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ABSTRACT

In this paper we characterize the continuous linear sufficient 

statistics for a dominated collection of measures on a Banach 

space. This is followed by a characterization of exponential 

families with emphasis on those measures on Rn whose densities 

with respect to Lebesgue measure are multivariate normal densities. 

Finally, the relation between Bayes sufficiency and sufficient 

statistics is studied.
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I. INTRODUCTION AND DEFINITIONS

A cr-algebra of subsets S of a space X is a collection of 

subsets with the property that if A^ e S, i = 1,2  then 
CO

^i=l € 5 anc* e s- If c is a collection of subsets of

a space X we will denote the smallest cr-algebra containing C by 

o(C). The Borel field of a topological space is the smallest o-algebra 

which contains the open sets.

A measurable space is a set X together with a o-algebra of 

subsets S of X. If (X,S) and (Y,R) are measurable spaces, we say 

that T is a measurable function from X to Y if for A e R then 

T”\a) e S (where T~^(A) = {x e X | T(x) e A}) : we denote by

T-1(R) the o-algebra of subsets of preimages of elements of R under 

T. A measurable function will also be called a statistic. If f is 

a real valued Borel measurable function on (X,S) then the collection 

of symbols f(€)T"1(R) will be used to mean that f is also measurable 

on (X,T-1(R)).

A measure is a real non-negative countably additive function on 

the measurable sets of a measurable space. If p is a measure on a 

measurable space (X,S) then (X,S,p) is called a measure space. A 

measure p is a finite measure if p(X) < «>.

If p and v are measures on a measurable space then p is 

absolutely continuous with respect to v (denoted p « v) if for each 

measurable set A, p(A) = 0 whenever \)(A) = 0. If p « v and 

v « p then we say that p is equivalent to v and this is denoted 



2

H e v. If the symbol [p] follows an assertion about the points of a 

measurable space, then it is understood that the set for which the 

statement is not true is a measurable set with p measure zero.

The Radon-Nikodym theorem will be a necessary tool in this 

investigation and can be stated as follows:

A necessary and sufficient condition that 

p « v is that there exist a non-negative 

Borel measurable function f on (X,S) such 

that 
p(E) = / fdv for every E e S.

E

The function f in the statement of the theorem is unique in the 

sense that if g is a Borel measurable function on (X,S) such that

p(E) = / gdv for every E e. S 
E

then f = gEvl. The function f is called the Radon-Nikodym derivative 

of p with respect to v and is often denoted dp/dv. We will write 

[dp/dvl to denote the collection of Radon-Nikodym derivatives of p 

with respect to v.

The notion of absolute continuity of one measure with respect to 

another and equivalence of measures can be extended. If D is a 

collection of measures on a measurable space (X,S) then D is a 

dominated collection of measures if there is a measure v on (X,S) 

(but not necessarily in D) with the property that if p e D, then 

p « v. The collection of measures D is said to be equivalent to a 

collection of measures F on (X,S) (denoted D = F) if, for each 

A e S, p(A) = 0 for each p e D if and only if v(A) = 0 for each 

v e F.
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Throughout this paper M(X) will denote the collection of finite 

measures on X defined on some fixed o-algebra and D will denote 

a subcollection of M(X) which is dominated by a o-finite measure 

(i.e., a measure which makes X the countable union of sets of finite 

measures).

In [6] Halmos and Savage investigate sufficient statistics in a 

general setting. In the presense of a dominated collection of measures, 

their results offer an alternative to the conditional probability 

definition of statistical sufficiency. We will use this as our defini

tion of sufficiency with T a statistic from (X,S) to (Y,R).

Theorem 1.1. (Halmos-Savage [6].) A necessary and sufficient 

condition that T be a sufficient statistic for D is that there exist 

a X e M(X) such that D = X and for p e D there exist g^ e Cdp/dXJ 

such that gu(€)T-1(R).

If D is a dominated collection of measures then there exists a 

countable subcollection of D such that D = [61.

Define a measure X on (X,S) by

X(A) = i|1 a^^A)

for A e S and where a.. = l/tZ1 (X)). It follows that X is 

equivalent to D and by the proof of Theorem 1.1 the following theorem 

holds.
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Theorem 1.2. A necessary and sufficient condition that T be a 

sufficient statistic for D is that there exist a e Ldu/dX] such 

that g^CejT’^R) for each p e D.

A homogeneous class of measures is a collection of measures whose 

members are pairwise equivalent.

Corollary 1.3. (Halmos-Savage [6].) Let D be a homogeneous set 

of measures with v e D. A necessary and sufficient condition that T 

be a sufficient statistic for D is that T be sufficient for the pair 

of measures (v,p) for each p e D.

Proof. Let X = v and use Theorem 1.2.

Theorem 1.4. (Halmos-Savage [6].) A necessary and sufficient 

condition that a statistic T be sufficient for a dominated collection 

of measures D is that there exist g e [dp/d(p + v)] such that 
P»v

9u for e D-
H 5 v
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II. CHARACTERIZATIONS OF LINEAR SUFFICIENT STATISTICS

Throughout this chapter, if W is a Banach space, then B(W) 

will denote the Borel field of W. Also, throughout this chapter, X 

and Y will denote Banach spaces and T will denote a continuous linear 

operator from X onto Y.

In some of the theorems which follow it will be necessary to assume 

that ker T is complemented by some closed subspace (i.e., X = ker T 6 S, 

T n S = 0). This condition will not always be satisfied; however, if X 

is a Hilbert space then S can always be taken to be the orthogonal 

complement of ker T.

Theorem 2.1. Let X = ker T ® S for some closed subspace S of 

X. A necessary and sufficient condition that T be a sufficient statistic 

for D is that there exist X e M(X) such that D = X and

(1) ker T c {ylg^x + y) = gp(x), x e X}

for each u e D and some g^ e [du/dX].

Proof. If T is a sufficient statistic, then there exists a

X = D such that for some g^ e [dp/dX], g^CejT’^R) for each y e D. 

Then there exists a (Y,B(Y)) measurable function f such that 

g^ = f o T for y e D ([2] pg. 69). If y e ker T, then we have

g^Cx + y) = fpo T(x + y) = f^o T(x) = g^(x) for x e X.
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Conversely, suppose Dea and for p e D,

ker I c {y|g^(x + y) = g^Cx), x € X}

for e [dp/dAJ. We need only show (according to Theorem 1.1) that 

g^(e)T~l(R). Since for any collection of sets C in X,

a(g"1(C)) = g-^atc))

([91 pg.10) it suffices to show that if r is a real number, then 

there exists e B(Y) such that g’^C-^.r) = T-1(Br). We will first 

show that

g^(-<»,r) = T^dEg'^-^.r) n SI)

and then that

Br = TEV("",r) n 53 € B(Y)‘

If x e f^TEg’^-co.r) n SI), then T(x) e TEg'^-oo.r) n S3 and, 

hence, T(x) = T(z) for some z e g"^-00^) n S. Since T is linear, 

(x - z) e ker T, so that gp(x) = gu(x - z + z) = gy(z) < r and 

x £ g^-00^).

If x e g^(-”,r), then, since X = ker T ® S, x = k + s for 

k e ker T and s e S. It follows that T(x) = T(s), s - x e ker T,

gu(s) = gy(s - x + x) = gy(x) < r

and so s e g"^-00^). From this it follows that

T(x) = T(s) e TEg’^-.r) n S3
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and finally that x e T"'’’(T[g^1(-“,r) n SI).

We will now show that T[g~''’(-oo,r) n S] e B(Y). Let T<.:S -> Y be 

the restriction of T to S and observe that T is a one-to-one 

continuous mapping of the Banach space S onto the Banach space Y. 

Since 1$ satisfies the hypothesis of the open mapping theorem, Tg 

is a homeomorphism of S onto Y and therefore maps elements of B(S) 

to elements of B(Y). Since g^ is measurable,

n S] e B(X) n S = B(S)

([51 page 25). It follows that

TEg'^-co.r) n SI = TgCg’^-^r) n S] e B(Y).

In the following two theorems, we show that if the class of Radon- 

Nikodym derivatives contains continuous representatives, then under 

certain other conditions T is a sufficient statistic if and only if 

condition (1) in Theorem 2.1 holds for the continuous representative 

g^ for p e D. Furthermore, if D = X and V is an open or countable 

set in X such that X(X\V) = 0, then the sufficiency of a statistic T 

depends only on g^|v for p e D. First, we will need Lemma 2.2 below.

For V e B(X), and for a measurable function f from X into 

the real numbers such that

ker T c {y 6 X | x e (V - y) n V, f(x + y) = f(x)},

we define a function f on X by

a ( f(x + y) if for some y e ker T, x + y e V, 
f(x) =

0 otherwise.
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Lemma 2.2.
। [X\(V ® ker T)J u L(f1(-”,r) nV)® ker T] for r > 0 

f~1(-”,r) = I

' [(f”1(-00,r) nV)® ker T] ■ for r < 0

where for A,B e B(x), B ® A = {x e Xjx = b + a for b e B, a e A}.

A_1 A
Proof. Suppose that r > 0. Let x e f (-“jr) and r > t = f(x). 

If there exists y e ker T so that x + y e V then t = f(x) = f(x + y). 

Since x = (x + y) + (-y) and x + y e Lf'^-^.r) n V], it follows that 

x e [f~^(-°°,r) nV]® ker I. If for every y e ker T, x + y 4 V, then 

x e X\(V ® ker T). Hence

f-1(-»,r) c [X\(V © ker T)] u [(f"1(-<»,r) nV)® ker T].

Conversely, if x e E(f"1(-oo,r) n V) ® ker T], then there exists

y e ker T so that x + y e f (-oo,r) n V. Then f(x) = f(x + y) = t < r, 

so x e f'^C-^.r). If x e [X\(V ® ker T)], then f(x) = 0, so

x e f-1(0). Thus

f-1(-~,r) EX\(V ® ker T)] u E(f-1(-~,r) n V) ffi ker T],

Similarly, if r < 0, then

A 1 i
f (-ro,r) = E(f (-”,r) nV)® ker Tl.

Let D be a dominated collection of measures on (X,B(X)). Define 

(as in Chapter 1) a measure X on (X,B(X)) by X(A) = a-v^A) 

for A e B(x), where 15 a countable equivalent subcollection

of D and a1 = (2-1 ^(X)-1), i = 1,2
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Let V be an open set in X such that X(X\V) = 0. Suppose 

that if B e B(X) and X(B n V) = 0 then X(B n V - y) = 0 for 

y e ker T. Suppose further that if C is a non-empty set in the 

relative topology of V then X(C) > 0.

Theorem 2.3. Suppose that for each u e D, Edp/dX] contains 

a representative f which is continuous on V. A necessary and 

sufficient condition that T be a sufficient statistic for D is that

ker T c {y|x e (V - y) n V and f^(x + y) = ^(x)}.

Proof. Suppose ker T c {y[x e (V - y) n V and f (x + y) = fy(x)}. 
A A

Define f^ as in the paragraph preceding Lemma 2.2. Then f is a 
Al

measurable function. It suffices to show f (-00,r) e B(X). Since V

is an open set and f |y is continuous (relative topology on V), then 

Lf"^-00^) nV)® ker Tl and V ® ker T are open sets in X. So by 

Lemma 2.2, f"^-00^) e B(X). It follows that f e Edp/dX], since

A
f^ e Edp/dXJ and f = f , except perhaps on a set of X measure zero.

Define h^:T(V) ■* R3, by h^(z) = fy(x) for z = Tx. Then h^ is 

continuous on T(V) since h'^agb) = T[f~^(a,b) n V] is an open set 

in Y. Extending h^ to all of Y by letting h^(z) = 0 for 

z e Y\T(V) we have that h is Borel measurable and f = h o T. 
p p P

Hence, T is a sufficient statistic.

Conversely, if T is sufficient for D, then for p e. D there 

exists g^ e [dp/dX] such that ker T c {y|g^(x + y) = 9|J(x), x e X} 

and gp = fuEX] .
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Let y e ker T, B = {x|f^(x) / gp(x)} e B(X) and,

X(B n V - y) = X(B n V) = X(B) = 0. Define f by

v = fulv

A
fulx\V = gylx\V •

Since

f/x) = gp(x) for x e X\(B n V),

g^x) = g^(x + y) for x e X,

and g^(x + y) = fy(x + y) for x e X\(B n V - y),

it follows that ^(x) = f (x + y), except on some set

C c (B n V) u (B n V - y),

such that X(C) = X(C n V) = 0. Since X(C) = 0 and (V - y) n V is 

open in V it follows that C n E(V - y) n VI contains no non-empty 

open set of V n (V - y). Then £(x) = f(x + y) for x e (V - y) n V 

Hence f(x) = f(x + y) for x c (V - y) n V.

The following is.an example, which has the property that a linear 

statistic T is a sufficient statistic yet the kernel condition does 

not hold for the continuous representative of the derivative.

Example 2.4. Let T be the linear function from the plane onto 

the x-axis defined by T(x,y) = x. Let V be the two closed unit squares 

centered at (1/2, 1/2) and (3/2, 5/2). Let g be the Radon-Nikodym 

derivative of two measures and P2, which are equivalent to Lebesgue 

measure restricted to the two squares and zero elsewhere, defined by
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g(x,y) =

1 if 0 < x < 1, 0 < y s 1

2 if 1 < x < 2, 2 < y < 3 

0 otherwise .

We see that T is sufficient by Theorem 2.3, taking V to be 

the interior of the squares. However, the kernel condition of Theorem 

2.3 is not satisfied for the continuous representative on the closed 

squares.

Theorem 2.5. Let V be a countable set and X e D defined as in 

Theorem 2.3. Let X(X\V) = 0 and X(x) > 0 for x e V, and suppose 

that for each p e D, Edp/dXJ contains a representative f which is 

continuous on V. A necessary and sufficient condition that T be a 

sufficient statistic is that ker T c {y|x e (V - y) n V, f^(x + y) = f^(x)}.

Proof. If T is a sufficient statistic, then, for p e D, there 

exists e Edp/dX] such that g^ = h^ o T for some Borel measurable

function h^ . Since X(x) > 0 for x e V, f = g^ on V.

Conversely, suppose that

ker T c {yJx e (V - y) n V, fp(x + y) = fy(x)} .

A
Define f as in the paragraph preceding Lemma 2.2, and observe that
A A A
f^ is measurable. Since f^ = f^EX], then f e Edp/dX]. Define

h :Y + R1 by 
P J

A
( f(x) if Tx = z and x e V

h (z) = <
11 ( 0 otherwise .
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A
Clearly h is Borel measurable and f, = o T. Hence T is a 

sufficient statistic.

We observe that the theorems of this chapter have immediate corollaries 

corresponding to Corollary 1.3 and Theorem 1.4. In particular, the homo

geneous case is of special importance.
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III. APPLICATION TO EXPONENTIAL FAMILIES

Let X be a Banach space and {PQ}Q be a collection of measures ti UeW

defined on B(X). We say that (PqIq^q is an exponential family with 

respect to a o-finite measure X on B(X) if there exist non-negative 

functions c and h defined on 0 and X respectively and functions 

Q and t defined on 0 and X respectively with range in an inner 

product space with inner product <•,•> such that

(dP0/dX)(x) = p0(x) = c(6)h(x) exp <0(6), t(x)> .

Exponential families are an important class of measures in theoretical 

and applied statistics. Under suitable hypotheses, if there exist suffi

cient statistics for a collection of measures, then that class is an 

exponential family. For further details see Brown 1964 [4] and Anderson 

Ell.

Let {PQ}Qz.n be an exponential family of measures on B(X).

Theorem 3.1. If X = ker T ® S for some closed subspace S, V is 

an open convex set, and 6q e 0 such that

(1) p6o(x\v) = 0

(2) t is continuous and Gateaux differentiable on V

(i.e., «t(x,y) - t(xjLPSZ)^t(xl ex1sts for x £ v)

(3) h > OEX] on V

(4) if 0 c B(V) and X(C) = 0 then X(C - y) = 0 for y e ker T.
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(5) if C is not empty and open in V then X(C) > 0.

A necessary and sufficient condition that T be a sufficient

statistic for {PQ}Q ~ is that for 9 e 0, ti ti€y

ker T c {y|<Q(9) - Q(6q), 6t(x;y)> = 0, x e V} .

Proof: Observe that the conditions of Theorem 2.3 are satisfied 

and hence T is a sufficient statistic if and only if for 9 e 0

ker T c {y|x e (V - y) n V and (dPe/dP0o)(x + y) = (dPe/dPe )(x)}.

where (dP^dP^Xx) = (C(9)/C(90))exp<Q(9) - Q(9Q),t(x)> .

Equivalently, since V is convex and t is Gateaux differentiable.

ker T c {y|a e R', x e (V - y) n V and <Q(9) - Q(9q), t(x + ay) - t(x)> = 0},

ker T c {y|x e V and <Q(9) - Q(9q), > = 0} , 

and finally

ker T c {y|<Q(9) - Q(9q), 6t(x;y)> = 0, x e V}.

Theorem 3.1 will now be used to characterize linear sufficient 

statistics for families of probability measures having Wishart densities.

Let S denote the symmetric n x n matrices, V the positive

definite elements of S and {W(fiQ)}_  (?2a e V for 9 e 0) a family
y Ueti y

of Wishart probability measures with r > n degrees of freedom having 

densities

w(x,Qe) =

-1 'o{*"-*ri-l) 1 _■]
K(Qoi)|Xp exp(trace(-i- fifl1x)), x e V

ti C U

0 otherwise.
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Theorem 3.2. A necessary and sufficient condition that T be a

sufficient statistic for {W(fiQ)}Q A is that for some 0n e 0
Q 0e0 U

ker T c for 6 e 0ti u

where ± denotes the orthogonal complement with respect to the trace

inner product defined on symmetric matrices.

Proof: Observe that V is open in S and w(x,nQ) > 0 for

x e V and 6 e 0. The preliminary conditions of Theorem 3.1 are satisfied 

with X = Lebesgue measure on S. Hence a statistic T is sufficient if 

and only if

trace[(fi~1 - ^"^(SlCx^y))] = 0
9 60

n xi
(!) Px(x) • if x e V

(2) PX(X\V) = 0.

This measure is the probability measure associated with an independent 

sample of size n of a random variable with the Poisson distribution. 

Using Theorem 2.3 directly we have the following theorem.

for x e V, 6 e 0 and y e ker T, or equivalently

traceE (Q~^ - flZby^ = 0 for 6 e 0 and y e ker T.
6 60

We will now consider a collection of discrete probability measures.

Let V = {x e Rn|x has non-negative integer components x^, i = 1,...

If X e (0,+<»), let P, be the measure on (Rn,B(Rn)) such that 
A

,n}.
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Theorem 3.3. A necessary and sufficient condition that T be a

sufficient statistic for {P.}, /n is thatX X€(0,+°o)

ker T c {y e Rn|(V - y) n V / 0 implies Zy^ = 0}.

Proof: By Theorem 2.3, T is a sufficient statistic if and only 

if
n dPl dF\

ker T c {y e Rn|x € (V - y) n V, X € (0,+~) and (x + y) = (x)}

n y.
= {y e Rn|(V - y) n V / 0 implies ^H^x 1 = 1} .

We observe that any scalar multiple of the mean and any linear map 

which is 1-1 on V is a sufficient statistic.
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IV. APPLICATIONS TO THE MULTIVARIATE NORMAL CASE

Let {P.}T_q be a family of m + 1 probability measures defined 

on (Rn,B(Rn)) having normal densities

p^x) = (27r)"n/2|i2.|~1/2exp[4 (x - n^V^x -

for i = 0,1,...,m, where and are known and is a positive 

definite operator on Rn. In the following paragraphs we will characterize, 

in a variety of ways, the linear sufficient statistics for such a collection 

of measures. We will then investigate the construction of sufficient 

statistics and give unbiased consistent estimators which are functions of 

the sufficient statistic.

Theorem 4.1. A necessary and sufficient condition that a k x n

rank k matrix B be a sufficient statistic for is that

m 11-1 ii
ker B c ^{ker^.. - ) n r). - •

Proof: Write (x - )TfiT1(x - np as

<Qi ’xx >tr " 2<fii ni’x> + ^i^i^i^nxn^r

where Inxn is the identity matrix on Rn. By Theorem 3.1 if

1 < i < m then B is a sufficient statistic for (P-pPg} if and only if

ker B c (y e Rn|<fi"1 - ?2"1,6(IIT)(x;y)>tr - 2<n:1ni - n”1n(),6I(x;y)> +

+ - fig^gnj, 0>tr = 0, x e Rn}
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or equivalently,

ker B c {y[2<qT1 - fin1,yxT>f - 2<Q71n1- - %1nri,y> = 0, x e Rn}
I U v I II KJ xJ

= {ker(fi71 - Q"1) n .

Theorem 4.2. (Peters [41.) A necessary and sufficient condition 

that a k x n rank k matrix B be a sufficient statistic for {PjIj.q 

is that for j = 1,... ,m

(a) Lfi0BT(Bfi0BT)"1B3(Qj. - QQ) = fl. - QQ

(b) [fi0BT(Bfi0BT)"1B](nj. - n0) = Hj - n0.

O T T -1
Proof: Let P = P = flgB (BfigB ) B and observe that if B is a 

sufficient statistic then

ker P = ker B c kerCfij1 - Qg1) = kerC(flj - fig)^].

It follows that

RangeEfig1(fij - Qq)1 c Range PT

and hence that

BT(BnoBT)"1BfigfiQ1(nj - fig) = ~ fig)

which is equivalent to (a) .

Since

ker P = ker B c ker(Q7^ - S2~^) n LQ^n- - ^g^g^1 c ^g^Cn^ - Hq)!1
J U J J U U U J u

it follows that
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- Hq) c Lker P]1 = range PT .

T T -1 -1
Let x e ker A. Then x Ax = 0, which implies that x - fig ) x = 0 

and - fig^rig)- Og^ngJ^x = 0 for i = l,2,...,m. But

then (fi?1 - fig^x = 0 and xT(n71n1. - fig^hg) = 0 for i = l,2,...,m 

and so x e ^^kertfi?1 - fi"1) n - Q^tiq]1}.

m _i _i _i _i ।
Conversely, let x e .^i^ker^. - fig ) n Cfl. ni - fig hgl } then 

(fi^ - fig^x = 0 and (fiT^n^ - fig^ngj^x = 0 and so Ax = 0 and

x e ker A.

In the next theorem we will use the fact that there exists a non- 

singuTar matrix M such that MfigM^" = I and, hence, the affine 

transformation x -»■ M(x - rig) provides a change of variables that allows 

one to assume that hg = 0 and fig = I. We observe through the following

Hence,

B (BfigB ) B£2q£2q (hj - Hq) *■ (Hj - Hq)

which is equivalent to (b).

Since all of the preceding arguments are reversible, (a) and (b) 

imply B is a sufficient statistic for » completing the proof.

Theorem 4.3. A necessary and sufficient condition that a k x n 

rank k matrix B be a sufficient statistic for (P.}T_g is that for

m _i 2 _i _i _i _i t
A = - fig ) + - fig n0)(fi1. ni - fig n0) ), ker B c ker A.

Proof: According to Theorem 4.1 it suffices to show that

m _i _i _i _i . 
ker A = in1{ker(Q.i - fig ) n ni - fig Hgl ) . 
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lemma that this entails no loss of generality since we can easily recover 

the sufficient statistic for the original collection of measures.

Lemma 4.4. Suppose that T is a sufficient statistic for ^Pj^=o* 

A
Let P. denote the measure corresponding to and the change of 

variables y = Mx - z, where M is a non-singular matrix and z is an 

arbitrary element of Rn. It follows that TM~^ is a sufficient statistic 

for

A
Proof: According to Theorem 4.1, it suffices to show (since P^

is a normal measure with mean Mr^. - z and covariance matrix 

for i = 0,1,...,m) that ker TM-1 c ker(MT and

ker TM"1 c [MT l(n7ln1 - Sq1^) - MT .

Let y e ker TM"1. Then, since ker TM"1 = M(ker T), let y = Mx 

where x e ker T. Then M^ ^(fi^j1 - Rq1)M"1(Mx) = 0 since 

x e kerCR]1 - R^1) and yT(MT ^R^n-j - ^q^q) - MT 1(r71 - R'^M"^) 

= xT(MTMT'1(R"1n. - R'^q) - xT(MTMT"1(R"1 - R’^M"^ = 0 and TM"1 

is a sufficient statistic for •

Theorem 4.5. (Decell [4].) If Hq = 0 and fig = I, then a 

necessary and sufficient condition that there exist a k x n rank k 

matrix B sufficient for is that there exist a rank k

orthogonal projection Q such that

(I - Q)En1ln2l ••• ~ ••• lfim " I] = z ’

where z is the n x (n + 1)- m zero matrix.
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Proof: If a k x n matrix B of rank k is sufficient for 

tpi^=0» we may assume without loss of generality that BBT = I since 

B is a sufficient statistic for if and only if KB is a

sufficient statistic for each non-singular k x k matrix K. One can 

choose K so that KBBTKT = (KB)(KB)T = I.

For i = 1,2,...,m Theorem 4.2 implies that

fi1BT(Bfi1BT)-1 = IBT(BIBT)"1 = BT 

so that

(B^.B1)"1 = Bn-1BT and fiiBT(BQiBT)"1B = BTB .

Right multiplication of the latter equation by fi.BTB will establish 

that
ITT ^b'b = b'b^b'b ,

and by symmetry it follows that

QiBTB = BTBQi .

Since rig = 0 and fig = I, Theorem 4.2 implies

q. - BTBni = 0 

and

fi. - BTBfl. = I - BTB .

Since BB^ = I it follows that B^ = B+ (where (•)+ denotes the 

generalized inverse of (•) ) and hence that Q = BTB = B+B is the 

orthogonal projection onto the range of b\ Clearly Q has rank k 

and we conclude that (I - Q)n^ = 0 and (I - Q)(Q^ - I) = 0 i = l,2,...,m 

and the condition follows.
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Conversely, if the condition holds, let B be any k * n rank k 

matrix such that BT = B+ and range(BT) = range(Q). Then clearly 

B+B = Q and BB+ = I. By the symmetry of I - Q and - I, we 

conclude that fi^B^B = B^Bfi^ and, hence, that

Q = B+B = B+BQiBT(BQiBT)-1B

= QiB+BBT(BQiBT)“1B

= fi1BT(BniBT)"lB .

T T -1 TIn addition, ^.B (Bfi.B ) = B . Clearly B satisfies the conditions

of Theorem 4.2.

Definition. We will say that a rank k orthogonal projection Q 

generates a sufficient statistic for provided that, for any

k x n rank k matrix B such that B+B = Q, B is a sufficient statistic 

for .

Corollary 4.6. (Decell [4].) If M = En-il ... Inml^i - 11 ... I^m - 13* ....... i hi i in

then

(a) Q = MM+ generates a sufficient statistic for {P^I^q

(b) k = rank(MM+) = tr(MM+) is the smallest integer for which 

there exists a rank k orthogonal projection generating

a sufficient statistic for {P^}T_0 .

Proof: Since (I - MM+)M = 0 MM+ generates a sufficient statistic. 

Let k be the smallest integer for which there exists a rank k ortho

gonal projection P generating a sufficient statistic for {P^jT-Q . 

According to the definition of M, (I - P)M = 0 so that PM = M and
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PMM+ = MM+. However, PMM+ = MM+ implies that the range(MM+) c range(P) 

so that the minimality of k and the fact that MM+ is an orthogonal 

projection imply that range(MM+) = range(P) and hence that MM+ = P.

Dropping the requirement that Rq = I and Hq = 0 we have the 

following.

Corollary 4.7. Let

ni i i 2 i i i i t
A = - % ) + ($2i ni - fig n0)(fiT1ni - n" n0)*},

then A+A generates a sufficient statistic for •

Proof: Since A is a symmetric matrix, it follows that A+A is 

the orthogonal projection onto Eker A]1. If B is any k x n rank k 

matrix such that B+B = A+A then ker B = ker(A+A) = ker A. Hence, B 

is a sufficient statistic for {P^l^.g by Theorem 4.3.

Given a k x n rank k matrix B, let V = QgB^(BQgB^). Let 

E^(f(z)) denote the expectation of the random variable f with respect 

to the measure P^, i = 0,1,...,m. Let Xp...,x^ be identically 

distributed independent n-dimensional random variables such that x^ 

kxN n 
is normally distributed. Define functions H:R ■+ R and 

G:RkxH Rnxn by

H(yi.........yN) - (i - vB)n0 + v(i Jj yj)

and
T 1 N - -T T

G(y! yN) = (I - VB)Qg + VBfigd - VB)1 + VE^ (yj - y)(yj - y)l]V*

- 1 N 
where y = vr .2. y..J N j = l
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Theorem 4.8. If B is a sufficient statistic for {P.} then

H(BXp...,Bx^) and G(Bx^ Bx^) are unbiased consistent estimators 

of the mean and covariance of the measure P., i = 0,1,...,m.

Proof:

1 N
E.{(I - VB)t]0 + V(i BXj)} = (I - VB)n0 + VBn1 ,

which is (I - VB)r)j + VBrij = rij by Theorem 4.2.

T 1 N - - T T
E{(I - VB)n0 + VBn0(I - VB)1 + (B(Xj - x))(B(Xj - x))l]V1}

= (I - VB)Qq + VBfigd - VB)T + VBn.BTVT

which, by Theorem 4.2, is equal to

(I - VB)Q. + VBQi (I - VB)T + VBi20(VB)T

= (I - VB + VB)Q.(I - VB + VB)T

= n.
i

The consistency of these estimators follows from the continuity of 

the matrix operations.

The significance of this last theorem is that these estimators of

1 kthe original parameters are functions of B and are B (R ) measurable.

Halmos and Savage in [61 indicate that "under suitable hypothesis, if 

there exists a maximum likelihood estimate R of some parameter, then 

R depends only on Tx = y where T is a sufficient statistic (i.e., 

the estimator of R is T-^ measurable)." Theorem 5 then is in this 

sense a typical result concerning estimators of parameters and sufficient
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statistics.

It should be noted that although Theorems 4.1, 4.2 and 4.8 are 

stated for finite collections of measures, they clearly hold for arbitrary 

collections of measures.
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V. BAYES SUFFICIENCY AND ITS RELATION TO STATISTICAL SUFFICIENCY

In this chapter we describe the relationship between sufficiency 

as described in this paper and Bayes sufficiency. We will no longer 

assume that a statistic T is linear. We will assume that T is a 

measurable function from a measurable space (X,S) onto a measurable 

space (Y,R).

Let {PpT-p 2 < m < °°, be a homogeneous collection of measures 

on (X,S), and define a collection of measures by

hi(A) = (T^(A)) for A e R. Observe that {h^}T_j is a homogeneous

set of measures.

If 15 a set °f prior probabilities for {Pp’P.j and

is the i1*1 population, then the Bayes classification rule on the 

random variable x can be stated as follows:

Classify x e if and only if

dP.
«i jp7 (x) > ttj for j > i 

and

dP.
ai dP7 M > aj for J' < 1*

The Bayes classification on x using the random variable y can 

be stated as follows:

Classify x e ir^ if and only if

dh.:
°1 dhT(TX) £ “J j > 1 

dh,
“1 dK7 (Tx) > “j j •= 1 •
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A statistic T is Bayes sufficient for if for each

set of positive prior probabilities the probability of

misclassification using the Bayes classification rule for the random 

variable x is equal to the probability of misclassification using 

the Bayes classification rule for y.

We consider first the case m = 2.

Lemma 5.1. The probability of misclassification using x equals

that of using y if and only if for

dh,
(1) u({x[oi^ (Tx) cig and

dh,
(2) p({x|a1 (Tx) < a2 and

u = P1 ,

dPl
al dP^ < a2})

dP
al dP^" M > a2^

= 0

= 0 .

Proof. The equivalence follows from the fact that conditions

1 and 2 imply that the Bayes rules, using x and y, are equal except on

a set of measure zero.

Lemma 5.2. If T is a sufficient statistic for {PpPg} in the

Bayes sense then T is a sufficient statistic for {PpPgJ .

Proof. By Lenma 5.1,

{x|
dP

1 dPg M s a2}
dh,

= {x'al dh^ (Tx) ” a2^P] •

So for each rational number a let

dP1
Ba ' {x* dP^ M

dh,
< a and T(x) >: a} .

Then p(B ) = 0 and hence p( H f B ) = 0. 
u> (Jl r a U Cl Hence, for A e B(x)
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dP1 dh.
J" drdlJ = dirT du
A aP2 A an2

and 

dP. dh, 
dP7=d^oT w-

This means that 

dpl -1 
dpi (e)T 1(B(Y)) . 
ar2

Theorem 5.3. A statistic T is sufficient for {P .}T=1 2 < m < =, 
ill,

if and only if T is a sufficient statistic in the Bayes sense.

Proof. If

and so the Bayes

T is a sufficient statistic, then
dP. dhi 
dP7 = dhT

classification using x is the same as Bayes classifi

cation using Y. Conversely, if T is sufficient for in the

Bayes sense, then T is sufficient for

J

dP,- _iHence (e)T ^BM)
1

{P.}m triJi=r

and so T is a

(P^,Pj.} in the Bayes sense, 

sufficient statistic for

The following example shows that if a statistic T does not 

increase the probability of misclassification for a single set of prior 

probabilities, then T is not necessarily a sufficient statistic.

Example 5.4. Let

( x + y for (x,y) e [0,1] x [0,1] 
P^x.y) = <

( 0 otherwise

( 1 - x + y for (x,y) e [0,1] x [0,1] 
P2(x,y) =

o otherwise



29

2 
be the densities with respect to Lebesgue measures on R of

?£ respectively. Then for (x,y) e [0,1] x [0,1],
dPl (
dP2 (x,y^

Pj and

> 1 if

and only if x > 1/2. Now if the prior probabilities are equal, then

the projection P(x,y) = (x,0) minimizes the probability

since
dhi 4oT ’1 if and only if x > 1/2. However, P

sufficient statistic by Theorem 2.2 and the fact that

of error, 

is not a

dP, dP.
(1/4, 1/4) = 1/2 / 1 = (1/4, 1/2).

Although this example shows the conditions in Lemma 5.2 cannot in 

general be relaxed, in the case of normal densities we will state the 

following theorem due to Peters [8] without proof.

Theorem 5.4. If a k x n linear statistic B of rank k does 

not increase the probability of error for a finite collection of normal 

densities and a fixed set of priors for which the Bayes decision regions 

are not empty, then B is a sufficient statistic.
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