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ABSTRACT

Situations where a non-redundant tear with respect to 

stream loops is impossible are frequently encountered in 

process simulation and give rise to difficulties in 

convergence of stream variables and overall heat and mass 

balances. Previous work has been directed at tearing the 

network at certain points rendering it acyclic and then 

precedence ordering the process units for computation. Such 

an approach is based on the structure of the directed graph 

alone and does not take into account in good measure the 

energy and mass flow patterns while precedence ordering. The 

idea in the present work has been to emphasise the stream 

loop as a major information recycle stream. Methods and 

criteria for precedence ordering simple and cyclic cascades 

have been established and shown to be better than the 

conventional cut set approach.
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CHAPTER I

INTRODUCTION

One approach to the computer aided design and 

optimization of a large chemical processing system is to 

develop an executive program coordinating the subroutines 

which perform the computations for the process units. 

Integral in this approach, is the specification of a 

precedence ordering which determines the sequence in which 

each unit subroutine is to be computed. An input process 

stream to a unit subroutine which has not been specified at 

the time of computation is called a recycle or torn stream, 

because, the stream must be cut by assuming initial values 

for all the process variables that are present in that 

stream. Later in the procedure, w7hen the torn stream appears 

as an output from some unit subroutine, an iterative method 

is employed to force convergence of the torn stream i.e., 

the difference between the assumed and computed values of the 

stream variables, to within a specified tolerance.

A large body of theory has been developed and various 

criteria established to select these torn streams. The most 

important conclusion reached is that a non-redundant tear 

set has better convergence characteristics than those 

belonging to a redundant family (1). By redundancy we mean 
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that the members of the cut-set open the same recycle loop 

at more than one point. However, situations arise when such 

a non-redundant tear is not possible if recycle loops are 

to include non-simple cycles. Such systems where non-simple 

cycles called the stream loop exists, are more difficult to 

converge than normal problems, particularly, when we are 

considering overall mass balances.

Cascades are a particular class of examples which fall 

into this catagory. It is the purpose of this thesis to 

look at cascade systems, and develop methods to tackle the 

problem of precedence ordering and convergence in these 

situations.
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CHAPTER II

GRAPH DEFINITIONS AND LITERATURE SURVEY

There are three main types of graphs - nondirected, 

directed graphs and graphs of a mixed type.

A nondirected graph consists of a number of nodes and 

a number of lines. Between the nodes and lines there exists 

an incidence relation which is defined as follows. Each 

line is incident either with one node or with two distinct 

nodes. Conversely, each node is incident with an arbitrary 

number of lines. This number may even be zero in which 

case the node is an i sol a. ted node.

Directed graphs are defined in the same way as non­

directed graphs except for an additional requirement: each 

line must be oriented, i.e., for each line both a starting 

point and an end point must be specified, although the two 

may coincide.

In a mixed type of graph, some lines will be oriented 

and others not. Our interest is primarily in directed 

graphs and we will give more formal definitions.

Let N be an arbitrary set of nddes, and L an arbitrary 

set of lines and let N*N  be the set of all unordered pairs 

of nodes in N. If a,0 €. N and a 3 then the pair formed by 

a and ft is the set {a ,£}. If a = (3 then using the same 

notation we write {a ,a}

Hence we can define
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N*N  = { {a,B} | a,Be N}

A non-directed graph (N,L,g) can be defined by N and L and

a mapping g:L N*N,  so that for each b€ L and suitable

a,B e N

gb = {a,B}

A directed graph (N,L,f) can be defined by N and L and a

mapping f:L -> NXN, so that for each be L and suitable a,B€ N

fb = (a,B)

Every directed graph (N,L,f) also defines a non-directed graph

(N,L,g) where

gb = {a,B} if fb = (a,B), b€L,cx7S N

(N,L,g) is obtained from (N,L,f) by disregarding the order

of the pairs of nodes, i.e., by disregarding the orientation 

of the lines.

A graph is called finite if N and L are finite sets. A 

subgraph of a graph G = (N,L,f) is defined by a graph 

(N ,L ,f ) where N C N, L C L and f is induced by f which 111 i—i— i
means that if fb = (a/B), bCL^ and a,B€ Mathen

f b = (a, B) . i
If fb = (oi fB) we say that a is the starting point of b

and B is its end point.

A path by definition is formed by a number of ordered nodes

a  a and ordered lines b ,.. . . b where n > 1 on i n =

such that gb^ = 1 ' ai i = If*--* 11*

This path is denoted by the sequence (aQyb^,.-bn,a^) 



-5-

from which we sometimes omit the nodes. We say that the 

path ( a ,bn,a ,b_,a_ ) connects a and a , and thatc o 1 i n n o n
if it contains n lines, it consists of n steps or that

its length is n.

A directed path is defined in the same way except that 

instead of - requiring that gb^ = { ,a^} we require

that fbj = ( a. . ,a. ), i = l,....n. This directed i i-l i ' '
path we again denote by ( , b^,....bn,an). A directed

path is said to be directed from a to a„ and a and r o n o
are said to be the starting and ending points respec­

tively.

A directed cvcle is a directed path (a ,b-. ,a ,...b ,a ) -------------- ------- 0 j_ 1 no
where = an and n >, 1. The sequences (ai,b2,a2...

b ,a ,b.,a ) and (a ,bn,a ,...b ,a ) are considered to noli oil no
represent the same cycle.

A simple directed path is a directed path all of whose 

nodes are distinct and a simple directed cycle is a dir­

ected cycle (a /b^/a^,... bn,ao ) where all the nodes 

a .... a , are distinct.o n-1
A hinged directed cycle is a directed cycle in which only 

all the lines are distinct. This is also called a stream

loop. A graph is connected if for every pair of nodes

a and B there exists a path connecting a and B •

A cyclical loop is maximal if and only if it is cyclical 

and contains all other cyclical graphs as its subgraph. A 

maximal cyclical net contains no vertex of another larger 

net and hence for calculation purposes can be considered 
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separately. If the graph contains no simple loop it is 

called acyclic. The indegree of a node is the number of 

edges directed towards it, while the outdegree is ,the 

number of edges directed outwards from it. The sum of the 

indegree and outdegree is called the degree of the vertex.

Decomposition of nets

This consists of two parts

1. Identification of maximal cyclical nets.

2. Reduction of individual nets.

By the definition of a maximal cyclical graph, a 

recycle system must contain at least a simple loop. A 

common method of cutting this loop is to assume initial 

values for all the variables in any one of the streams 

which constitute the loop. The loop is said to be torn 

at the chosen point. If all the loops in the recycle 

system are torn in this manner, the resulting graph be­

comes acyclic and can then be precedence ordered to pro­

duce a set of new values for the torn variables. An 

iteration procedure is then performed to force the 

agreement between the assumed and computed torn variables 

to some preset tolerance. For a complex system, more 

than one such stream will have to be selected. A cut-set 

is said to be non-redundant if no simple loop is opened 

more than once by the cut streams. Upadhye and Grens (1) 

have shown that a non-redundant tear set has better 
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convergence characteristics than redundant tear sets. 

Three types of criteria are usually used to select the 

‘optimal1 cut set (12)

1. To minimize the cut set of streams

2. To minimize the cut set of stream variables.

3. To minimize the largest eigenvalue of the 

sensitivity matrix related to the cut stream 

variables.

The problem of precedence ordering may now be divided into 

- Identification of maximal nets 

Tearing 

Convergence

The main identification algorithms are shown in Table 2.1, 

and we can see that there are two major approaches : the 

path tracing methods (PTM) and powers of adjacency 

matrix methods (PAM). While PTM are difficult to program 

PAM has large core requirements. A summary of the major 

tearing algorithms is shown in Table 2.2.

From Tab.2.2 we can summarize the basic approaches:

1. Steward’s tearing algorithm

2. Integer programming technique

3. Boolean matrix operations

4. Branch and bound method

5. Boolean approach for bivalent optimization

6. Heuristic methods
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Table 2.1 Identification of process flow networks

Author Method

Norman (2) PAM

Himmelblau (2,3) PAM

Steward (4,5) PTM

Sargent and Westerberg (6) PTM

Christensen and Rudd (7) PTM

Kehat and Shacham (8) PAM

Ledet (9) PAM

Jain and Eakmen (10) PAM + PTM

Forder and Hutchinson (16) PTM

Janicke and Biess (11) PAM

Barkley and Motard (31) PTM

Abbreviations: PAM powers of adjacency matrix

PTM path tracing methods



Table 2.2 Algorithms for tearing

Author Method Comments

Sargent and 
Westerberg (6)

Dynamic programming Advantageous for a network with 
few units and many recycle loops

Crowe et al.(14) Comparison of 
combinations

Not practical for large systems.
Efficient for small number of nodes

Steward (5) Loop tracing Procedure results in one excess tear

Lee and Rudd (15) Cyclic matrix 
operation

Advantageous for small systems and 
hand calculations

Forder and 
Hutchinson (16)

Cyclic matrix 
operation

Modification of Lee and Rudd 
procedure in an interactive mode

Lee, Christensen 
and Rudd (17)

Steward’s 
procedure

Modification of Steward's procedure 
Inefficient for large systems

Christensen (18) Bipartite graphs Suitable for optimization and design 
calculations

Ledet and
Himmelblau (9)

Loop tracing

i 
vo
I



and columns in the occurence matrix

Tab.2.2: Algorithms for tearing contd.

Author Method Comments

Westerberg and 
Edie (19)

Steward's procedure 
dynamic programming

Optimization of the output set to 
minimize the number of cut variables

Johns (20) Search algorithm Search algorithm arranges the nodes 
in a calculation order which creates 
a set of recycle nets of minimal sizes

Upadhye and 
Grens (21)

Dynamic programming Efficient for large systems

Pho and 
Lapidus (22)

Graph approach Graph simplification technique via 
repeated reduction of ineligible 
streams and two-way edges

Christensen and
Rudd (7)

Graph approach Minimum number of tears not gaurenteed

Ramirez and
Vestal (23)

Elimination and 
structuring algorithm

Suitable for design calculation

Piehler (24,25) Integer programming Not practical for large systems

JeLnicke and 
Bie6 (11)

Occurence matrix 
operation

Iterative variables identified by 
inspecting a minimum number of rows

Kevorkian and 
Snoek (26)



Tab .2.2 Algorithms for tearing contd.

Author Method Comments

Garfinkel and
Nemhausef (27)

Covering algorithm Integer programming approach

Hammer (28) BABO algorithm Boolean approach for bivalent 
optimization

Wilde and 
Atherton (29)

Branch and bound 
solution

—

Barkely and
Motard (31)

Graph approach Signal flowgraph method. Minimal 
cut-set gaurenteed. Suitable for 
large systems

i

H
I
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All the work in this field upto this point has been 

directed at finding the 'optimal*  cut-set. Such an approach 

relies too heavily on the structure of the corresponding 

directed graph alone, and does not take into account the 

mass and energy flow patterns that exist in the system. 

This work has been directed at developing a feasible, but 

at the same time not completely heuristic, approach which 

can lay emphasis on this aspect as applied to cascade 

systems.
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NOMENCLATURE FOR CHAPTER II

a. ,b. 1'1 lines in the graph

f mapping function for a directed graph

g mapping function for a non-directed graph

L set of lines in the graph

L,1 set of lines in the subgraph

N set of nodes or vertices in the graph

N1 set of nodes or vertices in the subgraph

Greek:

a, B individual nodes or vertices
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CHAPTER III

SIGNAL FLOW GRAPHS

Signal flow graphs are a special type of directed 

graphs which provide the engineer with a method of 

analysing and solving a system described by a set of 

simultaeneous linear algebraic or differential equations 

without resorting to matrix calculations. The information 

contained in the signal flow graph is neither more nor 

less than that contained in the relation equations, but 

the signal flow graph does provide a visual representation 

of the system equations from which a logical reduction 

procedure can be effected. The visual representation of 

the system equations often makes the system more 

amenable to analysis.

Fig.3.1 illustrates the basic elements of a signal 

flow graph. The vertices (nodes) are the variables in the 

related equation connected by a directed line or branch, 

with the arrow pointing towards the dependent variable and 

away from the independent variable. Superimposed on the 

arrow is the symbol representing the branch transmittance 

(branch operator or branch gain) which represents the 

ratio of output to input, i.e., the ratio of the dependent 

to the independent variable. (A node may be a dependent 

variable in one part of the graph and an independent



-14-

Signal flow 
diagram

Block 
diagram

G(s)

Equation y(s) = G(s) x(s)

Figure 3.1: Basic signal flow graph elements.
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Addition

Subtraction

y=gx + hz

y=gx t hx

y=hz - gx

Multiplication

Division

Identity or 
unit trans­
mittance

y = gx

y = x/g

y = x

Negative unit 
transmittance

-1
■>—

or

—

y = -x

Figure 3.2: Basic rules for signal flow diagrams.
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variable in another.) It corresponds to the transfer 

function if the variables are in Laplace transform space. 

A network of one or more branches is the 'signal flow 

graph'. The node represents both the operation of 

summation and the variables.

The rules for drawing signal flow graphs are as 

follows:

1. Material or information travel along the branch 

only in the direction of the arrow.

2. Any signal travelling along any branch is multiplied 

by the transmittance of that branch.

3. The value of the variable represented by any node 

is the sum of all inputs entering that node.

4. The value of the variable represented by any node 

is transmitted on all branches leaving that node.

The basic rules for addition, subtraction, multi­

plication and division are shown in Fig.3.2. The rules 

for manipulating and consolidating signal flow graphs 

are as follows.

1. Addition rule: _____3,

'V ■* V

=
Parallel branches can be replaced by a single branch with 

a transmittance equal to the sum of the individual branch 

transmittances.
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Multiplication rule:
<7X

Series branches can be replaced by a single branch 

with transmittance equal to the product of the 

individual branch transmittances if all the inter­

mediate nodes are chain nodes, (i.e. —

is a chain node; a node containing a self loop is 

not a chain node)

3. Splitting:

A complicated node can be split up into a series of 

simpler ones by the use of unit transmittances.

is equivalent to
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CHAPTER IV

SYSTEM SENSITIVITY AND SENSITIVITY MATRICES

System sensitivity, as a general concept, refers to 

the change in the output variable which can be attributed 

to a change in one of the system parameters (coefficients 

or in some cases system inputs). As a quantitative 

measure, sensitivity has value in allowing the engineer 

to predict possible changes in system outputs based on 

proposed or actual changes in system parameters. Sensit­

ivity becomes especially important in recycle processes 

in which the possibility exists for the system output to 

influence itself. Systems with recycle have two sources 

of input: the normal flows into the system plus flows 

which depend upon the system output. The relative 

sensitivity of an iterative calculation can be defined as(35)

where the superscript refers to the cycle number of the 

iterative procedure. Briefly, the requirement for an 

iterative procedure to converge to a solution are as 

follows.

Firstly, the initial guess must be reasonably close.

Second , the matrix of partial derivatives J, the Jacobian 
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must have moduli less than one.

For the set of system equations

fi <^1............ yn> -0

f (y, ..........y ) = 0n ■''I' Jn

the matrix J is

f 
af.. ....
ayt

.. .. 3f ’
ayJn

.... ____ 9fd h
i >i> |ct> ■~—-na v■*  n

where the J is evaluated at (y,. .... y )■‘I7 2n'

We will now show how the Jacobian can be obtained for a 

linear system which has to be solved by iteration and that 

it is identical to the one obtained from the signal flow 

graph.
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Let us suppose we have a three element cascade which looks

like:

Let a.^ be the split fraction from stream i to j.

e.g., ai2'a42

g3 X3 (X3 a34 + X6 a64> a43 + Xla13

imply the relation

X2 X1 a12 + X4 a42

The sum of the a..'s leaving any node equals one due to 

mass balance requirements. Streams 1 and 3 will be

chosen as cut streams. X, and Xo are constant valued feed 6 8
streams while Xc and X^ are product streams. We start the 

iterative procedure by assuming streams 1 and 3 at X^ and X^ 

while g^ and g^ are new estimates for streams 1 and 3 

obtained after one cycle.

The computation sequence will be C ■*  B ■> A.

The following relations are obtained:

X4 = X3 a34 + X6 a64

X2 = X1 a12 + X4 a42 = X1 a12 + X3 a34 a42 + X6 a64 a42

And so g
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and

and hence

Therefore

J

a12 a21

dgj
‘9"^3

a13

X2

a21'a34

a34 a43

a21

a42

a13

dg1

a34 a43

6 a64 a42 a21

a34 a42 a21

a12 a21

3 a34 a42 a21x°X1X8 a81

3g3

3X3

dg3

91 X8 a81

a12a21
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Signal flow graph

Shown above is the signal flow graph for the system 

considered previously. The partial derivative 9g^/3X^ 

is equal to the total transmittance from 1 to g^ (12) 

calculated according to the principles and methods 

explained earlier. 

Hence, 

3g1/ax1 = 

dg1/ax3 = 

dg3/dx1 = 

dg3/3x3 =

a12 a21

a34 a42 a21

a13

a^. a.

This is identical to the result obtained earlier.
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The usefulness of sensitivity matrices arises in the 

prediction of the convergence rate of an iterative 

procedure. If we are sufficiently close to the solution 

that we can assume a linear approach to the solution, then 

the number of iterations required to reduce the error in 

the estimates by a factor e is given by the following 

expression (33)

n =
Icg-LO e

log10 X max

[ 4.1 ]

where n is the number of iterations and X is the max
largest eigenvalue of the sensitivity matrix. In the 

following chapter a general method to evaluate the 

sensitivity matrix for any arbitrary system will be 

derived.
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CHAPTER V

A GENERAL METHOD FOR EVALUATING THE JACOBIAM

One of the techniques for reducing the number of 

iterations taken by a recycle system to converge is to 

minimize the largest eigenvalue of the Jacobian matrix. 

Upto this point, this has been done by comparing alter­

nate cut sets. The approach here has been to achieve 

this by repetition of certain units in the cascade by 

following the longest stream loop. It is therefore 

necessary to have a method by which we can evaluate the 

Jacobian for any arbitrary system.

For the method developed here the following infor­

mation is required:

a) A feasible cut set with reference to which the 

Jacobian is computed.

b) A precedence ordering

c) The split fractions at each unit.

The Jacobian is computed assuming one variable per stream 

viz., the total molar flow rate. However, this method can 

be extended to include individual components.
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Associated with each digraph is a Boolean matrix R 

(associated matrix, relation matrix, transition matrix, 

adjacency matrix) which is a square matrix with as many 

rows (and columns) as the digraph has vertices. The 

element r^j = 1 if there is a flow directed from vertex 

i to j, otherwise zero.

For example

R: 0 10 0 0

0 0 10 1

0 0 0 1 0

0 0 0 0 0

0 0 110
Figure 5.1: Directed graph and adjacency matrix

Note that the first column, fourth row and diagonal are all 

zero. This means that there there are no edges directed 

towards (1), no edges directed out of (4) and that there 

are no self loops. 
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By taking the power of R, if r^j is one then there 

exists a path n steps long from i to j in the graph. The 

powers of R are taken with the usual rules of matrix 

multiplication except that Boolean algebraic rules hold for 

individual elements.

viz., x + y = max(x,y)

x * y = min(x,y)

Another feature of the adjacency matrix associated with a 

directed graph is that it indicates when cyclical nets 

(dir.cycles) occur (35). If the graph has no directed 

cycles it is called acyclic and there will be some value 

N, corresponding to the longest path in the graph such that

R =0 for all m 1

For the example shown in Fig.5.1, N = 4, whereas

For the example shown below, no such N exists.
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Now suppose that the rules for Boolean multiplication are 

substituted with that of regular multiplication and we are 

also given that the graph is acyclic. Then, the integers

by two step paths, while there are two 2-step paths from

appearing as entries in "Rn give the number of n-step paths

from node i to j. For example in Fig.5.1,
^2R =

0 0 1 0 1

0 0 1 2 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

i.e., the nodes (1,3), (1 ,5) , (2,3), (5,3^) are connected

node 2 to 4.

Now if the entries were replaced by the corresponding

a. . the split fraction, the products appearing as 

entries will be the transmittances due to- n-step paths.

Thus by knowing the location corresponding to the 

Jacobian elements we can successively sum these to get 

the sensitivity matrix. This procedure is further 

guaranteed to terminate, since the signal flow graph 

obtained from the cut set must necessarily be acyclic.

This procedure is illustrated by an example.



-28-

Figure 5.2: Example to illustrate the generalized method.
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The adjacency matrix of the signal flow graph with a..

entries is as follows:

1 2 3 4 tn iQ

1 0 0 a13 0 a12 0

2 a21 0 0 0 0 0

3 0 0 0 0 0 a34

4 0 0 a43 0 a42 0

to 0 0 0 0 0 0

tP 0 0 0 0 0 0

The underlined entries correspond to the Jacobian elements.

For instance, if we need 3g2/3X^ , it is the total 

transmittance along all branches from X4 to g2- a42 

corresponds to the transmittance along the one step path. 

Similarly by taking higher powers of R we can get the 

transmittance along the longer paths. These when summed 

together give the total transmittance from X4 to g2 which 

is equal to the corresponding partial derivative.
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Shown below is R

1 2 3 4 CM 
tr> ^4

1 0 0 0 0 0 a13 a34

2 0 0 a21 a13 0 a21a12 0

3 0 0 0 0 0 0

4 0 0 0 0 0 a43a34

CN 
tP 0 0 0 0 0 0

^4 0 0 0 0 0 0

The

R3:

contributions due to two-step paths have emerged

0.

1 2 3 4 iQ
 

N
J g4

1 0 0 0 0 0 0

2 0 0 0 0 0 a21a13a34

3 0 0 0 0 0 0

4 0 0 0 0 0 0

g2 0 0 0 0 0 0

g4 0 0 0 0 0 0
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The following shows the summary of the entire operation.

From R1

2 From R

3 From R

JACOBIAN

There will be no further contributions from higher 
4

powers since R =0. This procedure has been 

programmed and the details are presented in the 

appendix.
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CHAPTER VI
REDUNDANT AND NON-REDUNDANT TEARING

In our earlier definition of a cyclic path a node 

and a stream could appear only once per cycle, and this 

was termed as a node loop. In such a case a non-redundant 

tear set can always be found with respect to the fundamental 

set of cycles in the graph(1). By a fundamental set, we mean 

that every cycle existing in the graph can be expressed as 

concatenations of parts of the cycles belonging to the 

fundamental set. For example, see Fig.6.1.

However, if we define stream loops as cyclic paths in 

which a node can be traversed more than once, but, every 

stream exactly once, then we frequently get a situation 

where a non-redundant tear with respect to stream loops is 

impossible. Fig.6.2- illustrates this situation. The 

prediction of the existence of stream loops is fairly 

straightforward. If we have a node which has at least two 

input edges and at least two output edges, then it means 

that the node can be traversed a second time, leaving by 

the remaining edge.

A cyclic path which includes every stream in the 

graph exactly once is called an Eulerian path. By
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Fundamental cycles: 1. AfBaCbA

2. AcDdBeA

Other cycles:

AcDdBaCbA = [ AcDdB (2) ] + [ aCbA (1) ]

AfBeA = [ AfB (1) ] + [ eA (2) ]

means that the two strings are to concatenated.

( ) indicates which fundamental cycle the string 
has been extracted from.

Figure 6.1 : Fundamental cycles
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Node loops: A 1 B 2 A

B 3 C 4 B

Cut sets: (1,3), (2,4), (1,4), or (2,3)

All equivalent by the Replacement rule (1).

Stream loop: A1B3C4B2A

No cut set can tear network without 

opening the stream loop at more 

than one point.

Figure 6.2: Non-redundant tearing
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definition, it is obvious that an Eulerian cycle is also 

the longest cycle existing in the system. However, this 

need not be unique, and more than one Eulerian cycle can 

exist, as will be demonstrated later. It can be easily 

shown that the necessary and sufficient condition for the 

existence of an Eulerian cycle is that every node must have 

as many edges entering it, as are leaving it(13).

Cascades are a particular class of situations where 

the existence of the stream loop causes significant 

difficulties in convergence of both streams and over­

all mass balances. Cascades are frequently employed in 

the separation of pure components from mixtures, occasion­

ally accomplishing a chemical reaction. In each stage, two 

process streams are contacted and brought approximately to 

equilibrium with respect to each other. A number of such 

contacting stages are arranged in a cascade which produces 

the desired physical seperation or chemical change.

The number of such stages might vary anywhere from 

three or four in side strippers, to the order of a 

hundred or more in superfractionators. If such systems 

are solved by using the conventional cut set approach, 

every unit is repeated exactly once per cycle and so the 

major information feedback loop which exists due to the 

stream loop is not utilized.

Let us consider a five unit cascade and examine the 

sensitivity matrices obtained from the cut set and other
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sequences. Hence we can estimate the eigenvalues and 

convergence rates.

a.^ = transmittance or split fraction from stream i to j 

a^ = split associated with a particular module

B.g., a21 = 1 - 

a^2 = a2 an<^ 50 on*

We have a four member cut set (2,4,6,8). (Or (1,3,5,7) 

or (1,4,5,8) all equivalent by the Replacement rule of 

Upadhye and Grens (1). For our purposes we will take 

(2,4,6,8)

(2),(4),(6), (8) are starting points for computation

while g£, g^, gg are new estimates for the same 

streams after one iterative cycle. Shown on the next 

page is the signal flow graph for the sequence 

A->B-*C->D->E , which arises from the cut set (2,4,6,8).



Figure 6.3 : Signal flow graph for sequence A->B->C-*D-*E
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As explained previously, the Jacobain can be written as

a21a12 a42 0 0

a21a13a34 a43a34 a64 0

a21a13a35a56 a43a35a56 a65a56 a86

a21a13a35a57a81 a43a35a57a78 a65a57a78 a87a78

The upper triangle of zeros gets correspondingly larger 

for bigger systems. This means that the partial 

derivative, for example 9g2/3Xg = 0. Therefore any 

assumption or perturbation made to stream 8 will not 

affect stream 2 during that computation cycle. This 

introduces a delay into the system. The claim made here 

is that this delay is responsible for poor convergence 

and difficulties with overall mass balances.

Let us compare this with a different sequence. A 

smaller system with four units (A,B,C,D) will be used 

for illustrative purposes.

The sequence considered is 'ABABCBABCD* . The 

Jacobian for this will contain all non-zero elements. It



Figure 6.4: Comparison of sequences
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is also less diagonally dominant than the Jacobian for 

'ABCD'. This results in a lower maximum eigenvalue and 

a correspondingly lower number of predicted iterations. 

However, the computational effort expended per cycle 

for the longer sequence is correspondingly more. For 

comparing, the number of iterations predicted for both 

sequences will be weighted by the number of units in that 

cycle. The Jacobians and their eigenvalues were all 

evaluated using the generalized method developed in 

Chapter 5 .

Fig. 6.4 shows the result over a particular range 

of module split fractions. We can see that for particular 

ranges of split fractions, the longer sequence requires 

only 30% of the effort required to converge the cut-set 

sequence 'ABCD1. Similar results were obtained for larger 

systems.

This leads to the conclusion that we can improve 

convergence rate by minimizing the delay in the system, 

i.e., we should precedence order the streams in the 

cascade rather than the units. A binary distillation 

column and a thermally coupled distillation system were 

chosen for further examination and these are discussed in 

Chapters 7 and 8.
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CHAPTER VII

LINEAR CASCADE - BINARY DISTILLATION COLUMN

The problem considered here is the binary distillation 

of benzene and toluene in a ten stage column. Stage 1 is a 

total condenser with a reflux ratio of 3.0 and stage 10 is 

a partial reboiler. Saturated liquid feed enters at stage 

5.

Two cases are considered. First, when the top and 

bottom withdrawal rates are equal to half the feed flow 

rate irrespective of the feed composition and second, 

when the withdrawal rates are proportional to the amounts 

of benzene and toluene in the feed. The column was set 

up as a series of mixers and adiabatic flashes using the 

CHESS simulator (36). In this manner the sequence in 

which the stages were computed could be controlled. Tables 

7.1 and 7.2 show the results.

The top entry is the number of iterations multiplied 

by the ratio (number of units in cycle)/(number of units in 

the cut-set cycle(lO)). The second entry is the time ratio 

= (time taken for convergence by given sequence)/(time taken 

by the cut-set sequence). All simulations were run with a 

relative error tolerance of 1%.

Inspection of Table 7.1 reveals that all the proposed 

sequences perform better than the cut-set sequence as the
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Bo Hems.

DishUak

Figure 7.1 : Binary distillation column setup 
in CHESS simulator
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Table 7.1

B/T ■* 90/10 70/30 60/40 50/50

l->10 128 119 110 110
1.0 1.0 1.0 1.0

l->10-*2 112 99 83 67
0.84 0.80 0.73 0.61

10->5^10 173 92 56 48
^1^9 1.06 0.77 0.50 0.44

1->5^1 >169 156 135 112
->10^2 >1.2 1.2 1.13 0.94

5^6->4 141 128 106 84
1.03 1.01 0.91 0.72

5->7->3 >169 132 110 104
^10^1->4 >1.2 1.2 1.09 0.87

Binary ।distillation column on different sequences
Top and bottom flow rates same; as B/T in feed.
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B/T-* 90/10 80/20 70/30 60/40 50/50

1^10 110 110 110 110 110
1.0 1.0 1.0 1.0 1.0

l->10->2 27 31 32 32 67
0.29 0.30 0.32 0.32 0.61

10^5^10 39 45 48 50 48
->-l->9 0.37 0.42 0.43 0.47 0.44

1^5^1 36 36 39 47 112
^10->2 0.33 0.33 0.36 0.39 0.94

5->6->4 31 35 35 37 84
->10^1^4 0.30 0.34 0.33 0.35 0.72

5->7^3 36 39 39 44 104
^10->l->4 0.33 0.36 0.36 0.44 0.87

Binary distillation column on different sequences 
50-50 moles drawoff.

Table 7.2
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Table 7.3: Convergence error data for 50-50 benzene

toluene feed.

Sequence Overall mass balance error %

Benzene Toluene Total molar 
flow

l->10 
(cut-set)

0.94 3.43 1.25

l->10^2 2.7 2.5 0.12

10->5^10->l->9 1.43 2.01 0.29

l->5->l->10->2 2.39 2.21 0.09

5->-6">"4-»"10-)"l^-4 2.48 2.27 0.10

5^-7->3->-10->l->4 1.93 1.05 0.08
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Figure 7.2: Eigenvalues of Jacobian with iteration.



-47-

benzene to toluene ratio becomes one. Sequence 10->5->10-»-l->-3 

performs much better than others over a smaller range, while 

l->-10->2 performs better than the cut-set in all cases.

Inspection of Table 7.2 reveals that all sequences 

perform better than the cut-set, while l-*10->2  is best in all 

except for equimolar mixture of benzene and toluene. Also 

the number of iterations taken take a sudden jump at this 

point. This is probably because the system now gets more 

strongly interactive. Attention is drawn to the fact that 

the sequence l->-10->2 performs better than the cut-set sequence 

more consistently than the others in this example.

Table 7.3 reveals an order of magnitude reduction in 

the overall mass balance error when based on total flow 

rates. Though individual component errors are lower than 

the cut-set error in most cases, they are still above the 

stream tolerances. This means that the overall mass flow 

pattern has stabilized much faster than the individual 

components. The individual errors for the components are 

observed to be opposite in sign, accounting for the low 

overall error. This suggests a compensating convergence 

acceleration to be performed, since vze now have a bound 

for the total flow rates. By compensating, we mean that 

if the convergence acceleration of a component increases 

its flow rate, the others need not be accelerated inde­

pendently, but can be proportionately reduced to satisfy
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the total mass flow rate.

Figure 7.2 shows the variation in the eigenvalues of 

the Jacobian for the cut-set sequence and the sequence 

1 10 2 with the number of iterations. The longer sequence 

has been multiplied by 1.8 to compensate for its extra 

length. This is reasonable in this case since most of the 

units take approximately the same computation time. The 

Jacobian has been based on the overall flow rate and the 

eigenvalues computed using the program and method developed 

in Chapter 5. The use of overall flow rate is justified 

in retrospective . Using equation 4.1, we get

n = log(0.01)/log(0.8815)

= 36.51

and when multiplied by 1.8 to account for its length we 

get n*  = 66. The actual number of iterations taken works 

out to 67.

All said, we can conclude that the sequence based on 

including every stream exactly once can be expected to 

perform better than the cut-set generated sequence. This 

principle is extended to a more complex case of a thermally 

connected distillation system and is discussed in the next 

chapter.



-49-

CHAPTER VIII

CYCLIC CASCADE - THERMALLY COUPLED DISTILLATION SYSTEM

A distillation system contains a thermal coupling 

when a heat flux is utilized for more than one fractionation, 

and the heat transfer between fractionation sections occurs 

by direct contact of vapor and liquid. Compared with a 

conventional system, thermally coupled distillation systems 

can separate close boiling components with considerable 

saving of heating and cooling costs (32). The separation of 

a multicomponent mixture is conventionally accomplished in 

a series of columns numbering one less than the number of 

products, each having a condenser and a reboiler.

In a ternary mixture of A,B, and C, in a conventional 

scheme we can have

In a thermally coupled

either A 
B 
C

->
A 
B

(C)

(A)

(B)

or -> (A) •

B
C (B)

(C)

system, initial seperation is

made between A and C while (A,B) are separated in the top 



-50-

of the second column and (B,C) at the bottom. The separations 

are essentially binary and can be carried out without 

interference from the third component. Details of the case 

are shown in Figure 8.1. The primary purpose was to simulate 

a cyclic cascade system and no attempt was made to design 

the columns for a sharp seperation.

A result observed in the binary column case will be 

used here viz., a sequence of units based on evaluating each 

stream exactly once is likely to be better than one based on 

cut-sets. This means that we have to find the Eulerian 

paths in the system. This was done by considering the 

reduced system shown in Figure 8.2.

Finding all the stream loops in a directed graph is 

itself a fairly difficult .task. There are again two major 

approaches: path tracing and powers of adjacency matrix 

methods. Path tracing methods are believed to be more 

efficient from the standpoint of running time in spite 

of relatively large storage requirements (34) • The 

algorithm presented by Weinblatt(30) was programmed in 

PL/1 with some minor modifications. Details of this 

program are given in the appendix.

There are a total of sixty one loops in Fig.8.2 

out of which twelve are Eulerian. These are shown 

in Table 8.1.
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HsLt «*•* •

Figure 8.1: CHESS setup for thermally coupled system.
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Figure 8.2 Reduced structure
Total number of stream loops = 61
Total number of Eulerian .9

paths



No. Stream loop

1. 1 3 4 7 9 5 6 10 8 2 1

2. 1 3 10 8 7 9 5 6 4 2 1

3. 1 3 10 9 5 6 4 7 8 2 1

4. 1 3 5 6 4 7 9 10 8 2 1

5. 1 3 5 6 10 8 7 9 4 2 1

6. 1 3 5 6 10 9 4 7 8 2 1

7. 1 7 8 3 10 9 5 6 4 2 1

8. 1 7 8 3 5 6 10 9 4 2 1

9. 1 7 9 4 3 5 6 10 8 2 1

10. 1 7 * 9 5 6 4 3 10 8 2 1

11. 1 7 9 5 6 10 8 3 4 2 1

12. 1 7 9 10 8 3 5 6 4 2 1

Table 8.1 Eulerian loops in Fig 8.2 .
Loops are listed by stream number sequence

i 
Ln

I
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Table 8.2: Sequences arising from Eulerian paths

No. Sequence

1. ABCBECDCEB

2. ABCEBECDCB

3. ABCECDCBEB

4. ABCDCBECEB

5. ABCDCEBECB

6. ABCDCECBEB

7. ABEBCECDCB

8. ABEBCDCECB

9. ABECBCDCEB

10. ABECDCBCEB

11. ABECDCEBCB

12. ABECEBCDCB
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Table 8.3: Iteration and simulation time data on 
cyclic cascades

Iterations taken by cut-set: 130

Sequence # Iterations*  Time ratio

1 102 0.77

2 102 0.77

3a** 100 0.75

3b 104 0.77

3c 125 0.92

4 100 0.75

5 104 0.78

6a 100 0.76

6b 102 0.77

6c 128 0.94

7a 102 0.77

7b 100 0.76

7c 128 0.94

8a 100 0.75

8b 102 0.76

8c 123 0.91

9 106 0.80

10 104 0.79

11 100 0.76

12 102 0.77

* : Multiplied by the ratio of the number of units
** : See text for explanation of ’a'j'b'/and 'c*.
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Table 8.4: Convergence data on cyclic cascades

Sequence 
Reference 
Number

Overall mass balance error %

C.Pentane Benzene Toluene Total
Flow

Cut-set 0.72 6.34 5.56 3.94

3c 2.53 0.80 5.17 0.30

5 3.11 0.04 4.89 0.25

6b 3.37 0.19 5.16 0.24

7a 3.27 0.14 5.15 0.22

9 3.02 0.22 4.67 0.19
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Table 8.2 shows the sequences which arise by following 

the Eulerian paths. The basic sequences are interpreted as 

follows:(see Fig.8.1 also)

Sequence # 1: ABCBECDCEB leads to a unit 

precedence ordering 

7->8^9^10^11->.12-^13^14^15->14^13^12^11->10->9-*l->2-*3^4^5-6->15->  

16->17-*18->17>16^15->6^5^4^3->2->l->9^8

Sometimes more than one interpretation is possible. 

(Seq. 3,6,7,and8) For example sequence # 3 is 

ABCECDCBEB could be interpreted as

3a: E passed in both directions at first occurence.

3b: E passed in both directions at second occurence

3c: E passed in both directions at both occurences.

The result of the simulations on all these possibilities 

are shown in Table 8.3. The results are fairly conspic­

uous. All the sequences perform better than the cut-set. 

Two categories arise; one with a time ratio between 0.75 

and 0.8 and the other with the time ratio over 0.90. The 

one with the greater ratio has unit E repeated in both 

directions at both occurences. We can safely conclude 

that in cases where more than one interpretation is 

possible, any one which covers the units in both directions 

once will suffice.

Table 8.4 shows convergence data on some of the 
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sequences. Similar trends as in the binary distillation 

case are observed. The overall mass balance based on total 

flow rates is cut by an order of magnitude, while some 

others are reduced significantly. This is again due to the 

fact that the overall flow rates are stabilizing much faster 

than the individual components. As suggested earlier in 

Chapter 7, this can be made the basis for a compensating 

acceleration algorithm.

It is now established quite clearly that in case of 

cascade systems, faster convergence is obtained by foll­

owing the longest stream loop, and that this invariably 

performs better than the cut-set approach.
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CHAPTER IX

CONCLUSIONS AND RECOMMENDATION FOR FURTHER WORK

The importance of the stream loop as a major information 

recycle stream has been established. A general method to 

evaluate the sensitivity matrix for any arbitrary system 

has been developed. Cut-set approaches to solving cascade 

systems have been shown to have a delay inherent in them by 

considering their sensitivity matrices. It was further shown 

that this was reponsible for poor convergence characteristics. 

Stream loop sequences stabilize much faster at lower eigen­

values than cut-set sequences. It has been shown that 

following an Eulerian path in a cascade is definitely 

superior to cut-set approaches.

This work has established a framework for a new 

generation of precedence ordering algorithms which can be 

designed to handle very large systems more effectively. 

This is possible by developing a method to recognize an 

embedded cascade structure from a global viewpoint and 

being able to partition the graph as such. We have observed 

that overall mass balances based on total flow rates converge 

much faster than the individual components. This can form 

the basis for a different type of convergence acceleration 

algorithm which can utilize the bounds established.
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APPENDIX A

In Chapter 5 the basis for a generalized Jacobian 

generator was established. This appendix briefly covers 

the programming details, information input and output.

We need four basic sets of information:

1. The structure of the process flow network

2. The cut-set with reference to which the

Jacobian is evaluated.

3. The proposed precedence ordering

4. The split fractions between streams at each node.

The example shown in Figure Al will be used for 

illustration. It is assumed here that

a) The streams are numbered 1 through tJ.s l i e 3jti s

b) The nodes are numbered 1 through N ,

Figure Al.
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The structure is coded by means of the following vectors 

as follows:

NFTCIN This specifies all possible stream to stream 

connections existing in the system. For 

example 1 to 3 and 1 to 2 arise from stream 1 

and node 2. This is coded in a field of length 

six as follows

Entry= (From stream #)*1000  + To stream # 

For the above example NFTCIN would be 

/1002,1003,2001,3004,3005,4002,4003,5006, 

6004,6005/

NPROC This specifies the stream numbers coming into 

and leaving each node from 1 through Nro^es« 

For the above example NPROC would be

/2,1,1,4,2,3,3,6,4,5,5,6/

NSTIOV This specifies the indegree and outdegree of 

the nodes from 1 through Nnojes« For the 

above example NSTIOV wpuld be 

/1001,2002,2002,1001/

The entries are again coded as

Entry = (Indegree)*1000  + Outdegree

Only reduced network is to be considered; feed 

and product streams are to be eliminated
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NSEQ The precedence ordering of the nodes is stored 

in this vector.

NCSET Contains cut-set. The streams in the cut-set 

must be specified in the same order it is 

required in the precedence ordering. For 

example if we have l->2->3-*4  as the precedence 

ordering then NCSET ■= /2,4,6/, while if we 

have 4*3-»-2->l  then NCSET = /5,3,1/.

SFIN This specifies the split fractions between 

streams at each node. The order must exactly 

follow the stream connections specified in the 

NFTCIN vector.

MET Signal flow vector;contains SFG in vector storage

NDNFT Length of NFT

NSTRMS Total number of streams

NUNITS Total number of nodes or units

NSU Stream update vector; used while creating 

signal flow graph; length must be specified 

NSTRMS

NB,NC,SFA 
SFB,SFC

Vectors used in matrix multiplication; Adequate 

length depending on the problem must be 

specified.

NCODL Vector contains locations of split fractions 

in SFIN to be associated with NFT entries.
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Conunents

Creates signal 
flow graph

Defines NCODL.

Converts NFT to 
non-zero locations 
of SFG adjacency 
matrix

Sets location of 
Jacobian entries 
in the adjacency 
matrix

Does An operation 
Sets Jacobian

Eigen value 
package( )

Figure A2: Overall orgainization of subroutines in 
generalized Jacobian generator.
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1 SFSt Id ) , -dPDL'I Id •)
Dll- ENS IJ’I \FT2 I 'J( 1 , ), SP IN( I')), JSTI 0V( 4) , MSU2I 6)
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NVFK 2 ) = NDIGIT(NSUT)
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224 -JCL(K<) = '.

INDEX=-1
ND=NCUT
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EPS=1.D-26
CALL E I SYS( NI),MCOL,NCUT, I ND E X , E PS , NC2 , X J2 )
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5131 CONTINUE
5 )')) CDNTI NU' 
d4D FURNATl 4->l 2)
61.5 FORMAT!//,’ SFD UNDER CONSIDERATION *,2514,//)

STOP
E N D
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1 ^F B ( NDNFT ) , SFC ( ND'lF T ) » NSU( MST^v ) , 430^1 ( 4DNF T ) , SF I N ( Lc N1 ) 

DOUBLE PRECISION X J ( 4 C J T , NCUT ) , , „
I NTF3Eh MDL,IT( 1 '’)/ Hl , 1HE, 1H3, IH^r, 1 HR, 1H6, 1H7, LHP , 1H9,2H13/ 
INTE3ES NVF 1( 5)/^N( 3X , , 2H , 4-H 2X, , 4-HF 11. .'1H8 ) ) /
WFL ( 2 ) = MiJl GIT ( NCJT ) 

INITIALIZE 08 Td NA AND 
INITIALIZE ALL VA!-?IA3Ll"S 

D3 2 1=1, lONFT
NB(I)= >

riC TO 7 PRO ANU SFA TO SFB 
TO ZERO

n:< 1) =
SF A( 1)
SFH(I)
SFC( I )

= J 
= •)

299 CONTINUE
C TO GET DIMENSION OF MATRICES NA,M3,NO SUM UP NSU

ND!MA= 1
DO I)' I=1,MSTRM

133 ND1MA=NOIMA+N3U(I) 
('il 3)31 i’^HnCUT 
DO 3').)? MiM=L,NCUT 
X J ( M , M M ) = L 1

3032 CONTINUE
3 "'•■■1 CONTI JUL:

DO 38) TX=1,LAST
N B ( I X ) = N A t I X ) 
LLL=NCuDL(IX)

98? CD.NTINUE
C CMFX Fu'R 0 >lE ST=P PATHS AND ACC.

DO 710 1=1,NCUT
DO 72J J=1,NCUT
NHFLOAT (NACJ( I ) )/130(l.
N2=FL0AT( (JAC J( J) )/lDOL.
N 3=N ACJ( J HN2*H  ' •)
X J ( I H ) = X J ( I * J ) + F FF ( L OC , N A, S F A , N DNF T , L AS T )

720 COMT IN DE
71J U'ITH^,NVF1 ) ( (XJ( IZ1, IZ2), IZ2=1,NCUT), IZ 1=1, NCUT) 

K3UNT=-
9999 LC=

KOJ JT = K JUNT+1
IF(KUJ.4T .EQ. 1) NLASTB=LAST

C =STABLISH THC CO-ORDINATE OF NC VIA (I,J)



DO 2)J I = l,MDIvi\
OU 31J J = 1,'JOIMA
T= .
OU u';) < = 1,0 0 IMA

C ENCODE LOCATION OF CLEMENS OF NA AND N3 RESPY.
I 1=1 »..> . *I  + <
t ? = io ; ^k + j

C SEARCH SECiHD LIST SINCE IT WILL PROGRESSIVELY HAVE LESSE 
T? = FFF ( L 2, 'ID, SFH, ND OFT, NLA S TP ) 
IF (T2) 5,6,5

5 T1=FFF(Ll, 4A,SFA,NDNFT, L AST)
T= T + TL’^TE

b CONTI 4UE
40 3 COslTIMJ17

IF ( T) 7,i,7
C ENCODE LOCATION IN NO
7 L0C4C=l ■';*I+J

LC=LC+1
NC(LC)=LUCAC
SFO(LO ) =T

d CONTINUE
3j) COmTINJE
200 CONTINUE

NLASTii = LC
IFILO .EQ. v) RETURN

237 FCJDMAT ( I4,2Y, 3( Il ),E15.8) )
C NOW FILL OUT FLEilFMTS OF X J VIA MACJ,NC,SFC

510

2000
C SET

o 1

DO il l 1 = 1, 4CUT
DO 520 J=l,NCUT
N1=FLOAT(NACJII)I/IiDD. 
N2 =FLOAT ( NAC. Ji J) ) /I •I'-. 
N3 = 4 AC J( J ) - M2*  10 "■
LOC=Nl:;cil'j' + (O'3
XJ(I,J)=XJ(1,J) + FFF(LOC,MC,SFC,NDNFT,LC) 
CONTINUE.
WPI TE?d,'-NVF1 ) ( (X J ( I Z1 , 122 ), IZ2 = 1, NCUT ), IZ1= 1, NCUT )
W’ I TE ( b, 2 i)
FORMAT(///)
NB TO :jC A4D ENASc NC
DO Al ■) JX = ] , IDNFT
N3(JX)=NC(JX)
NC ( JX ) = ,.
SFi-. ( JX ) =SFC ( JX )
SFC. ( JX ) = .>.
CONTINUE
GU TO 0999

ELEMENTS
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c c c

c c c c

c
c c

c c

2D3

213 
C

23 J

RETURN
CM I)

SJb^DJT I'M E 
DI ,-'iENS I a:>i 
DI t<-_ 

PUR PUS

M FTS CT ( 'i FT, \|P R.OC » N SU , 4 SCO » UU , IS TRM f MSTI OV» M UN I TS t L AST ) 
_____  NFT(l^T),4PR3C(1F?)

NSIOhi NSU( *J  STR-1) ,NS = Q( \*U)  , -ISTI DV ( NUM TS )
■=: TO FSTaUlISH SIGNAL FLOW INFORMATION STORED IN NET VECTOR 

FOR ANY GIVEN CtKIPUT AT IJ M SEQUENCE

LAST=1
DO 11j 1=1,MU

NU NUMBER OF UNITS IN THE SEQUENCE (PER CYCLE)
MUC UNIT 4UMB-R LI'JDER C DN S I 3 E R A T I 0 4

CALL LJCATEINSTI 3V,NPRDC,NUC,NINU,NOLU,NLOC, NUN ITS)
NIiNJ OF STREAMS ENTERING UNIT
NOLU uUMBr'R OF STREAMS LEAVING UNIT
NLOC STAKllNG LOCATION OF INFO. IN NPROC VECTOR
NFRDM INPUT STREAM UNDER CONSIDERATION
NTO OUTPUT STREAM UNDER CONSIDERATION

NL3C3=NLDC+NINU+N3LU -1
NLOCI N = MLOO+NINU -1
ILOCI1=NLUCIN+1

UPDATE CYCLE BEGINS
FROM LOOP WILL UPDATE NSU IF IT IS ZcRO

DO 23'- Jl=NLOC,NLOCirj
NFRO^NPRDC ( JI )
IF(NSJ(NFRJM). -Q.v ) NSU(MFROM) = 1

ToC- VdDp 'wI LL URDATFE NSU WHENEVER STREAM IS COMPUTED
DO 21D J?=NLOCI1,NLOOO
NTu = NPR 3C(J2)
NSU( NT )) =NSU( NTH) + 1
CONTINUE

ENCODE STREAM MUMB-Rs
IVJ 22j J1 = \LOC, NLOCIN
MFROM = Npt<OC ( JI )
•JFTFR= l'-i.;*NSU(  NFR J,M) + NFRCM
DO 23) J2 = HLOCU,NLOCO
■1TO = NPR3C ( J2 )
NFTT3= l.i.)u*NSU(  NTO ) +NTO
MFT(LAST ) = NFTFR *1)103 + NFTTO
LAST =LAST+1
CDNTINUE 70-



22? CONTINUE
11? SD'JTIMU?
C u'XST WILL CDMT'XIM HE 

L A;>T = L AS T-l 
RETURN

LOCATION OF TIE LAST NOM-ZERO ELEMENT OF imFT-----

"N^
<U3R3UTINE LOCATFINSTI3V,\PROC,NUC,N1MU,NOLU,NLOC 
01 MENS ION \HR'JC(15' ) 
DIMINS IUU NSTIOVIM'rilTS )

C
NJC 1 = NJ3-1
nt:mp=>
IF ( NUC1 ) ? ' V)

20 3 DO lv. I = :,NIIC1
N1 = FLOAT (NST ID V ( I ) )/130.>.
N2 = NSTI()V(I )-Nl*l  । ' 
\4r-_-v!P = NTEM:’+Nl+M?

133 CONTINUE
3 33 NL'.")C=NTEMP+1

Mi:iU=FLOAT(MSTIDV(NUC) )
N3LU=NoT 10 V ( IUC ) -N I MU*  LOCO

C

C

RETURN
p- N’ ।
SUBROUTINE CO'lvER ( NF T , LA ST 1, N SU , N STRMS 1
DI MENS IUM
DI MENS ION 

THIS CONVERTS 
LOCATIONS OF

N F T ( 1 5 .- )
MSUINSTRMS)
TH1 -LEMfNTS OF THE NFT VECTOR INTO TH 
Ti.r- SIGNAL FLOW MATRIX

DO 10 3 1=1, L AST!.
NFr(OM = FLnAT (riF FI I ) ) /I J.
NT3 = NFT( I ) - 13 J • -*NFR3 V
NR 0/, = MX Y ( NF ROM, NS J , NS T R NS )
N:rjL = NXY ( NTG,N5II,N3TRMS )
MFT( I )=NR3W*L'i  ■ ‘ + NCOL

NOT- THAT TIiE.NFT FIELD HAS BEEN REDUCED T3 2*3=6

NUN ITS)

COORDINATE

130 CONTINUE
RE[URN

INTtGER FUJCTIUN NX Y ( NENT RY , NS'J , NS TR ) 
DIMENSION NSU(NSTR)
NR^C.JR = FLOAT( NENTRY) / .
NSh=NEnT?Y - NRECJR*10D n 
IF(MSN .EQ. 1) GO TO 
NSm1=NSN - 1 
:NTljT=D
DO 10 j J = 1,.M5N1

1'^ NTJT = N T3T+NSU( J)



NXY = UTOT + i>|R ECiJK

2r)"l \iXY=\RL::iR 
RFT'.m 
f n r i 
sunouTirie cnosEK"iacj,ncset,ncut,jsu,mstrm) 
on .MS I3M M^CJ( MELiT) , \!SU( MSTRM) ,^CSF.T( NCUT)

C THIS P-TE’MLCS WHICH ELEHEHTS JF THE SIGMAL FLOW
C 3E SHROlD TO „:T TH: ELEMt.'ITS OF THE JACOBIAM
C MSTR^C = CUT SI?1Jl UMJEC' C OHS I D E R A T I OH
C KOJ.MT KlPPS TRACK OF LAST EMTRY('JC ZERO) OF -MACJ IM 
L IS MUT .‘^FCIFIELi FIRST

<3U‘JT= -
no i?") i = l, icut
;istrmc-»csc r (i)
IFIUSTHf-C .EG. 1) GO TO 13 2 
MTj F=u
HSTRM1=MSTRMC - 1
Cl) 2';J J = 1,HSTRM1

20 3 UTOT = .\ITOT+HSU( J)
‘kjw=mt:it + i
.MC3L = NTUT+ ;su ( '1STROC)
MAC J( I ) =NROW*  1 + MCOL
<0UMT=K3UMT+L
GO T3 LOu

131 HRUW=1
M03L = M SU( 1)
KOJNT1=<0UM1+1
.MAC JlKJUMTl )=NisOW*luOO  + MCOL

10) COMTIMUE
R E TURM
EMO
SUnROUT I HF S FEimCO ( iM^T , L AS T, MC3DL , M FTC I M , L EM I
DI M-MS I 3 0 3FT( 15 ■) , MCODL ( 1 F> j )
DI meMS I UM MFTCIM(LZMI) 
l-'O l?j 1=1, LAST

C EMTRY TO DE DEC0U1D t'FCOVEREU FROM MFT=riDE 
MTx = FL3AT( MFT( I ) ) /I -jj',. 
MT2 = MFT( I ) -if-)'<• A MT 1 
'1T3 = FLl)AT( OTl ) /lr 
MT4=FL")AT( M] 2) /I" 
NT 5 = MT 1 ■•■*MT3
MT6 = iMT/~l )” *:NT4 
‘■I ,3 E = 11 * ■ ' * 0 T 5 + N T 6

C SEARCH IM MFTCINILEMI) VECTOR
DO 2"! 3 J = 1,LEM1
IF(HFTCIIK J ) .SC. ODE) GO TO 3)j

MATRIX SHOULD

CASE CUT STRM =1

-7
.L

-



gl) nj 2:) G
3 J": NC3DL(I)=J

3 3 IJ
23;- CCHTINJE
4)3 COUIJUS
1 ).> SO-HI >IIJE

^xlD
^,CM FUiMCTIOU FFF(L,\|X,SFX,NDIv1,MLAST)
DI Mt'JSION ^ <( ODI M) , SFX( f-jDI M )

C PJ^POS-: TJ DETlxMI'-iL IF *L*  EXISTS 3^ LIST NX

7

6 
l.’ij

11?

1J1

1)2

1 j)

&

&

IH) I'l? I=1,NLAST
I F ( L - \l X ( I ) ) 6,7*5  
FFF=SFX( I )
P fl UP.'I
CunT I NUj: 
ECU TI NUE

NSTPM,NSTI3V,MUNITS,LAST,

FFF=>. 
r< r. T U P N 
F N U 
SUHKOUTI Nt DPIVE(NFT,NPROC,NSJ,NSEQ,NU, ... ........ ..

ME DDL ,MFTCrJ,L.ENl , N AC J , NC S E T , NE U i , NDNFT )
DIN- MS ION I FT ( NUNFT ), NPKLJC ( NON FT ) , Xi SU ( N SUM ) , \ISCU( MU) , NSTI OV(

NUNITS) ,NCDDL(NONFT) ,NFTC IN(LEN1),NACJ(NCUT),MCSETINCUT
)
DO 11.) I = 1,NDNFT
OFT(I)=>
ME DDL ( I ) = '-
CONTINUE
DU 1?1 I=1,NSTRM
nsui i) =:
D3 l'-2 1 = 1, NCUT
CALL1 NF T SET ( NFT ,NPPnC ,iNSU, USED, NJ, NST°.M, NST IOV, MUN ITS, L AST )
WRITE ( tj», 1  ) (NF T( I ) ,1 =1 ,LAST)
CALL SFcriC3(NFT, LAST, NCDDL, NFTCIN, LEND
WRITE(6,1')J) (NCIH;L(JJ ), JJ = 1,LAST)
CALL CONVEX ( NF T, |_ A ST , N SU , *!  S TR M )
wRlTClo,!.) )(NFT( I ) ,1 = 1,LAST)
W RIT E(5,1u -)(NS U(J),J = 1,NS T RM)
CALL CllDS?T(NACJ,i-iCSET,MCJT,NSJ,NSTPM)
WR I TE ( 6, 1'/ ) ( MAC J( J ) , J = 1, ME UT)
FORMAT (3X, I l-i, / )
RETURN
END
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APPENDIX B

The algorithm programmed has been presented by 

Weinblatt (30) • To find the stream loops we input 

the signal flow graph of the given directed graph.

Since the nodes of the original graph become the streams 

and the streams, nodes, we can find all the stream loops 

in the original graph by finding all the node loops in 

its signal flow graph.

The inputs

follows:

are number of nodes, number of streams

followed by XREF „/4) which is entered asstreams

XREF( i,l) = stream number

XREF( i,2) = starting node number

XREF( i,3) = terminal node number of that stream

XREF( i,4) = zero; this space is used during program 

execution.

All other dimensions are allocated during execution time.



( ST^3, STRZ , SU iRD ) :
CYCLES: PROCEDUil.- DPT I 3-JS ( MA IN ) ;
DECLARE ( MUbLS, mSTR.-IS )FIXED LLC I M AL ( ;
SET LI jT( MDJESr’JSTRMS) ;
Ml: 3h(,Is4 ;/*  ARR'W A'JEA FOR JTHER VARIABLES ASSISTED HERE*/
DECL AR c ( X.Rr-F (N3TRMS , A ) , STATvl NODES ) , R E .2 UR, N STR , 3 YC N , K , I ,

J? KI ,K2 ,'I I'LL) FIXED DE C I M A L ( 2 , D) ;
DECLARE (TEAPT(;-)) FIXcD 3ECIMAL(2,L) CONTROLLED;
DECLARE LJJPCYICYC J,\|STR.viS )FIXED DE C I MA L ( 1, <') C D M TR jL L E D , T2 CHARACTER 
( 2) , XX FIXED DEC I v AL ( 2 , ;
DECLARE DEBUS Bl 1(1); DE3UG = ’1'B;

DEL'.JG= *3;

DECLARE ( I'IDE 3 ( NODE S ) , CUT DES (.'4DDES ) ) F IX ED DEC I M AL ( 2 , r> ) 
CONTROLLED;

DECL ARE(CYC(125) )CHA <ACTER(3*( NODES+ N5TR))VARY ING CONTROLLED;
DECLARE ( LABC-L1 ,LAB£L21LABEL3,LABELS) LABEL, 

(VERT,LASTARC ) FIXED DEC IMAL(2,3) ;
DECLARE CT CHARACTER(3*(NOUES+NSTR))VARYIN3  CONTROLLED;
ALLOCATE I'UES ,3UTDE'G;

ON ERROk PJT LIST (CYC ) ;
PUT LIST( ' KkEF - IH^JT’ ) ;

GET LISF(XREF)COPY; PJT LISTC MOk CALLING DEGREE’);
CALL DEGREE;

PJT LIST(*  NDLC>/ INDFGRlE 0UTDE3REE S TA T V ’ ) SK I ? ( 2 ) ;
DO K = 1 TO iMJDES;P'JT E C-I T ( K , INDE G ( K ) , 0 J T D EG ( K ) , S T AT V ( < ) ) ( S< I P, X ( 3 ) , F ( 2 ) 
,X(7),F(2),X(9),F(2) ,X(8) ,F(2) );END;

NSTR=J ST RM 3;
PUT LISTC • NODFV INDEGREE JUTDEGREE STATV' )SKIP(2) ;

DO K = L TfJ NJDFS;PUT c DI T ( K , I N'D EG ( K ) , CUT D EG ( K ) , S T AT V ( K ) ) ( S < I P, X ( 3 ) , F ( 2 ) 
,X(7),F(?),\(9),F(2) ,X(8),F(2));END;
PUT LISIU STRvf, SV TV ST ATUS ’ ) S K I P ( 2 ) ; DO <1 = 1 TO NSTRMS;DO K2 = l 
TO A; PUT EDIT(X-?EF(KL,K2)> (X(3),F(2),X(A),F(2),X(3),F(2),X(A),F(2)); 
END;END;

CYCN= 1;
FREE INDLG,UUTUEG;

ALLOCATE TT,CYC;
C r C ( * ) = ’ ’;

LI? J: CALL S ELECT;
L2D.-: CALL EXTEND;
L3)-‘: CALL BACKUP;
LEXAM .’CaLL EXAMINE;
LAO.): CALL ADDCYCL;
L5.)->: KECUR=';

GO TO LABEL 1:
GO TO LABEL 2;
SO TO LAB-L3;
33 TO LAB5LA;
GO TO L3)j;

I
o>
I



CALL CONCAT ( ’ \" I I tNCCJDEC VE3T ) ) ; G3 73 L3JJ;
DEGREE:PROCEDURE;
DEC_ARE(SV,TV)FIXED 3ECIMAL(c,0);
STATV=3;

I WES, JUTOEG = .;
Ll:30 1 = 1 T3 'ISHXS 3Y 1; SV = XRE F (I , 2 ) ; TV = XREF (I , 3 ) ;
IF ( (SV= „ ) I ( TV = C. ) ITHE'I G3 T3 L2; ELSE ; 3UTDE3 ( SV) =OUTDEG
I NDt 3 ( T V ) = I ^ir>EG ( TV )+1; L2 1 END LI; EW DEGREE;
SELECT : P^33EJIJRE ;
LI: Lu 1=1 T? NODES;

I F(S T A TV( I )=j )THCN D3 ;
VERT=I;
STATV(I)=1;
TT='N*  |I ENCODE!VERT);
L ABEL 1 = L2'J .»;

PUT SKIP LIST!• NOD? SELECTED *,VERT);
KE TURN;

(SV)+1;

ELSE; cND Ll; LAREL1=LSTO?;
?JT LIST! • N3 '43R'- ELIGIBLE NODES --PROGRAM TERMINATED1); 

tEND SELECT;

EXTENDiPROCcDURE ;

DECLARE XL FIXED DE 
VERT = DEC3:3E(S 

IF (0E3JG=l) TH^N 
PUT LTSn*  ENTERING 
’UT LI ST ( 1 STPMN S 
T 3 A-; P J T E 3 I T ( X R r. F ( K

CIMALt 2 , ') ;
U3STR(TT,LENGTH(TT)-1,2))J
03; put skip;
-XT END VERT=VERT, *NSTR  = *,NSTR.  ) ;
V TV STATUS’)SKIP(2);DO Kl=l TO NSTRMS;DO <2=1 
1,<2))(X(3),F(2),X(A),F(2),X(3),F(2),X(4),F(2));

PND;CND; 
PUT LIST! STATV=* ,STATV);

Ll
ND;uL S -;

DO 1=1 T3 NSTR;
IF(XRFF(! ,2)=VERT) THEM

L2:D0;
IF( XRF.Fl I ,4)=D) THEN

IF (DEBUG=1) THEM 33;
PUT SKIP L 1ST( •LASTARC = 

END;ELSE;

L3:D0;
LASTARC=XREF(1,1);
TT=TTI I (’S’ I |ENCODE(L ASTARC));
LABEl2 = L EX AM ;

XPEF(I,4)=2;
PUT SKIP;
,LASTARC, ’TT= ’, FT) ;



EMO L3; ELSE;
END L2; ELSE;

ENO L1 ;
XL = LcNGrH(IT ) ;

IF(XL=3)rHEN DU;TT=''; GO T3 LLL;END;
ELSE TT=SUdSTR(rT,l,XL-3);

IF (DEdJG=l) THEN 03; PUT SKIP;
PUT S^IP LI ST('XL=*, XL: 1TT NEAR LLL',TT);

FND ;ELLE;
LLL: LA3EL2 = L 30...;

STATV(VERT)-2;
END EXTEND;

BACKUP:PkuCBDURE;
I F ( LENGTH ( T I ) = ; ) THE.^ DO ; L AB EL 3 = L 1 3 3 ; R ETUR N ; END ;

ELSE LABEL3=L2 '

TT = SU-3STR(TT, 1, (LENGTH! TT )-3) ) ;
PUT SKIP LISTC FROM BACKUP TT = *,TT);  
END BACKUP;

ADDCYCL iPROCEDU-^F;
DcCL ARE ( Sir S?, S3,S4. S5) CNAXACTERO*  ( NSTR+ NODES) ) VARYING, 
(NL) FIXED DECIMAL (2,D) ;

31 = ' 4'1 | E JCUDE( VERT ) ;
XN=IN3EX(TT,SI);
X..|L = LFNGTH(TT ) ;
S2 = SUBSTP. (TT , X N + 3, XNL-XN-2 ) ;
S 3=S1I J s?;
S4=S3| ISl;
CYC(CYCN)=S4;

IF (3LBU'3=L) THu'l DO; PUT SKIP;
PJT SKIP LIpTI*  FRO-1 AD3CYCL------TT=',TT); PUT SKIP L I ST ( ' S 1 • , SI ) ;
PUT SKIP LIST('X4=',XN) ;?UT SKIP LIST( 'XNL',XNL) ;PUT SKIP LIST(*S2',S2  

);PUT SKIP LIST(' 33' ,S3);PUT SKIP LI ST('S4* ,S4);PJT SKIP LIST('CYC=', 
CYC(CYCN)); 3UT SKIP LIST(CYCN);

END;ELSE;
CYCN=CYCN+i;

END ADDCYCL;

EXAMINE:PROC'-DURE;
IF (DLBU3 = 1) THr.fJ DO; °UT SKIP;

PJT SKIP LIST('F.R3M EXAMINE — S TA T V= ' , S T ATV ) ;
PJT LISTC STRMrf SV TV ST AT US ' ) S KI P ( 2 ) ; D3 <1 = 1 TO NSTRMS;DO K2 = l
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T3 4; PUT EJIT(X^2F(Kl,'<2))(X(3),F(2),X(4)fF(2),X(3),F(2)tX(4),F(2));
ENDUMO;

END;ELSE;

LI
IF(XKFF( I, 1 ) = LAST/UC ) THEN

L3: DO

) THEN

PUT SKIP;
VE3T= *,VEi<T)

°UT SKIP;
PUT SKIP LIST(’VERT=f,VERT);

I F ( S TA T V ( XP “ F ( I , 3 ) ) = ?) THEN

TT =T T I I ( * N*  II ENCODE (XREFl 1,3))) 
STATVI yCFf I ,3) )=1;

V-.RT = X-<EF ( I , ’.) ;
LAB::L4 = L2 -' ;

IF (D'.-HUG^L) TI'CN Cij;
PUT SKIP L I ST ( • T I--• , TT) ;
END;ELSE;

R-TJiK'-l;
END L4;

ELSE IF(STATVIXREF(1,3))=?) THEN 
L5:DO ;

LA3EL4-L5O'' ;
VcRT=XREF(1,3);

IF (DEBIJG=1) THEN DO
PUT SKIP LIST!’LuOP L5 
END;ELSu;

RETURN;
END L5; cLSE;

END L?;
ELSE;
END L1;

END EXAM HE;

RETURN;
END L3;

IF ( STATVt XRr-F( I , 
L4:DO;

LAl3EL4 = L4 1 );
VERT= XRt:F( 1,3);

IF (DI.:BJG=l) THEN DO; PUT SKIP;
PUT SKIP LIST!1 L00P4-L4 VERT*,VERT);
END;ELSE ;

SONSAT:PROSrDURE(STR3) RESUPS IVE;

DECLARF (CYTN
CYTN=1 ;

DESLARE
DECL ARE

) FIXED DECIMAL(2,0);

STRG CHARACTER!*)  VARYING;
(CC,CC1,IPT,K,KK,LT)FIXED DEC IMAL(2,0);



ALSO=LcUGTH OF TAIL*/

t-LS

” T£( 3) ;
)CHARACTER(3* (MODES+^ST^) ) VARY IMG COMTROILED 

r, yi a i l (*)  = * * ;
uo; PJT SKIP; , .t , t
*r-MTERi;3 COMCAT r/ITH R ECUR= * , REv,UR ) ; PUT LIST 

PUT SKIP LIST(CYTAIL)I
TV STATUS' ) SKIP? 2) ;OD TO .*JSTRMS;DO  K2 = l
))(X(3),F(2),X(^),F{2),X(3),F(2)*X.(4) fF(?));

IF (OFBJG=1) THEM
PUT SKIP LI STU *** 

(ST*TV);PUT  SKIP LIST!SYS);
PJT LIS1U STRv,(< SV
TO RUT EDIT(XREFIKl,K
EMO ;EMD ;

EMD;EL SE;

LS = L.E.mGTH (st,<-3);
IE ST 1 = SUP STR. ( STRG,LS-2,3) ;
V = SU3STR( TESTI, ,2, 2) ;
cci = lycim-i ;

Ll: DO 30=1 TO 001;
IPT=IMDlX(CYC(OS),TcSTl);
I F( ! IDT=) I ( I DT= 1 ) ) THEM GO TO EHDL1 

ELSE;
ltt=lem:;thi:. yc(co) )-ipt

TAIL = SUBSTR(CYO( CO) , . T
IF (CYTN = 1 ) THEM DJ ; (,YT A IL ( 1 ) = T A IL ; CYTM=2;G3 TO CHK;cMD;

l_4: uO < = 1 T3 ( 0 YTM- 1) ;
IF(CYTAIL(< ) = TA1L) FHrM G3 TO rMDLl;

END L4;
GYTAIL(CYTU)=TA IL;0YTM=0YTN+1;

/*  CHEOK /HcTHU TAIL HAS AMY VERTIStS 
OHKi

DEOLARF v CHARAOTCR(2), _ (013,TEOT)OHAPACTER(3),
(TAIL,012,Oil,014,CY)CHARACTER(3*(NODtS+NSTR) )VARY ING;
DEOLARE(LTT,LTT1,LTT2,LTT3,LTT4,LTT5,LTT6 ) FIXED 3E0IMAL(3,0);

DECLARE TESTI CHAPASTER(3);
DECLARE EM3CJ CHARA
DECLARF XJX CHARaCT
DECLARE (CYTAIL(5.)) 

ALLOCATE CYTAIL ;

ENL'CP=SURST 3 ( CY 0 ( CC ), L ENGTH ( CYC( CO ) )-2, 3 ) 
XJX=SU3STR(END0P,2,2);

IF(STATV(DEC3DE(aJX))=2) THEN
L5:DO; RECUR=1;

CALL CONCATISTRGl ITAIL);
03 T3 EMDL1; EMD L6;

L51:DJ kk = 2 TH LTD '? Y 2;
TCST = SJBSTR(TAIL,(3*K<  + 1 ),3);
i f ( I "IDE X ( S TfKG , T ES T )-• = '') THEN GO TO ENDL1; 

ELS: ; E 'ID L51 ;

80-



Cl 2 = S J dST R ( T T f'l T T 2

NULL ;

DU J=5 TO L BY 6;
--w;

I F( R>-CJR= , 
PUT SKIP LIST 

E'JD ;

LTT2 = I;IDL*<(TT tC11 1 + 3 
LTT3=L3M3TH(TT);

ELSE;
LTTl = LEr4STII(CYC(CC) ) ;

ANSWERS'); DO K=1 TO CYCM-1;

) THEO DO; CYC( CYSN )=CY;:YCiM=CYCN+l; t t 
(' FRi)-1 CU'lCAT—CY CL E= » C YC vl = * , CYC ( C YC1) t C YCM )

DJ KKX= 1 Ii) ( CYC 4 -1 ) BY 1 ;
I F ( C Y=CYC ( KKX ) ) THEN GO TH E '4DL1; 
-LSE ;EBD;

PUT SKIP LI.ST(‘ CYCM FRM 294=’, CY^M);
CYC ( CYC 4) =CY; CYC:4= CYC'M + 1 4 GJ TO E

lTT‘d=! ^D12 <(CYC( CC) ,213) + 3

C1 = S J r'.S T R ( CY C ( CC ), LTT5, L TT6+ 1 ) ; 
CY = :il 11312 11 STRi, | I C14 ;

EMDLl: 3MD Ll;
FREE CYTAIL;

ENO CU4CAT;
LSTOP: PUT PAGE'.PUT SKIP LIST!' FINAL 
PUT SKI3 L 1ST(CYC(K ) ); E 4D;

FREE TT; ALLUCAFE LUUPCY;
LO3PCY(*,*)=  ■;
DO 1 = 1 TO CYC 4;L = LENGTH(3YC(I) ) . _ - 

T2=SU3S1X(CYC( I ) ,J,2 ) i XX=DECODE(T2); LOOPCY(I,XX ) = 1; z 
00 11 = 1 TO HSTRMS;PUT E0 IT(L00PCY(I, I I) ) (8 J(X(1 ) , F(1 ) ) ) 
END; PUT SKI3(2) ;
END;
/*THE  xltiDE L'JOP^ ON THE SIGNAL FLO/I GRAPH ARE THE STREAM LOOPS
14 TH- ORIGINAL PROBLEM */  ,
/*  THIS FOLLOWING s-ction specific for this pbm only */  
ALLUCAT - T“ 'JD0; 1 -NP(J ( * ) = 3 ;
DiJT SKIP LIST!’ CO'IVR. TO ORIGINAL STRM NOTATIONS’) ;
PUT S < I P(5 ) ;
DO 1=1 TO CYC‘4; L = LEriGTH(CYC( I ) ) ;K=D;D0 J = 2 TO L^BY 6;K = Ktl;
T? = SU.3STR( C YO ( I ) ,J,2) ; X X =D EC ODE ( T 2 ) ; T EM PO ( K ) ^ X X ; cND; JO LX=i iO K 
PUT >=0 I T ( TEMPO! l X) ) ( X( 2) , 30( K( 2) ,F ( 2 ) ) ) ; END; PUT SKTP(2);cND;
/*  El4D jF SECTION »/ 

END Ml;
:NG DDE:PROC ED URt(LL) RETURNS(CHARACTER(2)); 81-



utsL^HLLtObil'Tl'.Dl'riTh FIXED D EC I M ( 2 , J ) , 
CHR( DI^ICH^RACTZR ( 1) I IM I TI AL ( ’ D’ , ' A*  , * B’ , ’ u‘ ,' D*  E*  
I * );

DIG! Tl =Tr,H\'C ( LL/ 1 1 ) :
j igi t2=l। -r;i ;i ti * 1;
CC=CH.UDI3ITL)| | CUT (DIGIT?) ;
\-TUrU (cc );

CHARACTER (1 )CT0 (

(CC) TETUR'MSfFI XED 
(FCHfSCH) CHARACTER( 
------- ’ ' ‘ I MITIAL(*  O' ,

EMD EMCJOE
DECDDE:Pk3 DECIMAL!2,3));

1),CC CHARACTER(2 ) , 
< A * , 1 R ’ » ' C' , * D * f ' E *

’declare (I,LX) FIXED DEC I MAL ( 2, 0 ) ;
F C H = S U R S T R ( C C , 1 11 ) • 
SCH=SURSTR(Cct<,,x) ;

' F*

' F'

' G' , * H * ,

•G*,'H*,

LI : DO I-? Tj Q RY 
I F ( FCH=CHr' ( I ) ) 
1F(SCH = CHR( I ) )

FDD Ll;
LX = DIG1 Tl".= l ) 

RE TURM(LX) ;
E M D D E C Lj rJ E ;

E.mD cycles

i;
THEM UIGIT1=I;else;
THEM DIGIT2—I?

DIGIT?;

-82-
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1 2 -
1 3 ■> 1— ■*
3 4 3

7 p 7

1 3 4 7 a 2 i

3 4 7 8 3

7 9 4

4 7 9 5 4

5 6 5

7 9 5 6 1 > 8 7

1 i 4 7 9 5 6
3 4 7 o 5 6 I.? 8

9 5 o i - 9

7 n 1 j a 7
i 3 L. 7 9 3 2

3 4 7 ■? 1 i g 3

9 1 9

1 "2 1 । 3 1 9 4 2

3 1 1 -X 7 9 4 3

1 3 1 Q 7 9 5 6

3 1? 8 7 9 5 b 4

- 3 1 J 3 2 1

3 1 ? 3 7

1 3 1 .> 9 2 i

1

3

1

Stream loops in Figure 8.2
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3 1"’ 9 '* 3

1 7 1 ' 9 4 7 A 2 1

3 9 4 7 8 3

1 3 1 9 5 6 4 2 1

3 1 9 5 6 4 3

1 3 1 ' 9 5 6 4 7 8 2 1

3 1 > 9 5 D 4 7 3 3

1 3 5 h 4 2 1

3 cr b 4 3
1 3 5 6 4 7 8 2 1

3 c; D 4 7 8 3

1 > 6 4 7 9 19 8 2 1

3 CS b 4 7 9 1) 8 3

1 3 -> u 8 7 9 4 2 1

3 5 D j. • 8 7 9 4 3

1 3 5 6 8 2 1
D 5 o lr' B 3

1 3 5 5 1 ) 9 4 2 1

3 r. S 1 ? 9 4 3

1 3 o 1 ' 9 4 7 8 2 1

3 5 D 1' 9 4 7 8 3

1 7 O 2 1

1 7 D 3 4 2 1

1 7 >3 3 1 ; 9 4 2 1

1 7 3 3 1C 9 5 6 4 2 1

1 7 3 5 6 4 2 1

1 7 - 7 5 6 1"> 9 4 2 1

1 7 9 4 2 1
1 7 9 4 3 19 8 2 1

1 7 9 4 3 5 6 19 8 2 1

Stream loops in Figure 8.2 contd.
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1 7 9 ') 5 4 2 i.

1 7 9 5 6 4 7 -1 10 8 2 i

1 7 9 5 n I? 8 2 1

I 7 9 F S 11 3 3 2 1

1 7 9 1 1 3 2 1

1 7 ? * 3 3 4 2 1

1 7 7 1' S 3 5 6 4 2 1

Stream loops in Figure 8.2 contd.


