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Abstract
Genetic incompatibilities can emerge as a by-product of genetic divergence. Ac-

cording to Dobzhansky and Muller, alleles at different loci that have fixed in

different genetic backgrounds may be incompatible when brought together in

a hybrid. Orr showed that the number of Dobzhansky–Muller incompatibilities

(DMIs) should accumulate faster than linearly—i.e., snowball—as two lineages

diverge. Several studies have attempted to test the snowball model using data

from natural populations. One limitation of these studies is that they have fo-

cused on predictions of the snowball model but not on its underlying assump-

tions. Here I use a computational model of RNA folding to test both predictions

and assumptions of the snowball model. In this model, two populations are al-

lowed to evolve in allopatry on a holey fitness landscape. I find that the number

of DMIs involving pairs of loci (i.e., simple DMIs) does not snowball—rather,

it increases approximately linearly with divergence. I show that the probabil-

ity of emergence of a simple DMI is approximately constant, as assumed by the

snowball model. However, simple DMIs can disappear after they have arisen,

contrary to the assumptions of the snowball model. This occurs because simple

DMIs become complex (i.e., involve alleles at three or more loci) as a result of

later substitutions. I introduce a modified snowball model—the melting snow-

ball model—where simple DMIs can become complex after they appear. The

melting snowball model can account for the results of the RNA-folding model. I

also find that complex DMIs are common and, unlike simple ones, do snowball.
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Reproductive isolation, however, does not snowball because DMIs do not act in-

dependently of each other. I also test the snowball model at the population level

using an individual-based model. Using this model, I show that recombination

rate, gene flow, and ancestral polymorphism can slow down the snowballing of

incompatibilities between diverging populations. These factors result in selec-

tion for mutationally robust genotypes, and genotypes that are more resistant to

mutations are also more resistant to introgressions, which reduces the number of

DMIs.
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Chapter 1

Incompatibilities: A Guide for the

Perplexed

The view generally entertained
by naturalists is that species,
when intercrossed, have been
specially endowed with the
quality of sterility, in order to
prevent the confusion of all
organic forms.

Darwin (1859, p. 246)

It is quite possible to think of a
world in which species do not
exist but are replaced by a
single reproductive community
of individuals.

Mayr (1942, p. 282)
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1.1 Where do species come from?

To ask why there are species is to ask one of the most fundamental questions in

evolutionary biology (Sherratt and Wilkinson 2009). While the very first step in

answering this multifaceted question, i.e., to define species, has been vigorously

discussed and debated over the years (Dobzhansky 1937; Mayr 1942; Sokal and

Crovello 1970; van Valen 1976; Wiley 1978; Templeton 1980; Cracraft 1987), many

have, either explicitly or implicitly, used the biological species concept, it being

one of the more pragmatic definitions. The biological species concept turns the

quandary of speciation into a much more modest, yet still challenging, question

about the emergence of reproductive isolation (RI).1 To presume an intimate as-

sociation between species and RI dates back to the era before Darwin. Even the

unknown author writing on Espèce in Encyclopédie define the species as “... noth-

ing else than a constant succession of similar individuals that reproduce [among]

themselves.” (Diderot and d’Alembert 1751, vol. 5, p. 957)

Using RI as our yardstick, we can envision speciation as the gradual accu-

mulation of divergent genetically based characteristics in different populations.

Some of these divergent characteristics, known as reproductive isolating barriers,

1While Mayr is usually credited with introducing the concept of biological species
concept, he himself cited Poulton (1908) and Jordan (1905), since they had already intro-
duced this species concept (Mallet 2004).
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decrease the level of interbreeding between populations (Table 1.1). As popula-

tions diverge, isolating barriers accumulate, and the level of RI among popula-

tions increases (Coyne and Orr 1989, 1997; Sasa et al. 1998; Edmands 2002; Fitz-

patrick 2002; Presgraves 2002; Lijtmaer et al. 2003; Mendelson et al. 2004; Bolnick

and Near 2005; Johnson 2006; Gourbière and Mallet 2010; Giraud and Gourbière

2012). Eventually RI reaches a point where two of these populations are consid-

ered distinct species.

For Darwin the presence of RI, in the form of inviable and/or sterile hybrids,

posed a serious challenge: why would natural selection favor a trait as seemingly

disadvantageous as hybrid inviability/sterility? While Darwin has on many oc-

casions, been accused of bungling his attempt to address the question of speci-

ation, thus failing to live up to the title of his magnum opus, not least by his

defender par excellence, Huxley (1863, p. 148), a close reading of his chapter on

hybrids in On the origin of species reveals his attempt at deciphering this mys-

tery of mysteries.2 But in spite of his best efforts coupled with his characteristic

meticulousness, his description of hybrid sterility/inviability is a mishmash of

ecological and genetic isolating barriers. The lack of a genetic understanding of

RI meant that Darwin could not offer a more crystalline conclusion than “... the

degree of difficulty in uniting two species, and the degree of sterility of their

hybrid-offspring should generally correspond, though due to distinct causes; for

both depend on the amount of difference of some kind between the species which

2Reznick (2010) even suggests that relating Darwin’s writing on species to our current
research program is foolhardy since Darwin did not distinguish between varieties and
species as we do.
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Table 1.1: Isolating barriers

Category

Prezygotic

Potential mates live in the same place, but do not meet either due to habitat

isolation or temporal isolation.

Behavioral isolation (potential mates meet, but choose not to mate.)

Mechanical isolation (mating is not possible due to morphological

differences.)

Gametic isolation (male gametes are transferred, but egg is not

fertilized.)

Postzygoric

Zygote dies early in embryogenesis.

F1 hybrids are inviable or sterile.

F2 hybrids are inviable or sterile.

After Dobzhansky (1937); Coyne and Orr (2004); Johnson (2006); Barton et al.
(2007); Ptacek and Hankison (2009).

are crossed” [p. 278]. Although this conclusion is as good an explanation as

one could hope for in the 19th century (Sloan 2008), Darwin’s explanation does

not provide a mechanism that could explain the occurrence of hybrid inviability

and/or sterility in nature.

The first step in resolving the dilemma of hybrid inviability and/or sterility is

to disentangle the different isolating barriers that result in the defective hybrids

(Table 1.1).
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1.2 The varieties of prezygotic isolation

The prezygotic isolating barriers include an array of different barriers, all acting

before the formation of the zygote. If two different species inhabit two different

environments, then the probability that a member of one species would stum-

ble upon someone form the other species is greatly diminished. Genetic diver-

gence can cause such habitat isolation by making a species inept at functioning

in the habitat occupied by another species. Competition can also result in “habi-

tat balkanization” (Coyne and Orr 2004, p. 182). Wang et al. (1997) shows this

habitat isolation in two subspecies of Artemisia tridentata, where each subspecies

is more adapted to its native habitat.

Breeding at different times can result in temporal isolation. This type of iso-

lation can be caused by different responses to an event in the environment such

as tides or it can be identical responses to different events. Habitat differentiation

can also indirectly cause temporal isolation (Coyne and Orr 2004, p. 206).

Behavioral isolation can occur in animals and hinges on behavioral cues and

mismatch between behavioral signals can prevent mating and prevent gene flow

between species (Kaneshiro 1980).

One of the more obvious manifestations of prezygotic isolation is mechanical.

In its simplest form, mechanical isolation stems from male and female genitalia

of two different species not fitting in one another. In damselflies (Coenagrion-

idae family), a male grasps at a female’s thorax with its abdominal appendages.

In several species of damselfly, interspecific mating fails because a male cannot

5



secure a firm grip on the female’s thorax (Paulson 1974).

It is possible for isolating barriers to happen after mating but before the for-

mation of the zygote. Historically, gametic isolation had been neglected since

it is difficult to study, but in recent decades this mode of isolation has been the

subject of several studies (Coyne and Orr 2004, p. 232).

1.3 The causes of postzygotic isolation

A number of genetic mechanisms can result in postzygotic isolation (Maheshwari

and Barbash 2011):

Chromosomal rearrangements. Mating between parents that differ in their

karyotypes can result in hybrids with aneuploidy, inversions, or meiotic

defects. For instance the infertility of mule (~ horse × | donkey) and hinny

(~ donkey × | horse) is caused by aneuploidy since both mule and hinny

have 2n = 63 whereas their parents, horse and donkey, have 2n = 64 and

2n = 62, respectively (Allen and Short 1997).3

Haploinsufficiency. Hybrids that lack copies of necessary genes are doomed

to sterility or inviability. Masly et al. (2006) show that crossing Drosophila

melanogaster (mel) females with D. simulans (sim) males can result in hybrids

that lack a single copy of JYAlpha gene. This gene, which encodes the alpha

3For a comprehensive look at the history of the chromosomal speciation theory and
its different manifestations in nature see Brown and O’Neill (2010).
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subunit of Na+/K−ATPase, resides on the fourth chromosome of mel but

in sim it is found on the third chromosome.This transposition means some

of the hybrids carry just a single copy of JYAlpha, causing them to become

sterile.

Sequence Divergence. The mere existence of molecular differences at the

DNA level between the parents can potentially disrupt crossing-over dur-

ing meiosis and cause hybrid incompatibility. Two species of Saccharomyces

(S. cerevisiae and S. paradoxus) have been used to demonstrate that mere se-

quence divergence can, in fact, cause RI because the mismatch repair sys-

tem, which involves resolving heteroduplex structures during meiosis, can-

not operate fully if the two parental sequences are greatly divergent (Greig

et al. 2003).

Transposable Elements. There are multiple instances of transposable ele-

ments or noncoding repeats causing RI (Michalak 2008). The cross between

two species of wallabies, Macropus eugenii and Wallabia bicolor, can activate

hitherto dormant transposable elements in the hybrids (O’Neill et al. 1998).

Dosage Imbalances. Josefsson et al. (2006) used Arabidopsis thaliana and A.

arenosa to show that only carrying certain proportions of parental genomes

results in functional hybrids. Josefsson et al. (2006) suggest that the cause

of the hybrid incompatibility might be related to insufficient amount of ma-

ternal or paternal regulatory elements needed to compensate for the excess

or scarcity of certain genes in the hybrids.

7



The last cause of hybrid incompatibility, commonly referred to as the Dobzhansky-

Muller (DM) model is at the center of this thesis and thus demands to be ex-

plained fully.

1.4 The Dobzhansky-Muller model of genetic incom-

patibilities

The inception of the Dobzhansky-Muller (DM) model of genetic incompatibili-

ties and its relation to speciation can be traced back to Dobzhansky (1937) and

his seminal work, Genetics and the origin of species (Orr 1996; Gavrilets 2004; John-

son 2009). Lewontin (1974) described the study of the genetics of speciation as

a “methodological impossibility”, given the difficulties involved in studying the

hybrids. But a discovery in 1922 made it feasible for the fly geneticists to cir-

cumvent this “methodological impossibility”. Donald Lancefield realized that

crossing Drosophila persimilis with Drosophila pseudoobscura yields fertile female

hybrids, in addition to the sterile male hybrids. This discovery was the panacea

geneticists interested in studying speciation so desperately needed (Orr 1996).

Dobzhansky’s insight into the genetics of speciation, later bolstered by Muller

(1942), can be traced to Lancefield’s breakthrough.4

4Orr (1996) argues that Bateson deserves credit for the DM model, as he suggested
the possibility that “complementary factors” between species can result in the hybrid
sterility. Conversely, Forsdyke (2011), who is one of the authors of a comprehensive
biography on William Bateson (Cock and Forsdyke 2008), suggests that a careful reading
of Bateson reveals the non-genic nature of his ideas that cannot be equated with the type
of epistatic interaction the DM model is based upon.
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Figure 1.1: An example of a simple DM incompatibility (DMI) between D.
melanogaster and D. simulans. The two derived versions of ancestral alleles , Lhr
and Hmr, which are located at different loci,are functional in D. simulans and D.
melanogaster respectively, but are deleterious when brought together in the hy-
brid.

The elegance of the DM model lies in its simplicity. In figure 1.1, two de-

rived versions of ancestral alleles arose in Drosophila simulans and D. melanogaster.

While selection demands the derived version of Lhr to be compatible with the ge-

netic background in which it arose, i.e., the D. simulans genome, there is no guar-

antee that the same mutations would be beneficial or neutral in a different genetic

background, such as that of D. melanogaster. In this scenario, the two derived are

indeed incompatible when brought together in the hybrid. Lhr and Hmr encode

proteins that are involved in suppression of transposable elements and satellite

DNAs. Hence hybrid lethality is caused by overexpression of transposable ele-

ments related to heterochromatin regulation (Satyaki et al. 2014).

The interest in the DM model over the years has resulted in a extensive cat-

alog of genes that negatively interact with each other and thus result in hybrid

9



inviability or sterility (reviewed in Presgraves 2010b; Rieseberg and Blackman

2010; Maheshwari and Barbash 2011). Although the varieties of molecular symp-

toms that result from DM interactions are impressive, one has to wonder about

the number of these incompatibilities between different lineages with varying de-

grees of divergence. It turns out that the DM model can provide us with testable

predictions regarding this point.

1.5 The snowball model

Let us start with an ancestral sequence and allow two lineages starting from the

same ancestor to accumulate mutations. While the first mutation cannot result

in an incompatibility since it arose in the ancestral background and ought to be

compatible with it, the second mutation can result in a pairwise incompatibility

(Figure 1.2).

The genetic incompatibilities can be classified according to the number of loci

involved in them. A simple DMI is an incompatibility between two different

loci. A complex DMI arises when more than two loci participate in its formation

where all the participating alleles are needed to cause the incompatibility. It is

needless to say that complex incompatibilities come in varying orders, e.g., three-

way, four-way, etc., but for the moment I will focus on simple incompatibilities.

The new substitution k can potentially be incompatible with alleles at k − 1

diverged loci. Any of these potential incompatibilities can be a DMI according
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Figure 1.2: The accumulation of a simple DMI follows from the divergence be-
tween two lineages. The first mutation (A4 → D4) cannot cause a genetic in-
compatibility since it arose in the ancestral background and has to be compatible
with the ancestral alleles. However, the second mutation (A3 → D3) arose in a
background where A4 did not exist. There is a probability p that the potential
incompatibility between D3 and A4 does in fact result in a DMI.
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to the probability p. So the total number of incompatibilities after k substitutions

will be

Ik = Ik−1 + (k− 1)p (1.1)

where Ik−1 is the number of simple incompatibilities that accumulated after k− 1

substitutions. Assuming I1 = 0, the solution to Equation 1.1 is

Ik =
k(k− 1)p

2
. (1.2)

Equation 1.2 predicts that the number of simple incompatibilities will accu-

mulate faster than linearly as a function of divergence, a pattern Orr (1995) de-

scribed as “snowballing.” This prediction assumes that p remains constant as

populations diverge. These simple incompatibilities can occur between an ances-

tral and a derived allele or between two derived alleles.

Complex incompatibilities are also expected to snowball but following differ-

ent relationships from that in Equation 1.2: incompatibilities of order n are ex-

pected to accumulate at a rate approximately proportional to kn (Orr 1995; Welch

2004).

1.6 RNA-folding model

RNA has certain properties that makes it suitable to study epistatic interactions:

Firstly, there is a direct relationship between the genotype, i.e., the string of nu-

cleotides, and the phenotype, i.e., the secondary structure of the RNA. Secondly,
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computational algorithm can predict the secondary structure of a RNA sequence.

The RNA-folding model has been used to study other evolutionary consequences

of epistasis, including robustness (van Nimwegen et al. 1999; Ancel and Fontana

2000), evolvability (Wagner 2008; Draghi et al. 2010), and the rate of neutral sub-

stitution (Draghi et al. 2011).

Predicting the minimum free-energy (MFE) of a RNA sequence using a com-

putationally efficient algorithm is possible if we assume that the effect of a base-

pair on MFE is solely dependent on its nearest neighbors. The MFE structure

then is simply the most probable structure given the combined MFE effects of its

base-pairs (Zuker and Stiegler 1981; Do et al. 2006; Hamada et al. 2009; Bindewald

et al. 2010; Sato et al. 2011; Swenson et al. 2012) (Figure 1.3A). But how reliable are

these MFE predictions? Bernet and Elena (2015) introduce a set of single and dou-

ble substitutions into 5’-UTR of Tobacco etch virus. They proceeded to measure

the fitness effect of these mutations in a test tube. Bernet and Elena (2015) found

that the fitness effects measured experimentally do correlate positively with the

effects predicted by RNA-folding algorithm.5

I used the ViennaRNA package 2.1.9 (Lorenz et al. 2011) with default param-

eters to compute the minimum free-energy (MFE) secondary structure of each

sequence. The similarity between two MFE structures can be quantified using

the base-pair distance between the two structures. Base-pair distance is defined

as the number of base-pairs required to convert one MFE structure into another

5Bernet and Elena (2015) utilized the RNAfold program from the ViennaRNA package
version 1.6.4 and the LocARNA webserver
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(Figure 1.3B). I used the base-pair distance to calculate the fitness of RNA se-

quence i using the step function:

wi =


1 if βi > α and δi 6 α

0 otherwise

(1.3)

where βi is the number of base pairs in the secondary structure of sequence i, δi

is the base-pair distance between the structure of sequence i and the reference

structure, and α is an arbitrary threshold. Unless otherwise stated we used α =

12.

1.7 Evolving on a holey fitness landscape

The fitness function in Equation 1.3 specifies a neutral network (Schuster et al.

1994; van Nimwegen et al. 1999), a type of holey fitness landscape (Figure 1.3). A

holey fitness landscape, first introduced by Gavrilets (2004), is an approximation

of a rugged landscape where valleys are replaced by holes and the all the viable

genotypes form ridges. As Gavrilets (2004) points out, speciation can occur on a

holey landscape, where two species which started from a common ancestor are

now separated by holes on the fitness landscape.
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Figure 1.3: The secondary structure of a RNA sequence can be determined using
a computationally efficient algorithm such as vienna RNA package used here
(A). A single substitution (G7 → C7) results in a MFE structure (right) that is one
base-pair distance away from the original structure (B).
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Figure 1.3 (previous page): Evolution on a holey fitness landscape. Mutational
network of RNA sequences. Lines connect sequences of 20 nucleotides that can
be reached by a single nucleotide substitution. Only a tiny fraction of the entire
mutational network of∼ 1012 sequences is shown. Furthermore, only a few of the
60 mutational neighbors of each sequence are shown. A sequence is viable (yel-
low, blue or gray circles) if its secondary structure both has more than α = 2 base
pairs and is at most α = 2 base pairs away from the reference structure (yellow
circle); a sequence is inviable otherwise (red circles) (Equation 1.3). Each simu-
lation starts with a burn-in period where a sequence with the reference structure
undergoes 3 neutral substitutions (dashed blue lines). After that, the resulting se-
quence is used as the ancestor of two lineages that alternately accumulate neutral
substitutions until they have diverged at k = 8 sites (solid blue lines).

1.8 Summary

In the next chapter I attempt to test the assumptions of the snowball model. Us-

ing the RNA-folding model described above, combined with an exhaustive intro-

gression approach, I test if the number of simple DMIs in fact snowballs.

In the third chapter I investigate the effects of recombination, migration, and

polymorphism on the patterns of accumulation of genetic incompatibilities.

The final chapter is an attempt to make sense of the results from the monmor-

phic model and the population level model, and to juxtapose them with what is

known from nature.
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Chapter 2

Spiraling complexity: a test of the

snowball effect

To expect that the intricacies of
science will be pierced by a
careless glance, or the
eminences of fame ascended
without labour, is to expect a
particular privilege, a power
denied to the rest of mankind;
but to suppose that the maze is
inscrutable to diligence, or the
heights inaccessible to
perseverance, is to submit
tamely to the tyranny of fancy,
and enchain the mind in
voluntary shackles.

Samuel Johnson, The Rambler,
9 July 1751
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The snowball model has been the center of several studies since its conception.

In this chapter, I will expand some of the famous studies which attempted to

corroborate the snowball model and then use the RNA-folding model to test the

assumptions of the snowball model.

2.1 The quest to validate the snowball model

Several studies have attempted to test the snowball model. They have employed

three different approaches. First, using postzygotic RI as a proxy for the number

of DMIs. For example, Larcombe et al. (2015) measured the strength of hybrid

incompatibility between Eucalyptus globulus and 64 species of eucalypts. They

observed a faster than linear increase in RI with genetic distance, consistent with

the prediction of the snowball model. Results from other studies using a similar

approach have provided little support for the snowball model (Coyne and Orr

1989, 1997; Sasa et al. 1998; Fitzpatrick 2002; Presgraves 2002; Lijtmaer et al. 2003;

Mendelson et al. 2004; Bolnick and Near 2005; Gourbière and Mallet 2010; Giraud

and Gourbière 2012), leading some to pronounce the snowball “missing” (John-

son 2006; Gourbière and Mallet 2010). However, this indirect approach cannot

provide a strong test of the snowball model because it relies on the untested an-

cillary assumption of a linear relationship between the number of DMIs and RI.

This assumption will not be met if, for example, DMIs do not act independently

on RI (Orr 1995; Welch 2004).

The second approach to testing the snowball model involves estimating the
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number of DMIs directly. For example, Moyle and Nakazato (2010) used a QTL

mapping approach to test the snowball model in species of Solanum. They intro-

gressed one or a few genomic segments from one species to another. When an

introgressed segment caused a reduction in fitness, they concluded that it partici-

pated in a DMI. They found that DMIs affecting seed sterility accumulated faster

than linearly, in agreement with the prediction of the snowball model. How-

ever, DMIs affecting pollen sterility appeared to accumulate linearly, contrary to

the snowball model. Studies following this second approach (Matute et al. 2010;

Moyle and Nakazato 2010; Matute and Gavin-Smyth 2014; Sherman et al. 2014;

Wang et al. 2015) are likely to underestimate the true number of DMIs for two

reasons. First, the introgressed genomic segments typically contain many genetic

differences. For example, the individual segments introgressed in Moyle and

Nakazato (2010) included approximately 2–4% of the genome, and likely con-

tained hundreds of genes. Second, individual alleles might participate in multi-

ple DMIs, specially if complex DMIs are common.

The third and final approach is ingenious because it does not require the direct

study of hybrids. Consider two species, 1 and 2, diverged at k loci. If an allele,

X2, at one of these loci (X) is known to be deleterious in species 1 but is fixed

in species 2, then species 2 must carry compensatory alleles at one or more loci

(Y2, Z2, . . . ) that are not present in species 1 (which carries alleles Y1, Z1, . . . at

those loci). In other words, there must be a DMI involving the X2 and Y1, Z1, . . .

alleles.

Following Welch (2004), I define P1 as the proportion of the k fixed differences
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between the species where the allele from one species is deleterious in the other

species. If each allele participates at most in one DMI, then P1 = Ik/k. This

relationship assumes that p is low. If, in addition, P1 is entirely based on simple

DMIs, then it is expected to increase linearly with genetic distance according to

the snowball model (Equation 1.2; Welch 2004)

P1 =
(k− 1)p

2
. (2.1)

Kondrashov et al. (2002) and Kulathinal et al. (2004) estimated P1 in mammals

and insects, respectively. Surprisingly, both studies reported that P1 ≈ 10% and

is constant over broad ranges of genetic distances (e.g., human compared to ei-

ther nonhuman primates or fishes, Kondrashov et al. 2002). These results are

inconsistent with the prediction of the snowball model (Welch 2004; Fraı̈sse et al.

2016).

The tests of the snowball model outlined above give inconsistent results. Specif-

ically, the most direct approaches (i.e., the second and third) give opposite results,

a paradox first noted by Welch (2004). One common limitation to all approaches

is that they focus on testing predictions of the snowball model, without testing

its assumptions (e.g., constant p). Furthermore, each approach makes additional

assumptions that also go untested (e.g., DMIs act independently on RI).
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2.2 Methods

2.2.1 Simulating the snowball using RNA folding

I begin by picking a random RNA sequence that meets the conditions of eq 1.3,

define its secondary structure as the reference, and allow it to accumulate 200

random neutral substitutions sequentially, allowing multiple hits. The resulting

sequence is used as the ancestor. Table 2.1 shows summary statistics for the an-

cestral sequences for α = 12.

The burn-in period is necessary because the initial sequence is not represen-

tative for the fitness landscape. For example, it has the reference structure (i.e.,

δi = 0 base pairs), whereas most sequences in the fitness landscape are δi ≈ α

base pairs away from the reference structure.

The ancestor is used to found two identical haploid lineages. The lineages

evolve by alternately accumulating a series of neutral substitutions without gene

flow (allopatry) until they differ at k = 40 sites. At a given step, one of the

evolving sequences is subjected to a random mutation. If the mutation is neutral,

it is allowed to substitute; if it is deleterious, it is discarded and a new random

mutation is tried. The process is repeated until a neutral mutation is found. At

the next step, the other evolving lineage is subjected to the same process.

At each step, the only sites that are allowed to mutate are those that have

not yet undergone a substitution in either lineage since the lineages have started

to diverge from their common ancestor. This constraint implies that no more
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Table 2.1: Properties of the 103 ancestors used in the simulations with α = 12

Property Mean S.D.∗

Sequence

GC content 0.49 (0.05)

Hamming distance from the reference

sequence 56.16 (5.30)

Structure

Minumum free energy (kcal mol−1) –22.56 (5.70)

Number of base pairs 24.91 (4.16)

Proportion of inviable single mutants 0.57 (0.11)

Number of potential DMIs per site 8.99 (5.70)

Base pair distance from the reference

sequence 11.29 (1.03)

Ensemble

Base pair distance between pairs of

sequences 49.51 (6.01)

∗ Standard deviation
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than two alleles are observed at each site during the course of evolution and

that substitutions are irreversible, in agreement with the assumptions of Orr’s

(1995) model. All types of base-substitution mutations have equal probability.

Insertions and deletions are not considered.

2.2.2 How to find DMIs

In this section I use the general terms genotypes, loci and alleles, instead of se-

quences, sites and nucleotides.

Two genotypes, 1 and 2, both have fitness w = 1 and differ at k ≥ 2 loci.

Loci are denoted by A, B, C, . . . The alleles of genotype 1 are indicated by a sub-

script 1 (A1, B1, C1, . . . ); the alleles of genotype 2 are indicated by a subscript 2

(A2, B2, C2, . . . ). Introgression of the A1 and B1 alleles from genotype 1 to geno-

type 2 is denoted 1 A,B−−→ 2.

Simple DMIs: There is a simple DMI between the A1 and B2 alleles if all of

the following 6 conditions are met.

1. The single introgression 1 A−→ 2 results in an inviable genotype (Figure 2.1,

step I). On its own, this condition indicates that there is a DMI between the

A1 allele and one or more alleles from genotype 2 at the remaining k− 1 loci

(B2, C2, . . . ).

2. The single introgression 2 B−→ 1 results in an inviable genotype. On its own,

this condition indicates that there is a DMI between the B2 allele and one or
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Figure 2.1: Detecting DMIs. To find simple DMIs, I use an introgression–rescue
assay where I introgress one diverged allele between the two lineages (step I:

1 A−→ 2), and if this substitution results in an inviable genotype (red), I try to

rescue it with a second introgression (step II: 1 A,B−−→ 2). If the second introgression
rescues viability, I conclude that the there is a DMI between the first introgressed
allele (A1) and the resident allele at the second locus (B2). The additional criteria
for establishing whether the DMI is simple or complex are explained on page 24
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more alleles from genotype 1 at the remaining k− 1 loci (A1, C1, . . . ). Taken

together, conditions #1–2 are not sufficient to indicate that the A1 and B2

alleles participate in the same DMI.

3. The double introgressions 1 A,B−−→ 2 and 2 A,B−−→ 1 both result in viable geno-

types (Figure 2.1, step II). In other words, a second introgression rescues

viability. Taken together, conditions #1–3 indicate that the A1 and B2 alleles

participate in the same DMI; the conditions do not, however, rule out the

possibility that the DMI involves additional alleles from either genotype

at the remaining k − 2 loci (C, D, . . . ). In other words, the DMI might be

simple or complex.

4. A1 and B2 are not both ancestral (Orr 1995). If conditions #1–3 are met but

condition #4 is violated, then the DMI must involve a derived allele at an

additional locus—i.e., the DMI is complex—because A1 and B2 were not

incompatible in the ancestor.

5. If both A1 and B2 are derived alleles, this condition is ignored. If A1 is an

ancestral allele, then the B2 substitution occurred after the A2 substitution;

if B2 is an ancestral allele, then the A1 substitution occurred after the B1 sub-

stitution (Orr 1995). If conditions #1–4 are met but condition #5 is violated

then the DMI is complex because A1 and B2 were not incompatible in the

background in which the derived allele arose.

6. If the latest substitution at either the A or the B locus was the i-th substitu-

tion, and i < k, then conditions #1–3 are also met in the genotypes present
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immediately after the i-th substitution. If conditions #1–5 are met but condi-

tion #6 is violated then the DMI is complex because its expression depends

on the genetic background.

To count simple DMIs in my simulations, I introgress nucleotides between the

two sequences at each of the k divergent sites, in both directions. Every time an

introgression results in an inviable genotype (condition #1), I look for another

introgression in the opposite direction that also results in an inviable genotype

(condition #2). I then test both double introgressions involving these alleles to

test for condition #3. If I find a pair of alleles satisfying conditions #1–3, I test

for conditions #4–6 directly. I count simple DMIs after every substitution when

k > 2.

Complex DMIs: Imagine that condition #1 for a simple DMI is met: a single

introgression 1 A−→ 2 results in an inviable genotype. As explained above, this

is indicative of a DMI involving the A1 allele. This DMI is complex if any of the

following 4 conditions are met.

7. It satisfies conditions #2–3 for a simple DMI but violates one or more of

conditions #4–6.

8. The double introgression 1 A,B−−→ 2 rescues viability, but the single introgres-

sion 2 B−→ 1 results in a viable genotype (i.e., condition #2 is violated).

9. The double introgression 1 A,B−−→ 2 rescues viability, but the double introgres-

sion 2 A,B−−→ 1 results in an inviable genotype (i.e., condition #3 is violated).
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10. There is no double introgression of the form 1 A,B−−→ 2 that rescues viability

(i.e., condition #3 is violated).

A DMI is also complex if it satisfies the following condition:

11. The introgression of 1 < i < k alleles (e.g., 1 A,B,...−−−→ 2) results in an invi-

able genotype, but all the introgressions of each individual allele and of any

combination of between 2 and i − 1 of the alleles result in a viable geno-

type. This condition indicates that the i alleles participate in a DMI of order

n > i + 1.

The criteria described above (conditions #7–11) allow us to detect complex

DMIs. However, counting them for highly diverged sequences (high k) is virtu-

ally impossible for two reasons. First, the number of high-order introgressions

required is enormous. Second, as the conditions #1–3 for detecting simple DMIs

highlight, establishing that alleles participate in the same DMI requires additional

introgressions. For example, if alleles A1 and B1 from population 1 are incompat-

ible with allele C2 from population 2, then both the double introgression 1 A,B−−→ 2

and the single introgression 2 C−→ 1 result in an inviable genotype. However,

showing that the 3 alleles are involved in the same DMI of order n = 3 would

require demonstrating that the triple introgressions 1 A,B,C−−−→ 2 and 2 A,B,C−−−→ 1 both

result in viable genotypes. Thus, without conducting “rescue” introgressions, the

introgressions in both directions will tend to overestimate the number of complex

DMIs. To avoid this problem, I estimate the number of complex DMIs through
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all single, double and triple introgressions in one direction only (e.g., from popu-

lation 1 to population 2). For the single introgressions, I count complex DMIs us-

ing conditions #7–10 (these conditions require performing introgressions in both

directions, but only DMIs detected from an introgression in one direction are

counted). For double and triple introgressions, I use condition #11.

The resulting count of complex DMIs will still underestimate the true number

for two reasons. First, if the introgressed alleles participate in more than one

complex DMI, an introgression test can only detect a single DMI (this limitation

does not apply to simple DMIs). Second, complex DMIs that can only be detected

by introgressing four or more alleles will not be detected.

2.2.3 Proportion of single introgressions involved in a DMI

I use the single introgression data to calculate P1, the proportion of the 2k sin-

gle introgressions at diverged sites (in both directions) that result in an inviable

sequence (Welch 2004).

2.2.4 DMI network

The simple DMIs that might, potentially, affect a sequence can be computed ex-

haustively by measuring the fitness of all possible single and double mutants

derived from the sequence. For every pair of sites, there are 9 combinations of

double mutants. A potential simple DMI is defined as an inviable double mutant
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between mutations that are individually neutral. I summarize the pattern of in-

teractions between sites using an undirected network where the vertices are sites

and the edges represent the existence of at least one potential simple DMI be-

tween them. The resulting network is an example of the networks of interactions

described by Orr and Turelli (2001) and Livingstone et al. (2012).

I measure the degree of similarity between two DMI networks X and Y using

the Jaccard index

J =
|X ∩Y|
|X ∪Y| , (2.2)

where |X ∩ Y| is the number of edges shared between the two networks, |X ∪ Y|

is the sum of |X ∩ Y| and the numbers of edges unique to X and to Y, and there

is a one-to-one correspondence between the vertices of X and Y (i.e., between the

sites in the corresponding sequences). J varies between 0 (the two networks have

no edges in common) and 1 (the two networks are identical).

2.2.5 Reproductive isolation

The degree of RI between the sequences is defined as

RI = 1− wR ,

where wR is the mean fitness (Equation 1.3) of all possible 198 recombinants re-

sulting from a single crossover between the two sequences.
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2.2.6 “Holeyness” of the fitness landscape

For each simulation, I took the ancestor and each of the k = 40 genotypes gener-

ated during the course of evolution and measured the proportion of their single

mutant neighbors (300 per sequence) that are inviable, excluding the 41 original

sequences. This estimates the local holeyness of the fitness landscape traversed

by the diverging lineages.

2.2.7 Direct simulation of the snowball model

I also simulate the accumulation of DMIs following the snowball model (Orr

1995). An ancestral genotype has multiple loci and is used to found two identical

haploid lineages. The lineages are allowed to evolve by alternately accumulating

neutral substitutions (Figure 2.2).

After the k-th substitution, simple DMIs are sampled at random with proba-

bility p from all pairs of alleles consisting of the latest derived allele paired with

any of the k − 1 ancestral or derived alleles from the other population at loci

that have previously undergone substitutions in either population. For example,

when k = 4 the new possible simple DMIs are: D2/A1, D2/B0, and D2/C1 (Figure

2.2).
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Lineage 1 Lineage 2

k = 0 A0 B0 C0 D0 . . . A0 B0 C0 D0 . . .

k = 1 A1 B0 C0 D0 . . . A0 B0 C0 D0 . . .

k = 2 A1 B0 C0 D0 . . . A0 B2 C0 D0 . . .

k = 3 A1 B0 C1 D0 . . . A0 B2 C0 D0 . . .

k = 4 A1 B0 C1 D0 . . . A0 B2 C0 D2 . . .

Figure 2.2: Sequence evolution in a direct simulation of the snowball model
showing the first k = 4 substitutions. Only 4 loci are shown, denoted by A–
D. Ancestral alleles are indicated by subscript 0. Derived alleles are shown in
bold and indicated by subscripts 1 or 2 depending on the lineage.

32



2.3 Results

2.3.1 Simple DMIs do not snowball in the RNA-folding model

The snowball model predicts that the number of simple DMIs, Ik, should increase

faster than linearly with the number of substitutions, k. I tested this prediction

using 103 evolutionary simulations with the RNA-folding model. For each simu-

lation, I fitted two models: the snowball model in Equation 1.2 and a linear model

of the form

Ik = (k− 1)b , (2.3)

where b is the slope. The k− 1 term ensures that I1 = 0, as in the snowball model.

Both models have a single parameter that I estimated using the method of least

squares. I compared the level of support for each model using Akaike’s Informa-

tion Criterion (AIC). If the difference in the AIC values (∆AIC) was greater than

a threshold, I concluded that there was stronger support for the model with the

lower AIC. Setting the ∆AIC threshold at 2, 41.9% of RNA-folding simulations

provided stronger support for the snowball model, 49.1% provided stronger sup-

port for the linear model, and 9.0% provided approximately equal support for

both models (Figure 2.3). Increasing the ∆AIC threshold did not affect this result

qualitatively (Figure 2.3). The average response in the number of DMIs in the

RNA-folding simulations was approximately linear (Figure 2.5A), in agreement

with the AIC analysis. To evaluate the extent to which the lack of support for

the snowball model was caused by random noise in the simulations, I conducted
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103 direct simulations of the snowball process over k = 40 substitutions assum-

ing values of p estimated by fitting the snowball model in Equation 1.2 to the

RNA-folding data (Figure 2.4A). As expected, these direct snowball simulations

provided much stronger support for the snowball model than the RNA simula-

tions (Figure 2.3). I conclude that simple DMIs do not snowball in at least some

RNA-folding simulations.

2.3.2 The probability that a DMI appears is approximately con-

stant in the RNA-folding model

What explains the lack of support for the snowball model in the RNA-folding

simulations? One possibility is that p itself evolved, contrary to the assumption

of the snowball model (Orr 1995).

If p declines with divergence according to the relationship

pk =
b
k

, (2.4)

where b is a positive constant, and I substitute p by pk in Equation 1.1, the linear

model in Equation 2.3 is a solution to the resulting difference equation (assuming

I1 = 0). To test whether p changed as described by Equation 2.4, I measured it

directly in each simulation as pk = ∆I/k, where ∆I is the number of new simple

DMIs appearing as a result of the (k + 1)-th substitution that involve the latest

derived allele (see Equation 1.1). I found that, although pk declined with k, the

trend did not follow Equation 2.4. Indeed, when k & 10, pk was approximately

constant (Figure 2.5B).
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Figure 2.3: Simple DMIs do not snowball in the RNA-folding model. I fitted the
snowball model (Equation 1.2) and a linear model (Equation 2.3) to each run from
three kinds of simulations: simulations of the RNA-folding model (“RNA”), di-
rect simulations of the snowball model (“Snowball”) with values of p estimated
by fitting the model in Equation 1.2 to each RNA-folding simulation (Figure
2.5A), and direct simulations of the snowball model (“Linear”) with values of
pk from Equation 2.4 estimated by fitting the model in Equation 2.3 to each RNA-
folding simulation (Figure 2.5B). Red segments show the proportions of runs pro-
viding stronger support for the snowball model; yellow segments show the pro-
portions of runs providing stronger support for the linear model;gray segments
show the proportions of runs providing approximately equal support for both
models. Each bar is based on 103 stochastic simulations. The level of support for
the two models was evaluated for three different ∆AIC thresholds.
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Figure 2.4: Distributions of the parameters of the snowball and linear models in
the RNA-folding simulations. (A) Probability, p, that a simple DMI appears in
the snowball model. (B) Rate of accumulation, b, of simple DMIs in the linear
model. For each of the 103 stochastic RNA-folding simulations I estimated p and
b by fitting the models in Equations 2 and 6, respectively, by the method of least
squares. The solid black lines indicate the means of the distributions: p̄ = 0.013
and b̄ = 0.211.
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Figure 2.5 (previous page): Simple DMIs do not snowball in the RNA-folding
model. (A) Evolution of the number of simple DMIs, Ik, as two populations di-
verge by accumulating substitutions, k. Values are means of 103 runs of three dif-
ferent kinds of stochastic simulations: “RNA,” simulations of the RNA-folding
model (blue); “snowball,” direct simulations of the snowball process with con-
stant p estimated as explained in (B) (red); “linear,” direct simulations of the
snowball process with declining p estimated as explained in (B) (yellow). (B)
Evolution of the probability, pk, that there is a simple DMI between the latest
derived allele after the (k + 1)-th substitution and one of the k alleles at the loci
that have previously undergone substitutions. The blue line (“RNA”) shows the
values of pk estimated at each substitution directly from the RNA-folding simu-
lations. The red line (“snowball”) shows the values of p estimated by fitting the
model in Equation 1.2 to each RNA-folding simulation (Figure 2.9A). The yellow
line (“linear”) shows the values of pk from Equation 2.4 based on estimates of
b obtained by fitting the model in Equation 2.3 to each RNA-folding simulation
(Figure 2.9B). Values are means of 103 simulations. Shaded regions indicate 95%
confidence intervals, CIs.

2.3.3 Simple DMIs do not persist indefinitely in the RNA-folding

model

The previous analysis also revealed that fitting the snowball model to the RNA-

folding data underestimated the true value of p by approximately 3-fold (Fig-

ure 2.5B). This discrepancy indicates that a more fundamental assumption of the

snowball model may be violated in the RNA-folding model: that simple DMIs,

once they have arisen, persist indefinitely. This assumption is implicit in the orig-

inal description of the snowball model (Orr 1995) and, to my knowledge, has

never been called into question.

To test this assumption, I estimated the DMI networks of sequences as they

evolved in my RNA-folding model. Figure 2.6A shows an example of an RNA
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Figure 2.6 (previous page): A single substitution can dramatically rearrange the
network of potential DMIs. (A) The 20-nucleotide-long RNA sequence on the left
acquires a neutral U→A substitution at position 18 (blue). The holey fitness land-
scape is defined by α = 2 (Equation 1.3). The secondary structure of the sequence
on the left is the reference (δi = 0 base pairs). The structure on the right is δi = 2
base pairs away from the reference. (B) There is a potential simple DMI between
positions 5 and 12 for the sequence on the left. A double mutant at those posi-
tions (5: A→G, 12: C→G, red) makes the structure inviable (δi = 11 base pairs),
even though the single mutations are neutral (not shown). However, a single
substitution causes the potential simple DMI to disappear in the sequence on the
right, although the single mutations remain neutral in the new background (not
shown). In other words, the substitution causes the simple DMI to become com-
plex. (C) DMI networks of the sequences in (A). Vertices correspond to positions
in the sequences. An edge in the network on the left indicates that there is at
least one potential simple DMI between the two sites (positions 4, 13 and 15–17
have no potential DMIs in either network and are not shown). Black edges in
the network on the right are shared between the two networks. Blue edges exist
only in the network on the right and indicate the appearance of new potential
simple DMIs between sites caused by the substitution. Gray and red edges in-
dicate losses of potential simple DMIs in the network on the right. Gray edges
indicate losses due to the constituent alleles no longer being neutral in the new
background. Red edges indicate losses caused by complexification; the DMI dis-
cussed in (B) is an example (5–12 edge). The Jaccard index (Equation 2.2) between
the two networks is J = 0.205.
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sequence evolving on a holey fitness landscape. Initially the sequence displays

potential simple DMIs between 21 pairs of sites (Figure 2.6C). Figure 2.6B illus-

trates a potential simple DMI between positions 5 and 12. I refer to these simple

DMIs as potential because if two diverging lineages each accumulate one of the

substitutions underlying one of these DMIs, a simple DMI between the lineages

will appear.

The snowball model assumes that the DMI network is static: as populations

evolve they actualize potential DMIs (for an alternative, but equivalent, interpre-

tation of DMI networks see Livingstone et al. 2012). However, DMI networks

are not static in the RNA-folding model. After a single neutral substitution, 13

pairs of sites (62%) lost all potential simple DMIs, and potential DMIs appeared

between 18 new pairs of sites (Figure 2.6C).

The “loss” of a potential DMI can occur in one of two ways. First, the substitu-

tion may cause the mutations involved in the simple DMIs to become deleterious

so that they can no longer participate in potential simple DMIs. A loss of this kind

means that a potential simple DMI is no longer accessible through independent

substitution in two lineages because one of the substitutions cannot take place.

Thus, such losses do not imply that DMIs cannot persist indefinitely. However,

if there is a bias towards such losses of potential DMIs relative to gains of the

same kind then p is expected to decline with divergence. The majority of losses

in Figure 2.6C (gray lines) are of this kind.

The second kind of loss occurs when the substitution modifies the interac-

tion between previously incompatible alleles (red lines in Figure 2.6C). In other
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words, the simple DMIs become complex. The potential simple DMI between

positions 5 and 12 shown in Figure 2.6B is lost in this way. This kind of loss—

complexification—implies that some simple DMIs may not persist indefinitely.

The DMI networks corresponding to the evolving lineages in the RNA-folding

simulations summarized in Figure 2.5 also change dramatically relative to the

ancestor as a result of successive substitutions (Figure 2.7). This indicates that

complexification may be occurring in these simulations as well. In the next sec-

tion I explore the consequences of the complexification of simple DMIs for snow-

balling.

Figure 2.7: Networks of potential simple DMIs are not static in the RNA-folding
model. Jaccard index (Equation 2.2) of the DMI networks of each descendant
lineage after k substitutions compared to its ancestor. Values are means of 2×
103 DMI networks (103 simulations, 2 lineages per simulation). Based on the
simulations summarized in Figure 2.3. Error bars show ±1 standard deviation.
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Figure 2.8 (previous page): The RNA-folding simulations agree with the the melt-
ing snowball model. (A) Evolution of the number of simple DMIs under the
melting snowball model. Responses for p = 0.04 and different values of q. The
dashed line shows a slope of p/q for q = 0.3. (B) Mean responses of 103 runs of
four different kinds of stochastic simulations: “RNA,” simulations of the RNA-
folding model (blue circles, same data as in Figure 2.5A); “Snowball,” direct sim-
ulations of the snowball with with constant values of p estimated directly from
each RNA-folding simulation (Figure 2.9) (red); “Melting,” direct simulations of
the melting snowball model with constant values of p and q estimated directly
from each RNA-folding simulation (Figure 2.9) (orange); “Melting (evolving),”
direct simulations of the melting snowball model with evolving trajectories of pk
and qk estimated directly from each RNA-folding simulation (yellow, dashed).
Shaded regions indicate 95% CIs.

2.3.4 The RNA-folding simulations agree with the melting snow-

ball model

I incorporate the dynamic nature of simple DMIs by extending the snowball

model in Equation 1.11

Ik+1 = (1− q)Ik + kp , (2.5)

where q is the probability that a simple DMI present after k substitutions becomes

complex after the next substitution. Assuming I1 = 0, the solution to Equation

2.5 is

Ik =
p
[
(1− q)k + kq− 1

]
q2 . (2.6)

This prediction assumes that both p and q remain constant as populations di-

verge.

1The mathematical derivation of the melting snowball model was done by Ricardo B.
R. Azevedo.
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Figure 2.9: Distributions of the parameters of the melting snowball model in the
RNA-folding simulations: p, the probability that a simple DMI arises, and q, the
probability that a simple DMI becomes complex. One- and two-dimensional ker-
nel density estimates based on 103 stochastic simulations. For each simulation
I calculated pk and qk after every substitution (k). I then estimated an overall
value of p and q as weighted averages. Values of pk and qk were weighted by
k(k− 1) and Ik, respectively. The means of each distribution were p̄ = 0.042 and
q̄ = 0.107.
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The original metaphor evokes a snowball rolling down a hillside, picking up

snow (appearance of simple DMIs) as it rolls, causing it to increase in size. To

stretch the metaphor, I call the new model the melting snowball: as the snowball

rolls it also melts (complexification of simple DMIs), causing it to decrease in

size. Neither metaphor should be taken too literally, though. For example, both

metaphors give the mistaken impression that the accumulation of DMIs itself

causes the emergence of new DMIs, which is not part of either model.

The snowball model is a special case of the melting snowball model when

q = 0. When q > 0, the increase in the number of simple DMIs is given by

∆I = Ik+1 − Ik =
p
q

[
1− (1− q)k

]
. (2.7)

This equation has two consequences (Figure 2.8A). First, the increase in the

number of simple DMIs eventually becomes linear with a slope of approximately

p/q when k is sufficiently large. Second, if q is larger, the “linearization” of Equa-

tion 2.6 occurs for lower values of k.

To test whether the complexification of simple DMIs explains the results of

the RNA-folding simulations I measured q directly in my simulations as qk = 1−

I′k/Ik, where Ik is the number of simple DMIs present after the k-th substitution,

and I′k is the number of simple DMIs present after the (k + 1)-th substitution that

do not involve the latest derived allele.

The melting snowball model predicts that simple DMIs will accumulate ap-

proximately linearly when q is large relative to p (Equation 2.7). The values of q

were, on average, 3-fold higher than the values of p (Figure 2.9). Furthermore,
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the q/p ratio was a good predictor of whether RNA-folding simulations sup-

ported the linear or the snowball model (Figure 2.3). When the ∆AIC threshold

was set at 2, q/p was 3.36 ± 0.22 (mean and 95% confidence intervals, CIs) in

runs that provided stronger support for the linear model, and 2.41± 0.12 in runs

that provided stronger support for the snowball model (Wilcoxon rank sum test,

P < 10−6). Thus, the linear response in the number of simple DMIs in the RNA-

folding simulations can be explained by the melting snowball model.

To evaluate the extent to which the melting snowball model can account for

the lack of support for the snowball model in my RNA-folding simulations, I con-

ducted 103 direct simulations of the melting snowball process over k = 40 substi-

tutions assuming values of p and q estimated directly from the RNA-folding data

(Figure 2.9). The support for the snowball and linear models provided by these

direct melting snowball simulations was similar to that provided by the RNA-

folding simulations (Figure 2.10). These results, in combination with those on the

q/p ratio, indicate that the melting snowball model explains the RNA-folding

results.

Figure 2.8B shows that the melting snowball model (orange) approximates

the RNA-folding data better than the snowball model (red). However, the fit is

far from perfect. The lack of fit is caused by the assumptions that both p and q

are constant as populations diverge. Neither assumption was met by the RNA-

folding data: p decreased and q increased with k, specially when k . 10 (Fig-

ures 2.5B and 2.11, respectively). When I allowed p and q to vary as they did in

the RNA-folding simulations, direct simulations of the melting snowball process
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Figure 2.10: The RNA-folding model behaves as expected under the melting
snowball model. I fitted the snowball model and a linear model to each run from
three kinds of simulations: simulations of the RNA-folding model (“RNA”), di-
rect simulations of the snowball model (“Snowball”), and direct simulations of
the melting snowball model with values of p and q estimated directly from each
RNA-folding simulation (“Melting”) (Figure 2.9). Red segments show the pro-
portions of runs providing stronger support for the snowball model; yellow seg-
ments show the proportions of runs providing stronger support for the linear
model; gray segments show the proportions of runs providing approximately
equal support for both models. Each proportion is based on 103 stochastic simu-
lations. The level of support for the two models was evaluated for three different
∆AIC thresholds.
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matched the RNA-folding data perfectly (Figure 2.8B). I conclude that the melt-

ing snowball model explains the results of the RNA-folding model, provided I

relax the assumptions that p and q are constant.

Figure 2.11: Evolution of the probability, q, that a simple DMI becomes complex.
For each stochastic RNA-folding simulation we measured qk, the probability that
a simple DMI present after k substitutions will become complex after the next
substitution. Values are means of 103 simulations at each k. Based on the simula-
tions summarized in Figure 2.3. Shaded regions indicate 95% CIs.

2.3.5 Complex incompatibilities snowball in the RNA-folding

model

So far I have focused exclusively on simple DMIs. The melting snowball model

predicts that complex DMIs should exist if q > 0 because they will be generated

continuously from simple DMIs. Furthermore, if q is high the number of DMIs
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Figure 2.12: Complex DMIs snowball in the RNA-folding model. (A) DMIs in-
ferred through single, double, and triple introgressions. (B) Total number of com-
plex DMIs (green) compared to number predicted if all complex DMIs originate
from the melting of simple DMIs (“Melting”) and p = 0.042 and q = 0.107 (red).
Values are means of 103 stochastic simulations. Shaded regions indicate 95% CIs.
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should also be high. I tested this prediction in the RNA-folding model and found

that complex DMIs accumulated in much higher numbers than simple ones: after

k = 40 substitutions there were approximately 5-fold more complex DMIs than

simple ones (Figure 2.12).

The snowball model predicts that the number of complex DMIs should snow-

ball (Orr 1995; Welch 2004). Complex DMIs, unlike simple ones, did snowball

(Figures 2.12 and 2.14). In addition, complex DMIs detected by introgressing

more alleles accumulated faster (Figure 2.12B). Allowing multiple substitutions

to occur per site during divergence did not change this pattern (Figure 2.13).

These results indicate that higher-order DMIs accumulated faster than lower-

order DMIs.

Did the complex DMIs originate from the “melting” of simple ones or did

they appear de novo? If all complex DMIs arise through melting, then I would

expect their number to increase according to the difference between Equations

1.2 and 2.6. Figure 2.12B shows that, although some complex DMIs likely arose

from melting, many complex DMIs must have arisen de novo.

2.3.6 Reproductive isolation does not snowball in the RNA-folding

model

Since most DMIs were complex and complex DMIs snowballed, RI would be

expected to snowball in the RNA model. However, I found that RI showed a

kind of inverse snowball—a “slowdown” with divergence. This pattern has been
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Figure 2.13: Allowing sites to undergo multiple substitutions does not affect the
pattern of accumulation of DMIs inferred through single, double, and triple in-
trogressions. The results are based on 103 RNA-folding simulations for α = 12.
Shaded regions indicate 95% CIs.

52



Figure 2.14: Complex DMIs snowball in the RNA-folding model. I fitted two
models to the evolutionary responses in the numbers of complex DMIs found
through single, double, and triple introgressions (Figure 2.12): a linear model
(Ik = bk) and a snowball model (Ik = bk2). Red segments show the proportions of
runs providing stronger support for the snowball model; yellow segments show
the proportions of runs providing stronger support for the linear model; gray
segments show the proportions of runs providing approximately equal support
for both models. Each proportion is based on 103 stochastic simulations. The level
of support for the two models was evaluated for three different ∆AIC thresholds.
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Figure 2.15: Reproductive isolation (RI) does not snowball in the RNA-folding
model. Values are means of 103 stochastic simulations. Shaded regions indicate
95% CIs.
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found in many organisms (e.g., Gourbière and Mallet 2010; Giraud and Gourbière

2012). This slowdown was caused by the fact that RI increased slower than lin-

early with the number of both simple and complex DMIs (Figure 2.16). Thus,

DMIs did not act independently of each other on RI. One likely reason for this

non-independence is that the total number of DMIs (simple and complex) among

highly diverged sequences is high enough that a substantial fraction of individual

sites must participate in multiple DMIs (Figure 2.12).

Figure 2.16: The numbers of simple (blue) and complex DMIs (red) are not lin-
early related to RI. Values are means of 103 simulations for k = 0, 4, 8, . . . , 40.
Error bars are 95% CIs.
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2.3.7 The fitness landscape influences the parameters of the melt-

ing snowball model

Figure 2.9 shows two striking patterns about the parameters of the melting snow-

ball model. First, p and q were strongly positively correlated with each other

(Spearman’s rank correlation coefficient: ρ = 0.466, P < 10−6), indicating that

the origination and complexification of simple DMIs are not independent. Sec-

ond, the parameters varied extensively between simulations. What caused this

variation? All simulations took place on the same sequence space, but with differ-

ent fitness landscapes. Since all fitness landscapes were “holey” (Gavrilets 2004),

it follows that the exact pattern of “holeyness” might have had an effect on the

evolutionary dynamics. One component of the holeyness of a fitness landscape is

the proportion of inviable single mutant neighbors of all the sequences generated

during the course of evolution. This measure of the local holeyness of the fitness

landscape was strongly positively correlated with both p and q (ρ = 0.338 and

0.210, respectively; both, P < 10−6) (Figures 2.17A and 2.17C).

What determines holeyness? Fitness landscapes in my RNA-folding model

have two determinants: the reference structure and the value of α (Equation 1.3).

RNA secondary structures can differ in many ways, such as the number and size

of base pair stacks, interior loops, and hairpin loops (Schuster et al. 1994). For a

given reference structure, lower values of α are expected to specify fitness land-

scapes with more inviable sequences (i.e., holes) in them. To test whether these

determinants of the fitness landscape influence holeyness, I ran 103 independent
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evolutionary simulations at each of another four values of α. I found that holey-

ness was influenced by both determinants of the fitness landscape (Figure 2.18): it

was positively correlated with the number of base pairs in the reference sequence

(ρ = 0.184; P < 10−6) and negatively correlated with α (ρ = −0.583; P < 10−6).

Changing α did not affect the patterns of accumulation of simple and complex

DMIs qualitatively (Figure 2.19). Interestingly, α was strongly positively corre-

lated with both p and q (Figures 2.17B and 2.17D): the semi-partial rank correla-

tion coefficient when the effect of holeyness was removed from α were ρ = 0.282

for p and ρ = 0.301 for q (both, P < 10−6). This result is counterintuitive because

α was negatively correlated with holeyness, which in turn was positively corre-

lated with both p and q. I conclude that the parameters of the melting snowball

model were influenced independently by both holeyness and α.

2.3.8 P1 and Welch’s paradox

If all DMIs are simple and individual loci are at most involved in one DMI, then

the proportion of the fixed differences between species where an allele from one

species is deleterious in another species, P1, is expected to increase linearly with

genetic distance (Equation 2.1; Welch 2004). This prediction is contradicted by

the observation that P1 is approximately constant over large genetic distances

(Kondrashov et al. 2002; Kulathinal et al. 2004)—a result I call Welch’s paradox

(Welch 2004). My results contradict both assumptions behind the prediction that

P1 should increase linearly with genetic distance: most DMIs are complex, and
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individual loci are involved in multiple DMIs. These effects are expected to act

in opposite directions: the former would cause P1 to increase faster than lin-

early with k, whereas the latter would cause P1 to increase slower than linearly

with k. In the RNA-folding simulations, P1 increased with divergence but did

so slower than linearly (Figure 2.20), indicating that the lack of independence

between DMIs dominates the evolution of P1. These results suggest a possible

resolution for Welch’s paradox: P1 can be constant even if DMIs snowball if in-

dividual loci participate in multiple DMIs. Alternative resolutions of Welch’s

paradox have been proposed (e.g., Fraı̈sse et al. 2016).
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Figure 2.17: The fitness landscape influences the parameters of the melting snow-
ball model. (A, C) Both parameters are positively related to the local holeyness
of the fitness landscape. Values are individual estimates of p and q for each of
103 RNA-folding simulations for α = 12. (B, D) Both parameters are positively
related to α. Values are means of 103 RNA-folding simulations for each value of
α. Error bars are 95% CIs.

59



Figure 2.18: Holeyness decreases with the value of α (A) and increases with the
number of base pairs, β, in the reference sequence (B). (A) Values are means of
103 RNA-folding simulations for each value of α. (B) The holeyness data from the
5× 103 simulations used in (A) were grouped by individual values of β. I pooled
estimates for β 6 20 and for β > 34. The resulting β groups have sample sizes
ranging from 120 to 581. Error bars are 95% CIs. The error bars in (A) are covered
by the points.
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Figure 2.19: Simple DMIs accumulate more slowly (A) and complex DMIs accu-
mulate faster (B) as α increases. The number of complex DMIs was calculated as
in Figure 9B. Values are means of 103 RNA-folding simulations for each value of
α. Shaded regions indicate 95% CIs.
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Figure 2.20: Evolution of the proportion of single introgressions involved in a
DMI, P1, as populations diverge in the RNA-folding model. Values are means of
103 stochastic simulations. Shaded region indicates 95% CIs.
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Chapter 3

How do populations affect the

accumulation of incompatibilities?

Perhaps a species is like a toy
figure made of rubber which
can be pulled in to all sorts of
shapes without losing its
cohesion. [...] To me it seems
that all the available evidence
indicates just the opposite.

Mayr (1949)
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3.1 Segregating DMIs

The genetics of speciation has been generally described as the process by which

genetic factors, which are otherwise benign within the one species, become detri-

mental in the genetic background of some other species (Orr 2001; Turelli et al.

2001; Masly et al. 2006; Maheshwari and Barbash 2011). The “monomorphic”

model, as described in section 2.2.1, operates in accordance with this definition,

thus allowing each neutral substitution that arises to go fixation. This type of

evolutionary regime, known as strong selection weak mutation (SSWM) is a valid

approach to simulate evolution as a series of beneficial mutations going to fixa-

tion (Sniegowski and Gerrish 2010), but it should take ≈ 2N generations for a

neutral mutation, akin to the ones arising in a holey landscape, to go to fixation

(Kimura 1962). This issue will not be problematic if one is solely interested in

studying the incompatibilities between the fixed alleles from two diverging lin-

eages. However, recent studies have presented us with an inconvenient and yet

intriguing reality: incompatibilities are segregating within species (Seidel et al.

2008; Corbett-Detig et al. 2013; Hou et al. 2014; Chae et al. 2014).

Let us focus on a pioneering study by Seidel et al. (2008), which demon-

strates that incompatibilities can segregate within the genetic boundary of a sin-

gle species. Seidel et al. (2008) use two strains of the nematode Caenorhabdi-

tis elegans, one from Hawaii and the other from Bristol, and created recombi-

nants between the two. They show that crossing the F1 males with the Hawaii

hermaphrodites results in half of the embryos dying. The cause of the lethality
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is the Bristol peel-1 allele (paternal effect epistatic embryonic lethal - 1) that en-

codes a non-functional transmembrane protein, PEEL-1. PEEL-1 protein causes

defects in muscle and epidermic tissues during embryogenesis and its produc-

tion is suppressed in the Bristol strain by ZEEL-1 protein, which is encoded by

zeel-1 (zygotic epistatic embryonic lethal - 1) (Seidel et al. 2011). The Hawaii strain

does not suffer from this predicament since it has a 19kb deficiency in place of the

peel-1 and zeel-1 elements. Half of the sperm produced by F1 males that carry peel-

1∆ and zeel-1∆ (i.e., the deficient Hawaii versions of peel-1 and zeel-1 respectively)

nevertheless inherit PEEL-1 protein from the F1 males. The presence of this pro-

tein in the zygote without a functional zeel-1 results in hybrid inviability (Figure

3.1).

Since it is known that outcrossing occurs between different C. elegans popu-

lations (Barrière and Félix 2005), one would expect the segregating DMI to be

present in most of the strains. Seidel et al. (2008), using 62 different strains from

40 locations, show that this incompatibility is present at a global scale.

What are the implication of segregating DMIs? Do they, as Cutter (2011) sug-

gests, contribute to the emergence of a burgeoning RI that would eventually re-

sult in incipient species as bona fide DMIs accumulate? Corbett-Detig et al. (2013)

at the beginning of their paper on the prevalence of segregating incompatibilities

in Drosophila melanogaster, suggest that the segregating incompatibilities provide

an alternative to the Dobzhansky–Muller model of incompatibilities. But at this

point, we simply do not know enough about incompatibilities segregating within

populations to evaluate their relevance vis-à-vis speciation.
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Figure 3.1: The segregating DMI in C. elegans occurs when | F1 which carries
the Bristol chromosomes (yellow) and the Hawaii chromosome (blue) is crossed
with } Hawaii. The resulting zygote lacks active zeel-1 to suppress the Bristol
peel-1 product (PEEL-1). } F1 × | Hawaii does not result in hybrid lethality, pre-
sumably because PEEL-1 is dosage dependent and only sperm delivers enough
PEEL-1 to cause incompatibility (Seidel et al. 2011).
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The presence of segregating DMIs can also be influenced by recombination

within a population and gene flow between populations. With recombination,

one would expect to see a reduction in the number of segregating incompatibili-

ties within population, since genotypes within a population recombine, they can

potentially bring segregating incompatibilities together and selection will then

purge these incompatibilities from the population.

The gene flow should, as Wang et al. (2015) point out, decrease the likelihood

of incompatibilities arising between diverging populations. Kondrashov (2003)

predicts that in a spatially structured population the number of DMIs should,

under certain conditions, accumulate linearly. He argues that for complex DMIs

to emerge multiple loci that can negatively interact with each other should arise

and fix at the same time, an event that should be unlikely in the presence of gene

flow.

I investigate these questions using an individual-based model.

3.2 Methods

3.2.1 The individual-based model

The initial step is identical to my monomorphic model, as described in section

2.2.1: I start from a random 100 nucleotide RNA sequence, henceforth referred to

as the reference sequence. The fitness of any RNA sequence during simulation is
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calculated relative to the reference sequence, according to Equation 1.3. The ref-

erence sequence undergoes 200 random neutral substitutions in succession. The

resulting sequence is used as the ancestral sequence. The ancestral population

consists of N individual ancestral sequences, where N is the population size (Fig-

ure 3.2). All the results presented in this section are based on 1000 simulations

using the same reference sequences as in Table 2.1, α = 12, and population size

of N = 1000.

The ancestral sequence is used to found two identical haploid populations. At

each generation, both populations recombine and mutate.

For a population of size N, I randomly sample two sets of
N
2

sequences with

replacement from the population and generate N recombinants (Figure 3.3). Two

genotypes can undergo as many as L − 1 crossover events between each other

with probability r per interval. r can vary from 0 (i.e., no recombination events)

to 0.5 (i.e., free recombination between all loci). If no crossovers have taken place,

the parental sequences are allowed to mutate, and then moved to the next gener-

ation.

I simulate mutation as a Bernoulli process where each site mutates according

to the mutation rate per site per generation (u). All types of base-substitution

mutations have equal probability. Insertions and deletions are not considered.

After recombination and mutation, I calculate the fitness of each sequence.

The next generation is composed of viable genotypes after recombination and

mutation.
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Figure 3.2: Generating the ancestral population in the individual-based simula-
tion. A sequence is viable (yellow, blue circles) if its secondary structure both has
more than α = 2 base pairs and is at most α = 2 base pairs away from the refer-
ence structure (yellow circle). Each population simulation starts with a burn-in
period where a sequence with the reference structure undergoes 3 neutral sub-
stitutions (dashed blue lines). The resulting sequence is then used to create the
ancestral population of size N = 30.
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Figure 3.3: To recombine sequences, we randomly sample with replacement two
sets of N/2 sequences from population of size N (I). Then we recombine se-
quences between two the random samples in order, i.e., the first sequence from
S1 recombine with the first sequence from S2, the second sequence from S1 with
the second from S2, and so on (II). Since each recombination event results in two
recombinants, this approach results in N recombinants.
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3.2.2 How to find DMIs

Finding DMIs at the population level requires certain modifications to my origi-

nal approach, as outlined in section 2.2.2. In the individual-based model, popula-

tions can be polymorphic, mutations arise according to a mutation rate and a site

can undergo multiple mutations, which makes distinguishing between ancestral

and derived alleles methodologically impossible. For this reason, my approach

to identify simple DMIs is not applicable to my population model.

A pure introgression approach, as used in 2.2.2 to identify complex DMIs, is

more suited to the population level model. If the introgression of 1 < i < k alle-

les (e.g., 1 A,B,...−−−→ 2) results in an inviable genotype, but all the introgressions of

each individual allele and of any combination of between 2 and i− 1 of the alleles

result in a viable genotype, then i alleles participate in a DMI of order n > i + 1.

I use single, double, and triple introgressions to estimate the number of DMIs

between any two sequences. This introgression based approach can overestimate

the number of DMIs, so I calculate the number of incompatibilities in one di-

rection only, i.e., introgressing from population 1 to population 2. To limit my

estimation of the number of incompatibilities to the more prevalent genotypes in

the population, I only include the most common genotypes from each population

in this analysis.

To find segregating DMIs within a population, I use the same introgression

approach, but this time only between pairs of genotypes within the population

that each has a frequency > 0.05. This arbitrary cutoff is reasonable given the
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population size of 1000 since it excludes the rare genotypes form the assays.

3.2.3 Ancestral polymorphism

In order to start with a polymorphic ancestral population instead of a monomor-

phic one at the beginning of each simulation, I allow the population composed of

solely ancestral sequences to evolve with mutation rate u and no recombination.

After it reaches the desired level of polymorphism, calculated using Equation 3.1,

I use the resulting population as the ancestral population for the simulation.

3.2.4 Gene flow

To simulate gene flow between the two populations, I allow symmetric migra-

tion between the two populations according the migration rate (m). At each

generation, after mutation, recombination, selection with replacement, I allow

n migrants to move between two populations, where n is drawn from a Poisson

distribution with parameter m.

3.2.5 Gene diversity

For any locus, gene diversity is defined as:

H = 1−
α

∑
i=1

pi
2 , (3.1)
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where pi is the frequency of allele i and α is the number of alleles. The average H

was calculated over all the loci.

3.2.6 Hamming distance

I calculate the Hamming distance between population 1 and population 2 by

counting the number of sites at which the most prevalent genotype from 1 dif-

fers from its counterpart from 2.

3.2.7 Proportion of inviable sequences

After the parental genotypes have undergone recombination and mutation in or-

der to create the next generation, I count the number of inviable sequences and

divide that number by the population size N.

3.2.8 Reproductive isolation

I use two different measures of RI:

Maximum RI: To calculate the maximum level of RI, I generate all possible

198 recombinants resulting from a single crossover between the most com-

mon sequence in population 1 and its counterpart in population 2. I then

calculate RI using Equation 2.2.5.
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Recombination RI: At a given generation, we define recombination RI as:

RI = 1− WH

WS
, (3.2)

where WS is the mean of the proportions of viable individuals within each

population, and WH is the proportion of N viable hybrids between the two

populations. Hybrids were generated as offspring from pairs of made up

of one viable individual from each population. Viability was assessed after

recombination and mutation (section 3.2.1). Recombination RI is expected

to be zero in asexual populations and increase with r.

3.3 Results

3.3.1 Incompatibilities snowball in the individual-based model

The accumulation of incompatibilities in the individual-based simulations with

no recombination, i.e., “asexual” case, may seem linear at first, but this is due

to the non-linear pattern of divergence (Figures 3.4A and 3.4B). The number of

incompatibilities in the asexual individual-based simulations snowballs in a sim-

ilar fashion to the monomorphic model with the same level of divergence, mea-

sured by the Hamming distance (Figure 3.4C). I allowed sites in the monomor-

phic model to undergo multiple substitutions, making it more comparable to the

individual-based model. The accumulation of incompatibilities in the asexual

individual-based simulations is robust to a wide range of population sizes, re-

sulting in comparable levels of RI (Figure 3.4E)
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3.3.2 Recombination slows down the snowballing of incompat-

ibilities

The monomorphic model assumes that a population is at most composed of two

genotypes differing by a single mutation. In such a population, recombination

would have no effect on the evolutionary dynamics. The populations described

in the previous section do not meet the assumptions of the monomorphic model;

even the smallest populations are able to maintain considerable genetic variation

(Figure 3.4D). To test the extent to which recombination would affect the results,

I evolved populations of N = 1000 individuals with different levels of recombi-

nation.

The lowest recombination rate used in these simulations (r = 0.001) behaves

similar to the asexual case, despite the fact that even at this low recombination

level, approximately 10% of individuals produced every generation result from

one or more crossover events among parental sequences.

Higher recombination rates (r = 0.01 and 0.1) lower the level of divergence

between populations (Figure 3.5A). Interestingly, the reduction in sequence di-

vergence at higher recombination rates not only reduces the total number of in-

compatibilities accumulated by the end of 1000 generations of evolution, it also

produces fewer incompatibilities given the same level of divergence when com-

pared to the asexual and low recombination cases (Figure 3.5C). Using AIC (see

page 33) to compare the support for a linear or a snowball model shows that

higher recombination rates decrease support for the snowball model. However,
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it does not appear to increase support for the linear model. Rather, recombina-

tion increases the proportion of runs that provide equal support for the linear and

snowball models. This result is consistent with a decrease in the statistical power

to distinguish the two models due to the lower levels of divergence and smaller

numbers of DMIs as recombination increases (Figure 3.6).

Higher recombination rates result in fewer DMIs and a decrease in the max-

imum RI (Figure 3.5E). However, this observation is misleading since in popu-

lations with low recombination only a few hybrids would actually be inviable.

Higher recombination rates, while reducing the total number of DMIs, increase

the level of recombination RI (Figure 3.5F). Recombination RI is a more realistic

measure of RI since it reflects the actual proportion of inviable hybrids.

3.3.3 Recombination suppresses the emergence of segregating

DMIs

DMIs do segregate within populations in the asexual individual-based simula-

tions, but recombination rate suppress the emergence of segregating DMIs (Fig-

ure 3.5D). Why would recombination act against the emergence of segregating

DMIs? Recombination can bring segregating DMIs together and result in selec-

tion against the incompatible combinations. To test whether recombination is
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causing selection against segregating DMIs, I measured the proportion of invi-

able individuals produced each generation. Initially, populations are monomor-

phic so all mortality is caused by mutation. After 200 generations, however, pop-

ulations are genetically diverse (Figure 3.5B), so mortality results from a mixture

of mutation and recombination. Populations with higher r show increased mor-

tality at that point despite having less genetic variation. This result is consistent

with the hypothesis that recombination increases the strength of selection against

segregating DMIs (Figure 3.7).

Why does recombination slow down the snowball? One possibility, following

Cutter (2011), is that segregating DMIs within populations contribute to the accu-

mulation of DMIs between populations. By selecting against segregating DMIs,

recombination would suppress the accumulation of DMIs between populations.

However, my results do not support this hypothesis. Populations evolving with

a recombination rate of r = 0.001 accumulated DMIs at approximately the same

rate as asexual populations, despite having a dramatically reduced number of

segregating DMIs.

Another possibility is that recombination results in selection for mutationally

robust genotypes, and genotypes that are more resistant to mutations are also

more resistant to introgressions, which reduces the number of DMIs. The pop-

ulations with the highest r have lower overall mortality at generation 1000 than

those with the lowest r (Figure 3.7). This is remarkable because populations with

the highest r experience two sources of inviability (mutation and recombination),

whereas those with the lowest r experience mostly one source of inviability (no
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more than∼ 10% of inviable individuals have experienced recombination). Thus,

these results indicate that the populations with the highest r are more mutation-

ally robust than the populations with the lowest r, in agreement with the robust-

ness hypothesis.

3.3.4 Ancestral polymorphism affects the accumulation of DMIs

but not that of segregating DMIs

To test the robustness hypothesis more directly, I pre-evolve populations without

sex so that they accumulate different numbers of segregating DMIs. I then used

these polymorphic populations as the ancestors in individual-based simulation

with high recombination (r = 0.1). If the robustness hypothesis is true one would

expect the presence of segregating DMIs in the pre-evolved ancestral populations

would result in stronger selection for mutationally robust genotypes, suppressing

the accumulation of DMIs among populations in the process.

My results confirm my prediction (Figure 3.8C). Using AIC to compare sup-

port for a linear or a snowball model shows that an increase in ancestral polymor-

phism reduces the proportion of runs that fit the snowball model (Figure 3.9).

However, there does not appear to be increased support for the linear model.

Again, this is likely caused by a decrease in statistical power.

Given that the ancestral population undergoes mutation without recombina-

tion to reach the desired level of polymorphism, segregating DMIs can be found

at the beginning of divergence, but these segregating DMIs are purged from the
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population in the early stages of divergence (Figure 3.8C). This last piece of ev-

idence suggests that recombination quickly removes segregating DMIs from the

populations.

3.3.5 Gene flow slows down the snowballing of incompatibili-

ties but does not eliminate them entirely

One limitation of my model is that DMIs involving neutral alleles are not ex-

pected to result in enduring RI in the face of gene flow (Bank et al. 2012). To test

this prediction I ran individual-based simulations with high recombination with

low (m = 0.01) and high (m = 1) migration rates.

Introducing high level of gene flow to individual-based simulation with high

recombination results in lower levels of divergence (Figure 3.10A), which is ex-

pected consequence of gene flow. In addition, gene flow slows down the snow-

balling of incompatibilities, but it does not eliminate DMIs completely (Figure

3.10C). This is also consistent with the robustness hypothesis because gene flow

can also generate selection for mutational robustness (Proulx and Phillips 2005).

Using AIC to compare support for a linear or a snowball model shows that

high gene flow reduces the proportion of runs that fit the snowball model, but

it does not appear to increase support for the linear model (Figure 3.11). Again,

this result is likely caused by a decrease in statistical power.

High levels of gene flow did not result in the emergence of segregating DMIs
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in my simulations (data not shown).

3.3.6 Higher mutation rates result in more robust genotypes

The robustness hypothesis would predict that the higher the mutation rate, the

more robust the resulting genotypes, and this would lead to fewer DMIs. To test

this prediction, I ran asexual individual-based simulations at varying levels of

mutation rates and then compared the number of incompatibilities at the same

levels of divergence (measured via the Hamming distance). More robust popu-

lations accumulate fewer DMIs (Figure 3.12). This pattern disappears if I include

the number of DMIs from double and triple introgressions (data not shown). This

observation can be attributed to the fact that rarely is a sequence introduced to

multiple mutations at once, and thus selection is mainly operating on robustness

in the face of single introgressions.
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Figure 3.4 (previous page): Incompatibilities snowball in the asexual individual-
based simulation. The number of incompatibilities between diverging popula-
tions after 1000 generations may seem linear (A) but this is caused by the non-
linear pattern of divergence, as measured by the Hamming distance (B). Plotting
the number of DMIs against the Hamming distance shows that incompatibilities
snowball in the asexual individual-based simulations similar to the monomor-
phic model with multiple hits (red, dashed) and independent of the population
size (C). Given the difference sizes, populations reach different levels of heterozy-
gosity (D). The asexual individual-based simulations with different population
sizes reach similar levels of maximum RI (E). Each trajectory is based on 1000
individual-based simulations each with u = 10−3, and no recombination with
N = 100, 316, and 1000, assayed every 200 generations. The monomorphic tra-
jectory is based on 1000 simulations of the monomorphic model with multiple
hits. Shaded regions indicate 95% CIs.
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Figure 3.5 (previous page): Recombination can slow down the snowballing of
DMIs in the individual-based model. The level differentiation between diverg-
ing lineages, captured by the Hamming distance (A), the average heterozygosity
(B) are both affected by recombination. The accumulation of incompatibilities
slows than as recombination rate is increased (C). Recombination suppresses the
emergence of segregating DMIs (D). Interestingly while the maximum RI, cal-
culated by generating all the single cross-over recombinants between the most
prevalent sequences in each lineage, decreases as recombination rate increases
(E). Recombination RI shows the opposite pattern (F). Each trajectory is based
on 1000 individual-based simulations each with N = 1000, u = 10−3, and the
specified recombination rate. Runs were assayed every 200 generations. Shaded
regions indicate 95% CIs.
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Figure 3.6: Recombination affects the snowballing of incompatibilities. I fit a
linear model (Ik = bk) and a snowball model (Ik = bk2) to each run of individual-
based simulation. I use AIC to compare the support for each model. Positive bars
show the proportions of runs providing stronger support for the snowball model;
negative bars show the proportions of runs providing stronger support for the
linear model; the proportions of runs providing approximately equal support
for both models are not shown. Different colors indicate different recombination
rates. Each trajectory is based on 1000 individual-based simulations as shown
in Figure 3.5. The monomorphic runs are identical to the ones used in Figure
3.4C. Due to fewer data points from the individual-based simulations relative
to the monomorphic model (i.e., individual-based simulations are assayed every
200 generations whereas the monomorphic simulations are assayed after every
substitution that increase the Hamming distance) only the results for ∆AIC= 2
are shown.
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Figure 3.7: Recombination load results in an increase in the proportion of inviable
offspring (sequences) at the beginning of divergence. Values are the proportions
of inviable sequences generated after parental sequences undergo recombination
and mutation. Each trajectory is based on 1000 individual-based simulations as
shown in Figure 3.5. Shaded regions indicate 95% CIs.
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Figure 3.8 (previous page): Recombination load affects the way ancestral poly-
morphism influences the accumulation of DMIs within and between popula-
tions. The sequence divergence, measured by the Hamming distance (A) between
evolving lineages and the level of heterozygosity converges irrespective of the an-
cestral polymorphism (B). The ancestral polymorphism affects the accumulation
of DMIs (C). Given the initial polymorphism, populations start with segregating
DMIs but they soon perish, as a result of recombination load (D). The levels of
RI for different levels of ancestral polymorphism reflect the number of DMIs (E).
The proportion of viable sequences for different levels of polymorphism and the
monomorphic case (F). Each trajectory is based on 1000 individual-based simu-
lations each with N = 1000, u = 10−3, and r = 0.1. Runs were assayed every
200 generations. The desired ancestral polymorphism was achieved by allowing
the ancestral population to evolve without mutation until it reached the desired
level of polymorphism (see section 3.2.3). Shaded regions indicate 95% CIs.
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Figure 3.9: Ancestral polymorphism affects the snowballing of incompatibilities.
I fit a linear model (Ik = bk) and a snowball model (Ik = bk2) to each run of
individual-based simulation. Positive bars show the proportions of runs provid-
ing stronger support for the snowball model; negative bars show the proportions
of runs providing stronger support for the linear model; the proportions of runs
providing approximately equal support for both models are not shown. Differ-
ent colors indicate different levels of ancestral polymorphism. Each trajectory
is based on 1000 individual-based simulations as shown in Figure 3.8. Only the
results for ∆AIC= 2 are shown.
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Figure 3.10: Gene flow can slow down the snowballing of incompatibilities but it
does not eliminate them. The sequence divergence, measured by the Hamming
distance (A) decreases as gene flow increases. Gene flow positively influences
heterozygosity within population (B). High level of migration slows down the
accumulation of DMIs but does not eliminate them entirely (C). The remaining
DMIs provide a lower level of RI compared to low migration and no migration
simulations (D). Each trajectory is based on 1000 individual-based simulations
each with N = 1000, u = 10−3, and r = 0.1. Runs were assayed every 200 gener-
ations. Symmetric migration is modeled by allowing a random set of individuals
to moved between the two populations at each generation according to a Poisson
distribution with parameter m. Shaded regions indicate 95% CIs.
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Figure 3.11: Gene flow affects the snowballing of incompatibilities. I fit a linear
model (Ik = bk) and a snowball model (Ik = bk2) to each run of individual-
based simulation. Positive bars show the proportions of runs providing stronger
support for the snowball model; negative bars show the proportions of runs pro-
viding stronger support for the linear model; the proportions of runs providing
approximately equal support for both models are not shown. Different colors in-
dicate different migration rates. Each trajectory is based on 1000 individual-based
simulations as shown in Figure 3.10. Only the results for ∆AIC= 2 are shown.
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Figure 3.12: The robustness hypothesis predicts that higher mutation rates
should result in more robust genotypes, i.e., less susceptible to introgressions.
The accumulation of DMIs assayed via single introgressions shows this very pat-
tern, where the simulations with lower mutation rates accumulate more DMIs
compared to those with higher mutation rates (A). For each simulation, I mea-
sured the proportion of inviable sequences generated during the course of its
evolution. Dividing the mean proportion of inviable sequences for each run by
the mutation rate gives us the proportion of lethal mutations, i.e., holeyness.
Higher mutation rates reduce holeyness, which means that they evolve more ro-
bust genotypes (B). Each trajectory is based on 1000 asexual individual-based
simulations with N = 100. Runs were assayed every 50 generations. Shaded
regions and bars indicate 95% CIs.
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Chapter 4

Insights from studying speciation in

a RNA world

In triumph he returns to us, and
brings us back this prize:
To know what things can come
about, and what cannot arise,
and what law limits the power
of each, with deep-set boundary
stone.

Lucretius, De Rerum Natura
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4.1 What the RNA-folding model teaches us about

DMIs

4.1.1 The RNA-folding model supported the central prediction

of the snowball model

I tested both predictions and assumptions of the snowball model using a com-

putational model of RNA folding. My results provide mixed support for the

snowball model (Table 4.1).

Simple DMIs accumulated linearly, contrary to one of the main quantitative

predictions of the snowball model (Orr 1995) (Figures 2.3 and 2.5A).

To elucidate why the snowball appeared to be “missing” from the RNA-folding

simulations I tested two assumptions of the snowball model. First, that simple

DMIs arise with constant probability, p. Although I did detect a decline in p (Fig-

ure 2.5B), it was not sufficient to account for the approximately linear pattern of

accumulation of simple DMIs. Second, I tested the assumption that simple DMIs,

once they have arisen, persist indefinitely. I found that this assumption was vio-

lated in the RNA-folding model. Instead, simple DMIs had a tendency to become

more complex as further substitutions took place. I conclude that the snowball

was “melting” for simple DMIs, not missing.

I proposed an extended snowball model incorporating the complexification

of simple DMIs—the melting snowball. The RNA-folding simulations agree with
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this model. In contrast to simple DMIs, the number of complex DMIs did snow-

ball, in agreement with the prediction of the snowball model. In conclusion, the

RNA-folding model supported the central prediction of the snowball model that

the number of DMIs snowballs, but challenged some of its underlying assump-

tions. Despite the snowballing of DMIs, RI did not snowball because DMIs did

not act independently of each other on RI.

Table 4.1: The monomorphic model provides mixed support for the snowball
model

Test Confirmed?

Prediction

Simple DMIs snowball No

Complex DMIs snowball Yes

RI snowballs No

Assumption

Constant p with divergence Yes, roughly

Simple DMIs persist indefinitely No

Linear relationship between

number of DMIs and RI No

These results indicate that RI is a poor indicator for the number of DMIs in my

model. Thus, the pattern of change in RI with divergence is unsuitable to test the

snowball model (Johnson 2006; Gourbière and Mallet 2010; Presgraves 2010a).

An earlier test of the snowball model using a computational model of gene

networks also found no evidence for a snowball effect in RI, and concluded that

some assumptions of the snowball model were not met (Palmer and Feldman
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2009). However, the extent to which the complexification of DMIs influenced

their results is unclear because they did not attempt to investigate the dynamics

of the DMIs underlying RI.

In one direct empirical test of the snowball effect, DMIs affecting pollen steril-

ity were found to accumulate linearly, whereas DMIs affecting seed sterility were

found to accumulate faster than linearly (Moyle and Nakazato 2010). My results

suggest a possible explanation for the discrepancy: faster complexification (i.e.,

higher q) of pollen sterility DMIs. Sherman et al. (2014) found evidence of greater

complexity of the DMIs involved in pollen sterility.

4.1.2 A possible resolution for Welch’s paradox

If all DMIs are simple and individual loci are at most involved in one DMI, then

the proportion of the fixed differences between species where an allele from one

species is deleterious in another species, P1, is expected to increase linearly with

genetic distance (Equation 2.1; Welch 2004). This prediction is contradicted by

the observation that P1 is approximately constant over large genetic distances

(Kondrashov et al. 2002; Kulathinal et al. 2004)—a result I call Welch’s paradox

(Welch 2004). My results contradict both assumptions behind the prediction that

P1 should increase linearly with genetic distance: most DMIs are complex, and

individual loci are involved in multiple DMIs. These effects are expected to act

in opposite directions: the former would cause P1 to increase faster than linearly

with k, whereas the latter would cause P1 to increase slower than linearly with k.
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In the RNA-folding simulations, P1 increased with divergence but did so slower

than linearly (Figure S11), indicating that the lack of independence between DMIs

dominates the evolution of P1. These results suggest a possible resolution for

Welch’s paradox: P1 can be constant even if DMIs snowball if individual loci

participate in multiple DMIs. Alternative resolutions of Welch’s paradox have

been proposed (e.g., Fraı̈sse et al. 2016).

4.1.3 Complex DMIs are more abundant in the RNA-folding

model

I found that complex DMIs are more abundant than simple DMIs in the RNA-

folding model. Complex DMIs have been discovered in many introgression stud-

ies (reviewed in Fraı̈sse et al. 2014). For example, Orr and Irving (2001) investi-

gated the sterility of male F1 hybrids between the USA and Bogota subspecies

of D. pseudoobscura and found that it is caused by an DMI between loci in both

chromosomes 2 and 3 of USA and loci in at least three different regions of the X

chromosome of Bogota—a DMI of order n > 5. More generally, high-order epis-

tasis appears to be common (Weinreich et al. 2013; Kondrashov and Kondrashov

2015; Taylor and Ehrenreich 2015). However, the relative prevalence of simple

and complex DMIs in nature is unclear because complex DMIs are more difficult

to detect.

Two explanations for the abundance of complex DMIs have been proposed.

First, that more complex DMIs evolve more easily than simpler DMIs because
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they allow a greater proportion of the possible evolutionary paths between the

common ancestor and the evolved genotypes containing the DMI (Cabot et al.

1994; Orr 1995). Fraı̈sse et al. (2014) tested this mechanism using simulations and

concluded that it is unlikely to be effective. Second, that the number of combina-

tions of n loci increases with n (Orr 1995). This explanation is difficult to evaluate

in the absence of more information on the probability of origination of complex

DMIs. my results indicate that that probability could be higher than previously

thought because complex DMIs are continuously generated from simple DMIs.

4.1.4 How simple incompatibilities become complex

Perhaps the central insight from my study is that simple DMIs have a tendency

to become complex. At first glance this claim might seem absurd. Surely a DMI

cannot be simple one moment and complex the next. The solution to this puzzle

rests, I believe, on the difference between a DMI having a certain order n and my

ability to infer that it has order n through genetic crosses. Consider the evolving

sequences depicted in Figure 2.2. Now, imagine that there is a complex DMI of

order n = 3 between the alleles A1, B2, and C0, and that there are no simple DMIs

between pairs of the three alleles (i.e., A1/B2, A1/C0, and B2/C0). For simplicity,

I also assume that none of the other alleles at the A, B and C loci are involved in

DMIs. The existence of a DMI is defined in the strict sense that any conceivable

genotype containing all alleles involved in the DMI is inviable (conversely, the

absence of a DMI indicates that at least one of the genotypes containing all alle-

les involved in the DMI are viable). Despite the A1/B2/C0 DMI being complex,
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after two substitutions (k = 2), my introgression and rescue tests would detect

a nonexistent simple DMI between alleles A1 and B2. Only after the third substi-

tution (k = 3) would the true complex DMI be inferred. In the language I have

been using so far, the simple DMI would appear to become more complex.

The snowball model (Orr 1995) assumes that it is possible to tell whether a

DMI is simple or not. However, a strict definition of “DMI of order n” cannot

be applied in practice because the number of genotypes that would have to be

tested is astronomically large and would have to include mutations that have

not even occurred yet. my protocol for inferring a simple DMI is, as far as I

know, the most exhaustive ever devised (the data summarized in Figure 2.12A

required the construction of approximately 6× 104 introgression genotypes for

each individual simulation), but it cannot infer simple DMIs in the strict sense.

Simple DMIs in the strict sense may not even exist. The idea of complexification

of DMIs is a natural consequence of using a more practical, broad-sense definition

of simple DMI.

The extent to which the RNA-folding model is representative of other types

of epistatic interactions is unclear. One possible criticism is that I used very short

sequences and that these are likely to experience unusually strong epistatic inter-

actions. Orr and Turelli (2001) estimated p ≈ 10−7 in Drosophila a much lower

value than found in my simulations. However, an evolution experiment in Sac-

charomyces cerevisiae detected a simple DMI between two lineages that had only

accumulated 6 unique mutations each (k = 12) (Anderson et al. 2010). This indi-

cates a value of p = 0.015, within the range of what I observed in the RNA-folding
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model (Figure 2.9).

I found that my results were robust to a broad range of holey fitness land-

scapes defined in the RNA-folding model.

However, the holey landscape model makes two strong assumptions about

the fitness landscape: all viable genotypes had the same fitness, and all low fit-

ness genotypes were completely inviable. Neither assumption is met universally:

many alleles involved in DMIs appear to have experienced positive selection

during their evolutionary history (Presgraves 2010b; Rieseberg and Blackman

2010; Maheshwari and Barbash 2011), and some DMIs are only mildly deleterious

rather than lethal (Presgraves 2003; Schumer et al. 2014). Other fitness landscapes

can be implemented readily within the RNA-folding model (e.g., Cowperthwaite

et al. 2005; Draghi et al. 2011). The extent to which relaxing the assumptions of the

holey landscape model will affect my results is a question for future research.

My study has identified one determinant of the origination and complexifica-

tion of DMIs: the holeyness of the fitness landscape. In a holey fitness landscape,

our measure of holeyness is inversely related to the mutational robustness of the

genotypes assayed (van Nimwegen et al. 1999; Ancel and Fontana 2000). In my

model (as in Orr’s) “populations” are assumed to contain a single genotype; pe-

riodically, a mutant genotype arises and either goes to fixation or disappears.

In such a model, mutational robustness is not expected to evolve (van Nimwe-

gen et al. 1999). Individual-based simulations would allow us to investigate the

intriguing possibility that factors that influence the evolution of mutational ro-

bustness (e.g., mutation rate, recombination rate: Wilke et al. 2001; Gardner and
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Kalinka 2006; Azevedo et al. 2006) may influence the accumulation of DMIs (dis-

cussed below).

4.2 How populations shape the accumulation of in-

compatibilities

4.2.1 Selection for robustness can affect the accumulation of DMIs

within and between populations

Mutational robustness can be defined as the ability of a phenotype to be viable in

the face of mutations (Gardner and Kalinka 2006). Using digital organisms, Mi-

sevic et al. (2006) show that sexual populations become more insensitive to mu-

tation, i.e., they are more robust, than asexual populations. Gardner and Kalinka

(2006) also predict that increasing recombination rate results in an increased ro-

bustness. The link between robustness and recombination stems from the fact

that recombination can result in selection for “mixability”, i.e., selection for mu-

tations that can perform well in a variety of genetic backgrounds (Livnat et al.

2008; Azevedo et al. 2006). Lohaus et al. (2010) show that, at least in artificial gene

networks, recombination in can result in selection for mixable genotypes. This

selection for mixability should, by definition, inhibit the development of incom-

patibilities between genotypes.

The relation between recombination and selection for mutational robustness
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can explain why recombination slows down the accumulation of incompatibil-

ities in the individual-based simulations (Figures 3.5C and 3.6). The increased

recombination load (Figure 3.7) in the early stages of divergence does increase

as recombination rate increases. This selection for mixability can also explain

the suppression of the segregating DMIs (Figure 3.5D). This explanation is also

consistent with the observation that the disappearance of segregating DMIs in

the individual-based simulations with polymorphic ancestors corresponds with

high recombination load at the early stages of evolution (Figures 3.8D and 3.8F).

It should be noted the proportion of inviable genotypes is lower in polymorphic

ancestral populations since they had evolved asexually to reach the desired level

of polymorphism (see section 3.2.3), and consequently had been under selection,

unlike the monomorphic ancestral population. Consistent with this explanation,

the presence of segregating DMIs in the ancestral population and the resulting

selection for mixability through recombination decreases the number of DMIs

between diverging populations as well (Figures 3.8C).

In addition, the fact that asexual individual-based simulations with lower mu-

tations rates accumulate more DMIs when compared to simulations with higher

mutation rates further supports the veracity of the robustness hypothesis (Figure

3.12).

So why do segregating DMIs persist in natural populations in the face of re-

combination? In the case of the peel-1 and zeel-1 elements in Caenorhabditis elegans,

Seidel et al. (2008) suggests that this segregating DMI is maintained via balancing

selection. In other examples, such as segregating DMIs Drosophila (Corbett-Detig
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et al. 2013), it is more likely that segregating DMIs exist between geographically

isolated populations with low levels of gene flow.

Given the negative relation between number of DMIs and the recombination

rate, it is plausible that at the genomic level, where the recombination rate is not

homogenous (Myers et al. 2005), suppression of recombination rate in regions

of the genome can make them more likely to be involved in an incompatibility.

Although such reasoning has been suggested for recombination between pop-

ulations (Nosil and Feder 2012), to my knowledge, this mechanism linking the

suppression of recombination to the emergence of incompatibilities has not been

proposed before.

The effect of recombination on robustness and, consequently, on the accumu-

lation of incompatibilities means that one should be cautious when dealing with

a theoretical/computation model that does not take recombination into account.

In the absence of recombination, an asexual model would result in an overesti-

mation of the number of incompatibilities and high level of RI (Figures 3.5A and

3.5E). In the presence of recombination, selection for mixability would reduce

the number of DMIs accumulated over divergence, a fact that is absent from an

asexual theoretical/computation model. The higher levels of RI observed in an

asexual model may also be misleading since in populations with low recombina-

tion only a few hybrids would actually experience low fitness.
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4.2.2 Ancestral polymorphism acts against the snowballing of

incompatibilities

Cutter (2011) suggests that neglecting the ancestral polymorphism can be prob-

lematic for tests of the snowball model. Excluding the ancestral polymorphism

results in inferring a longer divergence time between lineages, which in turn can

imply faster than linear accumulation of incompatibilities even when incompat-

ibilities accumulate linearly. My model shows a similar pattern, where more

ancestral polymorphism results in fewer runs that support the snowball model

(Figure 3.9). But the reason for the more linear accumulation of DMIs cannot be

attributed to the segregating DMIs since in the sexual simulations, segregating

DMIs within polymorphic ancestral populations are suppressed at the beginning

of divergence (Figure 3.8D). I suggest that the combined effects of selection for

phenotypes that are mutationally robust, i.e., sequences that are more likely to

be viable after mutating, and selection for mixability through recombination on

segregating DMIs results in linearization of the snowballing of DMIs.

It should be noted that while my results shows that an increase in ancestral

polymorphism reduces the proportion of runs that fit the snowball model, but it

does not appear to increase support for the linear model, which may be caused by

a decrease in statistical power rather than a change in the behavior from snowball

to linear. Longer runs and more data points are needed to test if the ancestral

polymorphism does indeed linearizes the accumulation of incompatibilities.
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4.2.3 DMIs can persist in spite of gene flow

My results provides some evidence in favor of the prediction made by Kon-

drashov (2003) that in a the presence of gene flow the number of DMIs can accu-

mulate linearly (Figure 3.11). Given that many of the runs do not fit the snowball

model or the linear model, longer runs and more data points are needed to test if

migration does lead to a linear accumulation of DMIs.

Bank et al. (2012) suggest that maintenance of neutral DMIs is impossible with

gene flow, but while the number of DMIs in my simulations decrease at high

level of gene flow, they still retain DMIs and, consequently, RI (Figures 3.10C and

3.10D).

4.3 Philosophical obstacles to a complete understand-

ing of DMIs

This central idea of this thesis revolves around a simple and elegant model, pro-

posed by Orr (1995). The snowball model was an attempt to reduce the evolu-

tion of genetic incompatibilities into its most basic components. The snowball

model can be described as an intuition pump (Dennett 2013), an elegant way

to think about an extremely complicated matter. Instead of the reductionist ap-

proach inherent in the snowball model, the work presented here was an attempt

to complexify the snowball model, transfiguring it into a model where RNAs

fold and evolve in a holey landscape and later going even further and construct
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an individual-based simulation on top of it. I believe this slight level complex-

ification, allows to understand the implicit implications of the snowball model.

The individual-based simulation presents us with more intrigue, demonstrating

an unexpected effect of recombination on the accumulation of DMIs. I hope that

the project underlying this thesis would allow for a better understanding of the

genetics of speciation.
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