
AUTOMATIC KEYWORD DETECTION FOR TEXT

SUMMARIZATION

A Thesis Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Raga Shalini Koka

May 2019

ii

AUTOMATIC KEYWORD DETECTION FOR TEXT

SUMMARIZATION

 Raga Shalini Koka

 APPROVED:

 Dr. Jaspal Subhlok, Advisor

 Dr. Thamar Solorio

 Dr. Christopher Barr

Dr. Dan E. Wells, Dean,

College of Natural Sciences and Mathematics

iii

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my advisor, Dr. Jaspal Subhlok and Dr.

Thamar Solorio for their valuable guidance and indelible encouragement throughout the

course. Their support, help, and enthusiasm motivated and reinforced my confidence at

every stage of my research. Our discussions provided me great insight to look through a

new perspective conceptually and accomplish the goal of this thesis. I want to thank Dr.

Christopher Barr for being part of the thesis and supporting me constantly. I also want to

thank Dr. Shishir Shah and Dr. Ioannis Konstantinidis for their invaluable suggestions in

various phases of the project. Lastly, I would like to thank my parents who were always

my great support and encouragement to strive towards achieving my goal and making this

work a success.

iv

AUTOMATIC KEYWORD DETECTION FOR TEXT

SUMMARIZATION

An Abstract of a Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Raga Shalini Koka

May 2019

v

ABSTRACT

Lecture videos are extremely useful and great learning companions for students. The ICS

(Indexed, Captioned, and Searchable) video project provides students a flexible way to

navigate across the lectures by automatically dividing the lecture into topical segments.

Presenting keywords to every segment can provide an overview of the content discussed

in a segment and improve navigation. Identifying keywords manually requires human

effort and consumes a lot of time for lecture videos that are typically an hour or longer.

This thesis proposes methods to automatically detect keywords to summarize the content

in a video segment.

The input to the keyword detection algorithm is text from the video frames extracted by

OCR, and I enhance the text with auto-correction in a post-processing pass. Automatically

detecting keywords is challenging as the importance of a word depends on a variety of

factors such as frequency, font size, and duration of time it is present on the screen. Other

factors include relative frequency in a video segment versus the rest of the video and

domain significance derived from external sources. This thesis explores how these factors

contribute to the importance of a word and how they can be combined to identify good

keywords.

I evaluated the performance of the proposed methods by comparing the keywords

generated by the algorithm with the tags chosen by experts on 121 segments of 11 videos

from different departments like Computer Science, Biology, and Biochemistry. I initialized

the features to different combinations of weights and computed metrics like precision,

vi

recall, F1, BLEU score, and correlation scores. I also presented an analysis of errors and

different areas that can be explored to generate higher quality keywords.

vii

TABLE OF CONTENTS

CHAPTER – 1: INTRODUCTION ..1

1.1 Motivation ...2

1.2 Summary of Research ..3

1.3 Thesis Outline ...5

CHAPTER – 2: BACKGROUND – ICS VIDEO PROJECT ..6

2.1 Indexing ...9

2.2 Captioning ...10

2.3 Searching ...11

CHAPTER – 3: RELATED WORK ...14

3.1 Keyword Extraction ...14

3.2 OCR Error Correction ...16

CHAPTER – 4: AUTOMATIC KEYWORD EXTRACTION18

4.1 Discard Extraneous Text ...19

4.2 OCR Error Correction ...24

4.3 N-gram Extraction and Validation ..29

4.4 N-gram Filtering and Grouping ...32

 4.4.1 Stop word Removal ..32

4.4.2 Stemming ...33

viii

4.5 Frequency Score ..36

4.5.1 Term Frequency ..36

4.5.2 Inverse Segment Frequency ..38

4.5.3 Domain Importance ...40

4.5.4 Reduce Weights of Rare Words ...42

4.5.5 Final Frequency Score ...44

4.6 Font Score ...44

 4.6.1 Determining Font Weights of N-grams ..45

4.6.2 Final Font Score ..48

4.7 Time Score ...49

 4.7.1 Determining Time of N-grams ...49

4.7.2 Final Time Score ..52

4.8 Final Score Computation ..53

4.9 User Presentation ..54

CHAPTER – 5: ASSESSMENT ..58

5.1 Ground Truth Collection ..58

5.2 Metrics for Evaluation ..64

5.2.1 Precision ...65

ix

5.2.2 Recall ...65

5.2.3 F1-Score ..66

5.2.4. Partial Precision Score ...66

5.2.5 Partial Recall Score ...67

5.2.6 Partial F1 Score ...67

5.2.7 BLEU Score ..68

5.2.8 Fleiss’ Kappa Score ..68

5.3 Study of Parameters ...69

5.3.1 Keywords from All Users ...71

5.3.2 Keywords from Majority Users ..75

5.4 Summary of Results ...80

5.4.1 BLEU Score Analysis ...81

5.4.2 Rater Agreement Analysis ..82

5.5 Analysis of Errors ...83

5.5.1 OCR Issues..84

5.5.2 Issues with External sources ...85

5.5.3 Limitations of Cleaning Extraneous Text ...85

5.5.4 Keywords from Video Transcript ...86

x

CHAPTER – 6: CONCLUSION AND FUTURE WORK ...87

6.1 Conclusion ...87

6.2 Future Work ...88

REFERENCES ...89

xi

LIST OF FIGURES

Figure 2.1 An Overview of ICS Player and its Components ...8

Figure 2.2 Transition Point in a Video. The 3rd frame is a New Transition Point9

Figure 2.3 Selection of Index Points from Transition Points ...9

Figure 2.4 ICS Player with Search Functionality ..12

Figure 4.1 Steps in Keyword Extraction ..19

Figure 4.2 Demo of ‘Did you mean’ Feature ...25

Figure 4.3 Text Before and After Spell Correction ...26

Figure 4.4 Demo of Corrections in Phase 2 ...27

Figure 4.5 Example-1 of PhraseFinder ..31

Figure 4.6 Example-2 of PhraseFinder ..31

Figure 4.7 VideoPoints Interface with Keywords Summary ...56

Figure 5.1 Login Screen for Ground Truth Collection ..59

Figure 5.2 Ground Truth Interface ...60

Figure 5.3 Utilizing Ground Truth to Tune Parameters ...63

Figure 5.4 Confusion Matrix ...64

Figure 5.5 Scores with Keywords above 60% of the Range – All Users72

Figure 5.6 Scores with Keywords above 50% of the Range – All Users73

Figure 5.7 Scores with Keywords above 40% of the Range – All Users73

xii

Figure 5.8 Partial Scores with Keywords above 60% of the Range – All Users74

Figure 5.9 Partial Scores with Keywords above 50% of the Range – All Users74

Figure 5.10 Partial Scores with Keywords above 40% of the Range – All Users75

Figure 5.11 Scores with Keywords above 60% of the Range – Majority Users76

Figure 5.12 Scores with Keywords above 50% of the Range – Majority Users77

Figure 5.13 Scores with Keywords above 40% of the Range – Majority Users77

Figure 5.14 Partial Scores with Keywords above 60% of the Range – Majority Users78

Figure 5.15 Partial Scores with Keywords above 50% of the Range – Majority Users78

Figure 5.16 Partial Scores with Keywords above 40% of the Range – Majority Users79

Figure 5.17 Scores from Set-1 Parameters with a Varying Range81

Figure 5.18 Comparison of BLEU Score: Set-1 Values and Highest Values82

xiii

LIST OF TABLES

Table 4.1 N-gram Original Weights ..37

Table 4.2 N-gram Updated Weights ...38

Table 4.3 Snippet of Words with their Font Size ...46

Table 4.4 Snippet of Words with their Average Font Size ..46

Table 4.5 Snapshot of Slide Content of a Segment ...49

Table 4.6 Ordered N-grams for a Segment ..50

Table 4.7 Slide Content after Step 1 ..51

Table 4.8 Slide Content after Step 2 ..51

Table 5.1 Color Codes of Buttons..62

Table 5.2 Count of Raters for Different Segments ..69

Table 5.3 Variation of Parameters to Generate Different Sets of Keywords70

Table 5.4 Sample Keywords given by Users for a Segment..71

Table 5.5 Final Parameters of the Keyword Detection Algorithm80

Table 5.6 Rater Agreement Score ..83

1

CHAPTER – 1: INTRODUCTION

Many academic institutions are publishing lectures online to be accessed by the students.

With the advancements in technology, Online Learning or E-learning has gained enormous

popularity. The pervasive use of communication systems and devices that facilitate the

creation and distribution of digital content [1] are significantly contributing to the success

of Online Learning. Students can access these resources anytime, anywhere, to adapt to

their learning style [2].

The usage of lecture videos has become a common trend among instructors and students.

Students use these videos as autonomous resources, e.g., in the case of distance learning,

or in conjunction with classroom lectures to supplement classroom teaching. The emerging

popularity has led universities including the University of Houston, Stanford, and MIT, to

publish their lectures online. Massively Open Online Courses (MOOC) such as Udemy,

Coursera, and Pluralsight have been successful in delivering online lectures in different

domains by enhancing the students’ learning experience. Students can make use of these

lectures to compensate for a missed class or review purposes. The availability of classroom

lectures can be helpful to recreate the classroom experience and capturing the student-

professor interaction.

A lot of ongoing research aims to ease the navigation of long lecture videos using

‘Indexing,’ which automatically divides a video into segments indicating different topics

and ‘Keyword Search,’ that identifies video segments matching a particular keyword [3].

2

Although these features greatly save time in accessing the video content, the student would

not be able to see the relevant keywords of a topic discussed in a video segment.

1.1 Motivation

The motivation for this thesis has developed from the aim to automatically present the

relevant keywords or tags as a summary of each segment of a video. Although navigation

inside a video has improved with indexing techniques, it would be difficult for students to

guess the content present in a segment by viewing the first video frame of the segment.

Presenting keywords would allow the students to glance at the content discussed in a

segment and efficiently judge if they should review the topic or not, thus making the

navigation even more quick and efficient. It is possible to manually identify the keywords

for each segment in a video lecture with the help of instructor; however, performing this

task manually is cumbersome as a typical lecture video is about 60-90 minutes and

sometimes even longer. Also, the indexing of the video might change as new algorithms

continue to evolve, improving the accuracy to identify index points. In this case, the

instructor should rearrange all the keywords for the segments accordingly. So, manually

identifying keywords is an expensive process. Automatic keyword detection would help in

providing a faster and efficient way to tackle the problems by extracting words that are

more relevant to the topic. Thus, identifying keywords automatically would be useful for

faster navigation across a lecture video.

3

1.2 Summary of Research

The primary goal of this research is to develop methods that identify keywords for each

segment of a lecture video. The keywords extracted can be phrases or n-grams. An n-gram

is a sequence of ‘n’ terms. Initially, a long video is divided into multiple segments using

indexing algorithms [3]. OCR technology detects the text on the segments, and the

‘Keyword Detection Algorithm’ takes the text as input. I outline the key considerations

made by the algorithm to determine the keywords for the video segments below:

1. The text extracted by OCR contains noise. As detecting keywords on the noisy text

may not produce good results, the text is post-processed by applying a two-phase

auto-correction technique. The first phase uses suggestions from Google to reduce

the noise in the text and the second phase substitutes rare, misspelled words by

referring to the high-frequency words of the lecture.

2. The keyword detection algorithm extracts all the possible n-grams and validates

them by searching the n-gram database from Google to retain the meaningful n-

grams.

3. The algorithm performs pre-processing to eliminate the n-grams containing stop

words and group them based on the stemming results.

4. Several factors such as frequency, inverse segment frequency, domain significance,

font size, and duration determine the importance of an n-gram.

5. Frequency determines the importance of an n-gram in a segment, whereas inverse

segment frequency reduces the effect of frequency if the n-gram widely occurs in

4

rest of the segments of a video. The keyword detection algorithm uses external

dictionaries provided by Oxford to identify the n-grams containing words related

to the lecture’s domain and boost their scores.

6. The font size is another factor specifying the importance of an n-gram. The

algorithm calculates the average font weight of each word in a segment and

estimates the n-gram font score. Similarly, it computes the duration of time for

which an n-gram occurs in a segment of the video.

7. Lastly, the keyword detection algorithm combines all the factors and generates a

final score to each n-gram present in a segment. Then it ranks the n-grams based

on the score and selects the top n-grams in each segment to present them as a

summary to the users.

To evaluate the quality of keywords generated by the keyword detection algorithm, I

developed a tool to collect the keywords for the video lectures from the instructors and

students involved with the course. These manually assigned keywords are compared with

the keywords generated by the algorithm and computed precision, recall, F1, BLEU, and

correlation scores. I gathered keywords from experts for 121 segments of 11 videos from

various departments of the College of Natural Sciences and Mathematics such as Computer

Science, Biology and Biochemistry. The proposed methods achieve a precision of 54.5%,

recall of 70.7%, and F1 score of 61.6%.

5

1.3 Thesis Outline

I organized the thesis as follows: The work presented here is part of a larger ICS (Indexed

Captioned and Searchable) VideoPoints. Chapter 2 provides background information on

the ICS Videos Project. Chapter 3 presents the related work done on keyword extraction

and OCR correction. Chapter 4 elaborates the various pre-processing techniques and

methods used to identify keywords from the video segments. It also elaborates on the

methods used to rectify the OCR errors along with numerous significant challenges faced

in this research. Chapter 5 explains the tool developed to collect ground truth from the

users and process of evaluation along with the analysis of the results. It also discusses the

reasons for errors generated by the system. Finally, Chapter 6 summarizes the current work

and presents the potential future perspective of this work.

6

CHAPTER – 2: BACKGROUND – ICS VIDEO PROJECT

The ICS (Indexed, Captioned, and Searchable) Video Project is designed to make video

lectures easily accessible to the students by providing index points (segments), captions

and keyword search in a video lecture. It mainly aims to enhance the students’ learning

process by allowing to navigate and access the desired content easily. The main

components of the ICS Videos are the ‘Indexing module,’ ‘Captioning module,’ and the

‘Keyword Search module.’

The instructor records the classroom lecture by recording his/her computer screen while

delivering a prepared viewgraph like PowerPoint in addition to the audio. The ICS server

takes the uploaded video and automatically processes it by creating indexes, generating

captions, and producing keywords to facilitate search. The keywords extracted in this

process are words from the text produced by Optical Character Recognition (OCR)

technology. All these words need not signify the content that has occurred in the video

segment. They are mainly used to filter the segments of a video when the user searches

inside the video. This thesis aims to extract keywords and present them to the user as a

summary signifying the main content of the video segment. Note that this is different from

identifying segments in a video when searching for a specific occurrence of a word.

Figure 2.1 shows a customized player built with sophisticated features like indexing,

captioning and search. ICS Video Player is an HTML5 based player capable of streaming

video over the Internet. The player consists of a playback component, index panel,

7

transcripts display panel and a search box [4]. The central portion of the player in the

middle is the playback component. It has several options to play, pause, control the speed

of the video, and hide index, and transcript panels. The bottom panel called the index panel

represents different index points. The right side of the video contains interactive transcripts

called the transcript display panel. There is a search box above the index panel which

allows the user to search for index points containing the search term.

8

F
ig

u
re

 2
.1

 A
n

 O
v
er

v
ie

w
 o

f
IC

S
 P

la
y
er

 a
n

d
 i

ts
 C

o
m

p
o
n

en
ts

9

2.1 Indexing

The process of dividing the video lecture into segments that represent different sub-topics

is called ‘Indexing’ or ‘Segmentation.’ This algorithm detects significant scene changes in

a video and marks these changes as Transition Points. Index Points are subsets of these

transition points that represent a different sub-topic. The indexing algorithm selects the

appropriate transition points as index points [5]. Figure 2.2 illustrates the transition points

in a sequence of video frames and Figure 2.3 demonstrates the selection of index points

from transition points. A segment is a set of transition points from one index point to

another. In Figure 2.3, the first 4 transition points form a segment.

Figure 2.2 Transition Points in a Video. The 3rd frame is a New Transition Point [5]

Figure 2.3 Selection of Index Points from Transition Points

10

The ICS system detects transition points in a video by comparing the RGB (Red, Green,

Blue) values of the corresponding pixels in the two images for similarity. The system

optimizes the process of comparison by employing a binary search mechanism to select

frames at certain intervals. Image difference between the successive transition points forms

the criteria for the selection of index points. The evaluations from the previous work

showed that the index points were accurate most of the time but did not always represent a

topic change [5].

2.2 Captioning

ICS Video Player has an in-built ‘Captioning’ feature. Captioning is used to enhance the

accessibility of lecture videos. Captioning was primarily motivated to make the lectures

available to deaf and improve the experience of hearing and foreign language students [5].

The video player displays the captions on the video screen along with the view graphs, and

the player shows the complete transcript on the right-hand side. The ICS player provides

a feature to turn on/off the captions and the transcripts. Although the ICS framework can

generate captioning automatically, a certain degree of manual correction is desirable due

to the limitations of Automatic Speech Recognition (ASR) tools.

11

2.3 Searching

The ‘Search’ feature in the ICS Video Player enables search inside a video. The process of

identifying all the segments where a keyword exists is keyword search. The text box above

the index panel in Figure 2.1 is used to perform the search.

The indexer creates the video segments as well as transition point frames. OCR detects the

text on these frames and stores them in a database. The ICS Player loads the video along

with the associated keywords on a playback request [5].

12

F
ig

u
re

 2
.4

 I
C

S
 P

la
y
er

 w
it

h
 S

ea
rc

h
 F

u
n

ct
io

n
a
li

ty

13

When the user searches for a keyword from the search interface, the search module in the

player activates and identifies a series of index points, allowing the user to navigate to the

corresponding video segment.

Figure 2.4 represents the ICS player with the Search functionality enabled. In the example,

the user has searched for a keyword ‘data,’ and the index panel shows the segments with

the matching keyword. In this case, three index points have the word ‘data,’ and it has

occurred eight times in total in the video. By clicking the specific index points, the user

can view the lecture which contains the searched keyword.

14

CHAPTER – 3: RELATED WORK

3.1 Keyword Extraction

Several projects have addressed the extraction of keywords from documents. The most

commonly used statistical measure to extract significant words in an unsupervised way is

TF-IDF [6]. TF-IDF stands for Term Frequency-Inverse Document Frequency. It is

intended to reflect the importance of the word in a document. The authors normalized the

terms TF and IDF in different ways and produced different variants [6] [7]. There are other

works which extract domain keywords from the online news articles [8]. Several news

articles are collected and manually tagged with their domains. Along with the traditional

TF-IDF, the authors used a new measure called the ‘Word Common Possession Rate,’

which is the ratio of the number of domain documents containing the word to the total

number of domain documents. The authors proposed this new measure to compensate the

limitations of TF-IDF in identifying keywords related to the specific domain when the total

number of documents belonging to the domain is small compared to the total number of

documents. The TF-IDF is multiplied with ‘Word Common Possession Rate’ to rank the

keywords. They listed the evaluation of this work as their future work.

The research done by Lee et al., 2008 suggested a different technique to extract keywords

for topic tracking; especially in news articles, using the ‘Table Term Frequency’ (TTF) in

conjunction with the conventional TF-IDF [7]. As the first step, they compute TF-IDF for

15

all the words in each document and consider top n% of the words from each document for

further processing. They did not state the selection of the value ‘n’ in their research paper.

In the second step, they computed the term frequency on the words extracted in step 1 and

determined the importance of words. To further improve the accuracy of extracted

keywords, they performed ‘Cross-domain Comparision Filtering.’ The standard deviation

of the words identified as keywords is computed taking their ranks in different domains of

news articles like sports and politics. If the result of the standard deviation is below a

certain threshold, they removed the word from the list of keywords. They believe that, if a

word is ranked high in one domain and low in another domain, the word should be given

importance in the domain which it is ranked high [7]. This work does not present any

results.

Though a good amount of research has been done on extracting keywords, all of these

techniques were applied either on documents or news articles which are well-phrased. In

my scenario, I am utilizing the text extracted from video frames using OCR, and the output

given by OCR does not follow the standard structure of the text documents. The importance

of a word in a video also depends on several other factors like frequency, font size, the

display time of the word on the frame. Owing to these limitations, directly applying the

existing methods is not sufficient.

16

3.2 OCR Error Correction

The output generated by OCR may contain significant errors, and its quality depends on

many factors like the quality of image fed to the OCR engine, combinations of text and

background colors on the image, and use of small and exotic fonts [9]. The research work

by Tuna et al., 2017 [9] applied several image enhancement techniques as pre-processing

steps before the application of OCR. The image enhancement techniques employed in their

work are ‘Text Segmentation’ and ‘Color Inversion.’ Text segmentation extracts the

regions of text in an image by following a series of operations like binarizing an image

using thresholding, dilation, edge detection using Sobel operator, blob coloring, and

resizing.

Several post-processing techniques are widely applied to correct the errors during OCR

text recognition [10] [11]. The work by Delden et al., 2004 [10] stated a supervised and an

unsupervised approach for automatic spell correction. In the supervised approach, they

focused on misspelled words which are mainly typing errors. They used a technique called

the ‘Reverse Minimum Edit Distance,’ which takes the misspelled words and generates

possible words using any of the four operations (Insert, Delete, Substitute, Transpose). Out

of these words, they identified words part of lexicons (a pre-defined dictionary). If a word

contains a multi-error, then the ‘Reverse Minimum Edit Distance’ technique is repeated

for valid words obtained in step 1. This process continues until they get a reasonable

candidate list. Then they map the misspelled words with the candidate words based on the

similarity. In the unsupervised algorithm, they calculated the word frequencies in the

17

document and identified the words below a certain threshold as candidate errors. They

applied specific rules on the candidate words using the list of common prefixes and suffixes

to match them with the high-frequency words. These approaches resulted in an accuracy

of about 75%.

Bhardwaj et al., 2008 [11] constructed a topic-based language model for every document

in the training data and categorized the topics manually. MAP (Maximum A Posteriori)

was used as an estimation instead of ML (Maximum Likelihood). For every topic, they

created a language model using the Naive Bayes approach. 450 documents were used: 380

for training and 70 for testing. Their results show that there is an increase in accuracy of

25% compared to the standard approach.

All the methods stated above use some level of supervision that required human effort and

time. It would be difficult to apply them to my problem as the domain of lecture videos is

not limited. So, I have used an approach proposed by Youssef et al., 2012 [12] to correct

the OCR errors using the Google Spell Correction API (Application Programming

Interface), ‘Did you mean,’ as one of the steps in the auto-spell correction task. In this

method, the text is divided into blocks of fixed size and sent to the API. If there is an error

in the text submitted, the API suggests the best possible alternative using the probabilistic

n-gram model.

18

CHAPTER – 4: AUTOMATIC KEYWORD EXTRACTION

This section details the algorithms and methodology used in the automatic extraction of

keywords from lecture videos.

Keywords are words that would help to identify, at a glance, the nature of the material a

segment of a video covers to improve navigation within the video lecture. A set of

keywords summarize the content of a video segment. So, my main aim was to create a

ranked list of words, based on their significance, for each segment by scrutinizing distinct

attributes of text captured from the video frames.

OCR detects the text from video frames during the segmentation process of a lecture video

and the keyword detection algorithm takes this text as input. To generate keywords, I have

information about the text from the video frames and transcripts from the automatic speech

recognizer. This thesis focuses on the text from the video frames with the assumption that

the text from frames presents concise information on a topic. The assumption is that speech

elaborates topics presented on frames.

While OCR technology has improved significantly over the years, the quality of the output

depends on the source. In this scenario, I do not have access to the original lecture slides.

These slides are available as a video that is converted to distinct images and fed to the

OCR. In this process, some errors might be introduced in regenerating original screen text.

19

Figure 4.1 Steps in Keyword Extraction

Figure 4.1 represents the different steps involved in the process of keyword extraction. The

process starts with segmented OCR text which is cleaned by removing extraneous text and

applying auto-correction techniques. N-grams are extracted in the next step and validated

to retain the meaningful ones. I then filtered the n-grams by eliminating stop words and

grouped them using the stemming algorithm. I calculated different scores based on

frequency, font, and time and combined them to compute the final score for each n-gram.

I elaborated the details of each step in later sections.

4.1 Discard Extraneous Text

Depending on the style the instructor chooses to capture their lecture, the recorded video

may include irrelevant text from the computer. For example, the taskbar can be captured

and may be present in a part of the lecture or an entire lecture. There are some words which

20

could occur on all or most of the slides of the presentation. Sometimes, the instructor uses

the words like university name, or the instructor's name, or the course name on each slide

of the lecture and these words appear almost at the same positions on all the slides. These

words do not represent the content discussed in the segment. I want to ensure these words

are not identified as keywords.

To handle these scenarios, I came up with an algorithm to identify words repeating at

similar positions across the lecture. OCR gives positional information of every word like

Left, Right, Top, Bottom. Using this position as a reference, the algorithm keeps track of

how many times a word has occurred in a specific position on every transition point. If a

word has occurred more than a certain threshold at a particular position, the algorithm

eliminates the word from further processing. I have set 40% of the total transition points

present in the lecture as a threshold by observing a few lectures.

The reason for limiting the word elimination to a specific position is to retain the word that

has occurred at other positions holding some significance. For instance, the name of the

course is ‘Computer Architecture,’ and assume it has occurred on all the slides of the

course. There is another word ‘Fourth Gen Computer’ occurring somewhere on one of the

slides. With the approach used, the algorithm considers the words ‘Computer’ and

‘Architecture’ separately for elimination as the process deals with unigrams. Now,

discarding the word 'Computer' at all positions will also eliminate the word 'Computer' in

the word sequence 'Fourth Gen Computer'. To avoid this information loss, I designed the

algorithm to eliminate the words based on positions.

21

There is a justification for using the phrase ‘similar positions’ instead of ‘same positions.’

There is a chance that the words occurring across the lecture may slightly change in

position relative to another slide. I have allowed a 5 px deviation by measuring the

Euclidean distance between the position of words in two different slides.

As the OCR is not perfect, it may mispredict the letters in words. It may recognize the letter

‘i’ as the letter ‘l,’ the number ‘0’ as the letter ‘o,’ and so on. To handle this, I identified

words in similar locations even in the presence of small OCR errors by computing Cosine

Similarity. Cosine similarity is the cosine of the angle between two vectors [13]. It

represents text as vectors and calculated as the dot product of two vectors to the cross

product of the two vectors. It ranges from 0-1. If the similarity between the two words is

greater than 0.5, I considered the words as the same and grouped them. The following

algorithm presents the process of cleaning the extraneous text.

22

Function Name: cleanExtraneousText

Input: List of words recognized by OCR with positions

Output: List of words after removing irrelevant words

Track all the positions of each word and maintain the count of no. of times of

occurrence at the same position

for each word in words:

 Group all the positions which are less than 5 px distance and add their

occurrences

 if occurrences > threshold then

 Add to elimination list

Using position as key, find all words occurring in that position

Now compare the cosine similarity scores of words occurring in each position

if similarity > 0.5 then

Add the counts of 2 words

 if count > threshold then

Add to elimination list

Remove words present in elimination list with respect to their position

23

The following algorithm details the process of grouping the words based on the word

positions.

Function Name: groupSimilarPositions

Input: Word with positions and count sorted in increasing order of the count

Output: Updated count of occurrences of word after grouping similar positions

 positions = list of all positions and their respective counts

 nearestPositionList = position having highest occurrences

 for each position in positions:

 for each nearestPosition in nearestPositionList:

 if distance between nearestPosition and position < 5 then

 Add to position to nearestPositionList

 Add the occurrences

 break

24

4.2 OCR Error Correction

The results given by OCR are imperfect as it makes mistakes in recognizing characters.

Due to this, relying entirely on the text identified by OCR does not guarantee a good set of

keywords. So, I performed some post-processing steps on the output given by OCR to make

possible improvements to the text. There are many approaches which use the supervised

model by maintaining a set of lexicons [10] or the statistical model [29] using the Naive

Bayes. All these approaches demand huge dictionaries covering all the terms of the domain

to get accurate results. These techniques may not fit the field of education as it does not

restrict to one domain and the knowledge base keeps updating constantly. Manually

rejuvenating the data requires a lot of effort. The approach I have implemented uses the

method suggested by Youssef et al., 2012 [12] to correct errors. They have proposed a

context-based error correction technique using Google’s Spell Suggestion API.

There are two types of errors generated by OCR [14]: Non-word errors and Real-word

errors. Non-word errors occur when the words detected by OCR are not part of the

dictionary. For example, OCR recognizes the word 'probability' as 'jrolability.' Maintaining

a dictionary could solve these issues; however, the dictionary should also enclose the

names of persons, and locations [12]. Real-word errors occur when the dictionary

encompasses the words detected by OCR. However, they don’t fit the context. For instance,

OCR recognizes the n-gram ‘state transition probability’ as ‘stale transition probability’.

To solve the linguistic and context-based errors, I used an API (Application Programming

Interface) provided by Google known as ‘Did you mean’. Google has indexed several

25

trillion web pages and contains an enormous collection of words and n-gram sequences

that could best serve any application related to speech and text recognition. Using this

plethora of information, I developed a method to correct OCR errors.

Firstly, all the text from each transition point was taken and divided into blocks of fixed

size [12]. Every block contained a fixed number of words. The Google Search API takes

every block as a query and makes suggestions. The idea behind sending a block of text

rather than a single word is the assumption that the prediction is accurate when the context

surrounds the word. The results returned by the search API were parsed to see if it contains

the phrase ‘Did you mean.’ If the phrase was present, it indicated the existence of a

misspelled word, and the algorithm replaced the old block of text with the new result. This

process continued until all the text from the video completed its validation. Figure 4.2

demonstrates the ‘Did you mean’ feature. Google suggests the best alternative for the

search made with incorrect spelling.

Figure 4.2 Demo of ‘Did you mean’ Feature

26

I experimented with different sizes of blocks, and the results were optimal with block sizes

of 10 to 20 words. Figure 4.3 shows the text before and after the spell correction with ten

words per block.

Figure 4.3 Text Before and After Spell Correction

The text to the left represents the original text from OCR and text to the right is the text

after performing the correction. Figure 4.3 also highlights the words which differ before

and after the spell correction. This process corrects some of the important words like

‘observation likelihood’ and ‘emission’. It also modifies some words incorrectly; for

example, the word 'cud' changes to 'cub,' which should be 'end' in this context. Also, there

are some words which are unmodified even though they are not meaningful words.

Since OCR extracts the text from the image left to right, top to bottom there is no notion

of sentence boundaries. The formatting style of the slide varies from instructor to instructor.

Some instructors may use up the entire width of the slide, and some use it by splitting into

two or more columns and so on. With these limitations in place, I cannot say that the output

from the OCR has its full context preserved. This could be a reason why the Google API

misinterpreted some of the words.

27

To improve the correction further, I developed a method to perform another round of spell

correction with the corrected text as input. In this approach, the algorithm scans through

the text corrected by Google and identifies valid and invalid words. For a word to be valid,

it should occur at least three times, and it should be composed of alphabets (A–Z). The

reason for using the count as a criterion is, the probability that the OCR detects one word

as another incorrectly, in the same way, is very low. For example, suppose OCR recognizes

the word 'state' as 'stale' at one instance, there is only a miniscule chance that OCR detects

the word as 'stale' multiple times. Also, the first phase of spell correction could help to

correct some of these errors. The algorithm considers all the other words as invalid. Using

the list of valid words as lexicons, the algorithm suggests spell corrections for invalid words

utilizing the concept of Edit Distance [15]. Edit distance is the minimum number of

operations required to convert one string to another. If the edit distance between the invalid

word and suggested word is less than five, the suggested word replaces the invalid word.

The value five is chosen by experimenting with words from different lectures. Figure 4.4

shows a demo of spell corrections using the above process and the algorithm in the

following page details the process.

Figure 4.4 Demo of Corrections in Phase 2

28

From Figure 4.4, I noticed a slight improvement in the text. Even after performing two

rounds of spell correction, I still found the existence of noise in the text. Some arise due to

the presence of formulae and algorithms on the slide where OCR does a poor job in

predicting them. The current methodologies cannot correct these errors. Sometimes, OCR

combined two adjacent words, missing a few characters in each word. The current

algorithm detected at least one word correctly most of the times. For example,

‘rcturnsfiriiardprob’ is predicted by OCR as a single word, which is a combination of two

or more words. The API suggests the word as ‘return,’ correcting at least one word.

Function Name: refineOCRCorrections

Input: Corrected OCR text from Google API

Output: Text with enhanced corrections

Identify valid and invalid words from the input

for each word in invalid words:

 Get suggestions using valid words as a dictionary

 Find edit distance between invalid word and suggested word

 if distance < 5 then

Replace invalid word with suggested word

29

4.3 N-gram Extraction and Validation

The OCR text was processed to remove most of the extraneous text and make viable

corrections on the incorrectly identified words. The next step is to extract the n-grams from

the processed text. N-gram is a contiguous sequence of ‘n’ terms from the given sequence

of text [16]. In this research, I extracted unigrams, bigrams, and trigrams as candidates to

be keywords. However, the code has been designed to easily extend to any n-grams, with

changes to the configuration file.

OCR scans an image left to right, top to bottom and does not guarantee to maintain

contextual relation between the words. Punctuations would help identify sentence

boundaries, but OCR does not capture this information. These limitations result in

generating extra n-grams: for example, a bigram formed using the last word of one sentence

and the first word of another sentence.

Collecting relevant domain-specific books and constructing a statistical language model

can solve the issue of handling extra n-grams. The statistical language model gives

probabilistic distribution over the word sequence [17]. Markov’s assumption simplifies the

calculation of n-gram probability. Given a sequence ‘There was heavy snowfall,’ the steps

to calculate the probability of the n-gram are as follows:

P(‘There was heavy snowfall’) = P(‘There,’ ‘was,’ ‘heavy,’ ‘snowfall’) -------------- (1)

P(‘There was heavy snowfall’) = P(‘There’) P(‘was’ | ‘There’) P(‘heavy’ | ‘There was’)

P(‘snowfall’ | ‘There was heavy’) ------------------- (2)

30

Using Markov’s assumption, equation (2) is simplifies to

P(‘There was heavy snowfall’) = P(‘There’) P(‘was’ | ‘There’) P(‘heavy’ | ‘was’)

P(‘snowfall’ | ‘heavy’)

This method ranks the n-gram sequences using the probabilities and ignores the sequences

with lower values.

This process could be a good starting point to validate the n-grams. However, this process

would require manual effort for collecting and organizing the digitized books related to the

lecture’s domain. Instructors use information from diverse sources to prepare the lecture

content and gathering all the sources of information would be a tedious task. I addressed

the problem of manual book collection by using an API called ‘PhraseFinder’ [18].

Google provides a service called ‘Google Books Service’ which aims to allow people to

search for the content in books. Google has scanned over five million books published

between the year 1500 – 2009 and generated a large corpus of words to get an estimate of

the word usage with its context [19]. It contains around eight billion phrases (unigrams to

5-grams). This information is beneficial for validating the n-grams. PhraseFinder, a search

engine for Google n-gram dataset, acts as an interface to provide the statistical data of n-

grams, and I utilized this service in my research.

Figure 4.5 and 4.6 give two examples using the PhraseFinder API. The API takes the phrase

as input and provides the count of occurrences, and the number of books in which it has

occurred including the range of years of the books. It lists the phrase separately based on

31

the case (lower case, upper case, and camel case). From the following examples, the phrase

‘programming language’ is more frequently used than the phrase ‘programming note’.

Figure 4.5 Example-1 of PhraseFinder

Figure 4.6 Example-2 of PhraseFinder

Considering the results given by this API, the keyword detection algorithm validated the

n-grams by discarding the ones with count 0. The algorithm maintained two counts for all

the n-grams: local count and global count. Local count gave the information of how many

32

times a phrase has occurred in a segment, and global count was the count provided by the

PhraseFinder API. For computing the n-gram score based on frequency, the keyword

detection algorithm utilizes the local count. Discarding the n-grams with count 0 would aid

to clear the invalid phrases and those which contain spelling mistakes. The keyword

detection algorithm also eliminated n-grams containing repeated words (e.g., ‘data

programming data’ was eliminated due to the repetition of the word ‘data’) and which start

or end with stop words, as keywords generally do not contain them in those positions.

The algorithm used the information from external sources as the content on the slide is very

sparse. Some lectures contain very few words and considering the frequencies only from

the lecture can be misleading. Also, the information from the external sources helps to

validate a phrase over a massive database of books. This process generated a list of n-grams

for each segment of the video.

4.4 N-gram Filtering and Grouping

In this step, I filtered and grouped the n-grams for each segment with different parameters

and this section details them. All the words are case-folded by converting to lower case.

4.4.1 Stop word Removal

‘Stop words’ are frequently occurring and trivial words which help frame sentences but do

not represent the topics discussed. Articles, prepositions, conjunctions, and pronouns are

33

typically stop words. Examples of stop words include ‘a,’ ‘an,’ ‘the,’ ‘it,’ ‘and,’ ‘as,’

‘what,’ ‘how’. I collected the list of stop words from an external source [20].

The keyword detection algorithm can take either TRUE or FALSE for the parameter

stopwordRemoval. If the parameter is TRUE, it eliminates the n-grams containing stop

words. If the parameter is FALSE, it retains the n-grams with very common stop words

like ‘and,’ ‘to,’ ‘of,’ ‘of,’ ‘on,’ ‘by’ and eliminate the n-grams containing rest of the stop

words. Most of the valid n-grams contain the abovementioned stop words, and the chances

of valid n-grams containing the other stop words are very less.

4.4.2 Stemming

Stemming is the process of reducing words to their roots or stems [21]. A stem or root is

the part of word retained after removing its suffix. This process groups all the words in

different forms to one stem. For instance, nouns have plural forms (e.g., ‘Computer’ and

‘Computers’), and verbs have gerund form (‘ing’ as the suffix), and verbs in present tense

differ from past tense.

I analyzed the output of Porter stemmer, Lancaster stemmer, and Snowball stemmer.

Porter’s algorithm [22] is a rule-based stemmer which has a pre-defined set of rules to stem

the words. It can produce stems which may not be readable words. Lancaster is an iterative

stemming algorithm defined over 120 rules [23]. It stems very aggressively, sometimes

leading to faults. Snowball [24], which is also known as Porter2, is the enhanced version

of Porter’s algorithm with more sophisticated rules. The Snowball stemmer also produces

34

stems. I have used the Snowball stemming algorithm in my thesis. Since the Snowball

stemming algorithm produced stems, I replaced the stems with words to make them

presentable to the user.

The above algorithm elaborates the process of replacing stems with a valid word. For

example, suppose the words ‘dissolved’ and ‘dissolving’ have been reduced to ‘dissolv’ by

the stemmer, the algorithm replaces the stem either by ‘dissolved’ or ‘dissolving’ based on

their frequency of occurrence. If ‘dissolving’ has occurred five times and ‘dissolved’ has

occurred two times, then ‘dissolving’ is given as output. If both the word frequencies are

the same, then without loss of generality, the algorithm selects the word with more

characters (letters). The algorithm groups the words based on their stems and updates the

local count of the selected word. From the previous example, the selected word ‘dissolving’

will have the weight updated to 7 (5+2).

Function Name: decideWordToStem

Input: Stemmed word

Output: The most common word for the stem

Find the list of all words mapping to the same root

Out of all the words for a single root, check the word which occurred max no. of

times and select the word.

If there are two words have the highest max frequency, it considers the word with max

length

35

In the case of n-grams, the algorithm reduces each term of n-gram and decides the word to

be displayed. Consider the n-gram ‘computer program’ occurring four times and ‘computer

programs’ occurring five times. The stemming process happens as follows:

Stemming Process

Step 1: Reduce the n-grams by considering each term

‘computer program’ reduced to (comput, program)

‘computer programs’ reduced to (comput, program)

Stem 2: Group the words having the same stems and update the count

(comput, program) → [computer program, computer programs] → the count is 9 (4+5)

Step 3: Based on the criteria set by the algorithm, select the word to display using the

function decideWordToStem and update the weight.

In this case, the word selected was ‘computer programs’ as it has a higher frequency. The

new weight of the word is 9.

The reason to break the n-gram to separate terms is that the stemming algorithm only

focuses on the suffixes of the last word rather than stemming all the words. To get accurate

results, the algorithm splits the n-gram to ‘n’ terms.

The keyword detection algorithm can take either TRUE or FALSE for the parameter

applyStemming. If the parameter is TRUE, it reduces the n-grams and updates the weights

accordingly. If the parameter is FALSE, it does not make any modifications to the n-grams.

36

The process of stemming is applied to each segment independently. If the word ‘computer

program’ occurred in one segment and ‘computer programs’ occurred in another segment,

the algorithm does not group them.

4.5 Frequency Score

Frequency is an important attribute that determines the importance of an n-gram. The

frequency score of an n-gram internally depends on a few measures as stated below:

• Term Frequency: This measure determines the count of an n-gram in a segment.

• Inverse Segment Frequency: This measure determines the relative importance of

an n-gram in a segment.

• Domain Importance: This measure identifies n-grams containing domain related

words and assigns higher importance.

• Reduce Weights of Rare Words: This measure identifies n-grams containing rare

words and reduces their weight.

These measures are elaborated in the following sections.

4.5.1 Term Frequency

Term Frequency (TF) is the number of times an n-gram occurred in a segment. It represents

the weight of the term in a segment. This statistical measure is beneficial in unsupervised

identification of keywords. This measure is mandatory to obtain the n-gram weights.

37

TF (n-gram) = count of n-gram occurrences in a segment

The method I developed takes care of the counts of lower order n-grams that are already

part of the higher order n-grams. Consider the example weights of the n-grams as follows:

 Table 4.1 N-gram Original Weights

In the example demonstrated, the word ‘software development practices’ occurs five times,

‘software development’ occurs seven times and ‘development’ occurs ten times. When the

algorithm calculates the count of the unigram ‘development,’ it also counts its occurrences

from the bigram ‘software development’ and trigram ‘software development practices’.

This does not represent the exact weight of the unigram. To handle this effectively, the

keyword detection algorithm subtracts the frequency of higher order n-gram from the

frequency of lower order n-gram, if both the n-grams have some terms in common.

The weight of ‘software development’ which is seven becomes 2 (7 – 5), as the word is

already part of the trigram five times. Similarly, the weight of the word ‘development’

becomes 3 (10 – 5 – 2). Ten is the total number of times the word has occurred as a unigram,

five is the number of times the word has contributed to the trigram, and two is the

contribution for the bigram. Table 4.2 shows the updated weights of the n-grams.

N-gram Count

software development practices 5

software development 7

development 10

38

Table 4.2 N-gram Updated Weights

N-gram Count

software development practices 5

software development 2

development 3

4.5.2 Inverse Segment Frequency

A measure which tells how much information a word can provide is Inverse Document

Frequency (IDF). It works on the idea that if a word is too frequent in most of the

documents, then it may not constitute any significance and may not be the best keyword.

So, IDF analysis tries to reduce the weights of such words giving scope for other words to

become keywords. In this thesis, I considered IDF as ISF (Inverse Segment Frequency).

This measure tries to identify the words that are very frequent across different segments of

the video and reduce their weights.

IDF or ISF (n-gram) = 𝑙𝑜𝑔
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑖𝑑𝑒𝑜

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑎 𝑤𝑜𝑟𝑑 ℎ𝑎𝑠 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 + 1

The addition of ‘+1’ in the denominator avoids division by zero error.

Consider a video with 13 segments. A word ‘w1’ has occurred in 12 segments out of 13,

and another word ‘w2’ has occurred in three segments. Computing the ISF results in the

following scores.

39

ISF (w1) = log
13

12+ 1

ISF (w1) = log
13

13

ISF (w1) = log 1

ISF (w1) = 0

Similarly, ISF for the word w2

ISF (w2) = log
13

3+ 1

ISF (w2) = log
13

4

ISF (w2) = log 3.25

ISF (w2) = 0.511

From the above results, I can say that ISF (w2) > ISF (w1)

The keyword detection algorithm can take either TRUE or FALSE for the parameter

applyISF. If the parameter is TRUE, the algorithm calculates the weight of the n-gram as

the product of TF and IDF (ISF). If the parameter is FALSE, the weight of the n-gram is

equal to the raw count of the term in the segment, i.e. TF. So, the weight of the word is

either TF or the product of TF and IDF depending on the value of the parameter provided.

40

4.5.3 Domain Importance

Another crucial factor considered to boost the weights of the keywords is domain

importance. The basic ideology behind this is to assign more importance to the words

which are directly related to the domain of the lecture. For example, for a lecture which

belongs to Chemistry domain, the keyword detection algorithm will give more importance

to the words from the Chemistry domain rather than general words. If two words ‘solution’

and ‘application’ are present in a segment of a video lecture, the word ‘solution’ is assigned

more weight than the word ‘application.’ In this way, the keyword detection algorithm does

not miss any relevant words in the process of keyword extraction.

The domain-specific words are identified using information from external sources. I have

collected the data provided by Oxford Reference Dictionaries for different domains [25].

Oxford dictionaries are considered one of the standard sources of information and widely

accepted by many authorities. Hence, this is used as a look up to decide if the word has a

reliance on the domain.

When the parameter assignDomainImportance takes the value TRUE, the keyword

detection algorithm multiplies the weight by a specific factor when the word is related to

the domain. If the parameter is FALSE, the algorithm does not amplify the weight.

With n-grams, the keyword detection algorithm splits them into ‘n’ terms and checks for

each term if it is related to the domain and multiply the weights generated by step 4.5.2.

This gives the enhanced weight of the n-gram.

41

The process starts with assuming a factor for increasing the words which are domain

related. In this research, I have used a factor 2k, where ‘k’ is the number of domain-specific

words in an n-gram. The ‘boostedWt’ is set to 1 initially for every n-gram.

Subsequently, the weights are updated as explained in the algorithm. This process was

repeated for all the n-grams in each segment of the lecture.

Function Name: assignDomainImportance

Input: n-grams with their weights and domain to which the video belongs

Output: n-grams with modified weights

Load the list of domain-specific words

domainWtFactor = any constant value greater than 1

for each n-gram in n-grams:

 Split n-gram to ‘n’ terms

 Assign boostedWt = 1

 for each term in n-gram:

 if term in domain-specific words:

 boostedWt = boostedWt * domainWtFactor

 ngramWt = ngramOriginalWt * boostedWt

42

This step ensures that the n-grams with more domain-specific words are more likely to

make to the list of keywords extracted for that segment.

4.5.4 Reduce Weights of Rare Words

The next factor considered is reducing the weights of rare words to reduce their chance of

making into top keywords. Rare words are words which occur occasionally and do not

belong to either the domain-specific category or the general English category. These words

can be OCR errors or some abbreviated terms which are specific to the instructor or the

class. Most of the OCR errors are either corrected by OCR error correction (Section 4.2)

or eliminated during the validation of n-grams using the PhraseFinder API (Section 4.3).

However, some erroneous words are not eliminated. For example, when the OCR detects

a word incorrectly many times and makes the word valid when performing the second

round of spell correction or the Google n-gram data set contains the word since Google

also utilizes OCR technology to scan the books.

This process closely follows the method discussed for domain importance. The algorithm

divides the n-gram into ‘n’ terms and reduces each term’s weight by dividing it with a

certain factor. In this work, I have assumed the factor as 2k, where ‘k’ is the number of

rare words present in an n-gram. The algorithm takes the n-gram weights and the domain

of the video as input. Oxford dictionaries acted as a source for domain-specific words, and

python libraries like PyEnchant and NLTK Wordnet served a reference for English words.

43

The algorithm checks every term in the n-gram and reduces its weight if it contains rare

words.

This parameter can also be set to TRUE or FALSE. If reduceRareWordWeights parameter

is TRUE, the keyword detection algorithm modifies the weights. If it is FALSE, the

algorithm does not alter the weights.

Function Name: reduceRareWordWeights

Input: n-grams with their weights and domain to which the video belongs

Output: n-grams with modified weights

Load the list of domain-specific words

rareWtFactor = any constant value between 0 and 1

for n-gram in n-grams:

 Split n-gram to ‘n’ terms

 Assign reducedWt = 1

 for each term in n-gram:

 if term not in domain-specific words and not a valid English word:

 reducedWt = boostedWt * rareWtFactor

 ngramWt = ngramOriginalWt * reducedWt

44

4.5.5 Final Frequency Score

The current system to extract keywords performs the steps discussed in Section 4.5.1 –

4.5.4 sequentially and determines the weights of the n-grams for each segment in the video

lecture. These weights can range from zero to a higher value. To standardize this, the

keyword detection algorithm normalizes all the weights using ‘Min-Max Normalization.’

Normalization is a mapping technique which maps the existing range of values to a new

range [26]. It linear transforms the values from the original data.

 New value =
𝑂𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛 𝑣𝑎𝑙𝑢𝑒

𝑀𝑎𝑥 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛 𝑣𝑎𝑙𝑢𝑒
 .

To explain it in this scenario,

Final Frequency Score =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 − 𝑀𝑖𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑀𝑎𝑥 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡−𝑀𝑖𝑛 𝐹𝑟𝑒𝑞𝑒𝑛𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
 .

The keyword detection algorithm takes the minimum and maximum values for each

segment and determines the new values. This step gives the final score of the n-grams based

on the frequency.

4.6 Font Score

The second attribute considered in my thesis is the font size of the word present on the

video frame. OCR gives information about the font size of each word, and my algorithm

utilized this information to determine the weight of the n-gram based on font size. This

turns out to be another way to investigate the problem of determining keywords. The words

45

which have larger font sizes are more important than the words with relatively smaller

fonts.

4.6.1 Determining Font Weights of N-grams

Firstly, all the font sizes of the words are squared. To distinguish the difference clearly, the

algorithm takes the square of the values. For example, assume the word ‘w1’ has a font

size of 13, and the word ‘w2’ has a font size of 14. The difference between font sizes of

both the words is 1, and it becomes negligible when the scores are normalized. To

differentiate the importance of words, the algorithm squares the font weights, and they

become 169 and 196, respectively. Thus, providing a reasonable margin to distinguish the

significance clearly.

The same word can occur at multiple places with different font sizes in a segment. So, the

algorithm estimates the average font weights of the word across each segment of the video.

Let us consider the following table with three different words and their weights occurring

at various places in a segment.

46

Table 4.3 Snippet of Words with their Font Size

Average weight of the word =
𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑

𝑛𝑜. 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑
 .

Weight of W1 =
100 + 169 + 49

3
 =

318

3
 = 106

Weight of W2 =
100

1
 = 100

Weight of W3 =
100 + 49

2
 =

149

2
 = 74.5

Table 4.4 Snippet of Words with their Average Font Size

Word Original Font Weight Squared Font Weight

W1 10 100

W2 10 100

W1 13 169

W3 10 100

W1 7 49

W3 7 49

Word Average Font Weight

W1 106

W2 100

W3 74.5

47

The keyword detection algorithm calculates the weights for each segment separately, i.e.

if the word ‘W1’ has occurred in another segment, it does not include that in the calculation

of its weight in the current segment. The following algorithm explains the process.

Once the keyword detection algorithm determines the average weights of the words in each

segment, then it takes the n-grams obtained from Section 4.4 and determines the score

Function Name: calculateFontWts

Input: Words with font size for a segment of the video lecture

Output: N-gram weights using font weights

Square the font weights of every word and calculate the average font weight of

the word

Get the n-grams for the specific segment of the video lecture

for each n-gram in n-grams:

 Split the n-gram to ‘n’ terms

 ngram_wt = 0

 for each term in terms:

 ngram_wt = ngram_wt + average weight of the term

 ngram_wt = ngram / no. of terms

48

based on font. The process proceeds by splitting the n-gram into ‘n’ terms and taking the

ratio of the sum of the average weights of the terms to the total number of terms.

Font-score of n-gram =
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 ′𝑛′ 𝑡𝑒𝑟𝑚𝑠

𝑛

For instance, to calculate the weight of the bigram ‘W1 W3’, the algorithm splits the bigram

into two terms ‘W1’ and ‘W3’. Using the average weights calculated in Table 4.4, it

computes the font score of the bigram as follows.

Font score of ‘W1 W3’ =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑊1 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑊3

2

Font score of ‘W1 W3’ =
106 + 74.5

2
 = 90.25

4.6.2 Final Font Score

Similar to the frequency score, the keyword detection algorithm normalizes the font score

to range between 0 and 1. Min-Max normalization is applied to the original weights to get

the final score of the n-grams based on the font size.

 Final Font Score =
𝐹𝑜𝑛𝑡 𝑆𝑐𝑜𝑟𝑒 − 𝑀𝑖𝑛 𝑓𝑜𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑀𝑎𝑥 𝑓𝑜𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 − 𝑀𝑖𝑛 𝑓𝑜𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
 .

49

4.7 Time Score

Another essential attribute considered to determine the importance of an n-gram is its time

score. The keyword detection algorithm tracks the time each video frame is displayed and

determines the time each n-gram is present on the segment. Longer the time the n-gram is

present, the higher is its importance. The interpretation is that, when an instructor

emphasizes a specific slide for more time, it may be important. Some slides appear for a

short period of time like some announcements, giving a brief overview of the previous

class, and text present on these slides is relatively less important.

4.7.1 Determining Time of N-grams

The algorithm keeps track of the text present on each slide along with its duration and then

groups the slides based on the segments. It sorts the n-grams obtained from Section 4.4 in

the descending order of the value 'n,' i.e. all the trigrams will occur first, followed by

bigrams and unigrams. An example is stated below to explain the reason for sorting the n-

grams.

Table 4.5 Snapshot of Slide Content of a Segment

Slide no. Slide Content Time (sec)

1 W1 W2 W3 W4 60

2 W1 W2 W3 W2 W3 W5 20

3 W2 W3 W4 30

50

The content in Table 4.5 tells that a specific segment of the video has three distinct frames

or slides. It shows the text present on each frame and its duration. Let the valid n-grams for

the segment be ‘W2 W3’, ‘W4’, ‘W1 W2 W3’.

Now, the algorithm sorts the n-grams based on the number of terms each n-gram contains.

Table 4.6 Ordered N-grams for a Segment

Order N-grams

1 ‘W1 W2 W3’

2 ‘W2 W3’

3 ‘W4’

To find the duration of each n-gram, it goes through every slide and adds the duration for

which they occur. Once it counts the n-gram duration, the keyword detection algorithm

temporarily discards the n-gram from the slide. This is to prevent adding the duration of

lower order n-grams multiple times.

Flow

I list the steps in the example below:

1. Start with n-gram ‘W1 W2 W3’ and scan through the three slides to get the duration.

This n-gram occurs in slides 1 and 2 for 60 seconds and 20 seconds, respectively.

The total time for the n-gram would be 80 seconds (60 + 20). Now remove the n-

gram occurrences from the text. The new text on the slide becomes as follows.

51

Table 4.7 Slide Content after Step 1

Slide no. Slide Content Time (sec)

1 W4 60

2 W2 W3 W5 20

3 W2 W3 W4 30

2. Take the next n-gram ‘W2 W3’. Scanning Table 4.7, the n-gram occurs in slide 2

and slide 3 for a total duration of 50 seconds (20 + 30). Had the algorithm not

discarded the higher order n-gram from the slide content and scan Table 4.6, the n-

gram ‘W2 W3’ would have occurred in slides 1, 2 and 3 contributing to a total

duration of 110 seconds (60 + 20 + 30) which is not a valid duration. This is the

reason why I developed the algorithm to sort the n-grams based on the value of ‘n’

and remove them from the slide temporarily after computing their duration.

3. Processing the duration of n-gram ‘W4’ gives 90 seconds (60 + 30).

Table 4.8 Slide Content after Step 2

Slide no. Slide Content Time (sec)

1 W4 60

2 W5 20

3 W4 30

52

4.7.2 Final Time Score

To compute the final time score, the algorithm normalizes the time scores of the n-gram

using 'Min-Max' normalization to range between 0 and 1.

Final Time Score =
𝑇𝑖𝑚𝑒 𝑆𝑐𝑜𝑟𝑒 − 𝑀𝑖𝑛 𝑡𝑖𝑚𝑒 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑀𝑎𝑥 𝑡𝑖𝑚𝑒 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 − 𝑀𝑖𝑛 𝑡𝑖𝑚𝑒 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

This gives the final score considering time.

The following algorithm shows the computation of time scores.

53

4.8 Final Score Computation

The next step is to combine three different scores from three attributes: frequency, font and

time. I introduced three new parameters called frequency weight, font weight, and time

weight, whose values are between 0 and 1, and their combined total sums to 1. These new

parameters were introduced to assign importance to frequency, font and time scores.

Function Name: calculateTimeWts

Input: All the text present on every slide of segment with its duration

Output: N-gram weights with importance of time

Get all the n-grams for the segment and sort them based on the value of ‘n’

for each n-gram in n-grams:

 ngram_duration = 0

 Scan through all the slides and add the duration if n-gram exists on the slides

 for each slide in slides:

 if n-gram is present on slide:

 Update the n-gram duration

 ngram_duration = ngram_duration + slide_duration

 Remove the n-gram from the slide

54

0 <= frequency weight <= 1

0 <= font weight <= 1

0 <= time weight <= 1

frequency weight + font weight + time weight = 1

Collecting the ground truth and performing evaluations can help determine the best

values for these weights.

Final Score of N-gram = (frequency weight * Final Frequency Score) + (font weight *

Final Font Score) + (time weight * Final Time Score)

4.9 User Presentation

Once the algorithm determines the final score of the n-grams, the top words for each

segment are selected and shown as a summary to the user in the form of word clouds. The

number of words to be displayed is determined by selecting the range for each segment.

Range = Maximum Final Score obtained in a segment – Minimum Final Score obtained

in a segment

The algorithm selected the words which were above 40% of the computed range as

keywords and presented them to the user. However, the maximum number of keywords

shown in each segment was limited to 20. The selected n-grams were displayed to the user

in the order of their importance by embedding them in the VideoPoints interface.

55

Sometimes, the segments may not have any keywords when all the frames in the segment

contain only images. In that case, the display would be blank. The final interface after

integrating the keywords module looks as shown in Figure 4.7. The user hovers on the

ninth segment, and a pop up comes out containing the preview of the image and the

keywords summary for the segment. The red arrow indicates the position of mouse hover.

56

F
ig

u
re

 4
.7

 V
id

eo
P

o
in

ts
 I

n
te

rf
a
ce

 w
it

h
 K

ey
w

o
rd

s
S

u
m

m
a
ry

57

By looking at this, the user can determine the word ‘forward algorithm’ has higher

importance followed by ‘algorithm,’ and ‘dynamic programming algorithm’.

58

CHAPTER – 5: ASSESSMENT

The assessment phase helps ascertain the strengths and limitations of the methodology used

to extract keywords for the video lectures. This section details the tool built for the

collection of ground truth and explains the process of evaluation.

5.1 Ground Truth Collection

To evaluate the performance of the keyword detection algorithm, human-picked keywords

for the lecture videos were compared with the system-generated keywords. To select the

appropriate keywords for each segment of the video, I took the assistance of experts like

the instructors who are well-versed with the subject, or students who have been part of the

course.

To accomplish this task, I have created an interface which gives experts the flexibility to

determine the keywords in different segments. As mentioned before, the keywords

extracted would differ when the indexing algorithm changes. Here I assumed that the

indexing algorithm had produced good index points and proceeded to the next steps.

59

Figure 5.1 Login Screen for Ground Truth Collection

Figure 5.1 represents the login screen for ground truth collection. The users who provided

the ground truth entered their Name and Email. I pre-populated the relevant courses and

their corresponding lectures. The users selected the course and the lecture they were

interested in tagging and clicked ‘Proceed.’ The users landed on a page where they

provided the ground truth for a video lecture. Figure 5.2 shows the ground truth interface

with its components labeled 1 – 7.

60

F
ig

u
re

 5
.2

 G
ro

u
n

d
 T

ru
th

 I
n

te
r
fa

ce

61

Ground truth interface gives access to the user to provide the feedback. This interface has

been designed to reduce the burden on the user in manually tagging the video with the

relevant set of keywords.

The components present on the screen marked with numbers in Figure 5.2 are as follows:

1: It represents the total number of segments present in the video lecture. The user can click

on any of the segment numbers and navigate to the corresponding segment of the video.

This component gives flexibility to the user to identify keywords for a part of the lecture.

2: This component includes all the slides or transition points of a segment. The user can

scroll to left or right to access the relevant slides.

3: All potential keywords generated by the algorithm are shown as buttons. The user can

click the corresponding button if he/she finds the keyword in the set presented. There are

three different types of buttons on the screen.

62

Table 5.1 Color Codes of Buttons

Button Type Significance

Button with Blue background The button appears with a blue background when

the user has selected potential keyword as a

relevant keyword for the segment. The user can

deselect it by clicking the button again.

Button with Bold-faced letters It is an additional feature which highlights the

buttons containing potential keywords that are

present on the slides the user can currently see

(viewport) without scrolling to the left/right.

Buttons already with blue background do not

change.

Button with Normal text These are keywords which are not present on the

slides in the current viewport. Buttons already

with blue background do not change.

4: It is a textbox which shows the keywords selected by the user. If the user does not find

the keyword he/she wants to pick as part of the pre-generated words, he/she can add them

by editing the textbox.

5: ‘Save All’ button saves the work done by the user

63

6: The button ‘Help’ acts as an assistance tool, guiding the user about the features present

on the interface. The interface also provides all the instructions during the screen launch.

7: Clicking the button ‘Switch To Video’ plays the video relevant to the segment. With

this option, the user can directly watch the video without navigating to the VideoPoints

website [27].

The users can save their work and re-login at any time to continue with their work. This

ensures that the user does not have the requirement to complete video tagging in one shot.

Figure 5.3 Utilizing Ground Truth to Tune Parameters

Figure 5.3 depicts the process of using the ground truth provided by experts to make the

results better. The process of keyword extraction involves different parameters like

stopwordRemoval, applyStemming, reduceRareWordWeights, assignDomainImportance,

applyISF, which can take boolean values. There are other parameters like frequency

weight, font weight, and time weight that can take values ranging from 0-1. The pre-

64

generated keywords in the ground truth interface are the keywords generated by one set of

values assigned to the parameters and weights. After the users give feedback, I compared

human-picked keywords with the keywords generated by different sets of values assigned

to the parameters and determined the best set of values.

5.2 Metrics for Evaluation

The process of keyword extraction involves classifying a word into either of the two

classes: keyword or not a keyword. Since I am interested in the class of identifying

keywords and determine how many keywords presented to the user are actually useful,

accuracy may not be a suitable measure. I employ well-known metrics Precision and Recall

for evaluation. These measures are widely represented using a Confusion Matrix, which

contains information about the actual and the predicted results. In my application, actual

words represented the keywords given by the user and predicted words are the keywords

generated by the algorithm.

 Figure 5.4 Confusion Matrix

65

Figure 5.4 represents the confusion matrix. The terms TP, FP, FN, and TN are defined as

follows:

1. TP stands for True Positive. It is the count of words identified as keywords both by

the user and the algorithm.

2. FP stands for False Positive. It is the count of words which are identified by the

algorithm as keywords and not by the user.

3. FN stands for False Negative. It is the count of words which are identified by the

user as keywords and not by the algorithm.

4. TN stands for True Negative. It is the count of words which are not identified both

by the user and the algorithm.

Using this terminology, precision and recall are defined in the following sections.

5.2.1 Precision

Precision is the ratio of the number of correctly predicted positive examples to the total

number of predicted positive examples.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

5.2.2 Recall

Recall is the ratio of the number of correctly predicted positive examples to the total

number of actual positive examples.

66

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

5.2.3 F1-Score

It is the measure of the accuracy of the keywords predicted by the algorithm. Often, a

higher precision may lead to a lower recall, and a higher recall may lead to a lower

precision. To balance the precision and recall scores, F1-measure is used as a standard to

measure the accuracy. It is the harmonic mean of precision and recall.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

5.2.4 Partial Precision Score

The True Positives in the precision only accounts for the perfect matches in keywords

generated by the algorithm and human-picked keywords. For n-grams, even if one word of

the n-gram goes wrong, the entire word is pruned giving it a score of 0. To account for

near-misses, I computed the partial match scores for each n-gram predicted by the

algorithm and the user. The partial match score of an n-gram is the ratio of the number of

words common in the predicted n-gram and user selected n-gram to the number of words

in the union set of the n-grams.

If A and B are the n-grams generated by an algorithm and human, respectively, the partial

match score is as follows:

67

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑀𝑎𝑡𝑐ℎ 𝑆𝑐𝑜𝑟𝑒(𝑃𝑀𝑆) =
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠(𝐴 ∩ 𝐵)

𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠(𝐴 ∪ 𝐵)

The partial precision score of a segment is equal to the average of partial match scores of

words generated by the algorithm.

 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =
𝑆𝑢𝑚 𝑜𝑓 𝑃𝑀𝑆 𝑓𝑜𝑟 𝑤𝑜𝑟𝑑𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
 .

5.2.5 Partial Recall Score

Like the partial precision score, I computed the partial recall score. The partial recall score

in a segment is equal to the average of partial match scores of words generated by the user.

 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =
𝑆𝑢𝑚 𝑜𝑓 𝑃𝑀𝑆 𝑓𝑜𝑟 𝑤𝑜𝑟𝑑𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑢𝑠𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑢𝑠𝑒𝑟
 .

5.2.6 Partial F1 Score

This is like the F1 score, but it considers Partial Precision Score and Partial Recall Score

for computation.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑟𝑒𝑐𝑎𝑙𝑙
 .

68

5.2.7 BLEU Score

BLEU score, which stands for Bilingual Evaluation Understudy is a scoring metric to

evaluate the candidate keyword with a set of reference keywords. Here the candidate

keyword is the word generated by the algorithm and reference keywords are the words

selected by humans. This metric also accounts for the ordering of words in the candidate

and the reference n-grams. The ordering is usually not taken care in standard metrics like

precision and recall. BLEU score can also be termed as modified precision. It outputs a

value between 0 and 1. A value closer to 1 indicates that the candidate keyword is more

similar to the reference keywords.

5.2.8 Fleiss’ Kappa Score

Fleiss’ Kappa score is a statistical measure for assessing the reliability of agreement among

a fixed number of raters when assigning ratings to several classifying items [28]. It varies

from -1 to 1. A score of 1 indicates perfect agreement and a score of -1 indicates perfect

disagreement. This score tells how well the users agree with each when picking the

keywords for the same segment.

69

5.3 Study of Parameters

I gathered keywords for 121 segments of 11 videos belonging to Computer Science,

Biology and Biochemistry from 16 different students and tutors. More than one user rated

most of the segments. Table 5.2 shows the count of raters tagging different segments.

Table 5.2 Count of raters for different segments

Total Segments Total Raters

3 9

3 8

4 7

2 6

7 3

80 2

22 1

Table 5.2 shows that more than five users tagged 12 segments, three users rated seven

segments, two users tagged 80 segments, and one user tagged the rest of the segments.

Using the keywords given by raters for various segments, I computed the scores of different

metrics using a random combination of weights and values as parameters to my algorithm.

The total number of keywords presented as a summary of each segment varied between 7

and 20. It means each segment displayed at least 7 words and at most 20 words. I decided

70

the minimum and the maximum number of words to display on each segment by observing

a few lectures. The range set by the keyword detection algorithm defines the final count on

how many words should be displayed. I have considered the words which have scores

above 60% of the range value, 50% of the range value, and 40% of the range value in each

segment and computed the results.

I altered the weights of the parameters like frequency, font and time and assigned different

combinations of binary values to stopwordRemoval, applyStemming, applyISF,

assignDomainImportance, and reduceRareWordWeights.

Table 5.3 Variation of Parameters to Generate Different Sets of Keywords

Parameter Set-1 Set-2 Set-3 Set-4 Set-5

Frequency Weight 0.5 0.5 0.5 0.4 0.4

Font Weight 0.2 0.4 0.4 0.5 0.3

Time Weight 0.3 0.1 0.1 0.1 0.3

Stop Word Removal True True True True True

Apply Stemming True True True True True

Assign Domain Importance True True True True True

Reduce Rare Word Weights True True False True False

Apply ISF True True True True True

I have experimented with Table 5.3 which represents the top five performing set of values.

From the above table, I inferred the values for any set. For instance, Set-1 keywords used

71

the frequency weight as 0.5, font weight as 0.2, time weight as 0.3, and the parameters

stopwordRemoval, reduceRareWordWeights, applyStemming, assignDomainImportance,

and applyISF, as TRUE.

Using different sets of values, I generated keywords and computed the metrics discussed

in Section 5.2. As ground truth has more than one user rating the segments, I calculated the

scores by two methods.

5.3.1 Keywords from All Users

In this method, the gold set of keywords for a video segment contained the keywords given

by all users tagging the segment.

Table 5.4 Sample Keywords given by Users for a Segment

Rater Keywords

User 1 {Word 1, Word 2, Word 3}

User 2 {Word 1, Word 3, Word 4}

User 3 {Word 1, Word 2, Word 3, Word 5, Word 6}

Table 5.4 shows sample keywords tagged by different users for one segment of the video.

Now the gold set for this segment is {Word 1, Word 2, Word 3, Word 4, Word 5, Word

6}. I compared the gold set with the keywords generated by the algorithm.

As mentioned before, I restricted the number of keywords generated by algorithm between

7 and 20 and experimented by considering keywords that have the score above 60% of the

72

range, 50% of the range and 40% of the range. Figure 5.5 – Figure 5.10 shows results

considering different ranges of keywords.

Figure 5.5 Scores with Keywords above 60% of the Range – All Users

From Figure 5.5, Set-1 gives the highest F-1 score which is equal to 59.1%. The values of

precision and recall achieved by Set -1 are 56.3% and 62.3%, respectively.

0
.5

6
3 0
.6

2
3

0
.5

9
1

0
.5

3

0
.6

2
2

0
.5

7
2

0
.5

2
9 0

.6
2

0
.5

7
1

0
.5

3
2 0

.6
2

9

0
.5

7
6

0
.5

2
3 0

.6
0

3

0
.5

6

A L L U S E R S - P R E C I S I O N A L L U S E R S - R E C A L L A L L U S E R S - F 1

SC
O

R
E

Set-1 Set-2 Set-3 Set-4 Set-5

73

 Figure 5.6 Scores with Keywords above 50% of the Range – All Users

From Figure 5.6, Set-1 gives the highest F-1 score which is equal to 60%. The values of

precision and recall achieved by Set -1 are 54.6% and 66.5%, respectively.

Figure 5.7 Scores with Keywords above 40% of the Range – All Users

From Figure 5.7, Set-1 gives the highest F-1 score which is equal to 61.6%. The values of

precision and recall achieved by Set -1 are 54.5% and 70.7%, respectively.

0
.5

4
6

0
.6

6
5

0
.6

0
.5

1
9

0
.6

6
1

0
.5

8
1

0
.5

2
1

0
.6

6
5

0
.5

8
4

0
.5

1
7

0
.6

6

0
.5

8

0
.5

1
5

0
.6

5

0
.5

7
5

A L L U S E R S - P R E C I S I O N A L L U S E R S - R E C A L L A L L U S E R S - F 1

SC
O

R
E

Set-1 Set-2 Set-3 Set-4 Set-5

0
.5

4
5

0
.7

0
7

0
.6

1
6

0
.5

0
4

0
.6

9
5

0
.5

8
4

0
.5

0
3

0
.7

0
1

0
.5

8
6

0
.5

0
3

0
.6

9
5

0
.5

8
4

0
.4

9
6

0
.6

8
6

0
.5

7
6

A L L U S E R S - P R E C I S I O N A L L U S E R S - R E C A L L A L L U S E R S - F 1

SC
O

R
E

Set-1 Set-2 Set-3 Set-4 Set-5

74

Figure 5.8 Partial Scores with Keywords above 60% of the Range – All Users

From Figure 5.8, Set-1 gives the highest F-1 score which is equal to 66%. The values of

precision and recall achieved by Set -1 are 63% and 69.2%, respectively.

Figure 5.9 Partial Scores with Keywords above 50% of the Range – All Users

From Figure 5.9, Set-1 gives the highest F-1 score which is equal to 66.6%. The values of

precision and recall achieved by Set -1 are 61.3% and 72.8%, respectively.

0
.6

3

0
.6

9
2

0
.6

6

0
.6

1
4

0
.6

8
6

0
.6

4
8

0
.6

1

0
.6

8
2

0
.6

4
4

0
.6

1
2

0
.6

8
8

0
.6

4
8

0
.5

9
1

0
.6

8
1

0
.6

3
3

A L L U S E R S - P A R T I A L
P R E C I S I O N

A L L U S E R S - P A R T I A L R E C A L L A L L U S E R S - P A R T I A L F 1

SC
O

R
E

Set-1 Set-2 Set-3 Set-4 Set-5

0
.6

1
3

0
.7

2
8

0
.6

6
6

0
.6

0
1

0
.7

1
7

0
.6

5
4

0
.6

0
1

0
.7

2
1

0
.6

5
6

0
.5

9
8

0
.7

1
5

0
.6

5
1

0
.5

8
4

0
.7

2
1

0
.6

4
5

A L L U S E R S - P A R T I A L
P R E C I S I O N

A L L U S E R S - P A R T I A L R E C A L L A L L U S E R S - P A R T I A L F 1

SC
O

R
E

Set-1 Set-2 Set-3 Set-4 Set-5

75

Figure 5.10 Partial Scores with Keywords above 40% of the Range – All Users

From Figure 5.10, Set-1 gives the highest F-1 score which is equal to 67.9%. The values

of precision and recall achieved by Set -1 are 61.1% and 76.4%, respectively.

5.3.2 Keywords from Majority Users

In this method, the gold set of keywords for a video segment contained the keywords that

were selected by at least half of the users tagging the segment. (see the beginning of the

previous Section 5.3.1)

From Table 5.4, since there are three users, I considered keywords which are commonly

picked by more than or equal to ½ * 3 ≈ 2 users. The final list of keywords comprised of

three words {Word 1, Word 2, Word 3}, as they are rated by two or more users.

0
.6

1
1

0
.7

6
4

0
.6

7
9

0
.5

8
8

0
.7

4
6

0
.6

5
8

0
.5

8
6

0
.7

5
2

0
.6

5
9

0
.5

8
4

0
.7

4
3

0
.6

5
4

0
.5

6
6

0
.7

5

0
.6

4
5

A L L U S E R S - P A R T I A L
P R E C I S I O N

A L L U S E R S - P A R T I A L R E C A L L A L L U S E R S - P A R T I A L F 1

SC
O

R
E

Set-1 Set-2 Set-3 Set-4 Set-5

76

Considering this, I compared the gold set against the algorithm generated words and

obtained the results as shown below:

Figure 5.11 Scores with Keywords above 60% of the Range – Majority Users

From Figure 5.11, Set-1 gives the highest F-1 score which is equal to 54%. The values of

precision and recall achieved by Set -1 are 46.2% and 64.9%, respectively.

0
.4

6
2

0
.6

4
9

0
.5

4

0
.4

3
6

0
.6

4
7

0
.5

2
1

0
.4

3
5

0
.6

4
4

0
.5

1
9

0
.4

4
4

0
.6

6

0
.5

3
1

0
.4

2
7

0
.6

3
1

0
.5

0
9

M A J O R I T Y U S E R S -
P R E C I S I O N

M A J O R I T Y U S E R S - R E C A L L M A J O R I T Y U S E R S - F 1

SC
O

R
E

Set-1 Set-2 Set-3 Set-4 Set-5

77

Figure 5.12 Scores with Keywords above 50% of the Range – Majority Users

From Figure 5.12, Set-1 gives the highest F-1 score which is equal to 54.4%. The values

of precision and recall achieved by Set -1 are 44.7% and 69.4%, respectively.

Figure 5.13 Scores with Keywords above 40% of the Range – Majority Users

From Figure 5.13, Set-1 gives the highest F-1 score which is equal to 54.7%. The values

of precision and recall achieved by Set -1 are 43.8% and 72.8%, respectively.

0
.4

3
8

0
.7

2
8

0
.5

4
7

0
.4

0
6

0
.7

1
8

0
.5

1
9

0
.4

0
6

0
.7

2
3

0
.5

2

0
.4

0
8

0
.7

2
3

0
.5

2
2

0
.3

9
7

0
.7

1

0
.5

0
9

M A J O R I T Y U S E R S - P R E C I S I O N M A J O R I T Y U S E R S - R E C A L L M A J O R I T Y U S E R S - F 1

SC
O

R
E

Set-1 Set-2 Set-3 Set-4 Set-5

0
.4

4
7

0
.6

9
4

0
.5

4
4

0
.4

2
7

0
.6

9
1

0
.5

2
8

0
.4

2
9

0
.6

9
3

0
.5

3

0
.4

2
9

0
.6

9
5

0
.5

3
1

0
.4

2

0
.6

8

0
.5

1
9

M A J O R I T Y U S E R S - P R E C I S I O N M A J O R I T Y U S E R S - R E C A L L M A J O R I T Y U S E R S - F 1

SC
O

R
E

Set-1 Set-2 Set-3 Set-4 Set-5

78

Figure 5.14 Partial Scores with Keywords above 60% of the Range – Majority Users

From Figure 5.14, Set-1 gives the highest F-1 score which is equal to 61.9%. The values

of precision and recall achieved by Set -1 are 54.3% and 72.1%, respectively.

Figure 5.15 Partial Scores with Keywords above 50% of the Range – Majority Users

From Figure 5.15, Set-1 gives the highest F-1 score which is equal to 62.2%. The values

of precision and recall achieved by Set -1 are 52.6% and 76%, respectively.

0
.5

4
3

0
.7

2
1

0
.6

1
9

0
.5

3

0
.7

1

0
.6

0
7

0
.5

2
6

0
.7

0
6

0
.6

0
3

0
.5

3
3

0
.7

1
8

0
.6

1
2

0
.5

0
7

0
.7

1

0
.5

9
2

M A J O R I T Y U S E R S - P A R T I A L
P R E C I S I O N

M A J O R I T Y U S E R S - P A R T I A L
R E C A L L

M A J O R I T Y U S E R S - P A R T I A L
F 1

SC
O

R
E

Set-1 Set-2 Set-3 Set-4 Set-5

0
.5

2
6

0
.7

6

0
.6

2
2

0
.5

1
7

0
.7

4
5

0
.6

1

0
.5

1
7

0
.7

4
8

0
.6

1
1

0
.5

1
8

0
.7

4
8

0
.6

1
2

0
.5

0
1

0
.7

5
2

0
.6

0
1

M A J O R I T Y U S E R S - P A R T I A L
P R E C I S I O N

M A J O R I T Y U S E R S - P A R T I A L
R E C A L L

M A J O R I T Y U S E R S - P A R T I A L
F 1

SC
O

R
E

Set-1 Set-2 Set-3 Set-4 Set-5

79

Figure 5.16 Partial Scores with Keywords above 40% of the Range – Majority Users

From Figure 5.16, Set-1 gives the highest F-1 score which is equal to 62.5%. The values

of precision and recall achieved by Set -1 are 51.7% and 78.9%, respectively.

By observing results obtained by different combinations of parameters for 121 segments, I

determined that Set-1 performs relatively well. Table 5.5 shows the values of final values

assigned to the parameters of the keyword detection algorithm.

0
.5

1
7

0
.7

8
9

0
.6

2
5

0
.4

9
9

0
.7

6
9

0
.6

0
5

0
.4

9
8

0
.7

7
5

0
.6

0
6

0
.4

9
8

0
.7

7
1

0
.6

0
5

0
.4

7
9

0
.7

7
7

0
.5

9
3

M A J O R I T Y U S E R S - P A R T I A L
P R E C I S I O N

M A J O R I T Y U S E R S - P A R T I A L
R E C A L L

M A J O R I T Y U S E R S - P A R T I A L
F 1

SC
O

R
E

Set-1 Set-2 Set-3 Set-4 Set-5

80

Table 5.5 Final Parameters of the Keyword Detection Algorithm

5.4 Summary of Results

Assigning the values of Set–1 to the keyword detection algorithm generated the best

results. Figure 5.17 shows different metrics obtained by Set-1 values with varying range.

By analyzing the graph, the most common pattern observed was the number of keywords

selected by the algorithm increased, values of precision and partial precision decreased.

Recall and partial recall increased as the keywords selected by the algorithm increased.

Overall, F1 and partial F1 scores increased with an increasing number of keywords. The

highest value of F1 obtained was 61.5% in the strict evaluation and 67.8% in the partial

evaluation by considering keywords given by all users whose scores were 40% above the

range.

Parameter Value

Frequency Weight 0.5

Font Weight 0.3

Time Weight 0.2

Apply Stop Word Removal True

Apply Stemming True

Assign Domain Importance True

Reduce Wts of Rare Words True

Apply ISF True

81

Figure 5.17 Scores from Set-1 Parameters with a Varying Range

5.4.1 BLEU Score Analysis

 I also calculated the BLEU score using Set-1 parameters. It slightly decreased when

compared with the highest values attained with another set of parameters. The BLEU score

decreased with an increasing number of keywords. Figure 5.18 can illustrate this pattern.

BLEU score also followed the pattern followed by the precision metric, however, the

values of BLEU scores were higher compared to the precision and slightly lower compared

to the partial precision. This is a good sign that the n-grams predicted by the keyword

detection algorithm follow the order as expected by users.

50

55

60

65

70

75

80

Score > 60% range Score > 50% range Score > 40% range

SC
O

R
E

Precision Recall F1 Partial Precision Partial Recall Partial F1

82

Figure 5.18 Comparison of BLEU Score: Set-1 Values and Highest Values

5.4.2 Rater Agreement Analysis

To measure the agreement among different raters, I computed the Fleiss’ Kappa score for

segments having more than three raters. The scores obtained were in the range of 0 – 0.2,

which indicate there was only a slight agreement among the raters. Table 5.6 shows the

results obtained for the rater agreement analysis.

40

45

50

55

60

65

70

Score > 60% range Score > 50% range Score > 40% range

SC
O

R
E

All raters Set-1 Majority raters Set-1 All raters Highest Majority raters Highest

83

Table 5.6 Rater Agreement Score

These low scores indicate that the users did not agree with each other. During the ground

truth collection process, I did not put a limit on the number of keywords selected by the

user for each segment. If one user selected three keywords for a segment, and another user

selected ten keywords for the same segment, then the maximum number of keywords that

can be common for both the users was three, and the metric considered this as a high

disagreement. This is the main reason for obtaining low rater agreement scores.

5.5 Analysis of Errors

In this section, I analyzed the output of keyword detection algorithm and identified the

vulnerabilities of different techniques that could be potential reasons for generating

incorrect keywords.

Total Keywords Raters Kappa Score

97 9 0.133

108 8 0.111

82 7 0.172

84 6 0.153

84

5.5.1 OCR Issues

As mentioned before, the process of keyword extraction starts with erroneous text. As OCR

technology plays a key role in determining the text on video frames, the process should not

be erroneous. Several big giants like Microsoft and Google are working on OCR to make

its output error-free. They have been training the OCR on billions of images to get the best

of it. So, with a good OCR in place, the system can avoid most of the false detection of

words.

Another issue with OCR is that it does not detect punctuations and sentence boundaries. It

just scans the text left to right, top to bottom. This leads to a collection of words from the

frames rather than having sentences. The contextual information is also not present, which

is very critical for the application of Natural Language Processing techniques. Without the

contextual information, the system treats the words as a bag-of-words model for generating

frequencies. This may not give the best outcome. Also, if a few words from different

sentences form an n-gram, and if the n-gram is valid, this increases the room for errors.

I applied some techniques to correct OCR errors. But since I do not have the context exactly

captured, there is no guarantee for error correction. The second phase of correction

identifies valid and invalid words based on word frequencies. If OCR identifies word ‘w1’

as ‘w2’ at all the occurrences of ‘w1,’ then it cannot be corrected due to its high frequency.

This mainly happens with real-word errors.

85

5.5.2 Issues with External sources

 In the process of identifying valid n-grams, I am making use of the PhraseFinder API [18],

a search engine for Google n-grams dataset. There is a rough estimate of the volumes of

books Google scanned to muster the database, but there is no information provided on the

category of books and their domains. It is possible that it has not scanned enough books of

a particular domain. The n-gram database has a restriction which says words should occur

in at least 40 books to get an entry into the database [19]. When resources belonging to a

domain are sparse, some domain-specific words may lose the chance of getting into the

database, and this makes the global count 0. The system may lose some important

information due to this. Other external sources include reference dictionaries from Oxford

for identifying domain-specific words and stop word list. The stop word list almost

contains most of the frequently used stop words, and there is a low chance to get errors

with this source. But the dictionaries from Oxford are updated frequently with new words.

To reduce the chance of errors, I should update them frequently.

5.5.3 Limitations of Cleaning Extraneous Text

In the process of cleaning extraneous text, I set a threshold dynamically to identify the

words repeating at similar positions and discarded them. There may be cases, where

extraneous text might appear in very few transition points, and their total occurrences might

not satisfy the threshold criteria. This makes them a part of the possible keywords.

86

Another possibility of error occurs when the instructor uses the same title name on most of

the slides. As this title constantly appears in a similar position, the algorithm may discard

some essential words. In this case, the current system does not select them as keywords as

it discards them.

5.5.4 Keywords from Video Transcript

Instructors may emphasize a specific application of the topic during the lecture, and this

may not be a part of the presentation. Since I only considered the text from the frames

rather than the speech transcript, the current methods tend to miss those words as their

weight might be relatively low. The expert who is picking the tags may watch the video

and select the words that are exclusive to the audio. This is another possible case of missing

keywords.

87

CHAPTER – 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion

Availability of keywords for video segments is likely to have a significant impact on

students’ learning outcome as they improve navigation across a lecture. Processing the

keywords manually is a complicated task. Determining the word importance based on the

frequency of word may not result in an efficient keyword summary. This thesis work

proposed and developed methods to automatically generate keywords by assigning

different weights to various properties of text like the font characteristics of the word, the

time presence of the word, besides the frequency of the word. The frequency internally

considered many other steps like removing stop words, applying stemming, assigning

domain importance, pruning the weights of rare words, and applying TF-ISF. Post-

processing was done on the OCR output to rectify errors using spell correction techniques

before extracting different features from the words. An interface was also developed to

gather the necessary ground truth from the students to evaluate the results obtained by the

proposed methods. I evaluated the keywords generated by different versions of the

algorithm with the feedback given by the users, and my methods achieved a precision of

54.5%, recall of 70.7% and F1 score of 61.6% in the strict version. These scores were also

computed by relaxing the metrics to account for partial matches and achieved a precision

of 61.1%, recall of 76.4% and F1 score of 67.9%. I have analyzed the number of words to

display as part of the summary for each segment and decided that considering the words

88

which have a score higher than 40% of the range would give the best results. I also

restricted the maximum allowable words in a segment to 20.

6.2 Future Work

The data from the video frames may not adequately present the information on the topic.

A hybrid speech and text model can be developed to determine the keywords. In my

experience, speech preserved the semantics well compared to the OCR. Future

improvements in ASR technology will automatically lead to improved keyword detection.

The assignDomainImportance parameter identified words belonging to a specific domain

and boosted their weights. However, the lecture might belong to two or more domains and

improvement can be made to the current methods to handle this. I multiplied the weights

by a factor 2k, which worked well. In the future, other researchers could revisit this area

and determine a more reasonable factor. More ground truth can be gathered to have the

same segment tagged by multiple users and rank the words based on the user agreement to

compare them against the ranking generated by the current methods and measure

deviations. This paves a way in working towards achieving minimum deviation.

Considering these methods might help achieve higher F1 score improving the precision

and recall and generate high-quality keywords.

89

REFERENCES

[1] V. Koller, S. Harvey and M. Magnotta, "Technology-based learning strategies," [Online].

Available: https://www.doleta.gov/reports/papers/tbl_paper_final.pdf. [Accessed 20 12

2018].

[2] J. Subhlok, O. Johnson, V. Subramaniam, R. Vilalta and C. Yun, "Tablet PC video based

hybrid coursework in computer science: report from a pilot project," Proceedings of the

38th SIGCSE Technical Symposium on Computer Science Education, vol. 39, pp. 74–78,

2007.

[3] T. Tuna, J. Subhlok and S. Shah, "Indexing and Keyword Search to Ease Navigation in

Lecture Videos," Proceedings of the 2011 IEEE Applied Pattern Workshop, pp. 1-8,

2011.

[4] V. Varghese, "Development and Evaluation of Textbased Indexing for Lecture Videos,"

M.S. Thesis, University of Houston, Houston, 2014.

[5] T. Tuna, J. Subhlok, L. and Barker, V. Varghese, O. Johnson and S. Shah, "Development

and Evaluation of Indexed Captioned Searchable Videos for STEM Coursework,"

Proceedings of the 43rd ACM technical symposium on Computer Science Education, pp.

129-134, 2012.

[6] A. Mishra and S. Vishwakarma, "Analysis of TF-IDF Model and its Variant for

Document Retrieval," International Conference on Computational Intelligence and

Communication Networks (CICN), pp. 772-776, 2015.

90

[7] S. Lee and H. Kim, "News Keyword Extraction for Topic Tracking," Fourth International

Conference on Networked Computing and Advanced Information Management, vol. 2, pp.

554-559, 2008.

[8] R. Chakraborty, "Domain Keyword Extraction Technique: A New Weighting Method

Based on Frequency Analysis," Computer Science & Information Technology, vol. 3, pp.

109-118, 2013.

[9] T. Tuna, J. Subhlok, L. Barker, S. Shah, O. Johnson and C.Hovey, "Indexed Captioned

Searchable Videos: A Learning Companion for STEM Coursework," Journal of Science

Education and Technology, vol. 26, no. 1, pp. 82-99, 2017.

[10] S. V. Delden, D. Bracewell and F. Gomez, "Supervised and Unsupervised Automatic

Spelling Correction Algorithms," Proceedings of the 2004 IEEE International Conference

on Information Reuse and Integration, pp. 530-535, 2004.

[11] A. Bhardwaj, F. Farooq and H. Cao, "Topic Based Language Models for OCR

Correction," Proceedings of the second workshop on Analytics for noisy unstructured text

data, pp. 107-112, 2008.

[12] B. Youssef and A. Mohammad, "OCR Post-processing Error Correction Algorithm Usign

Google's Online Spelling Suggestion," Journal of Emerging Trends in Computing and

Information Sciences, vol. 3, no. 1, pp. 90-99, 2012.

[13] A. Huang, "Similarity Measures for Text Document Clustering," Proceedings of the Sixth

New Zealand Computer Science Research Student Conference, pp. 49-56, 2008.

91

[14] K. Kukich, "Techniques for Automatically Correcting Words," ACM Computing Surveys,

vol. 24, no. 4, pp. 377-439, 1992.

[15] G. Cormode and S. Muthukrishnan, "The String Edit Distance Matching Problem with

Moves," Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete

algorithms, pp. 667-676, 2002.

[16] "N-gram Models," [Online]. Available: https://sookocheff.com/post/nlp/n-gram-

modeling/. [Accessed 15 9 2018].

[17] "Language Model," [Online]. Available: https://en.wikipedia.org/wiki/Language_model.

[Accessed 4 10 2018].

[18] "PhraseFinder," [Online]. Available: https://phrasefinder.io/documentation. [Accessed 23

03 2019].

[19] "Google Ngram Viewer," [Online]. Available:

https://en.wikipedia.org/wiki/Google_Ngram_Viewer. [Accessed 7 05 2018].

[20] "Stop words," [Online]. Available: https://www.link-assistant.com/seo-stop-words.html.

[Accessed 20 05 2018].

[21] A. Jivani, "A Comparative Study of Stemming Algorithms," International Journal of

Computer Technology and Applications., vol. 2, no. 6, pp. 1930-1938, 2011.

[22] P. M.F, "An algorithm for suffix stripping," Readings in information retrieval, pp. 313-

316, 1980.

92

[23] C. Paice, "Another stemmer," ACM SIGIR Forum, vol. 24, no. 3, pp. 56-61, 1990.

[24] P. Martin, "Snowball: A language for stemming algorithms," 2001. [Online]. Available:

http://snowball.tartarus.org/texts/introduction.html. [Accessed 25 12 2018].

[25] "Oxford Dictionaries," [Online]. Available: http://www.oxfordreference.com. [Accessed

29 07 2018].

[26] S. K. Patro and K. K. Sahu, "Normalization: A Preprocessing Stage," International

Advanced Research Journal in Science, Engineering and Technology, vol. 2, no. 3, pp.

20-22, 2015.

[27] "VideoPoints," [Online]. Available: http://videopoints.uh.edu/public/. [Accessed 10 04

2019].

[28] "Fleiss Kappa Score," [Online]. Available:

https://en.wikipedia.org/wiki/Fleiss%27_kappa. [Accessed 31 03 2019].

[29] X. Tong and D. A. Evans, "A Statistical Approach to Automatic OCR Error Correction in

Context," Proceedings of the Fourth Workshop on Very Large Corpora, pp. 88-100,

1996.

