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ABSTRACT

In this paper we characterize the continuous Tinear sufficient
statistics for a dominated collection of measures on a Banach
space. This is followed by a characterization of exponential
families with emphasis on those measures on R" whose densities
with respect to Lebesgue measure are multivariate normal densities.
Finally, the relation between Bayes sufficiency and sufficient

statistics is studied.
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I. INTRODUCTION AND DEFINITIONS

A o-algebra of subsets S of a space X is a collection of
subsets with the property that if Ai eS, 1i=1,2,..., then
(1§1 Ai) e S and (X\Al) e S. If C 1is a collection of subsets of
a space X we will denote the smallest o-algebra containing C by
o(C). The Borel field of a topological space is the smallest o-algebra
which contains the open sets.

A measurable space is a set X together with a o-algebra of
subsets S of X. If (X,S) and (Y,R) are measurable spaces, we say
that T is a measurable function from X to Y if for A e R then
T'l(A) e S (where T'l(A) = {x e X | T(x) € A}) : we denote by
T'l(R) the o-algebra of subsets of preimages of elements of R under
T. A measurable function will also be called a statistic. If f is
a real valued Borel measurable function on (X,S) then the collection
of symbols f(e)T'l(R) will be used to mean that f 1is also measurable
on (X, T"L(R)).

A measure is a real non-negative countably additive function on
the measurable sets of a measurable space. If u 1is a measure on a
measurable space (X,S) then (X,S,u) is called a measure space. A
measure u is a finite measure if u(X) < o=,

If u and v are measures on a measurable space then u is
absolutely continuous with respect to v (denoted u << v) if for each
measurable set A, u(A) = 0 whenever v(A) = 0. If u<<v and

v << u  then we say that u 1is equivalent to v and this is denoted



v = v. If the symbol [pl follows an assertion about the points of a
measurable space, then it is understood that the set for which the
statement is not true is a measurable set with u measure zero.
The Radon-Nikodym theorem will be a necessary tool in this

investigation and can be stated as follows:

A necessary and sufficient condition that

1 << v is that there exist a non-negative

Borel measurable function f on (X,S) such

that

u(E) = f fdv for every E e S.
E

The function f in the statement of the theorem is unique in the

sense that if g 1is a Borel measurable function on (X,S) such that

u(E) = [ gdv for every E e S
E

then f = gfv]. The function f 1is called the Radon-Nikodym derivative
of u with respect to v and is often denoted du/dv. We will write
[du/dv] to denote the collection of Radon-Nikodym derivatives of u
with respect to .

The notion of absolute continuity of one measure with respect to
another and equivalence of measures can be extended. If D is a
collection of measures on a measurable space (X,S) then D is a
dominated collection of measures if there is a measure v on (X,S)
(but not necessarily in D) with the property that if u e D, then
U << v. The collection of measures D is sajd to be equivalent to a
collection of measures F on (X,S) (denoted D = F) if, for each
AeS, u(A) =0 for each u e D if and only if v(A) = 0 for each

v ¢ F.



Throughout this paper M(X) will denote the collection of finite
measures on X defined on some fixed o-algebra and D will denote
a subcollection of M(X) which is dominated by a o-finite measure
(i.e., a measure which makes X the countable union of sets of finite
measures).

In [6] Halmos and Savage investigate sufficient statistics in a
general setting. In the presense of a dominated collection of measures,
their results offer an alternative to the conditional probability
definition of statistical sufficiency. We will use this as our defini-

tion of sufficiency with T a statistic from (X,S) to (Y,R).

Theorem 1.1. (Halmos-Savage [6].) A necessary and sufficient
condition that T be a sufficient statistic for D is that there exist
a Ae M(X) such that D =X and for u e D there exist 9, < Cdu/dAl
such that g (e)T7H(R).

If D is a dominated collection of measures then there exists a

8

countable subcollection {v;}. , of D such that D = {vi}?

; _, 6l

—~— -

Define a measure X on (X,S) by

=]

MA) = 4Ep oy(A)

for A e S and where a; = 1/(2] vi(X)). It follows that A is
equivalent to D and by the proof of Theorem 1.1 the following theorem
holds.



Theorem 1.2. A necessary and sufficient condition that T be a
sufficient statistic for D 1is that there exist a gu e [du/dA] such

that gu(e)T'l(R) for each u e D.

A homogeneous class of measures is a collection of measures whose

members are pairwise equivalent.

Corollary 1.3. (Halmos-Savage [61.) Let D be a homogeneous set

of measures with v e D. A necessary and sufficient condition that T
be a sufficient statistic for D 1is that T be sufficient for the pair

of measures (v,u) for each u e D.

Proof. Let A = v and use Theorem 1.2.

Theorem 1.4. (Halmos-Savage [6].) A necessary and sufficient
condition that a statistic T be sufficient for a dominated collection
of measures D is that there exist gu v € [du/d(p + v)1 such that

-1
gu’v(e)T (R) for u,v e D.



IT. CHARACTERIZATIONS OF LINEAR SUFFICIENT STATISTICS

Throughout this chapter, if W 1is a Banach space, then B(W)
will denote the Borel field of W. Also, throughout this chapter, X
and Y will denote Banach spaces and T will denote a continuous Tinear
operator from X onto Y.

In some of the theorems which follow it will be necessary to assume
that ker T is complemented by some closed subspace (i.e., X = ker T 8 S,
TnaS=0). This condition will not always be satisfied; however, if X
is a Hilbert space then S can always be taken to be the orthogonal

complement of ker T.

Theorem 2.1. Let X = ker T 8 S for some closed subspace S of
X. A necessary and sufficient condition that T be a sufficient statistic

for D 1is that there exist A e M(X) such that D = A and
(1) ker T c {ylgu(x +y) = gu(x), x € X}
for each y e D and some gu e [du/dAl.

Proof. If T 1is a sufficient statistic, then there exists a
A =D such that for some 9, € [dy/dAd, gu(e)T-l(R) for each u e D.
Then there exists a (Y,B(Y)) measurable function fu such that

9 = fuo T for weD ([2] pg. 69). If y e ker T, then we have

+ = = = .
QU(X y) fuo T(x + y) fuo T(x) gu(x) for x e X



Conversely, suppose D = A and for u e D,
ker T c {y|gu(x +y) = gu(x), X e X}

for 9, € [du/dr]1. We need only show (according to Theorem 1.1) that

gu(e)T'l(R). Since for any collection of sets C in X,

s(g™H(c)) = g 1(s(C))

(L 91 pg.10) it suffices to show that if r 1is a real number, then
there exists B, « B(Y) such that 9;1(-w,r) = T'l(Br). We will first
show that

-1 _ 1 -1 .
9, (-oyr) =T (TE9u (~,r) a S1)
and then that
- = YA
Br = T[gu (-o,r) a S1 e B(Y).

If x e THTCg  (-=r) 0 S1), then T(x) T[g;l(-m,r) n S1 and,
hence, T(x) = T(z) for some z ¢ g;l(-w,r) nS. Since T is linear,
(x - z) € ker T, so that gu(x) = gu(x -z+2)= gu(z) <r and
X € g;1(—w,r).

If xe gal(-w,r), then, since X =ker T®S, x=k+s for

ke ker T and s € S. It follows that T(x) = T(s), s - x e ker T,
gu(S) = gu(s - x+x) = gu(X) <r
and so s € g;l(-m,r). From this it follows that

T(x) = T(s) « T[gil(—m,r) n S



and finally that x e T'l(T[gil(-w,r) n S1).

We will now show that TCg ' (-=,r) nS1e B(Y). Let Tg:S Y be
the restriction of T to S and observe that T is a one-to-one
continuous mapping of the Banach space S onto the Banach space Y.
Since TS satisfies the hypothesis of the open mapping theorem, TS

is a homeomorphism of S onto Y and therefore maps elements of B(S)

to elements of B(Y). Since 9, is measurable,
[g; (-=,r) n ST € B(X) n S = B(S)
([5]1 page 25). It follows that
TLg 1 (~,r) n S1 = Tl  (-,r) n ST € B(Y).
U S

In the following two theorems, we show that if the class of Radon-
Nikodym derivatives contains continuous representatives, then under
certain other conditions T 1is a sufficient statistic if and only if
condition (1) in Theorem 2.1 holds for the continuous representative
gu for u e D. Furthermore, if D =X and V 1is an open or countable
set in X such that A(X\V) = 0, then the sufficiency of a statistic T
depends only on gulv for w e D. First, we will need Lemma 2.2 below.

For V e B(X), and for a measurable function f from X 1into

the real numbers such that
ker TelyeX|xe (V-y)aV, f(x +y)=f(x)},
we define a function % on X by

A f(x +y) if for some y e ker T, x +y e V,
f(x) = ,

0 otherwise.



Lemma 2.2.
[X\(V ® ker T)T u [(f 1(-=,r) n V) ® ker T1 for r > 0
#1(-wpr) =
L(F 2 (-e,r) 0 V) 8 ker T1 “for r<0

where for A,B e B(x), BO®A={xe X|]x=b+a for beB, aeAhl.

Proof. Suppose that r > 0. Let X e ?'1(-w,r) and r >t = ?(x).
If there exists y e ker T so that x +y eV then t = %(x) = f(x +y).
Since x = (x+y)+ (-y) and x+y ¢ [f'l(—w,r) n Vl, it follows that
X € [f'l(-w,r) nV]® ker T. If for every y e ker T, x +y ¢V, then
X € X\(V @ ker T). Hence

?'1(-w,r) c [X\(V ® ker T)1 v [(f'l(—m,r) nV) 8 ker T1.

Conversely, if x ¢ [(f_l(-m,r) n V) 8 ker T1, then there exists
yekerT sothat x+y e f_l(-m,r) n V. Then ?(x) =f(x+y)=t<nr,
SO X € %’1(—w,r). If x e [X\(V ® ker T)I, then ?(x) = 0, so
x e £71(0). Thus

A_ -
Fl(cw,r) > IX\(V 8 ker T)T v [(f L(-w,r) n V) 8 ker TI.
Similarly, if r < 0, then
A-1 -1
f o (=o,r) = [{f "(~=,r) n V) & ker T1.

Let D be a dominated collection of measures on (X,B(X)). Define

(as in Chapter 1) a measure A on (X,B(X)) by A(A) = 1§1 aivi(A)

for A ¢ B(x), where {vi}?;l is a countable equivalent subcollection

of D and o, = (271 v D), i=12,.. .



Let V be an open set in X such that XA(X\V) = 0. Suppose
that if B e B(X) and A(Bn V) =0 then A(BnV -y)=0 for
y e ker T. Suppose further that if C 1is a non-empty set in the

relative topology of V then A(C) > O.

Theorem 2.3. Suppose that for each uw ¢ D, [du/dA] contains
a representative fu which is continuous on V. A necessary and

sufficient condition that T be a sufficient statistic for D 1is that
ker T c {y[x e (V - y) nV and fu(x +y) = fu(x)}.

Proof. Suppose ker T c {y|]x e (V-y) nV and fu(x +y) = fu(x)}.
Define ?u as in the paragraph preceding Lemma 2.2. Then ?u is a
measurable function. It suffices to show ?;1(-w,r) e B(X). Since V
is an open set and fulv is continuous (relative topology on V), then
[f;l(-w,r) nV)®ker Tl and V ® ker T are open sets in X. So by
Lemna 2.2, 71(-=,r) € B(X). It follows that T, e [du/dAl, since
fu e [du/dA] and fu = ?u, except perhaps on a set of A measure zero.

. . 1 _ - .
Define hu.T(V) + R~ by hu(z) fu(x) for z = Tx. Then hu is

T[f'l(a,b) n V1l 1is an open set

continuous on T(V) since h;l(a,b)
in Y. Extending hu to all of Y by letting hu(z) =0 for
z ¢ Y\T(V) we have that hu is Borel measurable and ?u = hu oT.
Hence, T 1is a sufficient statistic.

Conversely, if T 1is sufficient for D, then for u e D there
exists g, € [du/dA] such that ker T c {ylgu(x +y) = gu(x), X e X}
and gu = fu[A] .



10

]

let ye ker T, B '{xlfu(x) # gﬁ(x)} e B(X) and,

A
A(B) = 0. Define fu by

AMBnaV-y)=2xBnV)

A —-—
fulV = fpr
A.
fulaw = Julxy
Since
A
f (x) =g (x) for xe X\(Bn V),
H M
gu(x) = gu(x +y) for X e X,

A
and gu(x +y) = fu(x +y) for Xe X\(BnV -y),
A A
it follows that fu(x) = fu(x +y), except on some set
Cc(BaV)u(BnV-y),

such that A(C) = A(C n V) =0. Since A(C) =0 and (V -y)nV is
open in V it follows that C n [(V - y) n VI contains no non-empty
open set of V n (V- y). Then ?(x) = %(x +y) for xe (V-y)anV.
Hence f(x) = f(x +y) for xe (V-y)n V.

The following is.an example, which has the property that a linear
statistic T 1is a sufficient statistic yet the kernel condition does

not hold for the continuous representative of the derivative.

Example 2.4. Let T be the linear function from the plane onto
the x-axis defined by T(x,y) = x. Let V be the two closed unit squares
centered at (1/2, 1/2) and (3/2, 5/2). let ¢ be the Radon-Nikodym
derivative of two measures P1 and P2’ which are equivalent to Lebesgue

measure restricted to the two squares and zero elsewhere, defined by
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1 if O
g(x,y) = 2 if 1<xs<2, 2<y=<3
0 otherwise .

IA
A

X

We see that T is sufficient by Theorem 2.3, taking V to be
the interior of the squares. However, the kernel condition of Theorem
2.3 is not satisfied for the continuous representative on the closed

squares.

Theorem 2.5. Let V be a countable set and X = D defined as in
Theorem 2.3. let A{(X\V) = 0 and A(x) >0 for x e V, and suppose
that for each u e D, [du/dA]l contains a representative fu which is
continuous on V. A necessary and sufficient condition that T be a

sufficient statistic is that ker T c {y|x ¢ (V- y) n V, fu(x +y) = fu(x)}.

Proof. If T is a sufficient statistic, then, for u e D, there

exists e [du/dA] such that 9y = hu o T for some Borel measurable

E
function hu . Since A(x) >0 for x eV, fu =g, on V.

Conversely, suppose that
ker Te{ylx e (V-y)anV, fu(x +y) = fu(x)} .

A
Define fu as in the paragraph preceding Lemma 2.2, and observe that
A A
fu is measurable. Since ?u = fu[A], then fu e [du/dArl. Define

h:Y > Rl by

A

f(x) if Tx=2z and Xx ¢ V
h(z) =
H 0  otherwise .
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Clearly hu is Borel measurable and $u = hu oT. Hence T is a
sufficient statistic.

We observe that the theorems of this chapter have immediate corollaries
corresponding to Corollary 1.3 and Theorem 1.4. In particular, the homo-

geneous case is of special importance.
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ITI. APPLICATION TO EXPONENTIAL FAMILIES

Let X be a Banach space and {Pe}eee be a collection of measures

defined on B(X). We say that {Pe}eee is an exponential family with
respect to a o-finite measure A on B(X) 1if there exist non-negative
functions ¢ and h defined on © and X respectively and functions
Q and t defined on © and X respectively with range in an inner

product space with inner product <-:,:> such that

(dPg/dr)(x) = pg(x) = c(8)h(x) exp <Q(6), t(x)> .

Exponential families are an important class of measures in theoretical
and applied statistics. Under suitable hypotheses, if there exist suffi-
cient statistics for a collection of measures,Athen that class is an
exponential family. For further details see Brown 1964 [4] and Anderson
[11.

Let {Pe}eee be an exponential family of measures on B(X).

Theorem 3.1. If X =ker T® S for some closed subspace S, V is
an open convex set, and 60 e © such that
(1) PeO(X\V) =0

(2) t is continuous and Gateaux differentiable on V

Tim t(x + ay) - t(x)

(i.e., 6&t(x,y) = 40 <

exists for x e V)
(3) h>0C[A1 on V
(4) if Cc B(V) and A(C) = 0 then A(C - y) =0 fory e ker T.
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(5) if C 1ds not empty and open in V then A(C) > O.

A necessary and sufficient condition that T be a sufficient

statistic for {Pe}eee is that for 6 ¢ O,
ker T < {y|<Q(8) - Q(GO), St{x;y)> =0, x e V} .

Proof: Observe that the conditions of Theorem 2.3 are satisfied

and hence' T 1is a sufficient statistic if and only if for 8 ¢ ©
ker Tc{y|x e (V-y)nV and (dPe/dPeO)(x ty) = (dPe/dPeo)(x)},

where (dPe/dPeo)(X) = (C(e)/C(8y))exp<q(e) - Q(8y),t(x)> .

Equivalently, since V 1is convex and t 1is Gateaux differentiable,

ker Tc{ylo e R's xe (V-y)nV and <Q(s) - Q(eo), t(x + ay) - t(x)} =

Tim t{x + ay) - t(x)

ker Tc {y|x e V and <Q(8) - Q(85), .0 5

> =0},

and finally
ker T c {‘y!<Q(e) - Q(eo), St(xsy)> =0, x € V}.

Theorem 3.1 will now be used to characterize linear sufficient
statistics for families of probability measures having Wishart densities.
Let S denote the symmetric n x n matrices, V the positive

definite elements of S and {N(Qe)}eeg (Q, e V for 0 ¢ 0) a family

9
of Wishart probability measures with r > n degrees of freedom having

densities

1, pirn-1) 1 -1
K(Qe )| X] exp(trace(-z-ﬂe X)), x eV
w(x,Qe) =

0 otherwise.

0}’
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Theorem 3.2. A necessary and sufficient condition that T be a

sufficient statistic for {W(Qe)}eee is that for some 6y €0

ker T ¢ ‘[951 - Qélll for 6 €0

where 1 denotes the orthogonal complement with respect to the trace

inner product <-,-> defined on symmetric matrices.

Proof: Observe that V 1is open in S and w(x,Qe) >0 for
xeV and 6 € 6. The preliminary conditions of Theorem 3.1 are satisfied
with A = Lebesque measure on S. Hence a statistic T 1is sufficient if

and only if
-1 -1 . -
trace[(Qe - Q4 Y(SI(xsy))1 =0
0
for x eV, 8e¢0 and y e ker T, or equivalently
trace[(Qél - Qél)y] =0 for 60O and y € ker T.
0

We will now consider a collection of discrete probability measures.
Let V={x¢ Rn]x has non-negative iateger components Xis i=1,...,n}.

If A e (0,4), let P, be the measure on (R",B(R")) such that

A

A n

- L .
(1) P,(x) = e "1 =T if xeV

(2) PA(X\V) = Q.

This measure is the probability measure associated with an independent
sample of size n of a random variable with the Poisson distribution.

Using Theorem 2.3 directly we have the following theorem.
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Theorem 3.3. A necessary and sufficient condition that T be a

sufficient statistic for {Pk}x ( is that

€ Os+°°)
ker T c {y ¢ Rnl(V -y)nV#Pp implies zy; = 0}.

Proof: By Theorem 2.3, T 1is a sufficient statistic if and only

if
n dp, dp,
ker Tec{y eR'|xe (V-y)nV, e (0,40) and 55~ (x + y) = =5~ (x)}
aP, dp;
noy.
={y e R"[(V-y)aV#p dmplies LA =1} .

We observe that any scalar multiple of the mean and any linear map

which is 1 -1 on V 1is a sufficient statistic.
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IV. APPLICATIONS TO THE MULTIVARIATE NORMAL CASE

Let {PT}T=O be a family of m + 1 probability measures defined

on (R",B(RM)) having normal densities

T, fl(

expl-3 ( - "i) Q. (x - n:)l

(2‘71') Y'I/ZIQ I 1/2 i

p;(x) =

for 1 =20,1,...,m, where n; and Qi are known and Qi is a positive
definite operator on R". In the following paragraphs we will characterize,
in a variety of ways, the linear sufficient statistics for such a collection
of measures. We will then investigate the construction of sufficient
statistics and give unbiased consistent estimators which are functions of

the sufficient statistic.

Theorem 4.1. A necessary and sufficient condition that a k x n

rank k matrix B be a sufficient statistic for {Pi}?=0 is that
ker B c n {ker‘(sz'1 - 9'1) n [Q'ln - Q. l}
i= i 0 i 0

Proof: Write (x - ni)Tﬂgl(x - ni) as

1 -1

-1 T - T
GyTaXK gy = 2y TngX> + <yngngs gy
where Inxn is the identity matrix on R". By Theorem 3.1 if
1<i<m then B is a sufficient statistic for {Pi’PO} if and only if

1

- - T - -
ker B c {y ¢ Rn|<Q1.1 - QOI,G(II )(x;y)>tr - 2<Q;°n, - Qolno,al(x;y)> +

-1 T 1 T -
+ <S2_i nn; - 0 NoNg> 0 0, x ¢ R" }
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or equivalently,

-1 -1 T -1 -1 - n
ker B < {y|2<q," - Qg s¥% >pp - 205y - QpTngy> = 0, x € R }

-1 -1 -1 -1 .1
= {ker‘(Q_i - 9 ) n [Q;ns - 9 ng1 J

Theorem 4.2. (Peters [4].) A necessary and sufficient condition
that a k x n rank k matrix B be a sufficient statistic for {Pj}?=0

is that for j = 1,...,m

B (BQ.BT)

(a) L& 0

\]

1)
0
1
£]

0 0) J 0

N

T -1
(b) [QOB (BQOB B](nj - no)

1]
3
1
=3
(o)

Proof: Let P2 =P = QOBT(BQOBT)'lB and observe that if B is a

sufficient statistic then
ker P = ker B c ker(Q'l - 9'1) = ker[(Q, - © )9'1]
J 0 i 0’0
It follows that
Range[Q-l(Q - 2,)1 < Range pT
0 Y] 0

and hence that

Tron aTv=lon -1 ) )
B (BagB ) B2y, (9 - 2) = 957 (25 - )
which is equivalent to (a) .
Since
_ -1 -1 5 S RN Y
ker P = ker B ¢ ker(Qj - QO ) n [Qj nj QO nol c [QO (nj no)]

it follows that
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range PT .

Qal(nj - no) c [ker PI*

Hence,

-1
0“0 (nj - no)

Tipo pTy-1 -1
B (B2,B')” B 2" (ny - ng)

which is equivalent to (b).
Since all of the preceding arguments are reversible, (a) and (b)

imply B is a sufficient statistic for {Pi}T=O , completing the proof.
Theorem 4.3. A necessary and sufficient condition that a k xn
rank k matrix B be a sufficient statistic for {Pi}T=O is that for

-1
0

-1

-1,2 -1 -1 -1 T
= QO ) + (Qi ﬂi = Q0 no)(Qi ni - no) ), ker B < ker A.

Proof: According to Theorem 4.1 it suffices to show that

_m -1 -1 -1 -1 .1
ker A = 1.Ql{kelr(521. - ) n [Q; n; - 9 nO] 1.
T, _ o Tl ~1,2 _
Let x ¢ ker A, Then x Ax = 0, which implies that x (Qi - QO ) x =0
T/~ - - - .
and x (Qilni - Qolno)(Qilni - Qoan)Tx =0 for i=1,2,...,m. But

-1 -1, _ T,~-1 -1 _ .
then (Qi - 2 )X =0 and x (91 n; - 9 no) =0 for i=1,2,...,m
m -1 -1 -1 -1 1
and so X e 1.gl{ker(§21. - 2 ) n [Q: n; - 9 N1 }.
Conversely, let x n {ker‘(Q'1 - Q'l) [Q'l -l 1} then
: Ys € ;0 3 o/ MMy - Y Ng
-1 -1 _ -1 -1 \T. _ _
(Qi - 2 ) x=0 and (Qi n; - 9 no) x=0 and so Ax =0 and
X € ker A.

In the next theorem we will use the fact that there exists a non-

T. I and, hence, the affine

singular matrix M such that MRM
transformation x -+ M(x - nO) provides a change of variables that allows

one to assume that ny = 0 and QO = I. We observe through the following
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lemma that this entails no loss of generality since we can easily recover

the sufficient statistic for the original collection of measures.

Lemma 4.4. Suppose that T 1is a sufficient statistic for {Pi}T=O'
Let 61 denote the measure corresponding to Pi and the change of
variables y = Mx - z, where M 1is a non-singular matrix and z 1is an
arbitrary element of R". It follows that TM'l is a sufficient statistic

A
m
for 1P},

A
Proof: According to Theorem 4.1, it suffices to show (since Pi

. . . . T
is a normal measure with mean Mni - z and covariance matrix MQiM

1 ~1yy-1
0 )

-1 -1, _ - -1, . i -
ker ML < [MT (911”1 _ Qolno) _y (911 - Qol)M 194,

. - _1 - -
for i =0,1,....m) that ker TM ' c ker(MT (Qil - Q5" M and

Let y e ker ™l Then, since ker ™l - M(ker T), let y = Mx

-1, . N
where x e ker T. Then M! (Qil - QOI)M 1(Mx) = 0 since

- - -1 _ - -1 _
X € ker(Qil - 901) and yT(MT (Qilni - Qolno) - M (911
M 0 and ML

-1\u-1
- 9 M "z)

ol ) A i
= x' (M @z, - a5n,) - XV (MTMT (27t - Qol)M 1

is a sufficient statistic for {61}T=0 .

Theorem 4.5, (Decell [41.) 1If ng = 0 and QO = I, then a

necessary and sufficient condition that there exist a k x n rank k
matrix B sufficient for {Pi}T=0 is that there exist a rank k

orthogonal projection Q such that

(I - Q)[nllnzl - lnmIQ1 -I1 ... lQm -11=2z,

where z is the nx (n+ 1)- m zero matrix.
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Proof: If a k xn matrix B of rank k is sufficient for

{Pi}T=0’ we may assume without loss of generality that BBT =1 since

B is a sufficient statistic for {Pi}T=0 if and only if KB is a
sufficient statistic for each non-singular k x k matrix K. One can
choose K so that KBB'K' = (kB)(kB)' = I.

For i=1,2,...,m Theorem 4.2 implies that

QiBT(BaiBT)'l - 187 (s18")! = BT

so that
1.7 T

(82,8")7! = Ba7'8T and o.B7(B2.8")7'B = 8B .
Right multiplication of the latter equation by QiBTB will establish

that

QiBTB - BTBQiBTB .

and by symmetry it follows that

Tp _ ol
QiB B=8B BQi .

Since ng = 0 and QO = I, Theorem 4.2 implies

T -
ni_BBni_O
and

Q. - BTBQi I-8'B.

Since BBT =1 1it follows that BT

B+ (where (-)+ denotes the

generalized inverse of (.) ) and hence that Q = BB = B'B is the

orthogonal projection onto the range of BT. Clearly Q has rank k

and we conclude that (I - Q)ni =0 and (I - Q)(Qi -I)=0 1i=1,2,...

and the condition follows.

,M
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Conversely, if the condition holds, 1let B be any k X n rank k

matrix such that BT = g and range(BT) = range(Q). Then clearly

B'B = Q and BB' = I. By the symetry of 1-Q and @, - I, we

conclude that QiBTB = BTBQ1 and, hence, that

O
i
o
(v
f

- B+BﬂiBT(BQiBT)'lB

T)'lB

QiB+BBT(BQiB
T.-1
)

T
QiB (BQiB B .

T

In addition, S21.BT(BSZ1.BT)'1 = B . Clearly B satisfies the conditions

of Theorem 4.2.

Definition. We will say that a rank k orthogonal projection Q

generates a sufficient statistic for {Pi}?=0 provided that, for any

k xn rank k matrix B such that B+B =Q, B 1is a sufficient statistic

m
for {P1}1=0 .

Corollary 4.6. (Decell [41.) If M= [nll cen Inmlﬂ1 - I}... IQm - 1]
then

(a) Q= my generates a sufficient statistic for {Pi}T=O

(b) k= rank(MM+) = tr(MM+) is the smallest integer for which

there exists a rank k orthogonal projection generating

a sufficient statistic for {Pi}?=0 .

Proof: Since (I - MM+)M =0 M generates a sufficient statistic.
Let k be the smallest integer for which there exists a rank k ortho-
gonal projection P generating a sufficient statistic for {Pi}?=0 .

According to the definition of M, (I - P)M =0 so that PM =M and
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pum’ = mmt, However, pmt = mm* implies that the range(MM+) c range(P)

so that the minimality of k and the fact that " is an orthogonal

projection imply that range(MM+) = range(P) and hence that mvt = p.
Dropping the requirement that QO =1 and ng = 0 we have the

following.

Corollary 4.7. Let

1

m 2
LS R | 55 IRRC TS FN I
A 1-=1{(Sz1. 2,") + (Qi ny - 9 no)(Qi Ny - 9 no) },

then A'A generates a sufficient statistic for {Pi}?=0
Proof: Since A is a symmetric matrix, it follows that ATA s
the orthogonal projection onto [ker AIt. If B s any k xn rank k

matrix such that B'B = A'A then ker B = ker(A+A) = ker A. Hence, B

is a sufficient statistic for {Pi}T=0 by Theorem 4.3.

Givena kxn rank k matrix B, let V = QOBT(BQOBT)'l. Let

Ei(f(z)) denote the expectation of the random variable f with respect

to the measure Pi’ i=0,1,...,m. Let XqsenesXy be identically
distributed independent n-dimensional random variables such that Xq
is normally distributed. Define functions H:RkxN +R" and
6:RON & RPN by
1 N
H{yqs--ooyy) = (1 - VBIng + Vi 52 ¥5)
and
N
Gyqa--eayy) = (I - VB)Qy + VBR,(I - ve)" + Vigr s21 by - N0y - DRl

1 N
where y = N §1 yJ
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Theorem 4.8. If B 1is a sufficient statistic for {Pi} then
H(Bxl,...,BxN) and G(Bxl,...,BxN) are unbiased consistent estimators

of the mean and covariance of the measure Pi’ i=20,1,...,m.

Proof:

N
1 3 = (] -
Ei{(I - VB)n0 + V(N 341 ij)} (1 VB)n0 + VBn;

which is (I - VB)nj + Van =N by Theorem 4.2.

N

T vighp SE (B0 - 0BG - )1V

E{(I - VB)Q0 + VBQO(I - VB

= (I - VB)q, + VBay(I - vg)T + VBQiBTVT

which, by Theorem 4.2, is equal to

(1 - vB)2, + VB, (I - VB)' + VBa,(vB)'

= (I - VB + VB)Q, (I - VB + ve)T

= Q.
j

The consistency of these estimators follows from the continuity of
the matrix operations.

The significance of this last theorem is that these estimators of
the original parameters are functions of B and are B'l(Rk) measurable.
Halmos and Savage in [6] indicate that "under suitable hypothesis, if
there exists a maximum Tikelihood estimate R of some parameter, then
R depends only on Tx =y where T 1is a sufficient statistic (i.e.,
the estimator of R is T'1 measurable)." Theorem 5 then is in this

sense a typical result concerning estimators of parameters and sufficient
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statistics.
It should be noted that although Theorems 4.1, 4.2 and 4.8 are
stated for finite collections of measures, they clearly hold for arbitrary

collections of measures.
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V. BAYES SUFFICIENCY AND ITS RELATION TO STATISTICAL SUFFICIENCY

In this chapter we describe the relationship between sufficiency
as described in this paper and Bayes sufficiency. We will no Tonger
assume that a statistic T 1is Tinear. We will assume that T is a
measurable function from a measurable space (X,S) onto a measurable
space (Y,R).

Let {Pi}T=1’ 2 <m < o, be a homogeneous collection of measures
on (X,S), and define a collection of measures {hi}?=1 by
hi(A) = Pi(T"l(A)) for A ¢ R. Observe that {hi}?=1 is a homogeneous
set of measures.

If {ai}T=1 is a set of prior probabilities for '{Pi}?=1 and
s is the ith population, then the Bayes classification rule on the

random variable x can be stated as follows:

Classify x ¢ s if and only if

and

i ..
o 353'(X) > o for j < i.

The Bayes classification on x wusing the random variable y can
be stated as follows:

Classify x e s if and only if

dh4 .
oci W (TX) >4 ij J > 1
dhi ) )
o Hﬁg'(Tx) > 0 j<i.
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A statistic T 1is Bayes sufficient for {Pi}T=1 if for each
set of positive prior probabilities {ai}T=l the probability of
misclassification using the Bayes classification rule for the random
variable x is equal to the probability of misclassification using
the Bayes classification rule for y.

We consider first the case m = 2.

Lemma 5.1. The probability of misclassification using x equals

that of using y if and only if for u=P

1 b
dh1 dP1
(1) u({x[a1 HFE'(TX) 20, and o 35;'(x) < az}) =0
dhl dP1
(2) u({xlal o= (Tx) <a, and a, 355'(x) >0,}) = 0.

2
Proof. The equivalence follows from the fact that conditions
1 and 2 imply that the Bayes rules, using x and y, are equal except on

a set of measure zero.

Lemma 5.2. If T 1is a sufficient statistic for {Pl,PZ} in the

Bayes sense then T is a sufficient statistic for {Pl,Pz} .

Proof. By Lemma 5.1,
dP1 dh1
{x]oc1 aﬁg-(x) > az} = {xla1 aﬁg-(Tx) > az}[u] .
So for each rational number a let
dP1 dh1
B, = {x| aﬁz-(x) <o and HFE'T(X) >al .

Then u(Ba) = 0 and hence ”(a gat Ba) = 0. Hence, for A e B(x)
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dp dh

1 1
[ = du=[ =T du
i sz A dh2
and
dP dh
1 1
=== =0 T [ul.
dP2 dh2
This means that
dP1

-1
v, (e)T “(B(Y)) .

Theorem 5.3. A statistic T is sufficient for {Pi}?=1 2 <m< w,

if and only if T is a sufficient statistic in the Bayes sense.

dP. dh.
Proof. If T 1is a sufficient statistic, then 85%-= !

I © T

and so the Bayes classification using x is the same as Bayes classifi-
cation using Y. Conversely, if T is sufficient for {Pi}T=1 in the
Bayes sense, then T is sufficient for {Pi’Pj} in the Bayes sense.
Hence g;%—(e)T'l(B(Y)) and so T is a sufficient statistic for

m
AT

The following example shows that if a statistic T does not
increase the probability of misclassification for a single set of prior

probabilities, then T 1is not necessarily a sufficient statistic.

Example 5.4. Let

x+y for (x,y) ¢ [0,1] x [0,1]
Pl(X,y) =
0 otherwise
1-x+y for (x,y) e [0,1] x [0,11]
Po(x,y) =
0 otherwise
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2

be the densities with respect to Lebesque measures on R~ of P1 and

dP
P, respectively. Then for (x,y) ¢ [0,1] x [0,11, aﬁl-(x,y) > 1 if
2
and only if x > 1/2. Now if the prior probabilities are equal, then

the projection P(x,y) = (x,0) minimizes the probability of error,

dh
since aﬁl-oT >1 if and only if x > 1/2. However, P is not a
2
sufficient statistic by Theorem 2.2 and the fact that
dP1 dP1
ap—-(1/4, 1/8) = 1/2 # 1 = 5~ (1/4, 1/2).

2 2
Although this example shows the conditions in Lemma 5.2 cannot in
general be relaxed, in the case of normal densities we will state the

following theorem due to Peters [8] without proof.

Theorem 5.4. If a k x n Tlinear statistic B of rank k does
not increase the probability of error for a finite collection of normal
densities and a fixed set of priors for which the Bayes decision regions

are not empty, then B 1is a sufficient statistic.
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