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ABSTRACT

An experimental study concerned with the role and effect
of damping for a rotating flexible shaft in the region of a
critical speed is conducted, The existing theory [1]* is
reviewed for a rotating system with an unbalanced disk in the
center of a flexible shaft., The effect of damping on the
system is discussed. The experimental results reveal that
the external damping plays a role which is taken properly
into account by the existing theory. In contract, internal
damping does not affect the rotating system in the reglon of

the critical speed.

* Numbers in brackets refer to corresponding references in
the bibliography.
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CHAPTER I
THEORY

General All material used to construct machinery possess
mass and elasticity which always makes vibration possible.
A rotating shaft with mass umbalance, no axial symmetry or
subjected to such external factors as gyroscopic forces,
friction in the bearings, etc., tends to whirl at certain speeds,
Since the bearing supports are relafively rigid, the
forces exerted on the bearings are due to centrifugal force

caused by the unbalance. The shaft for which the dynamic

0 Note: Relation of O,
! S, G at speeds below
\ the critical speed.

kR S

(a) ' (b)

Fig, 1 Deflection of a shaft duc to mass
unbalance



action and interaction of shaft elasticity, bearing elasticity,
and damping must be considered is called flexible,

When the shaft-disk system of Figure 1 is rotated, a
speed~depended centrifugal force acts on the mass center,
causing it to move outward under the restraining influence of
a restoring force offered by the stiffness of the shaft
(Equation (1)). In an undamped system a speed characterized by
Equation (1), there is a speed for which equilibrium is not
possible, This speed is called the critical speed and is
denoted byxun. It corresponds to a resonant frequency of the
system, In the case of the system in Figure 1, it corresponds
to the lowest bending mode of the shaft [2].

In a rotating shaft and vibrating systems, friction is
always present and offers resistance to motion. The resistance
in such systems usually restricts the vibratory motion in the
region of the critical speeds and the natural frequencies,

The friction in a rotating shaft system which includes the
bearings and supports has a speclal character, The friction
which can be attributed to interaction between the rotating
and the stationary parts 1is called external friction, and the
friction within the rotating parts alone is called internal
friction,

Internal friction (damping) for a rotating system usually
includes two fundamental components: hysteretic damping and
structural damping. The latter is caused by micro-shifts

between individual parts of the rotating system. The most



frequent cause of such structural damping is dry friction which
occurs at the juncture of the hub of the disk and the shaft,

The factors which affect hysteretic damping include the amplitude
and ffequency of the vibratory motion and temperature., Of thesc,
it has been shown that the vibration amplitude is usually the
most important.

In order to isolate and identify these parameters in the
study reported here air bearings (which are characterized by |
low-friction) were used. These included externally pressurized
journal and thrust bearings. As a consequence, the role and
effect of internal damping in the shaft may be determined

eiperimentally.
A, VWhirling without damping [3)

First, whirling without damping is considered. Consider
idealized system, which consists of a single disk with a mass
m located firmly and symmetrically on a vertical shaft "supported
by two bearings (Figure 1). Because of mass unbalance, the mass
center G of the disk is at a radial distance P from the geome-
trical center S of the disk., During rotation, the center line
of the bearings intersects the plane of the disk at 0,(this is
defined as the spin axis). With respect to tﬁe spin axls, the
shaft center is deflected a distance 0S, say R.

If the effect of friction is neglected, the disk is under

the action of two forces: the restoring force of the shaft,



=kR, where k is the lateral stiffness of the shaft at the disk),
and the centrifugal force of the mass, mw*(R+P). In an undamped
system, when these two forces are in equilibrium, they are col=~
linear, equal in magnitude, and opposite in direction as shown

in Figure 1 (a), This may be stated as

KR = mu? (R+P) (1)
From which we obtain
_ mxuzp
R —nw? (2)

Equilibrium is not possible at speeds for which k—-mu)2==0;
tﬁus, at values of 602==k/m chui) the deflection of the shaft
becomes (in theory) infinitely large. We call this the critical
speed of the shaft., For a one-degree-of-freedom system of mass
m and stiffness k, the undamped natural frequency is also
defined as cun=#E7E'[4).‘ For this reason critical speed is
defined as ",.,. a speed of a rotating system that corresponds
to a resonance frequency of the system.”" (5)

On the basis of the above we denote the critical speed of
the rotating system by .. It also shows that R is positive
when w is below wn and that Ris negative when w is greater
than wn, Thus, for w < wathe systém rotates with the mass
center outside 0S, (i.e. G outside S as shown in Fig. 2 (2))
and that for w>wathe mass center is between O and S and on

0S (i.c0. S is outside G as shown in Fig. 2 (b)).



kR = m 2 (R+0) kR= mw*(R—C)

w < Wn w > L,
(a) (b)

Fig., 2 The relation between the mass center
geometric center, and spin axis of
a disk during rotation
When w is very much greater than wn, the deflection R
approaches — @ and the points O and G are in essential coin-

cidence; thus, disk tends to rotate about its mass center G,

This process 1s called mass centering.
B, Whirling with damping

Since there is no first-order alternating stress in the
rotating system at or near the critical speed, then material
damping cannot aid materially in limiting excessive deflection
of the system., The converse is true for lateral vibration of
the same system at a resonant frequency. This places special
importance on the damping furnished by the bearings and their

supports. The factors that limit amplitude at critical speeds



are mainly nonlinear effects in elastic properties of the
system and damping in the bearings — the latter mainly due to
motions and interaction effects at frequencies other than at
running speed,

Although it is assumed here that the rotating shaft-
bearing system does not vibrate, it is caused to vibrate at
speeds other than the running speed (some times excessively)
by dynamic actions characteristic of fluid-£film lubrication.
There are two distinguishable vibration phenomena, one called
half-frequency whirl, another called resonantwhip (6). Whirl
may occur with relatively stiff rotating systems at any speed;
it has a vibration frequency at or near half the running speed.
Whip may occur with flexible rotating systems at speeds equal
to or above twice the first critical speed of the rotating
shaft-bearing system; it has a vibration frequency equal or
very nearly equal to the first critical speed, The litera-
ture which covers this more general problem, the dynamie
behavior, of rotor-bearing systems, extends to the effects of
critical speeds, bearing instability, and the influences of
bearing parameters on rotor behavior, in addition to balancing
(6). |

In the region of the critical speed of a damped rotating
system, there is a new relation between points 0, S, and G

(as is shown in Figure 3).



Centrifugal

force
Restoring Fricti
force riction

force

Fig, 3 VWhirling of shaft due to mass unbalance
when frictlon force is considered
After Tondl (1), the problen may be considered as the
motion in the XY-plane of a disk on which is impressed a
constant angular speed w . He shows that the equation of

motion of the system with mass m in X-direction (Fig. 3) is
mgg(xHDcos wt)+Cd—?5+kx =0 3)
de de o

and the equation of motion of m in Y-direction is
a2 . d
m-aE(y+Ps:ant)+Ca%+ky= 0 4 4)

where C is the viscous damping coefficlent, Since the disk
revolves at a constant angular velocity «» , this circumstance
must be taken into account with expressing the force of

internal damping (1); consequently, it will be advantageous to



introduce a rotating system of coordinates & and 77 which
revolves at the angular velocity «w as shown in Fig. 4, In

place of the deflections x, y, and § , 7 , it is possible to

Y

wt

SN

Fig. & Coordinate systems relation

introduce the complex vectors z and &, Where,
z =x+iy and g =f+i7 &)

The equation of motion in the rotating coordinate system may be

written as
m(Z + 210t — ) +C(E + iwC)+kC=m,Dw2 (6)

If it is assumed that the internal damping introduced into
the system is proportional to the square of the amplitude with
respect to the rotating coordinate system (7) and using the
concept of equivalent viscous dampin (3), it is possible to

write

Fd=—Ceqt (7)



where

—. b *

Therefore, the general equation of motion with internal damping

in the rotating coordinate system may be written as

§+210E ~ WL +e(G+102) +eeqE Hwil=pPuw? (9)

where

c=C/m, Ceq= Ceq/m, wWi=k/m
In terms of the stationary coordinates, Equation (9) becomes
54 ct +Ceq(3-102) + Wiz = pwe®@’ © (10)
A particulaf solution of which is
Pw? iwt

= e 11
z WE—-wWicw ( )

or {n the rotating coordinates

— pPu? —
¢= WE— Wicw (=R) (12)

If the phase relation is neglected, R represents the rotating
circle of the system due to mass unbalance, The magnitude of

C in Equation (12) can be written

{0 —(8) (&)

* Appendix I



This shows that external friction leads to damping of the natu-
ral vibrations and to a restriction of the amplitudes of the
motion in the region of critical’speeds. It appears that the
motion caused by mass unbalance is not affected by internal
damping; however, the general solution of Equation (10) shows
that Ceq does influence the system during rotation.

The homogeneous solution of Equation (10) may be written

as
z =A1ei At Azei At (14)

Where Aj and Ay are constants of integration and Aj and A,

are roots of the characteristic equation
AN—in(c+ ceq)——w,?+iceqw=0 (15)

The solution of Equation (15) will be

A2 =2Li(c + Ceq) i/w,f—a‘—(cgrce,)?—ic'eqw (16)

Let (), be the natural frequency of the damped vibrations of the

system where
(AJQZ=(L)nz - Z'_"(C + Ceq)z

2
For Ceq“’ <X Ws

JQ_)OZ— lCqu) i"wo—%-iCeq“c%);

and A and Ay may b2 written approximately as
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Ceqa))

Ay = o+ i+ Cog == (16-a)
. . Ceqtd
Ny =0, +i(c+ Cog+ =57 (16-b)
and the solution of the homogeneous equation (10) is
7 =4, eliw. — e+ Ceog ~ 4 +A, el — 2+ Cog+ <82 an

The effect of internal damping may be examined qualitatively

from Equations (16-a) and (16-b). 1If

W< W+ Cce,) (18)

then both terms on the right hand side of Equation (17)

converge with increasing time, i.e.

Lim z=0

£t
This implies that the internal damping plays a role as a resis~
tance effect., However, 1f the inequality (18) does not hold,

and

W > w.(l+ Ce

C‘, ) (19)
then, it follows that

Lim z =0
t—»oo

It follows that if the inequality (18) is not satisfied the
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internal damping does not play a role as a resistance effect,
and, in fact, may induce the system to vibrate infinitely.
Obviously, from the analysis, it shows that the vibra-
‘tion of a rotating shaft system with mass unbalance 1s affected
by the existence of damping. External damping tends to
restrict the deflection of the shaft in the region of a cri-
tical speed; internal damping does the same thing only when

equation (18) satisfied,
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Fig. 5 Experimental Arrangement



CHAPTER II

DESCRIPTION OF APPRATUS AND INSTRUMENTATION

A, Apparatus

General The shaft materials used in the investigation
were SAE 1018 steel, ASTM 2017 aluminum alloy, and a copper=-
manganese alloy containing 18% copper-82% manganese. These
precise specifications are given in Table 1.

Construction 1In Fig, 5 the general arrangement of

the equipment is shown. The motor (A) was a 1/4-hp compound-
control constant-torque D, C. machinzs., The drive shaft was

coupled to the experimental shaft by a flexible coupling (C).

0-Y

A1l of the experimental shafts were,inches long and 1/2 inch
in diameter., Details of the air bearings are shown in Fig, 6.

As can be seen in Fig., 5. each experimental shaft was
provided with a 3~-in, diameter, 2.53-1b. balanced disk located
at its midpoint. Provision was made to introduced an unbalance
of 1.35):10-.3 I1b=in which is equivalent to a center-of=- gravity
displacement P=533um,

In the interest of safety, guards (F and G) were provided.
These guards were also used as supports upon which the motion=
measuring instruments were mounted

The rotating system and its supports were set on a heavy

post (H) and mounted on an isolated elastic foundation (I)



Table 1

Specification of the Materials

Materials '
Steel Copper-Manga+ Aluminum
Properties nese Alloy
Density 0.288 1b/in> | 0.264 1b/in> | 0,101 1b/in>

Young's Modulus
Damping Capacity
at Low Stress
Percent

Tensile Stress

Proportional
Limit

6

30x10° psi

645103 psi

54x10° psi

13x10% psi
7
68x103 psi

24x103 psi

10.5x10° psi

12x10° psi

15
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Fig. 6 Air Bearings
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(Fig. 5) in order to isolate the foundation.
B, Instrumentation

In Fig., 7 a block dlagram of the instrumention is shown.
Two Bentky Nevada 3000 Series inductive probes (J) were used
to measure the motion of the shaft during rotation. They
were attached to the guard block (K) along perpendicular axes,
Another identical was mounted near the driving shaft; it was
used as a revolution counter and angulariposition reference,

The signals, which are proportional to the change in the
air gap between the probes and the shaft surface, were trans=-
mitted to the Bentley Nevada 3000 Series proximitors (L) and
thence to the Tektronix 561A four-trace Oscilloscope (M).
A Hewlett Packard 196A oscilloscope camera was used to record
. the motion and timing traces.
A depth micrometer and a feeler gage were also used to

measure the initial runout of the shaft,



Motoxr
=1 Probe (Timer)
Coupling
Z Bearing sﬁg¥i§
D
7
Proximitor |
] Disk
L ] \
Proximitor (-
.
' -0
Oscilloscope
N o N
Proximitor __I -
'c:-—J Probes

/ Bearing
7H77 Thrust Bearing

Fig. 7 Block Diagram of Instrumentation
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CHAPTER III
TEST PROCEDURES

"In order to study the role and effect of damping on the
response of a flexible shaft in the region of a critical
speed, the following factors were taken into account

1. Shaft material,

2., Bearing type.

3. Shaft-disk configuration,

The details of the experimental are given in Table 2.

In this study, three different shaft materials were used,
Each shaft~disk configuration was subjected to the same series
of test., Alr bearings, self-aligning ball bearings and oil-
film sleeve journal bearings were used with each shaft,

When the shaft rotates, its motion at the measuring
point is a function of both initial runout and the unbalance
present in the rotor. Therefore, in order to determine theA
runout, it 1s necessary to rotate the shaft by hand and measure
its distance from a fixed point., From this information, the
relationship between the magnitude and angular position of the
runout relative to the timer position on the shaft can be plotted,
The results of such measurements on the three test shafts in
30-degree steps is shown in Fig. 8, 9, and 10,

The shaft is rotated from zero speed to a speed above

the critical speed, The once~-per-revolution response is
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Table 2

Details of Shafts Used in Test

(Each %-in., dia. and 27%-in.
between bearings and a 2.53
1b. weight in center)

Shaft Material Critical Speed
Identification of Shaft Bearings ( measured )
Letter rpm
self-aligning %
A ' steel ball bearing 1700
%
B cu-mn " 1100
%
c Al-alloy " 1000
D steel journal 2475
bearing
E cu~mn " 1720
F Al-alloy " 1650
G steel air bearing 2580
H cu-mn " 2000
I Al-alloy " 1945

* Note: For this case, the shaft behaves essentially as a
center-mass-loaded, simply supported beam and the caputed na-
tural frequencies (critical speeds) are 1740, 1145, and 1030
rpm, respectively, for steel, copper-manganese, and aluminum
alloy shaft, For other bearing conditions the system is
etiffened and the critical speeds are higher,
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measured and related (by means of the timer signal) to the an-
gular position of the shaft., These results ( for the various
shaft materials and bearing conditions ) are shown in Figs.
11-20.

The magnitude and angular position of the rotating re-
gponse may be found by plotting the vector difference of the
static and running displacements at the measuring positions.
This yiélds the net response which can be attributed to the
inherent unbalance only and, thus, the effect of initial
runout is eliminated., These results are given in Tables
3-5

When the two perpendicular probes, used to measure the
displacement of the driven shaft, are conmnected to the x and
y axes of the ocsilloscope, a Lissajous figure is obtained.

Examples of this are shown in Fig; 21,
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Fig,

(a) rpm=955

(b) rpm=1540
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(¢) 1rpm=1900

15 Displacement of Steel Shaft in Alx Bearings
Time base 10 ms/Div, Voltage 1 volt/Div
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(d) rpm=2000
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(e) rpm=2140

Fig. 16 Displacemant of Steel Shaft in Air Bearings
Time base 10 ms/Div, Voltage 1 volt/Div,
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Fig. 20

\ [ \ /T T )
U L \J

(d) rpm=2500

L[ )| N\ T

\ U U 3]

(e) rpm=2670
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34



Table 3

The Displacements of the Shafts in Ball Bearings

Wn

Copper Aluminum
Speed Steel Shaft Manganese Alloy
. Shaft Shaft
rpm rad/seco/ Ap |4 Q/ AR (AR u/ Ap | M
W, fomp meas Wptomp heas w,| comp { mecas
334 35 0.32)1.11] 1.1
600 62,8 0.52|1.29{1.13
734 76,7 0.71} 1.83| 1.25
780 81.6 [0.45/1.25{1.09
1000 | 104.8 0,97{ 3.12| 1.5
1016 | 106.4 0498 3.11| 1,59
1030 | 108 1.0 | 3.07] 1.56
1110 | 116 0,97} 3.44]1.77
1145 | 120 1.0 | 3.42]1.75
1250 | 131 0.72{ 1,94} 1,39
1300 | 136 1.29 1.39] 1.36
‘1365 143 ) 1019 1083 1.65
1700 | 178 0.98] 5,16f 2152
1740 | 182 1,0 | 5.19]2.47
1765 | 185 1,03} 5,16; 2.3
1925 | 201.5
2072 | 216.5 1.8Y 0.43] 1,48
2140 | 224 1,26] 1,58 1.65
182 120 108
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Table 4

The Displacements of the Shafts
in oil-film journal bearings

‘ Copper Aluminum
Speed Steel Shaft Manganese Alloy
Shaft Shaft
rpm rad/sec‘ﬁé% Ap - Ap / AR Ay ay Ar
comp.meas. " comp.meas, conp.meas.
326 34,10.13 1.02 1.01
396 41,5 0.23 1.05 1
715 75 : 0.42 1.23 1,21
883 92.,5(0.35 1.13 1,13
925 97 0.53 1,38 1.05
10501 110 {10.62 1,62 1.41
1430 | 150 0.82 2,82 1.11
1500 157 0.6 1,49 1.15
1580 | 165 0.9 4.29 1.22/0,93 5.3 1.51
1620 | 170 0,93 5.15 1.32
1650 | 176 0,96 6,26 1,32{0.99 6.89 1.70
16851 177 1.0 6.84 1.64
1720} 180 0.98 6,9 1.53
1760 | 184 1.0 7.06 1.52| 1,04 5.8 1.60
1765( 184,5 1.02 7.04 1,26
2140 224 10.82 2.62 1,35 ~
2475] 259 ]0.99 3.33 1.73
2515| 263 (1.0 10.1 1.69
w 263 184 177




Table

5

The Displacements of the Shafts in
Air Bearings

Copper Aluminum
Speed Steel Shaft Manganese Alloy
Shaft Shaft
Ap  Ap AR

rpm | rad/seciw A@"comnomeas. “%41comp.meas. oqh%comp meas.

8341 87.2 0.41 1,2 1.05

9551 100 0.37 1.16 1.03

970 103 0.49 1.13 1,21
1430 149.5 0,71 1,97 1,11{0.72 2,04 1,43
1540 161 0.6 1.54 1.1

1580 165 0.79 2.58 1.45
1600| 167.5 0.79 2,56 1,13

1640| 172 0.82 2,97 1,57
-1670| 174.5 0.84 3,18 1.55
1730} 181 0.85 3.47 1.15

1900 198.5}|0.73 2,12 1,13 .

19451 204 ' 0.98 8.3 1.79
2000} 209 0.77 2,42 1,15{0,99 8.70 1.24|1, 8.70 1,78
2030} 212 1. 8.86 1.23

21401 224 0.83 3,05 1.16

25801 270 0.99 11,3 1.33

2600 272 1. 11.4 1.31

2610 274 1.29 1,48 1.07
2730 285 1,05 7.35 1,17

Wn 272 212 209
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CHAPTER IV
ANALYSIS OF DATA

A rotating shaft system runs smoothly in its bearings and.
-supporting system, if it is well aligned and 1ubricéted9 are
characterized by different stiffness and damping. In-cbmbinar
tion with the mass of the disk this causes the critical speed
for each case to occur at a different speed ( see Table 2 ).

The effect of shaft stiffness and bearing type uﬁon the
critical speeds 1s shown in Table 6, The air bearing is
stiffer than the oil-film bearing; both of these journal
bearings are of approximately the same projected area, but
the clearances in the air bearing are significantly less.

Tkis causes ( for both cases ) an end condition which is
noticeably stiffer than that for the self-aligning ball bearing
which is close to a simple support. If the journal bearings
were close to being rigid supports ( a fixed-fixed end condi-~"
tion ), then the steel, copper-manganese alloy, and aluminum-
alloy shafts would have critical speeds almost double the

meas ured values ( that is, 4870, 3200,and 2880 rpm, respec=~ .
tively ), This suggests strongly that the restraint offered

by the journal bearings is closer to that of a simple support
than a fixed-end condition,

In Tables 3, 4, 5, and the associated Figures 22-30 res=-

pectively, the dimensionless response of the shaft systems



Table 6

Measured Critical Speeds

earing Self-aligning
Type Journal Ball
Air-film 0il-film
Shaft
Material (rpm) (rpm) (rpm)
Stee16 2580 2475 1700

(E=30x10" psi) (1740)
Copper- , ,
pregnese 2000 1720 1110
(5_13x106 PSl) (1145)
Aluminum
Alloy 6 1945 1650 1000
(E 210.5x10° psi) (1030)

%* Computed
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are shown and can be compared, The amplification factor
A, G=L+§ég is the ratio of actual dynamic deflection of the
shaft under the load of the disk alone., As such it gives a
measure of the response of the shaft as the system passes
through the speed range near the critical speed.

The computed response A, is found by using a modified

form of Equation (13), that is,

!
Ay =
J-ErHE Y e

where v 1s the speed of rotation,
) W, 1s the undamped critical sﬁeed (=/k/m), and
¢ is the ( equivalent ) viscous damping coefficient.
For the case discussed here, the last term is determined after
(12) as in Appendix II,

The apparent discrepancy between the computed and measured
values is particularly noticeable in near the critical speed.
This is explained by the fact that the actual damping is affected
significantly by rubbing'which occurs at and near the critical
speed but not at other speeds of rotation. The influence of
the additﬂﬂmfdamping introduced in this way is manifested as
very low measured values of the amplification factor in
this sensitive speed rahge. Elsewhere the agreement is

more reasonable,



Conclusions

From the results of this study we have confirmed that
external damping ( as supplied at the bearings ) plays a im-
portant role in limiting the deflection amplitude of the
shaft at or near the critical speed., Internal damping ( pre-
sent as natural damping in the shaft ) does not play a sig-
nificant role, but can limit the maximam speéd at which a

system can be driven,
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APPENDIX I

THE EQUIVALENT VISCOUS DAMPING COERFFICIENT

The‘equivalent viscous damping coefficient for a damping

force proportional to the square of the amplitude of vibration

may be derived as follows (3).

Let the damping force be expressed by the equation

- 2
Feq—ia Vg

(22)

where the negative sign must be used when I is positive, and

vice versa. Assuming harmonic motion with time measured from

the position ofAextreme negative displacement, then,
C =Rcoswt
The energy dissipated per cycle is
U.=dedC
= 21: a;zdl'
:;%-aR3
But the work done percycle at resonance is
U=TC,__w R
. eq

Therefore,

=4
CmrgnawR

(23)

(24)

(25)
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where Cgy 1is the equivalent viscous damping coefficient and a

is intermal damping coefficient,
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APPENDIX II
EVALUATION OF VISCOUS DAMPING COEFFICIENT

The viscous damping coefficients used in the computation
of the amplification factors for each case were obtained as

follows: By definition
Co=2m Wy (26)

and

7 =Cle, = cl2wy, @27

wheré-c is the decay constant (=C/m). The amplification
factor Ap 1s defined as (12) |

A —‘li'———— (28
/é Ost (28)

where ), 1s the frequency of maximum amplitude, Thus,

= A | (29)
|+ &5

Using (29) in (21), we can compute values of the amplification
factor with which to compare the measured values.

For the three cases clted here the corresponding values
of ¢ are

Self-aligning Bearing ee.eeceseseses .c=35.1 (in?/sec3)

0il-film Journal Bearing eececececcces 0%26.0

Air'Bearing 000 0000000006060060000000TS C=24.0
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