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ABSTRACT 

Lecture videos are extremely useful and great learning companions for students. The ICS 

(Indexed, Captioned, and Searchable) video project provides students a flexible way to 

navigate across the lectures by automatically dividing the lecture into topical segments. 

Presenting keywords to every segment can provide an overview of the content discussed 

in a segment and improve navigation. Identifying keywords manually requires human 

effort and consumes a lot of time for lecture videos that are typically an hour or longer. 

This thesis proposes methods to automatically detect keywords to summarize the content 

in a video segment.  

The input to the keyword detection algorithm is text from the video frames extracted by 

OCR, and I enhance the text with auto-correction in a post-processing pass. Automatically 

detecting keywords is challenging as the importance of a word depends on a variety of 

factors such as frequency, font size, and duration of time it is present on the screen. Other 

factors include relative frequency in a video segment versus the rest of the video and 

domain significance derived from external sources. This thesis explores how these factors 

contribute to the importance of a word and how they can be combined to identify good 

keywords. 

I evaluated the performance of the proposed methods by comparing the keywords 

generated by the algorithm with the tags chosen by experts on 121 segments of 11 videos 

from different departments like Computer Science, Biology, and Biochemistry. I initialized 

the features to different combinations of weights and computed metrics like precision, 
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recall, F1, BLEU score, and correlation scores.  I also presented an analysis of errors and 

different areas that can be explored to generate higher quality keywords. 
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CHAPTER – 1: INTRODUCTION 

 

Many academic institutions are publishing lectures online to be accessed by the students. 

With the advancements in technology, Online Learning or E-learning has gained enormous 

popularity. The pervasive use of communication systems and devices that facilitate the 

creation and distribution of digital content [1] are significantly contributing to the success 

of Online Learning. Students can access these resources anytime, anywhere, to adapt to 

their learning style [2]. 

The usage of lecture videos has become a common trend among instructors and students. 

Students use these videos as autonomous resources, e.g., in the case of distance learning, 

or in conjunction with classroom lectures to supplement classroom teaching. The emerging 

popularity has led universities including the University of Houston, Stanford, and MIT, to 

publish their lectures online. Massively Open Online Courses (MOOC) such as Udemy, 

Coursera, and Pluralsight have been successful in delivering online lectures in different 

domains by enhancing the students’ learning experience. Students can make use of these 

lectures to compensate for a missed class or review purposes. The availability of classroom 

lectures can be helpful to recreate the classroom experience and capturing the student-

professor interaction. 

A lot of ongoing research aims to ease the navigation of long lecture videos using 

‘Indexing,’ which automatically divides a video into segments indicating different topics 

and ‘Keyword Search,’ that identifies video segments matching a particular keyword [3]. 
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Although these features greatly save time in accessing the video content, the student would 

not be able to see the relevant keywords of a topic discussed in a video segment. 

 

1.1  Motivation  

The motivation for this thesis has developed from the aim to automatically present the 

relevant keywords or tags as a summary of each segment of a video. Although navigation 

inside a video has improved with indexing techniques, it would be difficult for students to 

guess the content present in a segment by viewing the first video frame of the segment. 

Presenting keywords would allow the students to glance at the content discussed in a 

segment and efficiently judge if they should review the topic or not, thus making the 

navigation even more quick and efficient. It is possible to manually identify the keywords 

for each segment in a video lecture with the help of instructor; however, performing this 

task manually is cumbersome as a typical lecture video is about 60-90 minutes and 

sometimes even longer. Also, the indexing of the video might change as new algorithms 

continue to evolve, improving the accuracy to identify index points. In this case, the 

instructor should rearrange all the keywords for the segments accordingly. So, manually 

identifying keywords is an expensive process. Automatic keyword detection would help in 

providing a faster and efficient way to tackle the problems by extracting words that are 

more relevant to the topic. Thus, identifying keywords automatically would be useful for 

faster navigation across a lecture video.  
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1.2  Summary of Research 

The primary goal of this research is to develop methods that identify keywords for each 

segment of a lecture video. The keywords extracted can be phrases or n-grams. An n-gram 

is a sequence of ‘n’ terms. Initially, a long video is divided into multiple segments using 

indexing algorithms [3]. OCR technology detects the text on the segments, and the 

‘Keyword Detection Algorithm’ takes the text as input. I outline the key considerations 

made by the algorithm to determine the keywords for the video segments below: 

1. The text extracted by OCR contains noise. As detecting keywords on the noisy text 

may not produce good results, the text is post-processed by applying a two-phase 

auto-correction technique. The first phase uses suggestions from Google to reduce 

the noise in the text and the second phase substitutes rare, misspelled words by 

referring to the high-frequency words of the lecture.  

2. The keyword detection algorithm extracts all the possible n-grams and validates 

them by searching the n-gram database from Google to retain the meaningful n-

grams. 

3. The algorithm performs pre-processing to eliminate the n-grams containing stop 

words and group them based on the stemming results. 

4. Several factors such as frequency, inverse segment frequency, domain significance, 

font size, and duration determine the importance of an n-gram. 

5. Frequency determines the importance of an n-gram in a segment, whereas inverse 

segment frequency reduces the effect of frequency if the n-gram widely occurs in 
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rest of the segments of a video. The keyword detection algorithm uses external 

dictionaries provided by Oxford to identify the n-grams containing words related 

to the lecture’s domain and boost their scores. 

6. The font size is another factor specifying the importance of an n-gram. The 

algorithm calculates the average font weight of each word in a segment and 

estimates the n-gram font score. Similarly, it computes the duration of time for 

which an n-gram occurs in a segment of the video. 

7. Lastly, the keyword detection algorithm combines all the factors and generates a 

final score to each n-gram present in a segment.  Then it ranks the n-grams based 

on the score and selects the top n-grams in each segment to present them as a 

summary to the users. 

To evaluate the quality of keywords generated by the keyword detection algorithm, I 

developed a tool to collect the keywords for the video lectures from the instructors and 

students involved with the course. These manually assigned keywords are compared with 

the keywords generated by the algorithm and computed precision, recall, F1, BLEU, and 

correlation scores. I gathered keywords from experts for 121 segments of 11 videos from 

various departments of the College of Natural Sciences and Mathematics such as Computer 

Science, Biology and Biochemistry. The proposed methods achieve a precision of 54.5%, 

recall of 70.7%, and F1 score of 61.6%. 

 

 



 
5 

 

1.3  Thesis Outline 

I organized the thesis as follows: The work presented here is part of a larger ICS (Indexed 

Captioned and Searchable) VideoPoints. Chapter 2 provides background information on 

the ICS Videos Project. Chapter 3 presents the related work done on keyword extraction 

and OCR correction. Chapter 4 elaborates the various pre-processing techniques and 

methods used to identify keywords from the video segments. It also elaborates on the 

methods used to rectify the OCR errors along with numerous significant challenges faced 

in this research. Chapter 5 explains the tool developed to collect ground truth from the 

users and process of evaluation along with the analysis of the results. It also discusses the 

reasons for errors generated by the system. Finally, Chapter 6 summarizes the current work 

and presents the potential future perspective of this work.  
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CHAPTER – 2: BACKGROUND – ICS VIDEO PROJECT 

 

The ICS (Indexed, Captioned, and Searchable) Video Project is designed to make video 

lectures easily accessible to the students by providing index points (segments), captions 

and keyword search in a video lecture. It mainly aims to enhance the students’ learning 

process by allowing to navigate and access the desired content easily. The main 

components of the ICS Videos are the ‘Indexing module,’ ‘Captioning module,’ and the 

‘Keyword Search module.’  

The instructor records the classroom lecture by recording his/her computer screen while 

delivering a prepared viewgraph like PowerPoint in addition to the audio. The ICS server 

takes the uploaded video and automatically processes it by creating indexes, generating 

captions, and producing keywords to facilitate search. The keywords extracted in this 

process are words from the text produced by Optical Character Recognition (OCR) 

technology. All these words need not signify the content that has occurred in the video 

segment. They are mainly used to filter the segments of a video when the user searches 

inside the video. This thesis aims to extract keywords and present them to the user as a 

summary signifying the main content of the video segment.  Note that this is different from 

identifying segments in a video when searching for a specific occurrence of a word.  

Figure 2.1 shows a customized player built with sophisticated features like indexing, 

captioning and search. ICS Video Player is an HTML5 based player capable of streaming 

video over the Internet. The player consists of a playback component, index panel, 
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transcripts display panel and a search box [4]. The central portion of the player in the 

middle is the playback component. It has several options to play, pause, control the speed 

of the video, and hide index, and transcript panels. The bottom panel called the index panel 

represents different index points. The right side of the video contains interactive transcripts 

called the transcript display panel. There is a search box above the index panel which 

allows the user to search for index points containing the search term. 
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2.1 Indexing 

The process of dividing the video lecture into segments that represent different sub-topics 

is called ‘Indexing’ or ‘Segmentation.’ This algorithm detects significant scene changes in 

a video and marks these changes as Transition Points. Index Points are subsets of these 

transition points that represent a different sub-topic. The indexing algorithm selects the 

appropriate transition points as index points [5]. Figure 2.2 illustrates the transition points 

in a sequence of video frames and Figure 2.3 demonstrates the selection of index points 

from transition points. A segment is a set of transition points from one index point to 

another. In Figure 2.3, the first 4 transition points form a segment.   

Figure 2.2 Transition Points in a Video. The 3rd frame is a New Transition Point [5] 

Figure 2.3 Selection of Index Points from Transition Points  
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The ICS system detects transition points in a video by comparing the RGB (Red, Green, 

Blue) values of the corresponding pixels in the two images for similarity. The system 

optimizes the process of comparison by employing a binary search mechanism to select 

frames at certain intervals. Image difference between the successive transition points forms 

the criteria for the selection of index points. The evaluations from the previous work 

showed that the index points were accurate most of the time but did not always represent a 

topic change [5]. 

 

2.2 Captioning 

ICS Video Player has an in-built ‘Captioning’ feature. Captioning is used to enhance the 

accessibility of lecture videos. Captioning was primarily motivated to make the lectures 

available to deaf and improve the experience of hearing and foreign language students [5]. 

The video player displays the captions on the video screen along with the view graphs, and 

the player shows the complete transcript on the right-hand side.  The ICS player provides 

a feature to turn on/off the captions and the transcripts. Although the ICS framework can 

generate captioning automatically, a certain degree of manual correction is desirable due 

to the limitations of Automatic Speech Recognition (ASR) tools. 
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2.3 Searching 

The ‘Search’ feature in the ICS Video Player enables search inside a video. The process of 

identifying all the segments where a keyword exists is keyword search. The text box above 

the index panel in Figure 2.1 is used to perform the search.  

The indexer creates the video segments as well as transition point frames. OCR detects the 

text on these frames and stores them in a database. The ICS Player loads the video along 

with the associated keywords on a playback request [5].  
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When the user searches for a keyword from the search interface, the search module in the 

player activates and identifies a series of index points, allowing the user to navigate to the 

corresponding video segment. 

Figure 2.4 represents the ICS player with the Search functionality enabled. In the example, 

the user has searched for a keyword ‘data,’ and the index panel shows the segments with 

the matching keyword. In this case, three index points have the word ‘data,’ and it has 

occurred eight times in total in the video. By clicking the specific index points, the user 

can view the lecture which contains the searched keyword.   
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CHAPTER – 3: RELATED WORK 

 

3.1 Keyword Extraction 

Several projects have addressed the extraction of keywords from documents. The most 

commonly used statistical measure to extract significant words in an unsupervised way is 

TF-IDF [6]. TF-IDF stands for Term Frequency-Inverse Document Frequency. It is 

intended to reflect the importance of the word in a document. The authors normalized the 

terms TF and IDF in different ways and produced different variants [6] [7]. There are other 

works which extract domain keywords from the online news articles [8]. Several news 

articles are collected and manually tagged with their domains. Along with the traditional 

TF-IDF, the authors used a new measure called the ‘Word Common Possession Rate,’ 

which is the ratio of the number of domain documents containing the word to the total 

number of domain documents. The authors proposed this new measure to compensate the 

limitations of TF-IDF in identifying keywords related to the specific domain when the total 

number of documents belonging to the domain is small compared to the total number of 

documents. The TF-IDF is multiplied with ‘Word Common Possession Rate’ to rank the 

keywords. They listed the evaluation of this work as their future work. 

The research done by Lee et al., 2008 suggested a different technique to extract keywords 

for topic tracking; especially in news articles, using the ‘Table Term Frequency’ (TTF) in 

conjunction with the conventional TF-IDF [7]. As the first step, they compute TF-IDF for 
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all the words in each document and consider top n% of the words from each document for 

further processing. They did not state the selection of the value ‘n’ in their research paper. 

In the second step, they computed the term frequency on the words extracted in step 1 and 

determined the importance of words. To further improve the accuracy of extracted 

keywords, they performed ‘Cross-domain Comparision Filtering.’ The standard deviation 

of the words identified as keywords is computed taking their ranks in different domains of 

news articles like sports and politics. If the result of the standard deviation is below a 

certain threshold, they removed the word from the list of keywords. They believe that, if a 

word is ranked high in one domain and low in another domain, the word should be given 

importance in the domain which it is ranked high [7]. This work does not present any 

results. 

Though a good amount of research has been done on extracting keywords, all of these 

techniques were applied either on documents or news articles which are well-phrased. In 

my scenario, I am utilizing the text extracted from video frames using OCR, and the output 

given by OCR does not follow the standard structure of the text documents. The importance 

of a word in a video also depends on several other factors like frequency, font size, the 

display time of the word on the frame. Owing to these limitations, directly applying the 

existing methods is not sufficient.  
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3.2 OCR Error Correction  

The output generated by OCR may contain significant errors, and its quality depends on 

many factors like the quality of image fed to the OCR engine, combinations of text and 

background colors on the image, and use of small and exotic fonts [9]. The research work 

by Tuna et al., 2017 [9] applied several image enhancement techniques as pre-processing 

steps before the application of OCR. The image enhancement techniques employed in their 

work are ‘Text Segmentation’ and ‘Color Inversion.’ Text segmentation extracts the 

regions of text in an image by following a series of operations like binarizing an image 

using thresholding, dilation, edge detection using Sobel operator, blob coloring, and 

resizing.  

Several post-processing techniques are widely applied to correct the errors during OCR 

text recognition [10] [11]. The work by Delden et al., 2004 [10] stated a supervised and an 

unsupervised approach for automatic spell correction. In the supervised approach, they 

focused on misspelled words which are mainly typing errors. They used a technique called 

the ‘Reverse Minimum Edit Distance,’ which takes the misspelled words and generates 

possible words using any of the four operations (Insert, Delete, Substitute, Transpose). Out 

of these words, they identified words part of lexicons (a pre-defined dictionary). If a word 

contains a multi-error, then the ‘Reverse Minimum Edit Distance’ technique is repeated 

for valid words obtained in step 1. This process continues until they get a reasonable 

candidate list. Then they map the misspelled words with the candidate words based on the 

similarity. In the unsupervised algorithm, they calculated the word frequencies in the 
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document and identified the words below a certain threshold as candidate errors. They 

applied specific rules on the candidate words using the list of common prefixes and suffixes 

to match them with the high-frequency words. These approaches resulted in an accuracy 

of about 75%. 

Bhardwaj et al., 2008 [11] constructed a topic-based language model for every document 

in the training data and categorized the topics manually. MAP (Maximum A Posteriori) 

was used as an estimation instead of ML (Maximum Likelihood). For every topic, they 

created a language model using the Naive Bayes approach. 450 documents were used: 380 

for training and 70 for testing. Their results show that there is an increase in accuracy of 

25% compared to the standard approach.  

All the methods stated above use some level of supervision that required human effort and 

time. It would be difficult to apply them to my problem as the domain of lecture videos is 

not limited. So, I have used an approach proposed by Youssef et al., 2012 [12] to correct 

the OCR errors using the Google Spell Correction API (Application Programming 

Interface), ‘Did you mean,’ as one of the steps in the auto-spell correction task. In this 

method, the text is divided into blocks of fixed size and sent to the API. If there is an error 

in the text submitted, the API suggests the best possible alternative using the probabilistic 

n-gram model.  
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CHAPTER – 4: AUTOMATIC KEYWORD EXTRACTION 

 

This section details the algorithms and methodology used in the automatic extraction of 

keywords from lecture videos. 

Keywords are words that would help to identify, at a glance, the nature of the material a 

segment of a video covers to improve navigation within the video lecture. A set of 

keywords summarize the content of a video segment.  So, my main aim was to create a 

ranked list of words, based on their significance, for each segment by scrutinizing distinct 

attributes of text captured from the video frames.   

OCR detects the text from video frames during the segmentation process of a lecture video 

and the keyword detection algorithm takes this text as input. To generate keywords, I have 

information about the text from the video frames and transcripts from the automatic speech 

recognizer. This thesis focuses on the text from the video frames with the assumption that 

the text from frames presents concise information on a topic. The assumption is that speech 

elaborates topics presented on frames. 

While OCR technology has improved significantly over the years, the quality of the output 

depends on the source. In this scenario, I do not have access to the original lecture slides. 

These slides are available as a video that is converted to distinct images and fed to the 

OCR. In this process, some errors might be introduced in regenerating original screen text. 
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Figure 4.1 Steps in Keyword Extraction 

Figure 4.1 represents the different steps involved in the process of keyword extraction. The 

process starts with segmented OCR text which is cleaned by removing extraneous text and 

applying auto-correction techniques. N-grams are extracted in the next step and validated 

to retain the meaningful ones. I then filtered the n-grams by eliminating stop words and 

grouped them using the stemming algorithm. I calculated different scores based on 

frequency, font, and time and combined them to compute the final score for each n-gram. 

I elaborated the details of each step in later sections. 

 

4.1 Discard Extraneous Text 

Depending on the style the instructor chooses to capture their lecture, the recorded video 

may include irrelevant text from the computer. For example, the taskbar can be captured 

and may be present in a part of the lecture or an entire lecture. There are some words which 
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could occur on all or most of the slides of the presentation. Sometimes, the instructor uses 

the words like university name, or the instructor's name, or the course name on each slide 

of the lecture and these words appear almost at the same positions on all the slides. These 

words do not represent the content discussed in the segment. I want to ensure these words 

are not identified as keywords. 

To handle these scenarios, I came up with an algorithm to identify words repeating at 

similar positions across the lecture. OCR gives positional information of every word like 

Left, Right, Top, Bottom. Using this position as a reference, the algorithm keeps track of 

how many times a word has occurred in a specific position on every transition point. If a 

word has occurred more than a certain threshold at a particular position, the algorithm 

eliminates the word from further processing.  I have set 40% of the total transition points 

present in the lecture as a threshold by observing a few lectures. 

The reason for limiting the word elimination to a specific position is to retain the word that 

has occurred at other positions holding some significance. For instance, the name of the 

course is ‘Computer Architecture,’ and assume it has occurred on all the slides of the 

course. There is another word ‘Fourth Gen Computer’ occurring somewhere on one of the 

slides. With the approach used, the algorithm considers the words ‘Computer’ and 

‘Architecture’ separately for elimination as the process deals with unigrams. Now, 

discarding the word 'Computer' at all positions will also eliminate the word 'Computer' in 

the word sequence 'Fourth Gen Computer'. To avoid this information loss, I designed the 

algorithm to eliminate the words based on positions. 
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There is a justification for using the phrase ‘similar positions’ instead of ‘same positions.’ 

There is a chance that the words occurring across the lecture may slightly change in 

position relative to another slide. I have allowed a 5 px deviation by measuring the 

Euclidean distance between the position of words in two different slides.  

As the OCR is not perfect, it may mispredict the letters in words. It may recognize the letter 

‘i’ as the letter ‘l,’ the number ‘0’ as the letter ‘o,’ and so on.  To handle this, I identified 

words in similar locations even in the presence of small OCR errors by computing Cosine 

Similarity. Cosine similarity is the cosine of the angle between two vectors [13]. It 

represents text as vectors and calculated as the dot product of two vectors to the cross 

product of the two vectors. It ranges from 0-1. If the similarity between the two words is 

greater than 0.5, I considered the words as the same and grouped them. The following 

algorithm presents the process of cleaning the extraneous text. 
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Function Name: cleanExtraneousText  

Input: List of words recognized by OCR with positions 

Output: List of words after removing irrelevant words 

Track all the positions of each word and maintain the count of no. of times of 

occurrence at the same position 

for each word in words: 

       Group all the positions which are less than 5 px distance and add their 

occurrences 

        if occurrences > threshold then  

         Add to elimination list 

Using position as key, find all words occurring in that position 

Now compare the cosine similarity scores of words occurring in each position 

if similarity > 0.5 then  

Add the counts of 2 words 

        if count > threshold then  

Add to elimination list 

Remove words present in elimination list with respect to their position 
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The following algorithm details the process of grouping the words based on the word 

positions. 

 

 

 

 

Function Name: groupSimilarPositions 

Input: Word with positions and count sorted in increasing order of the count 

Output: Updated count of occurrences of word after grouping similar positions 

 positions = list of all positions and their respective counts 

 nearestPositionList = position having highest occurrences 

 for each position in positions: 

  for each nearestPosition in nearestPositionList: 

   if distance between nearestPosition and position < 5 then 

    Add to position to nearestPositionList 

    Add the occurrences 

    break 

 



 
24 

 

4.2 OCR Error Correction 

The results given by OCR are imperfect as it makes mistakes in recognizing characters. 

Due to this, relying entirely on the text identified by OCR does not guarantee a good set of 

keywords. So, I performed some post-processing steps on the output given by OCR to make 

possible improvements to the text. There are many approaches which use the supervised 

model by maintaining a set of lexicons [10] or the statistical model [29] using the Naive 

Bayes. All these approaches demand huge dictionaries covering all the terms of the domain 

to get accurate results. These techniques may not fit the field of education as it does not 

restrict to one domain and the knowledge base keeps updating constantly. Manually 

rejuvenating the data requires a lot of effort. The approach I have implemented uses the 

method suggested by Youssef et al., 2012 [12] to correct errors. They have proposed a 

context-based error correction technique using Google’s Spell Suggestion API. 

There are two types of errors generated by OCR [14]: Non-word errors and Real-word 

errors. Non-word errors occur when the words detected by OCR are not part of the 

dictionary. For example, OCR recognizes the word 'probability' as 'jrolability.' Maintaining 

a dictionary could solve these issues; however, the dictionary should also enclose the 

names of persons, and locations [12]. Real-word errors occur when the dictionary 

encompasses the words detected by OCR. However, they don’t fit the context. For instance, 

OCR recognizes the n-gram ‘state transition probability’ as ‘stale transition probability’. 

To solve the linguistic and context-based errors, I used an API (Application Programming 

Interface) provided by Google known as ‘Did you mean’.  Google has indexed several 
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trillion web pages and contains an enormous collection of words and n-gram sequences 

that could best serve any application related to speech and text recognition. Using this 

plethora of information, I developed a method to correct OCR errors. 

Firstly, all the text from each transition point was taken and divided into blocks of fixed 

size [12]. Every block contained a fixed number of words. The Google Search API takes 

every block as a query and makes suggestions. The idea behind sending a block of text 

rather than a single word is the assumption that the prediction is accurate when the context 

surrounds the word. The results returned by the search API were parsed to see if it contains 

the phrase ‘Did you mean.’ If the phrase was present, it indicated the existence of a 

misspelled word, and the algorithm replaced the old block of text with the new result. This 

process continued until all the text from the video completed its validation. Figure 4.2 

demonstrates the ‘Did you mean’ feature.  Google suggests the best alternative for the 

search made with incorrect spelling. 

Figure 4.2 Demo of ‘Did you mean’ Feature 
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I experimented with different sizes of blocks, and the results were optimal with block sizes 

of 10 to 20 words. Figure 4.3 shows the text before and after the spell correction with ten 

words per block.  

Figure 4.3 Text Before and After Spell Correction  

The text to the left represents the original text from OCR and text to the right is the text 

after performing the correction. Figure 4.3 also highlights the words which differ before 

and after the spell correction. This process corrects some of the important words like 

‘observation likelihood’ and ‘emission’. It also modifies some words incorrectly; for 

example, the word 'cud' changes to 'cub,' which should be 'end' in this context. Also, there 

are some words which are unmodified even though they are not meaningful words.  

Since OCR extracts the text from the image left to right, top to bottom there is no notion 

of sentence boundaries. The formatting style of the slide varies from instructor to instructor. 

Some instructors may use up the entire width of the slide, and some use it by splitting into 

two or more columns and so on. With these limitations in place, I cannot say that the output 

from the OCR has its full context preserved. This could be a reason why the Google API 

misinterpreted some of the words.  
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To improve the correction further, I developed a method to perform another round of spell 

correction with the corrected text as input. In this approach, the algorithm scans through 

the text corrected by Google and identifies valid and invalid words. For a word to be valid, 

it should occur at least three times, and it should be composed of alphabets (A–Z). The 

reason for using the count as a criterion is, the probability that the OCR detects one word 

as another incorrectly, in the same way, is very low. For example, suppose OCR recognizes 

the word 'state' as 'stale' at one instance, there is only a miniscule chance that OCR detects 

the word as 'stale' multiple times. Also, the first phase of spell correction could help to 

correct some of these errors. The algorithm considers all the other words as invalid. Using 

the list of valid words as lexicons, the algorithm suggests spell corrections for invalid words 

utilizing the concept of Edit Distance [15]. Edit distance is the minimum number of 

operations required to convert one string to another. If the edit distance between the invalid 

word and suggested word is less than five, the suggested word replaces the invalid word. 

The value five is chosen by experimenting with words from different lectures. Figure 4.4 

shows a demo of spell corrections using the above process and the algorithm in the 

following page details the process. 

Figure 4.4 Demo of Corrections in Phase 2 
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From Figure 4.4, I noticed a slight improvement in the text. Even after performing two 

rounds of spell correction, I still found the existence of noise in the text. Some arise due to 

the presence of formulae and algorithms on the slide where OCR does a poor job in 

predicting them. The current methodologies cannot correct these errors. Sometimes, OCR 

combined two adjacent words, missing a few characters in each word. The current 

algorithm detected at least one word correctly most of the times. For example, 

‘rcturnsfiriiardprob’ is predicted by OCR as a single word, which is a combination of two 

or more words. The API suggests the word as ‘return,’ correcting at least one word. 

 

 

Function Name: refineOCRCorrections 

Input: Corrected OCR text from Google API 

Output: Text with enhanced corrections 

Identify valid and invalid words from the input 

for each word in invalid words: 

 Get suggestions using valid words as a dictionary 

 Find edit distance between invalid word and suggested word 

 if distance < 5 then  

Replace invalid word with suggested word 
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4.3 N-gram Extraction and Validation 

The OCR text was processed to remove most of the extraneous text and make viable 

corrections on the incorrectly identified words. The next step is to extract the n-grams from 

the processed text. N-gram is a contiguous sequence of ‘n’ terms from the given sequence 

of text [16]. In this research, I extracted unigrams, bigrams, and trigrams as candidates to 

be keywords. However, the code has been designed to easily extend to any n-grams, with 

changes to the configuration file. 

OCR scans an image left to right, top to bottom and does not guarantee to maintain 

contextual relation between the words. Punctuations would help identify sentence 

boundaries, but OCR does not capture this information. These limitations result in 

generating extra n-grams: for example, a bigram formed using the last word of one sentence 

and the first word of another sentence. 

Collecting relevant domain-specific books and constructing a statistical language model 

can solve the issue of handling extra n-grams. The statistical language model gives 

probabilistic distribution over the word sequence [17]. Markov’s assumption simplifies the 

calculation of n-gram probability. Given a sequence ‘There was heavy snowfall,’ the steps 

to calculate the probability of the n-gram are as follows: 

P(‘There was heavy snowfall’) = P(‘There,’ ‘was,’ ‘heavy,’ ‘snowfall’)   -------------- (1) 

P(‘There was heavy snowfall’) = P(‘There’) P(‘was’ | ‘There’) P(‘heavy’ | ‘There was’) 

P(‘snowfall’ | ‘There was heavy’)  ------------------- (2) 
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Using Markov’s assumption, equation (2) is simplifies to 

P(‘There was heavy snowfall’) = P(‘There’) P(‘was’ | ‘There’) P(‘heavy’ | ‘was’) 

P(‘snowfall’ | ‘heavy’)   

This method ranks the n-gram sequences using the probabilities and ignores the sequences 

with lower values. 

This process could be a good starting point to validate the n-grams. However, this process 

would require manual effort for collecting and organizing the digitized books related to the 

lecture’s domain. Instructors use information from diverse sources to prepare the lecture 

content and gathering all the sources of information would be a tedious task. I addressed 

the problem of manual book collection by using an API called ‘PhraseFinder’ [18]. 

Google provides a service called ‘Google Books Service’ which aims to allow people to 

search for the content in books. Google has scanned over five million books published 

between the year 1500 – 2009 and generated a large corpus of words to get an estimate of 

the word usage with its context [19]. It contains around eight billion phrases (unigrams to 

5-grams). This information is beneficial for validating the n-grams. PhraseFinder, a search 

engine for Google n-gram dataset, acts as an interface to provide the statistical data of n-

grams, and I utilized this service in my research. 

Figure 4.5 and 4.6 give two examples using the PhraseFinder API. The API takes the phrase 

as input and provides the count of occurrences, and the number of books in which it has 

occurred including the range of years of the books. It lists the phrase separately based on 
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the case (lower case, upper case, and camel case). From the following examples, the phrase 

‘programming language’ is more frequently used than the phrase ‘programming note’. 

Figure 4.5 Example-1 of PhraseFinder 

Figure 4.6 Example-2 of PhraseFinder 

Considering the results given by this API, the keyword detection algorithm validated the 

n-grams by discarding the ones with count 0. The algorithm maintained two counts for all 

the n-grams: local count and global count. Local count gave the information of how many 



 
32 

 

times a phrase has occurred in a segment, and global count was the count provided by the 

PhraseFinder API. For computing the n-gram score based on frequency, the keyword 

detection algorithm utilizes the local count. Discarding the n-grams with count 0 would aid 

to clear the invalid phrases and those which contain spelling mistakes. The keyword 

detection algorithm also eliminated n-grams containing repeated words (e.g., ‘data 

programming data’ was eliminated due to the repetition of the word ‘data’) and which start 

or end with stop words, as keywords generally do not contain them in those positions.  

The algorithm used the information from external sources as the content on the slide is very 

sparse. Some lectures contain very few words and considering the frequencies only from 

the lecture can be misleading. Also, the information from the external sources helps to 

validate a phrase over a massive database of books. This process generated a list of n-grams 

for each segment of the video. 

 

4.4 N-gram Filtering and Grouping 

In this step, I filtered and grouped the n-grams for each segment with different parameters 

and this section details them. All the words are case-folded by converting to lower case. 

4.4.1 Stop word Removal 

‘Stop words’ are frequently occurring and trivial words which help frame sentences but do 

not represent the topics discussed. Articles, prepositions, conjunctions, and pronouns are 
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typically stop words. Examples of stop words include ‘a,’ ‘an,’ ‘the,’ ‘it,’ ‘and,’ ‘as,’ 

‘what,’ ‘how’. I collected the list of stop words from an external source [20]. 

The keyword detection algorithm can take either TRUE or FALSE for the parameter 

stopwordRemoval. If the parameter is TRUE, it eliminates the n-grams containing stop 

words. If the parameter is FALSE, it retains the n-grams with very common stop words 

like ‘and,’ ‘to,’ ‘of,’ ‘of,’ ‘on,’ ‘by’ and eliminate the n-grams containing rest of the stop 

words. Most of the valid n-grams contain the abovementioned stop words, and the chances 

of valid n-grams containing the other stop words are very less. 

 

4.4.2 Stemming 

Stemming is the process of reducing words to their roots or stems [21]. A stem or root is 

the part of word retained after removing its suffix. This process groups all the words in 

different forms to one stem. For instance, nouns have plural forms (e.g., ‘Computer’ and 

‘Computers’), and verbs have gerund form (‘ing’ as the suffix), and verbs in present tense 

differ from past tense. 

I analyzed the output of Porter stemmer, Lancaster stemmer, and Snowball stemmer. 

Porter’s algorithm [22] is a rule-based stemmer which has a pre-defined set of rules to stem 

the words. It can produce stems which may not be readable words. Lancaster is an iterative 

stemming algorithm defined over 120 rules [23]. It stems very aggressively, sometimes 

leading to faults. Snowball [24], which is also known as Porter2, is the enhanced version 

of Porter’s algorithm with more sophisticated rules. The Snowball stemmer also produces 
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stems. I have used the Snowball stemming algorithm in my thesis. Since the Snowball 

stemming algorithm produced stems, I replaced the stems with words to make them 

presentable to the user. 

 

The above algorithm elaborates the process of replacing stems with a valid word. For 

example, suppose the words ‘dissolved’ and ‘dissolving’ have been reduced to ‘dissolv’ by 

the stemmer, the algorithm replaces the stem either by ‘dissolved’ or ‘dissolving’ based on 

their frequency of occurrence. If ‘dissolving’ has occurred five times and ‘dissolved’ has 

occurred two times, then ‘dissolving’ is given as output. If both the word frequencies are 

the same, then without loss of generality, the algorithm selects the word with more 

characters (letters). The algorithm groups the words based on their stems and updates the 

local count of the selected word. From the previous example, the selected word ‘dissolving’ 

will have the weight updated to 7 (5+2). 

Function Name: decideWordToStem 

Input: Stemmed word 

Output: The most common word for the stem 

Find the list of all words mapping to the same root 

Out of all the words for a single root, check the word which occurred max no. of 

times and select the word.  

If there are two words have the highest max frequency, it considers the word with max 

length 
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In the case of n-grams, the algorithm reduces each term of n-gram and decides the word to 

be displayed. Consider the n-gram ‘computer program’ occurring four times and ‘computer 

programs’ occurring five times. The stemming process happens as follows: 

Stemming Process 

Step 1: Reduce the n-grams by considering each term 

‘computer program’ reduced to (comput, program)  

‘computer programs’ reduced to (comput, program) 

Stem 2: Group the words having the same stems and update the count 

(comput, program)  → [computer program, computer programs] → the count is 9 (4+5) 

Step 3: Based on the criteria set by the algorithm, select the word to display using the 

function decideWordToStem and update the weight. 

In this case, the word selected was ‘computer programs’ as it has a higher frequency. The 

new weight of the word is 9. 

The reason to break the n-gram to separate terms is that the stemming algorithm only 

focuses on the suffixes of the last word rather than stemming all the words. To get accurate 

results, the algorithm splits the n-gram to ‘n’ terms. 

The keyword detection algorithm can take either TRUE or FALSE for the parameter 

applyStemming. If the parameter is TRUE, it reduces the n-grams and updates the weights 

accordingly.  If the parameter is FALSE, it does not make any modifications to the n-grams. 
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The process of stemming is applied to each segment independently. If the word ‘computer 

program’ occurred in one segment and ‘computer programs’ occurred in another segment, 

the algorithm does not group them. 

 

4.5 Frequency Score 

Frequency is an important attribute that determines the importance of an n-gram. The 

frequency score of an n-gram internally depends on a few measures as stated below: 

• Term Frequency: This measure determines the count of an n-gram in a segment. 

• Inverse Segment Frequency: This measure determines the relative importance of 

an n-gram in a segment. 

• Domain Importance: This measure identifies n-grams containing domain related 

words and assigns higher importance.  

• Reduce Weights of Rare Words: This measure identifies n-grams containing rare 

words and reduces their weight.  

These measures are elaborated in the following sections. 

4.5.1 Term Frequency 

Term Frequency (TF) is the number of times an n-gram occurred in a segment. It represents 

the weight of the term in a segment. This statistical measure is beneficial in unsupervised 

identification of keywords. This measure is mandatory to obtain the n-gram weights. 
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TF (n-gram) = count of n-gram occurrences in a segment 

The method I developed takes care of the counts of lower order n-grams that are already 

part of the higher order n-grams. Consider the example weights of the n-grams as follows:  

 Table 4.1 N-gram Original Weights 

 

In the example demonstrated, the word ‘software development practices’ occurs five times, 

‘software development’ occurs seven times and ‘development’ occurs ten times. When the 

algorithm calculates the count of the unigram ‘development,’ it also counts its occurrences 

from the bigram ‘software development’ and trigram ‘software development practices’. 

This does not represent the exact weight of the unigram. To handle this effectively, the 

keyword detection algorithm subtracts the frequency of higher order n-gram from the 

frequency of lower order n-gram, if both the n-grams have some terms in common.  

The weight of ‘software development’ which is seven becomes 2 (7 – 5), as the word is 

already part of the trigram five times. Similarly, the weight of the word ‘development’ 

becomes 3 (10 – 5 – 2). Ten is the total number of times the word has occurred as a unigram, 

five is the number of times the word has contributed to the trigram, and two is the 

contribution for the bigram. Table 4.2 shows the updated weights of the n-grams. 

N-gram Count 

software development practices  5 

software development 7 

development 10 
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Table 4.2 N-gram Updated Weights 

N-gram Count 

software development practices  5 

software development 2 

development 3 

 

4.5.2 Inverse Segment Frequency 

A measure which tells how much information a word can provide is Inverse Document 

Frequency (IDF). It works on the idea that if a word is too frequent in most of the 

documents, then it may not constitute any significance and may not be the best keyword. 

So, IDF analysis tries to reduce the weights of such words giving scope for other words to 

become keywords. In this thesis, I considered IDF as ISF (Inverse Segment Frequency). 

This measure tries to identify the words that are very frequent across different segments of 

the video and reduce their weights. 

IDF or ISF (n-gram) = 𝑙𝑜𝑔
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑖𝑑𝑒𝑜

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑎 𝑤𝑜𝑟𝑑 ℎ𝑎𝑠 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 + 1
 

The addition of ‘+1’ in the denominator avoids division by zero error. 

Consider a video with 13 segments. A word ‘w1’ has occurred in 12 segments out of 13, 

and another word ‘w2’ has occurred in three segments. Computing the ISF results in the 

following scores. 
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ISF (w1) = log
13

12+ 1
  

ISF (w1) = log
13

13
 

ISF (w1) = log 1 

ISF (w1) = 0 

Similarly, ISF for the word w2 

ISF (w2) = log
13

3+ 1
  

ISF (w2) = log
13

4
  

ISF (w2) = log 3.25  

ISF (w2) = 0.511 

From the above results, I can say that ISF (w2) > ISF (w1) 

The keyword detection algorithm can take either TRUE or FALSE for the parameter 

applyISF. If the parameter is TRUE, the algorithm calculates the weight of the n-gram as 

the product of TF and IDF (ISF). If the parameter is FALSE, the weight of the n-gram is 

equal to the raw count of the term in the segment, i.e. TF. So, the weight of the word is 

either TF or the product of TF and IDF depending on the value of the parameter provided. 

 

 



 
40 

 

4.5.3 Domain Importance 

Another crucial factor considered to boost the weights of the keywords is domain 

importance. The basic ideology behind this is to assign more importance to the words 

which are directly related to the domain of the lecture. For example, for a lecture which 

belongs to Chemistry domain, the keyword detection algorithm will give more importance 

to the words from the Chemistry domain rather than general words. If two words ‘solution’ 

and ‘application’ are present in a segment of a video lecture, the word ‘solution’ is assigned 

more weight than the word ‘application.’ In this way, the keyword detection algorithm does 

not miss any relevant words in the process of keyword extraction. 

The domain-specific words are identified using information from external sources. I have 

collected the data provided by Oxford Reference Dictionaries for different domains [25]. 

Oxford dictionaries are considered one of the standard sources of information and widely 

accepted by many authorities. Hence, this is used as a look up to decide if the word has a 

reliance on the domain. 

When the parameter assignDomainImportance takes the value TRUE, the keyword 

detection algorithm multiplies the weight by a specific factor when the word is related to 

the domain. If the parameter is FALSE, the algorithm does not amplify the weight. 

With n-grams, the keyword detection algorithm splits them into ‘n’ terms and checks for 

each term if it is related to the domain and multiply the weights generated by step 4.5.2. 

This gives the enhanced weight of the n-gram. 
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The process starts with assuming a factor for increasing the words which are domain 

related. In this research, I have used a factor 2k, where ‘k’ is the number of domain-specific 

words in an n-gram. The ‘boostedWt’ is set to 1 initially for every n-gram.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Subsequently, the weights are updated as explained in the algorithm. This process was 

repeated for all the n-grams in each segment of the lecture. 

Function Name: assignDomainImportance 

Input: n-grams with their weights and domain to which the video belongs 

Output: n-grams with modified weights 

Load the list of domain-specific words 

domainWtFactor = any constant value greater than 1 

for each n-gram in n-grams: 

 Split n-gram to ‘n’ terms 

 Assign boostedWt = 1 

 for each term in n-gram: 

  if term in domain-specific words: 

   boostedWt = boostedWt * domainWtFactor 

 ngramWt = ngramOriginalWt * boostedWt 
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This step ensures that the n-grams with more domain-specific words are more likely to 

make to the list of keywords extracted for that segment. 

 

4.5.4 Reduce Weights of Rare Words 

The next factor considered is reducing the weights of rare words to reduce their chance of 

making into top keywords. Rare words are words which occur occasionally and do not 

belong to either the domain-specific category or the general English category. These words 

can be OCR errors or some abbreviated terms which are specific to the instructor or the 

class. Most of the OCR errors are either corrected by OCR error correction (Section 4.2) 

or eliminated during the validation of n-grams using the PhraseFinder API (Section 4.3). 

However, some erroneous words are not eliminated. For example, when the OCR detects 

a word incorrectly many times and makes the word valid when performing the second 

round of spell correction or the Google n-gram data set contains the word since Google 

also utilizes OCR technology to scan the books.  

This process closely follows the method discussed for domain importance. The algorithm 

divides the n-gram into ‘n’ terms and reduces each term’s weight by dividing it with a 

certain factor.  In this work, I have assumed the factor as 2k, where ‘k’ is the number of 

rare words present in an n-gram. The algorithm takes the n-gram weights and the domain 

of the video as input. Oxford dictionaries acted as a source for domain-specific words, and 

python libraries like PyEnchant and NLTK Wordnet served a reference for English words. 
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The algorithm checks every term in the n-gram and reduces its weight if it contains rare 

words. 

This parameter can also be set to TRUE or FALSE. If reduceRareWordWeights parameter 

is TRUE, the keyword detection algorithm modifies the weights. If it is FALSE, the 

algorithm does not alter the weights.   

 

Function Name: reduceRareWordWeights 

Input: n-grams with their weights and domain to which the video belongs 

Output: n-grams with modified weights 

Load the list of domain-specific words 

rareWtFactor = any constant value between 0 and 1 

for n-gram in n-grams: 

 Split n-gram to ‘n’ terms 

 Assign reducedWt = 1 

 for each term in n-gram: 

  if term not in domain-specific words and not a valid English word:  

   reducedWt = boostedWt * rareWtFactor 

 ngramWt = ngramOriginalWt * reducedWt 
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4.5.5 Final Frequency Score 

The current system to extract keywords performs the steps discussed in Section 4.5.1 – 

4.5.4 sequentially and determines the weights of the n-grams for each segment in the video 

lecture. These weights can range from zero to a higher value. To standardize this, the 

keyword detection algorithm normalizes all the weights using ‘Min-Max Normalization.’ 

Normalization is a mapping technique which maps the existing range of values to a new 

range [26]. It linear transforms the values from the original data. 

    New value = 
𝑂𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛 𝑣𝑎𝑙𝑢𝑒

𝑀𝑎𝑥 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛 𝑣𝑎𝑙𝑢𝑒
  . 

To explain it in this scenario,  

Final Frequency Score = 
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 − 𝑀𝑖𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑀𝑎𝑥 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡−𝑀𝑖𝑛 𝐹𝑟𝑒𝑞𝑒𝑛𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
  . 

The keyword detection algorithm takes the minimum and maximum values for each 

segment and determines the new values. This step gives the final score of the n-grams based 

on the frequency. 

 

4.6 Font Score 

The second attribute considered in my thesis is the font size of the word present on the 

video frame. OCR gives information about the font size of each word, and my algorithm 

utilized this information to determine the weight of the n-gram based on font size. This 

turns out to be another way to investigate the problem of determining keywords. The words 
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which have larger font sizes are more important than the words with relatively smaller 

fonts. 

4.6.1 Determining Font Weights of N-grams 

Firstly, all the font sizes of the words are squared. To distinguish the difference clearly, the 

algorithm takes the square of the values.  For example, assume the word ‘w1’ has a font 

size of 13, and the word ‘w2’ has a font size of 14. The difference between font sizes of 

both the words is 1, and it becomes negligible when the scores are normalized. To 

differentiate the importance of words, the algorithm squares the font weights, and they 

become 169 and 196, respectively. Thus, providing a reasonable margin to distinguish the 

significance clearly. 

The same word can occur at multiple places with different font sizes in a segment. So, the 

algorithm estimates the average font weights of the word across each segment of the video. 

Let us consider the following table with three different words and their weights occurring 

at various places in a segment.  
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Table 4.3 Snippet of Words with their Font Size 

 

 

 

 

 

 

Average weight of the word =  
𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑

𝑛𝑜.  𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑
  . 

Weight of W1 = 
100 + 169 + 49

3
  = 

318

3
 = 106 

Weight of W2 = 
100 

1
  =  100 

Weight of W3 = 
100  + 49

2
  = 

149

2
 = 74.5 

Table 4.4 Snippet of Words with their Average Font Size 

 

 

 

 

Word Original Font Weight Squared Font Weight 

W1 10 100 

W2 10 100 

W1 13 169 

W3 10 100 

W1 7 49 

W3 7 49 

Word Average Font Weight 

W1 106 

W2 100 

W3 74.5 
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The keyword detection algorithm calculates the weights for each segment separately, i.e. 

if the word ‘W1’ has occurred in another segment, it does not include that in the calculation 

of its weight in the current segment. The following algorithm explains the process. 

 

Once the keyword detection algorithm determines the average weights of the words in each 

segment, then it takes the n-grams obtained from Section 4.4 and determines the score 

Function Name: calculateFontWts 

Input: Words with font size for a segment of the video lecture 

Output: N-gram weights using font weights 

Square the font weights of every word and calculate the average font weight of 

the word 

Get the n-grams for the specific segment of the video lecture 

for each n-gram in n-grams: 

 Split the n-gram to ‘n’ terms 

 ngram_wt = 0 

 for each term in terms: 

  ngram_wt = ngram_wt + average weight of the term 

 ngram_wt = ngram / no. of terms 
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based on font. The process proceeds by splitting the n-gram into ‘n’ terms and taking the 

ratio of the sum of the average weights of the terms to the total number of terms. 

Font-score of n-gram = 
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 ′𝑛′ 𝑡𝑒𝑟𝑚𝑠

𝑛
 

For instance, to calculate the weight of the bigram ‘W1 W3’, the algorithm splits the bigram 

into two terms ‘W1’ and ‘W3’. Using the average weights calculated in Table 4.4, it 

computes the font score of the bigram as follows. 

Font score of ‘W1 W3’ = 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑊1 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑊3  

2
 

Font score of ‘W1 W3’ = 
106 + 74.5

2
 = 90.25 

 

4.6.2 Final Font Score 

Similar to the frequency score, the keyword detection algorithm normalizes the font score 

to range between 0 and 1. Min-Max normalization is applied to the original weights to get 

the final score of the n-grams based on the font size. 

    Final Font Score = 
𝐹𝑜𝑛𝑡 𝑆𝑐𝑜𝑟𝑒 − 𝑀𝑖𝑛 𝑓𝑜𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑀𝑎𝑥 𝑓𝑜𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 − 𝑀𝑖𝑛 𝑓𝑜𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
 . 
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4.7 Time Score 

Another essential attribute considered to determine the importance of an n-gram is its time 

score. The keyword detection algorithm tracks the time each video frame is displayed and 

determines the time each n-gram is present on the segment. Longer the time the n-gram is 

present, the higher is its importance. The interpretation is that, when an instructor 

emphasizes a specific slide for more time, it may be important. Some slides appear for a 

short period of time like some announcements, giving a brief overview of the previous 

class, and text present on these slides is relatively less important.  

4.7.1 Determining Time of N-grams 

The algorithm keeps track of the text present on each slide along with its duration and then 

groups the slides based on the segments. It sorts the n-grams obtained from Section 4.4 in 

the descending order of the value 'n,' i.e. all the trigrams will occur first, followed by 

bigrams and unigrams.  An example is stated below to explain the reason for sorting the n-

grams. 

Table 4.5 Snapshot of Slide Content of a Segment 

 

Slide no. Slide Content Time (sec) 

1 W1    W2   W3   W4 60 

2 W1    W2   W3   W2  W3   W5 20 

3  W2   W3   W4 30 
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The content in Table 4.5 tells that a specific segment of the video has three distinct frames 

or slides. It shows the text present on each frame and its duration. Let the valid n-grams for 

the segment be ‘W2   W3’, ‘W4’, ‘W1    W2   W3’.  

Now, the algorithm sorts the n-grams based on the number of terms each n-gram contains. 

Table 4.6 Ordered N-grams for a Segment 

Order N-grams 

1 ‘W1    W2   W3’ 

2 ‘W2   W3’ 

3 ‘W4’ 

 

To find the duration of each n-gram, it goes through every slide and adds the duration for 

which they occur. Once it counts the n-gram duration, the keyword detection algorithm 

temporarily discards the n-gram from the slide. This is to prevent adding the duration of 

lower order n-grams multiple times.  

Flow 

I list the steps in the example below: 

1. Start with n-gram ‘W1   W2  W3’ and scan through the three slides to get the duration. 

This n-gram occurs in slides 1 and 2 for 60 seconds and 20 seconds, respectively. 

The total time for the n-gram would be 80 seconds (60 + 20). Now remove the n-

gram occurrences from the text. The new text on the slide becomes as follows. 
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Table 4.7 Slide Content after Step 1 

Slide no. Slide Content Time (sec) 

1 W4 60 

2 W2  W3  W5 20 

3  W2   W3   W4 30 

 

2. Take the next n-gram ‘W2   W3’. Scanning Table 4.7, the n-gram occurs in slide 2 

and slide 3 for a total duration of 50 seconds (20 + 30). Had the algorithm not 

discarded the higher order n-gram from the slide content and scan Table 4.6, the n-

gram ‘W2   W3’ would have occurred in slides 1, 2 and 3 contributing to a total 

duration of 110 seconds (60 + 20 + 30) which is not a valid duration. This is the 

reason why I developed the algorithm to sort the n-grams based on the value of ‘n’ 

and remove them from the slide temporarily after computing their duration. 

3. Processing the duration of n-gram ‘W4’ gives 90 seconds (60 + 30). 

Table 4.8 Slide Content after Step 2 

Slide no. Slide Content Time (sec) 

1 W4 60 

2 W5 20 

3  W4 30 
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4.7.2 Final Time Score 

To compute the final time score, the algorithm normalizes the time scores of the n-gram 

using 'Min-Max' normalization to range between 0 and 1. 

Final Time Score = 
𝑇𝑖𝑚𝑒 𝑆𝑐𝑜𝑟𝑒 − 𝑀𝑖𝑛 𝑡𝑖𝑚𝑒 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑀𝑎𝑥 𝑡𝑖𝑚𝑒 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 − 𝑀𝑖𝑛 𝑡𝑖𝑚𝑒 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
 

This gives the final score considering time. 

The following algorithm shows the computation of time scores. 
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4.8 Final Score Computation 

The next step is to combine three different scores from three attributes: frequency, font and 

time. I introduced three new parameters called frequency weight, font weight, and time 

weight, whose values are between 0 and 1, and their combined total sums to 1. These new 

parameters were introduced to assign importance to frequency, font and time scores. 

Function Name: calculateTimeWts 

Input: All the text present on every slide of segment with its duration 

Output: N-gram weights with importance of time 

Get all the n-grams for the segment and sort them based on the value of ‘n’ 

for each n-gram in n-grams: 

 ngram_duration = 0 

 Scan through all the slides and add the duration if n-gram exists on the slides 

 for each slide in slides: 

  if n-gram is present on slide: 

   Update the n-gram duration 

   ngram_duration = ngram_duration + slide_duration 

   Remove the n-gram from the slide 
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0 <= frequency weight <= 1 

0 <= font weight <= 1 

0 <= time weight <= 1 

frequency weight + font weight + time weight = 1 

Collecting the ground truth and performing evaluations can help determine the best 

values for these weights. 

Final Score of N-gram = (frequency weight * Final Frequency Score) + (font weight * 

Final Font Score) + (time weight * Final Time Score) 

 

4.9 User Presentation  

Once the algorithm determines the final score of the n-grams, the top words for each 

segment are selected and shown as a summary to the user in the form of word clouds. The 

number of words to be displayed is determined by selecting the range for each segment.  

Range = Maximum Final Score obtained in a segment – Minimum Final Score obtained 

in a segment 

The algorithm selected the words which were above 40% of the computed range as 

keywords and presented them to the user. However, the maximum number of keywords 

shown in each segment was limited to 20. The selected n-grams were displayed to the user 

in the order of their importance by embedding them in the VideoPoints interface. 
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Sometimes, the segments may not have any keywords when all the frames in the segment 

contain only images. In that case, the display would be blank. The final interface after 

integrating the keywords module looks as shown in Figure 4.7. The user hovers on the 

ninth segment, and a pop up comes out containing the preview of the image and the 

keywords summary for the segment. The red arrow indicates the position of mouse hover. 
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By looking at this, the user can determine the word ‘forward algorithm’ has higher 

importance followed by ‘algorithm,’ and ‘dynamic programming algorithm’. 
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CHAPTER – 5: ASSESSMENT 

 

The assessment phase helps ascertain the strengths and limitations of the methodology used 

to extract keywords for the video lectures. This section details the tool built for the 

collection of ground truth and explains the process of evaluation. 

 

5.1 Ground Truth Collection 

To evaluate the performance of the keyword detection algorithm, human-picked keywords 

for the lecture videos were compared with the system-generated keywords. To select the 

appropriate keywords for each segment of the video, I took the assistance of experts like 

the instructors who are well-versed with the subject, or students who have been part of the 

course.  

To accomplish this task, I have created an interface which gives experts the flexibility to 

determine the keywords in different segments. As mentioned before, the keywords 

extracted would differ when the indexing algorithm changes. Here I assumed that the 

indexing algorithm had produced good index points and proceeded to the next steps. 
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Figure 5.1 Login Screen for Ground Truth Collection 

Figure 5.1 represents the login screen for ground truth collection. The users who provided 

the ground truth entered their Name and Email. I pre-populated the relevant courses and 

their corresponding lectures. The users selected the course and the lecture they were 

interested in tagging and clicked ‘Proceed.’ The users landed on a page where they 

provided the ground truth for a video lecture. Figure 5.2 shows the ground truth interface 

with its components labeled 1 – 7. 
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Ground truth interface gives access to the user to provide the feedback. This interface has 

been designed to reduce the burden on the user in manually tagging the video with the 

relevant set of keywords. 

The components present on the screen marked with numbers in Figure 5.2 are as follows:  

1: It represents the total number of segments present in the video lecture. The user can click 

on any of the segment numbers and navigate to the corresponding segment of the video. 

This component gives flexibility to the user to identify keywords for a part of the lecture. 

2: This component includes all the slides or transition points of a segment. The user can 

scroll to left or right to access the relevant slides.  

3: All potential keywords generated by the algorithm are shown as buttons. The user can 

click the corresponding button if he/she finds the keyword in the set presented. There are 

three different types of buttons on the screen. 
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Table 5.1 Color Codes of Buttons 

Button Type Significance 

Button with Blue background The button appears with a blue background when 

the user has selected potential keyword as a 

relevant keyword for the segment. The user can 

deselect it by clicking the button again. 

Button with Bold-faced letters It is an additional feature which highlights the 

buttons containing potential keywords that are 

present on the slides the user can currently see 

(viewport) without scrolling to the left/right. 

Buttons already with blue background do not 

change. 

Button with Normal text  These are keywords which are not present on the 

slides in the current viewport. Buttons already 

with blue background do not change. 

 

4: It is a textbox which shows the keywords selected by the user. If the user does not find 

the keyword he/she wants to pick as part of the pre-generated words, he/she can add them 

by editing the textbox. 

5: ‘Save All’ button saves the work done by the user 
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6: The button ‘Help’ acts as an assistance tool, guiding the user about the features present 

on the interface. The interface also provides all the instructions during the screen launch. 

7: Clicking the button ‘Switch To Video’ plays the video relevant to the segment. With 

this option, the user can directly watch the video without navigating to the VideoPoints 

website [27]. 

The users can save their work and re-login at any time to continue with their work. This 

ensures that the user does not have the requirement to complete video tagging in one shot. 

Figure 5.3 Utilizing Ground Truth to Tune Parameters 

Figure 5.3 depicts the process of using the ground truth provided by experts to make the 

results better. The process of keyword extraction involves different parameters like 

stopwordRemoval, applyStemming, reduceRareWordWeights, assignDomainImportance, 

applyISF, which can take boolean values. There are other parameters like frequency 

weight, font weight, and time weight that can take values ranging from 0-1. The pre-
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generated keywords in the ground truth interface are the keywords generated by one set of 

values assigned to the parameters and weights. After the users give feedback, I compared 

human-picked keywords with the keywords generated by different sets of values assigned 

to the parameters and determined the best set of values. 

 

5.2 Metrics for Evaluation 

The process of keyword extraction involves classifying a word into either of the two 

classes: keyword or not a keyword. Since I am interested in the class of identifying 

keywords and determine how many keywords presented to the user are actually useful, 

accuracy may not be a suitable measure. I employ well-known metrics Precision and Recall 

for evaluation. These measures are widely represented using a Confusion Matrix, which 

contains information about the actual and the predicted results. In my application, actual 

words represented the keywords given by the user and predicted words are the keywords 

generated by the algorithm.  

 

 

 

  Figure 5.4 Confusion Matrix 
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Figure 5.4 represents the confusion matrix. The terms TP, FP, FN, and TN are defined as 

follows: 

1. TP stands for True Positive. It is the count of words identified as keywords both by 

the user and the algorithm. 

2. FP stands for False Positive. It is the count of words which are identified by the 

algorithm as keywords and not by the user. 

3. FN stands for False Negative. It is the count of words which are identified by the 

user as keywords and not by the algorithm. 

4. TN stands for True Negative. It is the count of words which are not identified both 

by the user and the algorithm. 

Using this terminology, precision and recall are defined in the following sections. 

5.2.1 Precision 

Precision is the ratio of the number of correctly predicted positive examples to the total 

number of predicted positive examples. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

 

5.2.2 Recall 

Recall is the ratio of the number of correctly predicted positive examples to the total 

number of actual positive examples. 



 
66 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

 

5.2.3 F1-Score 

It is the measure of the accuracy of the keywords predicted by the algorithm. Often, a 

higher precision may lead to a lower recall, and a higher recall may lead to a lower 

precision. To balance the precision and recall scores, F1-measure is used as a standard to 

measure the accuracy. It is the harmonic mean of precision and recall. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 

 

5.2.4 Partial Precision Score 

The True Positives in the precision only accounts for the perfect matches in keywords 

generated by the algorithm and human-picked keywords. For n-grams, even if one word of 

the n-gram goes wrong, the entire word is pruned giving it a score of 0. To account for 

near-misses, I computed the partial match scores for each n-gram predicted by the 

algorithm and the user. The partial match score of an n-gram is the ratio of the number of 

words common in the predicted n-gram and user selected n-gram to the number of words 

in the union set of the n-grams.  

If A and B are the n-grams generated by an algorithm and human, respectively, the partial 

match score is as follows: 
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𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑀𝑎𝑡𝑐ℎ 𝑆𝑐𝑜𝑟𝑒(𝑃𝑀𝑆)  =  
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠(𝐴 ∩ 𝐵)  

𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠(𝐴 ∪  𝐵)
 

The partial precision score of a segment is equal to the average of partial match scores of 

words generated by the algorithm. 

                   𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =  
𝑆𝑢𝑚 𝑜𝑓 𝑃𝑀𝑆 𝑓𝑜𝑟 𝑤𝑜𝑟𝑑𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.  𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
  . 

 

5.2.5 Partial Recall Score 

Like the partial precision score, I computed the partial recall score. The partial recall score 

in a segment is equal to the average of partial match scores of words generated by the user.

 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =  
𝑆𝑢𝑚 𝑜𝑓 𝑃𝑀𝑆 𝑓𝑜𝑟 𝑤𝑜𝑟𝑑𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑢𝑠𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.  𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑢𝑠𝑒𝑟
  . 

 

5.2.6 Partial F1 Score 

This is like the F1 score, but it considers Partial Precision Score and Partial Recall Score 

for computation. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑟𝑒𝑐𝑎𝑙𝑙  

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑟𝑒𝑐𝑎𝑙𝑙  
  . 
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5.2.7 BLEU Score 

BLEU score, which stands for Bilingual Evaluation Understudy is a scoring metric to 

evaluate the candidate keyword with a set of reference keywords. Here the candidate 

keyword is the word generated by the algorithm and reference keywords are the words 

selected by humans. This metric also accounts for the ordering of words in the candidate 

and the reference n-grams. The ordering is usually not taken care in standard metrics like 

precision and recall. BLEU score can also be termed as modified precision. It outputs a 

value between 0 and 1. A value closer to 1 indicates that the candidate keyword is more 

similar to the reference keywords. 

 

5.2.8 Fleiss’ Kappa Score 

Fleiss’ Kappa score is a statistical measure for assessing the reliability of agreement among 

a fixed number of raters when assigning ratings to several classifying items [28]. It varies 

from -1 to 1. A score of 1 indicates perfect agreement and a score of -1 indicates perfect 

disagreement. This score tells how well the users agree with each when picking the 

keywords for the same segment. 
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5.3 Study of Parameters 

I gathered keywords for 121 segments of 11 videos belonging to Computer Science, 

Biology and Biochemistry from 16 different students and tutors. More than one user rated 

most of the segments. Table 5.2 shows the count of raters tagging different segments. 

Table 5.2 Count of raters for different segments 

Total Segments Total Raters 

3 9 

3 8 

4 7 

2 6 

7 3 

80 2 

22 1 

 

Table 5.2 shows that more than five users tagged 12 segments, three users rated seven 

segments, two users tagged 80 segments, and one user tagged the rest of the segments. 

Using the keywords given by raters for various segments, I computed the scores of different 

metrics using a random combination of weights and values as parameters to my algorithm. 

The total number of keywords presented as a summary of each segment varied between 7 

and 20. It means each segment displayed at least 7 words and at most 20 words. I decided 
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the minimum and the maximum number of words to display on each segment by observing 

a few lectures. The range set by the keyword detection algorithm defines the final count on 

how many words should be displayed. I have considered the words which have scores 

above 60% of the range value, 50% of the range value, and 40% of the range value in each 

segment and computed the results. 

I altered the weights of the parameters like frequency, font and time and assigned different 

combinations of binary values to stopwordRemoval, applyStemming, applyISF, 

assignDomainImportance, and reduceRareWordWeights.  

Table 5.3 Variation of Parameters to Generate Different Sets of Keywords 

Parameter Set-1 Set-2 Set-3 Set-4 Set-5 

Frequency Weight 0.5 0.5 0.5 0.4 0.4 

Font Weight 0.2 0.4 0.4 0.5 0.3 

Time Weight 0.3 0.1 0.1 0.1 0.3 

Stop Word Removal True True True True True 

Apply Stemming True True True True True 

Assign Domain Importance True True True True True 

Reduce Rare Word Weights True True False True False 

Apply ISF True True True True True 

 

I have experimented with Table 5.3 which represents the top five performing set of values. 

From the above table, I inferred the values for any set. For instance, Set-1 keywords used 
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the frequency weight as 0.5, font weight as 0.2, time weight as 0.3, and the parameters 

stopwordRemoval, reduceRareWordWeights, applyStemming, assignDomainImportance, 

and applyISF, as TRUE.   

Using different sets of values, I generated keywords and computed the metrics discussed 

in Section 5.2. As ground truth has more than one user rating the segments, I calculated the 

scores by two methods. 

5.3.1 Keywords from All Users 

In this method, the gold set of keywords for a video segment contained the keywords given 

by all users tagging the segment. 

Table 5.4 Sample Keywords given by Users for a Segment 

Rater Keywords 

User 1 {Word 1, Word 2, Word 3} 

User 2 {Word 1, Word 3, Word 4} 

User 3 {Word 1, Word 2, Word 3, Word 5, Word 6} 

 

Table 5.4 shows sample keywords tagged by different users for one segment of the video. 

Now the gold set for this segment is {Word 1, Word 2, Word 3, Word 4, Word 5, Word 

6}. I compared the gold set with the keywords generated by the algorithm. 

As mentioned before, I restricted the number of keywords generated by algorithm between 

7 and 20 and experimented by considering keywords that have the score above 60% of the 
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range, 50% of the range and 40% of the range. Figure 5.5 – Figure 5.10 shows results 

considering different ranges of keywords. 

 

Figure 5.5 Scores with Keywords above 60% of the Range – All Users 

From Figure 5.5, Set-1 gives the highest F-1 score which is equal to 59.1%. The values of 

precision and recall achieved by Set -1 are 56.3% and 62.3%, respectively. 
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   Figure 5.6 Scores with Keywords above 50% of the Range – All Users 

From Figure 5.6, Set-1 gives the highest F-1 score which is equal to 60%. The values of 

precision and recall achieved by Set -1 are 54.6% and 66.5%, respectively. 

Figure 5.7 Scores with Keywords above 40% of the Range – All Users 

From Figure 5.7, Set-1 gives the highest F-1 score which is equal to 61.6%. The values of 

precision and recall achieved by Set -1 are 54.5% and 70.7%, respectively. 
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Figure 5.8 Partial Scores with Keywords above 60% of the Range – All Users 

From Figure 5.8, Set-1 gives the highest F-1 score which is equal to 66%. The values of 

precision and recall achieved by Set -1 are 63% and 69.2%, respectively. 

Figure 5.9 Partial Scores with Keywords above 50% of the Range – All Users 

From Figure 5.9, Set-1 gives the highest F-1 score which is equal to 66.6%.  The values of 

precision and recall achieved by Set -1 are 61.3% and 72.8%, respectively. 
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Figure 5.10 Partial Scores with Keywords above 40% of the Range – All Users 

From Figure 5.10, Set-1 gives the highest F-1 score which is equal to 67.9%. The values 

of precision and recall achieved by Set -1 are 61.1% and 76.4%, respectively. 
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Considering this, I compared the gold set against the algorithm generated words and 

obtained the results as shown below: 

Figure 5.11 Scores with Keywords above 60% of the Range – Majority Users 

From Figure 5.11, Set-1 gives the highest F-1 score which is equal to 54%. The values of 

precision and recall achieved by Set -1 are 46.2% and 64.9%, respectively. 
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Figure 5.12 Scores with Keywords above 50% of the Range – Majority Users 

From Figure 5.12, Set-1 gives the highest F-1 score which is equal to 54.4%. The values 

of precision and recall achieved by Set -1 are 44.7% and 69.4%, respectively. 

Figure 5.13 Scores with Keywords above 40% of the Range – Majority Users 

From Figure 5.13, Set-1 gives the highest F-1 score which is equal to 54.7%. The values 

of precision and recall achieved by Set -1 are 43.8% and 72.8%, respectively. 
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Figure 5.14 Partial Scores with Keywords above 60% of the Range – Majority Users 

From Figure 5.14, Set-1 gives the highest F-1 score which is equal to 61.9%. The values 

of precision and recall achieved by Set -1 are 54.3% and 72.1%, respectively. 

Figure 5.15 Partial Scores with Keywords above 50% of the Range – Majority Users 

From Figure 5.15, Set-1 gives the highest F-1 score which is equal to 62.2%. The values 

of precision and recall achieved by Set -1 are 52.6% and 76%, respectively. 
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Figure 5.16 Partial Scores with Keywords above 40% of the Range – Majority Users 

From Figure 5.16, Set-1 gives the highest F-1 score which is equal to 62.5%. The values 

of precision and recall achieved by Set -1 are 51.7% and 78.9%, respectively. 

By observing results obtained by different combinations of parameters for 121 segments, I 

determined that Set-1 performs relatively well.  Table 5.5 shows the values of final values 

assigned to the parameters of the keyword detection algorithm.  
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Table 5.5 Final Parameters of the Keyword Detection Algorithm 

 

5.4 Summary of Results 

Assigning the values of Set–1 to the keyword detection algorithm generated the best 

results. Figure 5.17 shows different metrics obtained by Set-1 values with varying range. 

By analyzing the graph, the most common pattern observed was the number of keywords 

selected by the algorithm increased, values of precision and partial precision decreased. 

Recall and partial recall increased as the keywords selected by the algorithm increased. 

Overall, F1 and partial F1 scores increased with an increasing number of keywords. The 

highest value of F1 obtained was 61.5% in the strict evaluation and 67.8% in the partial 

evaluation by considering keywords given by all users whose scores were 40% above the 

range. 

Parameter Value 

Frequency Weight 0.5 

Font Weight 0.3 

Time Weight 0.2 

Apply Stop Word Removal True 

Apply Stemming True 

Assign Domain Importance True 

Reduce Wts of Rare Words True 

Apply ISF True 
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Figure 5.17 Scores from Set-1 Parameters with a Varying Range 

 

5.4.1 BLEU Score Analysis 

 I also calculated the BLEU score using Set-1 parameters. It slightly decreased when 

compared with the highest values attained with another set of parameters. The BLEU score 

decreased with an increasing number of keywords. Figure 5.18 can illustrate this pattern. 

BLEU score also followed the pattern followed by the precision metric, however, the 

values of BLEU scores were higher compared to the precision and slightly lower compared 

to the partial precision. This is a good sign that the n-grams predicted by the keyword 

detection algorithm follow the order as expected by users. 
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Figure 5.18 Comparison of BLEU Score: Set-1 Values and Highest Values 

 

 

5.4.2 Rater Agreement Analysis 

To measure the agreement among different raters, I computed the Fleiss’ Kappa score for 

segments having more than three raters.  The scores obtained were in the range of 0 – 0.2, 

which indicate there was only a slight agreement among the raters. Table 5.6 shows the 

results obtained for the rater agreement analysis. 
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Table 5.6 Rater Agreement Score 

 

These low scores indicate that the users did not agree with each other. During the ground 

truth collection process, I did not put a limit on the number of keywords selected by the 

user for each segment. If one user selected three keywords for a segment, and another user 

selected ten keywords for the same segment, then the maximum number of keywords that 

can be common for both the users was three, and the metric considered this as a high 

disagreement. This is the main reason for obtaining low rater agreement scores. 

 

5.5 Analysis of Errors 

In this section, I analyzed the output of keyword detection algorithm and identified the 

vulnerabilities of different techniques that could be potential reasons for generating 

incorrect keywords.  

 

 

Total Keywords Raters Kappa Score 

97 9 0.133 

108 8 0.111 

82 7 0.172 

84 6 0.153 
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5.5.1 OCR Issues 

As mentioned before, the process of keyword extraction starts with erroneous text. As OCR 

technology plays a key role in determining the text on video frames, the process should not 

be erroneous. Several big giants like Microsoft and Google are working on OCR to make 

its output error-free. They have been training the OCR on billions of images to get the best 

of it. So, with a good OCR in place, the system can avoid most of the false detection of 

words. 

Another issue with OCR is that it does not detect punctuations and sentence boundaries. It 

just scans the text left to right, top to bottom. This leads to a collection of words from the 

frames rather than having sentences. The contextual information is also not present, which 

is very critical for the application of Natural Language Processing techniques. Without the 

contextual information, the system treats the words as a bag-of-words model for generating 

frequencies. This may not give the best outcome. Also, if a few words from different 

sentences form an n-gram, and if the n-gram is valid, this increases the room for errors. 

I applied some techniques to correct OCR errors. But since I do not have the context exactly 

captured, there is no guarantee for error correction. The second phase of correction 

identifies valid and invalid words based on word frequencies. If OCR identifies word ‘w1’ 

as ‘w2’ at all the occurrences of ‘w1,’ then it cannot be corrected due to its high frequency. 

This mainly happens with real-word errors. 
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5.5.2 Issues with External sources 

 In the process of identifying valid n-grams, I am making use of the PhraseFinder API [18], 

a search engine for Google n-grams dataset.  There is a rough estimate of the volumes of 

books Google scanned to muster the database, but there is no information provided on the 

category of books and their domains. It is possible that it has not scanned enough books of 

a particular domain. The n-gram database has a restriction which says words should occur 

in at least 40 books to get an entry into the database [19]. When resources belonging to a 

domain are sparse, some domain-specific words may lose the chance of getting into the 

database, and this makes the global count 0. The system may lose some important 

information due to this.  Other external sources include reference dictionaries from Oxford 

for identifying domain-specific words and stop word list. The stop word list almost 

contains most of the frequently used stop words, and there is a low chance to get errors 

with this source. But the dictionaries from Oxford are updated frequently with new words. 

To reduce the chance of errors, I should update them frequently. 

 

5.5.3 Limitations of Cleaning Extraneous Text 

In the process of cleaning extraneous text, I set a threshold dynamically to identify the 

words repeating at similar positions and discarded them. There may be cases, where 

extraneous text might appear in very few transition points, and their total occurrences might 

not satisfy the threshold criteria. This makes them a part of the possible keywords. 
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Another possibility of error occurs when the instructor uses the same title name on most of 

the slides. As this title constantly appears in a similar position, the algorithm may discard 

some essential words. In this case, the current system does not select them as keywords as 

it discards them. 

 

5.5.4 Keywords from Video Transcript 

Instructors may emphasize a specific application of the topic during the lecture, and this 

may not be a part of the presentation. Since I only considered the text from the frames 

rather than the speech transcript, the current methods tend to miss those words as their 

weight might be relatively low. The expert who is picking the tags may watch the video 

and select the words that are exclusive to the audio. This is another possible case of missing 

keywords. 
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CHAPTER – 6: CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

Availability of keywords for video segments is likely to have a significant impact on 

students’ learning outcome as they improve navigation across a lecture. Processing the 

keywords manually is a complicated task. Determining the word importance based on the 

frequency of word may not result in an efficient keyword summary. This thesis work 

proposed and developed methods to automatically generate keywords by assigning 

different weights to various properties of text like the font characteristics of the word, the 

time presence of the word, besides the frequency of the word. The frequency internally 

considered many other steps like removing stop words, applying stemming, assigning 

domain importance, pruning the weights of rare words, and applying TF-ISF. Post-

processing was done on the OCR output to rectify errors using spell correction techniques 

before extracting different features from the words.  An interface was also developed to 

gather the necessary ground truth from the students to evaluate the results obtained by the 

proposed methods. I evaluated the keywords generated by different versions of the 

algorithm with the feedback given by the users, and my methods achieved a precision of 

54.5%, recall of 70.7% and F1 score of 61.6% in the strict version. These scores were also 

computed by relaxing the metrics to account for partial matches and achieved a precision 

of 61.1%, recall of 76.4% and F1 score of 67.9%. I have analyzed the number of words to 

display as part of the summary for each segment and decided that considering the words 
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which have a score higher than 40% of the range would give the best results. I also 

restricted the maximum allowable words in a segment to 20. 

 

6.2 Future Work 

The data from the video frames may not adequately present the information on the topic. 

A hybrid speech and text model can be developed to determine the keywords. In my 

experience, speech preserved the semantics well compared to the OCR. Future 

improvements in ASR technology will automatically lead to improved keyword detection. 

The assignDomainImportance parameter identified words belonging to a specific domain 

and boosted their weights. However, the lecture might belong to two or more domains and 

improvement can be made to the current methods to handle this.  I multiplied the weights 

by a factor 2k, which worked well. In the future, other researchers could revisit this area 

and determine a more reasonable factor. More ground truth can be gathered to have the 

same segment tagged by multiple users and rank the words based on the user agreement to 

compare them against the ranking generated by the current methods and measure 

deviations. This paves a way in working towards achieving minimum deviation. 

Considering these methods might help achieve higher F1 score improving the precision 

and recall and generate high-quality keywords. 
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