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ABSTRACT

An experimental study concerned with the role and effect 

of damping for a rotating flexible shaft in the region of a 
critical speed is conducted. The existing theory (1) is 

reviewed for a rotating system with an unbalanced disk in the 

center of a flexible shaft. The effect of damping on the 

system is discussed. The experimental results reveal that 

the external damping plays a role which is taken properly 

into account by the existing theory. In contract, internal 

damping does not affect the rotating system in the region of 

the critical speed.

* Numbers in brackets refer to corresponding references in 
the bibliography.
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CHAPTER I

THEORY

General All material used to construct machinery possess 

mass and elasticity which alx^ays makes vibration possible.

A rotating shaft with mass unbalance, no axial symmetry or 

subjected to such external factors as gyroscopic forces, 

friction in the bearings, etc. tends to x^hirl at certain speed

Since the bearing supports are relatively rigid, the 

forces exerted on the bearings are due to centrifugal force 

caused by the unbalance. The shaft for xvhich the dynamic

(b) 

Note: Relation of 0 
S, G at speeds below 
the critical speed.

kR mcj2(R-b p)

Fig. 1 Deflection of a shaft due to mass 
unbalance
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action and interaction of shaft elasticity, bearing elasticity, 

and damping must be considered is called flexible.,

When the shaft-disk system of Figure 1 is rotated, a 

speed-depended centrifugal force acts on the mass center, 

causing it to move outward under the restraining influence of 

a restoring force offered by the stiffness of the shaft 

(Equation (1)). In an undamped system a speed characterized by 

Equation (1), there is a speed for which equilibrium is not 

possible. This speed is called the critical speed and is 

denoted bya)n. It corresponds to a resonant frequency of the 

system. In the case of the system in Figure 1, it corresponds 
to the lowest bending mode of the shaft [2].

In a rotating shaft and vibrating systems, friction is 

always present and offers resistance to motion. The resistance 

in such systems usually restricts the vibratory motion in the 

region of the critical speeds and the natural frequencies. 

The friction in a rotating shaft system which includes the 

bearings and supports has a special character. The friction 

which can be attributed to interaction between the rotating 

and the stationary parts is called external friction, and the 

friction within the rotating parts alone is called internal 

friction.

Internal friction (damping) for a rotating system usually 

includes two fundamental components: hysteretic damping and 

structural damping. The latter is caused by micro-shifts 

between individual parts of the rotating system. The most 
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frequent cause of such structural damping is dry friction which 

occurs at the juncture of the hub of the disk and the shaft.

The factors which affect hysteretic damping include the amplitude 

and frequency of the vibratory motion and temperature. Of these, 

it has been shox-m that the vibration amplitude is usually the 

most important.

In order to isolate and identify these parameters in the 

study reported here air bearings (which are characterized by 

low-friction) were used. These included externally pressurized 

journal and thrust bearings. As a consequence, the role and 

effect of internal damping in the shaft may be determined 

experimentally.

A. Whirling without damping [3]

First, whirling without damping is considered. Consider 

idealized system, which consists of a single disk with a mass 

m located firmly and symmetrically on a vertical shaft "supported 

by tvzo bearings (Figure 1). Because of mass unbalance, the mass 

center G of the disk is at a radial distance P from the geome­

trical center S of the disk. During rotation, the center line 

of the bearings intersects the plane of the disk at 0,(this is 

defined as the spin axis). With respect to the spin axis, the 

shaft center is deflected a distance OS, say R.

If the effect of friction is neglected, the disk is under 

the action of two forces: the restoring force of the shaft.
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(=kR, where k is the lateral stiffness of the shaft at the disk), 

and the centrifugal force of the mass, ma/(R4-P). In an undamped 

system, when these two forces are in equilibrium, they are col­

linear, equal in magnitude, and opposite in direction as shown 

in Figure 1 (a)o This may be stated as

9 kR= mw(R+p) (1)

From which we obtain 

mw p 
<2>

Equilibrium is not possible at speeds for which k—mw2=0;
2 2thus, at values of cu =k/m (=con) the deflection of the shaft 

becomes (in theory) infinitely large. We call this the critical 

speed of the shaft. For a one-degree-of-freedom system of mass 

m and stiffness k, the undamped natural frequency is also 
defined as cjn =i/k/m (4). t For this reason critical speed is 

defined as ”... a speed of a rotating system that corresponds 

to a resonance frequency of the system.” (5)

On the basis of the above we denote the critical speed of 

the rotating system by cjn. It also shows that R is positive 

when co is below con and that R is negative tvhen co is greater 

than On, Thus, for co < conthe system rotates with the mass 
center outside OS, (i.e. G outside S as shown in Fig. 2 (a)) 

and that for co^-<oothe mass center is between 0 and S and on 

OS (i.eo S is outside G as shown in Fig. 2 (b)).
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kR = mcuz(R-+p)

(a)

kR= mo)2(R-p)

(b)

Fig. 2 The relation between the mass center 
geometric center, and spin axis of 
a disk during rotation

When cj is very much greater than cjn, the deflection R 

approaches —P and the points 0 and G are in essential coin­

cidence; thus, disk tends to rotate about its mass center G. 

This process is called mass centering.

B. Whirling with damping

Since there is no first-order alternating stress in the 

rotating system at or near the critical speed, then material 

damping cannot aid materially in limiting excessive deflection 

of the system. The converse is true for lateral vibration of 

the same system at a resonant frequency. This places special 

importance on the damping furnished by the bearings and their 

supports. The factors that limit amplitude at critical speeds 
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are mainly nonlinear effects in elastic properties of the 

system and damping in the bearings — the latter mainly due to 

motions and interaction effects at frequencies other than at 

running speed.

Although it is assumed here that the rotating shaft­

bearing system does not vibrate, it is caused to vibrate at 
speeds other than the running speed (some times excessively) 

by dynamic actions characteristic of fluid-film lubrication. 

There are two distinguishable vibration phenomena, one called 
half-frequency whirl, another called resonantwhip (6). Whirl 

may occur with relatively stiff rotating systems at any speed; 

it has a vibration frequency at or near half the running speed. 

Whip may occur with flexible rotating systems at speeds equal 

to or above twice the first critical speed of the rotating 

shaft-bearing system; it has a vibration frequency equal or 

very nearly equal to the first critical speed. The litera­

ture which covers this more general problem, the dynamic 

behavior, of rotor-bearing systems, extends to the effects of 

critical speeds, bearing instability, and the influences of 

bearing parameters on rotor behavior, in addition to balancing 
(6).

In the region of the critical speed of a damped rotating 

system, there is a new relation between points 0, S, and G 
(as is shown in Figure 3).
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Restoring 
force

Centrifugal 
force

Friction
force

Fig, 3 Whirling of shaft due to mass unbalance 
when friction force is considered

After Tondl ( 1), the problem may be considered as the 

motion in the XY-plane of a disk on which is impressed a 

constant angular speed co , He shows that the equation of 
motion of the system with mass m in X-direction (Fig, 3) is

m-g^(x+Pcos oot)+C^+ kx = 0 (3)

and the equation of motion of m in Y-direction is
2

m Tit (y+PsintDt)+Cg2+ky == 0 (4)

where C is the viscous damping coefficient. Since the disk 

revolves at a constant angular velocity co , this circumstance 

must be taken into account with expressing the force of 
internal damping (1); consequently, it will be advantageous to
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introduce a rotating system of coordinates £ and H which 

revolves at the angular velocity cd as shown in Fig. 4, In 

place of the deflections x, y, and , it is possible to

Fig. 4 Coordinate systems relation

introduce the complex vectors z and . Where,

z=x+iy and +17 (5)

The equation of motion in the rotating coordinate system may be 

written as

.. 2m($ + 2iwC — +€(< + ica?;)+kt; = mpc<J (6)

If it is assumed that the internal damping introduced into 

the system is proportional to the square of the amplitude with 
respect to the rotating coordinate system (7) and using the 

concept of equivalent viscous dampin (3), it is possible to 

write

Fd = -Ceq< (7)
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where

Ccq=3SawR * (8>

Therefore, the general equation of motion with internal damping 

in the rotating coordinate system may be written as

C4-2ia>C-O2C+c(i + iw?;)-t-ceq^ + Gjn2C=i0u)2 (9)

where

c=C/m, ceq=Ceq/m, tL)^=k/m

In terms of the stationary coordinates. Equation (9) becomes

z + cz+Ceq(z-i£oz)4- tdnZ = Pcu2e,c<)^ (10)

A particular solution of which is

(11)

or In the rotating coordinates

Ptd2- (12)

eiu>t

cu^-u)2-+icu) R)

2_
a)n2-cu2-Hci<)

If the phase relation is neglected, R represents the rotating 

circle of the system due to mass unbalance. The magnitude of 

in Equation (12) can be written

(13)

* Appendix I
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This shows that external friction leads to damping of the natu­

ral vibrations and to a restriction of the amplitudes of the 

motion in the region of critical speeds. It appears that the 

motion caused by mass unbalance is not affected by internal 

damping; however, the general solution of Equation (10) shows 

that ceq does influence the system during rotation.

The homogeneous solution of Equation (10) may be written 

as

z = A^e2-A2e:L (14)

Where A| and are constants of integration and Aq and A2 

are roots of the characteristic equation

A2-iA(C4-Ce<z)-Cdn24-iCe<?GJ = O (15)

The solution of Equation (15) will be

Ai,2 =^-i(c+ Ce(?) ±//Qn2_J-^+c^)?_ic^(a (16)

Let UJo be the natural frequency of the damped vibrations of the 

system where

/ = __ L/r_Lz-UJo ICTCe^J

For cequ>«

J CJo2- iC&qU) =(*Jo-"2;tCe‘lu‘0

and Aand A2 may 62 written approximately as
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Aj =GJO + 4rl(c+Ce<t 737-) (16-a)

= (16-b)

and the solution of the homogeneous equation (10) is

Z =Ai^,Uc‘ 2ic'f'^e1 4-A2e(-icu-' g-(c-l-c^+ 2)oXlt
(17)

The effect of internal damping may be examined qualitatively 

from Equations (16-a) and (16-b), If

CO < cjo(H-—) (18)
Ce^ y

then both terms on the right hand side of Equation (17) 

converge with increasing time, i.e.

Lim z — 0 
t—00

This implies that the internal damping plays a role as a resis­

tance effect. However, if the inequality (18) does not hold, 

and

CO > GJo (I + (19)

then, it follows that

Lim z = 0 
t-»oo

It follows that if the inequality (18) is not satisfied the 
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internal damping does not play a role as a resistance effect, 

and, in fact, may induce the system to vibrate infinitely.

Obviously, from the analysis, it shows that the vibra­

tion of a rotating shaft system with mass unbalance is affected 

by the existence of damping. External damping tends to 

restrict the deflection of the shaft in the region of a cri­

tical speed; internal damping does the same thing only when 
equation (18) satisfied.
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Fig. 5 Experimental Arrangement



CHAPTER II

DESCRIPTION OF APPRATUS AND INSTRUl-ENTATION

A. Apparatus

General The shaft materials used in the investigation 

were SAE 1018 steel, ASTM 2017 aluminum alloy, and a copper­

manganese alloy containing 18% copper-82%, manganese. These 

precise specifications are given in Table 1.

Construction In Fig. 5 the general arrangement of 
the equipment is shown. The motor (A) was a 1/4-hp compound­

control constant-torque D. C. machine. The drive shaft was 
coupled to the experimental shaft by a flexible coupling (C).

SO-’/a.
All of the experimental shafts T7ereAinches long and 1/2 inch 

in diameter. Details of the air bearings are shown in Fig. 6.

As can be seen in Fig. 5. each experimental shaft was 

provided x^ith a 3-in. diameter, 2.53-lb. balanced disk located 

at its midpoint. Provision was made to introduced an unbalance 
•*3of 1.35x10 Ib-in xvhich is equivalent to a center-of- gravity 

displacement p=533/(m.

In the interest of safety, guards (F and G) x^ere provided. 

These guards were also used as supports upon which the motion® 

measuring instruments were mounted

The rotating system and its supports were set on a heavy 

post (H) and mounted on an isolated elastic foundation (I)
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Table 1

Specification of the Materials

^^->^Mat erials

Pr opert Steel Copper-Manga- 
nese

Aluminum 
Alloy

Density
Young1s Modulus

Damping Capacity 
at Low Stress 
Percent

Tensile Stress

Proportional 
Limit

0.288 lb/in3

30X106 psi

64*10^ psi

54xl03 psi

0.264 lb/in3 

13x10^ psi

7

68x1q3 psi

24xl03 psi

0.101 lb/in3

10.5K106 psi

12xl03 psi
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(a) Pillow Block

(b) Bushing

4OX1O“3”^ Hole 
through 1-1/8*1 
bolt nut with 
y* tube fitting

(c) Thrust Bearing

Fig. 6 Air Bearings
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(Fig. 5) in order to isolate the foundation.

B. Instrumentation

In Fig. 7 a block diagram of the instrumention is shovzn. 
Two Bentlay Nevada 3000 Series inductive probes (J) were used 

to measure the motion of the shaft during rotation. They 
were attached to the guard block (K) along perpendicular axes. 

Another identical was mounted near the driving shaft; it was 

used as a revolution counter and angular position reference.

The signals, which are proportional to the change in the 

air gap between the probes and the shaft surface, were trans­
mitted to the Bentley Nevada 3000 Series proximitors (L) and 

thence to the Tektronix 561A four-trace Oscilloscope (M).

A Hewlett Packard 196A oscilloscope camera was used to record 

the motion and timing traces.

A depth micrometer and a feeler gage were also used to 

measure the initial runout of the shaft.
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Fig. 7 Block Diagram of Instrumentation



CHAPTER III

TEST PROCEDURES

"In order to study the role and effect of damping on the 

response of a flexible shaft in the region of a critical 

speed, the following factors were taken into account

1. Shaft material.

2. Bearing type.

3. Shaft-disk configuration.

The details of the experimental are given in Table 2.

In this study, three different shaft materials were used. 

Each shaft-disk configuration was subjected to the same series 

of test. Air bearings, self-aligning ball bearings and oil­

film sleeve journal bearings were used with each shaft.

When the shaft rotates, its motion at the measuring 

point is a function of both initial runout and the unbalance 

present in the rotor. Therefore, in order to determine the 

runout, it is necessary to rotate the shaft by hand and measure 

its distance from a fixed point. From this information, the 

relationship between the magnitude and angular position of the 

runout relative to the timer position on the shaft can be plotted. 

The results of such measurements on the three test shafts in 

30-degree steps is shovm in Fig. 8, 9, and 10.

The shaft is rotated from zero speed to a speed above 

the critical speed. The once-per-revolution response is
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Table 2

Details of Shafts Used in Test
(Each ^“in0 dia0 f-.nd 27^-in0 
between bearings and a 2.53 
lb. weight in center)

Shaft 
Identification 

Letter

Material 
of Shaft Bearings

Critical Speed 
(measured ) 

rpm

A steel self-aligning 
ball bearing

*
1700

B cu-mn H
■it

1100

C Al-alloy tt
* 

1000

D steel journal 
bearing 2475

E cu-mn It 1720

F Al-alloy H 1650

G steel air bearing 2580

H cu-mn II 2000

I Al-alloy It 1945

* Note: For this case, the shaft behaves essentially as a 
center-mass-loaded, simply supported beam and the caputed na­
tural frequencies (critical speeds) are 1740, 1145, and 1030 
rpm, respectively, for steel, copper-manganese, and aluminum 
alloy shaft. For other bearing conditions the system is 
stiffened and the critical speeds are higher.
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Fig. 8 Initial Runout of the Shafts in Self­
aligning Ball Bearings
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Fig. 9 Initial Runout of Coppcr-Manganese 
Shaft in Journal Bearings
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Fig. 10 Initial Runout of Shafts in Air Bearings



measured and related (by means of the timer signal) to the an­

gular position of the shaft. These results ( for the various 

shaft materials and bearing conditions ) are shovm in Figs. 

11-20.

The magnitude and angular position of the rotating re­
sponse may be found by plotting the vector difference of the 

static and running displacements at the measuring positions. 

This yields the net response which can be attributed to the 

inherent unbalance only and, thus, the effect of initial 

runout is eliminated. These results are given in Tables 

3-5

When the two perpendicular probes, used to measure the 

displacement of the driven shaft, are connected to the x and 

y axes of the ocsilloscope, a Lissajous figure is obtained. 

Examples of this are shown in Fig. 21.



25



26

(a) rpm = 1100

(c) rpm~2072

Fig. 12 Displacement of Cu-mn Shaft in
Self-aligning Ball Bearings
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(b) rpm = 1875

(c) rpm=2140

Fig. 13 Displacement of Al-allojr Shaft in
Self-aligning Ball Bearings
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(a) co < CDn

Fig. 14 Displacement of Cu-mn Shaft in Journal Bearings 
Time base scale 20ms/Div, Voltage Ivolt/Div.
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(a) rpm = 955

Fig. 15 Displacement of Steel Shaft in Air Bearing^
Time base 10 ms/Div, Voltage 1 volt/Div
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(e) rpm = 2140

Fig. 16 Displacemant of Steel Shaft in Air Bearings 
Time base 10 ms/Div, Voltage 1 volt/Div.
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Fig. 17 Displacement of Cu-mn Shaft in Air Bearing^ 
Time base 10 ms/Div, Voltage 1 volt/Div.
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Fig. 18 Displacement of Cu-mn Shaft in Air Bearings
Time base 10 ms/Div, Voltage 1 volt/Dxv.
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Fig. 19 Displacement of Al-alloy Shaft in Air Bearings 
Time base 10 ms/Div, Voltage 2 volt/Div
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Fig. 20 Displacemont of Al-alloy Shaft in Air Bearings 
Time base 10 ms/Div, Voltage 2 volt/Div
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Table 3

The Displacements of the Shafts in Ball Bearings

Speed Steel Shaft
C

Man
SI

Dpper 
ganese 
laft

Aluminum 
Alloy 
Shaft

rpm rad/sec
/

ar 
3omp i

ar
oeas

L<J»/ 
/^n

ar 
jomp i

ar 
teas

CO/ ar 
comp

ar 
mcas

334 
600 
734 
780 
1000 
1016 
1030 
1110 
1145 
1250 
1300 
.1365 
1700 
1740 
1765 
1925 
2072 
2140

35 
62O8 
76.7 
81.6
104.8 
106.4 
108 
116 
120 
131 
136 
143 
178 
182 
185
201.5 
216.5 
224

0.45

0.72

0.98
1.0
1.03

1.26

1.25

1.94

5.16
5.19
5.16

1.58

1.09

1.39

2152
2.47
2.3

1.65

0.52

0.97
1.0

1.19

1.81

1.29

3.44
3.42

1.83

0.43

1.13

1.77
1.75

1.65

1.48

0.32

0.71

0.97
0j98
1.0

1.26

1.11

1.83

3.12
3.11
3.07

1.39

1.1

1.25

1.5
1.59
1.56

1.36

u>n 182 120 108
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Table 4

The Displacements of the Shafts 
in oil-film journal bearings

Speed Steel Shaft
Copper 

Manganese 
Shaft

Aluminum 
Alloy- 
Shaft

rpm rad/sec aR aR 
comp.meas.

^/cd Ar Ar* "comp.meas. Ar Ar
• "comp.meas.

326 
396 
715 
883 
925 

' 1050 
1430 
1500 
1580 
1620 
1650 
1685 
1720 
1760 
1765 
2140 
2475 
2515

34.1 
41.5 
75 
92.5 
97

110
150
157
165
170
176 
177 
180 
184 
184.5 
224
259 
263

0.13 1.02 1.01

0.35 1.13 1.13

0.6 1.49 1.15

0.82 2.62 1.35
0.99 3.33 1.73
1.0 10.1 1.69

0.23 1.05 1

0.53 1.38 1.05

0.82 2.82 1.11

0.9 4.29 1.22
0.93 5.15 1.32
0.96 6.26 1.32

0.98 6.9 1.53
1.0 7.06 1.52
1.02 7.04 1.26

0.42 1.23 1.21

0.62 1.62 1.41

0.93 5.3 1.51

0.99 6.89 1.70
1.0 6.84 1.64

1.04 5.8 1.60

^n 263 184 177
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Table 5

The Displacements of the Shafts in 
Air Bearings

Speed Steel Shaft
Copper 

Manganese 
Shaft

Aluminum 
Alloy 
Shaft

rpm rad/sec “L Ar Ar 
/^ri compomeas.

w/ aR aR 
,u>n comp.meas. co/ . ar ar 

iuja comp.meas.

834 
955 
970 
1430 
1540 
1580 
1600 
1640 

-1670 
1730 
1900 
1945 
2000 
2030 
2140 
2580 
2600 
2610 
2730

87.2 
100 
103 
149.5 
161 
165 
167.5 
172 
174.5 
181 
198.5 
204 
209 
212 
224 
270 
272 
274 
285

0.37 1.16 1.03

0.6 1.54 1.1

0.73 2.12 1.13

0.77 2.42 1.15

0.83 3.05 1.16
0.99 11.3 1.33
1. 11,4 1.31

1.05 7.35 1.17

0.41 1.2 1.05

0.71 1.97 1.11

0.79 2.56 1.13

0.85 3.47 1.15

0.99 8.70 1.24
1. 8.86 1.23

1.29 1.48 1.07

0.49 1.13 1.21
0.72 2.04 1.43

0.79 2.58 1.45

0.82 2.97 1.57
0.84 3.18 1.55

0.98 8.3 1.79
1. 8.70 1.78

G->n 272 212 209
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Fig, 21 Lissajous Figure of the 
Rotating Shaft (Al-alloy)



39

Fig. 22 Response of Steel Shaft
in Self-aligning Ball
Bearings
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Fig. 23 Response of CoPPer-Manganese
Shaft in Self-aligning Ball
Bearings
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Fig, 24 Response of Aluminum-Alloy Shaft in
Self-aligning Ball Bearings



Fig. 25 Response of Steel Shaft in 
Oil-Film Journal Bearings
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Fig, 26 Response of Copper-Ilanganese Shaft
in Oil-Film Journal Bearings
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Fig0 27 Response of Aluminum-Alloy in
Oil-Film Journal Bearings
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Fig. 28 Response of Steel Shaft in Air
Bearings



Fig. 29 Response of Copper-Manganese Shaft
in Air Bearing

46
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in Air Bearings
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CHAPTER IV

ANALYSIS OF DATA

A rotating shaft system runs smoothly in its bearings and 

supporting system, if it is well aligned and lubricated, are 

characterized by different stiffness and damping. In combina­

tion with the mass of the disk this causes the critical speed 
for each case to occur at a different speed ( see Table 2 ).

The effect of shaft stiffness and bearing type upon the 

critical speeds is shown in Table 6. The air bearing is 

stiffer than the oil-film bearing; both of these journal 

bearings are of approximately the same projected area, but 

the clearances in the air bearing are significantly less. 

This causes ( for both cases ) an end condition which is 

noticeably stiffer than that for the self-aligning ball bearing 

which is close to a simple support. If the journal bearings 
were close to being rigid supports ( a fixed-fixed end -condi­

tion ), then the steel, copper-manganese alloy, and aluminum- 

alloy shafts would have critical speeds almost double the 

measured values ( that is, 4870, 3200,and 2880 rpm, respec-.. 

tively ). This suggests strongly that the restraint offered 

by the journal bearings is closer to that of a simple support 

than a fixed-end condition.

In Tables 3, 4, 5, and the associated Figures 22-30 res­

pectively, the dimensionless response of the shaft systems
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Table 6

Measured Critical Speeds

* Computed

Xs'3^earing
X^ype Journal

Self-aligning 
Ball

- Shaft 
Material \.

Air-film

(rpm)

Oil-film 

(rpm) (rpm)

Steel/- 
(E=30*10d psi)

2580 2475 1700 * 
(1740)

Copper- 
Manganese
XE=13xlO6 psi)

2000 1720 1110 
(1145)

Aluminum
Alloy 6
(E=10.5xl0 psi)

1945 1650 1000 
(1030)
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are shown and can be compared. The amplification factor 

Ar (=l+/^t) is the ratio of actual dynamic deflection of the 

shaft under the load of the disk alone. As such it gives a 

measure of the response of the shaft as the system passes 

through the speed range near the critical speed.

The computed response A^ is found by using a modified 
form of Equation (13), that is,

A - 1
(2I)

where cj is the speed of rotation,
u)n is the undamped critical speed (=Jk/rn), and

c is the (equivalent ) viscous damping coefficient. 

For the case discussed here, the last term is determined after 

(12) as in Appendix II.

The apparent discrepancy between the computed and measured 

values is particularly noticeable in near the critical speed. 

This is explained by the fact that the actual damping is affected 

significantly by rubbing which occurs at and near the critical 

speed but not at other speeds of rotation. The influence of 
the additionol damping introduced in this way is manifested as 

very low measured values of the amplification factor in 

this sensitive speed range. Elsewhere the agreement is 

more reasonable.
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Conclusions

From the results of this study we have confirmed that 

external damping ( as supplied at the bearings ) plays a im­

portant role in limiting the deflection amplitude of the 

shaft at or near the critical speed. Internal damping ( pre­

sent as natural damping in the shaft ) does not play a sig­

nificant role, but can limit the maximam speed at xvhich a 

system can be driven.
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APPENDIX I

THE EQUIVALENT VISCOUS DAMPING COEFFICIEOT

The equivalent viscous damping coefficient for a damping 

force proportional to the square of the amplitude of vibration 

may be derived as foIIovjs ( 3).

Let the damping force be expressed by the equation

Fe=±a4-2 (22)

where the negative sign must be used when is positive, and 

vice versa. Assuming harmonic motion with time measured from 

the position of extreme negative displacement, then,

^■=Rcostot (23)

The energy dissipated per cycle is

U=/Fdd(

(R 2= 2j_R a; dC

aR3 (24)

But the work done percycle at resonance is

u=7rceq<jR2

Therefore,

Ceq=MawR (25)
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where is the equivalent viscous damping coefficient and a 

is internal damping coefficient.
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APPENDIX II

EVALUATION OF VISCOUS DAMPING COEFFICIENT

The viscous damping coefficients used in the computation 

of the amplification factors for each case were obtained as 

follows: By definition

cc=2mton (26)

and
=C/cc = c/2c«Jn (27)

where c is the decay constant (=C/m)0 The amplification 

factor Ar is defined as (12) .

AR=tVc=l + -^- <28>
where is the frequency of maximum amplitude. Thus,

Using (29) in (21), we can compute values of the amplification 

factor with which to compare the measured values.

For the three cases cited here the corresponding values 

of c are
Self-aligning Bearing .....o........ .c=35.1 (in^/sec^)

Oil-film Journal Bearing   ......... c=26.0

Air-Bearing ......    c=24.0


