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CARATHEODORY'S GENERAL OUTER MEASURE

The present thesis is essentially an exvosition of
Caratheodory's general tueories of outer measure of sets and
set measurability; however some relations between measuracility
and additivity in regard to classes of point sets and functions
defined over such classes have been briefly noted. The behavior,
in the limit, of sequences of sets from additive classes has also
been investigated superficially.

In gathering data, it was found helpful to obtain a great
deal of information on various specific systems of outer measure,
While not referred to explicitely in the thesis such additional
data facilitated a presentation of the general theory as a system
which lends itself implicitely to a classificagion of specific
measures according to their generating functi7és.

While considerable work has been done t %ard linking measure
theory to algebraic topology, discussions y%pthese developments
have been ezcluded for reasons of brevitj‘and unity of approach.
It is proved in the thesis that several broad classes of

sets are measuruable for every set function which satisfies
Caratheodory's definition of an outer measure function. It is
further shown that measurability produces certain additivity
conditions in sequences of measurable sets, and that monotonic
sequences of sets taken from additive classes have definite

additivity properties in the limit.



INTRODUCTION

The measure of & set of points 1s a generaliza-
tion of the length, area, volume, or higher-dimensional
extension of an interval, rectangle, or cell of three or
more dimensions. The generallization arises in golng from
the definition of functions over such intervals, rectangles,
or cells to the definition of functions over classes of

point ssts in n-space.



CARATHEODORY'S GENERAL OUTER MEASURE

Let p\,,,L be the Euclidean n-space. We make some

preliminary definitions.

D (1): A class QU of sets ls seid to be finite-
ly sdditlive 1f it 1s such that
I. (b < @ where i) is the null set,
II. If AJBC o then (A-RB)c Q.
. 1t ABc Q. then (AUB)c QL.

D (2)s A cless (Q_ of sets is said to be complets-
ly additive 1if

1. &c Q.
11. 1f Ac O. then C(A)e O where C(A)
is the complement of A with respect to R'm.

III. If {LAK\S is any secquence of sets from a.
then .

DOAKC Q.

D §3}: A set function T 1s & real-valued func-

tion whose domein 1s a class of polint sets.

D (4): Y 1s a completely additive set function if

I. The domain of Y 1s a completely additive
class (J_ of sets.
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.
I1. If ‘LE “E is a sequence of disjoint sets from
Q. then

oi"'(EQ

=1

x

i3 defined in the extended real number system; l.e., 1t

converges to scme finite or infinite velue, end

UEB“‘ k\
III. ‘T('b\ =0,

D (5): A set function W 1is said to be non-de-
creasing 1f, for A and B  such that A DO B

T(A) = T(R),

A non-increasing set function is defined similar-

ly.

For W non-decreasing and completely additive
ve have by the fact that Cb is a subset of every set,

that 1s everywhere non-negative.

D (6): A measure function is a set function which

is non-decreasing and completely additive.

D (7): Ir @lx, 4) 1s the distence between the
points X and »} then the distsnce from a point ¥
to a set A 1s defined by

(%, A) = STARIeS \3‘)[ € A).
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The dlstance from & set A to a set B is de-

e(a,B) = 9l-[ph,wlxe A yeB)

We now define Caratheodory's postulates for en out-.

fined by

er messure functiocn.

D (8): If I 1s an extended real-valued function
whose domain is the class of all subsets of the space Ra,
and Y 1is such that

C-I. ¥ 1s non-decreasing.

C-II. For any sequence {LEKX of subsets of RW

V( Uo Ek)i Qi‘TQEQ.

c-IIT. ‘T‘(Cb)—- Q, T(A) 2 Q A arbitrary.
C-IV. For A, B 3 p(A,B) >0

T(AUB) = T(A)+ V(B),

‘ w
then ' 18 an outer measure functlion and 1s denoted by AA .

Y
The outer messure of & set A  1s denoted by & (A).

*®
D §223 If A is an outer measure function,
and the set A is such that for any W C Rw
w * : *
AL (WY = AL (WNA) + L0 (W=-A)

: »
then A 1s sald to be measurable with respect to A4 .

Its measure AL (A) 1s equal to its outer measure, M*(A),

We denote the fact thet A is measureble with respect



(1)

*
e mt**—)
to AL by

D gmgg A set 1s ssid to be Caratheodory measur-

gble if it 1s meassurable for svery outer measure function .

T (1): If, for some AT R, W c R, arbi-

*
trary, snd an outer measure function AL J

Awy = LW + 8 (W- AN,

b
then A 1s measurable AA .

Proof: We show that

(W= A) = AL (W =ANW),

Let X& (W=A), Then Xe W end X ¢A, If
Y& A then X & (ANw) Thus X € (W- ANW)

and

(W=-Aa) ¢ (W-ANW),

By C-I -
L W=-A) = 4 (W= ANW),

Now let X € (W=ANW) Then X € W,
X € (AnW), 1f X ¢ (Anw) then X& A or XEW,
But X & W, hence X ¢ A and we have that X (W-A),

Thus
(W= ANW)c (W=A)

and by C-1I



(w=-Anwys L(W=-A),

The theorem follows by (1) end (2).

At thls point we prove & number of theorems which

*
deal with characteristics of _ALA_ -measurable sets,

T (2): G open

F= C(G)
GM-—:—_Y_PW(P,F)>#] \
B 3 Bc G
F=+ ¢, G=0¢

}I(B)é + ©o

JE(B) = mJ(BHGQ.
Proof; If E,E[_Ple(PJF)f#JJ then

F.= C(Gm),

For 1f X € K., then Q(XJF)s_;‘;. Hence

X & Gwn &ndso X ¢ C(Gn,), Now let X & C(Gm).
Then X q- Gaw End so e(XJ F) < ;»‘L\, . But now
X € Em,We have that £ i Q( wa\.) and

YN

C( Gm) C F'Yn, - Hence Fm = C(G‘W\a).

We show now that erv 1s open by showing that
F... 18 closed.
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Let P be a 1limit point of F,  Glven € >0
3 & nelghborhood N(R) of P, 3 1f ¥X& N(R)
then £ (X,P,) < €. Nov N(R) contains a point P

distinct from P, S Pe F... men P(P F) =< L , end

PP, F) = P R, P +9BF) <« ¢ +75 -

Since € was arbitrary,

(R, F)e L.

laaa¥
Then P, ¢ E., end so F,  1is closed. Since K = CLGM)J
G~ 18 open.

Now F.. D F. For Q(P}F):oc.‘l- for any

ry
PeF (= a,.. ). Also F> R o> .
For let X g Fes, - Then

Plx,Fye &~ <
and X e F-

Furthermore

(1) GanC G (m =12 .. )

Let X € Gew .Then X & C(GM) end X ¢ F, . But
F c Fw) hence X ¢_F, Then X € G.

and Gy G .. For, let Xe Gy
S
Then Q(X,F)>t>;;’, ;X E Sy

Now we have also that

() G = G Ul6a=G)lU(G;-G)U -+ .
U LGﬁ—GM-l‘)ULGW\-@\ -GM\U ..



For let X€ G, U (Ga-G)HYU++ + Then XeG, or

X € (Gm-Gk..\) for some K>\, If X¢ G, then X €&

by (1). If X& (G~ Gk ) then X e G, end Xe G,
For the converse, let X g G. Then ?{X, Fy>o,

for if e (XJ F) =0 then X ¢ F, So 3 an integer

R D e(x) F)y > JK- . Now o a least integer ™y 23

p (.)(_,F)>.¥l€ .Then X € G, and X 4‘_ G, &nd so

X c QGWH"G‘W\-\)' Thus x€ GaULG;‘GI)U.. ’
end (2) follows.

We show now that, for v > "y
(3) P(F., By > 0.
let Pe F., .Stnce F 1s closed 3 £ € F
> ¢(P Pa)f_-—#,Let Q ¢ G, Then
e(Q,R)= R(Q,F) > -
We have then that
ela,P)y + pLR R) = P(Q, R)
or
olP oY= ¢(2,RY =R, P)>m0 -2 =9
It 1s also true that
X BAGm) e A (B),

for (B N 5..)c B and C-I holds.
Furthermore, it follows from G. C Gac + + -
end C-I that



ens) = X (BNGNE

Now since L. (B) < +o0 we have that
w( BN Gan) 3 is a bounded monotonic non-decreas-
ing sequence. Then 3 A
& -
N 00
and
* ;.
A & AA (R),

—

(%)
We show now that
B= (BNGLIU(BNG.,,, - BNGL)
) (B;\';_MH.-B:\ Gme YU v |
First, let X¢ (Bf\Gm)ULBﬁGN“‘Bf\GM)U“'

Then X € (B N Sw) or X g some

(B N G‘ﬂ-v-k ~-B8n G"“*"‘-‘B) K21

If the former, X & B. If the latter, then X ¢
BN Gy 8nd 50 X € B, Thus
(BAG Y U(BAGme, =BN G YU - T B,
For the converse, let X € B. Then X ¢ (& and
xe G, UiGa~-5 Y. . . by (2). Hence X € oy
or X € (GK-(}K_‘) for some K > | , If the former,
XQG\,G%. . . &and so X & G.. and X €(B N 5.,

If the latter, and K =" then X€ (BN G.). If
ke ™, X e (BN Gwm) by Gk O 5. If

K > . then K = v+ K for some Ik, and we have

that X g kE: N Gwmek, — BN G""'H-Ko"\\) . Thus, in any



(5)

(6)

Instance
Be (BNGm)ULBRNGwm~BAG-YU - -

and we have that

Then by C-II

LA (BYE A (BNAGm) 4 A (BNGmyy =BG+,
Furthermore

( Bﬂ Gh-n -~ B QG#)U ( BﬁG@--l) C
(BN Gau -BNGRIVIBNG)= (BHGFH)'

For if X € (BDG@*—\~BHG¢.3U(BQG¢.-|\ then
either XC (Bﬁ G.Mq - B N Gp) and the first part of
the statement follows by identity; or

X & (BNGet) (BN Gy) and the first part of the

statement agaln follows.

To show that

Let X TDbelong to the left-hand member. Then either

X e (Bﬂ@;pﬂ—-%r\ef) or XQ(BHG,F\. If the
former, X € (BN Gpy) as desired. If the latter, then

xe (BN Gpa).
Conversely, let X& (B N G#,,}, Elther X¢€ G‘F
or X & Gp. If the former, then since X C R we have

since Gp T Da+ )

X e (BN G;P_), If the latter conditlon holds, we have that
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Xe (BN Gps ) and X ¢ (Bﬂc*_) and so

X € (BﬂG* ;"BHG*), In either case
x € (BN Gau —BNGAU(BNG),
So we have

(BN Gam- RNAGYU (BN Ge)= (BN Gf-ﬂ)\

and (6) follows.
Then by C-I

(1) AR T(BNGpn ~BNGR) U (BN Gpt)) = AZ(BN Gan).
Now we have that
(BN Gam —BNGpYC Fp,

For 1f X €(BNGg,-BNGy)then X& (BN G,,,) and
ve have X € B. But X-¢_ (RN 31‘) Since X ¢ R 1t must

be that XQ:G*_ Then X € QG*F) = F'{,_,
It 1s glso true thsat

(BN Gpra) C Gpmy
Then by (3), since A > 4|
B S [(BAG=BNGR), (BN Gan) = p(Fr,Gaur) > 0.
It now follows from (7), (8), and C-IV that
A (BN Gan =BNGR)+ A (BNGa-) = AL(BNGR,).
Then

w
(9) % (BA Gpm -BNGR) = AL (BN Gan) =4 (BN Gp-).

From (5) and (9)
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B2 A (BAG) + gw(s N Gome)

- *(Bﬂ Gm+¢.-z)].

Since for any K >|

EW(B N vanﬁn.) - "**(B”Gwrﬂ]: E%*<Bﬁ vax-i)
a=!

4+ A (B Grmar]] = [UN(BNGor) + AL (BN 6],

we have that

AA-*(B)‘E: MB&*(B n@mq-p-l) + M*(B DG’WH'»P)]

#ma0
— JJC’(_B N G'm-l)
. * - X
= &.,’*;; AL (BN Gresp-t) "'4{2-";“?3 s (BN Grar )

= (BN Gomet)

= X+ A = AL (BN B,
But
Lo AZ(BNAGY = A
e —p OO
Then in the limit
/U:(B)‘—:- (2N =A) = A,
But by (4)
(B = N,

Hence

IB)= A



(1)

(3)

12

B = L L (BNGL),

A -2 OO

This completes the proof.

i ()
T (3): G open ) G

Proof: Let \W be arbitrary. It is easily shown

thaet

W= (GNW) Uy (W-6nW),
Then by C-II
v * *
Wy 2 AL (GnW)+ AL {W=GnW),
Ip remains to show that
D =t (6aw) + A (W-6nw),
set B = (GAW) Then BC,GJ Bc\W. Now set
F= C(G)
> Gwm=[PlplRFY>K]

and Bv = (G0N W), We show that
AT (W=BYU B = A (W-BY+ &5 (B,

If elther or both of the sets on the right are empty,
the equelity holds by C-III. If

(W-B)YE P, Bwk 0

then we have
(w-B)c F,
B C Gon.,
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For 1f X € (W~B) then X ¢ B and X § (GO W),
Since X&€ W vwe have X £G and so X&€F, This proves
(2). Relation (3) follows from R.. = (G..MNW). Thus
e[(W=B), Bm] = €(F G.n) = £ >0,
Equation (1) now follows from C-IV. Now
W D (W-B) U Bw.
For 1f % € (W=B) U Bom and X € (W= B)
then X € W. If X€ Bw then X€ (G, NW) and

so X € W.
Then by C-I and (1)

*
Al (W) = A [(W=B) U Bw) = M (W-B)+ AL (Bu),
Now B = (GNW), Furthermore
(GmNB) = (G NGEAW) = (BN G)C B,
Then by C-I
* * *x
Ao (W) = AL (W=GNW) + & (GwNB).
Then from T (2) we have in the limit that
A (wrz A (W-Gnaw) + AL (B)

= X (w=5aw) + L (GnW).

The theorem follows from T (1).

"
'\“\LM(JJ\ )

T(4): AT 0 C(A)

*
Proof: Since A 1is measurable ,



(1)

(2)

(3)

(4)

(5)

14
F (W) = At (wAA) + A (W-AY,

We show that
W) = A WA )+ W ANV,

RNow

(w=A)= Lwn ).

For let X € (W-A) Then XE€ W, X & A. Thus
X € C(A) end so X €& (Wn C(A)) Conversely, if
¥ ¢ (WNCLA) then X ¢ and X € C(A),
X & A, So X€ (W-A) and (3) follows. Then

o (W=A) = A8 (WA,

Also,
Flwnan = ALM-clanw),

If X< (WAA) then X ¢ W, X¢ Q(,A) and so

X & LT(AYNW). Thus X € (W= C(AINW), 1r

e (W= CANAW) then XeW, X & (CCAYNW)
and it must be that X € C(A). So X¢g A and we have
that X € (WN A), We have shown that

(wn A) = (w-cAnwy,
end (5) follows.

Substitution of (4) and (5) into (1) ylelds (2),

and the theorem follows.

We now have
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*
c (1): F closed ) F l“).

Proof: C(F) is open. The corollary follows from
T (3) end T (4).

ol *
* AL
(5): AT B ) (AOB)™
Proof: Let \,/ be arbitrery, and let (A NW)
correspond to the W of T (1). We may express the messur-

abllity of B by
(1) A (AAWS = A0 [B A (AAWY] +M"[(AD\AJ—BN(A(\W]_

Now let (W- BN ANW) correspond to W. Since

A 1s measurable we may write

(2) e (w- Bmmw):»f[l\ﬂ (W—BHA”Wﬂ
2T Ow =BAAAW) = ANw- BnAAW)],

We show that

(3) An (W=BnANW) = (ANW=BNAOW),

et Xe& AN(W-BNAAW). Then X< AJXQWJ and
x & (BAAAW) s0o Xe (ANW=- BNAANW).
Conversely, let X € (ANW -BNANW), Then
X e PN and XeW, X ¢ (BN A(\W). Thus we have X € A
and x € (W~ BN ANW), Therefore
x & AN (W= BNAANW), and (3) follows.
By (2) and (3) we have
(#) L {w=BaA W)= L (ADW-BNAOW)

£ 2T W=B N ANW)= (AnW=- BNANW)) .
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It 1s easlly shown that
(W= BAANWY-(ANW-BNAAW) = (W-ANW).

Then (4) becomes
(5) . X(wW- BAAAW)= A (ANW=BNANW)

+ A0 (W= ANW)Y,

Now the measurebility of A mey be expressed by
' w
(6) Aiw) = A (AOW) + L {wW-An W)Y,

From (1) and (6)
M w) = S (BAAAW)Y + A [ANW-BNANW)

+ar(W=ADW).

From (5)
B w) = AN (BAAAW) +A5(W=-BNn ANW),

This says that (A N R) is measurable.

« * TLea. *)
W) e WYy i

T $623 A 3
Proof: We show that
(1) (AUR) = C LC(A)DQB)).

Let X€ (AUB), Then X ¢ A and X¢C(A)J
or Xe B and X§ C(B), In elther case
X ¢ C(AYN C(B)Y, Then X & C(C(AYN CLB)).

RNow let X € C(C(A)ﬁC(B)), Then
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X & LLAYNCTIBY, Then X& C(A) and X € A or
X & Cl®) end X € B, In efther case X g (AU R) and (1)
follows.
Nov C(A) end C{R) are measurable by T (4), and
the theorem follows by T (5) and T (4).

A—MM*)
c (2): A ‘ , (k= ‘.:2*_,' ‘,'J"“)'B'
" asa Ak )
CEAY

Proof: Follows from T (6) and induction.

T('?)% BIDB:,D"' 1.)\
K J LK:’\-):J".)
L0 Bx)
Proofs It is obvious thsat
(1) (WNnBYD IWNBIDIWNRID -
Also -
(2) (W QB (WNBY.

For 1f X & Fi,e" then X € BK,(Ks\Jl,-")-
From C-I and (1) the sequence {:{: (WnN Bw\}
1s monotonic non-increasing. By C-III it is bounded from
below., Then 3 A 3
(3) Lo i (WD BL) = N,

N oo

Since (2) holds (K = L2 -+) then
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ad * _ N
AW A D B A (WA B, (k=2 )

and ao

(%) JV:Q\JF\EBQ‘E: N,

Now

(5) W = (W mi‘:\aqugw-wm BYU(WNAB-WN B,
\

U (\A/ N BK-Q"W(\BK\U. '

Certalnly 1f X YDbelongs to the term on the right, it be-
longs also to W, Supposs X e W, Either X € l/\ B«
(end (5) is proved), or X & f\ By . If the latter holds,
3 a K23 X & By, lLet K, be the first such K.

If Ke=1| then X € (W~WnMNB,) end (5) follows. If
Ke > | then X €B, _, and X € (\WnN I WNBKO).
Thus we have (5).
Then by C-II
(6) sLiwy e AL (WA AR+ A0 LW -WNB)

an (WNAB =WN B+

Since [, 1is measurable

(1) Al lw) = AWk +M*(W~W'”Bs),

and since By,, 1s measurable eand

(8" M BK*I\:‘ BKH

ve have

. x
(8) S (WABK) = Ak (W N Bra )+ AL (WNB =WNB),
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Substituting (7) and (8) into (6) we get
afiwre 8 (w N B+ B (w) -0 (W B))

T (wn ) - 8 (W BaY)

“+ W(WﬂBa)—/‘-:(Wnt,SJ"- :

and so

AWz a8 (WATR B + 8 (W) = Ripg 4NN B
By (3)
Lrwys AW ¢ (W) - A
Thus
A < AI(WOEBK).

Then by (%)

(9)

A= Al (wnale) s L AL (W N B,

™M -» Oo

It is easlly shown that (5) may be rewritten as

(W=WnAB)= (W-WNB)U(WA B,

‘\A/ﬂ Bz>U L ,
From C-II, (7), snd (8)

°0 b 4
A (W=W N DB = A (W-WNBY)

+ L (WNB-WNB )+ - -

X oWy - wn B « (ol (wn By
S (WA B+
J(W)-M%M* (W N Bwm),

{
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We have thus from (9) that
ot (W= w n'ﬁ 8] = Fw) =& (WS By ]
So

10) W= W mé’e,‘] r 2 w-w mﬁb"] ,

It 1s easlly shown that

W= (W nfj'ak) J (W-W ﬂﬁax).

Then by C-II

* x® 20 * g
iwy s Al wnAe] + A [w-wmp'B,‘],

With (10) this says that

Awy = L wn s v w-wnie),

i.e.,
>0
‘f"\ By 18 measurable.
K=l
*
T ‘823 A}\ 3 (k: l..;l)' ! ') ')'
(M W(M*)
A
\Ql -
Proof: Let
Bl-"':A\) B:.E Ay"jAz) vy
BME ApmA;n-..ﬂAmJ"
Now

(A\mA‘z}C AI) (A|"\A1QA33C (A\ﬁA:JJ .

(Pﬂf\ﬁ\;f\. ' f\A»n)\:(PnﬂAz_ﬂ Vo ~nAM-l)). -



(1)

(2)

2l

Furthermore, by T (5), Ba = (A1 N Ay) 1s measursble,
B;=(ANAL)MN A3 1is measurable, .

So we have that By, > By > + + with B:\WTLM)
(K= I_2,+..). The postulates of T (7) are now satisfied
and so kﬁ Bx is messursble.
No;‘
>0
fjAK = Q‘BK‘

0
For if X € kQ,AK then X& Ax, (K= 1,2 +-:),
So X& A= Bx} X E (A)QAQXE BzJ..-Jand 80
XE BKJ (,K= l)l‘,t ")-
o
If X ¢ ﬂB“ then X € BKJ(K.:LQJ...),

So X€ B, = A x€ Ba= (A,ﬁAl))...J
X € Bm= ANALN. . NAW 0

Then X & Ak (k= b2, . )

)

Hence the theorem.

r(g): A L (B) < w0 )

Proof: Let \y correspond to (A |UB). Then since

A 1s measursble
A U AUBY = AL LA N (AUBY + Al[(AUB)- AN(AUSBY).

Now

A= AN [AUB),
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Also

(3) (AUBR) - AN (AUB) = (B-ANB)

For, let X € (AU B)— AN {AUBR). Then
X € (AUB) and sc X € A or X & B, But we have also-that
x¢ ANCAUB), and X¢A or X¢& (AUB). But
X &€ (AUB)., Thus X ¢ A and so X¢ (ANB). Now since

X ¢ A and Xe& (AUB) we have X& B. Thus it is that
x ¢ (BR—=ANB).

For the converse, let X € (B‘AHB), Then
+ Xe B end X & A. since Xe& B, X¢ (AUB). since
Xé¢ A, X g Aﬂ(AUB), Therefore
“e (AUB)= AN(AURY) and (3) is verified.

Now from (2) and (3), (1) becomes
(4) Ar(aur) = AL (A) + AL (B-ANB).

By the measurability of A we mey write also

By s AN (ANB) + AT (B-ANB),
or

(5) g-AnB = AL (B)-L (AnB),
| Equations (4) and (5) give

X (AUR) = AN(A) + uX(B) - AL (ANB).

o W) el

c (3): A, , As , AVNAL = )

ALUAL U ALY = (A '*'M(Aﬂ.
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Proof: From T (9)

*4
J: (AI J A1\= «Uf LAI‘)+/\:(A1‘)"-’UL KAlm Aa)

*
But ( AN A{): Cb Hence by C-I1I, M(AIHAQ: .
Thus

x ., . *'P\\
LA (AVUAY) = wn (A + A LAe)

By T (6), (A, U AL) 1is measurable A, and

A, are measurable, and so we have

A (AL UALY = [ A+ aa( ALY,

by D (9).
uﬂ Ak M)) (,K: l,)z,, JW)}')
&Afm N A\\'-'— b (rn ™)

./u..( UAK): ZM(AIQ
R=1 k=)
Proof: Follows by C (3) and induction.
o ) |
(o) AT, Lksha 3})
A A= O (g m)
T = S At
‘ —— '
AA (k:)‘AK) - K=}
Proof: By C (4) and D (9)

(1) ./U\T Q E:)\F\q:: :iM,*(AQ.
- =i

for every w,.



By C-1I
(2) J(UAK)S = A (A
K=\
Now - "
Oae YA
K= =1
Then by C-I
* ™ \ A ( = 2 . ..),
(3) ““-,(.H.A*) > /u_(d M= I,2, )

In tbhe limit, from (1) and (3),
* e
() AL(J A = (AW
The theorem follows from (2) and (4).

% ~rzoa ()
T (11): . (B) = O 5' B

Proof: let W Dbe arbitrary. Now

(BAw)cB
Hence
(1) M*(BHW)& J\A*(B\r—@-
We show that
(2) A8 W) = B AW) + M*(W—BQW),

From (1)
LBAW) + A (W=BowW) = M (w-BAwW)

Since

(W=BNnwW)c W

and
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(W= BAW) = uXw),

then | .
(3) AW + A8 (W= BAW)E AL (W)

Now

(4) W o (BAaw) UlwW=-Bnw),

For, let X € W. If Xeg¢ (Br\\,\/)) (4) 1s true. If not,
then X & (W=-RNW) and (4) follows.
We have then that
(5) AWy = 48 [BAwW)U (W= BN W))
= oy (BAW) + M. (W=-BnW),

Equatlon (2) follows from (3) and (5).

e | A "-""Q‘L ) /*)
T (12); W gDy (aeg]

Proof: (A~B) = (AN C(B)). The theorem now
follows from T (4) and T (5).

L (1) If ‘T" 1 is &ny sequence of sets, then
"

3 & sequence LA».} of disjolnt sets 3

-] Rad
ok

A

Proof: Define a sequence {An\g 3

Ay =T

and for m > |
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M=)
We show first that

od Qd
nsa=y

"ﬂ—l

let X € U _ Then X &l for some m, Now
N
there is a first such m ceall 1t m, , Then X g P«-\,
Ny~
(m= 2, 0 'n.-\). Thus X € {?m - k&gl(}» and

Xe bOw,. Then X € ,,D;A“ |
- )
Conversely, let Xe¢ UA. . Then Xg A, for
n= ‘ 'n."

some M say'Y\..So er",, kU{’ . Thus Xea\.
=1

end so X & U P
We show nov that the A,  are disjoint. Suppose

3 an X3 xe& 0, ed XE A“J"’”*'F end sup-

pose "> & . (This is no restriction.)
- |

Stnce X € Awm, Xell, emax g UMR . 1f

=1
n=l
Xx§ Uy then X ¢ [u.,  Thus X¢Q-'- So
k=)
X & Aa. This is a contradiction. Hence the Am are dis-

joint and the lemma follows.

L (2): EITWLM.: (k= 1,200
ELn EN=9, L q) )

S.ﬁ': E)'EK J (M: L,:Jv--->

D (ANSw) = RE‘M*(A(’\EUJ

A arbitrary, (m=1 2 .. .),
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Proofs The proof is by induction. For m = |
the lemma is true. We now assume the lemma true for

" = 4 &and show that
> - L2 B
AL (Anb**h=)(;|% (AHEK\)\

By C (2), Sa 1s measursble. Then with

(AN S-F*‘) corresponding to \W we may write

1
B2 (AN Se) = A8 (AN S NS0) 5 2T AN S

- B N Saan Spj},

It 1s true that

(2) (S@-n N S"P’) = S@.

and
(3) (AN Sead = (AN Spa D 5p) = (AN Epny).

Equatlon (2) 1s obvious. For (3), let
X € (AN Saer) ~(A(\ S@.ﬂﬂSpﬂ, Then X € A‘J
X € Sp+1, Then X g E  for some Ko, (|5 K, < £+1),
But X € (A O Sau N 34:% end XC A end X & Sp4;.

This says that X § S,. Thus X § E |

(k:lJ:J‘--).p,)_, and 80 X & E py andXE‘:(Al’\E¢+,).
For the converse, let X € (A N Egg ). Then
X € A end X& E/{H; ., Thus X <& ’C}' Ex = S But

= Spa
since the E, are disjoint, X 4: E_k
J

U<=LZJ\n F)andso X ¢ UE_R~S#' Now
Xe (A ﬁ Sf’*"} and X é_ S@_, Hence
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%€ (AN Ske) = (AN Sp N Sy)
and (3) follows. Substituting (2) and (3) into (1) we get
Kad
/Lz( AN S‘,:ﬁ'l\: Al (Ar\S{J-{-}r(Aﬁ E1-+|).

But we have asssumed that

J(A,’\SF): kf_lM*(Am Ek)

Hence we have

LB (AN Spa) = ZAX(ANED + (AN E pa)

K=/

il

hr
§J< ANELD,

Lz BN (ks
KEMOEA: (bJ (v 3 ) )
S = UEw

Proof: It 1s true that

(A N :Lzl E.u) ») (A leLEK)

Ans) 2 (ANS,)

Then N
(1) AT (ANS) = o (ANS,)Y,



(2)

(3)

(1)

By (1) end L (2)

29

L (ANS)Y 2 Al ANEK).
K=

we have

Sm =

each T,

In the limit

AN (AN S) 2 3 S (ANE),

By C-II and the fact that

(ANS)= ;\jz‘gA A Ex)

A:(AﬁS)f: E‘J(AHEQ.

The lemma follows from (3) end (2).

aea (M*)

LS‘#}: EK 5 (k:-l)l).. .%

/\E.Mn M Ev\\: (pJ (M
S = U E
S = YE

—~Thosas, LM*)

Proof: Let A  be arbltrary.

~M,
&% Ex . Then by C (2), Sa

and by D (9) we may write

™) ')'

Set

is measursble for

LAY = AL ANSY) + W (A-S L),

RNow

(A‘S’ﬂ) 2 (,A"S\-
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For let X € {A=S), Then X & A eand X & S.
Then X & E|‘JLK=\,:.)~..) end so X & S |
(m= ,2,+++), Thus X & (A-S.)and (1) follows.
Then by L (2)
A = '?;J-A*(Aﬂ Ex) + Al (A= S,
=

By C-I and (1)
" *®
LAy 2 ol (AnEQ) 4 (ASS),

In the limit
(2) A = o AN AN B+ AT (A,
K=\

Since (ANSY) = kL_J' (AN Ek) we have by C-II
and (2)

(3) L (A) = o (ANS) + A (A-3),

(W)

Now

() (ANSYU(A-S)D A,

Then we have by C-II, (4), and C-I
(5) ¥ (ans) + (A-5)= AL[(ANS)UIA-5Y = LA,

The lemma follows from (3) and (5).

We are now in a position to prove
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T (13): EK‘ MA(.‘*-L)) (K:: l_,'::, v ) )
S = :leak

Proof: By L (1) 3 a sequence {F&k} of disjoint

sets 3
) a2
S = UEk = U Dy
Kz K=t
end, for each K
14 Qw1
A = \Ex = UE..

Now, by C (2) and T (12), A, 13 measurable for
every K. Since the A, are disjoint it follows By L (4)

o0
that | J A, 1s measurable. Hence the theorem.
k=i

We now prove the theorem on the relation of measur-

ability to measure functions.

T (14). Let,dr be &sn outer measure function snd
Y\ the class of _}if-measurable sets., If the domaln of
,LJT 1s TN then_;ir is & measure function.
Proof: ui sstisfies C-I, C-IT, C-III, and C-IV.
By C-I ,uf 1s non-decreasing. It remsins to show that
AAT 18 completely addlitive.
Now J¥\ satisfies I, II, and III of D (2). Postu-
late I follows by C-III end T (11), II follows from T (4),
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end III follows by T (13). Thus §¥\ is & completely addi-
tive class of sets.

Furthermore, I, II, IIT of D (4) are satisfied.
For I follows from the complete additivity of'KF\ » II
follows from T (10), end III follows from C-III. This says
thatljjr 18 a completely additive set function on TN
and the theorem follows by D (6).

We wish to prove now three theorems on relations
between messure functions of limits of sequences of sets,

end limits of sequences of measure functions of sets.

D (11): The limit superior end limit inferior of

a sequence {f;mgx of real numbers are defined respective-
ly by

_l}.vﬁgww - MMW

Rl 1= )

K-> M=K

and

)2,:,.-.'_4&-*\ = R&&J’Mﬁ&w.

"~ —3>0 K> w2k

If {¢L~§ is such theat

2a = ‘ yos
Loy e = T
ve say that iLLKk converges and dencte the common limit by

Lo Mo .

" ~» g

D (12): Let {HL} be a sequence of sets. The



(1)

(2)

33

1limit superior and limit inferior of {r‘.ﬂg are defined

respectively by

limr‘m:ﬁcoﬂ‘

" <» o0 kalnzn
and
o o
L= UNN,
" oo K=l nzx

If {fl\\g is such that
Kan Ma = Lo N

3
~ —3 o0 >

ve say that {]"“‘S converpes and denote the common limit
by

L OUNIG

e X%
L(5): NMaolhaco.o.
=0
\ -
{Rﬁ} converges, “_’Mﬂ,\ = Mgﬂ,,

Proof: We show thsat

L)
" —» 00 n=l
and that
S ——, ”
Lo = UL
M - DO e}
For (1)
W 0 L)
Let X€ Lo I = gm . Then Xe N[}
e nTk n=K

for some K= K, and consequently X & ‘Kg . So

o0 ]
X e “\_J\C,, Now let X € »H f‘.“ . Then X ¢ F'.,‘ for some

[ )
. Then by hypothesis X € [n (= K, Kl »o )
and so X € ﬂ l» . But since

SAn = (AU UG

K=lh:h
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@20 o0
1t follows that X € UNTMN, = 2~ I . Thus (1)
Kzt Mk NP Cxy
holds.
e — D OO
For (2), let X € Ll = N UMD Then
o0 Moo K:‘ Y\:K
e UM, for K= and so
MR
X & U
"=y
Conversely, let Xxe \_J . Then X &  some
fx. @&nd
- -]
(3) Xe UL (k= Lo, - ey, Ko

But by bypothesis X £ D (= ke K°+2J...)Jhence

4
() X € Un\-\ (k: Ko"'!_, Ko"'l-").

) WD
The relations (3) and (4) give X € /'\ U P,,
and (2) 1s verified.

It can be shown by & similar process that

L(6): N>R~ '>-
= T
{R} converges, Asooe |, IR
Let & ©be & completely edditlve set functlon de-

fined on & completely additive cless (J_ of sets,

r(s): {E~3CQ, EicBacer )
L T(E)= T(Lon En),

" iy OO

Proof: Since £, c E, < + +» + we heve from
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ot
\J E,.. Now let E, = ¢,
el
Ve show thet
, ol
(1) .QJVW\E““: TjEw = \\)(EM‘E"""}.
- P O oz | |
Let X & %\Q\EM, Then X ¢ E., for some
"= K. =2

a first such K , call it K, , Then

X & Eg. &ndso X & (Ek,"Ek‘-,‘)_Then X €
:L_.j‘ (Boy ~Em.) . Nov let X €

X €

o0
U, (Ew ~Ew)). Then
(Ew ~Ew-) for some m = K

and so X g E Then
O
we have that x e \JE. , This proves (1). Now we
= | ’
show thet
) (E'v\"'E‘n-)) HLE“‘-E"’“"): qb (%#’Y\)
5 .
There 1s nc restriction in teking ~ « w. Let
X& (Em—En,)and X € (E-m- E.)Then X & Em
X & Evei g, snd X & E-v, Since X ¢ Ew.y 1t follows
by hypothesis thet X ¢ [E

(K< m).

But X g K.,
Since ~ < M, this is a contradiction snd (2) follows,

We novw have by (1), and II of D (4), that
“ -

= T(“ZjIE.-“_) = T(MQI(E’\%*ET’-\‘))

of. TLE"V\ —E.'h-l)
hat 3|

il

i

’Q}:’\’Y\/ l}f_*_ ‘T(EV-‘ E“-l)

K —ap 00 7mg|

= Xl T( O (Ew‘E‘M»-
K~ 00 mzl

By the nature of the sequence {_EWE
K \

J (Ew-BEwa) = UEL s B,
M3l

“wali
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Thus . ‘ (E
(]" (.L/m E‘v\.) = k—Q:‘;;\. T K),

M~ 00

L(7): Aca, BecQ@ ) (A-B)c O
Proof: Let &, C_(l.:’ Evc O.. By D (2),
¢ € O..Jand we may vwrite

:@‘ Ew < O

where E~. = ® (~ > 1) . This says thet (E, UE4)c Q.
By D (2), C{A) o Q@ and so

B U ClAY < Q. Hence T(BU (A) < Q. It is easi-

ly shown that

CL®UTLA)) = (A-B)

and the lemma follows.

? (16): {E~} e O, E/DEa> .. })
T(E.) finlte for some ™

Lirre T (Em) = T( Livw Em) .

N - oy A — e
Proof: Let A < Q., B < 0. .. We show first thet
(1) A>B, T(B) finite )
T(A-B)= T{A)~T(B)
end

(2) | A >B& , T(A) finite ).
T(B) fintte.



For (1) we have that
A= (A-B)UB.
since (A-BYN B = ¢ we have by II of D (4)
(3) T(A) = T(A-B)+ T(B).

Now Y(B) 1s finite, so we may write
T(A)- T(B)= V(A-B),

For (2): Since T [A) is finite, we have by (3)
thet LY (A-B)+ (@) 1s finlte. If either T(A-B) or
T{(R) is infinite, then W(A) 1is infinite, contrary to
the bhypothesis of (2). If Y(A-B) eand T(R) are both
infinite end (a): have opposite signs, or (b): have 1like
signs, thelr sum 1s either (a): indeterminate, or (b): in-
finlte. 1In elther case the hypothesis of (2) is again con-
tradicted. So both are finite.

We proceed with the proof of the theorem. Let

Mo be an m  for which T(E.) 1is finlte. By L (6),

[+%5)
Q0 Ewm= %C) E. , &nd ve have also that
e ) =
oo
(4) R, B = [\E_“C_E,.)o'
— o =

Since Y(Ew,) is finlte, we have by (4) and (2)

o
that T(Q' Ew) is finite, and so T(m«?xgg Ew) 1s finite.

Thus by (%) and (1) we have

(5) EM E'_%Q_E_“)‘ — T( d_«;wog) E%)

n-» o

i

(Ew) ™ T’\,%*':;:,; Ex).
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Now for any K

(6) EY%-EK>C,(E“f'EKH).
For 1f X € (E-w,~Ex) then X€& Ex, and X ¢ Ex,
Since Ex 2 E x4 , X & Ex,, end (6) follows.
By L (7) end (6), T (15) epplies and
(1) [ (Eng=En)] = Ko T{Ew, -En),
W —» 08 " -»on
Then from (5) and (7)
() T(Ew) =T (L Bn) = Ls T(En, -En).
By the nature of the sequence {E,\} ve have that
for m=me, Ev. © En, and by (2), that E, 1is finite
(v = ms) . Hence for any m = m, (1) holds and
(9) )(L.V\/vv T(E“Q‘Em

L )= Ao [T(Ewm) = T(En)
Substituting (9) into (8), we have

T Emg) - v(;ﬁf‘;g;E“) = %;[?(E”J *V(Em\]

= YT \E - AT
k ”.} ,h_;‘;: (En),
The theoreﬁ follows by subtraction.

In T (14%) 1t vas shown that %)\ 1is a completely

additive class of sets. Then with D (6), the hypotheses

of T (15) and T (16) are satisfled for Y an outer measure

» .
function s 5 and (l_:% s L.e., for,u.* and sequences

*
{E—“}S composed of 4 -measurable sets.



T 51'(); iE\} - oo ) A H Moasure function

on O Y
(1) i Lom B 2 a0 (En)
T —» 00 aaliay Jo o)
ad
and 1if SLE“:B 18 3 M( U Eﬂ)ém then
"=
(2) M L /
A (g En) 2 A (B,
Proof: We prove (1): For each ~, , let
o
A-y\ = KO'V‘EK'
Obviocusly
(3) Aw c Ew.
We show that for each A
(%) Av. & Away
o
Let X € A, = Kr_\ Ex . Then Xg E., &nd also
- o
A € E—ﬁnﬂ) E'h-vz.) e, S0 X g kQﬂEK = A'“*‘v
Thus by (3) end D (6)

A (ALY = A (En)

and 8o

LM M-LAY:\i &;—VQ'U"<E'\1).

M —> oQ Rl ]

By (4) and D (6) we may spply T (15)

Then by
T (15), L (5), end D (12)
Ly an (E) = e i A = a4 (L Am)
M = o0l ) — OQ Pz 7
oy o 29 .
— . ~ = /4(' VR
= A L;leA ‘> "rE}: R=m K)
- AL ( A, En) .
N ->»o00
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The groof of (2) is similar to that of (1): For

each m, define
ClAn)= C(D\C(EK)B.

Now

(5) (A~} D Em.

For, let Xe E~, Then X & C(E,) end so

>0 -]
x & ) CLEx. T™us X & C (KQ\C(EQB: C(A,
Also

(6) C (A=) D C{Awn),

For 1f X € C(Am,.) then X & Ay =k:f3ﬂCLEx)
end so X ¢ some T(Ex,) (k,=m+1). But then
X & N(Z\“Q(E,‘) end so X € CZ(Aw),

Finelly, we show that for eazh ™

(7) AL (C(A))< 2.

To do this we show that
L -]
=
C.(A'n) < ML‘)'—M. ,
Relation (7) will then follow from hypothesis and the fact

that .. 18 non-decreasing.

K4
Let X & C(A,)., Then A ¢ M C(Ex) and so
ks~ 2

» & some C(Ek,) (ke 2m). Then Xe Ex, and
>0
thus X &€ MQIE”\'

Now 44 1s non-de ressing. Then by (5) and D (11)

(8) Lo, #A(ED) @ i 4n (C (AW,

Rale 1-- N - oo
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By (€) and (7), T (16) holds fur {C (A“\} s i.e.,

(3) Q.,M. MLQ(A"‘h «wa-m, C(Am))
This ssys tlet M%M C(Am)) exists.
By D (11)
(10) Lo an (CLAR) = Lo 4 (C{AR)),
"~ —» oc alen 4>~

Substituting (17) into (9), and the result into
(8), we get

Lo a (B < M(%cwm

" —»o00

By (6), L (6) applies. Then

) it oty s = (s
= “Lfﬁc_((\ QLEK))]

"ne|
But

(12) JaE U Ex.

L L%

For, let X E C(D“C,(EK\), Then X ¢
ﬁ C(Ex) end so X & C(E) for some Ko (Ke2=2m),

hsm

-]
Than X € Ex, and X e U Ex.
Kzw,

Conversely, lot X & (JE,.. Then X€& Ex for

K=m

scme K' (K'=m) . so X ¢ C(E.) end thus X &
2 clEx). men X € C{ M CEW).

K=m

By (11), (12), end D (12),

m/‘«LLEn‘)f_ M(w UEK) = M(L-':» E'w\).

W GO net Kz " ~» o0
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