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ABSTRACT 

The rapid development in semiconductor detector technology at CERN has provided the 

capability to develop an active personal dosimeter for use in space radiation 

environments. The work reported here is based on the Timepix chip, which when coupled 

with an Si sensor, can function as an active nuclear emulsion, allowing the visualization 

of the individual tracks created as the different incident particles traverse the detector. 

The Timepix chip provides the capability of measuring the energy deposited by each 

incident particle that traverses the sensor layer. Together with the capability for online 

readout, this detector opens the door to a completely new generation of active Space 

Radiation Dosimeters.  

Although recent advances in hardware technology promise a major step forward in the 

development of such active portable space radiation dosimeters, little effort has been 

devoted toward software tools for analysis and classification of sources of radiation. 

Coupling radiation dosimeter hardware with pattern recognition techniques and machine 

learning tools has the potential to greatly improve current applications on space dosimeter 

projects. Our focus is not only to measure dosimetric endpoints directly such as dose-

equivalent, but also to determine the physical nature of the radiation field with sufficient 

precision to allow characterization of the radiation composition and energy spectrum. 
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A PATTERN-RECOGNITION APPROACH TO 

LEARNING TRACKS OF HEAVY-ION PARTICLES 

IN TIMEPIX DETECTORS 

1. Introduction 

The future of human space missions is constrained due to long-term space radiation 

effects. The attempt to acquire an accurate knowledge of radiation fields, and a fast-

warning mechanism of radiation hazards is the major motivation in developing a Space 

Radiation Dosimeter. Current standard devices used for radiation monitoring are not 

portable. They provide insufficient information about the radiation composition and 

energy spectrum. Our approach tries to take advantage of the rapid development in 

semiconductor detector technology at CERN. We are using a state-of-the-art pixel 

detector known as the Timepix, which can function as an active nuclear emulsion. The 

device allows the visualization of the individual tracks left as charged particles traverse 

the detector. In addition, this detector provides the capability to measure the energy 

deposited per pixel by these particles. Together with a capability of online readout, this 

detector opens doors to a completely new generation of Space Radiation Dosimeters. 

A fundamental challenge in the effort to develop such dosimeters based on the current 

Timepix chips from the Medipix2 Collaboration is how dosimetric endpoints such as 

dose-equivalent along with the detailed characteristics of penetrating heavy-ion particles 

can be determined from the raw Timepix outputs. The measurement of Linear Energy 
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Transfer (LET), source and velocity of incident ionizing radiation are of initial interest 

because they provide the capability to calculate the Dose-equivalent and characterize the 

radiation field for future radiation protection purposes. In this section, we briefly 

introduce the hardware technology of Timepix detectors. We then describe a pattern 

recognition system that plays an important role in developing such a dosimeter. We also 

discuss specific applications of the pattern recognition system applied to data output from 

Timepix and other related work. 

1.1 Timepix device 

Timepix is a version of the hybrid pixel detector technology developed by the Medipix2 

Collaboration [1]. The individual pixel circuitry of the Timepix chip is composed of a 

charge-sensitive preamplifier whose output is viewed by a digital discriminator whose 

threshold can be externally applied (Figure 1.1). The input charge-sensitive preamplifier 

is discharged by a constant current source producing an approximately triangular-shaped 

output voltage vs. time curve. The constant current source is also globally settable over a 

range of values. There is also a separate 4-bit Digital to Analog Converter (DAC) 

Threshold Offset that may be set individually for each pixel to establish a uniform 

discriminator noise response across the entire device.  Figure 1.2 displays a standard 

Medipix 2 functional block diagram of the circuitry within each pixel1. 

A Si sensor detector layer is typically coupled to the Timepix for charged-particle 

dosimetry applications.  For thermal neutron detection, a neutron conversion layer such 

as 6LiF is supplied on top of the Si in order to convert the neutron kinetic energy into that 
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of a charged particle. In principle, one can distinguish a charged particle generated from 

captured neutron with the one of genuine penetrating charged particle by an analysis of 

the distribution of charge collected by the pixels. 

 

Figure 1.1. Medipix 2 configuration 

 

The output of the discriminator is input to a logic-block that is also gated by an external 

global shutter signal. Additionally, the Logic-Block has access to a common externally 

applied counter-clock signal that can be as set as high as 100 MHz.  The output of the 

Logic-Block is input to a 14-bit pseudo-random shift-register counter with an overflow 

bit.  The shift-registers are read out in 256 pixel columns.  The Logic Block also contains 

a 2-bit mode selection capability that may be used to individually program the function of 

the Logic-Block for each pixel separately.  There are 4 possible modes for the Logic-

Block to function in: Medipix - counting mode, Time-Over-Threshold (TOT) – energy 

sensitive mode, TimePix - time of arrival mode, and One-Hit - logical mode2. 

  

                                                
1,2 These sections are excerpted from [28] 
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Figure 1.2. Standard Medipix 2 pixel electronic circuitry 

The mode we used in this work is the TOT mode. In this mode, the Logic-Block 

functions act as a Wilkinson-type ADC by counting the number of Counter-Clock pulses 

that occur while the Discriminator input is above the threshold. TOT collected at each 

pixel can be converted into energy deposited by a calibration method [2].  

 

 

 

 

 

 

 

Figure 1.3. An output of Timepix detector exposed to 60degree iron particles 

The Timepix chip that is attached to an overlying Si sensor layer using the bump-bonding 
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technique generates the raw output (Figure 1.3). The resulting detector is a hybrid 

semiconductor CMOS-based pixel detector made of 256 x 256 pixels, each 55µm x 55µm 

with the readout electronics for each pixel embedded within the footprint of that pixel. 

This device is able to survive and perform for extended periods in strong radiation fields.  

When an incident charged particle penetrates the Si layer, it ionizes atoms along its path, 

producing a core of charge carriers that reflect the detail of the ionization along the track 

structures. These charges drift along and diffuse perpendicular to an applied bias-voltage 

field, which in turn causes the charge to be collected by the underlying pixels (Figure 

1.4). Pixel information is read out in a frame that corresponds to a 256 x 256 pixel image 

containing the digitized charged information collected during the acquisition time 

window. 

 

 

 

 

 

 

 

 

Figure 1.4. Charge drifting of a vertically incident ionizing particle 

In this dissertation, pattern-recognition techniques and machine-learning tools are used 

for the automated characterization and classification of tracks of ionizing radiation during 
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space missions that are measured by the Timepix pixel detector system. Our analysis 

makes use of data taken in beams of heavy-ions at HIMAC (Heavy Ion Medical 

Accelerator Center at the National Institute for Radiological Sciences) in Chiba, Japan 

and NSRL (NASA Space Radiation Laboratory) at the Brookhaven National Laboratory 

in New York. The analysis techniques have been tested with both accelerator-based data 

and data coming from the ISS (NASA’s-International Space Station). The classification 

problem consists of determining the charge and velocity (or energy) of the each 

individual incident particle by analyzing the track structures collected as pixel images. 

The main challenge remains extracting relevant features from the pixel images that can 

facilitate the calculations of the Dose-Equivalent, and determination of the particle types 

and energies in the incident radiation. 

1.2 Pattern recognition and machine learning 

“The world we live in is not completely disordered, although it may sometimes seem so” 

[3]. This judgment refers to a concept of pattern that plays an important role in real life. 

All objects, processes and phenomena in our life have their own patterns, implicit or 

explicit, that needs to be identified. Interpreting these patterns is crucial for us to establish 

the foundation for empathy, for critical and analytical thinking. It also provides the ability 

to explain the what, the how, the why, the right and the wrong. 

Living organisms identify patterns to locate edible food, to classify friends versus 

enemies, and to seek a safe place for survival. Men learn how to recognize voices or 

distinguish handwritings of different people. All of this can be achieved through the 
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mechanism of discovering and learning patterns from experience. Examples include a 

function in cameras that automatically recognizes faces of people in a video, a detector 

that is capable of automatically identifying the nature of the source of incident upon it, 

and a car that can run on the road without being controlled by a human being. These 

machines are equipped with pattern recognition system that mimics the perceptual and 

cognitive ability of human beings to analyze information obtained from experimental 

data [4]. 

The concept of a pattern has been defined by pattern theory in which objects and 

processes in the real world can be expressed through mathematical constructs using 

combination of primitive structures [3]. Pattern recognition is a mechanism in which 

regularities in data -- called patterns -- are discovered to build models that can recognize 

objects of interest and take actions according to observed data [5]. In general, a pattern 

recognition system can be divided into two main tasks: feature extraction and 

classification as in Figure 1.5. 

 

 

 

Figure 1.5. A general pattern recognition system 

 

Human beings process data collected from environment through perceptual and cognitive 

abilities. In contrast, machines require algorithms designed for a pattern recognition 

system to process data obtained from sensors. Features will represent data in such a way 

Feature extraction Classification Data Identification 

Pattern recognition 
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that pattern recognition system can understand and perform algorithms on it. Thus, 

feature extraction is the process of formulating data into a standard description, either a 

vector or a structure of features. Classification then uses these formulated features to 

build models that facilitate the identification process. The most effective techniques to 

build these models and develop classifiers are known as machine learning; it makes use 

of the capability of learning from data [6]. 

Machine learning is a “Field of study that gives computers the ability to learn without 

being explicitly programmed” (Arthur Samuel, 1959). Traditional applications are 

constructed by rules to solve a particular problem. This is done manually and requires 

programming skills to develop on a case-by-case basis. In contrast, machine learning uses 

data-driven techniques to generate a model with the capability of assigning instances of 

data into classes or groups. This model learns patterns extracted from data and its 

behavior changes significantly according to the input data or training set. As a 

consequence, if the distribution of data changes, behavior of models will adapt without 

explicitly being programmed. 

In a pattern recognition system, feature extraction is an essential step, as it converts the 

raw data into relevant features appropriate for a particular domain and application. This 

representation has to be complete, powerful in describing patterns, and facilitating the 

classification process. Statistical pattern recognition [7] uses n-dimension vectors to 

represent n-feature instances. Another way of representing features is to use structural 

features together with a syntactic grammar to maintain a relationship between features. 

This technique is employed in structural pattern recognition [8].     
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A detailed pattern recognition system, shown in Figure 1.6, consists of preprocessing, 

feature extraction, model selection, training and testing: 

• The preprocessing step extracts instances and objects from data. It removes noise, 

outliers, and includes processes of interpolating, smoothing data if necessary. For 

example, in image classification, preprocessing step may have to bifurcate the 

color image in order to segment the image into background and foreground 

object. Some logical operators such as dilation and erosion might be performed to 

remove small objects and fill holes inside objects. In Timepix data, one needs to 

use a blob-coloring algorithm to detect particles appearing in a frame based on 

connected components. Next steps are to remove fragmentation and crudely 

separate heavy-ion particles of interest (e.g., high energy particles) from those that 

are of no interest. 

• Feature extraction represents instances output from the preprocessing step as a 

feature vector. Each dimension of a feature vector is a sub-pattern that can be a 

number or a nominal. A feature-selection step might be executed to perform 

dimensionality reduction and to remove potentially irrelevant features that are not 

helpful for the recognition process.  

• Model selection tries to find an optimal model that is suitable for classifying the 

data of a particular domain. In fact, there exists no perfect model that can 

outperform others for solving all kinds of problems. In the state-of-art model, 

there are a variety of classifiers such as Naïve Bayes, decision tree, support vector 

machine, and boosting that can be used for instance recognition. Each model has 



 10 

its own advantages and disadvantages. Variance and Bias need to be traded off in 

order to obtain a good model. One can use criteria such as classification accuracy, 

Receiver Operating Characteristic (ROC) curve to evaluate models. In addition, 

meta learning techniques are commonly used in this step [9]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. A detailed pattern recognition system 

• Training and Testing: The aim of training step is to optimize parameters 

associated with the selected model in order to increase productivity. A cross-

validation technique [10] can be used to avoid over-fitting issues in training by 

trading off between bias and variance. Testing evaluates the performance of the 

model with corresponding parameters. 

Data 

Preprocessing 

Feature extraction 

Model selection 

Training 

Model Testing 
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1.3 Applications to Timepix data 

1.3.1 Dose-equivalent calculation routine 

Dose is defined as the energy deposited by a source of radiation per unit mass of 

traversed matter. Dose-equivalent is the most common form to express the biological 

effects of the dose caused by a particular type of particle for radiation protection 

purposes. To calculate the Dose-equivalent, each type of potentially incident radiation is 

given a Quality Factor (QF), also referred to as Relative Biological Effectiveness (RBE). 

As proposed by the National Council on Radiation Protection [NCRP 153 (2008)] 

regarding heavy-ions in the space radiation environment, the Quality Factor is a function 

of the LET of the traversing particle. LET is distinguishable from dE/dx (the kinetic 

energy lost by the primary ion per unit track length) in that it is a measure of the energy 

transferred to the local medium, which differs from the dE/dx due to the transport of the 

energy lost in a particular medium out of that medium. 

LET∞ is defined in a theoretical infinite medium, and should ultimately be equal to 

dE/dx. In a practical sense, however, the actual local LET is what physical detectors 

measure, and what really matters to assess risk to tissue in human exposure. As discussed 

below, one can reasonably infer the amount of LET in tissue based on a measurement in 

another medium such as silicon. The Timepix chip device has a 300µm-thick Si sensor 

with a volume of 6 x 10-2 cm3 (2 cm2 x 0.003 cm). Si has a density of dSi = 2.3212 g/cm3, 

giving the Si detector layer a mass of ~0.14 g. Thus, one can determine the Dose in Si 

(DSi), in Gray (Gy), by multiplying the total absorbed energy in a TimePix detector by a 

single factor: 
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  DSi = ETimePix (in KeV) {1 / [ 0.14 g x 6.24 x 1012 KeV/Gy g } 

        = ETimePix (in KeV) { 1.153 x 10 -12 } Gy  (1) 

In order to determine the dose-equivalent, however, one needs to multiply the absorbed 

dose by a Quality Factor on a particle-by-particle basis. Since the Quality factor is a 

function of the LET (Figure 1.7), we need only determine the LET to achieve the value 

for the dose-equivalent: 

  H = Q(LET) . Dsi (Sv) (2) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Quality Factor as a function of LET. NCRP 153 (2008) 

 

Using the Timepix-based detector, LET can be measured from the total energy deposited 

(which is available from the calibrated Timepix chip) divided by the path length traversed 
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by the particle as it passes through the Si layer. The thickness of the Si layer, which is 

300µm, can be used to calculate the total track length if it is possible to measure the 

track’s angle of incidence, or its projected track length parallel to the surface of the 

detector. As discussed below, analyzing the angle patterns in cluster’s structures can do 

this with a very good resolution. 

In summary, with the availability of the calibration coefficients for each pixel, an 

accurate estimate of the energy deposited can be obtained, and with the availability of the 

frame times, the absorbed dose rates can be calculated directly. Finally, using pattern 

recognition, one can evaluate the LET for each track and use the NCRP 153 formula to 

calculate the QF-factor, track by track to yield the dose-equivalent. 

1.3.2 Classification of type and energy of tracks 

After exposure to sources of ionizing radiation, Timepix detectors produce tracks, which 

are in turn collected as footprints of the energy depositing events within an acquisition 

time. The source of energy deposited might be a penetrating particle of heavy-ion (e.g., 

H, He, C, Si, Fe…), a photon, a fragment from an interaction, or a product of neutron 

captured by a converter material. Stopping particles with low energy ranging in the 

detector layer might also create distinct tracks. Pattern-recognition techniques and 

machine-learning tools are expected to be able to identify the sources of the radiation and 

characterize their energy spectrum. 

Identification of sources of tracks 

It was experimentally determined that the short-range heavy nuclear fragments created by 
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the interactions of protons with sensor material can mimic genuine incident heavy-ions. 

Since protons are the most abundant type of incident particles in the space radiation, the 

nuclear interactions of incident protons require close investigation. Dose-equivalent can 

be efficiently assessed only when these interactions are discriminated from the tracks of 

genuine incident heavy-ions.  The reason to exclude this energy is that it is due expressly 

to the interaction cross sections in Si.  Our goal is to characterize the incident radiation 

field, so in principle we are only interested in knowing what the incident particle was, 

and not the secondary particles produced in any nuclear interactions in the Si. 

The other consideration needed for an effective dosimeter is to segment the low energy 

particles that are not likely to stop in the sensor layer from those that most likely will 

range before exiting the sensor layer. The total track length would not be able to be 

determined accurately using projected track length or angle calculation if the particles did 

not penetrate the detector. The LET then would not be calculated correctly with this; 

there would be a miscalculation of total track length. Therefore, these stopping particles 

need to be identified to apply a special correction using Monte Carlo simulation method. 

Photons (x-rays, γ-rays) and neutrons are electrically neutral. As such, they do not deposit 

any energy during their traversal of the sensor layer.  However, neutrons can interact with 

the nuclei of the material, and photons can interact with both electrons and nuclei via the 

electromagnetic interaction by absorption and Compton scattering.  In such cases, these 

interactions can lead to the production of energetic charged particles within the sensor 

volume.  Neutrons and incident high-energy photons are treated differently from incident 

charged particles. Special correction factors for photons and for the detection of neutrons, 
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therefore, are necessary. This implies a need in the Timepix pattern recognition 

algorithms to be able to identify neutrons and photon interactions separately from 

penetrating charged particle tracks. 

Classification of energy of tracks 

For biological purposes, the dose in water or tissue is typically required, and a correction 

factor needs to be applied to convert the dose in Si into these other dose values. In 

practice, the conversion factor has a slight dependence on the velocity (or kinetic energy) 

of the particle depositing the dose. A plot in Figure 1.8 generated from SRIM simulation 

[26] can show this dependence. The conversion factor can be reasonably approximated 

by a single factor (~1.23) for higher energies (Figure 1.8). In addition, pattern recognition 

algorithm can help determine the energy of each individual particle from information 

contained in the combined pixel shape to obtain a good conversion ratio. 

 

Figure 1.8. dE/dx ratios with respect to Si for Muscle and Water 
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More specifically, for velocities comparable to protons greater than 200 MeV, the ratio of 

1.23 would be reasonably used as the conversion factor. For penetrating charged particle 

tracks with energies below 200 MeV/A, pattern recognition algorithms and machine 

learning tools can be used to bin the energy into several bins. The ranges of bins are 

sufficient for characterizing energy spectrum and obtaining good conversion factors.  

In summary, pattern-recognition and machine-learning techniques are very important and 

essential for characterizing ionizing radiation in Timepix detectors, especially for Dose-

equivalent calculation routines. The possibility to automatically classify different types of 

ionizing radiation and make use of the available energy deposition brings more benefit 

for dosimetry application as the equivalent dose can be calculated more accurately by 

incorporating weight factors for the different types of radiation.  

The most important concern when developing such a pattern recognition system is the 

training set; it should be large enough to capture the underlying distribution of radiation 

data. For now, we mainly rely on data taken in HIMAC and NSRL, which provide 

marvelous facilities for understanding ionizing radiation of important heavy-ions. In the 

next step, we plan to develop a Monte Carlo simulation to generate a large amount of 

data for arbitrary heavy-ions penetrating Timepix. As such, we will have plenty of data 

for training, which will likely improve the performance of classifiers significantly.  

1.4 Related work 

Timepix detectors have a variety of applications in life sciences such as radiography with 

heavily charged particles, and neutron radiography [11]. A pattern recognition system 
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plays an important role in understanding and characterizing radiation fields based on 

Timepix detectors. A simple pattern recognition algorithm, together with a measurement 

for the efficiency of tracks induced by individual quanta of ionizing radiation in 

Medipix2 detector, has been developed [12][13]. This work described the results of 

distinguishing individual components of radiation field composed of proton, alpha, beta 

and gamma sources. However, it is a coarse pattern recognition system limited to a 

specific couple of radiation sources that cannot apply for heavier ion particles.  

It is worth noting that the pattern recognition in [12] was developed for Medipix 2, which 

does not have the “time over threshold” mode for measuring energy deposited at each 

pixel. As a result, an exact angle of incident particles and the LET cannot be extracted. 

The proton with energy lower than 1MeV cannot be distinguished from photons and 

electrons due to a lack of energy spectrum at each pixel. 

Generalized separation of particle tracks based on cluster patterns has been accomplished 

for low-energy and low-charge particles with Timepix detectors. Previous works have 

shown differences between electron, proton, and slow alpha tracks in silicon detectors 

[7][14]. However, visual inspection of heavy-ion tracks indicates that there is more 

information to extract from the cluster data beyond basic morphology. The detection, and 

the determination of heavy-ion charges, velocities and their applications to dosimetric 

characterization have been addressed in general in the past decade [15]. In [15], the work 

showed detailed structures of heavy-ion tracks in tissue. The structures of tracks are 

distinguished by two regions: core and penumbra. The core is a narrow central zone with 

a defined radius in tissue, while the penumbra is a peripheral zone enveloping the core. 
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This study also discusses the dissipation in tracks of high-energy heavy-ions in tissue, 

and shows a lateral spread depending on the energy of the primary particle. The 

relationship between the dissipation with the charge Z and the velocity of the particles 

has been investigated.  The theoretical effects on LET and dose-equivalent are also 

discussed.  

More recently, with the advances in hardware technology of the Timepix chip, one can 

now detect and visualize tracks of primary and secondary particles [16]. The capability of 

discrimination of penetrating heavy-ion charge and velocity with a TimePix-based Si 

detector has been demonstrated [17]. However, there is, to date, no other research 

implementing these ideas to extract detailed patterns to help characterize the composition 

and velocity of heavy-ion charged particles.  

Pattern recognition for tracks of ionizing radiation and machine-learning approaches for 

identification of sources of heavy-ion charged particles have been developed [18][19]. 

However, the purpose of this study is to focus on extracting basic patterns and to test the 

capabilities of applying pattern recognition and machine learning for Timepix data. An 

advanced analysis of structures of tracks in term of LET, δ-rays and distributions of 

energy deposited should be taken into account. These are important factors for 

classification resolution. 
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2. Angle calculation method 

In a Timepix-based detector, a penetrating energetic charged particle may be incident on 

the detector layer isotropically. While it is possible to determine the axis of the particle’s 

trajectory through the sensor layer, there is an ambiguity in terms of the actual physical 

particle’s direction of motion along the axis.  By default, we assume that the particle 

direction is incident from above the sensor layer.  There may be mechanisms, in some 

instances, to resolve the ambiguity, but we have not taken on that challenge yet.  

Calculation of the two angles --azimuth and polar angle-- is a critical step in determining 

the LET, Dose-equivalent and characterizing the type, velocity of the particles. 

When an event occurs, electrons and holes liberated along the particle’s path drift in the 

electric field of the depletion bias voltage, diffusing both laterally and horizontally with 

respect to the field. The diffused charge will generally spread out over multiple pixels 

creating a cluster of pixels associated with a single event.  In cases where the quantity of 

charge is large, Coulomb repulsion between like charges has a significant effect as well. 

This spreading follows a characteristic pattern: the shape and energy intensity at pixels 

have precise information embedded within them about the azimuth direction and the 

angle of incidence with respect to the normal direction.  

However, one cannot simply fit the shape with a certain model -- such as an ellipse -- and 

determine the angle resolution based on the elongation. The existence of energetic δ-rays, 

the effects of producing variations with different bias-voltage and source of charged 

particles [20][21], the heightened recombination of electrons and holes in regions with 
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very high levels of ionization (the so-called “plasma-effect”) [22], and any Coulombic 

effects, make the incident angle difficult to estimate accurately. 

2.1 Azimuth direction determination 

The shape of a cluster resembles a continent (geographic analogy) comprising a mountain 

in the center that is surrounded by peninsulas. Close study of the structure of clusters 

enabled us to identify three main components: a core part at the center of each cluster, the 

region immediately surrounding the core, that has been termed the “skirt”, and an δ-ray 

part which comes from recoil electrons liberated from the ionization process (Figure 2.1). 

The core contains most of the pixels with high energy, as it is the area where the detector 

collects multiple overlapping charges along the traversed path. The skirt contains low 

energy pixels, where charge densities are low. The core and the skirt parts constitute the 

primary track, or continent. The δ-ray part can be considered as peninsulas connecting to 

the continent. The δ-ray part also contains low energy levels that provide hints on the 

velocity or energy of the δ-rays in their length and total energy. The δ-rays begin deep 

within the core and emerge through the skirt, and they can be distinguished clearly if the 

energy of a particle is high enough. The maximum possible δ-ray energy is a function of 

the velocity of the primary ion. 

The core part can be used to calculate the azimuth direction, or slope of the track. High-

energy pixels provide more information about the direction than the low-energy pixels. 

Thus, instead of using a standard linear least square fitting, we propose a weighted least 

square linear fit to find an equation of a line that best describes x-y data pairs of pixels in 

the core part. The energy at each pixel will be utilized as the weighing factor for this 
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technique. 

 

 

 

 

 

 

 

 

Figure 2.1. Cluster components  

For computational reduction, we apply a threshold cut using a mean energy value of the 

cluster to get only pixels belonging to the core for model fitting. This threshold value will 

therefore exclude δ-ray and skirt pixels from data. In order to fit a line y=β0+β1x to pixels 

in the core of cluster, we minimized the function of weighted root mean square error as 

follows: 

 

where ei is the energy of the pixel, β0, β1 are the cut and the slope of the regression line. 

xi, yi are the coordinates of corresponding pixels in the detector coordinate. E is the error 

function. 

Taking the first derivative of E according to β0 and setting it to 0, we have 

€ 

E = ei[yi − (β0 + β1xi)]
2∑
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Then, taking the first derivative of E according to β1 and setting it to 0 

 

Replace β0 , and we have: 

 

 

 

 

 

Finally, we can calculate the intercept and the slope of the regression line of the cluster as 

follows: 

 

    

   (3) 

 

 

Figure 2.2 show examples of clusters with azimuth directions of 0 degree (left) and -60 

degree (right). A traditional least square linear fit without using energy weighting factors 
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will not capture the true direction of a small incident particle (less than 15 degree). 

  

Figure 2.2 Azimuth direction of 0 degree (left) and -60 degree (right) 

2.2 Angle calculation method 

One of the biggest challenges in the determination of the uncertainty in the estimate of 

the projected track length is that the type of a charged particle at the point of penetrating 

Timepix chip is unknown. Each type creates a distinct shape and energy on the projected 

plane of the detector. We need to find a general pattern for all types of particles in order 

to come up with a method for accurately determining the angles of incidence.    

Figure 2.3 shows the shape and deposited energy of the proton (a), carbon (b), Iron (c) at 

the same 60-degree incident angle. The major projected track length (major length) and 

the minor projected track length (minor length) are both proportional to the heavy or the 

atomic number of ions (Z). Incident angle resolution depends on these major and minor 

track lengths. Note that the δ-ray, skirt parts and bias-voltage variation also affect the 

resolution of these two track lengths. Also, the plasma-effect needs to be taken into 

account when it occurs with some heavy-ions (Figure 2.4). 
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a. Proton at 60 degree 

 

 

  

b. Carbon at 60 degree 

 

 

 

 

 

c. Iron at 60 degree 

Figure 2.3. Variation of different source of charged particles at the same angle 

 

 

 Figure 2.4. δ-ray, plasma-effect and bias voltage variation of 15V and 100V 

In order to extract the major and minor track length, we need to rotate the clusters so that 

δ-rays Plasma-effect 



 25 

the major direction of a rotated cluster is always parallel to x-axis. This can be 

accomplished by applying a rotation to each of the pixels once the slope of the track is 

obtained.  

a = -atan(β1) 

 X = cos(a)*x – sin(a)*y (4) 

 Y = sin(a)*x + cos(a)*y 

Where β1 is the slope obtained from (3), x y are original pixel coordinates, X Y are 

rotated pixel coordinates.  

We then apply a formula that combines two track lengths to obtain the best estimate of 

the angle. Note that using only the major length for angular estimation is not appropriate, 

as this length will vary considerably according to different applied bias-voltage and 

different unknown sources of particles. 

To extract the effective track length on each axis, we project and accumulate the energy 

of rotated pixels belonging to same bins of this axis. A profile of cluster is constructed 

that ameliorates the plasma-effect. The result is a histogram in which the horizontal axis 

shows the bins, and the vertical axis shows the accumulated energy for each bin. Since 

the energy collection at each pixel and bin is a stochastic process, which means that in 

each individual case there is a degree of randomness in the cutoff point that determines 

which bin belongs to the core part and which one belongs to the skirt part, as well as how 

much each bin contributes to the track length. For this reason, we applied fuzzy set theory 

[23] to assign a membership function for the concept “core part”. The membership value 

ranges from 0 to 1. For bins where the vertical value is above the mean of histogram, the 
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membership value is 1. Otherwise, the membership value is defined as the ratio of the 

vertical value of each bin divided by the mean value for the entire histogram. The sum of 

all membership values is the length of the track for this direction. 

Figure 2.5. Energy histograms on the major direction (left) and the minor direction (right)  

Figure 2.5 shows the accumulated energy histogram for the cluster in Figure 2.1 along the 

major direction and the minor direction. In this case, major direction has the slope of 

zero, which implies the horizontal direction. As we can see, the vertical values of bins on 

the left and right hand side (belong to the skirt part) are very small. Therefore, their 

membership values contribute almost nothing to the track-lengths, no matter how many 

bins are there. A significant contribution comes from bins in the middle and the ones that 

are fuzzy to be recognized between the core and the skirt part. Once the major and minor 

track-lengths have been calculated, we propose the following formula to compute the 

incident angle. 

     (5) 

In equation 5, T=300µm is the detector layer thickness, and D=55µm is the distance 
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between two pixels in the detector. The other constants are assigned by finding a 

reasonable fit to data for the angles and do not change as much for different 

configurations of the detector. Note that these assigned constants must satisfy the 

asymptotic principles in which tan(α) reaches ∞ as major reaches ∞ and tan(α)=0 as 

major=0. An additional requirement for the vertical track formulation is tan(α)=0 as 

major=minor. This formula ensures that the increasing or decreasing of both track lengths 

by bias-voltage variation effect does not have a big impact on the final angle resolution. 

Also, this formula can be applied for all types of heavy-ion particles that are unknown at 

this point. D and T parameters can be changed according to a specific design of the 

Timepix chip and the associated sensor. Experimental results will be shown in Section 7. 
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3. LET estimation 

Using the Timepix-based detector, LET can be measured from the total energy deposited, 

divided by the path length traversed by the particle as it passes through the Si layer. The 

traversed path length can be calculated once the incident angle is determined in Section 2. 

As for the total energy, we need a calibration process to convert collected TOT to energy 

at each pixel. A further post-processing step to correct energy deposited needs to be done 

with heavy-ions suffering from volcano effect. 

3.1 Energy calibration 

We briefly describe the method developed by Jan Jakubek [2] to calibrate energy from 

the Timepix device to obtain the corresponding energy deposited on each pixel. By 

integrating the energy of all pixels belonging to a cluster, one can get the total energy 

deposited. The Time-Over-Threshold has been used for global operational mode in 

Timepix operation. In this mode, the integrated charge collected is measured by counting 

the number of Counter Clock pulses that occur while the output of the front-end charge 

sensitive preamp is above a default threshold.  

As charge is collected at the input to the charge-sensitive preamp, the combined shaper 

circuit is set to produce a triangular-shaped pulse whose area and width are proportional 

to the charge collected. The leading edge of this pulse necessarily has an initial rise-time 

that introduces a simple nonlinearity for pulses very near the threshold value. For pulses 

that significantly exceed the threshold, the linearity of the effective ADC is excellent (as 

shown in Figure 3.1).  
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The shape of the curve in Figure 3.1 is caused by the rise time of the shaping circuit and 

the capacitance of the input stage. It is possible to fit this curve with a simple function: 

  TOT = a E + b - c/(E-t) (6) 

where TOT is the recorded number of Counter-Clock pulses, E is the energy deposited in 

the detector that resulted in the charge collected by the pixel and a, b, c & t are the four 

parameters that need to be determined for each pixel. Equation 6 can be inverted to yield 

the Energy as a function of the TOT value. 

 

 

 

 

 

 

 

  

Figure 3.1. TOT to energy calibration 

3.2 Energy compensation 

Ionization along the primary particle track causes the creation of electrons and holes, 

which then drift under the influence of the applied bias voltage.  As the carriers drift, they 

interact with opposing charge carriers and create the recombination of high densities of 

electrons and holes (the so-called “plasma-effect”) [22]. The estimate of the amount of 

energy deposited is reduced. This effect occurs to the greatest extent in the regions of 
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greatest ion density in the sensor, and where the bias voltage field direction is parallel to 

the track direction. Recombination may cause a reduced amount of energy in the 

measurement relative to what was deposited in the silicon by the incident ion. However, 

the major losses are introduced by the non-linear response of the in-pixel front-end pre-

amplifier stage and the effect of the front-end over-voltage protection diodes. These 

effects will clearly affect the uncertainty in LET calculations. A reconstruction technique 

will be proposed to compensate for the energy loss due to these effects. 

 

Figure 3.2. Volcano effect 

As shown in Figure 3.2, the TOT values are suppressed for the pixels in the middle of the 

clusters where the density of the charges and the resulting input voltages are very high. If 

we assumed the normal cluster had the cone-shaped structure that was built by the more-

or-less symmetrical accumulation of charges, the appearance of volcano would give a 

summit crater on the top of cluster. The slope of the summit crater varies depending on 

the density of the charges. This summit crater needs to be compensated first by flattening 

out the top of cluster as shown in Figure 3.3. Note that this step will not be necessary in 

the next generation of this technology, known as the Timepix 3 has a modified front end 
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pre-amplifier design so that the cluster will have a flat top response for large charges and 

voltages at the input. 

 

Figure 3.3. Energy compensation 

We assume the total energy of the original cluster without suffering from volcano effect 

is V. After filling energy loss from the summit crater, we obtain total energy V2. The 

remaining energy loss is the missing energy on the top of cluster, which is assumed as V1. 

The purpose of the compensation process is to calculate V (V=V1+V2), given V2 and the 

structure of cluster as in Figure 3.3. This structure allows calculations of minor projected 

track lengths x1, x2 at different the height of cluster according to different energy 

thresholds. We can calculate V following Equation 7. 

In the formula below, y1, y2 are major projected track lengths at different energy 

thresholds. h1, h2 are the height of V1 and V2, and S1, S2 are the projected area of V1 and 

V2, respectively. h=h1+h2 is the height of the original cluster after compensation. Note 

that these formulas are only valid with the assumption that the cluster has a cone-shaped 

x1

x2

V2 
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structure and a projected shape of cluster has ellipse-shaped or symmetric quadrilateral. 

In fact, experimental results show that the assumption is reasonable to yield compensated 

LET accurately to within 10% at most. A disadvantage of this compensation method is 

that it is very sensitive to the variation of applied bias voltage, which is affecting the 

diffusion of charges and cluster structure. Experimental results will be shown in Section 

7. 
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4. Delta-ray analysis 

In this section, we explore δ-ray characteristics that are useful for identifying type and 

velocity of a particle. An energetic secondary electron (δ-ray) is produced through the net 

coulomb interaction of matter with a traversing charged particle. δ-ray electrons create a 

noticeable track of their own and can leave the immediate area of the primary particle's 

track when they have sufficient energy. Recent refinements on approaches of determining 

Relative Biological Effectiveness recognize that beyond just the LET, the velocity of the 

particle, which influences the maximum energy of the knock-on electrons (δ-rays) is also 

an important factor. Therefore, the extraction of δ-ray features is meaningful for 

obtaining the information of the velocity and type of a particle. 

δ-rays always start in the core, emerge through the skirt and escape a significant distance 

away from the primary cluster as curly fragments when the energy is high enough. The 

range, energy and number of δ-rays play important roles in radial dose distributions near 

ion’s path and far from the path. When coupling with LET, they provide a capability to 

identify the source of the primary incident particles. More details will be provided in 

Section 5.4. 

In this dissertation, we extract four relevant features of noticeable δ-rays that are a 

function of energy and type of ions. They include a total number of δ-rays, a total energy 

of δ-rays, a maximum length of a δ-ray, a total length of δ-rays. In order to do that, we 

need to transform the cluster into a compact representation so that features are easy to 

derive. A skeleton representation is convenient for this purpose as it provides a way to 
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keep a compact structure of the whole track including δ-rays and primary cluster. Also, a 

distance transform algorithm is employed to distinguish which skeleton pixel belongs to 

the δ-rays and which one belongs to the primary track. They are described next.   

4.1  Cluster skeletonization 

Skeletonization is a popular technique used in digital image processing, computer vision 

and pattern recognition. This technique generates a skeleton that preserves the topology 

of an object and can be used as a representation of its shape. For our case, a skeleton of a 

cluster is a set of connected pixels representing the topology of the cluster as in Figure 

4.1. Pixels in a skeleton are classified into three categories: end point which has exactly 

one neighbor, branch point which has exactly three neighbors, and skeleton point which 

has exactly two neighbors. End points are essential part of the topology that reflects a 

number of δ-rays of a cluster. Branch points and skeleton points can be used to compute 

the total length, maximum length and total energy of δ-rays. Some fragments of δ-rays 

are disconnected with the primary cluster in one or two pixels. One has to do a post-

processing step to attach these fragments to the final skeleton. 

 

 

 

 

 

 

Figure 4.1. Cluster's skeleton 

End pixels 
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a. End point b. Skeleton point c. Branch point 

Figure 4.2. Examples of categories of skeleton pixels 

 

In general, a skeleton can be computed by either thinning the shape of an object or 

steadily eroding the boundary without breaking the topology. A survey on skeleton 

extraction in digital image processing can be found in [24]. In this project, we use an 

erosion technique to remove steadily boundary pixels that are not end points, branch 

points and skeleton points. We use 3x3 square block structure element to define the 

category of each pixel as in Figure 4.2. Each pixel has a corresponding signature 

specified by 8-connected neighborhood. Therefore, 256 different states are defined 

manually to obtain these signatures and corresponding categories. At each iteration of the 

erosion process, pixels are removed from a low energy pixel to higher energy pixels until 

no more pixels need to be removed. When a pixel is removed, it propagates its energy 

among the remaining neighbor pixels. At the end, a skeleton will contain the total energy 

of the cluster. A disadvantage of this method is that the formation of final skeleton is very 

sensitive to noise and fake ending points. The energy at each pixel should be incorporated 

to prune the skeleton in such cases. 



 36 

4.2  Cluster distance transform 

The generated skeleton of a cluster involves skeleton pixels of the δ-rays and primary 

cluster as well. Thus, it is necessary to identify which skeleton pixels belong to δ-rays 

and which to the primary cluster. As mentioned above, a δ-ray begins deep within the 

core of cluster, emerges through skirt part, and appears as a noticeable peninsula. In order 

to recognize the length and energy of a δ-ray, we need to determine how deep it goes 

inside a primary cluster. A distance transform algorithm can be helpful to capture this 

information. 

 

 

 

 

 

 

 

Figure 4.3. Distance transform of a cluster 

 

Technically, a distance transform assigns each cluster pixel a value corresponding to a 

minimum distance from this pixel to the boundary. There are different common distance 

metrics that can be used such as Euclidean, city-block, and chessboard distance. A survey 

of distance transform and its applications is described in [25]. In general, Euclidean is 

often used in many applications but it is not easy to manipulate and not necessary for our 
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purpose. For the simplified computation, we use city-block distance metric with a cross- 

shaped element. Note that a primary cluster can be separated from it peninsulas (δ-rays) 

by utilizing the capability of distance transform. The majority of pixels in the noticeable 

δ-rays are assigned a distance level 1. For some cases, a δ-ray pixel is assigned a distance 

level 2 which can be corrected to distance level 1 by a simple post-processing step. 

Higher distance level will be assigned only for pixels inside the primary cluster.  

The distance transform can also be used to detect the volcano effect. As the level of a 

pixel elevates, the higher energy should be expected. Otherwise a cluster is considered to 

suffer the volcano effect. Figure 4.3 shows the result of applying distance transform and a 

post-processing step for a cluster of the Iron particle. Using this transform, one can easily 

recognize δ-rays and select a deep level that δ-rays can go inside. Also, a maximum 

distance level of a cluster is also a good feature to identify the type of heavy-ions. For 

example, a proton cluster is always recognized with a straight shape for any incident 

angle that generates a small maximum distance transform level (less than 3).  

Once skeleton pixels are combined with the distance level for each pixel, we can extract 

δ-ray features as follows. An estimate for the minimum total length of δ-rays can be 

computed by the total number of skeleton pixels belonging to δ-rays. Similarly, total 

energy of δ-rays is the sum of energy of δ-ray skeleton pixels. Number of δ-ray end 

points will be number of δ-rays. For calculating the maximum length of δ-ray, we find a 

maximum path length from end points to the other pixels corresponding to this δ-ray. 

These four features will be used to characterize whether a particle has a high or low 

energy, and what type of the particle generates such kind of δ-ray. 
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5. Ion type identification 

5.1 Interaction recognition 

As the charged particles traverse the sensor, they occasionally have nucleus interactions 

with the sensor material. These interactions are normally negligible because of the small 

relative size of the nucleus as compared to the size of the electron clouds. As is well 

known, protons are the most dominant particles in space. The interactions of incident 

protons with detector material can produce short-range heavily ionizing nuclear 

fragments that can mimic genuine incident primary heavy-ions that look like high LET 

particles.  These misidentified heavy-ions will contribute significant errors to the Dose-

equivalent estimates due to their potentially large Quality Factors.   

 

Figure 5.1. Nucleus interaction 

As noted earlier, since our goal is the characterization of the incident radiation field and 
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such interactions are of interest only insofar as we need to know only what the primary 

incident particle was. Therefore, discrimination between these interactions and the tracks 

of genuine incident heavy-ions need to be addressed in order to exclude them from the 

total effective Dose-Equivalent assessment. 

A proton can interacts with a nucleus via the strong interaction via either elastic or 

inelastic channels. In elastic channels, the proton retains its identity, maintains most of its 

original momentum and scatters off of the “target” nucleus at some angle, with the 

recoiling intact nucleus absorbing some of the proton’s energy. The proton then continues 

to propagate depositing its energy by ionizing atoms as it had been doing prior to the 

collision. In inelastic collisions, the proton transfers most of its energy to break up the 

nucleus, and possibly to the production of new subatomic particles such as pions. The 

heavier nuclear fragments can mimic genuine incident primary heavy-ions (Figure 5.1). 

In order to identify the variety of patterns of clusters created from such interactions, we 

conducted experiments with a large sample of proton energies. From that date we can 

separate high LET clusters that are definitely products of proton interactions. We have 

been able to identify different types of interactions associated with following patterns: 

• Interaction with two of more clear peaks. A proton interacts with a Si nucleus 

producing two or more heavy-ions connecting via lower energy pixels. This 

pattern can be easily recognized by using a suitable energy threshold cut and 

calculating number of connecting components from the remaining pixels. 
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Figure 5.2. Interaction with 2 primary fragments 

• Interaction that creates a stopping particle: This interaction transmutes the Si 

nucleus into a slow particle that ranges immediately or shortly at the vicinity of 

interaction position. As a result, the forming cluster contains characteristics 

similar to products of captured neutron (round shape, special morphology, etc.) or 

stopping particle (Bragg curve). 

 

Figure 5.3. Interaction with stopping 

 

• Interaction with visible fragments surrounding primary particle: Unlike the 

first case, which produces two or more primary fragments, this interaction creates 

one primary core of cluster and secondary fragments that are clearly different 

from the skirt of a genuine cluster. We use distance transform to determine levels 

of pixels and the core of the primary. Calculating the average distance between 
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pixels level 3 in the core and remaining pixels level 2 will help to recognize pixels 

of fragments. In a genuine cluster, pixels of levels 2 must be the immediate 

neighbors of pixels level 3 in the core, but this is not the case for these interacting 

clusters. 

 

Figure 5.4. Interaction with one primary and one surrounding secondary 

• Interaction with fragments similar to delta rays: Similar to the third case, the 

cluster consists of one primary fragment surrounded by many other fragments. 

However, the surrounded fragments that can mimic the δ-rays are not easy to 

recognize. We also use the distance transform to isolate the core and calculate the 

number of inner pixels in fragments. The number of inner pixels will help us 

determine whether secondary particles are δ-rays or interaction fragments.  

 

 Figure 5.5 Interaction with one primary and fragments similar to delta-ray 
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5.2 Stopping recognition 

For an effective dosimeter, there is a need to discriminate the low-energy particles that 

are likely to stop in the clothing or skin, from those that most likely will enter deeply into 

or penetrate through the body. The reason is that the calculation path length using the 

angle or projected path length as described above is no longer correct for particles that 

stop within the volume of the sensor layer. Thus, the estimation of LET is incorrect when 

dividing stopping energy by the miscalculation total track length. This phenomenon has 

been observed from ISS data with a bump roughly at 14 KeV/µm as shown in Figure 5.6. 

 

 

 

 

 

 

 

 

Figure 5.6. LET distribution of ISS data with an abnormal bump at 14KeV/um 

Theoretically, there should not be such a bump in the LET distribution of ISS radiation 

data. This bump is the result of the miscalculation of LET with the assumption that all 

particles are penetrating the Si layer. Essentially, the pattern recognition system needs to 

provide a mechanism for recognizing these stopping particles. A correction can be made 

using Monte Carlo simulation. 
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Figure 5.7. Stopping proton and its profile 

To identify the stopping particles, we first use the method of proof by contradiction to 

narrow down the particles that are suspicious to stopping as follows: 

• (1) Assume the particle is stopping 

• (2) Calculate the total energy loss in Si layer 

• (3) Calculate the range R of this particle with calculated energy loss in Si 

• (4) Calculate the projected track length L using angle calculation routine 

• (5) If L>R (adjacent > hypotenuse that is logical contradiction), then, conclude 

that the particle in question is not stopping 

• (6) If L<=R, check the profile of particle to make a decision 

 

The range R, a distance between a starting point where the particle enters and the ending 

point where the particle comes to rest, in step 3, is calculated by using Projected Range 

R 300um 

L 
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Algorithm from SRIM [26] as follows:   

 

where Rp is the projected range, E is the initial ion energy, µ=M2/M1 with M1, M2 is the 

ion and target mass. Sn is the nuclear stopping power and St is the total stopping power. 

Qn is the second moment of the nuclear energy loss.  

One can use Bragg curve [27] as a profile in step 6 to check whether the particle is 

stopping or not. To do so, we identified the azimuth angle of this cluster by employing 

the weighted linear least square described in Section 2. The cluster is then rotated to be 

parallel with the X-axis. We divided each pixel of the cluster into two points in which 

each point contains half of the energy of this pixel. All points are projected onto X-axis 

and the maximum energy at each bin is chosen to build the histogram. If this profile has 

the Bragg curve structure, it should have the maximum-energy bin at the position of two 

or three. It also has to be monotonically decreasing along two sides as shown in Figure 

5.7. A simpler approach is to look at the total number of local peaks in which the pixels at 

these peaks have energies higher than the energy of their neighbors. The ratio of this 

number to the size of cluster will help provide a stopping characteristic.  

There is a disadvantage of using Bragg curve or local peaks for detection of stopping 

events, as these methods are not applicable in case of vertical stopping tracks. One has to 

perform further contour and δ-ray analysis in such cases. 

Rp(E0 +ΔE0 ) = Rp(E0 )+[
4E 2 − (2EµSn +µQn )Rp(E0 )

4ES4 − 2µQn

]ΔE0
E
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5.3 Neutron recognition 

While the interaction of photons (x-rays, γ-rays) with the sensor material typically results 

in the production electrons with isolated curly-shaped tracks that are easy to recognize, 

neutron detection is somewhat problematic. By themselves, neutrons do not deposit 

energy when they travel through the material. However, when they interact with nuclei in 

the material, they can create recoils that produce ionizing tracks that can deposit energy. 

In addition, slow neutrons can be captured when they strike nucleus in Si layer 

transmuting the Si nucleus into heavier isotope. Typically this isotope is not stable and 

commonly decays through β-decay, which produces an energetic electron depositing 

energy. It is also possible that the isotope may be in an excited state and subsequently de-

excites by emitting γ-ray. The emitted γ-ray then may travel a long way before it deposits 

its energy, which may or may not be in the sensor material. 

A method for detecting slow (thermal) neutrons is to use a thin layer of converter 

material external to Timepix sensor to capture neutrons. The next step is to identify the 

detectable products created from the capturing. For thermal neutrons, 6LiF is a commonly 

employed absorber that can be used to capture neutrons. This process splits a 6Li nucleus 

into a Triton 3H and an energetic α particle that has energy >2 MeV/A.  The α particle 

has enough energy to be able to move out of the thin layer of converter material and 

ranges in the immediate vicinity of entering the surface of the Timepix sensor. A pattern 

recognition system needs to be able to identify the patterns produced and that employs a 

classification algorithm to distinguish the α-particles created from captured neutron and 

those from genuine penetrating α-particles. 
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Figure 5.8. Neutron α-particle profile versus penetrating α-particle profile 

As the α-particle associated with neutron particles stops immediately at the entry point of 

Timepix, the cluster created from this event should have the round shape with special 

morphology. The angle of this cluster is identified as 0 degree or so as a result. Its profile 

in term of energy distribution of cross section will also be different from the profile of the 

penetrating α-particle (Figure 5.8). We use the angle calculation to filter suspicious 

candidates for neutron products first. We then generate accumulated energy at different 

distance transform levels to characterize the morphology of clusters. Finally, we calculate 

the minor length of the cluster and combine previous morphology features to support the 

classification process. A binary classification with machine-learning approach is 

employed to fulfill this task. Details will be described in Section 6. A situation exists for 

energetic neutrons when the converter layer is rich in H, such as polyethylene. In that 

case, the neutron can elastically scatter from the protons at the nuclei of the H and the 

protons can recoil with a large fraction of the neutron’s kinetic energy, leaving a thermal 

neutron and with the recoiling proton being detected as it enters the sensor layer. 

Penetrating α particle 

Neutron α particle  
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5.4 Ion type classification 

After identifying special events from interaction, stopping, and neutron particles, we need 

to classify tracks of ions into types corresponding to their atomic mass. Features extracted 

from previous analysis can be used to perform this classification process. Relevant 

features are extracted from angle calculation, LET estimation, delta-ray analysis, and 

cluster morphology. They include: LET, angle, size, minor projected track length, level 

extracted from distance transform, number of delta-ray, total length of δ-ray, maximum 

length of δ-ray, total energy of δ-ray and skirt, total energy of different distance 

transform levels. We are trying to classify unlabeled tracks into desired ion types: H, He, 

C, N, O, Ne, Si, Ar, Fe. For space-radiation dosimeters, H and He are more important and 

need to be recognized as well as possible. 

One can build a multiclass classifier in machine learning to classify these classes 

simultaneously with the unknown distribution assumption. However, there are some 

potential cuts that can be used to simplify the classifier, to get higher performance and to 

be easier to explain the classification model. LET distribution plays an important role in 

determining these cuts. 

LET is one of the most important features to identify the ion type of charged particles. 

The energy lost when a charged particle travels through Si layer is described by the 

Bethe-Block equation: 

                      
−dE
dx

= Kz2 Z
A
1
β 2
[1
2
ln(2mec

2β 2γ 2Tmax
I 2

)−β 2 − δ
2
]
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This equation relates the term dE/dx (the rate of energy loss of the particle with respect to 

the distance that it has traveled through the material) to the energy that the particle 

possessed upon entering the material.  The energy is found in terms of β and γ 

                                                                                 

 

Here, v is the particle velocity, c is the speed of light, and Z, A are material atomic 

number, and mass respectively. Tmax and I are the maximum and the mean excitation lost 

in collision with the electron.  The term (δ), Tmax and I can be considered as constant in 

this formula. Using SRIM [26], a package software that is able to calculate dE/dx versus 

energy and the range of the transport ions in matter, we plot the relationship between 

dE/dx, energy and type of particles (Z) as shown in Figure 5.9. 

 

Figure 5.9. dE/dx version energy of heavy-ion particles 
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c
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Figure 5.9 shows a big gap in LET between H, He and the rest of particles. A LET 

threshold at 13.5 can be used to isolate H and He from the rest. Note that there is a small 

range of LET from 13.5 KeV/um to 161 KeV/um (energy <30MeV) in which low energy 

He and high energy C cannot be distinguished by using solely LET cut. However, using 

the stopping identification in Section 5.2 and δ-ray analysis in Section 4 is sufficient to 

separate them apart. The reason is that H, He particles whose energy<30MeV range in the 

Si layer and produce no δ-rays, while same LET particles such as C, N, O have very high 

energy producing clearly detectable δ-rays. In the other words, LET feature and δ feature 

should be sufficient to separate classes into two groups: the first group includes H, He 

and the second group includes C, N, O, Ne, Si, Ar, Fe. Then, machine learning can be 

applied in individual group to reduce the complexity of the multiclass classification. 

In the first group (H and He), a threshold at 1.55 KeV/um can be used to distinguish high 

energy H from He. For particles that have the LET in the range from 1.55 KeV/um and 

13.5 KeV/um, other features such as distance transform level, minor length and size will 

be useful to facilitate the classification. A binary classification described in Section 6 will 

be demonstrated for such case. For the second group, LET cuts can still be used to 

classify particles if the LET values are estimated accurately. However, due to saturation 

effects in the current version of Timepix 2 and volcano effects, the stochastic level and 

the erroneous degree are increasing in according to the heavier of atomic mass and the 

lower of energy. Therefore, the underlying LET distribution of the data is hard to predict 

accurately for the time being. In this case, one has to combine all relevant features in 

addition to LET to support the classification. When the number of dimensions (number of 
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features) increases, the decision boundary is not easily interpretable by a human being. 

Machine learning approaches equipped with the capabilities of automatic learning form 

data should be utilized. Multiclass classification algorithms can be efficiently employed 

to solve this task. New features should be investigated such as the existence and the 

impact of volcano effects towards energy deposited. 

Figure 5.10 shows a schema of all ion type classification described so far. However, as 

the training data are not enough to perform the multiclass classification problem on the 

right hand side of this schema (group 2), we only perform binary classification on the left 

hand side for H and He classification in this dissertation (group 1). Details will be 

described in Section 6. 

 

 

 

 

 

 

 

  

Figure 5.10. Ion type classification schema 
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6. Machine learning for Ion type classification 

As described in Section 5, there are three tasks that need to be done using machine 

learning methods. They include two binary classification problems (slow H and He, 

Neutron and genuine He) and one multiclass classification problems (C, N, O, Ne, Si, Ar, 

Fe). These problems are not simply solved using one or two features. In addition to LET 

and δ-rays, more features need to be investigated. Discriminant models need to be built 

with a high dimension classifier. The distribution of the input space is complicated and 

needs to be automatically learned by invoking machine learning methods. 

 

Figure 6.1. Feature distribution of training data of slow H and He 
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Figure 6.2. Feature distribution of training data of Neutron and He 

We assume training data consisting of a set of training points T = {(x,y)}, where x=(a1, 

a2,…, an) is a n-feature vector. Each vector x ∈ X is attached a label y ∈ Y in which |Y| = 

k, a number of classes. In our case, k=2 for binary classification (Y = {slow H, He} or Y 

= {Neutron, He} representing negative and positive classes), k=7 for heavier ion 

multiclass classification (Y = {C, N, O, Si, Ne, Ar, Fe}). In training phase, a machine 

learning method will provide a classifier which is a function of mapping a cluster 

(represented by the n-feature vector) into one element of class, f: XY. This function f 

can be used to predict unseen clusters in testing phase and application. In this 

dissertation, we focus on two binary classification problems. Multiclass classification 
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problems will be investigated in future work. The features (a1, a2,…, an) will be used for 

these two binary classification as shown in Figure 6.1 and Figure 6.2 

6.1 Data preprocessing 

It’s necessary to do data preprocessing prior to training and testing. The aim is to 

understand the correlation between features, learning the individual distribution of each 

dimension. This step might transform extracted features from input space into a 

transformed space in order to normalize features and to perform dimensionality 

reduction. A corresponding transformation needs to be taken that depends upon the 

specific method. We test methods with the identity transformation, variable normalization 

and principle component analysis to find the best preprocessing technique.  

Variable normalization 

The range of dimensions might be different from each other in units. For example, the 

LET is in KeV/µm while the angle is in radians or degrees. The former dominates the 

latter. To avoid this problem, the minimum and maximum of values in each dimension 

are calculated. A linear scale of the values is taken to get a range [-1, 1] for all 

dimensions. 

Principle component analysis 

Principal Component Analysis (PCA) is a mathematical technique used to identify the 

most important gradients. PCA rotates the cloud of data such that the maximum 

variability is visible.  PCA describes observations from a data table in multiple inter-

correlated quantitative dependent variables. It allows important information to be 
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extracted from the table, for the data to be represented as a set of new orthogonal 

variables called principal components, and for the similarity pattern of observations and 

of variables to be displayed as points in maps.  One can use the PCA technique to reduce 

dimension of classification problem by selecting the first n-components that have highest 

variability among the variables. 

6.2 Model selection 

There are many classification models that can be used for our classification problem. In 

this dissertation, we explore parametric and non-parametric methods that have been 

known to give good results in high-energy physics. We select the best model based on 

several criteria described at the end of this Section. The following models will be 

explored: 

Linear discriminant analysis 

This is a simple method that provides data classification based on a linear model. A 

discriminant function y(x) = xTw + w0 with the parameter w and the bias term w0 is built 

so that y(x) ≥  0 for positive class and y(x) < 0 for negative class. This method is used as 

a base line to check whether a simple linear classifier can be applied to our problem or 

not. 

K Nearest Neighbor Classifier (k-NN) 

The k-NN algorithm searches for k instances closest to a test instance based on a certain 

metric. The simplest metric is Euclidian distance. Depending upon the distribution of 

class label of these k closest instances, a decision will be taken based on a combination or 
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voting technique. The k-NN classifier is preferred when the decision boundary to 

separate two classes is complicated that is not approximated by parametric methods. A 

default value k = 20 has been used in this dissertation. 

Artificial Neural Network 

Artificial neural networks for classification are computational models that follow the 

principle of neural system operation. They are composed of units, and connections 

between units. They are divided into layers. Each node in the first layer (input layer) 

corresponds to one dimension of the input space. Nodes in the last layer (output layer) 

represent class labels. The internal layers connecting the input and output layers are 

called hidden layers. The network can be trained using back-propagation or feed-forward 

depending on the problem at hand. In this dissertation, we assume feed-forward 

architecture with one hidden layer.  A Bayesian regulator is used to avoid over-fitting 

[32]. 

Support Vector Machines 

Support Vector Machines use kernel technique to implicitly transform the original input 

space into a higher dimension space that can be separated by a hyper-plane. The position 

of the hyper-plane is determined by maximizing the margin between support vectors, a 

minimal subset of the training set closest to the decision boundary. This machine learning 

approach provides good performance for a wide variety of problems. It can compete well 

with Neural Networks and probability density estimator approaches. Moreover, its 

computation is simplified by using the kernel trick. In this dissertation, we assume Radial 
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Basis Function as the kernel with default parameters. 

 

Boosted Decision Tree 

 A decision tree is a binary tree-structured classifier in which internal node represents a 

test operator on an attribute, each branch represents a sub decision tree or a leaf node 

representing a class label. Classification rules are defined by paths from root to leaf. A 

decision tree is built by using information gain or the entropy obtained from the training 

data set. It’s a powerful technique but not stable, as a small change in the training set will 

make a large change in tree structure.  

Boosting of decision trees can be used to overcome this shortcoming by building several 

trees forming a forest. Misclassified instances are reweighted so that the subsequent tree 

is built paying more attention to these instances. Finally, all generated trees are combined 

into a single classifier by a weighted average or a voting technique. The performance of 

the boosting is enhanced significantly as compared to a single-tree classifier. We employ 

Gradient Boosted Decision Tree in which the reweighting algorithm uses binomial log-

likelihood loss instead of exponential loss to overcome the shortcoming of AdaBoost 

[33], a popular boosting algorithm, in presence of outliers or mislabeled data points. 

The optimal method to be used depends on the problem at hand. There is no classification 

algorithm that outperforms the others in general. Model selection provides a way to select 

the best classifier for our problem. Several authors have proposed methods for model 

selection such as meta learning [9]. In this dissertation, we employ three criteria for 
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ranking and evaluating the performance of classification methods. 

• The Receiver Operating Characteristics (ROC) curve in which true positive (the 

actual positive instance is predicted as positive) versus true negative (the actual 

negative instance is predicted as negative) is plotted at different threshold cuts. 

The larger the area under the curve, the better the performance. 

• The separation, defined by the integral:  

 

where yP(x), yN(x) is the probability density function of positive, negative class, 

respectively. If the separation =0, the distribution of two classes are completely 

overlapping. The closer to 1 the separation is, the better the performance. 

• The discrimination significant, defined by the difference between classifier means 

divided by the quadratic sum of root mean square. The larger the significant, the 

better the performance. 

€ 

S2 =
1
2

(yP (x) − yN (x))
2

yP (x) + yN (x)
dx∫
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7. Experimental results 

We use data taken at the HIMAC (Heavy Ion Medical Accelerator facility in Chiba), 

Japan, NSRL (NASA Space Radiation Laboratory at Brookhaven) in USA and actual 

spaceflight data from the ISS (the International Space Station) for our experiments. The 

data frames at HIMAC and NSRL were taken at different angles and with different 

particle species. In particular, we show experimental results for H @ 50MeV, H @ 

100MeV, He @ 100MeV, He @ 180MeV, C @ 300MeV, C @ 400MeV, N @ 290MeV, 

O @ 400MeV, Si @ 400MeV, Ar @ 290MeV, Fe @ 400MeV at 0, 30, 60, 75 degree. 

We typically analyzed several thousand frames, such that each frame contains several 

clusters associated with corresponding events, but not enough to create a significant 

likelihood of cluster overlap. Firstly, we compare our proposed angle and LET 

calculation methods with the expected values for HIMAC and NSRL data. Secondly, we 

compare dose, dose-equivalent results from our calculation with TEPC for ISS data. 

Finally, we show classification performance for ion identification.  

7.1 Angle and LET evaluation 

We evaluate the angles generated by our method and compare them to the true angles, 

which are generally known to a small fraction of a degree. Then we perform the analysis 

to determine the LET values for the tracks. The LETs generated from different angles are 

expected to be the same because the relatively small thickness of the sensor does not 

typically show a significant variation in the particles LET due to the reduction in the 

kinetic energy of the incident particle. These results demonstrate the resolution of our 

algorithm for determining the angle of incidence and LETs for these tracks.  
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Figure 7.1 Angle and LET distribution at 45 degree of He-180MeV with 300µm sensor 

Figure 7.1 is the angle and LET distributions of 45 degree of He-180MeV incidences, 

respectively. The results have the Gaussian distribution oscillating around a mean value 

with a standard deviation. The mean value is very close to the true angle and the standard 

deviation is small enough such that the error is acceptable. Table 7.1 shows the 

experimental angles compared to true ones for different angles and different ionizing 

particles. Cells in this table are left empty if data are not available.  

In fact, if the LET is less than 10 then the resulting quality factor is approximately 1. The 

reason is that we define the LET by the total energy deposited (E) divided by the track 

length (L) of traversed matter, converted for tissue equivalent as described earlier. In our 

application, since L is always greater than 300µm (our sensor thickness), the quality 

factor will be approximately 1 if E is less than 3MeV. Therefore, we ignore clusters that 

have total energy deposited less than 3MeV and arbitrarily assign a quality factor of 1. 

We can see from Table 7.1 that the errors in the angles are larger for vertical tracks. The 

primary reason is that the current generation of Timepix detectors has a pixel size of 55 

µm and a 300 µm thick  Si sensor layer, which makes it difficult to distinguish a 0 degree 
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incidence and a 15 degree incidence. We hope an improvement will be made with the 

next generation, which may have smaller-sized pixels.  

However, in an isotropic flux of incident particles, the solid angle acceptance for vertical 

tracks is small, so the relative number will not be large. In addition, an estimate of the 

track length is relatively insensitive to the error in the angle of incidence near vertical, 

and is less than, or on the order, of the stochastic variation in the energy loss of the 

primary ions. So the errors on vertical track angle determination can be tolerated in 

determining the dose equivalent at this point. 

We also took data at HIMAC with detector having a 1mm sensor thickness. The angle 

resolution is much better than the one with 300 µm sensor thickness as shown in Figure 

7.2. For incident angles greater than 5 degree, the algorithm works perfectly with a very 

small degree of error. This can prove the efficiency of our approach for angle calculation 

with different settings of Timepix chip. 

 

Figure 7.2 Angle distribution at 30 and 60 degree of He-230MeV 

 with  1mm sensor thickness 
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Table 7.1. Angle resolution 

 0 degree 30 degree 60 degree 75 degree 

 Mean RMS Mean RMS Mean RMS Mean RMS 

H-50MeV 8.4 6.9 28 3.5 59.7 1.7 74.2 1.56 

H-100MeV 0.6 1.3 30.2 3.8 59.7 1.2 74.5 1.3 

He-100MeV 2.1 6.8 30.2 3.7 60.1 1.3 74.7 1.5 

He-180MeV 4.7 7.2 29.3 3.5 60.3 1.4 74.6 1.04 

C-300MeV   29.7 4.3 60.9 3.6   

C-400MeV 2.1 5.2   60.4 1.2   

O-430MeV 4.3 6.2 29.7 3.6 60.1 1.3 74.7 0.6 

N-290MeV 4.3 6.6 29.1 3.6 60.5 1.1 75.2 0.6 

Si-400MeV 2.6 3.5 25.5 4.6 59.5 1.8   

Ar-290MeV 4.9 7.6 20.01 6.38 59.01 1.57   

Fe-400MeV 3.8 4.5 24.1 5.2 61.6 1.1 75.9 1.5 

 

Table 7.2 also shows the LET estimation using angular resolutions above, combined with 

total energy deposited from energy calibration method. In this table, the calculated LET 

values of the particles from H (50, 100MeV), He (100, 180MeV), C (300MeV), O 

(430MeV), N (290MeV) are very close to the ones calculated from SRIM simulation [26] 

even for different angles. Volcano effect does not occur with these particles. However, 

there is saturation effect affecting O (430MeV) and N (290MeV) that is not corrected 

completely. This effect will be removed when the next generation Timepix 3 is ready for 

use. In particular, this table shows very good results for LET values for H and He that are 

the most abundant particles that need to be carefully investigated.  
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Table 7.2. LET resolution 

 SRIM 

L

E

T 

0 degree 30 degree 60 degree 75 degree 

 KeV/um Mean RMS Mean RMS Mean RMS Mean RMS 

H-50 2.3 2.26 0.27 2.27 0.28 2.27 0.25 2.35 0.24 

H-100         

jjjjjj

jjjjjj

jjhh

j 

1.36 1.4 0.3 1.3 0.3 1.26 0.3 1.3 0.3 

He-100 5.42 5.5 0.75 5.67 0.54 5.7 0.6 6.0 0.54 

He-180 3.65 3.65 0.5 3.8 0.6 3.7 0.5 3.76 0.4 

C-300 23.0   25.4 3.6 26.6 4.1   

C-400 20.0 20.01 2.8   20.6 2.2   

O-430 35.0 32.2 7.7 38.8 5.4 39.6 4.8 41.0 4.4 

N-290 32.0 31.0 7.6 29.1 2.8 31.9 2.7 33.0 2.8 

Si-400 110.0 106.0 
57.2 

18.8 
5.1 

113 
65.5 

24.2 
6.1 

125.0 
74.9 

17.0 
4.9 

 
 

 
 

Ar-290 225 219.2 
88.15 

18.9 
8.3 

237.5 
97.6 

19.5 
6.6 

218.5 
102 

15.8 
5.98   

Fe-400 377.0 374.0 
126.3 

40.4 
8.2 

380.0 
137 

49.0 
9.5 

328.0 
134.7 

40.5 
12.1 

340.0 
141.8 

23.8 
11.2 

           

However, due to the plasma-effect [22], which may come in part from the recombination 

of high densities of electrons and holes, the estimate of the amount of energy deposited is 

reduced for particles at the end of the table (Si-400MeV, Ar-290MeV, Fe-400MeV), 

although the angles are well-estimated in Table 7.1. This effect occurs to the greatest 

extent in the regions of greatest ion density in the sensor, and where the bias voltage field 

direction is parallel to the track direction.  
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The red numbers in this table represents raw calculated LET values without 

compensation for the plasma effect. The black numbers of the same cell show results 

after making a correction using the method described in Section 3. The corrected mean 

values of these are close to what is expected. The RMS representing the spread of 

statistical LET distribution is still big due to the saturation effect. The coming new 

version Timepix 3 will solve this problem by removing the saturation effect and by 

providing a flat response region on the top of the volcano. 

7.2 Dose, Dose-Equivalent evaluation 

We use the ISS data to evaluate Dose, Dose-Equivalent from our calculation with the 

calculation of The Tissue Equivalent Proportional Counter (TEPC) [31]. Tissue 

Equivalent Proportional Counter (TEPC) is an automatic gas-based microdosimetry 

system that is designed to characterize the space radiation environment. The mission of 

TEPC is to collect statistics of radiation environment of the International Space Station 

(ISS) to construct exposure records for the crew, to provide near real-time measurements 

during radiation events, and to perform shield verifications. Each TEPC consists of two 

main components, the spectrometer and the detector unit. The spectrometer allows real-

time analysis of the data and calculations of total dose, total dose equivalent and 

incremental dose for penetrating radiation in space.  

The comparison between TEPC and REM units is necessary to evaluate the performance 

of REM units and algorithms. We have had 5 REM units operating on ISS that transfer 

radiation data to ground for doing analysis on a daily basis. They are D03-W0094, E06-

W0087, I03-W0094, I04-W0094, G03-W0094. In these detectors, G03-W0094 is half 
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covered by a thin 6LiF layer in order to detect thermal neutrons. The other four units will 

be used to evaluate the performance of hardware and algorithms in terms of Dose and 

Dose-Equivalent estimates. 

Figure 7.3 shows a comparison of dose rate in µGy/minute among 4 REM units and 

TEPC in GMT 296, 2012. A good match can be observed when looking at the trend of 

the five curves in this graph. The variance between them is not significant. The graph 

provides evidence to show the consistency and compatibly of out dose rate calculation 

methods with the existing NASA hardware. 

 

Figure 7.3. REM-TEPC Dose comparison 

 

The comparison of dose equivalent rate in µSv/minute is shown in Figure 7.4. It should 

be noted that there are differences in the ways the TEPC calculates dose-equivalent from 
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ours. We calculate dose-equivalent by multiplying the dose with a quality factor that is a 

function of LET for each individual track. The TEPC analysis makes a global estimate of 

the average LET over a large number of hits.  For the time being, our LET calculation for 

slow and heavy-ion particles (Si, Ar, Fe…) is as yet still not fully corrected for all of the 

effects mentioned earlier. Also, the statistical and systematical errors contribute 

significantly to the LET calculation. Therefore, the variance of curves in Figure 7.4 is 

larger than the one in Figure 7.3 although the general trend remains. 

 

 Figure 7.4. REM-TEPC Dose-Equivalent comparison 

 

Figure 7.5 and Figure 7.6 show dose, dose-equivalent maps, respectively of ISS REM 

data versus ISS latitude and longitude. We calculate ISS orbit position of vehicle 

(longitude and latitude) based on the timestamp when taking the data frame and relied 

upon the SGP4 NORAD orbit propagator code. The calculation is automatically done in 
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the conversion process at the end of the day when ISS data are transferred from NASA 

servers to TLC2 server at University of Houston. The hot spots in these maps correspond 

to the higher dose, dose-equivalent rates during South Atlantic Anomaly (SAA) transit. 

The SAA is of particular interest in high-energy astrophysics because there is very dense 

area of trapped radiation above the South Atlantic Ocean. 

As the Earth's magnetic field is not symmetric with the rotation axis and it is also offset 

away from the center of the Earth. This offset allows trapped particle trajectories to reach 

lower altitudes in this region than elsewhere. The highest radiation doses are typically 

seen during low altitude Earth orbits in this region.  Our detectors were able to survive 

and provide dose rate and dose equivalent rates as expected during SAA passes.

 

Figure 7.5. Orbital Dose Rate Map 
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Figure 7.6. Orbital Dose-Equivalent Rate Map 

7.3 Ion type classification evaluation 

We investigated methods for two important binary classification problems: Slow H and 

He classification, the alpha particle classification from neutron and genuine He. Our 

analysis based on three criteria: ROC-integral, separation, and discriminant significant to 

select the best method for each problem. Five popular machine-learning methods were 

employed: Gradient Boosted Decision Tree (BDTG), Artificial Neuron Network with 

Bayesian Regulator (MLPBNN), Support Vector Machine (SVM), K-Nearest Neighbor 

(KNN), and Linear Discriminant (LD). The BDTG is considered to be the best method 

for multivariate data analysis in high-energy physics. The LD is used to provide a base 

line for classification performance. We use TMVA, toolkit for multivariate data analysis 

in doing experiments [29]. We extracted randomly 10000 events (5000 events for training 
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and 5000 event for testing). We run the experiments several times with different random 

seeds. Parameters of methods were chosen as default settings and not tuned up. 

Table 7.3. Evaluation results for slow H and He classification 

 ROC-integral Separation Significant 

BDTG 0.990 

RMS 

0.867 3.565 

MLPBNN 0.988 0.864 2.836 

KNN 0.984 0.834 3.141 

SVM 0.965 0.768 2.141 

LD 0.929 0.636 1.214 

 

 

Figure 7.7. ROC curves for slow H and He classification 

 

 

LD 

SVM 

KNN 
MLPBNN 
BDTG 
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Figure 7.8. Method’s responses for slow H and He classification 

Table 7.3 shows evaluation results along with ranking methods according to the priority: 

ROC-integral, separation, significant. Figure 7.8 shows the distribution of responses for 

all employed methods. This distribution is used to determine a cut value for 
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distinguishing class labels. Based on these results, BDTG was chosen as the best 

candidate for classifying ion type of slow H and He. The separation of testing data using 

Linear Discriminant method is quite small (0.636), which means that a simple hyper-

plane cannot separate well slow H data and He data using extracted features. BDTG is the 

best method with separation of 0.867, which good enough for our classification purpose. 

Table 7.4. Evaluation results for Neutron and He classification 

 ROC-integral Separation Significant 

BDTG 0.999 0.964 7.608 

KNN 0.999 0.958 7.018 

SVM 0.995 0.935 3.996 

MLPBNN 0.993 0.935 4.662 

LD 0.988 0.873 2.656 

 

 

Figure 7.9. ROC curves Neutron and He classification 

LD 

SVM 

KNN 
MLPBNN 

BDTG 
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Figure 7.10. Method’s responds for Neutron and He classifiaction 

Table 7.4, Figure 7.9 and Figure 7.10 show results after invoking machine-learning 

methods for Neutron and He classification. The obtained performance is much higher as 

compared to the previous binary problem. Again, BDTG yields the best performance for 
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this classification problem with the separation 0.964. The separation of LD is 0.873, 

which means that even a simple hyper-plane can be reasonably used to separate neutron 

and He. This can be explained by looking at the feature distribution in Figure 6.1 and 

Figure 6.2. Feature distributions in Figure 6.1 between two classes are almost 

overlapping, causing more difficulty for the classifiers. The difference between profiles 

of a stopping particle and a penetrating particle (Figure 5.8) helps improving performance 

for neutron and He classifiers. The most important feature in this case is the minor 

projected track length as shown in Figure 6.2. 

In summary, in two binary classification problems we are facing, BDTG is proved to be 

the best candidate and will be used as a final classifier in our application. The parameters 

for this method will be investigated in more detail in future work. More features need to 

be explored to improve the performance of the slow H and He classification.  
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8. Conclusion 

In this dissertation, we provided methods and algorithms to not only measure dosimetric 

endpoints directly such as dose-equivalent, but also determine the physical nature of the 

radiation field. In term of dose-equivalent calculation, we proposed the energy 

compensation method for heavy-ions suffering from volcano effects. We also proposed 

the incident angle determination algorithm to facilitate LET estimation, quality factor and 

effective dose-equivalent measurement. Energy of penetrating particles is estimated as 

well to convert dose, dose-equivalent in Si into the tissue or water. The comparison of the 

results between the REM units and the TEPC on the ISS, and the world map display for 

dose and dose-equivalent show high accuracy of our methods. 

In terms of determining the physical nature of source of the radiation field, we first 

provided pattern recognition techniques to extract features that characterize the nature of 

tracks of particles. Skeletonization and distance transform have been performed to derive 

features. We also recognized patterns that can be used to identify interaction, stopping, 

and neutron events. Machine learning algorithms were then applied to automatically learn 

underlying data distribution and to classify source of tracks with high accuracy. 

Future work will extract more features and automate the detailed classification of the 

incident ionizing radiation for heavier ions (C, N, O, Si, Fe) using a multiclass 

classification approach. Also, we have to explore the core and the skirt of a cluster and 

extract more δ-ray information overlapping with these areas. A detailed list of future 

work as a continuation of the accomplishments reported in this dissertation is as follows: 

• Apply energy compensation method to Timepix 3 when it is ready. 
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• Explore more relevant features that facilitate discriminating types of particles 

(skirt and core). Note that these features can be used for a machine learning 

approach and for a statistical purpose in physics as well. 

• Do feature selection and model selection for multiclass classification. 

• Optimize algorithms for an embedded system (DSP/ARM). 

• Upgrade the software for data analysis and data taking to be stable for taking and 

processing ISS, HIMAC, and NSRL data. 
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1.1. Introduction 

The REMAnalysis software is a data analysis framework for processing ISS, HIMAC, 

NSRL data generated from Timepix detectors. It was based upon the ROOT library [30], 

a popular framework for High Energy Physics (HEP) data processing and analysis. 

REMAnalysis was developed in collaboration with the University of Houston, Physics 

Department, and Pattern Analysis Laboratory of Computer Science Department. It is also 

sponsored by NASA Johnson Space Center.  

The software provides data conversion, data analysis and data taking from the Timepix 

chip. It includes algorithms to find blobs, to calculate angles, LET, dose, dose-equivalent 

of heavy-ion particles in ISS and experimental data at HIMAC and NSRL. It also 

includes pattern recognition algorithms to identify δ-ray, interaction, stopping and to 

classify types of heavy ions. The graphical interfaces and statistical tools allow efficient 

use of doing statistics during a long period of time. Comparison between REM units and 

TEPC are also supported.  
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1.2. Overall features 

• Display images of frame by frame of Timepix output data (charge, energy at each 

pixel). 

• Display analysis of track by track of charged particles (angle, LET, dose, dose-

equivalent). 

• Display advanced features of tracks (delta-ray, skeleton, distance transform). 

• Perform pattern recognition and classification (interaction, stopping, ion type 

prediction). 

• Display statistics over multi-frames (angle distribution, LET distribution, dose, 

dose-equivalent distribution). 

• Display comparison among REM units and TEPC. 

• Display dose, dose-equivalent plots over longitude and altitude positions. 

1.3. Installation 

The software was developed in multiple platforms (linux, mac osx, window). ROOT is 

the only dependency for installing REMAnalysis. Please refer to the ROOT webpage 

http://root.cern.ch/drupal/ to get the documentation and learn how to install ROOT from 

source. If you do location independent installation, remember to add $ROOTSYS/bin/ to 

PATH and $ROOTSYS/lib/ to LD_LIBRARY_PATH by the following command: 

source $ROOTSYS/bin/thisroot.sh  

Here, $ROORSYS is the directory where you install ROOT 

The REMAnalysis software is being developed under subversion control with host REM 

Server from TLC2 of University of Houston. For the time being, this software is not 
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allowed to be public. You need to request an ssh account from REM Server 

(rem.tlc2.uh.edu) by sending an email to smhoang@uh.edu. This account allows you to 

download ISS, HIMAC, NSRL raw data, and processed ROOT File after conversion. It 

also allows you to check out and commit code of REMAnalysis. You can use svn to 

check out the software as follow: 

svn co svn+ssh://youraccount@rem.tlc2.uh.edu/mnt/rem_share/svn_repos/REM/REMAnalysis  

Input your password (2 times).  

The software will be downloaded and controlled under subversion. Change your directory 

into REMAnalysis, and compile the software using “make”. An executable file with 

name REMAnalysis will be generated. Later on, you can update the software when a new 

version is available by using “svn update” (then, compile again). If the proxy at your 

working place blocks ssh protocol. You can request an https account in order to check out 

and commit REMAnalysis. Please use the following command: 

svn co https://rem.tlc2.uh.edu/svn/REM/REMAnalysis 

Input your username and password 

1.4. Getting started 

To start up the software 

Change your current directory into REMAnalysis folder, then run the executable file by 

using the command below: 

./REMAnalysis 

Figure 1 shows the screen appearance that is displayed when software is started up.
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Figure 1. REMAnalysis main panel 

1.5. Functions of tabs and buttons of main panel. 

REMAnalysis mainly consists of three panels: left, right, bottom. The left panel consists 

of 5 tabs Data, δ-ray, Angle-LET, Dose, Orbit with corresponding controls in each tab. 

The right panel consists of Frame control, small canvas and cluster property-list box.  

Small canvas displays profiles of individual clusters appearing on the left panel. It also 

shows the frame corresponding to orbit position when clicking on world orbital map.  

Cluster property-list box displays individual analysis of clusters. The bottom panel 

includes buttons to open new windows for doing classification, conversion, data taking, 

opening converted ROOT files to process, saving images from main canvas of tabs and 

exiting the program. 
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Figure 2. Functional operators on main panel 
 

1.6. Data tab 

Frames containing clusters of particles will be displayed on the data canvas of this tab 

when opening a new ROOT file. Use forward or backward button to switch between 

frames. Frames can be zoomed by dragging the mouse from starting point to end point in 

Data: displays clusters of particles of each 
frame. 
Deltaray: displays deltaray statistics of 
multiple frames. 
Angle-LET: displays angle-LET energy 
statistics. 
Dose: displays dose and dose equivalent 
statistics. 
Orbit: displays dose with respect to longitude 
and altitude.  

Units: selection of detectors to process with. 
Frame: input of frame number, or range of 
frame separated by hyphen ( e.g. 0-1000) 
Forward button (>>): move to the next 
frame 
Backward button (<<): move the previous 
frame. 
SAA: On/Off displays statistics in SAA. 
NoneSAA: On/Off display statistics in 
noneSAA. 
  
 
 
 

Major: displays cluster 
profile on major axis. 
Minor: displays cluster 
profile on minor axis. 
Bragg: displays bragg 
curve for stopping 
particles. 

Classify: perform training and testing for particles classification. 
Convert: perform conversion data from Timepix output into 
Root file. 
DataTaking: this feature availability depends on the version of 
software.  
Open: open a root file or multiple root files to be processed. 
Save: save image from the main canvas. 
Exit: exit application. 
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the data canvas; or be un-zoomed by double click on the data canvas or using Reset 

button. A result cluster with energy information at each pixel will be displayed when 

clicking on the item of the cluster property list box (lower right corner). A result cluster 

with energy information at each pixel will be displayed when clicking on the button 

“LET” with a provided ranges from start to end of LET of particles. 

A result frame will be displayed when clicking on the button “Occ” or “Time” with a 

provided percentage minimum occupancy (e.g. 1, 1.5), or timestamp string (e.g. “Fri Apr 

19:11:51”). Note that there are 256x256 pixels in total, the occupancy in this case is 

calculated by the number of positive-energy pixels divided by 65536. The timestamp 

string should follow the pattern of the time string in the title. 

The title of data canvas provides metadata of the frame displayed on the canvas. The first 

line shows timestamp string at the moment when taking the data, the acquisition time in 

second, the chipID. The second line shows dose rate in uGy/min, dose-equivalent rate in 

uSv/min and the occupancy of this frame. 

In “display” control of this tab, one can switch between radio buttons to see information 

of each cluster and its corresponding pixels. The “count” radio button shows the number 

of charges before calibration at each pixel. The “energy” radio button shows the 

calibrated energy at that pixel. The “component” radio button shows delta-ray, skirt, core 

of the cluster in different colors. The “energy level” shows the closet distance between a 

pixel and the cluster boundary after using distance transform. The “skeleton pixel” shows 

the skeleton of cluster. 
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Figure 3. Data tab 

1.7. δ-ray tab 

An energetic secondary electron (δ-ray) is produced through the net coulomb interaction 

of a matter with a charged particle. δ-ray electrons create a noticeable track of their own 

and can leave the immediate area of the primary particle's track when they have sufficient 

energy. This tab displays the statistics of delta-ray information of all particles appearing 

in frames specified in the textbox “Frame” of Frame Control. 4 features of δ-rays are 

Count: display the charge and pixel of each particle.  
Energy: display energy and pixel of each particle after 
calibration.  
Contour: display contour of energy of each particle.  
Component: display components (deltaray, skirt, core) 
of each particle.  
Energy levels: display levels of pixels in a cluster. 
Skeleton Pixels: display skeleton of cluster. 
 

Reset: unzoom the frame data.  
Time: display the frame at the input 
time stamp.  
Occ > : display the frame in which 
occupancy higher than the input value.  
LET: display the frame in which LET 
of cluster between the input value (eg. 
1.3 – 1.5) 
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being investigated: 

• Number of delta-ray (ending pixel) 

• Total length of delta-ray (in term of number of pixels) 

• Total energy of delta-ray (in KeV) 

• Maximum length of delta-ray. 

Input a range of the frame in the frame textbox in the Frame Control (eg. 0-1000), or 0 to 

process all of frames.  Then click Run to generate statistics for plotting delta-rays 

information.  

           

 

 

 

Figure 4. δ-ray tab 

Endingpixel: display statistics of the ending pixel (number of deltarays ).  
TotalLenghth: display statistics of total length of deltarays in terms of pixel. 
TotalEnergy: display statistics of total energy of deltarays.  
MaxLength: display statistics of maximum length of deltarays. 
DeltaRayNumber: display statistics of number of disconnected deltarays. 
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1.8. Angle-LET tab 

An energetic particle arbitrarily penetrates the detector layer in different angles ranging 

from 0 degree to 90 degree with respect to the normal direction and from -90 degree to 90 

degree for azimuth direction.  This is because there is an ambiguity in terms of the actual 

physical particle’s direction of motion along the track. By default we assume that the 

particle direction is incident from above the sensor layer. Using the Timepix-based 

detector, LET can be measured from the total energy deposited, divided by the path 

length traversed by the particle as it passes through the Si layer. The traversed path length 

can be calculated once the incident angle is determined. 

Ionization along the primary particle track causes the creation of electrons and holds, 

which then drift under the influence of the applied bias voltage.  As the carriers drift, they 

interact with opposing charge carriers and create the recombination of high densities of 

electrons and holes (the so-called “plasma-effect”). Recombination will result in a 

reduced amount of energy in the measurement relative to what was deposited in the 

silicon by the incident ion. It will also affect the uncertainty in the LET calculations. We 

propose a smoothing technique to compensate energy loss due to this plasma-effect. 

Some particles with slow energy, especially protons, do not penetrate the Si layer of 

Timepix chip. These stopping particles will screw up the angle and LET calculation. We 

will identify these particles and make a correction for their LET using SRIM simulation. 

This tab displays statistics of polar angle, azimuth angle, LET, corrected LET and total 

energy for particles. Input a range of the frame in the frame textbox in the Frame Control 
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(eg. 0-1000), or 0 to process all of frames.  Then click for generating plots.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Angle-LET tab 

1.9. Dose tab 

Dose is defined as the energy deposited by a source of radiation per unit mass of 

traversed matter. Dose-equivalent is the most common form to express the biological 

effects of the dose caused by a particular type of particle for radiation protection 

purposes. To calculate the Dose-equivalent, each type of potentially incident radiation is 

Polar: display statistics of the polar angles with respect to the vertical 
direction.  
Slope: display statistics of azimuthal angles. 
Angles: display statistics of polar and azimuthal angles.  
LET: display statistics of LET. 
CLET: display statistics of corrected LET for stopping, saturation, volcano 
effect.  
Energy: displays statistics of total energy. 
NBin: number of bins. 
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given a Quality Factor, also referred to as Relative Biological Effectiveness (RBE). As 

proposed by the National Council on Radiation Protection [NCRP 153 (2008)] regarding 

heavy-ions in the space radiation environment, the Quality Factor is a function of the 

LET of the traversing particle. 

 

 

 

 

Figure 6.  Dose, Dose-Equivalent 

Figure 6 displays Dose and Dose-equivalent of each frame (corresponding to each 

timestamp) and plot them in uGy/min for Dose and uSv/min for Dose-Equivalent on the 

same canvas. Users can click on the points of Dose or Dose-Equivalent to get directly to 

corresponding frame displayed in data tab. Input a range of the frame in the frame 

DoseRate: On/Off displays dose rate.  
DoseEquivalent: On/Off display dose equivalent rate. 
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textbox in the Frame Control (eg. 0-1000), or 0 to process all of frames.  Then click Run 

for generating plots. 

 

 

 

 

 

 

Figure 7.  TEPC, REM units comparison 

This tab also allows users to compare dose, dose-equivalent between TEPC and REM 

units or among REM units together (Figure 7). The Tissue Equivalent Proportional 

Counter (TEPC) is an automatic microdosimetry system used to characterize spatial 

radiation environment. The comparison between TEPC and REM units is necessary to 

TEPC: browse TEPC file. 
ComboBox: enable / disable detectors. 
Day: Input date to compare (mm/dd/yyyy) 
Compare check: on/off comparison. 
Save: Save comparison to file. 
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evaluate the performance of REM units and algorithms. Users can browse a TEPC file, 

select detectors (on/off), specify the day and click “Compare” button to generate plots. 

1.10. Orbit tab 

This tab displays dose, dose-equivalent maps of ISS REM data versus ISS latitude and 

longitude. We calculate ISS Orbit (longitude and latitude) based on the timestamp when 

taking the data frame and relied upon the SGP4 NORAD orbit propagator code. Input a 

range of the frame in the frame textbox in the Frame Control (eg. 0-1000), or 0 to process 

all of frames.  Then click Run to generate plots. 

 

 

 

 

Figure 8.  Dose tab 

DoseRate: displays dose rate on orbit.  
DoseEquivalent Rate: display dose equivalent rate on orbit.  
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1.11. Conversion 

The data are taken from Timepix chip and saved to file under Pixelman file format or 

BIRD file format. These output data need to be preprocessed, calibrated to convert from 

ToT value to energy value in KeV, and saved in ROOT format before starting analysis. 

Users can combine and convert multiple files at the same time and output one ROOT file 

only. The statistics plots (angle and LET) will be displayed during the conversion 

process. Click on the “Convert” button at the bottom of the main panel to open the 

following window. 

  

 

 

 

 

 

 

 

Figure 9.  Conversion panel 

Files: browse DSC files 
(Timepix format) or BIN files 
(BIRD files) 
Save: choose directory and file 
name to save 
A, B, C, T: browse calibration 
files 
Orbit: browse an orbital file 
Saturation: input saturation 
coefficient 
 

Convert: perform conversion  
Open: open the Root file 
after conversion. 
Close: close the window 
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1.12. Data taking 

REMAnalysis is able to connect with Pixelman by using its libraries and APIs to do data 

taking. As the Pixelman libraries were built for different operating systems, a 

corresponding configuration needs to be done in order to perform this functionality. Note 

that license is required for using Pixelman with detectors without Fitpix interfaces.  

In case REMAnalysis is not configured correctly, or the Pixelman libraries are not 

available, a message box will be displayed as follows. 

 

For those who own a Fitpix interface, remember that it needs to be plugged into your 

computer prior to connecting any other detectors. The REMAnalysis then has to be run in 

root mode. Please use the following command: 

sudo ./REMAnalysis 

Then clicking on the button “DataTaking” at the bottom of the main panel. If the right 

prefix of the saved file name is provided (“mass_ionname_energy_angle_location”, see 

instructions below), the final output files are automatically saved with the name 

convention: 

“automicmass_ionname_energy_angle_biasvoltage_Ikrum_location_monthyear” 

E.g. If the prefix is 004_He_0180_00_HIMAC, then the final filename is saved as: 

 004_He_0180_00_015_01_HIMAC_072013 
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The above example is for Helium 4, energy 180, angle 0, bias voltage 15, Ikrum 1, taken 

at HIMAC in July 2013. 

 

 

 

                      

 

 

Figure 10.  Data taking panel 

1.13. Panel opening 

After conversion, users can open a ROOT file or multiple ROOT files simultaneously 

using Open button at the bottom of the main panel. Note that only files with extension 

“.root” will be displayed. Depending on the number of different detectors generating 

these ROOT files, Combobox in Frame control will display corresponding number of 

items. A first frame will be displayed on the data tab. 

Combobox: Select 
detector. 
Run: perform 
acquisition.  
Abort: Abort 
acquisition. 
Close: Close the 
window. 
 

AcqTime: Input acquisition time in 
seconds.  
Threshold: Input the threshold. 
Tpx_clock: Input timepix clock. 
 

NFrame: Input 
number of 
frames.  
Ikrum: Input 
Ikrums, 
separated by 
comma. 
Bias: Input bias 
voltages, 
separated by 
comma.  
 

A, B, C, T: 
browse 
calibration files 
Orbit: browse an 
orbital file 
Saturation: 
input saturation 
coefficient 
 

Cofig: load binary configuration.  
Save: Select a file name. The format of the file name should follow a rule to specify details of data: 
“mass_ionname_energy_angle_location”. A bias voltage, Ikrum and time will be automatically added 
e.g. 004_He_0180_00_HIMAC  
 
 

Integral: on/off 
Display frames 
integral  
Save to File: on/off 
save output to file 
Do analysis: on/off 
Display angle, LET 
distribution 
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Figure 11.  Open panel 

1.14. Cluster properties 

 

Figure 12.  Cluster Properties 

The list box at the right bottom corner shows properties of the particles on the canvas 

including coordinates, total energy (KeV), angles, LET, corrected LET, predicted type of 

particle. Note that the type value of a particle is equal to its atomic mass. If type = 0, it’s 

predicted as light particles such as photon (x-ray, g-ray). If type=-1, it’s predicted as 

interaction or overlapping. If type=-2, it’s a boundary cluster. If type=-4, it’s predicted as 
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stopping. A combination of these values will make the type have the value of -3 

(interaction and boundary), -5 (interaction and stopping), -7 (interaction, boundary, 

stopping), -6 (boundary, stopping). Users can click on item of the list box to see structure 

of cluster.  

1.15. REM Server at UH 

Software, ISS data, HIMAC data, and NSRL data are being stored in REM Server at UH. 

The ISS data are transferred and updated on daily basis from ISS and NASA Server. The 

HIMAC, NSRL data are updated whenever an experiment is taken. Users with ssh 

account can access these data via a symbol link named “rem_share” which is 

automatically mounted at the home directory. Users can use the following command to 

get access to REM Server: 

ssh youraccount@rem.tlc2.uh.edu 

Input your password 

The ISS data and processed ROOT files are stored at: 

/mnt/rem_share/On-orbit_data or ~/rem_share/On-orbit_data 

The HIMAC data are stored at: 

/mnt/rem_share/HIMAC_data or ~/rem_share/HIMAC_data 

The NSRL data are stored at: 

/mnt/rem_share/NSRL_data or ~/rem_share/NSRL_data 

Users can download files by using command line from your computer’s terminal, for 

example: 

scp –r youraccount@rem.tlc2.uh.edu/mnt/rem_share/On-orbit_data/yourfile yourlocalfolder 


