations, respectively:

dζH

dt
+ FHζH + THζHB1

2

RH

+ THB1 = 0, (3.29)

ζH(T ) = 0, (3.30)

dmH

dt
+ αHζH + ζ2

HB1
2

2RH

= 0, (3.31)

mH(T ) = 0, (3.32)

and

αH = C − ζHB1
2

RH

. (3.33)

Finally, ξH satisfies the equation below

dξH

dt
= −RHσ2U1

2
. (3.34)

The optimal control variable can be obtained as follows:

U∗
1 = − B1

RH

∂v1

∂X
= −B1(THX + ζH)

RH

. (3.35)

3.3.2 Thermal Player Payoff Maximization

Next, we determine the optimal strategy of the thermal plant given the optimal

strategy of the hydro plant. To optimize the utility in (3.15), the stochastic HJB

35



equation of the proposed game for the thermal player can be represented by following

equation

−∂v2

∂t
= max

U2

{
(ρ2)2σ2

2
∂2v2

∂X2 + ∂v2

∂X
f(X, U1

∗, U2) + g2

}
(3.36)

and

v2[X(T )] = h2[X(T )]. (3.37)

The optimal action for the thermal plant can be obtained through the following

lemma.

Lemma 3.2. The optimal control policy for the thermal plant can be obtained as

follows:

U∗
2 = − B2

RT

∂v2

∂X
= −B2(TT X + ζT )

RT

. (3.38)

Proof. The value function of thermal player can be written as:

v2[t] = 1
2

TT (t)X(t)2 + X(t)ζT (t) + X(t)ξT (t) + mT (t). (3.39)

Here, TT (t) satisfies the following Riccati differential equations [33]

dTT

dt
+ 2TT FT + QT + TT

2B2
2

RT

= 0, (3.40)

TT (T ) = Qf
T , (3.41)

and

FT = A − TT B2
2

RT

. (3.42)

ζT and mT can be obtained through similar steps in (3.29)-(3.34):

dζT

dt
+ FT ζT + TT ζT B2

2

RT

+ TT B2 = 0, (3.43)
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ζT (T ) = 0, (3.44)

dmT

dt
+ αT ζT + ζ2

T B2
2

2RT

= 0, (3.45)

mT (T ) = 0, (3.46)

αT = C − ζT B2
2

RT

, (3.47)

and ξT from the equation below

dξT

dt
= −RT σ2U2

2
. (3.48)

The optimal control variable can be obtained as follows:

U∗
2 = − B2

RT

∂v2

∂X
= −B2(TT X + ζT )

RT

. (3.49)

3.3.3 Nash Equilibrium

For a two-person differential game in the form discussed in the previous subsec-

tions, a two-tuple strategies constitutes a feedback Nash equilibrium solution [33] as

defined below:

Definition 3.3. A set of controls U∗
i (t, X), i ∈ 1, 2 constitute a feedback Nash equi-

librium of the game, if there exists functions vi(X, t) satisfying the following relations

∀i :

vi(X, t) = Ew

[∫ T

0
gi{t, X∗(t), U∗

1 [t, X(t)], U∗
2 [t, X(t)]}dt

]
(3.50)

≥ Ew

[∫ T

0
gi{t, X [i](t), Ui[s, X(s)], U∗

j ̸=i[t, X(t)]}dt

]
,
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where

dX [i](t)
dt

= f{t, X [i](t), Ui[t, X(t)], U∗
j ̸=i[t, X(t)]} (3.51)

and

dX∗(s)
dt

= f{t, X∗(t), U∗
1 [t, X(t)], U∗

2 [t, X(t)]}. (3.52)

If there exists the value functions that are twice continuously differentiable, then

the two partial differential feedback Nash equilibrium solutions in continuous time

can be characterized using the stochastic HJB equations [33], which are necessary

conditions of the candidate optimal control strategy. The feedback Nash equilibrium

is defined as follows (Theorem 6.27[33]):

Theorem 3.4. A set of feedback strategies U∗
i (t, X∗) lead to a feedback Nash equilib-

rium solution to the game, and X∗(t), 0 ≤ t ≤ T is the corresponding state trajectory,

if there exist suitably smooth functions Vi satisfying the following rectilinear parabolic

partial differential equations:

−∂vi(X, t)
∂t

= max
Ui(t,X)

{(ρ2)2σ2

2
∂2vi(X, t)

∂X2 (3.53)

+∂vi(X, t)
∂X

f [t, X, Ui, U∗
j ̸=i] + gi[t, X, Ui, U∗

j ̸=i]}.

Lemma 3.5. The feedback Nash equilibrium exists for the proposed game in (3.17),

(3.18), (3.19), (3.20), and (3.21).

Proof. Since the value functions in equations (3.25) and (3.39) are twice continu-

ously differentiable, the derived optimal solution by HJB equations characterize the

feedback Nash equilibrium solutions.
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Figure 3.2: Daily demand D(t) versus market price based on data from [57].

3.4 Simulation Results

In this section, to clarify the game analysis results derived in Section 3.3, we

investigate the performance of the proposed game numerically. The simulations are

performed for each hour in a one-day duration. The thermal and pumped-storage

plants have the maximum generation capacities of 500MW and 300MW , respectively.

Other parameters are set as follows: β = 0.05, ρ0 = 3.4 ∗ 10−4, ρ1 = 3.83 ∗ 10−5,

ρ2 = 0.001, σ2 = 0.5, η1 = 0.9, η2 = 0.96, x† = 550Mm3, rh
† = 103 ∗ 10−1m3

s
,

xmax = 717Mm3 and ϵ2 = ϵ1 = ϵ0 = 0.5. The above characteristic values for the

hydro plant’s reservoir are selected based on [56]. The constant price K for thermal

player to sell to the hydro player is assumed to be equal to 100000, unless we otherwise

define. Figure 3.2 shows fluctuations of total demand D according to [57], and how

the market price per Watt ({D − pH(t) − pg
T (t)}) is affected accordingly. Notice that

the market price can be affected by many other players in the market. Here we

consider only the thermal and hydro players so that the interactions can be clearly

demonstrated.

In Figure 3.3, the pumped-storage plant generation amount (pH) and thermal
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Figure 3.3: Comparison of the output power versus K.

plant generation decision (pg
T ) are compared over time. The amount of generation

of the thermal plant and pumped-storage plant both follow the fluctuations of de-

mand. However, compared with the demand in Figure 3.2, the thermal player has

less fluctuation, and the hydro (pumped storage plant) player compensates for the

fluctuation. This can help practical operations since the thermal player has a slow

response to meet the demand’s fluctuations. Also, we change the price per Watt of

the electricity that the thermal plant sells power to the pumped-storage plant, K

from 100000 to 300000. By increasing K the thermal plant finds selling its output

power to the pumped-storage plant more beneficial than selling it to the market.

Therefore, the amount of power that the thermal plant generates for selling to the

market decreases and the generation of pumped-storage plant increases, respectively

to satisfy the demand.

The reservoir volume and water discharge rate of the pumped-storage plant in

each hour is shown in Figure 3.4. Comparing with Figure 3.3, the reservoir volume

varies with the generation value of the pumped-storage plant. For instance when

the plant decides to increase its output power, the discharge rate increases and the
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Figure 3.4: Reservoir volume and discharge rate.

reservoir level decays. When K increases, the volume drops and the discharge rate

increases. Moreover, notice that the power generation is a function of both reservoir

volume and water discharge rate.

In Figure 3.5, the payoffs of power plants from equations (3.11)-(3.14) are com-

pared for different values of K. For all scenarios, the variations of the payoff functions

are correlated to the changes in the plants outputs and the market values. Accord-

ingly, by increasing K the thermal plant’s payoff increases and that of the pumped-

storage decreases.

In Figure 3.6, the peak to average ratios of thermal and pumped-storage output

power are depicted as K varies. As the price per Watt from the pumped-storage

plant increases, the thermal plant prefers to sell its output to the pumped-storage

plant rather than to sell it to the market price. Consequently, the peak to average

ratio of the thermal plant decreases by increasing K from from 100000 to 400000.

This also demonstrates that the proposed framework can reduce the peak to average

ratio of the thermal plant by introducing the pricing mechanism between the thermal

and hydro players.
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Figure 3.5: Comparison of payoff versus K.

Figure 3.7 shows comparison of the output power of thermal and pumped-storage

plants as the mean of stochastic inflow to reservoir varies. Increasing the mean of

incoming water with constant variance increases the output of the pumped-storage

plant. This provides a guidance for the system to operate during the dry and wet

seasons.

The average output power of the thermal and pumped-storage plant in two sce-

narios is shown in Figure 3.8. In the first scenario, it is assumed that there is no

interaction between two power plants, and they just sell their outputs to the market

(K = 0). In the second scenario, plants are networked with suggested price from

pumped-storage plant (K = 200000). It can be seen that the later case, increases

the participation of pumped-storage plant in demand satisfaction and reduces the

thermal’s one, which yields a greener choice compared to the first scenario.
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Figure 3.6: Comparison of output power peak to average ratio versus K.

3.5 Summary

In this chapter, we studied the problem of optimal generation and storage for

two types of competitive power plants in smart grid networks. We have proposed a

stochastic dynamic game approach to model their competition. The market price is

based on the Cournot duopoly game model. The thermal power player can sell its

power to the hydropower player at a fixed price or to the market at the market price.

Based on the stochastic HJB equation, we derive the strategies for both players if the

other’s action is fixed. We showed that there exists the feedback Nash equilibrium

strategies for the proposed game. Simulation results demonstrate the properties of

the proposed game and suggest how the two types of power plants need to adjust

their generating and storage decision variables to maximize their revenues. It is

demonstrated that the proposed framework and games can reduce the peak to average

ratio and total energy generation for the thermal plant, which helps power plant

operation and reduces CO2 emission.
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Figure 3.7: Power output versus mean of incoming water to the reservoir.
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Figure 3.8: 1-Two plants are not networked, 2-Two plants are networked.
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Chapter4

Distributed Dynamic Control for Smart Buildings

4.1 Introduction

Demand Response (DR) programs are implemented by utility companies to con-

trol the energy consumption at the customer side of the meter. Two popular DR

approaches are direct load control (DLC) and smart pricing. In DLC [60, 61, 62, 63],

an aggregator can remotely control the operations and energy consumption of certain

consumer appliances. In contrast, in smart pricing, users are encouraged to individ-

ually and voluntarily manage their load, e.g., by reducing their consumption at peak

price hours. This can be done using automated Energy Consumption Scheduling

(ECS) devices [64]. For each user, the ECS finds the best load schedule to minimize

the user’s electricity cost while fulfilling the user energy needs. This can lead to

autonomous demand response programs that burden a minimal control overhead on

utilities.

A common analytical tool to study autonomous DR systems is game theory [65],

that provides a framework to study rational interactions and outcome in a distributed

manner. In [66], a stochastic game is developed to model an hourly energy auction

in which generators and consumers participate as adaptive agents.

In [67], authors proposed a game theoretic demand response scheme to replace

traditional centralized load prediction with a distributed load prediction system that

involves user participation. Authors in [68] employed the Cournot game model to

analyze the market effect of a demand response aggregator on both shifting and

reducing deferrable loads. Authors in [69] developed a hybrid day-ahead and real-

time consumption scheduling for a number of houses that participate in a demand

side program based on game theory. The interaction between the service provider

and the users is modeled as a Stackelberg game in [70] to derive the optimal real-time
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electricity price and each user’s optimal power consumption. In [71], a residential

energy consumption scheduling framework is proposed, which attempts to achieve

a desired trade-off between minimizing the electricity payment and minimizing the

waiting time for the operation of household appliance in presence of real-time prices

using price prediction. In [72], game theory is used for demand side management to

reduce the peak-to-average-ratio in aggregate load demand. In [30], a tutorial is given

for the game-theoretic methods on microgrid systems, demand-side management, and

smart grid communications.

Different from the prior work in [66]-[30], in this paper, we focus on game-theoretic

analysis of price-based DR programs where controllable load types are associated

with dynamic systems and can be modeled using differential equations. Examples of

such loads include heating, ventilation, and air conditioning (HVAC), water heating,

refrigeration, and plug-in electric vehicles. In particular, we apply techniques from

stochastic differential games [33]. To the best of our knowledge, this paper is the first

work to study differential games in the context of price-based DR programs. The

contributions in this chapter can be summarized as follows:

1. We study the strategic interactions between a Nash Cournot electricity market

and multiple energy-smart buildings to construct a two-level stochastic differ-

ential game framework. At the upper level, the market offers a vector of hourly

prices to end users. At the lower level, the energy-smart buildings as the lower

level participate in demand response by managing controllable dynamic load in

response to hourly prices set by the market.

2. We focus on smart buildings equipped with renewable resources generators, local

energy storage and controllable HVAC units, in which users are able to respond

to real-time grid conditions like electricity prices and weather conditions in order

to minimize their cost.
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3. We derive the optimal closed-form control strategies for each energy-smart

building obtained by solving stochastic the Hamilton-Jacobi-Bellman (HJB)

equation. We analyze the outcome of interactions between two levels and con-

stitute a feedback Nash equilibrium solution.

4. The proposed technique comparing with the day-ahead pricing method, makes

the load profile more flat and reduces the peak-to-average ratio (PAR) of ag-

gregate load.

5. Using simulation results we show that by implementing our proposed stochastic

differential DR game model, we can minimize the electricity cost of buildings.

The rest of this chapter is organized as follows. The system model is described

in Section 4.2. The stochastic differential game is constructed and it solution to the

proposed game is derived in Section 4.3. Simulation results are presented in Section

4.4. Conclusions are drawn in Section 4.5.

4.2 System Model

In this section, we explain the system model that incorporates the impact of

demand response on both supply and demand sides when real-time pricing is used.

As illustrated in Figure 4.1, we study a two-level design framework: at the upper level,

at the beginning of each time interval, e.g., at each hour, the market decides on a price

to pass on to the end-users in the lower level, based on the total demand data from

the lower level during the last time interval. The ECS unit of each building minimizes

the cost of electricity consumption. Since there are multiple buildings competing for

the electricity resources, the system can be analyzed using game theory [65].
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4.2.1 Smart Building Consumers

Consider a total of N energy-smart buildings that participate in demand response

program. Each building has two specific controllable loads: an air conditioner with

a controllable thermostat, and an always-connected battery. We also assume that a

renewable source of energy, e.g., a residential wind turbine or a roof-top solar panel, is

available in each building, with its generated output to be used to charge the battery.

Uncontrollable appliances with a total and known consumption of l(t) constitute

the rest of the building power consumption. Given the price that is a function of

the optimal strategy of the upper level player, the decision variables available for

consumers at each building i = 1, . . . , N are:

ui
1 = power draw from battery for home usage and

ui
2 = air conditioner usage of electricity.

And the dynamic states include:

xi
1 = the energy stored in the battery array and

xi
2 = the indoor temperature of home.

The output power of the renewable generator is indeed random. In our analysis,

it is modeled as W + ei, where W is the renewable output prediction that is obtained

using a day-ahead forecasting method and ei denotes the prediction error which is

a Gaussian random variable with zero mean and variance σ2. As an example, the

amount of power generated by a wind turbine can be modeled as a function of wind

speed. As for the outside temperature, we assume that its day-ahead predictions

are used based on standard weather forecasting data. For each smart building, the
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Figure 4.1: The interactions between the aggergator and individual buildings.

dynamics of the states can be modeled using the following differential equations:

ẋi
1

ẋi
2

 =

−βi 0

0 (ϵi − 1)


xi

1

xi
2

+

−1 0

0 −γi(1 − ϵi)Ki


ui

1

ui
2

+ (4.1)

1

0

W +

 ei

(1 − ϵi)ti
OD

 .

The differential equation in the first row in (4.1) models the dynamic of the battery’s

state-of-charge. The differential equation in the second row models the variation in

the building’s indoor temperature. Here, βi denotes the battery leakage rate. As the

battery dynamic equation shows the output of renewable resource W + ei acts as the

input to the battery, and the amount of power that is discharged for usage in the

building acts as the output of battery.

The thermal model in (4.1) is based on the a building thermal model in [73]. Here,

ϵi is the factor of inertia of the building which is a function of time constant of the

building and overall thermal conductivity, γi is a factor capturing the efficiency of the

air conditioning unit to cool the air inside the building, ti
OD is the outside temperature
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and KI is a constant that is depends on the performance of the air conditioning unit

and the total thermal mass. The air conditioning unit uses power ui
2 to cool down

the home’s indoor temperature. Note that, in this model, our focus is only on the

cooling scenario. The results for the heating scenario are similar and can be obtained

by changing the sign of −γi(1 − ϵi)Ki from negative to positive. At the beginning of

each time interval1, given the M × 1 demand vector UD from all N feeders that all

buildings are connected to, a grid operator checks total available generation in the

market and determines the price. Considering an estimated quadratic cost function

for the oligopolistic electricity market [74], yields the electricity spot price as a linear

function of aggregated building consumptions[75]. This model would help to study

the impact of large-scale buildings’ power generation and consumption on spot price

as follows:

p = pc +
[∑N

j=1 dj −∑G
j=1 gj]

α
, (4.2)

where pc is a constant price factor decided by market, dj and gj are the electricity

consumption and generation of building j respectively and α is a scalar parameter.

Increasing α reduces the impact of buildings on spot price. From Section 4.2.1, for

each smart building i, the total power consumption can be calculated as

di = li − ui
1 + ui

2. (4.3)

A price factor which can be defined as

τ i =
N∑

j ̸=i

dj −
G∑

j=1
gj (4.4)

is reported from the aggregator to the ECS device of building i hourly. Given the
1Without loss of generality, we assume the time intervals is one hour in this paper. Other time

interval can be implemented in a similar way
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hourly price information from market including pconst, α and τ i, the management unit

can estimate the price.

4.3 Differential Game Analysis

If a centralized control of all buildings is feasible, then one can formulate a stochas-

tic dynamic optimization problem to control the operation of the battery storage and

air conditioner units in all buildings so as to maximize the aggregate utility of all

users. For each user, the utility function depends on both the cost of electricity and

how comfortable the temperature feels like. An alternative approach is to use game

theory to a distributed optimization framework to be implemented by each smart

building using just local information and is able to address some of our key optimiza-

tion challenges such as a) The heterogeneous nature of building ECS systems. b) The

complexity of interactions among smart buildings. c) The non-linear the formulated

optimization problems. Note that, centralized optimization across all buildings is not

practical due to the need for collecting private information.

Next we explain our proposed dynamic game formulation and discuss some of its

properties. In particular, we prove that the optimal solutions constitute a feedback

Nash equilibrium for the formulated game.

4.3.1 Game Formulation

For each time t, the stochastic dynamic game of each smart building i is to control

the battery output used for building usage, ui
1(t), and the air conditioner electricity

usage, ui
2(t), so as to minimize the cost. We model the cost at time t as a quadratic
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function of the building power consumption:

µi[ui
1(t), ui

2(t)] = (4.5)

p(t)[li(t) − ui
1(t) + ui

2(t)] + η[x1
2(t) − xd]2 =

1
α

[αpc + ΣN
i=1(li(t) − ui

1(t) + ui
2(t) − gi(t))]

[li(t) − ui
1(t) + ui

2(t)] + ηi[xi
2(t) − xi

d]2,

where the first term represents the cost of the building electricity consumption, and

the second term models penalty of temperature differences from the desired value, td.

By minimizing the objective function in (4.5), we achieve the optimal policies that

can balance the trade-off between user comfort and electricity cost minimization by

controlling the HVAC usage and local energy storage, given the current states of the

system which follows the dynamics in (4.1).

Next, we introduce the expected utility function of each building over the random

nature of renewable energy during a time period of interest, e.g., one day, as follows:

Li = Ew

{∫ T

0
µi(t)dt + hi[x(T )]

}
, (4.6)

where h[x(T )] is the terminal condition for value function. The value function of u1
1(t)

and u1
2(t) can be written as

vi(x, t) = min
ui

1(t),ui
2(t)

L. (4.7)

Without loss of generality, we assume that

hi[x(T )] = vi(x, T ) = 0. (4.8)

To convert our stochastic differential optimization problem into a linear quadratic
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format, we use changes of variables

X = [x1
1, x1

2, x2
1, x2

2, . . . , xi
1, xi

2 − xd, xn
1 , xn

2 ]T (4.9)

and

Ui = [u1
1 −

∑n
j ̸=i li −∑n

j=1 gi + αpc

2(n − 1)
, −u2

1 −
∑n

j ̸=i li −∑n
j=1 gi + αpc

2(n − 1)
(4.10)

, . . . , ui
1 − li

2
, −ui

2 − li

2
, . . . ,

un
1 −

∑n
j ̸=i li −∑n

j=1 gi + αpc

2(n − 1)
, −un

2 −
∑n

j ̸=i li −∑n
j=1 gi + αpc

2(n − 1)
].

As a result, the game dynamics can be written in matrix form as follows:

Ẋ = f [X(t), U(t)] + ρW

= AX(t) + BU(t) + C + ρW, (4.11)

where

A =



−β1 0 0 0 0 . . . 0

0 ϵ1 0 0 0 . . . 0

0 0 −β2 0 0 . . . 0

0 0 0 ϵ2 0 . . . 0
... ... ... . . . . . . . . . ...

0 0 0 . . . 0 −βn 0

0 0 0 0 . . . 0 ϵn


2n×2n

, (4.12)
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B =



−1 0 0 . . . 0

0 −γ1K1(1 − ϵ1) 0 . . . 0
... . . . . . . . . . ...

0 . . . 0 −1 0

0 0 . . . 0 −γnKn(1 − ϵn)


2n×2n

, (4.13)

C =



e1 + l1

2

(1 − ϵ1)(t1
OD + γ1K1(l1)

2 ) + ϵ1x1
d

...

en + ln

2

(1 − ϵn)(tn
OD + γnKn(ln)

2 ) + ϵnxn
d


2n×1

, (4.14)

and

ρ =
[
1, 0, 1, . . . , 1, 0

]T

1×2n
. (4.15)

The cost function in (4.5) can be rewritten as follows:

µi[X(t), U(t)] =
1
2

[X(t)T Qi
sX(t) + U(t)T Ri(t)U(t)]. (4.16)

Finally, for the value function in (4.7), we have:

vi(X, t) = min
U(t)

L (4.17)

= min
U(t)

Ew

{∫ T

0
µi[X(t), U(t)]dt + hi[X(T )]

}
,

54



where

hi[X(T )] = 1
2

XT Qi
sfX, (4.18)

Ri(t) = 1
α



0 . . . 0 0 0 0 0 0 0
... . . .

... ... ... ... ... ... ...

0 . . . 0 0 0 0 0 0 0

1 . . . 1 1 −1 1 1 . . . 1

1 . . . 1 −1 1 1 1 . . . 1

0 . . . 0 0 0 0 0 . . . 0
... . . .

... ... ... ... ... . . .
...

0 . . . 0 0 0 0 0 . . . 0


2n×2n

, (4.19)

and

Qi
s(t) =



0 . . . 0 0 0 0 0
... . . .

... ... ... ... ...

0 . . . 0 0 0 0 0

0 . . . 0 η 0 . . . 0

0 . . . 0 0 0 . . . 0
... . . .

... ... ... . . .
...

0 . . . 0 0 0 . . . 0


2n×2n

. (4.20)

The stochastic differential optimization problem in (4.17)-(4.20) has an affine quadratic

format. Next, we use dynamic programming to derive the optimal control solution

for each building.
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4.3.2 Solution Based on Dynamic Programming

Differential games are the extension of the basic optimal control problem and

their analysis relies heavily on concepts and techniques in optimal control theory [33].

Equilibrium strategies in the feedback form are best studied by looking at a system of

Hamilton-Jacobi-Bellman (HJB) equations for the value functions of various players.

Using dynamic programming, the solution is obtained backwards in time. That is, we

start at all possible final states with the corresponding final times. The optimal action

at each final time is selected, we then proceed back one step in time and determine the

optimal action at each stage. This process is repeated until the initial time or stage

is reached. The core of dynamic programming when it is applied to continuous-time

optimal control is the partial differential equation (PDE) of an HJB formulation.

Now consider the stochastic control problem in the stochastic control problem in

(4.17)-(4.20) can be derived using the stochastic HJB equation [33]:

−∂vi

∂t
= min

Ui(t)
{σ2

2
∂2vi(X, t)

∂X2 + ∇Xvi(X, t)f i[X(t), U(t)] + µi[X(t), U(t)]}.

The HJB equation above is a sufficient condition to obtain the optimal solutions. If

our value function solves this partial differential equation, then the optimal controls

that achieve the minimum cost can be readily obtained from the value function. In

general, the HJB equation does not have a classical (smooth) solution. Although some

efforts have been made in the past, e.g., to obtain the viscosity solution [76], or the

minimax solution [77]. However, for the special case of a affine-linear quadratic game,

where the system dynamics are described by a set of linear differential equations and

the cost function is quadratic, the value function has the unique solution which should

satisfy a set of first order differential equations. Therefore, a closed form solution for

the optimal action can be obtained for this special case.

According to [33], the value function for an affine-linear quadratic problem has
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the following solution for v(t):

vi(t) = 1
2

X(t)T Zi(t)X(t) + X(t)T ζ i(t) + ξi(t) + mi(t), (4.21)

where Zi satisfies the following Riccati differential equations:

Żi + ZiF̌i + F̌i
T
Zi + ZiBRi−1BT Zi + Qi

s = 0, (4.22)

Zi(T ) = 02n×2n, (4.23)

where

F̌i = A − BRi−1BZi. (4.24)

ζ i and mi can be obtained from the following differential equations, respectively:

ζ̇ i + F̌iζ i + ZiBRi−1BT ζ i + ZiBi = 0, (4.25)

ζ i(T ) = 02n×2n, (4.26)

mi(T ) = 0, and mi is obtained from:

ṁi + γiT
ζ i + 1

2
ζ iBRi−1BT ζ i = 0 (4.27)

and

γi = c′ − BRi−1BT ζ i. (4.28)
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Finally, the optimal control strategy can be obtained as

Ui∗(t, X) = −αRi(t)−1B(t)T ∇Xvi(t, X)T (4.29)

= −αRi(t)−1B(t)T

{
X(t)T [(Zi)T + Zi]

2
+ ζ iT

}
.

For the proposed game in (4.11)-(4.17), Ri, i = 1, . . . , N , matrices in (4.19) are singu-

lar block matrices (therefore non–invertible). Using the Singular Value Decomposition

(SVD) factorization method, we have Ri = EiΣiTi∗, where Ei is a real unitary ma-

trix, Σi is a rectangular diagonal matrix with singular values of Ri on the diagonal,

and Ti∗ (the conjugate transpose of Ti) is a real unitary matrix. Using SVD factor-

ization, a Moore–pseudoinverse of matrix Ri can be calculated as Ri+ = TiΣi+Ei∗.

Using Moore–Penrose pseudoinverse of matrix Ri in (4.29), the following Lemma

shows that player i does not need knowledge of other players’ states.

Lemma 4.1. For each player i, the associated columns of the other players in Moore-

Penrose pseudoinverse matrix of Ri are zeros.

Proof. For each player i, matrix Ri is written as follows:

Ri(t) =



0 . . . 0 0 0 0 0 0 0
... . . .

... ... ... ... ... ... ...

0 . . . 0 0 0 0 0 0 0

1 . . . 1 1 −1 1 1 . . . 1

1 . . . 1 −1 1 1 1 . . . 1

0 . . . 0 0 0 0 0 . . . 0
... . . .

... ... ... ... ... . . .
...

0 . . . 0 0 0 0 0 . . . 0


2n×2n

, (4.30)

where all rows are zeros except row i and i + 1. According to Theorem 3 in [82],

if matrix A is partitioned row-wise as A = (A1 :: A2)T , the matrix M of form
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M = (A+
1 A+

2 ) = A+ if the following relationships are satisfied:

A+
1 A2 = 0, A+

2 A1 = 0, (4.31)

(A1A+
1 )∗(A2A+

2 )∗ = 0, (4.32)

and

A1A+
1 A2A+

2 = 0. (4.33)

Matrix Ri can have 3 case of row-wise decomposition : 1) non zeros columns are in

matrix Ri
1 and matrix Ri

2 is a zero n × n matrix; 2) non zeros columns are in matrix

Ri
2 and matrix Ri

1 is a zero n × n matrix; 3) both Ri
1 and Ri

2 matrices have just

one non-zero rows. For all these 3 cases, the necessary conditions in (4.31-4.33) are

satisfied. Therefore Ri+ = (Ri
1

+Ri
2

+). For all 3 cases, zero rows in Ri
1 and Ri

2 are

associated with zero columns in Ri
1

+ and Ri
2

+. Therefore, all columns in Ri+ except

column i and i + 1 are zeros and cancel out the state information of the other players

but player i.

After calculation of optimal actions from (4.29), to obtain the original optimal

control decisions u∗, the following change of variables should be used:

u∗ = [U1
1 +

∑n
j ̸=i li −∑n

j=1 gi + αpc

2(n − 1)
, (4.34)

−(U2
1 +

∑n
j ̸=i li −∑n

j=1 gi + αpc

2(n − 1)
), . . . , U i

1 + li

2
, −(U i

2 + li

2
)

, . . . , Un
1 +

∑n
j ̸=i li −∑n

j=1 gi + αpc

2(n − 1)
,

−(Un
2 +

∑n
j ̸=i li −∑n

j=1 gi + αpc

2(n − 1)
)].
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Table 4.1: Building consumption scheduling algorithm

For each hour t=1:24
Update the market price.
Compute ζ using (4.25).
Compute vector of optimal decisions, U∗, according to (4.29).
Use change of variables in (4.34) to transform U∗ to u∗.
Update the total hourly demand according qi.
Send back the total hourly demand to the market.

End

Next, each building reports its total consumptions to the upper level, and the market

makes its decisions based on the total bus load vector UD = [UD1, ..., UDM ]T , where

UDj = ∑nj

j=1 qj. Here, M and nj are the total number of feeders and the total number

of buildings connected to bus j, respectively. In summary, the daily building load

control algorithm is shown in Table 4.1.

4.3.3 Properties and Discussion

In this section we show that the optimal control solution constitutes a feedback

Nash Equilibrium to the stochastic differential game.

The N -person differential game discussed in Section 4.3.2 can be rewritten in the

following form for each player i, where i = 1, · · · , N :

Ẋi = f [Xi(t), Ui(t)] + ρW

= AXi(t) + BUi(t) + C + ρW (4.35)

and

vi(X i, t) = min
U(t)

L (4.36)

= min
U(t)

Ew

{∫ T

0
µi[Xi(t), U(t)]dt + h[Xi(T )]

}
,
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where

Ui(t) = [U i
1, U i

2]T (4.37)

and

U(t)=[U1
1(t), U1

2(t), . . . , U i
1(t), U i

2(t), . . . , UN
1 (t), UN

2 (t)]T. (4.38)

For this game, the N -tuple strategies that are defined below constitute a feedback

Nash equilibrium solution [33].

Definition 4.2. For an n-person game as defined in (4.35)-(4.38), a set of controls

U∗(t, X), ∀i = 1, . . . , N , constitutes a feedback Nash equilibrium of the formulated dy-

namic game if there exists functions vi(X, t), ∀i = 1, . . . , N , that satisfy the following

relations:

vi(X, t) = Ew

[∫ T

0
µi {t, X∗(t), U∗} dt

]

≥ Ew

[∫ T

0
µi{t, X(t), U}dt

]
,

where

U = [U1
1

∗
, U1

2
∗
, · · · , U i

1, U i
2, · · · , UN

1
∗
, UN

2
∗] (4.39)

and

U∗ = [U1
1

∗
, U1

2
∗
, · · · , U i

1
∗
, U i

2
∗
, · · · , UN

1
∗
, UN

2
∗]. (4.40)

If there exists a function vi(X, t) that is twice continuously differentiable, then the

two partial differential feedback Nash equilibrium solutions in continuous time can be

characterized using the stochastic HJB equations, which are necessary conditions of
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Table 4.2: Number of buildings connected to each Bus.

bus 1 bus 2 bus 3 bus 4 bus 5 bus 6 bus 7
0 2100 9400 4800 760 1120 0

bus 8 bus 9 bus 10 bus 11 bus 12 bus 13 bus 14
0 2950 900 350 6100 1350 1490

the candidate optimal control strategy. This is summarized in the following theorem

[33].

Theorem 4.3. A set of feedback strategies U∗(X, t) leads to a feedback Nash equilib-

rium for stochastic differential game in (4.35)-(4.38), and X∗(t), 0 ≤ t ≤ T is the

corresponding state trajectory, if there exist suitably smooth functions vi(t) , for

i = 1, . . . , N satisfying the following rectilinear parabolic partial differential equations:

−∂vi(X, t)
∂t

= min
Ui(t)

{
(ρ2)2σ2

2
∂2vi(X, t)

∂X2 + ∂vi(X, t)
∂X

f [t, X, U[i](t)] + µi[t, X, U∗(t)]
}

. (4.41)

Next, to prove that our proposed game has the feedback Nash equilibrium, we

note that the differential game in (4.11)-(4.17) is in the affine linear form. There-

fore, the value function in (4.21) is twice continuously differentiable and the derived

optimal solutions by the HJB equations can indeed characterize the feedback Nash

equilibrium.

4.4 Simulation Results

In this section, we numerically investigate the performance of the proposed stochas-

tic differential game to confirm and complement the results presented in the previous

sections. Consider the IEEE 14-bus test system in Figure 4.2, where the load at each

bus is the summation of several homogeneous smart building load at that bus. The
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Figure 4.2: The fourteen bus system studied in simulations.

number of buildings that are connected to each bus is shown in Table 4.2. The bus

and the line parameters are set according to the model in [78]. According to [79], the

lead-acid batteries which are suitable for energy-smart buildings are generally 85-95

% efficient. Therefore, for simulation purposes the value for the leakage rate of the

batteries is considered to be β = 0.05. The value for ϵ as the factor of inertia of

the building is a function of the time constant of the building which can be defined

as the energy stored per unit area in the construction per unit change in heat flux.

Finally, the overall thermal conductivity is calculated based on the real data for a

typical building in Texas provided by [80] as 0.5. The price factors in equation (4.2)

are set as pc = 0.055$KWh and α = 1.

To study how the proposed demand response method affects electricity scheduling

at the buildings level, we compare the performance of our algorithm with a more

realistic day-ahead pricing scenario. In the day ahead pricing scenario, the 24-hour

price profile is assumed to be known to the ECS from day before and taken from real

data [80] of one day consumption as shown in Figure 4.3. We also show the real-time

pricing in the same figure. For simplicity, we focus on one building at bus number

2 as an example. The outdoor temperature, the mean of wind turbine output, and

the uncontrollable load are depicted in Figure 4.4(a), Figure 4.4(b) and Figure 4.4(c),
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Figure 4.3: Daily price for two pricing scenarios.

respectively [80].

In Figures 4.5(a) and 4.5(b), the daily states of the considered building for the

mentioned three methods are depicted. For all three scenarios, as price tends to

increase, the battery tends to discharge in order to cover a portion of the building

power consumption. Furthermore, the indoor temperature tends to increase due to

lowering the air conditioner’s load during peak hours. We can also see that, for

all scenarios, the variations of both battery level and the indoor temperature are

correlated to the changes in price values. Here, the average usage from the battery

reduces by around 10% for real-time pricing in peak hours (18-20) compared to the

day-ahead pricing case.

Next, we compare our proposed joint real-time pricing at upper level and demand

response at lower level, with the two other design scenarios. The corresponding daily

load profiles are shown in 4.6. For both day-ahead and real-time pricing techniques,

the peak load is reduced at around 8:00 PM. However, the use of the proposed real-

time pricing technique yields a more flat load shape compared to other methods.

Figure 4.7 studies how the PAR in aggregate load varies as the mean of the daily

outdoor temperature increases for three pricing scenarios. As it is shown in Figure

64



Table 4.3: Average daily market profit vs. building’s cost

Real-time Pricing Day-ahead Pricing
Market Profit ($) 48609 48741

Average Building’s Cost ($) 229 241

4.6 compared to the other technique, the proposed real pricing technique makes the

load curve more flat. Therefore, the PAR of associated load curve is also have the

least value. Due to the fact under high temperature, users tend to let AC unit stay

on for longer time, e.g., even at night when the load is low. Consequently, the PAR

decreases as the temperature increases, roughly in form of a linear function.

The mean daily cost of the considered building versus the mean daily outdoor

temperature are shown in Figure 4.8. We can see that the real-time pricing combined

with the proposed stochastic differential game can reduce the daily cost. The price

value under the real-time pricing has higher gradient since all building users increase

their power consumption in the case of a high temperature, which results in a higher

price. Moreover, when the temperature is high, the HVAC units are needed to stay

functioning in order to keep the indoor temperature in the comfort range of users.

Therefore, there is no major difference among different algorithms in this case as

Figure 4.8 suggests.

The average daily market profit versus the building’s costs are compared in Table

4.3. The profit is calculated as the total market revenue reduced from the total

generation cost. The generation cost per hour is calculated according to [81] as

0.00128D2 + 6.48D + 459, where D is the total demand. As the table suggests, by

deploying the real-time pricing technique compared to the day-ahead pricing, the

buildings can reduce their cost approximately 5% while the market will face 0.27 %

reduction in the daily profit, which is quite insignificant. This can be explained by

the fact that the real-time pricing only lowers the consumption in high price hours,

which does not hurt the supply side due to their savings of expensive fuel during peak

65



hours.

Finally the impact of buildings on price is studied in Figure 4.9 by comparing the

average daily consumption of a sample building at Bus no. 2 for different value of

α in equation (4.2). Increasing α reduces the impact of buildings on spot price and

yields an almost constant price. However, since HVAC units are considered as the

only controllable load in system model, the consumption would not increase beyond

certain range for α ≥ 4.

4.5 Summary

In this chapter, we developed a stochastic differential game model for autonomous

demand response when the price of electricity varies during the day. The model ex-

plains how end-users can decrease their electricity bill when having dynamic load,

where the load dynamics formulated as differential equations. Real-time pricing also

gives the aggregartor the opportunity to influence end users load profile through pric-

ing of power. We studied the interaction between the market and buildings using

a two-level differential game model. To gain insights, two dynamic states are par-

ticularly investigated: the battery’s state-of-charge and the room temperature. The

HJB equation is used to study the solution of the formulated game among differ-

ent buildings. As simulation results over two different pricing scenarios show, the

proposed method reduces the overall power consumption of all users, by storing the

energy when the price is low and by later discharging it when the price is high. The

peak-to-average ratio in aggregate load demand as well as overall energy cost are also

greatly reduced.
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Figure 4.4: Region characteristics at Bus 2.
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Figure 4.5: System states for a sample building at Bus 2.
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Figure 4.8: Daily cost vs. outdoor temperature for two pricing scenarios.

1 2 3 4 5
0

5

10

15

20

25

30

35

α

A
ve

ra
ge

 D
ai

ly
 P

ow
er

 C
on

su
m

pt
io

n 
of

 a
 B

ui
ld

in
g 

(k
w

at
t)

Figure 4.9: Impact of buildings power consumption on price.
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Chapter5

Distributed Control of HVAC Systems in Smart Buildings

5.1 Introduction

Buildings consume almost 70% of the total electricity generated in the US [83, 84].

One of the major energy-consuming systems of a building is the heating, ventilation

and air conditioning (HVAC) system. More precisely, an HVAC system might exhaust

more than 65% of the total electrical energy consumed by a building [85, 86, 87]. The

high energy consumption of HVAC systems raises energy costs as well as environmen-

tal concerns. Therefore, a desirable capability of future “smart buildings" is energy

reduction via fine-grained control of HVAC systems. For instance, an HVAC system

can be conceived as an autonomous system that adjusts the indoor temperature of

different locations in the building based on the occupancy [88].

A growing body of research suggests that efficient control of HVAC systems might

significantly increase the energy efficiency of future smart-buildings. For instance, in

[89], the authors explored the problem of computing optimal control strategies for

time-scheduled operation taking into consideration building operation schedules, e.g.,

night-setback, start-up and occupied modes, as well as a predicted weather profile.

In [90], dynamic and real-time simulation models are developed to study the thermal,

hydraulic, mechanical, environmental and energy performance of smart buildings. In

[91], the authors presented a simulation tool, “QUICK Control”, to predict the effect

of changing control strategies on indoor comfort and energy consumption.

For occupancy-based control of HVAC systems, a fundamental requirement is a

sensor network to capture the occupancy changes in real time. In [92], the authors

proposed several control strategies based on real time occupancy monitoring and

occupancy predictions.

In this paper, tools from game theory and multi-agent learning are used to design
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a cost-efficient distributed control for HVAC systems. This work takes into consider-

ation the electricity cost and predetermined ranges of desirable temperatures during

certain periods for all locations in the building that are subject to temperature con-

trol. The main game-theoretic tool of this analysis is the notion of a satisfaction

equilibrium (SE) [24]. Basically, an SE is an equilibrium concept in which players do

not seek any benefit maximization but only the satisfaction of their own individual

constraints. This equilibrium is thoroughly studied in the context of the distributed

control of HVAC systems. More importantly, a simple algorithm based on the notion

of trial-and-error learning [94] that is capable of achieving an SE is also presented.

The rest of this paper is organized as follows. Section 5.2 introduces the system

model. Section 5.3 describes two games, one in the satisfaction form and another one

in the normal form, to model the problem of distributed control of HVAC systems.

Therein, a fully distributed learning algorithm is also provided to achieve the equi-

libria of the corresponding games. Section 5.5 presents some simulation results, and

Section 5.6 concludes this work.

5.2 System Model

Consider a smart-building with n zones subject to temperature control. Each zone

is managed by an HVAC system that is fully independent of all the other HVAC units

in the building. The goal is to reduce the electricity cost by dynamically adjusting

the operation of the HVAC units such that two main constraints are satisfied: (i) The

temperature of a given room i, with i ∈ {1, . . . , n} must be kept within a desirable

range for certain predetermined periods; and (ii) The total power load dedicated for

heating, ventilation and air conditioning must not exceed a predetermined threshold.

Consider that temperature is controlled with a granularity of 1 hour. At the

beginning of the day, HVAC unit i chooses its own daily power consumption vector,

denoted by, Li = (li(1), ..., li(t), ..., li(24)), where li(t) denotes the power consumed
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by HVAC unit i at hour t. Each HVAC unit chooses its vector Li from a finite set of

vectors denoted by Li. The daily power consumption vector is selected in order to

minimize the daily electricity cost

Φ(L, P) =
n∑

i=1

24∑
t=1

µi(li(t), p(t)), (5.1)

where L = (L1, . . . , Ln) ∈ L1 × . . . × Ln, P = (p(1), . . . , p(24)) ∈ R24 , with p(t) the

hourly market price per energy unit. Note that the vector P is assumed to be known

by each HVAC unit at the beginning of the day. The function µi : Li×R → R models

the operation cost of HVAC i with power load li(t) and price pi(t). One example of

the function µi is presented in [95]. Therein, the function µi is defined as follows:

µi(li(t), p(t)) = c1p(t)li(t)2 + c2p(t)li(t) + c3, (5.2)

where c1, c2 and c3 are constant parameters that are determined based on experi-

mental data. One of the advantages of a quadratic model for the operation cost of

an HVAC unit is that it is more realistic and flexible than other models, e.g., the

translog cost model [96].

The total power load allocated for the HVAC system satisfies the following con-

straint at each 1-hour period t of the day:

∀t∈ {1, . . . , 24},
n∑

i=1
li(t) ≤ Lr, (5.3)

where the threshold value Lr is imposed by the characteristics of the power distri-

bution feeder/bus of the building. This threshold is assumed to remain the same at

each period t.

The temperature Ti(t) of zone i during period t must fall within the interval

[T t
i, T̄ t

i ]. Note that this control is enforced only during certain periods. Hence, the

73



set Ii denotes the periods over which this rule is enforced, i.e.,

∀t ∈ Ii, T t
i ≤ Ti(t) ≤ T̄ t

i . (5.4)

For all the other periods t ∈ {1, . . . , 24} \ Ii no temperature control is performed.

The indoor temperature is predicted up to 24 hours in advance using a simple expo-

nential decay model proposed by [73]. That is,

Ti(t + 1) = ϵTi(t) + (1 − ϵ)(TOD(t) − γKli(t)), (5.5)

where ϵ is the thermal time constant of the building; γ is a factor capturing the

efficiency of the air conditioning unit to cool the air inside the building ; TOD is the

outside temperature which is predicted a day ahead; and K is a conversion factor that

is proportional to the performance coefficient of the HVAC unit divided by the total

thermal mass. The HVAC unit uses power li(t) to control the temperature of zone i

during period t. In this model, our focus is only on the cooling scenario. The results

for a heating scenario can also be easily obtained by changing the sign of −γKli(t).

Equation (5.5) explains how the constraint (5.4) relates to the power consumed by

the HVAC unit. The HVAC control units should select their consumption amounts

in a way that the indoor temperature obtained from (5.5) falls within the comfort

interval (5.4) and minimize the total cost in (5.1). That is, the vector L = (L1, . . . , Ln)

must be chosen such that

min
L∈L1×...×Ln

n∑
i=1

24∑
t=1

µi(li(t), p(t)), (5.6)

s.t.
n∑

i=1
li(t) ≤ Lr, ∀t ∈ {1, . . . , 24}, and

T t
i ≤ Ti(t) ≤ T̄ t

i , ∀t ∈ Ii.

The above problem can be solved at the beginning of the day such that the vector
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Li = (li(1), ..., li(t), ..., li(24)) is entirely calculated by HVAC i only once per day; or

at each period t, the HVAC determines its individual load li(t + 1). Both alternatives

are studied in Section 5.4.

5.3 Game Formulation

The distributed control problem of the HVAC system described above can be

modeled via two games formulations: a game in normal form [97] and a game in

satisfaction form [24]. The related equilibrium solution are defined accordingly.

5.3.1 Game in Normal Form

Consider the game in normal form

G = (N , L, {ξi}{i∈N }). (5.7)

The set N = {1, . . . , n} represents set of players. HVAC i is represented by player

i. The set of actions of player i is the set of daily power consumption vectors Li.

Hence, the set of actions of the game is L = L1 × L2 × . . . Ln. The payoff function

ξi : L × R24 → R of player i is defined by

ξi(L, P) = 1
β + 1

(
1 −

∑24
t=1 µi(li(t), p(t))

24µmax

+ β1{Li∈fi(L−i)}

)
, (5.8)

where β is a design parameter, µi is defined in (5.2) and µmax is the maximum cost

user i can experience. The correspondence fi : L1 × . . .×Li−1 ×Li+1 × . . .×Ln → 2Li

is defined as follows:

fi(L−i) =
{

Li ∈ Li : ∀t ∈ {1, ..., 24} (5.9)
n∑

i=1
li(t) ≤ Lr and T t

i ≤ Ti(t) ≤ T̄ t
i

}
.
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The payoff function in (5.8) captures the tradeoff between satisfying the individual

constraints of player i and minimizing the individual consumption cost. Note that

increasing the value of β leads to the player focusing on in the satisfaction of its

individual constraints. Alternatively, reducing the value of β leads the player to

focus more on the reduction of the individual operating cost. This utility function

was first proposed in [26] for the case of decentralized radio resource allocation in

wireless networks.

An interesting outcome of the game G is a Nash Equilibrium (NE), which is

defined as follows:

Definition 1. An action profile L∗ ∈ L of the game (5.7) is an NE if ∀i ∈ N and

∀L′

i ∈ Li,

ξi(L∗
i , L∗

−i, P) ≥ ξi(L
′

i, L∗
−i, P). (5.10)

The interest in the NE stems from the fact that at such a state, none of the players

can improve its payoff by unilaterally changing its action.

5.3.2 Game in Satisfaction Form

Consider the game in satisfaction form Ĝ = (N , L, {fi}{i∈N }). In the game Ĝ, a

player is said to be satisfied if it plays an action that satisfies its individual constraints.

More importantly, once a player satisfies its individual constraints, it has no interest

in changing its action, and thus, an equilibrium is observed when all players are

simultaneously satisfied. This equilibrium is often referred to as the satisfaction

equilibrium [24].

Definition 2. An action profile L+ ∈ L is a satisfaction equilibrium for the game
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Ĝ = (N , L, {fi}{i∈N }) if

∀i ∈ N , L+
i ∈ fi(L+

−i). (5.11)

The interest in the SE stems from the fact that at such a state, all players satisfy

their individual constraints. However, no optimality can be claimed on the choices of

the players with respect to the cost in (5.1).

5.4 The distributed learning algorithm

In this section, a learning algorithm based on a trial-and-error dynamics is pro-

posed to distributively achieve an SE and/or NE.

5.4.1 Trial and Error Learning Algorithm

Player i locally implements a state machine. At iteration s, the state of player i

is defined by the triplet

Zi(s) = {mi(s), L̄i(s), ξ̄i(s)}, (5.12)

where mi(s) represents the “mood" of player i, that is, the way it reacts to the

observation of the instantaneous observation ξ̃i(s) of ξi(L(s), P), with ξi defined in

(5.8) and L(s) is the action played at iteration s. L̄i(s) ∈ L and ξ̄i(s) ∈ [0; 1]

represent a benchmark action and a benchmark payoff, respectively. There are two

possible moods: content (C) and discontent (D); and thus, mi(s) ∈ {C, D}.

If at iteration s player i is content, it chooses action Li following the probability

distribution

πi,Li
=


ϵc

|Li|−1 , if L̄i ≥ Li and

1 − ϵc, if L̄i = Li,
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where, πi,Li
= Pr(Li(s) = Li), c > n is a constant and ϵ > 0 is an experimentation

rate. In the following, we use the notation X ⇐ Y to indicate that variable X takes

the value of variable Y . If player i uses its bench-marked action at iteration s, i.e,

Li(s) = L̄i, and ξ̃i(s+1) = ξ̄i(s) then the state Zi(s) remains the same. Otherwise, it

adopts a new bench-marked action and a new benchmark payoff: L̄i(s + 1) ⇐ L̃i(s),

ξ̄i(s + 1) ⇐ ξ̃i(s). The mood of player i is updated as follows: with probability

ϵ(1−ξ̃i(s)) it sets its mood to content mi(s+1) ⇐ C, and with probability 1−α(1−ξ̃i(s)),

it sets it to discontent mi(s + 1) ⇐ D.

5.4.2 Properties

An essential condition for the mentioned learning algorithm to achieve a stochas-

tically stable state is the interdependence property defined as follows [94].

Definition 3. (Interdependent game) An n-person game G on the finite action set

L is interdependent if for every non-empty subset J ⊂ N and every action profile

L = (LJ , L−J ) ∈ L such that LJ is the action profile of all users in J , there exists

a player i ̸∈ N such that

∃L′

J ̸= LJ : ξi(L
′

J , L−J ) ̸= ξi(LJ , L−J ). (5.13)

In other words, the interdependence condition states that it is not possible to

divide the players into two separate subsets that do not interact with each other.

In the following, we assume that game G is interdependent. This is a reasonable

assumption, since the power consumption choices of all players affects the set of

conditions in (5.3) that all other players should satisfy. The following theorem states

that the players’ actions at the stochastically stable state of the learning algorithm

maximize the social welfare of all players[94].

Theorem 5.1. Under the dynamics defined by the mentioned learning algorithm, a
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state Z = (m, L, ξ), is stochastically stable if and only if the following conditions are

satisfied:

• The action profile L maximizes the social welfare function W : L × R24 → R,

defined as follows:

W (L, P) =
∑
i∈N

ξi(L, P). (5.14)

• The mood of each player is content.

The next theorem states that by selecting β > n, the stochastically stable state

of the dynamics described above is such that the largest set of players is satisfied.

Theorem 5.2. Let each player in the game G implement the learning algorithm

described above with utility function ξi and β > n. Then, the action profile with the

highest social welfare satisfies the highest number of players.

Proof. It is sufficient to show that if L∗ is an action profile that satisfies k∗ players

and L′ an action profile that satisfies k
′ players, and k∗ > k

′ , then W (L∗) > W (L′).

We have W (L) as follows:

W (L)
∑
i∈N

1
β + 1

(
1 −

∑24
t=1 µi(li(t), p(t))

24µmax

+ β1{Li∈fi(L−i)}

)
, (5.15)

and we also have:

0 ≤
∑
i∈N

(
1 −

∑24
t=1 µi(li(t), p(t))

24µmax

)
≤ n. (5.16)

Using the inequality (5.16), and the assumption that L∗ is an action profile which

satisfies k∗ players, we can write βk∗

1+β
≤ W (L∗) ≤ n+βk∗

1+β
. Similarly using (5.16) and

the assumption that L′ is an action profile which satisfies k
′ players, we can write

βk
′

1+β
≤ W (L′) ≤ n+βk

′

1+β
. Since k∗, k

′ ∈ N, we can write the assumption k
′

< k∗ as
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k
′ ≤ k∗ − 1, which implies W (L′) ≤ n+βk

′ −β
1+β

. Using the assumption that β > n, we

can write n+βk
′ −β

1+β
< βk

′

1+β
. Following the set of inequalities, we can state W (L′) <

βk
′

1+β
≤ W (L∗), which proves W (L∗) > W (L′).

5.4.3 Online Scheduling

The day-ahead scheduling method as it is described in Section 5.2 can achieve

a satisfaction equilibrium using the distributed learning method in the convergence

as is proven in Theorem 2. Due to the constant change of the outdoor temperature

and market electricity price, it is more practical that scheduling of HVAC units be

performed on a hourly basis instead of a day-ahead one. In this section we explain

the details of the hourly scheduling method.

For the hourly scheduling method, each HVAC unit chooses its hourly consump-

tion li from a finite set denoted by L′
i. The constrained electricity cost optimization

of each zone as defined in (5.6) can be rewritten as follows at time interval t:

min
L̂∈L′

i×...×L′
n

n∑
i=1

µi(li(t), p(t)), (5.17)

s.t.
n∑

i=1
li(t) ≤ Lr, and

T t
i ≤ Ti(t) ≤ T̄ t

i ,

where L̂(t) = [l1(t), . . . , ln(t)]. The game definition for the normal and satisfaction

forms change accordingly as follows.

5.4.3.1 Game in Normal Form

The game in normal form is represented by the triplet, G = (N , L′
, {ξi}{i∈N}).

Here, N = {1, . . . , n} represents the set of players that are HVAC control units of n

zones. The action of player i is its hourly power consumption, li(t), and each player

i has a finite set of actions, L′
i. The set of actions of the game is the joint set of
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Figure 5.1: The occupancy schedule of building zones.

players actions, L′ = L′
1 × L′

2 × . . . L′
n. We introduce the payoff function of player i,

ξ
′
i : L′ → R defined by

ξ
′

i(li(t), L−i(t)) = 1
β + 1

(
1 − µi(li(t), p(t))

µmax

+ β1{li(t)∈f ′
i(L−i(t))}

)
, (5.18)

where we define f ′
i : L1 × . . . × Li−1 × Li+1 × . . . × Ln → 2Li as follows:

f ′
i(L−i) =

{
li ∈ L′

i :
n∑

i=1
li ≤ Lr, T t

i ≤ Ti(t) ≤ T̄ t
i

}
.

5.4.3.2 Game in Satisfaction Form

The game in the satisfaction form is defined by the triple Ĝ = (N , L′
, {f

′
i }{i∈N }).

Similar to the properties of the distributed learning algorithm for 24-hour schedul-

ing case discussed in Section 5.4.2, the distributed learning algorithm for the online

scheduling case achieves the solution with the largest number of satisfied players.

Theorem 5.3. Let each player in the game G implement the learning algorithm

described above with utility function ξi and β > n. Then, the action profile with the

highest social welfare is the solution with the largest number of satisfied users.

The proof is similar to the proof of Theorem 2. In following, we present numerical

results to demonstrate the performance of the proposed game.
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Figure 5.2: Characteristics of the building.

5.5 Simulation Results

In this section, we numerically investigate the performance of the proposed satis-

faction game to confirm and complement the results presented in the previous sections.

Consider a building divided into three independent zones for the task of temperature

control based on occupancy. The occupancy schedule of the building for a 12 hour

period is shown in Figure 5.1. In this figure, shaded blocks indicate the time slots

during which the corresponding zones in the building are occupied and needed to

be conditioned. For the occupied time slots, the lower and upper bound for indoor

temperature for all zones are taken to be 67F and 79F , respectively. The outdoor
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Figure 5.3: Payoff versus the number of iterations.

temperature and market price are depicted in Figure 5.2(a) and Figure 5.2(b), re-

spectively according to data in [80].

Other simulation parameters are set as ϵ = 0.7, λ = 0.9, K = 15, c1 = c2 = c3 = 1,

B = 100 and Lr=1.5 KW . The energy consumption of the HVAC units is assumed

to be chosen from the set {0, 0.2, 0.4} for both games. First, we compare the payoff

of our proposed game in the satisfaction form with its payoff in the normal form

and the payoff of the maximum social welfare solution as shown in Figure 5.3. The

learning algorithm parameter is set at α = 0.05 and the number of iteration is 10000.

The proposed learning algorithm is able to meet the optimal solution for most of the

time (stochastically stable state). For the game in normal form, players can achieve

NE after a few iterations, and the payoff of players is considerably lower than the

maximum spacial welfare.

Figure 5.4 studies the effect of exploration rate (α) on the convergence of the

game’s payoff in satisfaction form to the maximum social welfare. As the figure

shows, by decreasing the exploration rate from 0.05 to 0.01, the players tend to stick

to their choices. Therefore, the learning algorithm might temporary stabilize at a non-

optimal state. On the the other hand by increasing the exploration rate from 0.05 to

0.09, the payoff decreases again. This can be explained since for higher exploration
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Figure 5.4: Satisfaction game convergence versus the exploration rate.
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Figure 5.5: The payoff versus the average indoor temperature.

rates, players choose their actions more dynamically, and consequently the algorithm

might not be stable even if it has converged to the maximum social welfare.

Next we compare the average conditioned indoor temperature during the sched-

uled time slots for zone 1 versus the achieved payoff for the four cases of day-ahead

SE, day-ahead NE, real-time SE and real-time NE in Figure 5.5. Note that the payoff

function for 12-hour cases are different from that for the real-time cases. However,

the payoff achieved by the game in satisfaction form is higher than that of the game

in normal form at the cost of higher average indoor temperature.
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Finally, Figure 5.6 shows by increasing the number of granularity levels of the

power consumed by HVAC units, the payoff increases and finally archives the max-

imum social welfare solution with the continuous action set. Having 9 power levels,

the SE has a similar payoff to the maximum social welfare solution, and significantly

better payoff compared to the NE payoff.

5.6 Summary

The proposed learning algorithm is able to control the power consumption levels of

HVAC units in order to guarantee that the largest number of zones have stochastically

stable indoor temperatures which are falling within the predetermined comfort range

of users, while incurring the minimum electricity cost. To implement the proposed

game in the satisfaction form and the proposed learning algorithm, the HVAC unit

of each zone only requires little information from other zones. Simulation results

demonstrate the properties of the proposed game and show how HVAC control units

can reduce the building electricity cost effectively while satisfying the constraints.
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Chapter6

Conclusion and Future Work

6.1 Conclusion

The smart grid is envisioned to be a large-scale cyber-physical system composed of

intelligent nodes that can operate, communicate, and interact autonomously in order

to efficiently deliver power to their consumers. The heterogeneous and decentralized

nature of the smart grid motivates adoption of game theory for overcoming various

design, control, and implementation challenges. In this dissertation, we proposed

game theatrical frameworks for distributed dynamic control application in smart grid

systems. We summarize the research that has been completed for each of these

frameworks in this chapter.

First we studied the problem of optimal distributed generation and storage for

thermal and pumped-storage power plants in a smart grid network. We proposed

a stochastic differential game approach to model their competition and derived the

optimal strategies for both players if the other’s action is fixed using HJB equations.

We showed that there exists the feedback Nash equilibrium strategies for the pro-

posed game. Simulation results demonstrate the properties of the proposed game

and suggest how the two types of power plants need to adjust their generating and

storage decision variables to maximize their revenues. It is demonstrated that the

proposed framework and games can reduce the peak to average ratio and total energy

generation for the thermal plant, which helps power plant operation and reduces CO2

emission.

Next, we considered smart buildings equipped with renewable resources genera-

tors, local energy storage and controllable HVAC units, in which users are able to

respond to real-time grid conditions like electricity prices and weather conditions

in order to minimize their cost. We modeled the strategic interactions between
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such energy-smart buildings and a Nash-Cournot electricity market using a two-level

stochastic differential game framework. At the upper level, the market offers a vector

of hourly prices to end users. At the lower level, the energy-smart buildings as the

lower level participate in demand response by managing controllable dynamic load

in response to hourly prices set by the market. Specifically, two dynamic states in

energy-smart buildings are investigated: the battery’s state-of-charge and the room

temperature. The solution of the formulated game among different buildings is de-

rived by HJB equations. As simulation results show, the proposed method reduces

the overall power consumption of all users, by storing the energy when the price is

low and by later discharging it when the price is high. The peak-to-average ratio of

aggregate load demand as well as overall energy cost is also greatly reduced.

Finally, we focused distributed control of HVAC systems as major consumption

units in buildings. The problem of electricity cost efficient scheduling of HVAC units

while satisfying predetermined ranges of desirable temperatures during certain pe-

riods for multiple zones in the building that are subject to temperature control is

taken into consideration. The game-theoretic tool used to analysis this problem is

satisfaction equilibrium, in which players do not seek any benefit maximization but

only the satisfaction of their own individual constraints. The notion of satisfaction

game enables players to make stochastically stable decisions with limited information

from the rest of players. To achieve satisfaction equilibrium, a trial-and-error learning

is proposed. We showed that this algorithm reaches stochastically stable control de-

cisions that are equilibria and maximizers of the global welfare of the corresponding

game. The propertied of proposed game and learning algorithms are studied for both

day-ahead and real-time cases through simulation results.
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6.2 Future Work

This section includes the overview of future research and possible progressions in

the studied problems in this dissertation on distritbuted dynamic control schemes for

smart grid networks. We introduce the following topics that can be chosen for further

advanced research.

• Design of multi-stage game-theoric frameworks for integration of distributed

generation units to smart grids’ electricity markets in order to achieve opti-

mal trading prices among competing distributed generation entities as well as

optimal generation or storage decisions.

• Incorporation of mean field games [98, 99] for distributed control applications

with extremely large number of players such as large number of buildings, PHEV

vehicles, and so on in order to avoid the high volume overhead of feedback

information which enforce timing delays and data storage costs to the grid. In

contrast to N-player games, where each player follows the evolution of the state

of the game and the actions taken by all other players in order to maximize

a given individual benefit, in the mean field game formulation, every players

action is driven by the collective (or mean) behavior of all players and not by

the individual actions of each other player. As a main consequence, it is possible

in these games to follow the state trajectory of all players at once and to capture

the behavior of the players depending only on their initial state and the joint

distribution.

• Sensor-driven analysis to obtain full picture of almost every aspect of the build-

ingŠs states and dynamics for more efficient buildings energy management sys-

tems. For example, using infrared sensors to determine whether a space is occu-

pied or not, how much daylight there is, whether the lights are on and what level

of lighting they provide would enables design of more efficient lighting control
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systems. Integrated data from sensors in electricity and water meters, lighting,

HVAC systems, geothermal pumps [100] and other subsystems will provide im-

mediate insight into the overall state of the buildingŠs dynamic systems, as well

as design of energy efficient distributed controls.
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