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CARATHEODORY'S GENERAL OUTER MEASURE

The present thesis is essentially an exposition of 

Caratheodory*s general theories of outer measure of sets and 

set measurability; however some relations between measurability 

and additivity in regard to classes of point sets and functions 

defined over such classes have been briefly noted. The behavior, 

in the limit, of sequences of sets from additive classes has also 

been investigated superficially.

In gathering data, it was found helpful to obtain a great 

deal of information on various specific systems of outer measure. 

While not referred to explicitely in the thesis such additional 

data facilitated a presentation of the general theory as a system 

which lends itself implicitely to a classification of specific 

measures according to their generating functions,
/ 

i
While considerable work has been done toward linking measure 

theory to algebraic topology, discussions pf these developments 

have been excluded for reasons of brevity and unity of approach.

It is proved in the thesis that several broad classes of 

sets are measurable for every set function which satisfies 

Caratheodory's definition of an outer measure function. It is 

further shown that measurability produces certain additivity 

conditions in sequences of measurable sets, and that monotonic 

sequences of sets taken from additive classes have definite 

additivity properties in the limit.



INTRODUCTION

The measure of a set of points is a generaliza

tion of the length, area, volume, or higher-dimensional 

extension of an interval, rectangle, or cell of three or 

more dimensions. The generalization arises in going from 

the definition of functions over such intervals, rectangles, 

or cells to the definition of functions over classes of 

point sets in n-space.
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Let be the Euclidean n-space. We make some

preliminary definitions.

D (1): A class Qu of sets is said to be finite

ly additive if it is such that

I. C. CL where

ii. if B c CL 
in. if /\J B c OL

is the null set.

then ( A - B) C CU .

then ( A U B) C GL .

D (2)g A class (X> of sets is said to be complete

ly additive if

I. G CL-

II. If fX Q CL then C (A) C. CL where C.(A) 

is the complement of A with respect to R'vv.

III. If Is any sequence of sets from CL

then

U AkC cl.

D (3): A set function T” is a real-valued func

tion whose domain is a class of point sets.

D (4); is a completely additive set function if

I. The domain of is a completely additive

class CL of seta.
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II. If is a sequence of disjoint sets from

CL, then

EtIEk')
k=l

Is defined in the extended real number systemj l.e.» It 

converges to some finite or Infinite value# end

U Ek) _ Lt(Ek') .
K Kz |

III. T ( = 0 ,

D (5)? A set function T* is said to be non-de

creasing if# for A, and B such that A 2) B

A non-increasing set function is defined similar

ly-

For XT* non-decreasing and completely additive 

we have by the fact that (|) is a subset of every set# 

that V is everywhere non-negatlve.

D (6); A measure function is a set function which 

Is non-decreasing and completely additive.

D (7)$ If I Xj is the distance between the 

points X and then the distance from a point X 

to a set A, Is defined by

a.) - a].
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The distance from a set A. to a set B Is de

fined by
elA.B) =

We now define Caratheodory1s postulates for an out-.

er measure function.

D (8): If Is an extended real-valued function

whose domain Is the class of all subsets of the space R

and Xf Is such that

C-I.

C-II.

C-III .

C-IV.

Is non-decreaslng.

For any sequence of subsets of Rvt

T(iif Wk).

v(^) = Oj r(A) a o_, a arbitrary.

For B 3 p ( AJ B) > O

T(AuB)=. t(A) +
then 'T* is an outer measure function and Is denoted by /Ar.

The outer measure of a set Is denoted by /Jl ( A) .

D (9)8 If is an outer measure function, 

and the set A is such that for any W C_

.xZ(wriA) + jx(w-A)
* then A is said to be measurable with respect to m, •

Its measure /X (A) is equal to its outer measure, 

We denote the fact that A I® measurable with respect
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(1)

*
to yUL by

D (10); A set is said to be Caratbeodory measur- 
* 

able if it is measurable for every outer measure function /x. .

T (1); If, for some AC R-ru^ W Q R-vi arbi

trary, and an outer measure function

a? (w) = >u?(wr\ A.nw)J
* 

then Av is measurable •

Proof: We show that

Let X £ (W-A-). Then X C VI and A. If 

A then X^(AnW). Thus Xe (W-AHW') 

end
(W- A) C (W-Arivj).

By C-I
A^L(vy-A)^ -cl*(W-AClW).

Now let X e ( W- AClW), Then X £ Wj 

X (AnW). If X t (Ar^W) then Xt A or X^W. 

But X €. Vj hence X A and we have that X €, (W-A), 

Thus

(w- a nv) c (W—a)

and by C-I
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A? (W-Anw)^

The theorem follows by (1) and (2).

At this point we prove a number of theorems which 

deal with characteristics of -measurable sets.

T (2) $ (3 open 1

Fa CIG) /
= [Pl ftP.P) ! \

B 3 B c G I

F =#: G ■* $ |
IB') ■=- + V

^(B)=

Proofs If Pr = [_P|f (P, p) — y then

F_= C(GW).
For If X €. then F) . Hence

X G^v and so X £ 0.(6^). Now let X £

Then X G->w and so ( X F) now

X G. R^.We have that G^) and

CXG-^) C Fv^ . Hence = C(G-v^).

We show now that Is open by showing that

is closed.
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Let Po be a limit point of Given C > 0 

3 a neighborhood N(P0) of P6 3 If X G N(f5o') 

then (x, <. Now N(, Po) contains a point P

distinct from PB 3 Pg Then ^(P, F) and

C ( Poj ) ^=- f (, p6j P) 4 {(Pj F) € 4 ■

Since €. was arbitrary.

Then Po G Fvn and so Is closed. Since C(G^VI) 

is open.

Now Ev^ D F. For -^(Pj F) — 0 for any

P G F ('r-n =. xj . • • Y Also Ft D Fi D * • • , 

For let X £ Fk^,- Then

and X £ Fk ■

Furthermore

U) Gw c G L a., • .

Let X £, G-rn . Then X C- (, G->w) and X F^, . But

F C Y ; hence X £ F, Then X € G.

And G) CL Gi. Q • • • . For, let X £ Gk
Then f (X, F) -jL > ; X £ Gk+I .

Now we have also that

G =• ^iU(Ga.*Gi')ULG3-Gi)U*‘-

V) (, G->-n” U ( I —• V) ‘ •
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For let X £ G, U ( G i — G i) L) 1 • • , Then X G Gi or 

X e (G k - Gk-i) for some K > t, If X G Gi then X G G 

by (1). IfX£(Gx-Gk-i) then X C Gk € G.

For the converse, let X € G. Then > 0^

for if (Xj P) = 0 tben X € F. So 5 an Integer

1^9 F) > “i< ' Now 2 a least Integer nrrv 3

.Then X G and X G^-i and 30

X €. (.Gn-n — G-rn-l) • Thus X £ ‘

and (2) follows.

We show now that, for *>l > ovv

(3) ?(F_j £_') > 0.

Let P $, Ew . Since F is closed 3 fo G F

2 f ( Po ) - • Let Q € G^Then

eCQ,pjs uq.f) •

We have tben that

f (q, P ) +• ? ( P, Po )

or
?lp,-?(p-,p) >

It is also true that

Cl G-J S: (B),

for (E G^) C B and C-1 holds.

Furthermore, it follows from G ) C. Ga. C. * ‘ * 

and C-I that
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(M

Nov since I B) ve have that

^a_a^ I B H ) j Is a bounded monotonic non-decreas

ing sequence. Then 3 X 3

'T\ -*OO

and
X ^*(B)

We show now that

B = I B n U ( B n G^+1 - B

u ( B r> B u • • •
First, let X £ ( B G-m) U (B H ”B H G^yj , , 

Then X G ( B Q G-«nl') or X £ some

(Bn G,._k- 8 o r„w)j k>i,
If the former, X G B , If the latter, then X €, 

B H G^*k and so X C B. Thus

( B o (;_■) u(.BOG,,., - Bn Jju • • ■ C B.

For the converse, let X € B . Then X £ G and 

X G Gi U (,Ga.-Giyj. . . by (2). Hence X£ G ( 

or X € ( G k. - Gk-G for some k. > I , If the former, 

x G G1 j Gij . . . and so X G Gand X <L(fe G 

If the latter, and k = "mu then X E (B fl G-^ . If 

k j X G (B G>n) by G K G G-^. If 

k > -m then k * K6 for some l< 0 and we have 

that X £ (6 G — B /A G-m* k0-i v) . Thus, In any
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Instance

CL ( B U I & G"rr,*l B G'vn') U

and we have that

B= (Bn G™) U IB n G^,«-BriG^')'0 ■ • ■.
Then by C-II

(5) ^(8)5. ^(BnG^)+■ ■.

Furthermore

<6) IBnG^-BnG^ulBnG^c

(Bn -BnG|t')U(BnG<u')= (BnGf,.*^

For If X 6 (B 0 G|Lri * Bn G^.1) U ( B n G^.-1 then 

either X £. ( B H G^+i — B H G>.S) and the first part of 

the statement follows by identity; or

X G (, B C (BP| and the first part of the

statement again follows.

To show that

Let X belong to the left-hand member. Then either 

xe ( Bo B-f\ orXe(BnG>). if the 

former, X G ( E> P G^+i') as desired. If the latter, then 

since G^. G. 1 ) X € ( B O Gf ♦ i ) .

Conversely, let X£ (B>0 G^+G. Either X£ G^. 

or X G^. If the former, then since X £ B ve have 

X G (BO Giu). If the latter condition holds, we have that
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X-C and (B H and so

 /  d /-s r* \ In either caseX € ( B DG^i -on^ ).
x -c (Bn -Bn G^ u (b n G^\

So we have

(B.n G+w-BnG^uCBnGfr^x (Bn Gf. ti Y
and (6) follows.

Then by C-I

a/?BnG^-k -B nG>') U (Bn G^-iS] ~ (BH G^.*I

Now we have that

(BnG^, -BAG+)c F>.

For if X tlBoG^.-BriG^tben XelBClG^ and 

we have XgB- But X (BnG^Y Since X G B it must 

be that Then X € C(G^,) = E^_.

It Is also true that

(B r\ q G+_,

Then by (3), since ^x-|

(8) eLCBnG^-BnG*)^ > f ( F^G*.,) > 0.

It now follows from (7), (8), and C-IV that

>uT (Bn - B nGfx') -+• aa- (BnG^-i) .
Then

(9) xZ (BAG^I (Bn G#!-i).

From (5) and (9)
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V(B)£. + Z ( B n
^.e | ~

— G 'w, -a)^ -
Since for any K •> I

IB H ~ (ax (Br> Gv^+k-i)
= 1
•t aJ? (.Bn G^+k')}- |^u^(BnG^) + vu (Bn G^-ii 

we have that
( B) *5: E?-^ (Bn (BP

— -M, (,B H G'rn-l')

- x2,(BnGw»A.A+
£ —> O® r T--* 00

- yLL (BP G-rrt-l )

X + A - AA.*(Bn G^-,).

But
X^?.*(3nGXi= A.

*V*1 —► ”O

Then in the limit

A.

Hence
IB)- A.
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1 .e

jj* ( B) ~ (8 ,\ w / QO

This completes the proof.

. 'V1MUOJ1- (-U-
T (3)i G open *) • G

Proofs Let V/ be arbitrary. It is easily shown 

that

v) — LG nV/) u (.Vv — Gw,

Then by C-II
* (Gnw)+ Af(w-Gnv/).

It remains to show that

aa^Lvj) -aZ I G nw') + (W- Gn w),

Set B ~ (GnWY Then B c G BcW, Now 8et
F = G(G) " -]

J CPIplP.F)>^]j

and B-wx, H n W\ Ve show that

B) U = >U.*( W- B) + A? IBmv).

If either or both of the sets on the right are empty, 

the equality holds by C-Ill. If

(\V - B)1=
then we have

(2) (W- B)C Fj

(3) B^cG^.
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For If X G (.V/-B) then X B andX^lS^W).

Since X € W we have X G and so X G F, This proves

(2). Relation (3) follows from ~ Thus

e(F, G^) i > 0,

Equation (1) now follows from C-IV. Now

W (W-B) UB^..
For if X e (W-B) u and X £ (W- B)

then X £ W. If X G then X € (Q W) and 

so X € W-

Then by C-I and (1)

Now B =• (GOW), Furthermore

Then by C-I

-xitw-GiW) t -L?(G»nB).

Then from T (2) we have in the limit that 

^CLr(\V) — ( V/- G f> W) + Ak. ( 3^

~ { W — G H W ) + ax- (G n w),

The theorem follows from T (1).

T (4): A—C-*' C(A)^(J'r)

Proof; Since A is measurable >X
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(1) XAr(V/') = •+ a*-

We show that
(2) yLi(w) = twn C.6A)) 4- axW- ctA)nW\

Now

O) ,('V-A'i= IwncCKj).

For let X € (W-^), Then X C W v X A. Thus

X € C-(.A) and so X € (v/n C(A)), Conversely, If

X £ (WCl CIA)') then X £ W and X E C^A),

X $ A, So X £ (\zV~A) 6111(1 (3) follows. Then

(,,) x?lw-A)=

Also,
(s) ^(v/nA) =■ <LlA)n w1).

If X £ (V/nA') then X € VX £ C-^A) and so 

X £ lCtA)nV/\ Thus X €. (W~ (LtA^nWy If 

X € ( W1- C(,A) r\ W) then X € W_> X (C(,A) A W) 

and It must be that X C(A). So X€ A and we have 

that X C (WA A\ Ve have shown that

(v/nA)~ (w-c(A)n

and (5) follows.

Substitution of (4) and (5) into (1) yields (2), 

and the theorem follows.

We now have



, X 1- \C (1): F closed F

Proof: C_(bFr3 is open. The corollary follows from

T (3) and T (4).

T (5): A™•)• (AOB^^ 

Proof: Let W be arbitrary, and let (AsHV/) 

correspond to the W of T (1). We may express the measur

ability of B by

(1) n

Now let (W- BnA^W) correspond to X/V. Since 

A Is measurable we may write
(2) Bn ADW) =. (w- Bn A nw^

4- >u?rCW - B n Anw) - kn(w- Bn A nW)].

We show that

(3) Kn (w- B n A-nw) - ( AnW-BnAPiW),

Let X £ A n( W- Bn An W ). Then X < A X £ W and 
j j

(Bn^tnVv^ so xc (Anw- BnA/nW),
Conversely, let X £ (AnW-BnAH W), Then

A an° Wj X £ (8 n A nV/). Thus we have X £ A

and X £. ( W— E>D A^W), Therefore

X fc An (V/- BnAnW\ and (3) follows.

By (2) and (3) we have

(*) e>rlMV)= V (knw-Bn AOVZ)
+ .xir[(.\A/- B n AnV)- (An\V- BnArivv^.
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It is easily shown that

<vy- BniAnv/)-(Anw-BnAr)W)=: (v-AOW).

Then (4) becomes
(5) a? (w- Br> A^w) = n A nW)

*jJ? (v/- Anw).

Now the measurability of A may be expressed by

(6) = jmMAOW) + V(v/-An W).

From (1) and (6)
( B Anw) * (AHW-B r> W)

From (5)

A(BnAnw) +>l?(w- B n A nw).

This says that (A Pi 8) 1® measurable.

t (6)s (AVBri**t“>

Proof: We show that

(1) (AUB)= C (ciA) n CIB>).

Let X € ( A U B). Then X € A and X 4 CLA^ 

or X g B and X $ C LB), In either case 

X £ C(A)ncCB). Then X€ C.(C( A) H CIB )).

Now let Xe C(C(MnC(B)). Then
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X 4 A') n ClB\ Then X C.(X) and X C A or

X and X £ B, In either case X£ (AUfS) and (1)

follows.

Now C ( A^ and are measurable by T (4), and

the theorem follows by T ($) and T (4).

C (2)g j

I U .
Proofz Follows from T (6) and induction.

Proof; It Is obvious that

(1) (wng.'i d iwnB^DlWnBi'lD ■ • ■.

Also
(2) W1 q (v/n BkY

For If X £ k then X £ j ( A ~ * * ‘ )•

From C-I and (1) the sequence (W A

Is monotonic non-lncreaslng. By C-III It is bounded from 

below. Then 3X3

(3) Lwn> - X.
-> oo

Since (2) holds ( k; ■=. 2. . . > then
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and so
(i() vtxlW^^.8^ ~ X'

Now

(5) y/ - (wr>nB^U(W-W^B^U{WetBrWr\B^ >cc\

u . . . u [wn e>K-.-w^BK^jr • -

Certainly If X belongs to the term on the right. It be- 

longs also to W . Suppose X £ W Either X € B w 
a«o kx 4

(and (5) Is proved), or X £ Bk , If the latter holds, 
k-1

3 a K 5 X Bk, . Let be the first such K.

If Ke - | then X € (. W-W Bj ) and (5) follows. If

Ko > I then X € Bk#_| and X€ (V/H W BkJ, 

Thus we have (5).

Then by C-II

(6) .zj^iw)^ aJU twn AZlv-wnB,)

4- aj» (v/ n Bi — vv n B+ * * *

Since B| is measurable

(7) _aZiw) = xZ (W nB.l + vUL (W - W n B,\

and since measurable and

we have

(8) Aj?r(.’w nBu,l+
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(9)

Substituting (7) and (8) into (6) we get

(w no6,1+ E-y-*lw)-vu.*(wn B.jl Ke I J
+ [Vt'vVnB,) -XL iwn

+ |^X (, V/0 Ba) — XL tW O 63) + * • •

and so

x?(vvnr^br) + xu'tw’)-

By (3)
_u*(vvi5= xl*(wn n bk'l + x?(w) - A.

Thus

x^. xL(vynnBK).

Then by (4)

x= -xL(wnnBa)= -L^_ xl (v n ket ^->00
It is easily shown that (5) may be rewritten as

(w- wn OB,) = (w-wn b,') u(v/n B,

- vn 6,) u • • • ,

From C-II, (?), and (8)

xa*(w-. wr\Kn Bk") >cc (w-wriBi)
+-x/(v7nB1-wnBi')+ ■ ■ •

= Bi)
- >u. (w n Bi'ij + * ’ •

— ZjflVA - SJwn, AJ? (W 0 B^t) , 
'Yn-r °q
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We have thus from (9) that

V [w-wnn BkI V(w) -**[vnn bJ
L- Ki I J K-l

So
(10) xZcwia >-i.* [v o^Bk! + jj?[w- W np &„] ,

It Is easily shown that

w= lwr)QBK')u (w-v/n^ BK).

Then by C-II

V (w) s ax [w n n Bk] + ^[v-wnn br].

With (10) this says that

^(v/) = ax [wrinsj t- [W-wnriBk],

1 .e
<=o

is measurable.
K-l

■YTWCUA. (/A. ) k
t (8), Ak , <k = ■ ■ •) ■)■

Proof; Let

B । ~ A । B a. A । ./') A i

a, r> a. n . . . n Am 

Nov

l A, n A=.ri. , . n a^,)c (A, n Axn . . .nA™.,) ...
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Furthermore, by T (5), Ba. s (AiO A«.) Is measurable, 

B3 = t A. Z^Ax) Q A 3 is measurable, » • •

So we have that Bi O Ba. *• ‘ ' with 6k j

| 2;* • • ). The postulates of T (?) are now satisfied 

and so a is measurable.
k = i K

Now

Ha. = Hbk.
K:l K-1

oo
For if ye kQ, Ak then X € A kj ( K = *' •>.

so x e Ai ~ b.0 x e (A) n 30

x e Bk, (k= iji., . .

If X € O Bk then XE Bk . l«= L2 • • • ) .
K=J J

So X€ E>, S Ai4 X € Ba = (AiHAa.)^ • - J 

x e = A) n Ax n. . . n A^J . . .

Then X €. A« (X — L ‘ * ') •

Hence the theorem.

T (9). (B)^ + oe ■)•

<Z(AUB)= + VMnB).

Proof: Let W correspond to (AUB), Then since

Ax is measurable

C1) x?(AuB)= a! [a n ( AubS] +vU*[(AUB)- An(AuB)].

(2)

Now

A = A n (AUB).
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(3) (AvU B) ~ AO (AU B) - (B-AHB).

For, let X € (AU B)- AH ( A U B J. Then

X €. (AUS') end so X € A or X E B. But ve have also that 

X AHtAUB'Jj and X $ A or X (A U B). But

X £ ( A U BY Thus X A and so X ( A H B ) . Now 3ince 

X A and X €. ( A U B) we have X £ B. Thus It Is that 

x e IB-AABY

For the converse, let X £, (B-ADB), Then

* X £ B and X A. Since X € B, X £ (A \J B). Since

X A j X^AQ(AUB). Therefore

X £ (AUB)— AH(AUB>) and (3) Is verified.

Now from (2) and (3)> (1) becomes

(*) aa*(A1UB)= M* (A) + vC? (B-AOB).

By the measurability of A we may write also 

xaCB)= A? ( AD B) 4- A n

< or
(3) >ut(B-AnB)- aZ (B)-x/tAn B),

Equations (4) and (5) give

^*(AUB>)= V(A) + ^*(B)-^<‘(An B).

c (3): A! J Aa _) A, I) Az _ (p -)'

(, A । U Ax') — (Ai) + Kk.(AxY
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Proofs From T (9)

But ( A 4 Aa.x) = C^. Hence by C-III, >U_ ( A । H A i?) - 5 . 

Thus

>j? ( A> U A») - IM vkx i 1

By T (6), (A| U Ax) is measurable At and 

A a are measurable, and so we have

-^a( Ai U Aa) — ^a( A.) + Ax) .

by D (9).

cm:
(A^ n A^= % ^') J

"VX> '*v

Proof? Follows by C (3) and induction.

'WvZvOlA. L-1^- i . . _ \\
T (IO): Ak , iK-L2-, ■ • 'H y

(k— n ~ , (•w + J

k = | • k=l

Proof; By C (4) and D (9)
(1) _AJL ( U L-u.*(Ak').

k=l 7 K = i
for every ■vl.
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By C-II

(2) ~ 21 (AkL
x k=i * k = i

N°V
U Ak D U Ak . 
ks-i K''

Then by C-I
(3) >LL*( u Ak) - UA^ (^=L^...).

kzi J \ k-i '

In the limit, from (1) and (3),

(4) ^(UAk) i T^IAkV
\k=i / k = j

The theorem follows from (2) and (4).

* 
. . ^.jcZUA. (JX )

T (11): xxT (B) = 0 •)• B

Proof: Let W be arbitrary. Now

(B n w) c B ■

Hence
(1) w) xa*Ib’) = 0.

We show that
(2) ^(W) = AA* ( Bn w) + ^(W-B nw).

From (1)

C Bn w) + ax (vv- Bnw) = >x(vj- Bn w).

Since
(vv- e> n w) c. v/

and



25

aj? (V/** B.'YvV)

then *
(3) ( B n W ) + -AA*( w (w) .

Now
(4) Wc(Bnw)U(V-Bnvv).

For, let X € W. If X £ (BnW) (*) Is true. If not, J
then X €. (W ~ B> Q W ) and (4) follows.

We have then that

(5) -o? [!£nv/)u (w- Bn W)]

jla ( B o W) + aa. (W- B nW),

Equation (2) follows from (3) and (5).

T (12); j 8 )• l^-B) ,

Proof: ( A- E>) ~ ( A O C. ( B)). The theorem now 

follows from T (4) and T (5).

L (1): If {R-'A, is any sequence of seta, then 

3 a sequence of disjoint sets 9 
oo 

ji;- j a .. 
T'si •y'xi

Proof; Define a sequence 9

a, - n

and for
J
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We show first that

Let X £ (J , Then X € for some Tn,, Now T I
there is a first such <n. call it 'X, . Then X
(•>1= u 7),-i). Thus X £ (Qi - UTA and

o» X k-—i /
X G. ZX-o. . Then X £ (J tx-n. .

1 "si <*o .
Conversely, let X £ U . Then X £ for

some -yl say Ti, , So X € ( R, - U PLX. Thus X £ CL
J -o X • kel )

and so X £ U CL, .I
We show now that the are disjoint. Suppose

5 an X 3 X € and X E A^ ■vn end sup

pose 'Yvt> , (This is no restriction.)
-1

Since X J X E Lvn and X Q . If
X then X . Thus X $(C2 - A . So

K=| X' k=| )
X $ Af.. This is a contradiction. Hence the A^ are dis

joint and the lemma follows.

L(2),

= UEk ,

xZ'lA^S^') = AnE-kb
A arbitrary, (n = 2 . . . ) ,
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(1)

(2)

(3)

Proof g The proof is by induction. For rn. ~ I

the lemma is true. We now assume the lemma true for 

-w = and. show that

XX* ( A = k£. xx* (A n Ek").

By C (2), 3-k 1s measurable. Then with 

( K Pi corresponding to V/ we may write

*.*(An$^= X*(Ans^+l + ^Ansb.,)

-(An s*..i nSfr).

It is true that

(S^*i n

and

(An S+w1)-( An S*.|OS4.)= (An £>*,).

Equation (2) is obvious. For (3)# let

X €. ( Then xeAJ
X E S^t+I. Then X €, E k for some Ke ( I S Ke < ^fl). 

But X £ (A n n and x e A end X € .

This says that X $ S^. Thus X )

( k aj . • and so X e E and X 6 (AH

For the converse, let X E (A H E^|),Then

X € A and X € E^.+ < , Thus X € Ek ~ ■ Butk=i
since the -£k are disjoint, X Ek

( X ~ L v . . J and so X < Ek - , Now

(A H S>+(") and X t S*.. Hence
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x e (An^l-lAns^nS^
and (3) follows. Substituting (2) and (3) Into (1) we get

An ^(Arxs^ + M (An E>.,Y

But we have assumed that

AflAnS^x ^VlAHEx). 
ksi

Hence we have
^(Ans..,^ AnEx)+Af(AnE>„')

~ ka I

= ^-aJ?IA n Ek).
k = l

^(Ans-i = EV(AnEK), 
k= I

A arbitrary.

Proofs It Is true that

(A O U Ek) D /AHU Ek)
\ ka| / ' K = t /

1.6
(A n S) lA n

Then
(1) (AnS) ^tAns^.
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(2)

(3)

K = J

In the limit

-uflkr, s') k = l
By C-II and the fact that

(A n S') = E-k)

we have

k= I

The lemma follows from (3) and (2).

LIU: k

<y c-k 
KtI

Proof: Let A be arbitrary. Set 
•vv

— U Ek . Then by C (2), S-a. is measurable for

each 'yl and by D (§) we may write

= >u?(AriS-')+

Now

(1) ( A- "D ( A” SY
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For let X e (A - S) . Then X £ A and X 5.

Then X E K IK ■= Xj * . and so X 4 S m_ 

('r'. ~ b v * ‘ . Thus X £ (A-S^and (1) follows.

Then by L (2)

f. vZ (API Ek) 
kzi

By C-I and (1)

In the limit

Since (Ans') ” U (A f) Ek ) we have by C-II 

and (2)
(3) V(A) s. I a n 5) + v ( A-S).

Now

Then we have by C-II, and C-I

(5) V ( S) + - ><x[(AnS)D(A-S)j i ^(A).

The lemma follows from (3) and (5).

We are now in a position to prove



Proofs By L (1) 3 a sequence of* disjoint

sets 3

S = UEk. - U&K K = I K z L
and, for each k 

! _ K-1 s
= Vek - U E.3, v v> = i /

Now, by C (2) and T (12), /\K is measurable for 

every K. Since the txk are disjoint it follows by L (4) 
eo 

that |J is measurable. Hence the theorem.
k = i

We now prove the theorem on the relation of measur

ability to measure functions.

T (14 ); Let yu. be an outer measure function and

YTX the class of X -measurable sets. If the domain of

Is then is a measure function.

Proofs satisfies C-I, C-II, C-III, and C-IV.

By C-I >Lu is non-decreasing. It remains to show that 
aaT is completely additive.

Now satisfies I, II, and III of D (2). Postu

late I follows by C-III end T (11), II follows from T (4), 
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end III follows by T (13). Thus "JTA is a completely addi

tive class of sets.

Furthermore, 1, II# III of D (4) are satisfied. 

For I follows from the complete additivity of *3T\ # II 

follows from T (10), and III follows from C-III. This says 

that is a completely additive set function on TH 

and the theorem follows by D (6).

We wish to prove now three theorems on relations 

between measure functions of limits of sequences of sets, 

and limits of sequences of measure functions of sets.

D (11): The limit superior and limit Inferior of

a sequence of real numbers are defined respective

ly by

and

If is such that

we say that converges and denote the common limit by

•>-1 OQ

D (12); Let (12} be a sequence of sets. The



limit superior and limit Inferior of are defined

respectively by

and

is such that

we say that

by

converges and denote the common limit

For (1):

Let X € = U G , Then X € A fl  
■vi-^co *=lvisk -n-n

for some K = Ko and consequently X6 ,rK^ So 
oO <34

X €, . Now let X € , Then X € for some

=. K1 , Then by hypothesis X 6 (oi = . -)
•4

and so X € f) t But since
•hCK*
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(3)

(M

oO OO

it follows that X €. U 01 ~ ^£223 . Thus (1)
k-| 'VIcK 'n—^cx»

holds.

For (2), let KE H

>< c. U ^-n f°r k, u: 1 en^ SO -nx k

- n u .
VI

Then

Conversely, let X e U fl Then X E some i 1
PK and

x € U ( k = 1 X . . . , Ke) .
•Vts k.

But by hypothesis X £ = k0 + ••) hence

x € U r\ ( ko+i k<>+ 2. . . .) .
*sK J *

The relations (3) and (4) give X € CA (J 
kz i -vis k 

and (2) Is verified.

It can be shown by a similar process that

Let T" be a completely additive set function de

fined on a completely additive class (X_ of sets.

T (15): {E~tCCl-J E, C-Ej-G.'-' ■)'

nr-x CO

Proof: Since £ । C. Ea. C we have from



35
, «a<J

L (5) that E.-n T2. H Now let Eo - 0.V1,1
We show that

(1) •= = UlE^-E-n-,1)
-*>OO ■*%•« ) >i-|

oe
Let \ €. U E . Then X £ for someI*'

-V) S K . a a first such K > call it k| . Then

and so X € ( E x, - £ ^-i) . Then X €
IJ(E^-E^_a. Now let X£ 5 (E-^-E^A . Then

•vixi ’>' = 1
X €. I E-a - E-n-i) for some -vi ■= h; and so X £ Ex, , Then 

Oo
we have that X£ U , This proves (1). Now we

■v\-= | 
show that

<2> ( n IE-. - Ew->) = <t>

There is no restriction in taking -ya Let

X E. I E-a.— Ea-j) and X € ( E. — E^-iyrhen X £ E/yvj

X 4 E-vs-ij and x E-v^, Since X 4 E-^-i ft follows 

by hypothesis that X ( k < . But X £ E>a..

Since-wl tx. this is a contradiction and (2) follows.

We now have by (1), and II of D (4), that

By the nature of the sequence i E^
*- J

fl (e^-E-.,) = U E- = Ek .
11 -A S I



36

Thus
xr r ( Ek).

>v\ -*eo OQ

L (7): A c CL, B C CL ( A- 8 ) G Cb.

Proof; Let El G CLq CL, By D (2),

C|) £ Q, and we may write 
oO 
U E-w G cl

TXT l

where E-^ — "m x ) . This says that (E( CjEsJC-CL.

By D (2), C CL and so

B U Li AX G X. Hence C(BU L( A)) G OL. It is easi

ly shown that

Cl B U ClK)1) = (A-B^

and the lemma follows.

T (16)- ^E-rvj CL , Ei g Ei z> 

T^E-n) finite for some 'vx

(1)

and

(2)

Proof; Let A G CL B L OL . . We show first that

A D B TIB) finite •).

T(A-B)= TlM-T(B)

A D B ) finite 

T(B) finite.
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For (1) we have that

A (A-B)UB

Slnoe (A-B'JO B ~ $ we have by II of D (4)

(3) T( A) ~ TlA-B) -t- T( BV

Now 'T( B) 18 finite, so we may write 

'T(A')- T(B)= T( A-B).

For (2): Since T ( A) Is finite, we have by (3) 
that [y ( A-B) + Is finite. If either T( A-B) or 

T(,B) is infinite, then T( A) is infinite, contrary to 

the hypothesis of (2). If T(A-B) and are both

infinite and (a)g have opposite signs, or (b); have like 

signs, their sum Is either (a)$ indeterminate, or (b): in

finite. In either case the hypothesis of (2) is again con

tradicted. So both are finite.

We proceed with the proof of the theorem. Let

(^)

'Ho be an n for which VC E-^) is finite. By L (6), 
o<9

E.-V, ~ E-n and we have also that

Since TCE-n,,^ is finite, we have by (4) and (2) 
! *W3 / A Ithat ’T" ( Pt E-^A la finite, and so T ocPryx, E-v,.') is finite.

Thus by (4) and (1) we have

(5) T ( E^,, - Eax 1

= T(Em.)- Vt^E^).
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Now for any K,

(6) (ELv^ ~ ELk) c (E.-^, - E k+i).

For If X e (E-n.-Ek) then X € E-ne and X < Ek. 

Since Ek D Ek + ) ) x 4 EKti and (6) follows.

By L (7) and (6), T (15) applies and

(7) T[K^
u'Vi->oe J -V) ->o»

Then from (5) and (7)

(8) ^'T(E..-En).

(9)

By the nature of the sequence we have that

for 'vk -s "He > C E-ne and by (2), that Is finite

(■vi * "Ho) . Hence for any -rx * "Ho (1) holds and 

Substituting (9) Into (8), we have

T ( - T ( E^) =

V(En.'1 - X_V(Ex\

The theorem follows by subtraction.

In T (iM it was shown that Is a completely 

additive class of sets. Then with D (6), the hypotheses 

of T (15) and T (16) are satisfied for V an outer measure 
function >0^ and '3L 5YD J l.e., for >U.* and sequences 

. ’1^
4 E>x\ composed of AA. -measurable sets .
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(1)

(2)

(3)

T (17)? m'3'lSLir‘e function
on CL *)'

and if ^E-Vt is 3 ( U E.^,')<.oO then
< -1 H-l 1

Proof: We prove (1)? For each 'w let

Obviously

A^. CL £

We show that for each 3^

Av. Q A^,

Let X E A-vx =. AA 
Kt-yx.

£ E-’■*"'+1 j C-'h+lj •

Thus by (3) and D

Then 'X £ and also

So x £ rA Ek, — A-Viti , k-=.
(6)

and so

"n —> oq

( E .x)

By (4) and D (6) we may apply T (15). Then by

T (15), L (5), and D (12)

V—> oti V)—> 00 r>'>—yoo



40

The pi'jof cf (2) is similar to that of (1); For 

each 'n, define

C(A^)= ClOctEt)).
* s ke-A

Nov

(5) C(Av-.) D ,

For, let X G. E-a . Then X $ and so
x| A c(Ek). Thus X £ C (knc(E»^= C(A^),

Also

(6) C(A,)dc(M.

For if X € C(A-n+i') then X =k<Q C(Ek) 

and so X some (Ko nti') , But then

X vO C(E.kpnd 30 X e c( I K X. Y\
Finally, ve shov that for each *n,

(V) xx.(C(A^))< =o.

To do this ve shov that

C.(A^) CL U , x 1 "hll
Relation (?) vlll then follov from hypothesis and the fact 

that is non-decreasing.
■SO

Let X £ Then X C-(Ek') and so

y & some (L( Ek0) (ko > H) . Then X £ Ek* and 

thus X £ U E-^ ."h= I
Nov aa- is non-de reasing. Then by (5) and D (11)

(8) 5ZL ^U.(C(An)),
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By (6) and (f), T (16) bolds fur

This ssys that xa(Q.(exists.

By D (11)
(10) ” -U^-v -^a, (c(A^)).

"n —> oe 'Yi—»oo

Substituting (10) into (9)> end the result into

(8), ve get

By (6), L (6) applies. Then

But

For, let XE C( C’l C (Ek) ) . Then X £

C(Ek) and so X $ Ct Ek') for so:ne ke (K6^'n).
<*" «O
Then X € Ek end X £ U E< . ® ki a,

Conversely, let X £ IJ Ek • Then X € Ek. for 
Ket!

seme K1 (kl 'n.) . So X $ G(Ek*) find thus X

P\ Gl.Ek.') , Then X € C (_ C ( Ek)) .

By (11), (12), and D (12),
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