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Abstract

If Λ is finitely generated and M is compact, an action ϕ : Λ×M →M is a C∞ homomorphism

from Λ to Diff(M). There is a natural formal tangent space at the point [ϕ] determined by ϕ,

which is given by the 1-cocycles over ϕ with coefficients in the smooth vector fields on M . The

1-coboundaries form a closed subspace of the formal tangent space, and when these two spaces are

equal, the action is said to be infinitesimally rigid.

The purpose of this thesis is to use representation theory to prove the infinitesimal rigidity of

partially hyperbolic actions on a family of 2-step free nilmanifolds. We start by characterizing the

irreducible representations in L2(Γ\N) using the coadjoint orbit method. Then we introduce the

obstructions to solving the twisted coboundary equation λω − ω ◦ A = θ, and prove how these

obstructions vanish for the whole action due to the higher rank condition.
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Chapter 1

Introduction

The rigidity properties of hyperbolic actions of Zk or Rk for K ≥ 2 have been intensely studied

over the last two decades or so. Unlike the classical cases of diffeomorphisms and flows (actions of

Z and R) where only C0 orbit structure may be stable under small perturbations, algebraic actions

of higher rank abelian groups exhibit many rigidity properties.

The approach to prove local rigidity within partially hyperbolic algebraic actions differentiates

itself from the a priori regularity method that successfully handles the rigidity problem for actions

with sufficiently strong hyperbolic preperties. D.Damjanovic and A. Katok used a technique that is

analytic in nature and involves an iterative scheme which gives a smooth solution in [DK10]. It also

involves decomposing the appropriate function spaces into direct sum of subspaces invariant under

the action, solving the cohomological equations separately and then gluing the solutions together.

We call this method the harmonic analysis method.

In their paper [DK10], D.Damjanovic and A. Katok showed that there are infinitely many

obstruction for solving the linearized equation for a single element of the action, and how these

obstructions vanish simultaneously due to the higher rank condition. After that, a generalization

of KAM (Kolmogorov-Arnold-Moser) iterative scheme was introduced to prove C∞ rigidity for Zk

(k ≥ 2) higher rank partially hyperbolic actions by toral automorphisms.

In this thesis, we prove the infinitesimal rigidity for higher rank partially hyperbolic action
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by nilmanifold automorphisms. We use the coadjoint orbit method, which is a geometric way to

characterize all the equivalence classes of irreducible representations, and carry this approach on a

family of 2-step free nilmanifolds. In particular, the strategy for this harmonic analysis method is to

decompose L2(Γ\N) under the right action such that L2(Γ\N) = ⊕π∈(Γ\N)∧Hπ. Correspondingly,

solving the coboundary equation λω−ω ◦A = θ with tame estimates can be reduced to finding the

solution within each subspace Hπ and then glue them together. Historically, local C∞ rigidity of

higher rank Anosov actions by automorphisms of nilmanifolds was proved by A.Katok and Spatzier

in Theorem 15, Section 3 of [KS97] without tame estimates for the cohomological equation.

We need a precise formula for the projection Pπ with good estimate for each Pπ(f) in order to

understand how do nilmanifold automorphisms affect the projections Pπ : L2(Γ\N) → Hπ, or in

terms of coadjoint orbit, how does the orbit behave under automorphisms, and finally prove that

the formal solution ω =
∑
π∈(Γ\N)∧ ωπ converges in some Sobolev space. Therefore, we can actually

glue these solutions togother.

1.1 Statement of Results

Let N be a free nilpotent group, Γ be a cocompact lattice in N , and the quotient space M = Γ\N

is called a nilmanifold.

An action α : Z2 ×M → M defined by automorphisms is given by an embedding ρα : Z2 →

Aut(M) so that

α(g, x) = ρα(g)x

for any g ∈ Z2 and x ∈M . We will write simply α(g) for ρα(g).

Definition 1.1.1. The action α is higher rank if A`Bk is ergodic on M and the induced auto-

morphism is ergodic on the commutator Γ\[N,N ] for every (`, k) 6= (0, 0), where A,B are two

commutative automorphisms of M defined by A := α(g1), B := α(g2), g1, g2 ∈ Z2.

In general, let Λ be a finitely generated group and let ϕ be an action ϕ : Λ ×M → M . Any

C∞-diffeomorphism f : M → M induces a map on a smooth vector field X ∈ Vect∞(M) by

f∗X = (Df) ◦X ◦ f−1.
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A 1-cocycle Z1(Λ,Vect∞(M)) assigns to each γ ∈ Λ a smooth vector field β(γ) ∈ Vect∞(M)

satisfying the cocycle condition

β(γ1γ2) = β(γ1) + ϕ(γ1)∗β(γ2).

A 1-cocycle β is a coboundary B1(Λ,Vect∞(M)) if there exists a smooth vector field τ ∈ Vect(M)

such that

β(γ) = ϕ(γ)∗τ − τ for all γ ∈ Λ.

LetH1(Λ,Vect∞(M)) denote the quotient group of 1-cocycles Z1(Λ,Vect∞(M)) by the 1-coboundaries

B1(Λ,Vect∞(M)): H1(Λ,Vect∞(M)) := Z1(Λ,Vect∞(M))/B1(Λ,Vect∞(M)), and ϕ is said to be

C∞-infinitesimally rigid if H1(Λ,Vect∞(M)) is trivial.

We introduce a cohomology sequence for Λ = Zk

C0(Zk,Vect∞(M))
δ1v−→ C1(Zk,Vect∞(M))

δ2v−→ C2(Zk,Vect∞(M)).

Let φ ∈ C0(Zk,Vect∞(M)) = Vect∞(M), β ∈ C1(Zk,Vect∞(M)) (maps from Zk to Vect∞(M)),

and γ ∈ C2(Zk,Vect∞(M)) (maps from Zk×Zk to Vect∞(M)). Coboundary operators are defined

as

δ1
vφ(g) := ϕ(g)∗φ− φ

δ2
vβ(g1, g2) := (ϕ(g2)∗β(g1)− β(g1))− (ϕ(g1)∗β(g2)− β(g2)).

Remark 1.1.2. The definition of δ2
v is somewhat different from the standard coboundary operator

d2 : C1(Zk,Vect∞(M))→ C2(Zk,Vect∞(M)) given by d2 β(g1, g2) = ϕ(g1)∗β(g2)−β(g1g2)+β(g1).

However, δ2
v and d2 define the same kernel, β(g1g2) = β(g2g1) = β(g2)+ϕ(g2)∗β(g1) for g1, g2 ∈ Zk.

It is obvious that Ker d2 ⊂ Ker δ2
v, we just need to prove the opposite direction: Ker δ2

v ⊂ Ker d2.

This is true in general for Zk cocycles, but it also follows from our proof of Thm 1.1.3. Indeed,

Range δ1 ⊂ Ker d2 ⊂ Ker δ2, and we prove in the thesis that Ker δ2 = Range δ1, so Ker d2 = Ker δ2.
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Theorem 1.1.3. If α is a higher rank action by nilmanifolds automorphisms, then it is infinitesi-

mally rigid:

H1(Zk,Vect∞(M)) = 0.

Moreover δ1
v has a tame inverse on its image such that ‖(δ1

v)−1β‖r ≤ Cr‖β‖r+k, where r ≥ 0 is

arbitrary, k > n2 + 4, n2 = dim[N,N ] and ‖ · ‖r denotes Sobolev norm.

Remark 1.1.4. One can also prove that δ2
v has a well defined inverse on its image and ‖(δ2

v)−1γ‖r ≤

Cr‖γ‖2r+k for r ≥ 0, k depends on the dimension of Γ\N . If one could improve the result to

‖(δ2
v)−1γ‖r ≤ Cr‖γ‖r+qr+k, 0 < q < 1, then it is possible to run a modified KAM scheme and prove

the local rigidity of partially hyperbolic actions by higher rank nilmanifold automorphisms.

Remark 1.1.5. The reason that we pick 2-step nilmanifolds as our model is mainly for the compu-

tation purpose that they have a rather simple coadjoint orbit structure. It seems possible to extend

the result to n-step nilmanifolds.
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Chapter 2

Overview of Previous Research

and Motivation

2.1 Cocycles for Higher-rank Group Action and Infinitesi-

mal Rigidity

Cocycles lie at the center of many questions about the rigidity of various smooth actions, existence

of invariant structures, and other important properties of the action. For cocycles over actions of

higher rank abelian groups the cohomological picture may be very different from that in the rank-

one case. For the classes of genuinely higher rank abelian Anosov actions, A.Katok and Spatzier

proved that any C∞-cocycle β : A ×M → R` is C∞-cohomologous to a constant cocycle, given a

standard Anosov A-action on a manifold M where A is isomorphic to Rk or Zk with k ≥ 2, in their

first paper exploring rigidity properties of hyperbolic actions of Zk or Rk for k ≥ 2 in [KS94]. Given

an action of G on a manifold M and a group H, a map β : G×M → H is called a cocycle provided

β(g1g2,m) = β(g1, g2m)β(g2,m). If H is a Lie group, two cocycles β and β∗ are C∞-cohomologous

if there exists a C∞ transfer function P : M → H, such that β∗(a, x) = P (ax)−1β(a, x)P (x) for all

a ∈ G, x ∈ M . Hurder proved infinitesimal rigidity for certain hyperbolic actions in [Hur95]. For
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Anosov actions by nilmanifold automorphisms, local rigidity is proved by A.Katok and Spatzier

in [KS97] without tame estimates. Their proof does not apply to partially hyperbolic actions.

Damjanović and A.Katok proved H1 = 0 on torus and δ1, δ2 have tame inverses on their images

for partially hyperbolic actions by torus automorphisms in [DK10].

2.2 Motivation

An action α is locally rigid if there exists ` > 0 such that for every small perturbation α̃ of α

in C` topology, there is a C∞ diffeomorphism h (close to the identity) which conjugates α̃ to α:

h ◦ α̃ = α ◦ h. The a priori regularity method that successfully proves local rigidity of Zk actions

with sufficiently strong hyperbolic properties (Anosov actions) on the torus encounters some diffi-

culties in the partially hyperbolic setting. First, the foliation for perturbed action is not necessary

smooth. Second, even if one only considers perturbation along the neutral foliation, cocycle rigidity

of the unperturbed algebraic action is not sufficient. To overcome these difficulties, Damjanović and

A.Katok [DK04] used a different approach, the KAM/Harmonic analysis and proved that partially

hyperbolic higher rank abelian actions by ergodic automorphisms on the torus are locally rigid.

Instead of starting from conjugacy of low regularity, they constructed one of high regularity by an

iterative process as a fixed point of a certain nonlinear operator. It is a new approach to prove

local differentiable rigidity for actions of higher rank abelian groups and it relies on the classical

approach to perturbation problems. Unlike earlier methods, it does not require previous knowledge

of structural stability (existence of topological orbit equivalence) and instead, uses an adapted ver-

sion of the KAM iterative scheme. Moser first noticed that commutativity along with simultaneous

Diophantine condition was sufficient to provide a smooth solution to certain over-determined sys-

tem of equations; however, a major difference is there are infinitely many obstructions for solving

the linearized equation for a single element of the action, while there is only one obstruction to

solving linearized conjugacy equation of commuting circle rotation. Because of the ”higher rank

trick” (no nontrivial rank-one factors), these obstructions vanish for the whole action.

In the present thesis, we apply the higher rank trick used in [DK10] and prove the vanishing of

first cohomology for higher rank partially hyperbolic actions on a family of 2-step nilmanifolds.
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Chapter 3

Preliminaries

This chapter is devoted to the tools we applied in the thesis. The results are provided for the

purpose of making the subject complete and keeping the main result more accessible.

3.1 Representation Theory of Lie Groups

Definition 3.1.1. 1. A representation of G on a complex Hilbert space H is a homomorphism

π : G→ GL(H), where GL(H) is the group of bounded linear operators on H with bounded inverses

such that G×H → H is continuous.

2. A subspace K of H is invariant if π(g)K ⊂ K for all g ∈ G.

3. (π,H) is irreducible if 0 and H are the only closed invariant subspaces.

4. π is unitary if π(g) is unitary for all g, i.e. ‖π(g)v‖ = ‖v‖ for all v ∈ H.

5. Two (unitary) representations π,H and π′,H′ are (unitary) equivalent iff there exists a

bounded linear (unitary) T : H → H′, with bounded inverse, such that T ◦ π(g) = π′(g) ◦ T for all

g ∈ G. Here T is called the intertwining operator.

Lemma 3.1.2. (Schur’s Lemma) A unitary representation π : G → GL(H) is irreducible iff the

only bounded linear operators on H commuting with all π(g) are the scalar operators.

7



3.2 Nilpotent Lie Groups

A Lie group G is nilpotent iff its Lie algebra (over R) is nilpotent. A Lie algebra g is nilpotent iff

. . . ⊂ [g, [g, [g, g]]] ⊂ [g, [g, g]] ⊂ [g, g] ⊂ g

eventually vanishes. Alternatively we can introduce the descending series of g inductively by

g(1) = g, g(n+1) = [g, g(n)] = spanC{[X,Y ] : X ∈ g, Y ∈ g(n)}

g is a nilpotent Lie algebra if there is an integer n such that g(n+1) = (0). If g(n) 6= (0) as well, so

that n is minimal, then g is said to be n−step nilpotent.

Example 3.2.1. A typical example of nilpotent group is Heisenberg group. Let Hn = Rn×Rn×R

with multiplication

(x, y, t) ∗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ +
1
2
ω((x, y), (x′, y′)))

where ω is the symplectic form on R2n,

ω((x, y), (x′, y′)) = 〈x, y′〉 − 〈x′, y〉.

The Heisenberg Lie algebra is hn = spanR{X1, . . . , Xn, Y1, . . . , Yn, Z} with Lie brackets [Xj , Yj ] =

Z, 1 ≤ j ≤ n and all other basis brackets not determined by skew-symmetry are zero. Then

[hn, hn] = spanR{Z}, and [hn, [hn, hn]] = 0, so Hn is a two-step nilpotent group.

The last result about nilpotent Lie group is related to particular bases for the nilpotent Lie

algebra, and its proof can be found in [CG90a], Thm 1.1.13, by L.Corwin and F.P.Greenleaf.

Theorem 3.2.2. Let g be a nilpotent Lie algebra, and let g1 ⊆ g2 ⊆ . . . ⊆ gk ⊆ g be subalgebras,

with dim gj = mj and dim g = n.

(a) g has a basis {X1, ..., Xn} such that

8



(i) for each m, hm = spanR{X1, ..., Xm} is a subalgebra of g,

(ii) for 1 ≤ j ≤ k, hmj = gj.

(b) If the gj are ideals of g, then one can pick the Xj so that (i) is replaced by

(iii) for each m, hm = spanR{X1, ..., Xm} is an ideal of g.

We call a basis satisfying (i) and (ii) a weak Malcev basis for g through g1, . . . , gk, and one

satisfying (ii) and (iii), a strong Malcev basis for g through g1, . . . , gk.

3.3 Irreducible Components in L2(Γ\N)

Some of the references are [CG90b], [CGP77a] and [CG90a].

Let N be a nilpotent group and Γ a lattice, which is a discrete subgroup in N such that the

quotient space Γ\N has a finite invariant measure (N is a unimodular group and the volume (Γ\N)

is finite). The lattice is uniform (or cocompact) if the quotient space is compact, and nonuniform

otherwise. The homogeneous space of right coset Γ\N is called a nilmanifold, and all lattices in

nilpotent groups are cocompact.

The nilmanifold Γ\N admits a unique probability measure that is invariant under right trans-

lations Γx → Γxy for all y ∈ N , and it is called the Haar measure. In general, Haar mea-

sure on a locally compact group G is left invariant, µ(gE) = µ(E) for all g ∈ G,E a Borel

set, and unique up to a factor. The measure defined by νh(E) := µ(Eh) is also left invariant:

νh(gE) = µ(gEh) = µ(Eh) = νh(E). Define δ : G → (0,∞) by νh(E) = δ(h)µ(E). It is not

difficult to verify that δ is homomorphism, δ(gh) = δ(g)δ(h), implying [G,G] ⊂ ker(δ). G is called

unimodular if δ ≡ 1, and a connected nilpotent Lie group is always a unimodular group, which

means that the left invariant measure and the right invariant measure are identical.

The regular representation, or right action U on L2(Γ\N) is defined by

U(n)f(x) = f(xn), x ∈ Γ\N, n ∈ N. (3.1)

Under such action L2(Γ\N) decomposes into an orthogonal direct sum ⊕π∈(Γ\N)∧Hπ of primary

9



subspaces, where (Γ\N)∧ represents a discrete subset of N̂ (the set of equivalence classes of ir-

reducible unitary representations of N) for which Hπ 6= {0}; each Hπ is a direct sum with finite

multiplicity of irreducible subspaces associated to a single representation σi ∈ N̂ .

3.3.1 Orbit Method

Now we introduce a powerful tool: the orbit method. For reference, see [Kir04]. The idea behind

this method is to unite harmonic analysis with symplectic geometry, and can be considered as a

part of the more general idea of the unification of mathematics and physics. Historically, the orbit

method was proposed for the description of unitary dual (i.e. the set of equivalence classes of

unitary irreducible representations) of nilpotent Lie group. It turned out that the method not only

solves this problem but at the same time, gives simple and visual solutions to all other principal

questions in representation theory.

In the dissertation, we will restrict ourselves to nilpotent Lie group, which is also an ideal

situation where orbit method works perfectly.

Now we state the Kirillov orbit method that gives a geometric characterization of the set of the

equivalence classes of irreducible representations.

Theorem 3.3.1. (Kirillov Theory) Let N be a connected, simply connected nilpotent Lie group, and

N̂ denotes the equivalence classes of unitary irreducible representations of N , then N̂ corresponds

to the coadjoint orbits coming from Ad(N) acting on the element in the dual of Lie algebra n∗ =

Lie(N)∗, in the following ways:

(i) For all ζ ∈ n∗, there exists a unitary irreducible representation πζ that is unique up to unitary

equivalence of irreducible representations.

(ii) For all π ∈ N̂ , there exists ζ ∈ n∗, such that π ∼= πζ .

(iii) πζ ∼= πη iff ζ, η are in the same coadjoint orbit in n∗ = Lie(N)∗, Ad∗(N)ζ = Ad∗(N)η, or

Ad∗(x)ζ = η for some x ∈ N .

To illustrate the orbit method, we start with the characterization of unitary irreducible repre-

sentations on the Heisenberg group.
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Let G = Hn, g = hn. We represent w ∈ G,W ∈ g by (n+ 2)× (n+ 2) matrices

w =



1 x1 ... ... xn z

. . . y1

. . .
...

. . .
...

. . . yn

0 1


,W =



0 a1 ... ... an c

. . . b1

. . .
...

. . .
...

. . . bn

0 1


where x, y, a, b ∈ Rn and z, c ∈ R, by calculation

(adw)W = wWw−1 =



0 a1 ... ... an c+ q

. . . b1

. . .
...

. . .
...

. . . bn

0 1


where q = x· b− y· a and (· ) is the inner product in Rn.

Now rewrite W as W =
∑n
i=1(aiXi + biYi) + cZ, where Xi, Yi correspond to the entries in the

n-tuples a, b. Then {Z, Y1, ..., Yn, X1, ..., Xn} is a strong Malcev basis for g, and for ` ∈ g∗ written

in terms of the dual basis {Z∗, Y ∗1 , ..., Y ∗n , X∗1 , ..., X∗n}, we have

` = γZ∗ +
n∑
j=1

(βjY ∗j + αjX
∗
j ) = `α,β,γ ,

`(W ) = cγ +
n∑
j=1

(αjaj + βjbj).
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Thus if w = exp(zZ +
∑n
i=1 yiYi +

∑n
i=1 ziZi) and W ∈ g is written as above, we have

Ad∗(w)`(W ) = `(Ad(w−1)W )

= `[
n∑
j=1

(ajXj + bjYj) + (c+
n∑
j=1

(yjaj − xjbj))Z]

=
n∑
j=1

(ajαj + bjβj) + cγ +
n∑
j=1

(yjajγ − xjbjγ)

=
n∑
j=1

(aj(α+ yjγ) + bj(βj − xjγ)) + cγ

= `α+γy,β−γx,γ(W ).

For γ 6= 0

(Ad∗G)`α,β,γ = {`α′,β′,γ : α′, β′ ∈ Rn},

while for γ = 0, we get

(Ad∗G)`α,β = {`α,β,0}.

So, the coadjoint orbits are 2n dimensional orbits in g∗ of the form

γZ∗ + ζ⊥

for γ 6= 0, and the zero-dimensional orbits that are points in ζ⊥ = RX∗ + RY ∗ otherwise, where

ζ⊥ = {` ∈ g∗ : `(Z) = 0}.

3.3.2 Maximal Integral Characters

Let Γ be a cocompact lattice in N and L2(Γ\N) = ⊕π∈(Γ\N)∧Hπ, a natural question is how

can one detect which Hπ 6= {0}, or which πζ ∈ (Γ\N)∧? (Here ζ ∈ Lie(N)∗, the dual of Lie

algebra, and coadjoint orbits are natural parametrization of the equivalence classes of irreducible

representations). The answer is: πζ ∈ (Γ\N)∧ iff the representation πζ is induced from a maximal

integral character, see Lemma 3.3.3.
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Definition 3.3.2. Maximal Character (M, χ) :

(i) m is a subalgebra and subordinate to `, i.e. < `, [m,m] >= 0, for some ` ∈ Lie(N)∗,

(ii) m has maximum dimension among the algebras subordinate to `,

(iii) M = exp(m),

(iv) χ = e2πi`|M.

In addition, (M, χ) is called a Maximal Integral Character if

(i) Γ ∩M\M is compact,

(ii) χ|Γ ∩M = 1.

Furthermore, there is an explicit way to decompose a function f ∈ L2(Γ\N) into its primary

components. Let Pπ be the projection of L2(Γ\N) onto Hπ (in [CGP77b])

Pπf(Γn) =
∑

γ∈Γ∩M\Γ

∫
m∈Γ∩M\M

f(Γmγn)χ(m)dṁ (3.2)

for all f ∈ C∞(Γ\N), where dṁ = normalized invariant measure on Γ ∩ M\M. The sum is

absolutely convergent.

In addition to the explicit projection formula, the size of each fπ can be estimated in Sobolev

norm as follows

‖Pπf‖r ≤ C‖π‖−k‖f‖r+k (3.3)

in [CG90b]. This estimate plays a crucial role in the subsequence chapter when we try to glue the

solutions from every subspace Hπ into a global one.
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3.3.3 Induced Action on the Irreducible Representations

Based on formula (3.2), there is a straightforward computation for Pπ(f ◦ A), where A is an

automorphism of the nilmanifold.

Pπ(f ◦A)(Γn) =
∑

γ∈Γ∩M\Γ

∫
Γ∩M\M

f(AΓAmAγAn)χ(m)dMṁ

=
∑

γ∈Γ∩AM\Γ

∫
Γ∩AM\AM

f(ΓmγAn)χ(A−1m)dMA−1ṁ

for all f ∈ C∞(Γ\N), where dMṁ is the normalized invariant measure on Γ ∩M\M. Let ν =

dMA
−1ṁ, which is a measure on Γ\AM, we would like to verify that this is the normalized Haar

measure. If this is true, then dMA
−1ṁ = dAMṁ by the uniqueness of such measure. It is not

difficult to see that ν is the right Haar measure, i.e ν(Eg) = dMA
−1ṁ(Eg) = dMṁ(A−1(Eg)) =

dMṁ(A−1EA−1g) = ν(E), for g ∈ AM, and a connected nilpotent Lie group is a unimodular

group. Therefore dMA−1ṁ = dAMṁ, and

(f ◦A)π = fA∗π ◦A,A∗ = (At)−1.

3.3.4 Counting Multiplicity

One central problem in harmonic analysis on nilmanifold is: What is the multiplicity of a given

irreducible representation σ ∈ N̂ (the set of equivalent classes of irreducible representation of N)

in the regular representation on L2(Γ\N)?

This question was answered by Richardson [Ric70] and Howe [How71] independently, and can

be summarized as follow.

Lemma 3.3.3 (Multiplicity Formula). A representation πζ ∈ N̂ occurs in L2(Γ\N) iff πζ =

Uχ = Ind(M ↑ N,χ) for some Maximal Integral Character (M, χ). The multiplicity of π equals

the number of closed double cosets MxΓ for which χ|M ∩ xΓx−1 = 1|M ∩ xΓx−1 (call these the

integral double cosets). See [CGP77b]

Let (M, χ) be a Maximal Integral Character, and realize πζ = Uχ = Ind(M ↑ N,χ) in the
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usual way, modeled in the space H(Uχ) of functions f : N → C such that

(i) f(mn) = χ(m)f(n) (for m ∈M, n ∈ N),

(ii)
∫
M\N |f(n)|2dn <∞.

Let H(Uχ)00 be the dense subspace of such functions which are continuous and compactly

supported in M\N . In [CG76] Corwin-Greenleaf studied the intertwining operators and showed

the following result.

Theorem 3.3.4. Let (M, χ) be any Maximal Integral Character for Γ\N . The following has only

finitely many nonzero terms

BF (Γn) =
∑

γ∈Γ∩M\Γ

F (γn)

if F ∈ H(Uχ)00, and the map B : H(Uχ)00 → L2(Γ\N) extends uniquely to an interwining isometry

from H(Uχ) to an irreducible invariant subspace H(M,χ) ⊆ L2(Γ\N).

Each x ∈ N acts on (M, χ) to give a new maximal character (M, χ) · x = (Mx, χx) defined by

χx(s) = χ(xsx−1)∀s ∈Mx = x−1Mx.

Let ((M, χ) ·N)] be the set of Maximal Integral Characters in the orbit (M, χ) ·N .Then

(i) For two integral points in ((M, χ) ·N)],the range spaces H(M,χ)·x and H(M,χ)·y are equal if

MxΓ =MyΓ and are orthogonal otherwise.

(ii) An element χ ∈ N gives an integral point (M, χ) · x ⇔ MxΓ is an integral double coset.

Furthermore, distinct integral double cosets correspond to distinct Maximal Integral Characters.

(iii) The orthogonal sum

⊕{H(M,χ′):(M,χ′)∈((M,χ)·N)]} = ⊕x∈(M\N/Γ)∗H(M,χ)·x

where (M\N/Γ)∗ = the integral double cosets, is precisely the primaty subspace of L2(Γ\N) corre-

sponding to σ = Uχ.
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3.4 Computations Using the Orbit Method

3.4.1 The 5-dimensional Example

Because the Heisenberg group has 1-dimensional center and the automorphism group on S1 = Z\R

does not include any ergodic transformation, we need nilpotent Lie groups with higher dimensional

center. We found an example that fits for our purpose well, constructed by Homolya-Kowalski in

[HK06].

Consider a 5-dimensional nilpotent Lie group with center of dimension 2, consider a base of the

Lie algebra

e1, e2, e3, e4, e5 ∈ n5 with [e1, e2] = e4, [e1, e3] = e5.

Correspondingly, there is a 5× 5 matrix to realize this Lie algebra



0 0 x z1 z2

0 0 0 0 0

0 0 0 y1 y2

0 0 0 0 0

0 0 0 0 0


with [X,Y1] = Z1, [X,Y2] = Z2.

Compute the coadjoint orbits, which naturally parametrize the equivalence classes of unitary

irreducible representations (a good reference for the parametrization would be [CG90a]). If we

represent w ∈ G,W ∈ g by 5× 5 matrices

w =



1 0 x z1 z2

0 1 0 0 0

0 0 1 y1 y2

0 0 0 1 0

0 0 0 0 1


,W =



0 0 a c1 c2

0 0 0 0 0

0 0 0 b1 b2

0 0 0 0 0

0 0 0 0 0


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with y = (y1, y2), z = (z1, z2), b = (b1, b2), c = (c1, c2) ∈ R2 and x, a ∈ R, a straightforward

calculation gives us

(Adw)W = wWw−1 =



0 0 a c1 + b1x− ay1 c2 + b2x− ay2

0 0 0 0 0

0 0 0 b1 b2

0 0 0 0 0

0 0 0 0 0


.

Rewrite W as W =
∑2
i=1(biYi + ciZi) + aX, where the Yi, Zi correspond to the entries in the

5-tuples b,c. Then X,Y1, Y2, Z1, Z2 is a basis for g, and if l ∈ g∗ is expressed in terms of the dual

basis X∗, Y ∗1 , Y
∗
2 , Z

∗
1 , Z

∗
2 , we have

` = αX∗ +
2∑
j=1

(βjY ∗j + γjZ
∗
j ) = `α,β,γ , (3.4)

`(W ) = aα+
2∑
j=1

(βjbj + γjcj). (3.5)

Thus if w = exp(
∑2
i=1(biYi + ciZi) + aX) and W ∈ G is written as above, we have

Ad∗(w)`(W ) = `(Ad(w−1)W )

= a(α+
2∑
j=1

βjyj) + b1(β1 − xγ1) + b2(β2 − xγ2) + c1γ1 + c2γ2

= `α+y·γ,β−xγ,γ(W ). (3.6)

So there are four types of coadjoint orbits

(a) γ = (γ1, γ2) = (0, 0), we get

(Ad∗G)`α,β,0 = `α,β,0.

(b) γ = (γ1, 0), γ1 6= 0

(Ad∗G)`(α,β1,β2,γ1,0) = `(α+y1γ1,β1−xγ1,β2,γ1,0).
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(c) γ = (0, γ2), γ2 6= 0

(Ad∗G)`(α,β1,β2,0,γ2) = `(α+y2γ2,β1,β2−xγ2,0,γ2).

(d) γ = (γ1, γ2), γ1, γ2 6= 0

(Ad∗G)`(α,β1,β2,γ1,γ2) = `(α+y1γ1+y2γ2,β1−xγ1,β2−xγ2,γ1,γ2).

A natural question arises: How are these coadjoint orbits related, and is it possible to move one

type of the orbit to another by an automorphism?

Let A ∈ Aut(g), since A preserves the Lie bracket, and maps the center to center, some restric-

tions on A follow quite naturally.

A =



a11 0 0 0 0

a21 a22 a23 0 0

a31 a32 a33 0 0

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55


with a44 = a11a22, a45 = a11a23, a54 = a11a32, a55 = a11a33.

It is not difficult to tell that A∗ maps the elements in (a), one-point orbits, to itself. (b),(c) and (d)

are 2 dimensional planes in R5, and we index each of them by its normal direction and the distance

from origin to the plane. After we fix the center, the plane can be characterized in R3. There are

three types of coadjoint orbits:

(i) γ = (γ1, 0), γ1 6= 0, the normal direction of the plane in R3 is (0, 0, 1),

and the distance is |β2|,

(ii) γ = (0, γ2), γ2 6= 0, n = (0, 1, 0), d = |β1|,

(iii) γ = (γ1, γ2), γ1, γ2 6= 0, n = (0, γ2,−γ1), d = |β1γ2−β2γ1|
(γ2

1+γ2
2)1/2

.

If γ2 = 0 or γ1 = 0, (iii) reduces to (i) or (ii). So essentially, there are two types of coadjoint orbits,

one-point orbits and hyperplane orbits.
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3.4.2 Free 2-step Nilpotent Group with 3 Generators (Dimension 6)

The example above will have some conflict with ergodicity, because the condition [Y1, Y2] = 0 and

det(A) = 1 will force the matrix representation of the Lie algebra automorphism to have root of

unity in the spectrum, as a11(a22a33−a23a32)(a44a55−a45a54) = 1 implies a11 = ±1. Therefore, it is

impossible to put the ergodic assumption on the induced automorphism. So we replace [Y1, Y2] = 0

by [Y1, Y2] = Z3, and there is no reason to distinguish X and Y1, Y2 as they play the same role now.

Therefore we change the notation of the basis {X,Y1, Y2, Z1, Z2, Z3} to {X1, X2, X3, Z1, Z2, Z3}

with [X1, X2] = Z1, [X1, X3] = Z2, [X2, X3] = Z3, and realize the new Lie algebra by a 6 × 6

matrix: 

0 x2 x1 z1 z2 z3

0 0 0 0 0 x3

0 0 0 x2 x3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

Another way to look at the matrix is to rewrite them as: X1 = e13, X2 = e12+e34, X3 = e26+e35.

We compute the coadjoint orbit for a given element ` =
∑3
j=1 αjX

∗
j +

∑3
i=1 γiZ

∗
i = `α,γ ,

(Ad∗(w)`)(W )

= `(Ad(w−1)W )

=
3∑

n=1

anαn − a1

2∑
j=1

γjxj+1 + a2

1∑
i=0

(−1)ix2i+1γ2i−1 + a3

2∑
k=1

xkγk+1 +
3∑

m=1

cmγm

= `(α1−x2γ1−x3γ2,α2+x1γ1−x3γ3,α3+x1γ2+x2γ3,γ1,γ2,γ3)(W ).

On one hand, for γi 6= 0, i = 1, 2, or 3, the coadjoint orbits are two-dimensional planes, which

can be characterized by the normal directions and the distance from the origin to the plane. Because

the last 3 coordinates in the coadjoint orbit do not change, we can restrict the normal direction

to the first 3 coordinates: the normal direction ~n = (γ3,−γ2, γ1) and the distance d = ‖γ‖ +
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|γ1α3−γ2α2+γ3α1|
‖γ‖ = ‖γ‖+ |~n·~α|‖γ‖ , where ~α = (α1, α2, α3), ‖γ‖ =

√
γ2

1 + γ2
2 + γ2

3 or max{γi|i = 1, 2, 3},

depending on which one fits our purpose better.

On the other hand, if γ1 = γ2 = γ3 = 0, the representations are trivial on the commutator.

Since the automorphism A preserves the Lie bracket, and maps the center of the nilpotent group

to the center, the matrix representation has to be as follows

A =



a11 a12 a13 0 0 0

a21 a22 a23 0 0 0

a31 a32 a33 0 0 0

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66


with

a44 = a11a22 − a12a21, a45 = a11a23 − a13a21, a46 = a12a23 − a13a22,

a54 = a11a32 − a12a31, a55 = a11a33 − a13a31, a56 = a12a33 − a13a32,

a64 = a21a32 − a22a31, a65 = a21a33 − a23a31, a66 = a22a33 − a23a32.

For simplicity, assume aij = 0, 4 ≤ i ≤ 6, 1 ≤ j ≤ 3, so the matrix consists of two blocks

A1, A2, both of which are 3× 3 matrices.

A =



a11 a12 a13 0 0 0

a21 a22 a23 0 0 0

a31 a32 a33 0 0 0

0 0 0 a44 a45 a46

0 0 0 a54 a55 a56

0 0 0 a64 a65 a66


.

Now we compute how coadjoint orbits change under automorphisms. Let ‖π‖ be the distance
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from the origin to Oπ in the dual space g∗ (which is d, the distance from the origin to the 2-

dimensional plane as we computed before and Oπ is the associated Ad∗(N)-orbit for each irreducible

representation π). After some calculation, we have ‖Aπ‖ = ‖A2~γ‖+ | det(A1)||~n·~α|
‖A2~γ‖ . If det(A1) = 1,

‖Anπ‖ = ‖An2~γ‖ + |~n·~α|
‖An2 ~γ‖

. When it comes to choosing a proper norm, Sobolev norm will allow us

to estimate the size of Pπ(f) by ‖π‖ and f , and would be an ideal setting.

For a general nilpotent Lie goup G, it admits a uniform subgroup Γ, which is a discrete and

Γ\G is compact, iff the Lie algebra g has a rational structure, meaning that g ∼= gQ ⊗ R, where

gQ = spanQ{X1, ..., Xn} and the structure constants are rational: [Xi, Xj ] =
∑n
i=1 cijkXk, cijk ∈ Q.

See [CG90a].

Pick the standard lattice Γ = Z3 × ( 1
2Z)3, and we can detect which irreducible representations

show up in L2(Γ\N) by the Multiplicity Formula 3.3.3. A detailed explanation for this specific case

is provided in the later section 3.4.4.

3.4.3 Free 2-Step Nilpotent Group with n Generators (Dimension n(n+1)
2

)

We generalize to higher dimensional nilmanifolds for the purpose of existence of genuinely par-

tially hyperbolic actions. Let n be the Lie algebra of a nilpotent Lie group N , with a basis

{X1, X2 . . . Xn, Z12, Z13 . . . Z1n, Z23 . . . Z2n, Z34 . . . Zn−1n}, whose brackets are zero except for

[Xi, Xj ] = Zij , 1 ≤ i < j ≤ n.

There is a n(n+1)
2 × n(n+1)

2 matrix representation for it.
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

0 xn−1 . . . x2 x1 z12 z13 . . . zn−2,n−1 zn−2,n zn−1,n

0 0 0 0 0 0 . . . 0 0 0 xn

0 0 0 0 . . . 0 0 0 xn−1 xn 0

. . . . . .

. . . . . .

0 0 . . . 0 0 x2 x3 0 . . . 0 0

. . . . . .

. . . . . .

0 0 0 0 0 0 0 0 0 . . . 0

0 0 0 0 0 0 0 0 0 . . . 0

0 0 0 0 0 0 0 0 0 . . . 0



.

The purpose of writing this big matrix is to compute the coadjoint orbits.

Given ` =
∑n
k=1 αkX

∗
k +

∑
1≤i<j≤n γijZ

∗
ij = `~α,~γ ,

(Ad∗(w)`)(W ) = `(Ad(w−1)W )

= a1(α1 + γ12x2 + γ13x3 + . . .+ γ1nxn) + a2(α2 − γ12x1 + γ23x3 + . . .+ γ2nxn)

+ a3(α3 − γ13x1 − γ23x2 + γ34x4 + . . .+ γ3nxn) + . . . . . .

+ an−1(αn−1 − γ1,n−1x1 − γ2,n−1x2 − . . .− γn−2,n−1xn−1 + γn−1,nxn)

+ an(αn − γ1nx1 − γ2nx2 − . . .− γn−1,nxn−1)

+
∑

1≤i<j≤n

cijγij

= `(α1+γ12x2+γ13x3+...+γ1nxn......αn−γ1nx1−γ2nx2−...−γn−1,nxn−1,γ12,γ13,...,γn−1,n)(W ).

For ~γ = 0, the coadjoint orbits are one-point orbits, and the representations of N are one-

dimensional, since the quotient group [N,N ]\N is abelian.

If ~γ 6= 0, the coadjoint orbits are hyperplanes in R
n(n+1)

2 (or essentially in Rn, since the last
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n(n−1)
2 coordinates are fixed) with normal direction

~n = det



0 γ12 γ13 γ14 . . . γ1n

−γ12 0 γ23 γ24 . . . γ2n

−γ13 −γ23 0 γ34 . . . γ3n

. . . . . .

−γ1,n−1 −γ2,n−1 −γ3,n−1 . . . 0 γn−1,n

e1 e2 e3 . . . en−1 en


where {ei, 1 ≤ i ≤ n} is the standard basis for Rn. The distance from the origin to the plane is

d = ‖~γ‖+ |~α·~n|
‖~γ‖ , where · is the standard inner product and ‖.‖ is the Euclidean distance.

Now we want to see how are these hyperplanes moved by the automorphisms. Let A ∈ Aut(n),

since [AXi, AXj ] = A[Xi, Xj ] = AZij , 1 ≤ i < j ≤ n, the restriction of the automorphism

on {X1, X2 . . . Xn} is A1, which actually determines the automorphism A2 acting on the center

{Zij , 1 ≤ i < j ≤ n}. So we can focus on A1 corresponding to a lower dimension matrix.

A1 =



a11 a12 a13 . . . a1n−1 a1n

a21 a22 a23 . . . a2n−1 a2n

. . . . . .

. . . . . .

an−11 an−12 an−13 . . . an−1n−1 an−1n

an1 an2 an3 . . . ann−1 ann



Let A2 denote the n(n−1)
2 × n(n−1)

2 matrix corresponding to the automorphism restricted to the

center {Zij , 1 ≤ i < j ≤ n}. We already know that ‖π‖ = ‖~γ‖+ |~α·~n|
‖~n‖ , what about ‖Aπ‖? Similar

to the 6 dimensional nilmanifold, for |det(A1)| = 1, ‖Anπ‖ = ‖An2~γ‖+ |~α·~n|
‖An2 ~γ‖

.

3.4.4 The Elements π Occuring in (Γ\N)∧

The Howe-Richardson occurence condition states that π` ∈ (Γ\N)∧ iff it is induced from a Maximal

Integral Character associated to some element in the coadjoint orbit of `. Here we write π` for the
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representation associated to the orbit in Lie(N)∗ that contains the element `. For Maximal Integral

Character, see Definition 3.3.2

3.4.4.1 The Free 2-step Nilpotent Group of Dimension 6

For the standard lattice Γ = Z3 × ( 1
2Z)3, and the condition χ|Γ ∩ M = 1, we conclude that

γi ∈ 2Z, i = 1, 2, 3. As we computed before, the coadjoint orbits are two-dimensional planes,

and the irreducible representations occurring in (Γ\N)∧, or π ∈ (Γ\N)∧ are equivalent to the

corresponding coadjoint orbits containing integer points. The plane equation is

x = α− t3γ1 − t3γ2, y = β1 + t1γ1 − t3γ3, z = β2 + t1γ2 + t2γ3, ti ∈ R, γi ∈ 2Z.

Another way to look at it is starting with the plane passing the origin

γ3x+ (−γ2)y + γ1z = 0

and it contains integer points due to the even integer coefficient. We can move this plane parallelly

along its normal direction by some distance such that it intersects integer points again. Suppose

that the plane contains an integer point (a, b, c), we have

γ3(x− a) + (−γ2)(y − b) + γ1(z − c) = 0,

γ3x+ (−γ2)y + γ1z = aγ3 − bγ2 + cγ1.

Since Z is a principal ideal domain, and I = γ1Z + γ2Z + γ3Z is an ideal in Z, so I = rZ,

r = gcd(γ1, γ2, γ3). The minimum distance is d = gcd(γ1, γ2, γ3)/(γ2
1 +γ2

2 +γ2
3)1/2, in order for it to

intersect integer points again. All these planes that contain integer points are characterized by the

normal direction ~n = (γ3,−γ2, γ1), and the distance from the origin to the plane: dk = kd, k ∈ Z.

So for each fixed (γ1, γ2, γ3), we can identify all the coadjoint orbits corresponding to the Maximal

Integral Characters, leading to the geometric characterization of all the irreducible representations

occurring in (Γ\N)∧.
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Pick an element ` = αX∗ +
∑2
j=1(βjY ∗j + γjZ

∗
j ) = `α,β,γ in the coadjoint orbit, which is in

the form of `(α−y1γ1−y2γ2,β1−xγ1−y2γ3,β2+xγ2+y1γ3,γ1,γ2,γ3). One of the Maximal Integral Characters

(χ,M) is given by

χ = e2πi`α,β,γ |M,m = spanZ{γ3X + γ2Y1, 2γ3X + γ1Y2, Z1, Z2, Z3}, (γ1, γ2 6= 0, γi ∈ 2Z).

A more general Maximal Integral Character (M, χ) can be described in the following way

dimM = 5, m = spanZ{aX + bY1 + cY2, dX + eY1 + fY2, Z1, Z2, Z3} with a, b, c, d, e, f ∈ R, and

the condition that m is subordinate to `, i.e. < `, [m,m] >= 0 implies that

det


γ1 γ2 γ3

f e d

c b a

 = 0.

In other words, we need to find two vectors in R3 such that these three vectors (γ1, γ2, γ3), (f, e, d), (c, b, a)

lie in the same plane. One simple solution is (a, b, c) = (γ3, γ2, 0), (d, e, f) = (0, 0, γ1), or their linear

combination (the plane generated by these two vectors).

3.4.4.2 The General Free 2-step Nilpotent Group

Pick the standard lattice Γ = Zn × ( 1
2Z)

n(n−1)
2 , and all the representations in (Γ\N)∧ come from

the induced representations of Maximal Integral Characters. Similar to the 6 dimensional case, we

interpret the conditions of being a Maximal Integral Character that (Γ ∩M)\M is compact and

χ|Γ ∩M = 1 as γij ∈ 2Z, dmin = gcd(γij)√P
1≤i<j≤n γ

2
ij

, 1 ≤ i < j ≤ n. So we have a clear picture of all

the representations π ∈ (Γ\N)∧ for these nilmanifolds.
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Chapter 4

Main Results

4.1 Solving Coboundary Equations with Tame Estimates

4.1.1 Necessary Conditions for Solving the Coboundary Equation

Lemma 4.1.1. Given a smooth function θ ∈ C∞(Γ\N), the equation

λω − ω ◦A = θ

for λ 6= 1 admits a smooth solution ω only if the obstruction

ϑAπ (θ) :=
+∞∑
i=−∞

λ−(i+1)θA∗iπ ◦Ai

vanishes for all π ∈ (Γ\N)∧0 .

Proof. Without loss of generality, we can always assume |λ| ≥ 1. This is because for 0 < |λ| < 1,

the equation λω − ω ◦A = θ can be transformed to ω ◦A−1 − λ−1ω = λ−1θ ◦A−1 with |λ|−1 ≥ 1.

Suppose there exists a C∞ solution ω to the coboundary equation λω − ω ◦ A = θ. Then we
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project the equation to the subspace Hπ associated to a given irreducible representation π

Pπ(λω − ω ◦A) = Pπ(θ),

which is equivalent to

λωπ − ωA∗π ◦A = θπ.

Iterating forward

ωπ =
n−1∑
i=0

λ−(i+1)θ(A∗)iπ ◦Ai + λ−nω(A∗)nπ ◦An

and let n→∞,

ωπ+ =
∞∑
i=0

λ−(i+1)θ(A∗)iπ ◦Ai + lim
n→∞

λ−nω(A∗)nπ ◦An.

If the second term goes to zero, ωπ+ =
∑∞
i=0 λ

−(i+1)θ(A∗)iπ ◦Ai.

Similarly, ωπ− = −
∑−∞
i=−1 λ

−(i+1)θ(A∗)iπ ◦ Ai if we iterate backward. Now the obstruction

for solving the coboundary equation arises, and the existence of a solution implies that ωπ+ =

ωπ− for all π ∈ (Γ\N)∧0 (obstructions vanish).

The following argument is to verify all obstructions ϑAπ (θ) =
∑+∞
i=−∞ λ−(i+1)θA∗iπ ◦Ai converge

in C0 norm, so the vanishing makes sense.

‖
+∞∑
i=−∞

λ−(i+1)θA∗iπ ◦Ai‖0 = ‖
+∞∑
i=−∞

λ−(i+1)θA∗iπ‖0 ≤
+∞∑
i=−∞

λ−(i+1)‖A∗iπ‖−k‖θ‖k.

We can always find k > 0 such that
∑
i∈Z λ

−(i+1)‖A∗iπ‖−k < ∞ for all π 6= 0. For |λ| ≥ 1, the∑
i≥0 part converges because we can choose an exponent k to ensure

∑
π∈(Γ\G)∧0

‖π‖−k < ∞. As

for the other part
∑
i<0, we use the fact that every non-zero integer vector γ representing the center

component of the element ` ∈ g∗ always has a nontrivial projection to the expanding directions
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with respect to A due to the ergodicity assumption:

∑
i<0

|λ|−(i+1)(‖A∗i2 γ‖+
|m · gcd(γ1, γ2, γ3)|

‖A∗i2 γ‖
)−k

≤
∑
i<0

|λ|−(i+1)‖A∗i2 γs‖−k ≤ C
∑
i<0

|λ|−(i+1)(ρ)ik‖γs‖−k

<∞

where k is large enough such that λ−1ρk > 1 and for some m ∈ Z, determined by the corresponding

coadjoint orbit of the irreducible representation π.

When it comes to smoothness of ϑAπ (θ) =
∑+∞
i=−∞ λ−(i+1)θA∗iπ ◦ Ai, we need to increase the

absolute value of the exponent k of ‖π‖ to get convergence in Cr norm for r > 0.

4.1.2 Partial Norms

Below all the derivatives are understood in the distributional sense.

Definition 4.1.2. Let r be a non-negative integer. The Sobolev space Hr(Rn) is defined by

Hr(Rn) = {f ∈ L2(Rn) : ∂αf ∈ L2(Rn) for all |α| ≤ r}

Proposition 4.1.3. f ∈ Hr(Rn) iff (1+|ξ|2)r/2f̂ ∈ L2(Rn), and the following norms are equivalent:

f 7→ [
∑
|α|≤r ‖∂αf‖2L2(Rn)]

1
2 and f 7→ [

∫
Rn(1+ |ξ|2)r|f̂(ξ)|2dξ] 1

2 = ‖(1+ |ξ|2)
r
2 f̂‖L2(Rn). In short,

‖∂αf‖L2 = ‖∂̂αf‖L2 = ‖ξαf̂‖L2 , and ‖(1 + |ξ|2)
r
2 f̂‖L2 is equivalent to ‖(1 + |ξ|r)f̂‖L2

The proof that [
∑
|α|≤r ‖∂αf‖2L2(Rn)]

1
2 and [

∫
Rn(1 + |ξ|2)r|f̂(ξ)|2dξ] 1

2 are equivalent norms is

mainly because of the following inequalities

C−1(1 + |x|)2r ≤
∑
|α|≤r

(xα)2 ≤ C(1 + |x|)2r, x ∈ Rn, (4.1)
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where C depends only on r and n.

Since (f ◦ A)π = fA∗π ◦ A for f ∈ C∞(Γ\N), in order to get a better estimate of its growth

under Sobolev norm, we introduce the concept of partial norm here. For a linear transformation

A, there is a decomposition of Rn

Rn = Vs ⊕ Vc ⊕ Vu, ξ 7→ ξs + ξc + ξu with |ξ|2 ≈ |ξs|2 + |ξc|2 + |ξu|2.

Define partial norms ‖f‖(s)r := ‖|ξs|rf̂‖L2 , ‖f‖(c)r := ‖|ξc|rf̂‖L2 and ‖f‖(u)
r := ‖|ξu|rf̂‖L2 , which

play a crucial role in our computation. We will see how the partial norms are used to control the

growth of f ◦Ai

‖f ◦Ai‖(s)r = ‖|ξs|rf̂ ◦Ai‖L2 = [
∫

cRn |ξs|
2r|f̂ ◦A−it(ξ)|2dξ] 1

2 (4.2)

= [
∫

cRn |A
it(η)s|2r|f̂(η)|2dη]

1
2 ≤ [

∫
cRn ‖A

it|V s‖2r|ηs|2r|f̂(η)|2dη]
1
2 ≤ ‖At|V s‖r‖f‖(s)r .

Geometrically, we can decompose the differential operator, the Laplacian, instead of the space

Rn. Similar to (4.1), for f ∈ C∞(Rn)

C−1‖(1 + |4|)rf‖L2 ≤
∑
|α|≤r

‖(Dα)2f‖L2 ≤ C‖(1 +4)rf‖L2 (4.3)

where 4 =
∑

1≤i≤n
∂2

∂x2
i
, and C depends only on r and n. Similar to

Rn = Vs ⊕ Vc ⊕ Vu,

we have

4 = 4s +4c +4u.

based on the correspondence between ∂
∂xi

and ξi, where ξ = (ξ1, ..., ξn) ∈ Rn. How can we formulate

them in terms of vector fields? To apply the decomposition, we choose an orthonormal basis

{Y1, ..., Yn} which can be separated to {Y1,u, ..., Yku,u}, {Y1,c, ..., Ykc,c} and {Y1,s, ..., Yks,s} such that
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AYi,u = λiYi,u, AYj,c = µjYj,c, AY`,s = ν`Y`,s with |λi| > 1, |µj | = 1, |ν`| < 1, 1 ≤ i ≤ ku, 1 ≤ j ≤

kc, 1 ≤ ` ≤ ks. Then define

4u := Y 2
1,u + ...+ Y 2

ku,u,4c := Y 2
1,c + ...+ Y 2

kc,c,4s := Y 2
1,s + ...+ Y 2

ks,s. (4.4)

There is no guarantee that such basis ever exists, in general, it might involve some Jordan blocks.

Again, separate the basis to {Y1,u, ..., Yku,u}, {Y1,c, ..., Ykc,c}, {Y1,s, ..., Yks,s} by using the generalized

eigenvector of A corresponding to λi if (A − λiI)pi = 0 for some positive integer pi, etc. for

|λi| > 1, |µj | = 1, |ν`| < 1. Now we define partial norm with more geometrical flavor that can be

generalized to manifolds

‖f‖(u)
r = ‖|4u|r/2f‖L2 , ‖f‖(c)r = ‖|4c|r/2f‖L2 , ‖f‖(s)r = ‖|4s|r/2f‖L2 . (4.5)

To make the idea work for nilmanifolds, one method is to introduce Sobolev norm the same

as in [CG90b]. We start with a decomposition of n = Eu ⊕ Ec ⊕ Es and a particular ba-

sis {Y1,u, ..., Yku,u, Y1,c, ..., Ykc,c, Y1,s, ..., Yks,s} in n such that Y1,u, ..., Yku,u ∈ Eu, Y1,c, ..., Ykc,c ∈

Ec, Y1,s, ..., Yks,s ∈ Es. Then impose the Solobev norm as ‖φ‖2k =
∑
|α|=k ‖R(Y α)φ‖2L2 , where

Y α = Y α1
1 ...Y αnn , α ∈ Zn and the right-invariant vector field is determined by R(Y )f(g) =

limt→0
1
t [f(exp(tY )g)− f(g)]. The corresponding partial norms would be

‖φ‖(u)
r =

∑
|αu|=k

‖R(Y αuu )φ‖L2 ,

‖φ‖(c)r =
∑
|αc|=k

‖R(Y αcc )φ‖L2 ,

‖φ‖(s)r =
∑
|αs|=k

‖R(Y αss )φ‖L2

where αu ∈ Zku , αc ∈ Zkc , αs ∈ Zks with ku + kc + ks = n.
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4.1.3 Necessary Conditions are Sufficient

We want to find a smooth solution with tame estimates to the equation

λω − ω ◦A = θ (4.6)

under the condition that the obstruction ϑAπ (θ) =
∑+∞
i=−∞ λ−(i+1)θA∗iπ ◦ Ai vanishes for every

non-trivial irreducible representation π ∈ (Γ\N)∧. In the dual space this equation has the form

λωπ − ωA∗π ◦A = θπ

where ωπ stands for the projection of ω into the subspace Hπ associated to the irreducible represen-

tation π. For the one-dimensional representation (that is trivial on the commutator), the problem

reduces completely to the torus situation and has been answered in [DK04]. So we will focus on the

higher dimensional representations. Let (Γ\N)∧0 be the spectrum with the trivial representation π0

excluded, and for each π ∈ (Γ\N)∧0 , the projected equation λωπ − ωA∗π ◦ A = θπ has two formal

solutions

ωπ+ = +
∑
i≥0

λ−(i+1)θA∗iπ ◦Ai, (4.7)

ωπ− = −
∑
i≤−1

λ−(i+1)θA∗iπ ◦Ai. (4.8)

Each sum converges absolutely in the L∞ norm for θ ∈ C∞(Γ\N), and the detailed computation

is included in 4.1.1.

When it comes to gluing all the solutions within every Hπ together to form the global solution,

we refer to the result by Corwin and Greenleaf in [CG90b]: an important estimate about the size

of fπ by the distance from origin to coadjoint orbit ‖π‖ and the original function f in the Sobolev

norm:

‖fπ‖r ≤ C‖π‖−k‖f‖r+k,∀f ∈ Cr+k(Γ\N), r > 0

where C depends only on r and the nilmanifold. In our situation, the estimate about ‖fA∗nπ ◦An‖r
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is handled by using the partial norm techniques.

‖fA∗nπ ◦An‖Vr ≤ ‖fA∗nπ‖r‖An|V ‖r ≤ C ′‖An|V ‖r‖A∗nπ‖−k‖f‖r+k,∀f ∈ Cr+k(Γ\N), r > 0.

If we pick V as the stable subspace when n > 0, and unstable space for n < 0, ‖An|V ‖r would not

affect our estimate.

Another part of the problem is the estimate of dual orbit growth ‖Anπ‖, which is essentially

determined by the automorphism restricted to the center parameter γ, based on the formula ‖Aπ‖ =

‖An2γ‖+ |det(A1)| |~n·~α|‖An2 γ‖
. Similar to torus, we decompose γ to expanding, neutral and contracting

components with respect to A2,

Rd = V u ⊕ V c ⊕ V s, γ = γu + γc + γs

where d = dim[N,N ].

‖Ai2γu‖ ≥ Cρi‖γu‖, ρ > 1, i ≥ 0

‖Ai2γs‖ ≥ Cρ−i‖γs‖, ρ > 1, i ≤ 0

‖Ai2γc‖ ≥ C(|i|+ 1)−N‖γc‖, i ∈ Z.

Theorem 4.1.4. Let θ be a C∞ function on M = Γ\N , which is the 2-step nilmanifold con-

structed in 3.4.3, with dimN = n(n+1)
2 and λ ∈ C, λ 6= 1. Let n1 = dim(Γ · [N,N ])\N = n, n2 =

dim Γ\[N,N ] = n(n−1)
2 and A be an integer matrix in SL(n1 +n2,Z) with A1, A2 the matrix repre-

sentations of ergodic automorphisms on the quotient of nilmanifold over the center (Γ · [N,N ])\N

and on the center of nilmanifold Γ\[N,N ] respectively, such that for all non-trivial irreducible rep-

resentations π ∈ (Γ\N)∧, denoted by (Γ\N)∧0 , the following sum (called obstruction) along the dual

orbits are zero i.e.

ϑAπ (θ) =
+∞∑
i=−∞

λ−(i+1)θA∗iπ ◦Ai = 0 (4.9)
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then the equation

λω − ω ◦A = θ (4.10)

has a C∞ solution ω with the following estimate

‖ω‖r ≤ Cr‖θ‖r+k for r ≥ 0, k > n2 + 4 (4.11)

in the Sobolev norm and A =

A1 0

0 A2

.

We prove the theorem in the rest of this section.

Estimates of ω in C0

Take r = 0.

When π = π0, we can immediately calculate that ωπ0 = θπ0
λ−1 because λ 6= 1.

For other situations, one has to distinguish between the center parameter γ = 0 and γ 6= 0.

(i) If γ = 0, from last section 3.4.2, the coadjoint orbits are one-point orbits. Thus the max-

imal integral character is (M,π`) = (N,χ`), where χ`(expW ) = e2πi`(W ), ` ∈ Z⊥,W ∈ n. These

representations are trivial on the commutator [N,N ] = exp RZ, and hence all the irreducible rep-

resentations on N can be recovered by lifting the irreducible representations on [N,N ]\N . The

representations on the quotient group [N,N ]\N are one-dimensional since it is abelian, and fur-

thermore, the induced automorphism A1 is ergodic, see [Par69]. So we can reduce the problem to

torus Tn, which has been solved in Lemma 4.2 of [DK10].

(ii) If γ 6= 0, the situation is more complicated. Pick one of the formal solutions in (4.7), say

ωπ+, and we are going to prove the convergence of the solution and tame estimates in the Sobolev

norm. First assume that γu is the largest term in the decomposition of γ into γs, γc and γu with

respect to the automorphism A2, ‖γu‖ ≥ max{‖γs‖, ‖γc‖} in Euclidean norm. Denote all such

elements of the representations by (Γ\N)∧0,u, which is a subset of (Γ\N)∧0 . This decomposition will

have further application in later calculation under the partial norm ‖ω‖(c)r . Without taking the L2

norm of the derivatives of θA∗iπ ◦ A into considerations, we can prove the existence of C0-solution
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for |λ| ≥ 1.

∑
π∈(Γ\N)∧0,u

‖ωπ+‖C0 ≤
∑

π∈(Γ\N)∧0,u

∑
i≥0

|λ|−(i+1)‖θA∗iπ‖C0

≤
∑

π∈(Γ\N)∧0,u

∑
i≥0

|λ|−(i+1)‖A∗iπ‖−k‖θ‖k

=
∑

`∈Z,γ∈(Z∗n2
\{0})u

∑
i≥0

|λ|−(i+1)(‖A∗i2 γ‖+
|` · gcd(γ1, γ2, ..., γn2)|

‖A∗i2 γ‖
)−k‖θ‖k

=
∑

`=0,γ∈(Z∗n2
\{0})u

∑
i≥0

|λ|−(i+1)‖A∗i2 γ‖−k‖θ‖k

+
∑

`∈(Z\{0}),γ∈(Z∗n\{0})u

∑
i≥0

|λ|−(i+1)(‖A∗i2 γ‖+
|` · gcd(γ1, γ2, ..., γn2)|

‖A∗i2 γ‖
)−k‖θ‖k

≤
∑

γ∈(Z∗3\{0})u

∑
i≥0

|λ|−(i+1)‖A∗i2 γ‖−k‖θ‖k + C ′
∑

`∈(Z\{0}),γ∈(Z∗n2
\{0})u

∑
i≥0

|λ|−(i+1)‖A∗i2 γ‖−(k−4)`−2‖θ‖k

≤ C
∑

`∈(Z\{0}),γ∈(Z∗n2
\{0})u

∑
i≥0

|λ|−(i+1){‖A∗i2 γu‖−k + ‖A∗i2 γu‖−(k−4)`−2}‖θ‖k

≤ C
∑

`∈(Z\{0}),γ∈(Z∗n2
\{0})u

∑
i≥0

|λ|−(i+1){(ρi‖γu‖)−k + (ρi‖γu‖)−(k−4)`−2}‖θ‖k

≤ C
∑

`∈(Z\{0}),γ∈(Z∗n2
\{0})u

∑
i≥0

|λ|−(i+1){(ρi‖γ‖)−k + (ρi‖γ‖)−(k−4)`−2}‖θ‖k

< C‖θ‖k

where γ = (γ1, γ2, ..., γn2) and k > n2 + 4. In the computation above we parametrize π ∈ (Γ\N)∧0,u

by {Z∗n2
\ {0}}u (a subset of {Z∗n2

\ {0}}) and ` ∈ Z, which naturally separates to ` ∈ (Z \ {0}) and

` = 0 due to different approach to the estimate.

At the begining (from the first line to the second line in the computation), we make use of the

inequality ‖fπ‖r ≤ C‖π‖−k‖f‖r+k for r = 0. And because γ ↪→ V u, we can interchange ‖γ‖ and

‖γu‖, as 1
3‖γ‖ ≤ ‖γu‖ ≤ ‖γ‖. Moreover, since ‖A2γu‖ ≥ ‖γu‖, ‖A2γs‖ ≤ ‖γs‖, ‖A2γc‖ ≈ ‖γc‖,

so ‖A2γu‖ ≥ ‖A2γs‖, ‖A2γu‖ ≥ ‖A2γc‖, implying 1
3‖A2γ‖ ≤ ‖A2γu‖ ≤ ‖A2γ‖, and in general

1
3‖A

i
2γ‖ ≤ ‖Ai2γu‖ ≤ ‖Ai2γ‖ for i ≥ 0

Here gcd means the greatest common divisor, and gcd(γ1, γ2, ..., γn) ≥ 2 for π ∈ (Γ\G)∧0 , because
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γi ∈ 2Z, i = 1, ..., n and see previous section 3.4.4.1.

The way we handle the estimate of (‖A∗i2 γ‖+ |`·gcd(γ1,γ2,...,γn)|
‖A∗i2 γ‖

)−k is using Binomial theorem to

expand the (x+ y)nand keep only one term Cinx
iy(n−i) from the expansion.

The last step in our inequality can be verified using the integral test and the polar coordinate

system instead of regular Cartesian coordinate system, see the following Lemma 4.1.5 for a detailed

explanation. We will use the computation techniques illustrated here quite often.

For γ ↪→ V s, or ‖γs‖ ≥ max{‖γu‖, ‖γc‖}, we have to use the other formal solution ωπ−, and the

computation is almost the same as for ωπ+.

If γ ↪→ V c, Lemma 4.1.6 is needed to carry out the estimate, see Lemma 4.1.8 for a detailed

elaboration.

Lemma 4.1.5.
∑
γ∈(Z∗n\{0})

(‖γ‖)−k <∞.

We use integral test and change of coordinate system to prove that the infinite sum involved in

the estimate above is finite.

Proof. ∑
γ∈(Z∗n\{0})

(‖γ‖)−k ≤
∫
· · ·

∫
Pn
i=1 x

2
i≥1

1
(
∑n
i=1 x

2
i )k/2

dx1dx2...dxn

≤
∫ ∞
r=1

∫ π

ϕ1=0

...

∫ π

ϕn−2=0

∫ 2π

ϕn−1=0

rn−1

rk
sinn−2(ϕ1)... sin(ϕn−2)drdϕ1...dϕn−1 <∞

for k > n.

Estimates of ‖ω‖(u)
r and ‖ω‖(s)r

The next step is to show that the C0 solution is smooth and satisfies tame estimates. As we

want to obtain a better estimate of
∑
i≥0 |λ|−(i+1)‖θA∗iπ ◦Ai‖r, which might produce exponential

growth in the Sobolev norm (L2 norm of the derivatives of θA∗iπ ◦ Ai up to centain orders), the

partial norms that were introduced earlier in 4.1.2 come into play.

‖ωπ‖(∗)r ≤
∑

i≥0,(i≤0)

|λ|−(i+1)‖θA∗iπ ◦Ai‖(∗)r ≤
∑

i≥0,(i≤0)

|λ|−(i+1)‖A∗iπ‖−k· ‖θ‖r+k‖Ai‖(∗)r
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where ∗ stands for u, c, s. Roughly speaking, the idea is to apply partial norm as a bridge to achieve

the following inequalities

‖ω‖r ≤ max{‖ω‖(s)r , ‖ω‖(c)r , ‖ω‖(u)
r , ‖ω‖L2} ≤ C‖θ‖r+k.

For the stable directions

‖fA∗nπ ◦An‖(s)r ≤ ‖fA∗nπ‖r‖A∗n‖(s)r ≤ C‖An‖(s)r ‖Anπ‖−k‖f‖r+k, n ≥ 0

and the unstable directions

‖fA∗nπ ◦An‖(u)
r ≤ ‖fA∗nπ‖r‖A∗n‖(u)

r ≤ C‖A∗n‖(u)
r ‖A∗nπ‖−k‖f‖r+k, n < 0

where ‖An‖(s)r = ‖An|V s‖r = sup{v∈V s,‖v‖=1} ‖Anv‖r < 1 for n ≥ 0 and ‖A∗n‖(u)
r = ‖A∗n|V u‖r =

sup{v∈V u,‖v‖=1} ‖Anv‖r < 1 for n < 0. If r is chosen large enough such that ρr|λ|−1 > 1 where

ρ = ‖A|V u‖ > 1 and with
∑
π∈(Γ\N)∧0

‖π‖−k <∞ for k ≥ (m+ 1) + ([m2 ] + 1), m = dimN , we can
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get the following:

‖ω−‖(u)
r ≤ ‖ωπ0‖(u)

r +
∑

π∈(Γ\N)∧0

‖ωπ−‖(u)
r

≤ ‖ θπ0

λ− 1
‖(u)
r +

∑
π∈(Γ\N)∧0

∑
i<0

|λ|−(i+1)‖θA∗iπ ◦Ai‖(u)
r

≤ ‖ θπ0

λ− 1
‖r +

∑
π∈(Γ\N)∧0

∑
i<0

|λ|−(i+1)(‖Ai|V u‖r)‖θA∗iπ‖(u)
r

≤ ‖ θπ0

λ− 1
‖r +

∑
π∈(Γ\N)∧0

∑
i<0

|λ|−(i+1)‖Ai|V u‖r‖θπ‖(u)
r

≤ ‖ θπ0

λ− 1
‖r +

∑
π∈(Γ\N)∧0

∑
i<0

|λ|−(i+1)‖ρi‖r‖θπ‖(u)
r

≤ ‖ θπ0

λ− 1
‖r +

∑
π∈(Γ\N)∧0

∑
i<0

|λ|−1|λ−1ρr|i‖θπ‖(u)
r

≤ C(‖θπ0‖r +
∑

π∈(Γ\N)∧0

‖θπ‖r) ≤ C‖θπ0‖r + C ′
∑

π∈(Γ\N)∧0

‖π‖−k‖θ‖r+k

< C‖θ‖r+k

where ω− =
∑
π∈(Γ\N)∧ ωπ−.

As for ‖ω‖(s)r , we switch to the other formal solution and do the estimate in the partial norm

37



‖ · ‖(s)r to ω+ with ρ−1 = ‖A|V s‖ < 1

‖ω+‖(s)r ≤ ‖ωπ0‖(s)r +
∑

π∈(Γ\N)∧0

‖ωπ+‖(s)r

≤ ‖ θπ0

λ− 1
‖(s)r +

∑
π∈(Γ\N)∧0

∑
i≥0

|λ|−(i+1)‖θA∗iπ ◦Ai‖(s)r

≤ ‖ θπ0

λ− 1
‖r +

∑
π∈(Γ\N)∧0

∑
i≥0

|λ|−(i+1)(‖Ai|V s‖r)‖θA∗iπ‖(s)r

≤ ‖ θπ0

λ− 1
‖r +

∑
π∈(Γ\N)∧0

∑
i≥0

|λ|−(i+1)‖Ai|V s‖r‖θπ‖(s)r

≤ ‖ θπ0

λ− 1
‖r +

∑
π∈(Γ\N)∧0

∑
i≥0

|λ|−(i+1)‖ρ−i‖r‖θπ‖(u)
r

≤ C(‖θπ0‖r +
∑

π∈(Γ\N)∧0

‖θπ‖r)

≤ C‖θπ0‖r + C ′
∑

π∈(Γ\N)∧0

‖π‖−k‖θ‖r+k

< C‖θ‖r+k

where ω+ =
∑
π∈(Γ\N)∧ ωπ+.

Estimates of ‖ω‖(c)r

When it comes to ‖ω‖(c)r , we use a different approach by decomposing (Γ\N)∧0 into three parts

(Γ\N)∧0,u, (Γ\N)∧0,c and (Γ\N)∧0,s, where (Γ\N)∧0,u contains the elements π ∈ (Γ\N)∧0 whose center

component γ is dominated by γu, i.e. (‖γu‖ ≥ max{‖γs‖, ‖γc‖}), or write it as γ ↪→ V u, similarly

(Γ\N)∧0,c and π ∈ (Γ\N)∧0,s contain the elements π ∈ (Γ\N)∧0 whose γ is dominated by γc and γs

respectively.
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∑
π∈(Γ\N)∧0,u

‖ωπ+‖(c)r ≤
∑

π∈(Γ\N)∧0,u

∑
i≥0

|λ|−(i+1)‖θA∗iπ ◦Ai‖(c)r

≤
∑

π∈(Γ\N)∧0,u

∑
i≥0

|λ|−(i+1)‖Ai|V c‖r‖A∗iπ‖−k‖θ‖r+k

≤ C
∑

γ∈(Z∗n\{0})u

∑
i≥0,`∈Z

|λ|−(i+1)(‖A∗i2 γ‖+
|` · gcd(γ1, γ2, ..., γn)|

‖A∗i2 γ‖
)−k‖θ‖r+k

=
∑

`=0,γ∈(Z∗n\{0})u

∑
i≥0

|λ|−(i+1)(‖A∗i2 γ‖)−k‖θ‖k

+
∑

`∈(Z\{0}),γ∈(Z∗n\{0})u

∑
i≥0

|λ|−(i+1)(‖A∗i2 γ‖+
|` · gcd(γ1, γ2, ..., γn)|

‖A∗i2 γ‖
)−k‖θ‖k

≤
∑

γ∈(Z∗n\{0})u

∑
i≥0

|λ|−(i+1)(‖A∗i2 γ‖)−k‖θ‖k + C ′
∑

`∈(Z\{0}),γ∈(Z∗n\{0})u

∑
i≥0

|λ|−(i+1)(‖A∗i2 γ‖)−(k−4)`−2‖θ‖k

≤ C
∑

`∈(Z\{0}),γ∈(Z∗n\{0})u

∑
i≥0

|λ|−(i+1){(‖A∗i2 γu‖)−k + (‖A∗i2 γu‖)−(k−4)`−2}‖θ‖k

≤ C
∑

`∈(Z\{0}),γ∈(Z∗n\{0})u

∑
i≥0

|λ|−(i+1){(ρi‖γu‖)−k + (ρi‖γu‖)−(k−4)`−2}‖θ‖k

≤ C
∑

`∈(Z\{0}),γ∈(Z∗n\{0})u

∑
i≥0

|λ|−(i+1){(ρi‖γ‖)−k + (ρi‖γ‖)−(k−4)`−2}‖θ‖k

< C‖θ‖k

for k > n2 + 4 by Lemma 4.1.5.

If γs dominates, we can use the other solution ωπ− to attain a similar result and the computation

for γ ↪→ V s is of no essential difference with respect to the one we just did.

If γc turns out to be the dominated term (γ ∈ (Γ\N)∧0,c), we need the following Lemma.

Lemma 4.1.6 (Katznelson, [Kat71]). Let A be a r × r matrix with integer coefficients. Assume

that Rr splits as Rr = V ⊕ V ′ with V , V ′ invariant under A and such that A|V , A|V ′ have no

common eigenvalues. If V ∩ Zr = {0}, then there exists a constant τ such that d(m,V ) ≥ τ‖m‖−r
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for all m ∈ Zr, where ‖.‖ is Euclidean norm and d is Euclidean distance.

For a detailed proof, see Lemma 4.1 in [DK10].

As a corollary of Katznelson Lemma, we have

Remark 4.1.7. In particular, if A2 is ergodic and V = V s⊕V c in Lemma 4.1.6, then V ∩Zr = 0.

Therefore the above Lemma implies for m ∈ Zr

‖π1(m)‖ ≥ τ‖m‖−r

where π1(m) is the projection of m to V u, the expanding subspace for A, and V s, V c are the

contracting and neutral subspace respectively.

So no integer can stay mostly in the neutral direction for too long, after the time which is

approximately ln |m|, the expanding direction takes over. To be more precise,

‖Ai2γ‖ ≥ ‖Ai2γu‖ ≥ Cρi‖γu‖ ≥ τCρi‖γ‖−r ≥ τCρi−i0‖γ‖

for i ≥ i0 and i0 = [ (1+r) log ‖γ‖
log ρ ] + 1.

Lemma 4.1.8. If γc is the dominated term (γ ∈ (Γ\N)∧0,c), then

∑
π∈(Γ\G)∧0,c

‖ωπ+‖(c)r ≤ C‖θ‖r+k.

Proof.

‖ωπ+‖(c)r ≤
i0−1∑
i≥0

|λ|−(i+1)‖Aiπ‖−k‖θ‖r+k + C

∞∑
i=i0

|λ|−(i+1)ρ−(k−4)(i−i0)‖γ‖−(k−4)‖θ‖r+k
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and due to γc dominated and |λ| ≥ 1, we have

∑
π∈(Γ\G)∧0,c

‖ωπ+‖(c)r ≤
∑

γ∈(Z∗n2
\{0})c,`∈Z\{0}

i0−1∑
i≥0

|λ|−(i+1)(C1‖γc‖+
|` · gcd(γ1, γ2, ..., γn2)|

C2‖γc‖
)−k‖θ‖r+r

+
∑

γ∈(Z∗n2
\{0})c,`∈Z\{0}

∞∑
i=i0

|λ|−(i+1)(C1‖Ai2γ‖+
|` · gcd(γ1, γ2, ..., γn2)|

C2‖Ai2γ‖
)−k‖θ‖r+k

+
∑

γ∈(Z∗n2
\{0})c,`=0

∞∑
i=0

|λ|−(i+1)(C1‖Ai2γ‖+
|` · gcd(γ1, γ2, ..., γn2)|

C2‖Ai2γ‖
)−k‖θ‖r+k

≤ C
∑

γ∈(Z∗n2
\{0})c,`∈Z\{0}

|i0|‖γ‖−(k−4)(` · gcd |(γ1, γ2, ..., γn2)|)−2‖θ‖k+r

+ C ′
∑

γ∈(Z∗n2
\{0})c,`∈Z\{0}

∞∑
i=i0

|λ|−(i+1)ρ−(k−4)(i−i0)‖γ‖−(k−4)(` · gcd |(γ1, γ2, ..., γn2)|)−2‖θ‖r+k

+ C ′′
∑

γ∈(Z∗n2
\{0})c

(
i0−1∑
i=0

|λ|−(i+1)‖γ‖−k +
∞∑
i=i0

|λ|−(i+1)ρ−k(i−i0)‖γ‖−k)‖θ‖r+k

< C‖θ‖r+k

where γ = (γ1, γ2, ..., γn2) and k > log |λ|−1

log ρ + n2 + 4.

The first sum is bounded by the choice of i0, i0 ∼ log ‖γ‖; the second part is finite due to

the geometric series and integral test; the third one is convergent because of i0 ∼ log ‖γ‖ and the

geometric series.

After these preparations, we are ready to estimate ‖ω‖(c)r

‖ω‖(c)r ≤
∑

π∈(Γ\N)∧

‖ω‖(c)r

≤ ‖ωπ0‖(c)r +
∑

π∈(Γ\N)∧0,u

‖ωπ‖(c)r +
∑

π∈(Γ\N)∧0,c

‖ωπ‖(c)r +
∑

π∈(Γ\N)∧0,s

‖ωπ‖(c)r

< C‖θ‖r+k.

We have already pointed out that for |λ| < 1, the equation λω − ω ◦A = θ can be transformed
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to ω ◦ A−1 − λ−1ω = θ ◦ A−1 for |λ−1| ≥ 1. Therefore, the estimate for |λ| < 1 follows using

the other formal solution ωπ− = −
∑−∞
i=−1 λ

−(i+1)θ(A∗)iπ ◦ Ai and the fact that A−1 is an ergodic

automorphism, thus going backward for sufficient time, the contracting direction takes over. We

can use Lemma 4.1.6 for A−1 to attain a similar estimate.

In summary, we decompose Sobolev norm to L2-norm, unstable, central and stable partial norms

‖ω‖r ≈ ‖ω‖L2 + ‖ω‖(u)
r + ‖ω‖(c)r + ‖ω‖(s)r

where ≈ means two norms are equivalent. For the partial norm ‖ω‖(u)
r and ‖ω‖(s)r , the growth of

An can be well controlled directly. As for the ‖ω‖(c)r , we need to decompose representations into

unstable, central and stable parts and estimate each of them separately.

So we have shown obstructions vanishing is a necessary and sufficient condition for the corre-

sponding twisted coboundary equation to have a smooth solution with tame estimates. The next

stage is to use the higher rank condition to kill all the obstructions, we call this the higher rank

trick.

4.2 Higher Rank Trick

If λ, µ are simple eigenvalues of A,B respectively, then we consider solving the following system

λω − ω ◦A = f

µω − ω ◦B = g (4.12)

where f and g are Γ-periodic functions on N .

It is not difficult to see that if A and B commute and there exists a common solution to (4.12),

then (λg − g ◦A)− (µf − f ◦B) = 0.

Define

4λA(g) := λg − g ◦A,4µB(f) := µf − f ◦B

L(f, g) := 4µB(f)−4λA(g) = (µf − f ◦B)− (λg − g ◦A).
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We will see that L(f, g) = 0 is not only necessary but also sufficient for the existence of a

solution to (4.12) under the higher rank condition that A`Bk is ergodic on Γ\N and the induced

automorphism on Γ\[N,N ] is ergodic for every non-trivial (`, k) 6= (0, 0).

Lemma 4.2.1. If α is a higher-rank action and L(f, g) = 0, where f and g are Γ-periodic functions

then the equations (4.12)

λω − ω ◦A = f

µω − ω ◦B = g (4.13)

have a common smooth solution satisfying

‖ω‖r ≤ Cr max{‖f‖r+k, ‖g‖r+k} for r ≥ 0, k > n2 + 4 (4.14)

where n2 = dim(Γ\[N,N ]), the center dimension of the nilmanifold.

Proof. From L2(Γ\N) =
∑
π∈(Γ\N)∧ Hπ and any f ∈ L2(Γ\N), we have f =

∑
π∈(Γ\N)∧ fπ in

the L2 sense. If we put enough smoothness on f , the sum converges uniformly and absolutely,

see [CG90b]. As discussed before, the obstruction ϑAπ (f) =
+∞∑

k=−∞

λ−(k+1)fA∗kπ ◦ Ak vanishing is

equivalent to the coboundary equation having a solution with tame estimates, and we will see how

does the condition L(f, g) = 0 kill the obstructions. An important observation in the proof is that

4λA(ϑAπ (f)) = 0.

We start from the condition L(f, g) = 0

4λAg = 4µBf (4.15)

λg − g ◦A = µf − f ◦B,

and

4λAω = f (4.16)

4µBω = g.
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In order to show that the obstruction ϑBπ (g) = 0 and obtain a C∞ solution ω for the second

coboundary equation 4µBω = g, we pass the equation 4λAg = 4µBf to the dual space

B∑
(4µBf)π =

B∑
(4λAg)π (4.17)

A∑
(4λAg)π =

A∑
(4µBf)π

where
∑A

fπ := ϑAπ (f) =
∑+∞
i=−∞ λ−(i+1)fA∗iπ◦Ai, and similarly

∑B
gπ := ϑBπ (g) =

∑+∞
i=−∞ µ−(i+1)gB∗iπ◦

Bi.

For the first equation in (4.17), we can switch the order of
∑B and4µB since both sums converge

absolutely because f has enough smoothness.

B∑
(4µBf)π = 4µB

B∑
fπ =

∑
i∈Z

µ−ifB∗iπ ◦Bi −
∑
i∈Z

µ−(i+1)fB∗(i+1)π ◦Bi = 0

which implies
B∑

(4λAg)π = 0.

So, the obstruction for g is not only multiplied by µ under the action of B, but also multiplied by

λ under the action of A, i.e. λ
B∑
gπ =

B∑
gA∗π ◦A. Now apply iteration to the equation

λg − g ◦A = µf − f ◦B

by composing A on both sides and again passing the equation to the dual space, we have

B∑
(λg ◦A− g ◦A2)π =

B∑
(λgA∗π ◦A− gA∗2π ◦A2) = 0

implying

λ2
B∑
gπ = λ

B∑
gA∗π ◦A =

B∑
gA∗2π ◦A2.
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Follow the same iterative procedure,

λk
B∑
gπ =

B∑
gA∗kπ ◦Ak

for any k ∈ Z. Summing up all these equations together,

∑
k∈Z

λk
B∑
gπ =

∑
k∈Z

B∑
gA∗kπ ◦Ak. (4.18)

The double sum on the left-hand side of (4.18) does not converge unless
∑B

gπ = 0 while the

right-hand side of (4.18) converges absolutely because of the following computation when |µ| < 1.

∑
`∈Z

∑
i∈Z
‖µ−(`+1)gA∗iB∗`π ◦ (AiB`)‖L2 ≤

∑
`∈Z

∑
i∈Z
|µ|−(`+1)‖(A∗)i(B∗)`π‖−k‖g‖k

≤
∑
i∈Z

∑
`≥0

|µ|−(`+1)‖(A∗)i(B∗)`π‖−k‖g‖k +
∑
i∈Z

∑
`<0

|µ|−(`+1)‖(A∗)i(B∗)`π‖−k‖g‖k.

The second part converges because of a result from [CG90b] that we can choose k0 such that for

k > k0,
∑
π∈(Γ\G)∧0

‖π‖−k <∞. The first part is finite because of the following argument

∑
i∈Z

∑
`≥0

|µ|−(`+1)‖(A∗)i(B∗)`π‖−k‖g‖k ≤

∑
i≥0

∑
`≥0

|µ|−(`+1)(ρ−ikA )(ρ−lkB )‖γuu‖−k +
∑
i≤0

∑
`≥0

|µ|−(`+1)(ρikA )(ρ−lkB )‖γsu‖−k

where γuu ∈ V uA ∩V uB , γsu ∈ V sA ∩V uB , and k is properly selected such that |µρkB | > 1. We need that

both V uA ∩ V uB and V sA ∩ V uB be non-trivial, and this can be achieved by a good choice of ergodic

generators A and B, see Remark 4.2.3.

Therefore
∑B

gπ = 0,∀π ∈ (Γ\N)∧0 . Similarly,
∑A

fπ = 0,∀π ∈ (Γ\N)∧0 .

By Lemma 4.1.4, two formal solutions ω− and ω+ of each equation in (4.16) are C∞ functions

and they coincide.
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If ω solves the second equation 4µBω = g, then

4λA4
µ
B = 4λAg = 4µBf

4µB(4λAω − f) = 0

because of the commutativity of operators 4λA and 4µB .

The ergodicity of A,B implies that4λA,4
µ
B are injective operators on C∞ functions, see Remark

4.2.2. Therefore 4λAω = f , i.e. ω solves the first equation as well.

Remark 4.2.2. To prove 4λA is injective on C∞(Γ\N), we show λf − f ◦ A = 0 implies f = 0.

From λf = f ◦ A, we have λfπ = fA∗π ◦ A. Apply iteration, λif = fA∗iπ ◦ Ai, i ∈ Z. By summing

up all these equations together, we obtain
∑
i∈Z λ

ifπ =
∑
i∈Z fA∗iπ ◦ Ai. Since A is ergodic and f

is C∞, the right hand side converges in L2 norm. On the other hand, the left hand site converges

only if fπ = 0 for any π ∈ (Γ\N)∧0 . Since λ 6= 1, we also have fπ0 = 0 and conclude that f = 0.

Therefore, 4λA is injective.

In order to estimate the decay of fA∗iB∗`π ◦ (AiB`), see the following Remark regarding the

Lyapunov directions and a good choice of ergodic generators.

Remark 4.2.3. We would like to point out that there is always a good choice of ergodic generators

A,B that fit the computation purpose, that is, V uA ∩ V uB 6= {0} and V sA ∩ V uB 6= {0}. Here we

only consider the case of A,B being semisimple, i.e. no Jordan blocks will be involved, and A,B

share the common neutral invariant subspaces, otherwise the action generated by A,B would be

hyperbolic. The procedure can be broken down into two steps. Step 1: Choose A and B in distinct

Weyl Chambers, such that neither V uA = V uB , V
s
A = V sB nor V uA = V sB , V

s
A = V uB . Step 2: We

will argue that either V uA ∩ V uB 6= {0}, V sA ∩ V uB 6= {0} or V uA ∩ V uB−1 6= {0}, V sA ∩ V uB−1 6= {0}.

Suppose V uA ∩ V uB = {0}, then V uA ⊂ V sB and at the same time, V sA ∩ V sB 6= {0}, that is why

V uA ∩ V uB−1 6= {0}, V sA ∩ V uB−1 6= {0}, and we can replace {A,B} by {A,B−1}.
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4.3 Proof of the Main Theorem

4.3.1 Infinitesimal Rigidity

We are ready to prove the infinitesimal rigidity and explain its connection with studying coboundary

equations on nilmanifolds.

Let Λ be a finitely generated group, M a compact manifold and ϕ : Λ × M → M a C∞-

action of Λ on M . There is a natural “formal tangent space” at the point [ϕ] determined by

the action ϕ, which is given by the 1-cocycles over ϕ with coefficients in the smooth vector fields

on M . The 1-coboundaries form a closed subspace of the formal tangent space, and when these

two spaces are equal, the action is said to be infinitesimally rigid. Let H1(Λ,Vect∞(M)) =

Z1(Λ,Vect∞(M))/B1(Λ,Vect∞(M)), in other words, ϕ is said to be C∞-infinitesimally rigid if

H1(Λ,Vect∞(M)) is trivial. See 1.1 and [Hur95].

For the action α : Z2 × (Γ\N)→ (Γ\N) and R ∈ Z1(Z2,Vect∞(Γ\N)). Define

RA := R((1, 0)), RB := R((0, 1)). (4.19)

If δ2
vR = 0, then RA, RB satisfy the equation

L(RA, RB)
def
= (BRA −RA ◦B)− (ARB −RB ◦A) = 0. (4.20)

If R belongs to B1(Z2,Vect∞(Γ\N)), then RA, RB satisfy

AΩ− Ω ◦A = −RA (4.21)

BΩ− Ω ◦B = −RB

where A and B are ergodic generators, A = α((1, 0)), B = α((0, 1)) such that AlBk is ergodic for

any non-zero (`, k) ∈ Z2.

If A and B commute and there exists a common solution to equations (4.21), it is immediate
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that L(RA, RB) = 4BRA −4ARB = 0, where 4BRA = BRA −RA ◦B,4ARB = ARB −RB ◦A.

So H1 is trivial if L(RA, RB) = 0 implies the existence of Ω such that (4.21) hold.

Therefore the condition L(RA, RB) = 0 is not only necessary but also sufficient for the existence

of a solution to (4.21) under the higher rank condition.

The system (4.21) splits further into several simpler systems through appropriate basis and the

fact that A and B commute.

JAΩ− Ω ◦A = Θ

JBΩ− Ω ◦B = Ψ (4.22)

where JA is a matrix consisting of Jordan block of A corresponding to an eigenvalue of A, JB is

the corresponding block of B, and Θ and Ψ are vector valued Γ-periodic maps given by the maps

RA and RB . L(RA, RB) = 0 splits as

JAΨ−Ψ ◦A = JBΘ−Θ ◦B. (4.23)

We have proved infinitesimal rigidity for semisimple case in Lemma 4.2.1, and the elaboration for

general Jordan block will be explained in the end of this chapter.

4.3.2 Twisted Cohomology over a Zk Action with Coefficients in C∞(M)

For a Z2 action

ρ : Z2 → Diff∞(M),

acting on C∞(M) by f 7→ f ◦ ρ(g).

We can introduce the cohomology sequence

C0(Z2, C∞(M)) δ1−→ C1(Z2, C∞(M)) δ2−→ C2(Z2, C∞(M)) (4.24)
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where

δ1ω := (4λAω,4
µ
Bω) (4.25)

δ2(f, h) := 4λAh−4
µ
Bωf (4.26)

for λ, µ ∈ R and 4λAω = λω − ω ◦A,4µBω = µω − ω ◦B.

We have shown that H1
%(Z2, C∞(M)) = 0 in Lemma 4.2.1, and what remains to be proved is

H1
%(Z2,Vect∞(M)) = 0, and more generally, H1

%(Zk,Vect∞(M)) = 0 for k > 2.

Recall some notations in H1
%(Zk,Vect∞(M)). Let φ ∈ C0(Zk,Vect∞(M)) = Vect∞(M), β ∈

C1(Zk,Vect∞(M)) (maps from Zk to Vect∞(M)), and γ ∈ C2(Zk,Vect∞(M)) (maps from Zk×Zk

to Vect∞(M)). Coboundary operators are defined as

δ1
vφ(g) := %(g)∗φ− φ (4.27)

δ2
vβ(g1, g2) := (%(g2)∗β(g1)− β(g1))− (%(g1)∗β(g2)− β(g2)). (4.28)

For the first equation we have:

(DA) ◦ φ ◦A−1 − φ = Θ

(DB) ◦ φ ◦B−1 − φ = Ψ

this can be converted to

(DA) ◦ φ− φ ◦A = Θ ◦A

(DB) ◦ φ− φ ◦B = Ψ ◦B.

For a frame Y1, ..., Yn ∈ Vect∞(Γ\N) and φ(x) =
∑n
i=1 ωi(x)Yi, the first coboundary equation

δ1
vφ(g) = %(g)∗α− α can be written as

(DAg)[
n∑
i=1

ωi(%(g−1)(x))Yi]−
n∑
i=1

ωi(x)Yi =
n∑
i=1

θi(x)Yi (4.29)

where DAg is the matrix representation of D(%(g)) under the basis Y1, ..., Yn ∈ n. If D(%(g)) is
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diagonalizable, and for convenience, we assume it is the same basis Yi ∈ Vect∞(Γ\N), i = 1, ..., n

such that (DAg)Yk = λkYk, k = 1, ..., n. Then the system (4.29) can be reduced to a family of

coboundary equations, which have been solved in Theorem 4.1.4. That is why we are interested in

solving a single coboundary equation

λω − ω ◦Ag = θ

where Ag = %(g) for one g ∈ Zk. Similarly, we can interpret the second coboundary equation

δ2
vβ(g1, g2) = (%(g2)∗β(g1) − β(g1)) − (%(g1)∗β(g2) − β(g2)) in the same basis Y1, ..., Yn ∈ n such

that β(g1) =
∑n
i=1 fiYi, β(g2) =

∑n
i=1 hiYi for C∞-functions fi, hi : Γ\N → R.

{(DB)[
n∑
i=1

fi(%(g−1
2 ))Yi]−

n∑
i=1

fiYi} − {(DA)[
n∑
i=1

hi(%(g−1
1 ))Yi]−

n∑
i=1

hiYi} =
n∑
i=1

ϕiYi (4.30)

where DA is the matrix representation of D(%(g1)), DB is the matrix representation of D(%(g2))

in the basis Y1, ..., Yn ∈ g, A = %(g1), B = %(g2) and β(g1)(x) =
∑n
i=1 fi(x)Yi(x), β(g2)(x) =∑n

i=1 hi(x)Yi(x). If DA,DB are semisimple, then there exist Yk ∈ Vect∞(Γ\N), k = 1, ..., n such

that (DA)Yk = λkYk, (DB)Yk = µkYk, k = 1, ..., n, and the question can be reduced to

(µf ◦B−1 − f)− (λh ◦A−1 − h) = ϕ

which is equivalent to

(µf ◦A− f ◦A ◦B)− (λh ◦B − h ◦B ◦A) = ϕ ◦A ◦B.

If we set fA = f ◦ A, hB = h ◦ B,ϕ′ = ϕ ◦ A ◦ B, then the equation becomes (µfA − fA ◦ B) −

(λhB − hB ◦A) = ϕ′. Here we consider ϕ = 0, so the equation is

(µfA − fA ◦B)− (λhB − hB ◦A) = 0.

We can refer to Lemma 4.2.1 and conclude that H1
%(Zk,Vect∞(M)) = 0.
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Suppose there are some Jordan blocks in the matrix representations DA and DB, i.e., DA and

DB are not simultaneously diagonalizable (We repeat the calculation with Jordan blocks here for

the sake of completeness, see [DK10]). Choose a basis in which DA is in its Jordan form, then in

the same basis DB has block diagonal form. We can take m×m blocks JA and JB corresponding

to eigenvalues λ and µ of DA and DB, respectively and (4.30) splits into equation

(JBF ◦B−1 − F )− (JAH ◦A−1 −H) = 0

which is equivalent to

(JBF ′ − F ′ ◦B)− (JAH ′ −H ′ ◦A) = 0 (4.31)

where F ′ = F ◦ A,H ′ = H ◦ B. Let JA = (aij), aii = λ for i = 1, ...,m and ai,i+1 = ∗i ∈ {0, 1}

for i = 1, ...,m − 1 and JB = (bij) where bii = µ for i = 1, ...,m and bi,i+1 = ∗i ∈ {0, 1} (λ is an

eigenvalue of A, µ is an eigenvalue of B). Equation (4.31) splits into m equations and we call them

(EQ)k.

(4µBfk +
m∑

i=k+1

bkifi)− (4λAhk + ∗khk+1) = 0 (4.32)

where k = 1, ...,m and fi, hi are coordinate functions of F,H respectively. For k = m the equation

(EQ)m becomes

4µBfm −4
λ
Ahm = 0.

Since L(fm, hm) = 0, there exists ωm which solves simultaneously the last of m pairs of equations in

(4.22), namely the equations 4λAωm = fm and 4µBωm = hm. Now the (m− 1)-st part of equations

in (4.22) is

4λAωm−1 + ∗m−1ωm = fm−1 (4.33)

4µBω + bm−1,mωm = hm−1,
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while the cocycle condition for fm−1 and hm−1 is

4µBfm−1 + bm−1,mfm−1 = 4λAhm−1 + ∗m−1hm−1. (4.34)

By substituting fm = 4λAωm and hm = 4µBωm into (4.34), we obtain that

L(fm−1 − ∗m−1ωm, hm−1 − bm−1,mωm) = 0

which allows us to conclude that there exists some ωm−1 solving the system (4.33).

Now we proceed by induction. Fix k between 1 and m − 2 and assume that for all i ≥ k, we

have obtained a solution ωi, i.e., for every i = k + 1, ...,m we have a C∞ function ωi which solves

the i-th pair of equations of (4.22):

4λAωi + ∗iωi+1 = fi (4.35)

4µBωi +
m∑

`=i+1

bi`ω` = hi.

We wish to find ωk that solves the k-th pair of equations in (4.22):

4λAωi + ∗iωi+1 = fi (4.36)

4µBωi +
m∑

`=i+1

bi`ω` = hi

providing that the k-th equation in (4.23) is satisfied by fk and hk; i.e.,

4µBfk +
m∑

i=k+1

bkifi = 4λAhk + ∗khk+1. (4.37)

Now we use the fact that all the subsequent pairs of equations are sloved; i.e., we substitute all fi

for i = k + 1, ...,m and the hk+1 into (4.37) using their expression as in (4.35). This implies

4µBfk +
m∑

i=k+1

(bki4λAωi + ∗ibkiωi+1) = 4λAhk + ∗k4µBωk+1 +
m∑

i=k+1

bk+1,i+1ωi+1.
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Since A and B commute, by simply comparing coefficients, we have

∗ibki = ∗kbk+1,i+1

for any fixed k between 1 and m− 1 and for all i = k + 1, ...,m− 1. Together with the linearity of

operators 4λ and 4µ to simplify the above expression to

4µB(fk − ∗kωk+1) = 4λA(hk −
m∑

i=k+1

bkiωi).

Thus the functions fk − ∗kωk+1 and hk −
∑m
i=k+1 bkiωi satisfy the solvability condition L(fk −

∗kωk+1, hk −
∑m
i=k+1 bkiωi) = 0 and again we can conclude that pair of equations (4.37) has a

common C∞ solution ωk.

Since k is an arbitrary integer between 1 and m− 1, it follows that there exists a solution Ω to

(4.22) providing the condition (4.22) is satisfied. This can be repeated for all corresponding blocks

of A and B. Therefore, we prove that the infinitesimal rigidity for higher rank partially hyperbolic

actions on a family of 2-step nilmanifolds. When it comes to tame estimates for vector fields, there

may be more loss if Jordan blocks are involved.
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