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ABSTRACT

Situaticns where a non-redundant tear with respect to
stream loops is impossible are fregquently encountered in
process simulation and give rise to difficulties in
convergence of stream variables and overall heat and mass
balances. Previous work has been directed at tearing the
network at certain points rendering it acyclic and then
precedence ordering the process units for computation. Such
an approach is based on the structure of the directed graph
alone and does not take into account in good measure ;he
energy and rass flow patterns while precedence ordering. The
idea in the present work has been to emphasise the stream
locp as a major information recycle stream. Methods and
criteria for precedence ordering simple and cyclic cascades
have been established and shown to be better than the

conventional cut set approach.
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CHAPTER I

INTRODUCTION

One approach to the computer aided design and
optimization of a large chemical processing system is to
develop an executive program cocrdinating the subroutines
which perform the computations for the process units.
Integral in this approach, is the specification of a
precedence ordering which determines the sequence in which
each unit subroutine is to be computed. 2An input process
stream to a unit subroutine which has not been specified at
the time of computation ié called a recycle or torn stream,
because, the stream must be cut by assuming initial values
for all the process variables that are present in that
stream. Later in the procedure, when the torn stream appears
as an output from some unit subroutine, an iterative method
is employed to force convergence of the torn stream i.e.,
the difference between the assumed and computed values of the

stream variables, to within a specified tolerance.

A large body of theory has been developed and various
criteria established to select these torn streams. The most
important conclusion reached is that a non-redundant tear
set has better convergence characteristics than those

belonging to a redundant family (1). By redundancy we mean



that the members of the cut-set open the same recycle loop
at more than one point. However, situations arise when such
a non-redundant tear is not possible if recycle loops are

to include non-simple cycles. Such systems where non-simple
cycles called the stream loop exists, are more difficult to
converge than normal problems, particularly, when we are

considering overall mass balances.

Cascades are a particular class of examples which fall
into this catagory. It is the purpose of this thesis to
look at cascade systems, and develop methods to tackle the
problem of precedence ordering and convergence in these

situations.



CHAPTER IX

GRAPH DEFINITIOWS AND LITERATURE SURVEY

There are three main types of grapvhs - nondirected,
Yp grarg

directed graphs and graphs of a mixed type.

A nondirected graph consists of a number of nodes and
a number of lines. Between the nodes and‘linés there exists
an incidence relation which is defined as follows. Each
line is incident either with one node or with two distinct
nodes. Conversely, each node is incident with an arbitrary
number of lines. This number may even be zerc in which
case the node is an isolated node.

Directed graphs are defined in the same way as nou-
directed graphs except for an additional regquirement: eac
line must be oriented, i.e., for each line both a starting
point and an end point must be specified, although the two
may coincide.

In a mixed type of graph, some lines will be orientad
and others not. Our interest is primarily in directed

graphs and we will give more formal definitions.

Let N be an arbitrary set of nddes, and L an arbitrary
set of lines and let N*N ke the set of all unordered pairs
of nodes in N. If o,8€ N and o # B then the vair formed by
a and 8 is the set {a ,B}. If o = B then using the same
notation we write {a ,a}

Hence we can define



N*N = { {o,B8} | o,B&E N}

A non-directed graph (N,L,g) can be defined by N and L and
a mapping g:L - N*N, so that for each bé L and suitable
o,B € N

gb = {a,B}
A directed graph (N,L,f) can be defined by N and 1 and a
mapping £f£:L > NXN, so that for each be L and suitable a,B€ N

fb = (o,B)
Every directed graph (N,L,f) also defines a non-directed gragh
(N,L,g) where

gb = {o,p} if fb = (a,B), b€ L,a,5 € N
(N,L,g) is obtained from (N,L,f) by disregarding the crder
of the pairs of nodes, i.é., by disregarding the orientation
of the lines.
A graph is called finite if N and L are finite sets. A
subgraph G1 of a graph G = (N,L,f) is defined by a gragh
(Nl'L1'f1) where NIE.N, ng L and flis induced by £ which
means that if fb = (osB), b€ L1 and o,8¢€ Nlthen

f1 b= (a,B).

If fb = (a,B) we say that a is the starting point of b
and £ is its end point.
A path by definition is formed by a number of ordered nodes
ao,...... oy and ordered lines b1""° bn where n > 1

such that gbi = {ai_l roOy }, i=1,....n.

This path is denoted by the sequence (ao,bl,al,...bn,an)



from which we sometimes omit the nodes. We say that the
path ( uo,bl,al,... bn’an ) connects o, and G, v and that
if it contains n lines, it consists of n steps or that
its lencth is n.

A directed path is defined in the same way except that

instead of requiring that gb, = { a1 ,ai} we reguire
that fbi = ( Os_q Oy ), i=1,....n. This directed
path we again denote by ( ao, bl,....bn,un). A directed
path is said to be directed from a to a, and o and

o, are said to be the starting and ending points respec-

-

tively.

a )
1’).'0

A directed cvcle 1is a directed path (ao,bl,al,...b
where Qo = op aﬁd n > 1. The sequences (al,bz,az..,

b ,ao,bl,al) and (ao,bl,al,...b

n o } are considered to

n
represent the same cycle.

A simple directed path is a directed path all of whose

nodes are distinct and a simple directed cycle 1is a dir-

ected cycle (ao,bl,al,... bn,ao } where all the nodes

O oo are distinct.

« O
0 n-1

A hinged directed cycle is a directed cycle in which only

all the lines are distinct. This is also called a stream

loop. A graph is connected if for every pair of nodes

o and B‘there exists a path connecting o and 38 .

A cyclical loop is maximal if and only if it is cyclical

and contains all other cyclicalAgraphs as its subgraph. A
maximal cyclical net contains no vertex of another larger

net and hence for calculation purposes can be considered



separately. If the graph contains no simple loop it is
called acyclic. The indegree of a node is the number of
edges directed towards it, while the outdegree 1is the

number of edges directed outwards from it. The sum of the

indegree and outdegree is called the degree of the vertex.

Decomposition of nets

This consists cf two parts

1. Identification of maximal cyclical nets.

2. Reduction of individual nets.

By the definition of a maximal cyclical graph, a
recycle system must contain at least a simple loop. A
common method of cutting this loop is to assume initial
values for all the variables in any one of the streams
which constitute the loop. The loop is said to be torn
at the chosen point. If all the loops in the recycle
system are torn in this manner, the resulting graph be-
comes acyclic and can then be precedence ordered to pro-
duce a set of new values for the torn variables. An
iteration procedure is then performed to force the
agreement between the assumed and computed torn variables
tc some preset tolerance. For a complex system, more
than one such stream will hzve to be selected. A cut-set

is said to be non-redundant if no simple loop is opened

more than once by the cut streams. Upadhye and Grens (1)

have shown that a non-redundant tear set has better



convergence characteristics than redundant tear sets;
Three types of criteria are usually used to select the
'optimal' cut set (12)
1. To minimize the cut set of streams
2. To minimize the cut set of stream variables.
3. To minimize the largest eigenvalue of the
sensitivity matrix related to the cut stream

variables.

The problem of precedence ordering may now be divided into
- Identification of maximal nets
- Tearing

- Convergence

The main identification algorithms are shown in Table 2.1,
and we can see that there are two major approaches : the
path tracing methods (PTM) and powers of adjacency
matrix methods (PAM). While PTM are difficult to program
PAM has large core requirements. A summary of the major
tearing algorithms is shown in Table 2.2.

From Tab..2.2 we can summarize the basic approaches:

1. Steward's tearing algorithm

2. Integer programming technique

3. Boolean matri# operations

4. Branch and bound method

5. Boolean approach for bivalent optimization

6. Heuristic methods



Table 2.1 Identification of process flow networks

Author Method
Norman (2) PAM
Himmelblau (2,3) PAM
Steward (4,5) PT™
Sargent and Westerberg (6) PTM
Christensen and Rudd (7) PTM
Kehat and Shacham (8) PAM
Ledet (9) PAM
Jain and Eakmen (10) PAM + PTHM
Forder and Hutchinson (16) PT™
Janicke and Biess (11) PAM
Barkley and Motard (31) PTM

Abbreviations: PAM powers of adjacency matrix

PTM path tracing methods



Table 2.2 Algorithms for tearing

Author

Method

Comments

Sargent and
Westerberg (6)

Dynamic programming

Advantageous for a network with
few units and many recycle loops

Crowe et al. (14)

Comparison of
combinations

Not practical for large systems.
Efficient for small number of nodes

Steward (5)

Loop tracing

Procedure results in one excess tear

Lee and Rudd (15)

Cyclic matrix
operation

Advantageous for small systems and
hand calculations

Forder and
Hutchinson (16)

Cyclic matrix
operation

Modification of Lee and Rudd
procedure in an interactive mode

Lee, Christensen
and Rudd (17)

Steward'’s
procedure

Modification of Steward's procedure
Inefficient for large systems

Christensen (18)

Bipartite graphs

Suiteble for optimization and design
calculations

Ledet and
Himmelblau (9)

Loop tracing




Tab.,2.2: Algorithms for tearing contd.

Author

Method

Comments

Westerberg and
Edie (19)

Steward's procedure
dynamic programming

Optimization of the output set to
minimize the number of cut variables

Johns (20)

Search algorithm

Search algorithm arranges the nodes
in a calculation order which creates
a set of recycle nets of minimal sizes

Upadhye and
Grens (21)

Dynamic programming

Efficient for large systems

Pho and
Lapidus (22)

Graph approach

Graph simplification technique via
repeated reduction of ineligible
streams and two-way edges

Christensen and
Rudd (7)

Graph approach

Minimum number of tears not gaurenteed

Ramirez and
Vestal (23)

Elimination and
structuring algorithm

Suitable for design calculation

Piehler (24,25)

Integer programming

Not practical for large systems

Janicke and
Bief (1l1)

Kevorkian and
Snoek (26)

Occurence matrix
operation

Iterative variables identified by
inspecting a minimum number cf rows
and columns in the occurence matrix




Tab. .2.2 Algorithms for tearing contd.

Author

Method

Comments

Garfinkel and
Nemhauser (27)

Covering algorithm

Integer programming approach

Hammer (28)

BABO algorithm

Boolean approach for bivalent
optimization

Wilde and
Atherton (29)

Branch and bound
solution

Barkely and
Motard (31)

Graph apprcach

Signal flowgraph method. Minimal
cut-set gaurenteed. Suitable for
large systems

=TT~



All the work in this field upto this point has been
directed at finding the 'optimal' cut~set. Such an apprcach
relies too heavily on the structure of the corresponding
directed graph alone, and does not take into account the
mass and energy flow patterns that exist in the system.

This work has been directed at developing a feasible, but
at the same time not completely heuristic, approach which
can lay emphasis on this aspect as applied to cascade

systems.

~12~



Greek:

NOMENCLATURE FOR CHAPTER IT

lines in the graph

mapping function for a directed graph
mapping function for a non-directed graph
set of lines in the graph

set of lines in the subkgraph

set of nodes cr vertices in the graph

set of nodes or vertices in the subgraph

individual nodes or vertices



CHAPTER III
SIGNAL FLOW GRAFPHS

Signal flow graphs are a special type of directed
graphs which provide the engineer with a method of
analysing and solving a system described by a set of
simultaeneous linear algebraic or differential equations
without resorting to matrix calculaticons. The information
contained in the signal flow graph is neither more nor
less than that contained in the relation equations, but
the signal flcw graph does provide a visual representation
of the system equations from which a logical reduction
procedure can be effected. The visual representation of
the system equations often makes the system more

amenable to analysis.

Fig,3.1 illustrates the basic elements of a signal
flow graph. The vertices (nodes) are the variables in the
related equation connected by a directed line or branch,
with the arrow pointing towards the dependent variable and
away from the independent variable. Superimposed on the

arrow is the symbol representing the branch transmittance

(branch operator or branch gain) which represents the
ratio of output to input, i.e., the ratio of the dependent
to the independent variable. (A node may be a dependent

variable in one part of the graph and an independent

-13~



Signal flow
diagram

Block
diagram

Equation

Figure 3.1:

G(s)
x(s) Ay (s)

X(8) ———G(8) > v (8)

y(s) = G(s) x(s)

Basic signal flow graph elements.

~14-



Addition

Subtraction

Multiplication

Division

Identity or
unit trans-
mittance

Negative unit
transmittance

®

©

O,

®

O

®

©®

~15~

y=gx + hz
y=gx + hx
y=hz - gXx
y = gX

y = x/9
y =X

y = =X

Figure 3.2: Basic rules for signal flow diagrams.



variable in another.) It corresponds to the transfer
function if the variables are in Laplace transform space.
A network of one or more branches is the 'signal flow
graph'. The node represents both the operation of

summation and the variables.

The rules for drawing signal flow graphs are as
follows:
1. Material or information travel along the branch
only in the direction cf the arrow.
2._ Any signal travelling along any branch is multiplied
by the transmittance of that branch.
3. The value of the variable represented by any node
is the sum of all inputs entering that node.
4. The value of the variable represented by any node

is transmitted on all branches leaving that node.

The basic rules for addition, subtraction, multi-
plication and division are shown in Fig. 3.2. The rules
for manipulating and consolidating signal flow graphs
are as follows.

1. Addition rule: A

y.— zz o-g’z-o gax

(G+3 +3)> OH—° 0

~
- jx

Parallel branches can be replaced by a single branch with

"

2 transmittance equal to the sum of the individual branch

transmittances.

~-16-



b o

Multiplication rule:

@ 23@33@ T34 >@

Gﬁ) (Zzagzm)igj

Series branches can be replaced by a single branch
with transmittance egual to the product of the
individual branch transmittances if all the inter-
mediate nodes are chain nodes.(i.e.‘——>(:>_g~.
is a chain node; a node containing a self loop is

not a chain node)

Splitting:
A complicated node can be split up into a series of

simpler ones by the use of unit transmittances.

@
+
@

is equivalent to

-17~-



CHAPTER 1V

SYSTEM SENSITIVITY AND SENSITIVITY MATRICES

System sensitivity, as a general concept, refers to
the change in the output variable which can be attributed
to a change in one of the system parameters (coefficients
or in some cases system inputs). As a quantitative
measure, sensitivity has value in allowing the engineer
to predict possible changes in system outputs based on
proposed or actual changes in system parameters.i Sensit-—-
ivity becomes especially important in recycle processes
in which the possibility exists for the system output to
influence itself. Systems with recycle have two sources
of input: the normal flows into the system plus flows
which depend upon the system output. The relative

sensitivity of an iterative calculation can be defined as(35)

tn+1) (n)

.

z
[

L

where the superscript refers to the cycle number of the
iterative procedure. Briefly, the requirement for an
_iterative procedure to converge to a solution are as
follows.

Firstly, the initial guess must be reasonably close.

Second , the matrix of partial derivatives J, the Jacobian

~]18-



must have moduli less than one.

For the set of system equations

fl (yl,.....yn) = C
fn (yl,.....yn) =0
the matrix J is
(3¢ 3. ]
_l * & o o 0 ® o -
3Y] 3y >
J(yqree-y,) = )
_a-_f—n " ® 2 & 0 & —a_f-n
Byl Byn
where the J is evaluated at (yl, ceee yn)

We will now show how the Jacobian can be obtained for a
linear system which has to be solved by iteration and that
it is identical to the one obtained from the signal flow

graph.

~19-~
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Let us suppose we have a three element cascade which locks

like:
o — o “— 8 e [TTF
x, B ey xz x9 x‘

Let aij be the split fraction from stream i to jJj.
€.g.s ay5,8,, inply the relation

1212 v Xy 3y

The sum of the aij's leaving any node equals one due to
mass balance requirements. Streams 1 and 3 will be
chosen as cut streams. X6 and X8 are constant valued feed
streams while X5 and X, are product streams. We start the
iterative procedure by assuming streams 1 and 3 at Xi and X%
while g, and g, are new estimates for streams 1 and 3

obtained after one cycle.

The computation sequence will be C =+ B - A.

The following relations are obtained:

X, = X8

4 3 834 * Xg gy
— 0 . 0 0
Xy = Xy a3 + Xy a,y =Xy aj, + Xy a3, a,, + Xg agy a,,
And so
g, = X3 = (X% a + X, a,,) a + X%a.
3 3 3 334 6 34) 243 1213



and

and hence

2821

= X

= X

g 4g1

g8 %g1

+ XZ a21

0
+ Xy ay5 axy

+ X

+ X

0

3a

34 242 321

6 264 242 @21

-21-



Signal flow graph

@ a3‘! \_Q\ a'rl
r\/,

Ay

Shown above is the signal flow graph for the system
considered previously. The partial derivative agl/axl
is equal to the total transmittance from 1 to g, (12}
calculated according to the principles and methods

explained earlier.

Hence,

!
ol

99 /83Xy = a;, a5y
399,/3Xy = azy 2,5 2y
993/9%y = a;3 . ’

893/0X3 = ajy 3y,

This is identical to the result obtained earlier. .

—-22-
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The usefulness of sensitivity matrices arises in the
prediction of the convergence rate of an iterative
procedure. If we are sufficiently close to the solution
that we can assume a linear approach to the solution, then
the number of iterations required to reduce the error in

the estimates by a factor € 1is given by the following

expression (33)

log £
n= -0 - [ 4.1 ]
10910 |

max]

where n is the number of iterations and Amax is the
largest eigenvalue of the sensitivity matrix. 1In the
following chapter a general method to evaluate the

sensitivity matrix for any arbitrary system‘will be

derived.



CHAFTER V

A GENERAL METHOD FGR EVALUATING THE JACOBIAN

One of the techniques for reducing the number of
iterations taken by a recycle system to converge is to
minimize the largest eigenvalue of the Jacobian matrix.
Upto this point, this has been done by comparing alter-
nate cut sets. The approach here has been to achieve
this by repetition of certain units in the cascade by
following the longest stream loop. It is therefore
necessary to have a method by which we can evaluate the

Jacobian for any arbitrary system.

For the method developed here the following infor-
mation is required:
a) A feasible cut set with reference to which the
Jacobian is computed.
b) A precédence ordering

c) The split fractions at each unit.

The Jacobian is computed assuming one variable per stream

viz., the total molar flow rate. However, this method can

be extended to include individual components.

.-24___



Associated with each digraph is a Booclean matrix R
(agsociated matrix, relation matrix, transition matrix,
adjacency matrix) which is a square matrix with as many
rows (and columns) as the digraph has vertices. The
element rij = 1 if there is a flow directed from vertex

i to j, otherwise zero.

For example

0 0 0 0 0

6 0 1 1 o

Figure 5.1: Directed graph and adjacency matrix

Note that the first column, fourth row and diagonal are all
zero. This means that there there are no edges directed
towards (1), no edges directed out of (4) and that there

are no self loops.
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By taking the nth power of R, if rij is one then there
exists a path n steps long from i to j in the graph. The
powers of R are taken with the usual rules of matrix
multiplication except that Boolean algebraic rules hold for

individual elements.

X * vy min({x,y)

Another feature of the adjacency matrix associated with a
directed graph is that it indicates when cyclical nets

(dir .cycles) occur (35). If the graph has no directed
cycles it is called acyclic and there will be some value

N, corresponding to the longest path in the graph such that

gt _ g for all m > 1

For the example shown in Fig.5.1, N = 4, whereas

For the example shown below,no such N exists.

@




Now suppose that the rules for Boolean multiplication are
substituted with that of regular multiplication and we are

also given that the graph is acyclic. Then, the integers

appearing as entries in R" give the number of n~step paths
from node i to j.  For example in Fig.5.1,

R2 =

i.e., the nodes (1,3), (1,5), (2,3), (5,£% are connected
by two step paths, while there are two 2-step paths from

node 2 to 4.

Now if the entries were replaced by the corresponding
aij’ the spiit fraction, the products aépearing aé |
entries will be the transmittances due to- n-step paths.
"Thus by knowing the location corresponding to the
Jacopian elements we can successive%y sum these to get
the sensitivity matrix. This procedure is further
guaranteed to terminate, since the signal flow graph

obtained from the cut set must necessarily be acyclic.

This procedure is illustrated by an example.

-27-



/I 3 .
A B C
e #
2 4

Figure 5.2: Example to illustrate the generalized method.

—-28-



The adjacency matrix of the signal flow graph with aij

entries is as follows:

1 2 3 4 9, 94
1 0 0 aj, 0 a5 0
2 asq 0 0 0 0 0
3 0 0 0 0 0 a3y
4 0 0 a3 0 iﬁ% 2—_
9, 0 0 0 0 0 0
9y ¢ 0 0 0 0 0

The underlined entries correspond to the Jacobian elements.
For instance, if we need ag2/3x4 , 1t is the total
transmittance along all branches from X4 to 9o 345
corresponds to the transmittance along the one step path.
Similarly by taking higher powers of R we can get the

transmittance along the longer paths. These when summed

together give the total transmittance from X, to g, which

is equal to the corresponding partial derivative.



Shown below is R2

1 2 3 4 95 9,
1 0 0 0 0 U a)3 agy
2 0 0 321213 0 321312 ¢
3 0 0 0 0 0 0
4 0 0 0 0 3 i_§a34
9, 0 0 0 0 0 0
9y 0 0 -0 0 0 0

The contributions due to two-step pathsrhave emerged.

R3:
1 2 3 4 g9 92

1 0 0 0 0 0 0
2 0 0 0 0 Q 251313334
3 0 0 0 0 0 0
4 0 0 0 0 ] ]
9, 0 0 0 0 0 0
g, 0 0 0 0 0 0

4



The following shows the summary of the entire operation.

JACOBIAN
From Rl 0 a
42
0 0
F R2 '
rom a21a12 a42
0 a43234
Fro R3 asqa a
m 21%12 %42

821213334 243334

There will be no further contributions from higher
powers since R4 = 0. This procedure has been
programmed and the details are presented in the

appendix.
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CHAPTER VI
REDUNDANT AND NON-REDUNDANT TEARING

In our earlier definition of a cyclic path a node
and a stream could appear only once per cycle, and this
was te;med as a node loop. In such a case a non-redundant
tear set can always be found with respect to the fundamental
set of cycles in the graph(l). By a fundamental set, we mean
that every cycle existing in the graph can be exrressed as
concatenations of parts of the cycles belonging to the

fundamental set. For example, see Fig.6.l.

However, if we define stream loops as cyclic pathks in
which a node can be traversed more than once, but, every
stream exactly once, then we frequently get a situation
where a non-redundant tear with respect to stream loops is
impossible. Fig.¢.2 . illustrates this situation. The
prediction of the existence of stream loops is fairly
straightforward. If we have a node which has at least two
input edges and at least two cutput edges, then it means
that the node can be traversed a second time, leaving by

the remaining edge.

A cyclic path which includes every stream in the

graph exactly once is called an Eulerian path. By



Fundamental cycles: 1. AfBaCbA

2. AcDdBeA

Other cycles:

AcDdBaCbha

[ AcDdAB (2) 1 + [ aCbAa (1) ]

AfBeA

[ AfB (1) 1 + [ ea (2) ]
means that the two strings are to concatenated.

() indicates which fundamental cycle the string
has been extracted from.

Figure 6.1 : Fundamental cycles

~33=



! 3
W ®
F

Node loops: A1B2A

B3C48B

Cut sets: (1,3), (2,4), (1,4), or (2,3)

All equivalent by the Replacement rule (1).

Stream loop: A 1B 3 C4B2A

No cut set can tear network without
opening the stream loop at more

than one point.

Figure 6.2: Non-redundant tearing

-34-



definition, it is obvious that an Eulerian cycle is also
the longest cycle existing in the system. However, this
need not be unique, and more than one Eulerian cycle can
exist, as will be demonstrated later. It can be easily
shown that the necessary and sufficient condition for the
existence of an Eulerian cycle is that every node must have

as many edges entering it, as are leaving it(13).

Cascades are a particular class of situations where
the existence of the stream loop causes significant
difficulties in convergence of both streams and over-
all mass balances. Cascades are frequently emploved in
the seperation of pure components from mixtures, cccasion-
ally accomplishing a chemical reaction. In each stage, two
process streams are contacted and brought approximately to
equilibrium with respect to each cther. A number of such
contacting stages are arranged in a cascade which produces

the desired physical seperation oxr chemical change.

The number of such stages might vary anywhere from
three or four in side strippers, to the order of a
hundred or more in superfractionators. If such systems
are solved by using the conventional cut set approach,
avery unit is repeated exactly once per cycle and so the
major information feedback loop which exists due to the

stream loop is not utilized.

Let us consider a five unit cascade and examine the

sensitivity matrices obtained from the cut set and other



sequences. Hence we can estimate the eigenvalues and

convergence rates.

aij = transmittance or split fraction from stream i to j
ak = split associated with a particular module
€.9., a21 =1 - al
a1, = 3, and so on.
We have a four member cut set (2,4,6,8). (or (1,3,5,7)

or (1,4,5,8) all equivalent by the Replacement rule of
Upadhye and Grens (l). For our purposes we will take

(2,4,6,8)

(2),(4),(6),(8) are starting points for computation

while 9,r 94+ Jgr Ig are new estimates for the same
streams after one iterative cycle. Shown on the next
page is the signal flow graph for the sequence

A+B>C+D+E, which arises from the cut set (2,4,6,8).
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As explained previously, the Jacobain can be written as

351212 342 0 0
451813334 433334 g4 0
421%13%35%5¢ 843335856 8g5356 agg

221%13%35%57%g1 443%35%857%7g 8g5257%7g ag7d7g

The uéper triangle of zeros gets correspondingly larger
for bigger systems. This means that the partial
derivative, for example agz/axs = Q. Therefore any
assumption or perturbation made to stream 8 will not
affect stream 2 during that computation cycle. This
introduces a delay into the system. The claim made here
is that this delay is responsible for poor convergence

and difficulties with overall mass balances.

Let us compare this with & different sequence. A
smaller system with four units (A,B,C,D) will be used

for illustrative purposes.

The sequence considered is 'ABABCBABCD'. The

Jacobian for this will contain all non-zero elements. It
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is also less diagonally dominant than the Jacobian for
'ABCD'. This results in a lower maximum eigenvalue and

a correspondingly lower number of predicted iterations.
However, the computational effort expended per cycle

for the longer sequence is correspondingly more. For
comparing, the number of iterations predicted for both
sequences will be weighted by the number of units in that
cycle. The Jacobians and their eigenvalues were all

evaluated using the generalized method developed in

Chapter 5

Fig. 6.4 shows the result over a particular range
of module split fractions. We can see that for particular
ranges of sgplit fractions, the longer seguence requires
cnly 30% of the effort required to converge the cut-set
sequence 'ABCD'. Similar results were obtained for larger
systemns. |

This leads to the conclusion that we can improve
convergence rate by minimiiing the delay in the system,
i.e., we should precedence order the streams in the
cascade rather than the units. A binary distillation
column and a thermally coupled distillation system were
chosen for further examination and these are discussed in

Chapters 7 and 8.
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CHAPTER VII

LINEAR CASCADE - BINARY DISTILLATION COLUMN

The problem considered here is the binary distillation
of benzene and toluene in a ten stage column. Stage 1 is a
total condenser with a reflux ratio of 3.0 and stage 10 is
a partial repoiler. Saturated liquid feed enters at stage
5.

Two cases are considered. First, when the top and
bbttom withdrawal rates are equal to half the feed flow
rate irrespective of the feed comppsition and second,
when the withdrawal rates are proportional to the amounts
of benzene and toluene in the feed. The column was set
up as a series of mixers and adiabatic flashes using the
CHESS simulator (36). In this manner the sequence in
which the stages were computed could be controlled. Tables
7.1 and 7.2 show the results.

The top entry is the number of iterations multiplied
by the ratio (number of units in cycle)/(number of units in

the cut-set cycle(1l0)). The second entry is the time ratio

-41-

= (time taken for convergence by given sequence)/(time taken

by the cut-set sequence). All simulations were run with a
relative error tolerance of 1%.
Inspection of Table 7.1 reveals that all the proposed

sequences perform better than the cut-set sequence as the
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B/T - 90/10 70/30 60/40 50,/50
1+10 128 119 110 110
1.0 1.0 1.0 1.0
1+10+2 112 99 83 67
0.84 0.80 0.73 0.61
10>5+10 173 92 56 48
159 1.06 0.77 0.50 0.44
1+5+1 >169 156 135 112
+10-+2 >1.2 1.2 1.13 0.94
5+6-4 141 128 106 84
+10+1-4 1.03 1.01 0.91 0.72
5+7+3 >169 132 110 104
+10+1+4 >1.2 1.2 1.09 0.87

Binary distillation column on different sequences
Top and bottom flow rates same as B/T in feed.

Table 7.1



BT+ 90/10 80/20 70/30 60/40 50/50
1-10 110 110 110 110 110
1.0 1.0 1.0 1.0 1.0
1+10->2 27 31 32 32 67
0.29 0.30 0.32 0.32 0.61
10-+5-10 39 45 48 50 48
+1->9 0.37 0.42 0.43 0.47 0.44
1+5-+1 36 36 39 47 112
+10->2 0.33 0.33 0.3¢ 0.39 0.94
5+6->4 31 35 35 37 84
+10->1+4 0.30 0.34 0.33 0.35 0.72
5+7+3 36 39 39 44 104
+>10+1-+4 0.33 0.36 0.36 0.44 0.87

Binary distillation column on different sequences

50-50 moles drawoff.

Table 7.2

~44-
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Table 7.3: Convergence error data for 50-50 benzene

toluene feed.

Sequence Overall mass balance error %
Benzene Toluene Total molar

flow

1-+10 0.94 3.43 1.25

(cut-set)

1»10->2 2.7 2.5 0.12

10+5->10~+1-+9 1.43 2.01 0.29

1+5+1+10->2 2.39 2.21 0.09

5+6+>4+10+1+4 2.48 2.27 0.10

5+7+3+10~+1+4 1.93 1.05 0.03
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-47~-

benzene to toluene ratio becomes one. Sequence 10-+5+10-+1-+9
performs much better than others over a smaller range, while
1+10+2 performs better than the cut-set in all cases.

Inspection of Table 7.2 reveals that all sequences
perform better than the cut-set, while 1+10-»2 is best in all
except for equimolar mixture of benzene and toluene. Also
the number of iterations taken take a sudden jump at this
point. This is probably because the system now gets more
strongly interactive. Attention is drawn to the fact that
the seguence 1+10+2 perfcrms better than the cut-set sequence
more consistently than the others in this example.

Table 7.3 reveals an order of magnitude reduction in
the overall mass balance error when based on total flow
rates. Though individual component errors are lower than
the cut-set error in most cases, they are still above the
stream tolerances. This means that the overall mass flow
pattern has stabilized much faster than the individual
components. The individual errors for the components are
observed to be opposite in sign, accounting for the low
overall error. This suggests a compensating convergence
acceleration to be perfcrmed, since we now have a bound
for the total flow rates. By compensating, we mean that
if the convergence acceleration of a component increases
its flow rate, the others need not be accelerated inde-

pendently, but can be proportionately reduced to satisfy



the total mass flow rate.

Figure 7.2 shows the variation in the eigenvalues of
the Jacokian for the cut-set sequence and the sequence
1 10 2 with the number of iterations. The longer sequence
has been multiplied by 1.8 to compensate for its extra
length. This is reasonable in this case since most of the
units take appreoximately the same computation time. The
Jacobian has been based on the overall flow rate and the
eigenvalues computed using the program and method developed
in Chapter 5. The use of overall flow rate is justified

in.retrospective . Using equation 4.1, we get

log(0.01)/1log{0.8815)

=]
it

= 36.51
and when multiplied by 1.8 to account for its length we
get n' = 66. The actual number of iterations taken works
out to 67.

All said, we can conclude that the sequence based on
including every stream exactly once can be expected to
perform better than the cut-set generated sequence. This
principle is extended to a more complex case of a thermally
connected distillation system and is discussed in the next

chapter.
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CHAPTER VIII

CYCLIC CASCADE - THERMALLY COUPLED DISTILLATION SYSTEM

A distillation system contains a thermal coupling
when a heat flux is utilized for more than one fracticnation,
and the heat transfer between fractionation sections occurs
by direct contact of vapor and liquid. Compared with a
conventional system, thermally coupled distillatior systems
can seperate close boiling components with considerable
saving of heating and cooling costs (32). The separation of
a multicomponent mixture is conventionally accomplished in
a series of columns numbering one less than the number of

products, each having a condenser and a reboiler,

In a ternary mixture of A,B, and C, in a conventional

scheme we can have

either A A (a)
B > B >
C (B)
(C)
or + (A) ’
B

(C)

In a thermally coupled system, initial seperation is

made between A and C while (A,B) are seperated in the top
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of the second column and (B,C) at the bottom. The separations
are essentially binary and can be carried out without
interference from the third component. Details of the case
are shown in Figure 8.1. The primary purpose was to simulate

a cyclic cascade system and no attempt was made to design

the columns for a sharp seperation.

A result observed in the binary column case will be
used here viz., a sequence of units based on evaluating each
stream exactly once is likely to be better than one based on
cut-sets. This means that we have to find the Eulerian
paths in the system. This was dcne by considering the

reduced system shown in Figure 8.2 .

Finding all the stream loops in a directed graph is
itself a fairly difficult .task. There are again two major
approaches: path tracing and powers of adjacency matrix
methods. Path tracing methods are believed toc be more
efficient from the standpoint of running time in spite
of relatively large storage requirements (34). The
algorithm presented by Weinblatt {30) was programmed in
PL/1l with some minor modifications. Details of this

program are given in the appendix.

There are a total of sixty one loops in Fig.8.2

out of which twelve are Eulerian. These are shown

in Takle 8.1.
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No. Stream loop
1. 1 3 4 7 9 5 6 10 2 1
2. 1 3 10 8 7 9 5 6 2 1
3. 1 3 10 9 5 6 4 7 2 1
4. 1 3 5 6 4 7 9 10 2 1
5. 1 3 5 6 10 8 7 9 2 1
6. 1 3 5 6 10 9 4 7 2 1
7. 1 7 8 3 10 9 5 6 2 1
8. 1 7 8 3 5 6 10 9 2 1
9. 1 7 9 4 3 5 6 10 2 1
10. 1 7 9 5 6 4 3 10 2 1
11. 1 7 9 5 6 10 8 3 2 1
12. 1 7 9 10 8 3 5 6 2 1
Table 8.1 Eulerian loops in Fig 8.2 .

Loops are listed by stream number sequence

_SS‘_



Table 8.2: Sequences arising from Eulerian paths

No. Sequence

1. ABCBECDCESB
2. ABCEBECDCHB
3. ABCECDCBESB
4, ABCDCBECERB
5. ABCDCEBECSB
6. ABCDCECBESB
7. ABEBCECDCHSB
8. ABEBCDCECHSB
9. ABECBCDCERB
10. ABECDCBCESRB
11. ABECDCEBCREB
12. ABECEBCDCHEB

-54-



Table 8.3: Iteration and simulation time data on
cyclic cascades

Iterations taken by cut-set: 130

Sequence # Iterations* Time ratio
1 102 0.77
2 102 0.77
3a** 100 0.75
3b 104 7 0.77
3c 125 0.92
4 100 0.75
5 104 0.78
6a 100 .76
6b 102 0.77
6C 128 0.94
7a 102 0.77
7b 100 0.76
c 128 0.94
8a 100 0.75
8b 102 0.76
8c 123 0.91
9 106 | ©0.80
10 104 0.79
11 100 0.76
12 102 0.57

*

* %

: Multiplied by the ratio of the number of units

See text for explanation of ‘'a','b',and 'c'.



Table 8.4: Convergence data on cyclic cascades
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Sequence Overall mass balance error %

Reference

Number C.Pentane Benzene Toluene Total
Flow

Cut-set 0.72 6.34 5.56 2.94

3c 2.53 0.80 5.17 0.30

5 3.11 0.04 4.89 0.25

€b 3.37 0.19 5.16 0.24

7a 3.27 0.14 5.15 0.22

9 3.02 0.22 4.67 0.19




Table 8.2 shows the sequences which arise by following
the Eulerian paths. The basic sequences are interpreted as

follows: (see Fig.8.1 also)

Sequence # 1: ABCBECDUCESB leads to a unit
precedence ordering
7+>8+9-+10+11+12+13>14+15-14+13>12+11+10+9+1+2>3>4+5>6->15~+

16+17>18+17->16+>15+6+5>4+3+2+1+9+8

Sometimes more than one interpretation 1is possible.
(Sseq. 3,6,7,and8) For example sequence ¥ 3 is

ABCECDCBEIB could be interpreted as

3a: E passed in both directiors at first occurence.
3b: E passed in both directions at second occurence

3c: E passed in both directions at both occurences.

The result of the simulations on all these possibilities
are shown in Table 8.3. The results are fairly conspic-
uous. All the sequernces perform better than the cut-set.
Two catagories arise; one with a time ratio between 0.75
and 0.8 and the other with the time ratio over 0.90. The
one with the greater ratio has unit E repeated in both
directions at both occurences. We can safely conclude

that in cases where more than one interpretation is
possible, any one which covers the units in both directions
once will suffice.

Table 8.4 shows convergence data on some of the
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seguences. Similar trends as in the binary distillation
case are observed. The overall mass balance based on total
flow rates is cut by an order of magnitude, while some
others are reduced significantly. This is again due to the
fact that the overall flow rates are stabilizing much faster
than the individual components. As suggested earlier in
Chapter 7, this can be made the basis for a compensating
acceleration algorithm.

It is now established quite clearly that in case of
cascade systems, faster convergence is obtained by foll-
owing the longest stream loop, and that this invariably

performs better than the cut-set approach.
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CHAPTER IX

CONCLUSTIONS AND RECOMMENDATION FOR FURTHER WORK

The importance of the stream loop as a major information
recycle stream has been established. A general method to
evaluate the sensitivity matrix for any arbitrary system
has been developed. Cut-set approaches to solving cascade
systems have been shown to have a delay inherent in them by
considéring their sensitivity matrices. It was further shown
that this was repconsible for poor convergence characteristics.
Stream loop sequences stabilize much faster at lower eigen-
values than cut-set sequences. It has been shown that
following an Eulerian path in a cascade is definitely
superior to cut-set approaches.

This work has established a framework for a new
generation of precedence ordering algorithms which can be
designed to handle very large systems more effectively.

This is possible by developing a method to recognize an
embedded cascade structure from a global viewpoint and

being able to partition the graph as such. We have observed
that overall mass balances based on total flow rates converge
much faster than the individual components. This can form
the basis for a different type of convergénce acceleration'

algorithm which can utilize the bounds established.
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APPENDIX A

In Chapter 5 the basis for a generalized Jacobian
generator was established. This appendix briefly covers

the programming details, information input and output.
We need four basic sets of information:

1. The structure of the process flow network

2. 'The cut-set with reference to which the
Jacobian is evaluated.

3. The proposed precedence ordering

4. The split fractions between streams at each node.

The example shown in Figure Al will be used for

illustration. It is assumed here that

Y

aj} The streams are numbered 1 through Notreams

b) The nodes are numbered 1 through N odes

(1) (2) (3) (4)

Figure Al.
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The structure is coded by means of the following vectors

as follows:

NFTCIN

NPROC

NSTIOV

This specifies all possible stream to stream
connections existing in the system. For
example 1 to 3 and 1 to 2 arise from stream 1
and node 2. This is coded in a field of length
six as follows

Entry= (From stream #)*1000 + To stream #

For the above example NFTCIN would be
/1002,1003,2001,3004,3005,4002,4003,5005,

6004,6005/

This specifies the stream numbers coming into

1 \{
and leaving each node from 1 through hnodes'
For the above example NPROC would be

/2illlr412r313161415154'6/

This specifies the indegree and outdegree of

the nodes from 1 through N For the

nodes”
above example NSTIOV would be
/1001,2002,2002,1001/

The entries are again coded as
Entry = (Indegree)*1000 + Outdegree

Only reduced network is to be considered; feed

and product streams are to ke eliminated



NSEQ

NCSET

NFT
NDNFT
NSTRMS
NUNITS

NSU

NB,NC, SFA
SFB,SFC

NCODL

-65~-

The precedence ordering of the nodes is stored

in this vector.

Contains cut-set. The streams in the cut-set
must be specified in the same order it is
required in the precedence ordering. For
example if we have 1+2+3+4 as the precedence
ordering then NCSET = /2,4,6/, while if we

have 4+3+2+1 then NCSET = /5,3,1/.

This specifies the split fractions between
streams at each node. The order must exactly
follow the stream connections specified in the

NFTCIN vector.

Signal flow vector;contains SFG in vector storage
Length of NFT

Total number of streams

“Total number of nodes or units

Stream update vector; used while creating
signal flow graph; length must be specified
NSTRMS '

Vecters used in matrix multiplication; Adequate
length depending on the problem must be
specified.

Vector contains locations of split fractions

in SFIN to be associated with NFT entries.



SR NFTSET

—{

FENCO

SR CONVER)
SR CODSET)

SR MULTI

0
g
wn

H

SR EISYS
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Comments

Creates signal
flow graph

Defines NCODL.

Converts NFT to
non-zero iocations
of 8FG adijacency
matrix

Sets -location of
Jacobian entries
in the adjacency
matrix

Does A" operation
Sets Jacobian

Eigen value
package( )

Figure A2: Overall orgainization of subroutines in
generalized Jaccbian generator.
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APPENDIX B

The algorithm programmed has been presented by
Weinblatt (30). To find the stream loops we input
the signal flow graph of the given directed graph.
Since the nodes of the original graph become the streams
and the streams, nodes, we can find all the stream loops
in the original graph by finding all the node loops in

its signal flow graph.

The inputs are number of nodes, number cof streams,

followed by XREF (N :4) which is entered as

streams
follows:

XREF( i,1) = stream number
XREF( i,2) = starting node number

XREF( i,3) = terminal node number of that stream

XREF( i,4) = zero; this space is used during program

execution.

All other dimensions are allocated during execution time.
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