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Abstract 
 

This dissertation presents the development of analytical models for the investigation of 

the hydrodynamic interactions between a solitary wave and either a partially submerged 

porous wall or a 2-D finite-length body with attached dual porous walls. Analytical 

solutions to describe the propagation of an incident wave and the associated reflected and 

transmitted waves after the interaction are derived by solving the governing equations. The 

solutions of reflection and transmission related unknown coefficients, as functions of wave 

number components and other physical parameters, are formulated by applying the 

matching conditions of the continuous velocities and velocity potentials at the interfaces of 

the fluid domains to evaluate the reflection and transmission of a solitary wave. The 

pressures according to the Bernoulli equation are calculated and the hydrodynamic forces 

are computed by integrating the pressure distributions on the structural surfaces. 

A series of laboratory experiments were carried out to collect the free-surface 

elevations for the verification of the derived analytical solutions under various cases of 

interest. The comparisons of the incident, reflected and transmitted wave profiles predicted 

by the present analytical solutions with the experimental data and other published results 

are presented and discussed. It is demonstrated through result comparisons that the present 

analytical solutions for a given incident solitary wave can provide reliable predications on 

the time varying transmitted waves including wave peak and slightly overestimate the 

reflected wave height. For the topic of a partially submerged porous wall, the horizontal 

hydrodynamic forces from the present analytical solutions are found to agree reasonably 
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well with other published experimental data when a special case of non-porous wall is 

considered.  

The physical parameters that affect the hydrodynamic forces on structures are 

investigated. More importantly, for the evaluation of the performance of the proposed 

partially submerged body systems, the parametric studies with results showing the effects 

of the incident wave height, submerged depth of porous structures, draft of 2-D partially 

submerged body, porous-effect parameter, and structural length on wave run-up, time 

variations of the free-surface elevations, and the overall reflection and transmission 

coefficients are presented and discussed. 
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Chapter 1 Introduction 
 

1.1 Problem Statement 

Water waves are one of the most common forms through which energy and materials 

are transmitted between oceans and continents in nature, and are usually caused by tectonic 

activities, wind, vessel movement, and so on. Enormous energy can be carried and 

transmitted from the ocean into shorelines or coastal/offshore structures by these water 

waves, especially high nonlinearity waves, and in extreme cases, tsunami like solitary 

waves. This phenomenon significantly influences the coastal and offshore protections and 

associated structural designs, as underestimating energy transmitted by water waves can 

cause severe damage to the protective areas. Studying the interactions between water waves 

and structures and the feasibility and effectiveness of the methods of reducing the impacts 

of the transmitted energy carried by water waves have become important aspects of the 

coastal and offshore engineering. 

In the past decades, researchers have studied the characteristics of the interaction 

between water waves and structures through multiple approaches including numerical, 

analytical and experimental methods. Understanding the properties such as flow velocity, 

free-surface elevation, and pressure distribution during and after a water wave encounters 

a structure is essential for offshore and coastal structural design. When a water wave 

propagates through a structure, part of the wave are reflected back while the rest continues 

the process of wave transmission. By solving the velocity potential of the interested flow 
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field, researchers can estimate the percentage of the energy the water wave transmitted 

after interacting with structure and understand the impact of this interaction.  

Placing breakwaters is one of the most practical methods to reduce the impact of the 

energy of transmitted waves. Economically, a submerged breakwater can be a better choice, 

but its efficiency is generally less than a partially submerged breakwater, since the dynamic 

energy of a water wave concentrates near the water surface. Researchers have also 

observed that the energy can be dissipated when a water wave passes through a porous 

structure. Applying a partially submerged porous breakwater may become a practical way 

to effectively reduce the impact of the transmitted wave as well as keep the ecological 

harmony in that region by allowing the material passing through the porous breakwater and 

increasing the flushing capability. 

Although many studies have been done to model the characteristics of interactions 

between water waves and structures, it is still a significant challenge for researchers to 

study the interaction between a nonlinear shallow-water wave, such as a solitary wave, and 

a partially submerged porous breakwater. Because of the nonlinear free surface boundary 

conditions of the water waves and the complex behavior of porous media, modeling a 

solitary wave interacting with a partially submerged porous structure becomes limited in 

both analytical and experimental approaches. It would be beneficial to develop a model to 

describe the behavior of the interactions between solitary waves and a partially submerged 

thin porous breakwater, especially for the purpose of analytically deriving the reflection 

and transmission coefficients and experimentally proving them. 
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Another challenging aspect of the interaction between a nonlinear shallow-water wave 

and a fixed partially submerged structure is that the effect of its thickness or structural 

length on the wave transformation in general cannot be ignored. Because of the inclusion 

of the structural dimension, the structure will introduce another velocity potential field 

underneath and vertically separate the flow regions. As a result, finding the practical 

approaches to solve the velocity potentials in the interested areas becomes much harder as 

accurately determining the velocity potential field underneath the structure becomes a 

challenging task, especially in coastal/offshore engineering applications. For instance, 

performing the analysis for the design of a ship or a bridge deck, the calculation of uplift 

forces generated by nonlinear waves, such as solitary waves, are critical. Reducing wave 

loads on those partially submerged structures is as important as reducing the wave 

transmission. A fixed dual porous-wall attached partially submerged body system may be 

a potential solution to this problem. Modeling the behaviors of such system will help 

engineers to develop more practical and effective methods to reduce the impact of 

transmitted waves and design the offshore and coastal structure properly.  

In this study, coastal or offshore structures including either a partially submerged 

porous wall or a fixed dual porous-wall attached partially submerged body system are 

considered for the analytical and experimental investigations of their hydrodynamic 

performances in terms of wave reflection and transmission and induced wave loads after 

the interaction by an incident solitary wave. This study contains two major aspects. 

 (1) Modeling the hydrodynamic behavior of a solitary wave interacting with a partially 

submerged porous wall as a breakwater. An analytical approach is used to derive the 

reflection and transmission related unknown coefficients. With those two coefficients, the 
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velocity potentials and the wave elevations of the interested regions including both 

reflected and transmitted wave region can be obtained. The relationships between the 

effectiveness of reducing the impact of the transmitted solitary waves and the properties 

such as the ratio of the draft of the porous wall to the water depth and the porous property 

are investigated. Additionally, laboratory experiments were conducted to verify the 

analytical solutions.  

(2) Investigating the interaction between a solitary wave and a fixed dual porous-wall 

attached partially submerged body system that combines a partially submerged 2-

dimensional (2-D) structure of finite length and two vertically attached porous walls. This 

system could be used as an improved partially submerged breakwater system for reducing 

the impact of wave loads on the structure and the elevation level of the transmitted waves. 

Again, an analytical approach is carried out to determine the velocity potentials in all flow 

regions including that beneath the partially submerged structure and to evaluate the 

effectiveness of the two porous walls in reducing not only the impact of the incident wave 

but also the transmitted wave height by using the obtained wave elevations and wave forces.  

Experiments were also performed to verify the present analytical model. The relationships 

between variables, such as the body draft to water depth ratios, porous wall draft to water 

depth ratios, and the length of the partially submerged body, and the reflection and 

transmission coefficients are investigated based on the derived analytical solutions and 

measured data.  
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1.2 Literature Review 

1.2.1 Nonlinear Shallow Water Wave 

The study of nonlinear shallow water waves can be traced back to the observation of 

solitary wave. John Scott Russell (1838, 1845) discovered the “wave of translation” by 

observing the motion of a boat rapidly drawn along a narrow channel that was then 

suddenly stopped, after which a “large solitary elevation, a rounded, smooth and well-

defined heap of water” was created and continued along the narrow channel without any 

significant changes of form and velocity for a certain distance before gradually diminishing. 

Following Russell’s laboratory experiments, researchers were eager to formulate the 

profile of such nonlinear shallow water waves. The development of the Korteweg and de 

Vries (KdV) equation by Korteweg and de Vries (1895) and the original depth-averaged 

Boussinesq equation by Boussinesq (1871) are two common pioneer formulations that 

were developed to describe nonlinear shallow water waves. These pioneer equations 

created a new path to discover the behavior of nonlinear shallow water waves. 

In the past decades, an intense amount of studies were conducted to refine and expand 

the nonlinear shallow water wave theories. Zabusky and Kruskal (1965) discovered that 

with the numerical solution of the KdV equation, a solitary wave pulse propagating in a 

nonlinear dispersive media can be observed. However, the KdV equation assumes that the 

wave is unidirectional with negligible higher-order nonlinear disturbances. It can be used 

to describe cnoidal waves, which are the nonlinear periodic solutions to the KdV equation 

in terms of a Jacobian elliptic function. Friedrichs (1948) improved the study of high-order 

shallow water waves by considering the effects of perturbation, and Laitone (1960, 1962, 

1965) proposed a second order solution for cnoidal waves and compared the results with 
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Stokes’ higher order waves (De, 1955). Later, Isaacson (1977, 1978) modeled the incident 

velocity potential of cnoidal waves with a Fourier series and investigated the interactions 

between cnoidal waves and structures. His approximated nonlinear solutions were also 

compared with the results from linear wave theories and experimental measurements. In 

the end, since the key assumption of deriving the KdV equation is that the wave is 

unidirectional, the KdV equation is restricted to unidirectional waves or waves propagating 

in a predominant direction. On the other hand, the KdV equation is not able to model the 

cases of a nonlinear shallow water wave encountering a structure where a reflected wave 

is generated after the interaction process. 

In contrast to the KdV equation, Boussinesq-class equations can be applied to describe 

the propagation of a nonlinear shallow water wave in multiple directions. The original 

Boussinesq equations (Boussinesq, 1871) were limited to horizontal bottom conditions. 

Later, Mei and LeMehaute (1966) and Peregrine (1967) expanded the set of Boussinesq 

equations to be applicable for variable depths to model shallow water waves. Because of 

the inaccurate representation of the frequency related dispersion of wave propagation in 

deep water, the standard Boussinesq equations (Peregrine, 1967) are only valid in shallow 

water. In order to improve the dispersion characteristics, a new set of Boussinesq equations 

with an additional third-order term were derived by Madsen (1991). The extended 

formulations was then tested to simulate the propagation of a nonlinear wave from deep 

water to shallow water. For intermediate water depth, Nwogu (1993) improved the linear 

dispersive properties of the long-wave model without adding higher order terms into the 

equation. Later, Liu (1994) and Wei et al. (1995) developed highly nonlinear Boussinesq-

class equations to simulate highly nonlinear unsteady waves propagating from deep water 
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to shallow water. Based on the research conducted by Nwogu (1993) and Wei and Kirby 

(1995), a high-order fully nonlinear Boussinesq model was developed by Gobbi et al. 

(2000).  

In order to model a three-dimensional nonlinear shallow water wave with less 

limitations, Wu (1981) proposed a new set of Boussinesq-class equations, known as the 

generalized Boussinesq (gB) model, to determine the free-surface elevation and depth-

averaged velocity potential. Since the gB model is based on the principles of mass and 

momentum conservation and expressed with depth averaged velocity potential, it is easier 

for the researchers to carry out 3-dimensional (3-D) wave simulation than the KdV 

equation. Later, Wu (2001) improved the theory by developing a model that can be applied 

to unsteady, fully nonlinear and dispersive 3-D waves within variable water depth in a 

single water layer. Thus, as the ability to model the propagation of nonlinear shallow-water 

waves has improved, researchers can continue the development of better perceptions and 

methods for studying the interactions between propagating nonlinear shallow-water waves 

and the different structures they come into encounter with. 

1.2.2 Solitary Wave Interacting with Structures 

In nature, solitary waves are translatory waves and usually contain tremendous energy. 

As a solitary wave propagates toward a structure, the impact caused by the interaction 

between the solitary wave and the structure can be substantial. An extreme case of the 

solitary wave is tsunami, which can result in the deaths of people living near the coastal 

regions and inflict severe damage to coastal and offshore structures. Understanding the 

impact of a solitary wave on structures is essential for coastal protection and offshore 
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structure design. Over the past decades, the interaction between solitary waves and various 

types of structures has become an active topic in coastal and ocean engineering. 

In the past decades, a significant amount of research has been conducted to study the 

interaction between water waves and structures. MacCamy and Fuchs (1954) presented one 

of the first analytical studies on wave diffraction on a cylinder. For partially submerged 

bodies, Mei and Black (1969) developed a numerical model to determine the wave 

transformation and forces related to waves interacting with rectangular structures. 

McCartney (1985) studied the performances of various types of floating breakwaters used 

in floating breakwater design. Later, Drimer et al. (1992), Williams et al. (2000) and Zheng 

et al. (2004) developed analytical models for linear waves propagating through different 

types of floating bodies. Others such as Murali and Mani (1997), Koutandos et al. (2005) 

and Dong et al. (2008) have conducted laboratory experiments to investigate the reflection 

and transmission characteristics and the effectiveness of different types of floating 

breakwaters. For submerged structures, Ursell (1947) started the study of the effect of a 

fixed vertical barrier on surface waves, and Dick and Brebner (1968) conducted 

experiments to test the performances of solid and permeable submerged breakwaters. Later, 

through analytical approaches, Abul-Azm (1993), Xie et al. (2011), Liu and Li (2012) and 

Liu et al. (2013) examined the performance of submerged breakwaters in reducing the 

transmitted wave energy. Beji and Battjes (1993), Stephan et al. (1994), and Losada et al. 

(1996) also conducted laboratory experiments to record the reflected and transmitted waves. 

Most of researches mentioned above were conducted by using the linear waves or 

sinusoidal waves. As a result, there was significantly less focus on nonlinear waves, such 

as solitary waves, and their interactions with structures. For solitary waves, Goring (1978) 
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started to look at the propagation of a tsunami that can be considered as an extreme case of 

a solitary wave. Another of the few people focusing on solitary waves interacting with 

structures at that time, Isaacson (1982) developed an integral equation method to solve the 

nonlinear diffraction problems regarding to the interaction between a solitary wave and a 

vertical cylinder. A year later, he presented an analytical solution using the Fourier integral 

approach and a linear diffraction solution to estimate the behavior of a solitary wave 

interacting with a solid vertical cylinder (Isaacson, 1983).  

Other researchers have also focused on the studies of solitary waves interacting with 

cylindrical structures. Ohyama (1991) adopted a boundary element approach to estimate 

the resultant forces of a solitary wave on a vertical cylinder. In order to improve the results 

on the nonlinear effects such as scattering, Wang et al. (1992) proposed a generalized 

Boussinesq (gB) model to investigate the behavior of a solitary wave encountering a 

vertical cylinder. Later, an experimental study of the scattering of a solitary wave after 

interacting with a vertical cylinder was carried out by Yates and Wang (1994). Based on 

the gB model, Wang and Jiang (1994) presented a numerical method to model the 

interaction between solitary waves and cylinder arrays, and later cnoidal waves and 

multiple cylinders (Wang and Ren, 1994). To improve the accuracy to fully-nonlinear 

shallow water waves, a numerical model was developed by Zhong and Wang (2009). With 

this model, the behavior of a fully nonlinear wave interacting with cylindrical structures 

can be evaluated. Continuing Isaacson’s (1983) work, Zhong and Wang (2006) 

investigated the behavior of a solitary wave interacting with a concentric porous cylinder 

system, and the Fourier integrals solutions of free surface elevations and velocity potentials 

were presented.  
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To study of the hydrodynamic interactions between a solitary wave and a vertical wall 

or plate, Power and Chwang (1984) used both analytical and numerical approaches to 

examine the reflection process of a planar solitary wave from an impermeable vertical wall. 

Sugimoto et al. (1987) adopted a matched-asymptotic expansion method to derive 

analytical solutions to estimate the behavior of the interaction between a solitary wave and 

a submerged thin plate. They presented a solution by separately solving the KdV equations 

of the incident, reflected and transmitted waves which may not perform well in term of 

wave transmission. Patarapanich and Cheong (1989) studied a solitary wave propagating 

through a submerged plate in terms of reflection and transmission coefficients to evaluate 

the effect of a submerged plate on the wave transmission. The wave scattering effect caused 

by a submerged disk was analyzed by Yu and Chwang (1993). The reflection of a solitary 

wave after impinging with a vertical wall was also studied by Wu et al. (1998). Later, Hu 

and Wang (2005) investigated the damping effect on solitary waves propagating though a 

submerged horizontal plate and a vertical porous wall. Recently, Jaf and Wang (2015), by 

combining Isaacson’s (1983) and Zhong and Wang’s (2006) researches, developed an 

analytical solution in terms of reflection and transmission related coefficients for the 

interaction between a solitary wave and a completely submerged impermeable breakwater. 

Their analytical solutions were found to agree fairly well with the experimental data.  

When studying the reflection and transmission characteristics of the interaction 

between solitary waves and rectangular structures of finite length, the longitudinal 

dimension and submergence of the structure become critical variables to be included in the 

analysis. Considering tsunami-level solitary waves, Silva et al. (2000) used an inverse 

Fourier transformation to estimate the reflection and transmission coefficients of tsunami 
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waves interacting with a surface-piercing permeable finite-thickness breakwater. Also, in 

terms of reflection, transmission and dissipation coefficients, Lin (2004) studied the 

characteristics of the interaction between solitary waves and rectangular structures with 

various heights and thicknesses. Later, Lin (2006) developed a 2-D numerical model to 

simulate the transformation of a solitary wave after encountering a 2-D body placed at 

various vertical locations, including completely submerged or partially submerged 

positions.  Used an integrated experimental and numerical method, Wu et al. (2012)  

studied the interaction between a solitary wave and a bottom-mounted barrier and 

evaluated the reflection and transmission coefficients. Recently, Lu and Wang (2015) 

developed an integrated analytical and numerical model to simulate the interaction between 

a solitary wave and a fixed floating structure. The velocity potential of the region beneath 

the structure was evaluated analytically and the propagation of wave including incident, 

reflected and transmitted waves were evaluated numerically by solving the gB equations. 

Laboratory experiments were also conducted to verify their modeling results. 

1.2.3 Water Wave Interacting with Porous Structure 

Porous structures, such as porous breakwaters, are widely used in coastal and ocean 

engineering design consideration. It has been observed that when water wave propagates 

through a porous structure, parts of energy from both the reflected and transmitted waves 

are dissipated and the resultant forces on the structure are reduced. Because of this 

phenomena, researchers started to investigate the usage of porous structures in terms of 

reducing wave energy impacts and protecting coastal and offshore structures. However, the 

complexities of the behavior of porous structures and the flow passing through it are the 
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major challenges hindering the investigation of using porous structures to solve water wave 

problems. 

Starting with linear waves, Sollitt and Cross (1972) presented a solution of flow 

propagating through a finite-thickness porous breakwater, while Madsen (1974) analyzed 

the reflected and transmitted waves far away from the porous structures. Chwang (1983) 

developed a porous wavemaker theory to avoid the complexity of flow propagating though 

a porous media by applying Taylor’s (1956) revised Darcy’s flow concept of a porous 

screen. Later, following Chwang’s (1983) work, Chwang and Li (1983) investigated a 

piston-type porous wavemaker and evaluated the interaction between surface waves and a 

porous screen. By neglecting the thickness of the structure, the problem of water waves 

interacting with a porous structure is simplified and the velocity inside the porous structure 

depends on the pressure difference across the structure. Extending Chwang’s (1983) theory, 

Wang and Ren (1993) presented a study of water waves interacting with flexible porous 

breakwaters. The interaction between water waves and a floating porous breakwater on 

mooring lines connected to the structure was also investigated by Ren and Wang (1994). 

Using linear wave theory, Yu and Chwang (1994) studied the transformation of a water 

wave as it propagates thought a horizontally orientated submerged porous plate. Wang and 

Ren (1994) also derived analytical solutions to describe wave interactions with a concentric 

porous cylinder system. Later, William and Li (2000) developed a semi-analytical model 

for water wave interactions with a porous cylinder system. Recently, a new analytical 

solution to wave reflection and transmission caused by porous breakwaters was presented 

by Liu and Li (2013) to avoid difficult procedures of traditional numerical solutions. 

Although a considerable number of studies have been conducted on the interaction between 
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water waves and porous structures, however, most of the research mentioned above 

focused on a linear periodic wave. The studies concerning the interaction between a 

nonlinear long wave, such as a solitary wave, and a porous structure have been very limited.  

In terms of interaction between solitary wave and porous structures, Vidal et al. (1988) 

presented experimental data of solitary waves transmitted through a porous breakwater. 

The wave scattering caused by a submerged porous disk was investigated by Chwang and 

Wu (1994). Liu (1997) simulated solitary waves propagating through a finite-thickness 

porous breakwater with a model using the Runge-Kutta integration method. Also, Li (1999) 

and Lynett et al. (2000) developed numerical solvers to model solitary waves propagating 

through a porous breakwater. Wu et al. (1998) considered a structure system composed of 

a vertical end wall and a submerged horizontal porous plate and studied the wave reflection 

caused by this structural system. Considering the wave height reducing effect on long 

waves, Hu and Wang (2005) proposed a structural system composed of a submerged 

horizontal plate and a vertical porous wall and investigated the performance of the 

breakwater system analytically. Zhong and Wang (2006) investigated the interaction 

between solitary waves and a concentric porous cylinder system by following Isaacson’s 

(1983) and Wang and Ren’s (1994) work. Recently, Wu et al. (2014) developed a 3-D 

numerical model to simulate the interaction between a solitary wave and a porous 

breakwater. 

Based on the literature review mentioned above, studies involving the interactions 

between a solitary wave and either a partially submerged porous structure, especially a thin 

structure, or a partially submerged 2-D body with attached porous walls have been 

extremely limited. Most of the research proposed numerical methods to solve the complex 



14 
 
 

behavior of the solitary wave propagating through a porous media. The experimental data 

necessary to validate those models are also limited. In the present study, analytical 

solutions are developed to investigate the performance of a partially submerged porous 

barrier subject to an encountering of an incident solitary wave. Theoretical solutions for a 

solitary wave interacting with a fixed floating structure with attached two porous walls are 

also derived.  Additionally, a series of experimental measurements were carried out to 

verify the derived analytical solutions. 

1.3 Dissertation Outline 

This study is composed of two topics. The first topic focuses on the study of the 

interactions between a solitary wave and a partially submerged porous wall by analytically 

deriving the solutions of velocity potentials and wave elevations in terms of reflection and 

transmission related coefficients, while also conducting laboratory experiments to make 

direct measurements of reflected and transmitted wave elevations for such interactions. 

The experimental measurements are used for the validations of the derived analytical 

solutions. Instead of a single thin porous structure, the second part of this research extends 

the analytical and experimental approaches to investigate a solitary wave interacting with 

a more complex partially submerged breakwater or an offshore floater that consists of a 2-

D finite-length body with attached dual porous walls.  Solutions of the velocity potentials 

and wave elevations in the flow regions outside and underneath of the body are analytically 

derived. The reflection and transmission associated wave elevations and coefficients are 

derived and compared with the experimental measurements. The aims of this study is to 

not only develop analytical solutions for solving the hydrodynamic problems of a solitary 

wave interacting with these two types of structures but also provide experimental data 
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through laboratory tests to verify the developed solutions or predictive models in terms of 

the wave reflection and transmission during the interaction process. Furthermore, based on 

the analytical solutions, the parametric studies are conducted to evaluate the effects of 

physical parameters on the reflection and transmission of a solitary wave while interacting 

with the two partially submerged structures described above. Hydrodynamic forces on 

these structures are also examined. 

Chapter 1 includes the problem statement, literature review and the outline of the 

dissertation. Chapter 2 presents the analytical model of the interaction between a solitary 

wave and a partially submerged porous wall. The analytical solutions for the velocity 

potentials of the interested flow fields are derived based on the combined Fourier integral 

and solution superposition method proposed by Isaacson (1983) and Zhong and Wang 

(2006). The porous effect is included by using the Darcy’s law where Chwang’s (1983) 

porous wavemaker theory and Zhong and Wang’s (2006) work are followed for 

formulations of boundary conditions. The unknown coefficients related to the reflected and 

transmitted waves are derived by applying the least squares method (Sneddon, 1966; 

Dalrymple and Martin, 1990) to the mixed boundary condition. By substituting the derived 

coefficients back to the equations of velocity potentials and free-surface elevations in both 

regions, the water surface profiles for both reflected and transmitted waves and their 

corresponding velocity potentials can be determined. Using the nonlinear Bernoulli 

equation, the pressure can be calculated and the hydrodynamic forces acting on the porous 

wall can be estimated by integrating the pressure distribution on the wall surfaces. 
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To extend the study to a more complex partially submerged body system, Chapter 3 

presents the analytical model for describing the interaction between a solitary wave and a 

2-D finite length body with attached dual porous walls. The analytical solutions of the 

velocity potentials outside of the 2-D body are similar to those given in Chapter 2 and for 

the flow domain underneath the partially submerged body, the velocity potential is derived 

by solving the Laplace equation with the specified boundary (or matching) conditions at 

the interfaces.  By applying the matching conditions and the orthogonality property of 

solution based eigenfunctions at the interfaces of the inner and outer domains, the unknown 

coefficients can be derived. Similar formulations as shown in Chapter 2 can be used to 

obtain the free-surface elevations and the hydrodynamic forces on the partially submerged 

body system. 

In order to verify the analytical solutions presented in Chapter 2 and Chapter 3, a series 

of laboratory experiments were conducted to collect the free-surface elevations at locations 

of upstream (for incident and reflected waves) and downstream (for transmitted waves) of 

a partially submerged structure mentioned above under various conditions. The setups of 

experiments including the wave tank, partially submerged body systems, wave gauges and 

the parameters like the incident wave heights, porous wall conditions and 2-D body 

conditions are summarized in Chapter 4.  

Chapter 5 presents the results of the derived analytical solutions for various cases of 

solitary waves interacting with a partially submerged porous wall. First, the comparisons 

between analytical solutions and experimental data on the time-variations of the free-

surface elevations are carried out to verify the analytical solutions. Then, the parametric 
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studies of the effects of incident wave height, depth (draft) of a submerged porous wall, 

porous-effect parameter on the physical variables of the wave run-ups on the porous wall, 

time-variations of the free-surface elevation, and the overall transmission coefficients are 

presented in this chapter. Furthermore, the induced hydrodynamic forces under different 

cases of varying incident wave height, submerged depth, and porous property of the wall 

structure are examined. 

Similarly, Chapter 6 presents the results of hydrodynamic interaction between a solitary 

wave and a partially submerged body system that consists of a partially submerged 2-D 

rectangular structure with two attached porous walls. Experimental data collected in the 

present wavetank tests and those of special cases from Lu and Wang’s (2015) work are 

used to verify the derived analytical solutions given in Chapter 3. The effects of various 

parameters, such as incident wave height, draft of 2-D body, property of porous walls, and 

structural length on the reflection and transmission of the incident wave are examined. 

Results of the wave run-up on the front face of the partially submerged body system, the 

horizontal forces, and the vertical forces acting on the bottom of the 2-D body are also 

presented and discussed in this chapter. 

Finally, in Chapter 7, the key results and conclusions of this study are summarized and 

the future studies on the extension of the present study are also presented. 
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Chapter 2 Analytical Model of Interactions between a Solitary Wave and 

a Partially Submerged Porous Wall 

 

In this study, the velocity potentials of the interested field for a solitary wave interacting 

with a partially submerged porous wall (barrier) is derived analytically based on the Fourier 

integral method proposed by Isaacson (1983) and Zhong and Wang (2006). The porous 

effect included in the wall boundary conditions follows Chwang’s (1983) formulation that 

was based on the Darcy’s law. Also, the least squares minimization procedure (Sneddon, 

1966; Dalrymple and Martin, 1990; Jassim and Wang, 2015) is applied for the mixed 

matching conditions defined at the wall location to determine the unknown coefficients. A 

schematic diagram showing the problem statement is given in Figure 2-1. Due to the 

existence of a porous wall, the fluid domain is separated into two regions. As defined in 

Figure 2-1, region 1 (𝑥𝑥∗ ≤ 0,−ℎ∗ ≤ 𝑧𝑧∗ ≤ 𝜂𝜂∗) denotes the fluid domain on the left side of 

the porous wall and region 3 (𝑥𝑥∗ ≥ 0,−ℎ∗ ≤ 𝑧𝑧∗ ≤ 𝜂𝜂∗) stands for the fluid domain on the 

right side of the porous wall. The notations with superscript “*” represent the dimensional 

physical variables. A two-dimensional (2-D) Cartesian coordinate system  (𝑥𝑥∗, 𝑧𝑧∗)  is 

applied for this study. The x∗ axis represents the horizontal axis where the x∗ = 0 is at the 

location of the partially submerged porous wall, and the z∗ axis points vertically upwards 

with the undisturbed water surface set as 𝑧𝑧∗ = 0.  𝜂𝜂∗ and ℎ∗ denote respectively the wave 

elevation and constant water depth. The draft of the partially submerged porous wall is set 

as d∗ beneath the water surface. It is assumed that the partially submerged porous wall is a 

rigid thin structure. Additionally, the fluid is assumed to be inviscid and incompressible 
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and the flow is irrotational. The governing equation, boundary conditions, and derived 

analytical solutions of the velocity potentials and free-surface elevations are summarized 

in the following sub-sections. Detailed derivations of the solution formulations given in 

this chapter can be found in Appendix A. 

 

Figure 2-1: Schematic of a solitary wave interacting with a partially submerged porous 
wall. 

2.1 Governing Equations 

In order to derive the analytical solution for a solitary wave interacting with a partially 

submerged porous wall, the free-surface elevation 𝜂𝜂𝐼𝐼∗(𝑥𝑥∗, 𝑡𝑡∗) of an incident right-going 

(propagating along the positive 𝑥𝑥∗ direction) solitary wave, according to the solitary wav 

theory, can be expressed as 

𝜂𝜂𝐼𝐼∗ = 𝐻𝐻∗ 𝑠𝑠𝑠𝑠𝑠𝑠ℎ2 ��
3𝐻𝐻∗

4(ℎ∗)3
(𝑥𝑥∗ − 𝑠𝑠∗𝑡𝑡∗)� ,                                                  (2-1) 
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where 𝐻𝐻∗  stands for the incident wave height and 𝑠𝑠∗ and 𝑡𝑡∗  represent respectively the 

wave celerity and time. In Eqn. (2-1), the variable with subscript, I, represents that of an 

incident wave. 𝑠𝑠∗ =  �𝑔𝑔ℎ∗ where 𝑔𝑔 is the gravitational acceleration and 𝛼𝛼 = 𝐻𝐻∗/ℎ∗ is the 

dimensionless wave height. 

Based on the Fourier integral method presented by Isaacson (1983) and later extended 

by Zhong and Wang (2006), the velocity potential of the incident wave can be expressed 

as 

𝜙𝜙𝐼𝐼∗ =
𝐻𝐻∗

2𝜋𝜋�ℎ
∗

𝑔𝑔∗
�

𝐴𝐴(𝑘𝑘∗)
𝑖𝑖𝑘𝑘∗

∞

−∞
𝑠𝑠𝑖𝑖𝑘𝑘∗(𝑥𝑥∗−𝑐𝑐∗𝑡𝑡∗)𝑑𝑑𝑘𝑘∗,                                     (2-2) 

and the corresponding equation for the free-surface elevation becomes 

𝜂𝜂𝐼𝐼∗ =
𝐻𝐻∗

2𝜋𝜋
� 𝐴𝐴(𝑘𝑘∗
∞

−∞
)𝑠𝑠𝑖𝑖𝑘𝑘∗(𝑥𝑥∗−𝑐𝑐∗𝑡𝑡∗)𝑑𝑑𝑘𝑘∗,                                                 (2-3) 

where k∗ indicates the wave number. For the mathematical convenience, Eqns. (2-2) and 

(2-3) have the complex expressions where the real part of the equations represent the true 

physical variables. From Eqns. (2-1) and (2-3), the coefficient of the Fourier integral 𝐴𝐴(𝑘𝑘∗) 

can be derived as 

𝐴𝐴(𝑘𝑘∗) =
4𝜋𝜋(ℎ∗)3𝑘𝑘∗

3𝐻𝐻∗ 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝜋𝜋𝑘𝑘∗ �
(ℎ∗)3

3𝐻𝐻∗ ).                                       (2-4) 

As the fluid domain is separated by a porous wall, 𝜙𝜙1∗  and 𝜙𝜙3∗   are introduced to 

represent the velocity potentials in region 1 (𝑥𝑥∗ ≤ 0,−ℎ∗ ≤ 𝑧𝑧∗ ≤ 𝜂𝜂∗) and region 3 (𝑥𝑥∗ ≥

0,−ℎ∗ ≤ 𝑧𝑧∗ ≤ 𝜂𝜂∗), respectively. For a solitary wave, the velocity potential 𝜙𝜙𝑗𝑗  (𝑗𝑗 = 1,3) in 

a dimensionless form satisfies the Laplace equation 
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𝜕𝜕2𝜙𝜙𝑗𝑗
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝜙𝜙𝑗𝑗
𝜕𝜕𝑧𝑧2

= 0         (𝑗𝑗 = 1,3),                                           (2-5) 

where  𝜙𝜙𝑗𝑗 = 𝜙𝜙𝑗𝑗∗/𝑠𝑠0ℎ∗, 𝑥𝑥 = 𝑥𝑥∗/ℎ∗, 𝑧𝑧 = 𝑧𝑧∗/ℎ∗  and 𝑠𝑠0 = �𝑔𝑔∗ℎ∗. All the physical variables 

without superscript “*” are nondimensionalized by using h∗ as length scale, c0 as velocity 

scale and �ℎ∗/𝑔𝑔∗ as time scale. A variable with subscript j denotes that variable in region 

j. 

For a weakly nonlinear and weakly dispersive wave, α, where α = O(µ2), can be used 

as the order of the governing equations of this study. Following the classical expansion 

method presented by Wu (1981), Wang et al. (1992) proposed an expression of the original 

velocity potential in term of the depth-averaged velocity potential shown as 

𝜙𝜙𝑗𝑗(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝜙𝜙𝑗𝑗(𝑥𝑥, 𝑡𝑡) − 𝛼𝛼 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
�𝛻𝛻2𝜙𝜙𝑗𝑗 + 𝑂𝑂(µ5)    ( 𝑗𝑗 = 1,3),      (2-6) 

where 𝜙𝜙𝑗𝑗(𝑥𝑥, 𝑡𝑡) (𝑗𝑗 = 1,3) denote the depth-averaged velocity potential either in region 1 or 

in region 3. Other variables can be transferred into dimensionless forms shown as 𝑘𝑘 =

𝑘𝑘∗ℎ∗,𝜂𝜂 = 𝜂𝜂∗/ℎ∗, 𝑑𝑑 = 𝑑𝑑∗/ℎ∗, 𝐻𝐻 = 𝐻𝐻∗/ℎ∗, and 𝑠𝑠 = 𝑠𝑠∗/𝑠𝑠0.  

Following the approaches proposed by Zhong and Wang’s (2006) and Jaf and Wang 

(2015), the depth-averaged velocity potential of region 1, including both incident and 

reflected waves, can be written as 

𝜙𝜙1 = � {(−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 + 𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥
∞

−∞
]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘,                     (2-7) 

whereas the depth-averaged velocity potential of region 3 can be expressed as 

𝜙𝜙3 = � {(−𝑖𝑖𝑖𝑖)[𝑇𝑇0𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥
∞

−∞
]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘,                                       (2-8) 

where 𝑅𝑅0 and 𝑇𝑇0 are the reflection and transmission related coefficients respectively, and 
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𝑖𝑖 =
2
3
𝑠𝑠𝑠𝑠𝑠𝑠ℎ �𝜋𝜋𝑘𝑘�

1
3𝐻𝐻

� .                                                                 (2-9) 

Substituting Eqn. (2-7) into Eqn. (2-6) leads the original velocity potential for region 1 as 

𝜙𝜙1 = � {(−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 + 𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥
∞

−∞
] + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥

+ 𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘.                                                                                   (2-10) 

Similarly, the velocity potential for region 3 can be formulated from Eqns. (2-6) and (2-8) 

as 

𝜙𝜙3 = � {(−𝑖𝑖𝑖𝑖)[𝑇𝑇0𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥
∞

−∞
] + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑇𝑇0𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘.       (2-11) 

In Eqns. (2-10) and (2-11), 𝑅𝑅0 and 𝑇𝑇0  are unknown coefficients required to be 

determined from the matching conditions. In this integral method, the corresponding 

𝑅𝑅0 and 𝑇𝑇0  for each wave number component k are determined to describe their 

contributions to the wave reflection and transmission. With the integration, the overall 

reflection and transmission coefficients can be estimated. Velocity potentials of region 1 

and region 3 as shown in Eqns. (2-10) and (2-11) satisfy the far field condition. 

2.2 Boundary and Matching Conditions 

 In order to describe the behavior of a porous plate at the interface of region 1 and 

region 3, Darcy’s law is applied, so that the velocity of fluids flows through the porous 

plate is linearly proportional to the pressure difference between two sides of the porous 

wall (Chwang, 1983), which gives 

𝜕𝜕𝜙𝜙1∗

𝜕𝜕𝑥𝑥∗
=
𝜕𝜕𝜙𝜙3∗

𝜕𝜕𝑥𝑥∗
=
𝑏𝑏0∗

𝜇𝜇
(𝑝𝑝1 − 𝑝𝑝3),                                              (2-12) 
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where  µ is the dynamic viscosity, 𝑏𝑏0∗ is a specific material constant for the porous wall, 

and p is the pressure. In combination with the linearized dynamic free-surface boundary 

condition, the velocity of the fluid at the interface of region 1 and region 3 can be derived 

as 

𝜕𝜕𝜙𝜙1∗

𝜕𝜕𝑥𝑥∗
=
𝜕𝜕𝜙𝜙3∗

𝜕𝜕𝑥𝑥∗
=
−𝑏𝑏0∗𝜌𝜌
𝜇𝜇

�
𝜕𝜕𝜙𝜙1∗

𝜕𝜕𝑡𝑡∗
−
𝜕𝜕𝜙𝜙3∗

𝜕𝜕𝑡𝑡∗
� .                                            (2-13) 

Let 𝑏𝑏0 = 𝑏𝑏0∗/ℎ∗, the dimensionless form of Eq. (2-13) can be expressed as 

(
𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

)𝑥𝑥=0 = (
𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

)𝑥𝑥=0 = (𝑖𝑖𝑘𝑘𝑠𝑠)𝑅𝑅𝑒𝑒𝑏𝑏0(𝜙𝜙1 − 𝜙𝜙3),                               (2-14) 

where 𝑅𝑅𝑒𝑒 =  𝜌𝜌ℎ∗�𝑔𝑔∗ℎ∗/𝜇𝜇 is a Reynolds number like parameter describing the flow 

condition passing through the porous wall. In order to solve 𝑅𝑅0 and  𝑇𝑇0 , the matching 

boundary conditions at the interface x = 0 are applied. They are 

(
𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

)𝑥𝑥=0 = (
𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

)𝑥𝑥=0    @ − 1 ≤ 𝑧𝑧 ≤ 0,                                (2-15) 

(𝜙𝜙1)𝑥𝑥=0 = (𝜙𝜙3)𝑥𝑥=0     @ − 1 ≤ 𝑧𝑧 ≤ −𝑑𝑑, and                                 (2-16) 

�
𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

�
𝑥𝑥=0

= �
𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

�
𝑥𝑥=0

= (𝑖𝑖𝑘𝑘𝑠𝑠)𝑅𝑅𝑒𝑒𝑏𝑏0(𝜙𝜙1 − 𝜙𝜙3)      @ − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0.                   (2-17) 

Eqn. (2-15) indicates the continuity of the fluid velocity at the interface while Eqn. (2-16) 

describes the continuity of the velocity potential for the opening part of the interface. The 

porous effect is added into the mixing matching boundary condition with the application 

of Eqn. (2-17) where the normal velocity passing through the porous plate is found to be 

associated with the difference between the velocity potentials in region 1 and region 3.  

By substituting Eqns. (2-10) and (2-11) into Eqn. (2-15), we can get the relationship 

between R0 and T0 as 

𝑇𝑇0 = 1 − 𝑅𝑅0.                                                               (2-18) 
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Also, substituting Eqns. (2-10) and (2-11) into Eqn. (2-16), we have 

2𝑅𝑅0 + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (2𝑅𝑅0) = 0   − 1 ≤ 𝑧𝑧 ≤ −𝑑𝑑.                                      (2-19) 

Furthermore, from Eq. (2-17), we can acquire 

1 − 𝑅𝑅0 − 2𝐺𝐺𝑅𝑅0 + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [1 − 𝑅𝑅0 − 2𝐺𝐺𝑅𝑅0] = 0    @ − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0,   (2-20) 

where 𝐺𝐺 = 𝑅𝑅𝑒𝑒𝑏𝑏0𝑠𝑠 is a dimensionless porous effect parameter. 

2.3 Analytical Solutions 

Eqns. (2-19) and (2-20) form a system of mixed matching conditions at the interface 

(x=0) between region 1 and region 3. A function describing the errors between the left-

hand sides and right-hand-sides of Eqns. (2-20) and (2-19) is defined as 

𝐻𝐻0 =

⎩
⎪
⎨

⎪
⎧1 + (−1 − 2𝐺𝐺)𝑅𝑅0 + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [1 + (−1 − 2𝐺𝐺)𝑅𝑅0]     − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0 

2𝑅𝑅0 + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (2𝑅𝑅0)                   − 1 ≤ 𝑧𝑧 ≤ −𝑑𝑑

   . 

(2-21) 

The least squares method (Sneddon, 1966; Dalrymple and Martin, 1990) by minimizing 

∫ �𝐻𝐻02�𝑑𝑑𝑧𝑧
0
−1  is applied to determine the unknown coefficient 𝑅𝑅0. The minimizing condition 

is given as 

� 𝐻𝐻0(𝑧𝑧)
0

−1

𝜕𝜕𝐻𝐻0
𝜕𝜕𝑅𝑅0

𝑑𝑑𝑧𝑧 = 0.                                                       (2-22) 
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The derivative of 𝐻𝐻0 versus 𝑅𝑅0 leads 

𝜕𝜕𝐻𝐻0
𝜕𝜕𝑅𝑅0

=

⎩
⎪
⎨

⎪
⎧(−1 − 2𝐺𝐺) + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [(−1− 2𝐺𝐺)]     − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0 

2 + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (2)                   − 1 ≤ 𝑧𝑧 ≤ −𝑑𝑑

  .          (2-23) 

Substituting Eqns. (2-21) and (2-23) into Eqn. (2-22), we have 

� 𝐻𝐻0(𝑧𝑧)
0

−1

𝜕𝜕𝐻𝐻0
𝜕𝜕𝑅𝑅0

𝑑𝑑𝑧𝑧

= � �1 + 𝐵𝐵𝑅𝑅0 + 𝐶𝐶 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [1 + 𝐵𝐵𝑅𝑅0]�

0

−𝑑𝑑
�𝐵𝐵 + 𝐶𝐶 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [𝐵𝐵]� 𝑑𝑑𝑧𝑧

+ � �2𝑅𝑅0 + 𝐶𝐶 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (2𝑅𝑅0)�

−𝑑𝑑

−1
�2 + 𝐶𝐶 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (2)� 𝑑𝑑𝑧𝑧

= 0,                                                                                                                                              (2-24) 

where 

𝐵𝐵 = −1 − 2𝐺𝐺 and                                                   (2-25) 

𝐶𝐶 = 𝛼𝛼𝑘𝑘2.                                                             (2-26) 

The reflection coefficient 𝑅𝑅0 can be derived from Eqn. (2-24) as 

𝑅𝑅0 =
−𝐵𝐵𝐵𝐵

𝐵𝐵2𝐵𝐵 − 4(𝐵𝐵 − 4𝐶𝐶2 − 180)
,                              (2-27) 

where  

𝐵𝐵 = 9𝐶𝐶2𝑑𝑑5 − 45𝐶𝐶2𝑑𝑑4 + (80𝐶𝐶2 + 60𝐶𝐶)𝑑𝑑3 + (−60𝐶𝐶2 − 180𝐶𝐶)𝑑𝑑2

+ (20𝐶𝐶2 + 120𝐶𝐶 + 180)𝑑𝑑.                                                                        (2-28) 

Based on the determined 𝑅𝑅0  and 𝑇𝑇0  from Eqns. (2-27) and (2-18), the velocity 

potentials (Eqns. (2-10) and (2-11)) in both region 1 and region 3 can be calculated. As an 

approximation, the linearized dynamic free-surface boundary condition is applied 
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separately in region1 and region 3 to obtain the free surface profiles. In region 1, we have 

the dimensionless wave elevation as 

𝜂𝜂1 = −
𝜕𝜕𝜙𝜙1
𝜕𝜕𝑡𝑡

= −� {−(𝑖𝑖)(𝑘𝑘𝑠𝑠)[𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 + 𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥
∞

−∞
]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘.       (2-29) 

Similarly, the free-surface elevation of the transmitted wave in region 3 can be derived as 

𝜂𝜂3 = −
𝜕𝜕𝜙𝜙3
𝜕𝜕𝑡𝑡

= −� {−(𝑖𝑖)(𝑘𝑘𝑠𝑠)[𝑇𝑇0𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥
∞

−∞
]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘.                         (2-30) 

The real parts of Eqns. (2-29) and (2-30) can be calculated to give the physical values of 

the free-surface elevations in region 1 and region 3, respectively.  

To determine the maximum hydrodynamic forces on the partially submerged porous 

wall, the pressure distribution along the wall needs to be computed. According to the 

Bernoulli equation, the dimensionless form of the pressure can be expressed as 

𝑝𝑝 = −(
𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

+
1
2

(𝜙𝜙𝑥𝑥2 + 𝜙𝜙𝑧𝑧2)),                                                   (2-31) 

where p= 𝑝𝑝∗/𝜌𝜌𝑔𝑔ℎ∗  . Due to the assumption of a thin wall (zero thickness), only the 

horizontal hydrodynamic force is considered in this study. Through the linearization 

procedure, the horizontal hydrodynamic force can be computed by integrating the pressure 

acting on the front face of the porous wall as  

𝐹𝐹𝑥𝑥 = (� 𝑝𝑝1𝑑𝑑𝑧𝑧
0

−𝑑𝑑
+

1
2
𝜂𝜂1|𝜂𝜂1|) − (� 𝑝𝑝3𝑑𝑑𝑧𝑧

0

−𝑑𝑑
+

1
2
𝜂𝜂3|𝜂𝜂3|),                                (2-32) 

where 𝑝𝑝1 and 𝑝𝑝2 are the respective pressures acting on the front and rear faces of the porous 

wall. It should be noted that the maximum force happens at the time (𝑡𝑡 = 𝑡𝑡𝐹𝐹) when the 

maximum wave run-up reaching the front face of the porous wall.  
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Chapter 3 Analytical Model of Interactions between a Solitary Wave and 

a 2-D Finite-Length Partially Submerged Body with Attached Dual 

Porous Walls 

 

To include the effect of structural dimension, a 2-D finite-length partially submerged 

body with two porous walls attached separately with one on the front face and the other on 

the back face of the structure is considered in the second part of study. The analytical 

solutions for a solitary wave interacting with this partially submerged body system are 

derived by extending some of the solution procedures presented in Chapter 2 to include the 

applications of additional matching conditions and use of the orthogonality property of the 

solution eigenfunctions. The schematic diagram of the partially submerged body system is 

shown in Figure 3-1, where the region 1 (𝑥𝑥∗ ≤ −𝑥𝑥1∗,−ℎ∗ ≤ 𝑧𝑧∗ ≤ 𝜂𝜂∗) represents the fluid 

domain on the left side of the structural system, the region 3 (𝑥𝑥∗ ≥ 𝑥𝑥1∗,−ℎ∗ ≤ 𝑧𝑧∗ ≤ 𝜂𝜂∗) 

stands for the fluid domain on the right side of the system and the region 2 (𝑥𝑥1∗ ≥ 𝑥𝑥∗ ≥

−𝑥𝑥1∗,−ℎ∗ ≤ 𝑧𝑧∗ ≤ 𝑏𝑏∗) denotes the fluid domain underneath the partially submerged body. 

The solution procedure for formulating the velocity potentials in region 1 and region 3 are 

similar to those presented in Chapter 2 while the velocity potential in region 2 is derived 

by solving the Laplace equation with the kinematic boundary conditions underneath the 

partially submerged structure (Lu and Wang, 2015). With the assumption of thin porous 

walls, the conditions for flows passing through them again follow the Darcy’s law (Chwang, 

1983; Zhong and Wang, 2006). It should be noted that the symbols of physical variables 

defined in Chapter 2 appear also in the formulations of the analytical derivations given in 
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this chapter. Additional variables, such as 𝑏𝑏∗ and 𝑥𝑥1∗, represent respectively the draft and 

half length of the fixed partially submerged body. The solution procedure and derived 

analytical solutions of the velocity potentials and free-surface elevations for the second 

part of the present study are given in the following sub-sections. The detailed derivations 

of the solution formulations can be found in Appendix B.  

 

Figure 3-1: Schematic of a solitary wave interacting with a 2-D finite-length partially 
submerged body with attached dual porous walls. 

3.1 Governing Equations 

In this case, the region 1 and region 3 are corresponding to the domains with the 

velocity potentials of incident/reflected waves and transmitted waves, respectively. The 

analytical solutions for the velocity potentials of the region 1 and region 3 are similar to 

those derived based on the Fourier integral method as presented in Chapter 2. However, 

the velocity potential of region 2 requires to be re-derived and the boundary conditions due 
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to the additional fluid domain (region 2) are also changed.  Let 𝑅𝑅1 and 𝑇𝑇1  be the unknown 

coefficients for the velocity potentials of reflected and transmitted waves, respectively.  

Similar to Eqns. (2-10) and (2-11), the velocity potentials in region 1 and region 3 are 

expressed as   

𝜙𝜙1 = � {(−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥
∞

−∞
] + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥

+ 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘 𝑎𝑎𝑎𝑎𝑑𝑑                                                                             (3-1) 

𝜙𝜙3 = � {(−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥
∞

−∞
] + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘.    (3-2) 

For the additional fluid domain, region 2, the velocity potential should satisfy the 

Laplace equation 

𝛻𝛻2𝜙𝜙2 = 0      @  − 1 ≤ 𝑧𝑧 ≤ −𝑏𝑏,                                               (3-3) 

and the kinematic boundary conditions applied at the bottom of the fluid domain and the 

bottom of the partially submerged body, i.e., 

𝜕𝜕𝜙𝜙2
𝜕𝜕𝑧𝑧

= 0   @𝑧𝑧 = −1 & 𝑧𝑧 = −𝑏𝑏.                                                 (3-4) 

Based on Lu and Wang (2015), the velocity potential in region 2 is derived as 

𝜙𝜙2 = � ���𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ�𝑚𝑚𝑗𝑗𝑥𝑥� + 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ�𝑚𝑚𝑗𝑗𝑥𝑥��
∞

𝑗𝑗=1

𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� +𝐶𝐶𝑥𝑥+ 𝐷𝐷�𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑑𝑑𝑘𝑘
∞

−∞
,    

(3-5) 

where 𝑚𝑚𝑗𝑗 can be expressed as 
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𝑚𝑚𝑗𝑗 =
𝑗𝑗𝜋𝜋

1 − 𝑏𝑏
         𝑗𝑗 = 1,2, … .𝑎𝑎.                                                     (3-6) 

It should be noted that the dimensionless forms of Eqns. (3-3), (3-4) and (3-5) are shown 

to be in consistency with the nondimensional approach given in Chapter 2, where  ℎ∗ is 

selected as the length scale, 𝑠𝑠0 as the velocity scale and �ℎ∗/𝑔𝑔∗ as the time scale). 𝐴𝐴𝑗𝑗, (𝑗𝑗 =

1,2, … . ), 𝐵𝐵𝑗𝑗, (𝑗𝑗 = 1,2, … . ), C, and D are unknown coefficients to be determined by using 

the matching conditions at the interfaces.  

3.2 Boundary and Matching Conditions 

The existence of fluid region described as region 2 underneath the partially submerged 

body add additional boundary and matching conditions to be utilized for solving the 

problem. The matching conditions are expanded to be applied at the interfaces on both side 

of the partially submerged body, which are the interface between region 1 and region 2 and 

the interface between region 2 and region 3, for determining the unknown coefficients. 

The boundary conditions on the submerged structural surfaces (−𝑏𝑏 ≤ 𝑧𝑧 ≤ 0) at the 

interfacial locations (𝑥𝑥 = −𝑥𝑥1 and 𝑥𝑥 = 𝑥𝑥1) require that the normal velocities of fluids in 

regions 1 and 3 equal to zero. We have 

𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

= 0   @𝑥𝑥 = −𝑥𝑥1,−𝑏𝑏 ≤ 𝑧𝑧 ≤ 0 𝑎𝑎𝑎𝑎𝑑𝑑                           (3-7) 

𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

= 0   @𝑥𝑥 = 𝑥𝑥1,−𝑏𝑏 ≤ 𝑧𝑧 ≤ 0.                             (3-8) 

Following the similar procedure as given in Chapter 2, the boundary conditions on the 

porous walls by following the Darcy’s law can be expressed as 
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𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜙𝜙2
𝜕𝜕𝑥𝑥

− 𝑅𝑅𝑒𝑒𝑏𝑏1 �
𝜕𝜕𝜙𝜙1
𝜕𝜕𝑡𝑡

−
𝜕𝜕𝜙𝜙2
𝜕𝜕𝑡𝑡

�   @ 𝑥𝑥 = −𝑥𝑥1,−𝑑𝑑 ≤ 𝑧𝑧 ≤ −𝑏𝑏 𝑎𝑎𝑎𝑎𝑑𝑑                         (3-9) 

𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜙𝜙2
𝜕𝜕𝑥𝑥

= −𝑅𝑅𝑒𝑒𝑏𝑏2 �
𝜕𝜕𝜙𝜙2
𝜕𝜕𝑡𝑡

−
𝜕𝜕𝜙𝜙3
𝜕𝜕𝑡𝑡

�   @𝑥𝑥 = 𝑥𝑥1,−𝑑𝑑 ≤ 𝑧𝑧 ≤ −𝑏𝑏.                              (3-10) 

Similar to 𝑏𝑏0 defined in Chapter 2, 𝑏𝑏1 and 𝑏𝑏2 are the dimensionless forms of the specific 

material constants for the porous walls 1 and 2, respectively. Again,  𝑅𝑅𝑒𝑒 = 𝜌𝜌ℎ∗�𝑔𝑔∗ℎ∗/𝜇𝜇.  

At the opening interfaces (−1 ≤ 𝑧𝑧 ≤ −𝑑𝑑  @ 𝑥𝑥 = −𝑥𝑥1 and 𝑥𝑥 = 𝑥𝑥1 ), the continuous 

velocities and velocity potentials are set to be satisfied.  Now, adding the conditions given 

in Eqns. (3-9) and (3-10), the overall matching conditions at the interfaces can be expressed 

as 

𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜙𝜙2
𝜕𝜕𝑥𝑥

  @𝑥𝑥 = −𝑥𝑥1,−1 ≤ 𝑧𝑧 ≤ −𝑏𝑏,                                     (3-11) 

𝜕𝜕𝜙𝜙2
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

  @𝑥𝑥 = 𝑥𝑥1 ,−1 ≤ 𝑧𝑧 ≤ −𝑏𝑏,                                         (3-12) 

𝜙𝜙1 = 𝜙𝜙2  @ 𝑥𝑥 = −𝑥𝑥1,−1 ≤ 𝑧𝑧 ≤ −𝑑𝑑, 𝑎𝑎𝑎𝑎𝑑𝑑                                      (3-13) 

𝜙𝜙2 = 𝜙𝜙3  @ 𝑥𝑥 = 𝑥𝑥1,−1 ≤ 𝑧𝑧 ≤ −𝑑𝑑.                                               (3-14) 

3.3 Analytical Solutions 

Considering the determination of the unknown coefficients  R1 and T1 for a particular 

k value, we temporarily remove the effect of the integral form by letting the integrand of a 

given k satisfying the boundary conditions. Here, the terms in integration for the velocity 

potentials in regions 1, 2, and 3 (Eqns. (3-1), (3-2) and (3-5)) are specified as 
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                    𝜙𝜙1
𝑝𝑝 = �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥�

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,                          (3-15) 

𝜙𝜙3
𝑝𝑝 = �(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥� + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,𝑎𝑎𝑎𝑎𝑑𝑑             (3-16) 

   𝜙𝜙2
𝑝𝑝 = ���𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ�𝑚𝑚𝑗𝑗𝑥𝑥� + 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ�𝑚𝑚𝑗𝑗𝑥𝑥��

∞

𝑗𝑗=1

𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� +𝐶𝐶𝑥𝑥+ 𝐷𝐷�𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,      

(3-17) 

where the terms with superscript "𝑝𝑝" reflect the equations for a particular k value. 

In order to relate the unknown coefficients 𝐴𝐴𝑗𝑗, (𝑗𝑗 = 1,2, … . ), 𝐵𝐵𝑗𝑗 , (𝑗𝑗 = 1,2, … . ), C, and 

D with 𝑅𝑅1 and 𝑇𝑇1, the matching conditions shown in Eqns. (3-13) and (3-14) combining 

with the porous boundary conditions shown as Eqns. (3-9) and (3-10) and the orthogonality 

property of eigenfunctions, 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑘𝑘𝑗𝑗(𝑧𝑧 + 1)�, we have 

� 𝜙𝜙1
𝑝𝑝 𝑑𝑑𝑧𝑧 +

−𝑑𝑑

−1
 � 𝜙𝜙�2𝑑𝑑𝑧𝑧 =

−𝑏𝑏

−𝑑𝑑
� 𝜙𝜙2

𝑝𝑝 𝑑𝑑𝑧𝑧 
−𝑏𝑏

−1
  @ 𝑥𝑥 = −𝑥𝑥1,                               (3-18) 

� 𝜙𝜙3
𝑝𝑝 𝑑𝑑𝑧𝑧 +

−𝑑𝑑

−1
 � 𝜙𝜙�2𝑑𝑑𝑧𝑧 =

−𝑏𝑏

−𝑑𝑑
� 𝜙𝜙2

𝑝𝑝𝑑𝑑𝑧𝑧 
−𝑏𝑏

−1
  @ 𝑥𝑥 = 𝑥𝑥1,                                (3-19) 

   � 𝜙𝜙1
𝑝𝑝  𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�𝑑𝑑𝑧𝑧 +

−𝑑𝑑

−1
 � 𝜙𝜙�2 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧

−𝑏𝑏

−𝑑𝑑

= � 𝜙𝜙2
𝑝𝑝 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�  𝑑𝑑𝑧𝑧 

−𝑏𝑏

−1
      @ 𝑥𝑥 = −𝑥𝑥1, 𝑗𝑗 = 1,2, … . 𝑎𝑎,𝑎𝑎𝑎𝑎𝑑𝑑 (3-20) 
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   � 𝜙𝜙3
𝑝𝑝  𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧 +

−𝑑𝑑

−1
 � 𝜙𝜙�2 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�𝑑𝑑𝑧𝑧

−𝑏𝑏

−𝑑𝑑

= � 𝜙𝜙2
𝑝𝑝 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�  𝑑𝑑𝑧𝑧 

−𝑏𝑏

−1
            @ 𝑥𝑥 = 𝑥𝑥1, 𝑗𝑗 = 1,2, … .𝑎𝑎,       (3-21) 

where  

𝜙𝜙�2 = 𝜙𝜙1
𝑝𝑝 + �

1
𝑅𝑅𝑒𝑒𝑏𝑏1

� �
−1
𝑠𝑠
�𝜙𝜙�1,                                   (3-22) 

𝜙𝜙�2 = 𝜙𝜙3
𝑝𝑝 − �

1
𝑅𝑅𝑒𝑒𝑏𝑏2

� �
−1
𝑠𝑠
� 𝜙𝜙3

𝑝𝑝,𝑎𝑎𝑎𝑎𝑑𝑑                                   (3-23) 

                𝜙𝜙�1 = �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥�

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡.                          (3-24) 

Substituting Eqns. (3-15), (3-16) and (3-17) into Eqns. (3-18) and (3-19) we can derive 

the unknown coefficients 𝐶𝐶, and 𝐷𝐷, in terms of 𝑅𝑅1 and 𝑇𝑇1 as  

    𝐶𝐶 =
1

−2𝑥𝑥1(1 − 𝑏𝑏) �
{(−𝑖𝑖𝑖𝑖)[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − 𝑇𝑇1𝐼𝐼3](1 − 𝑏𝑏) + 𝐶𝐶1(−𝑖𝑖𝑖𝑖)[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − 𝑇𝑇1𝐼𝐼3]}

+ {(−𝑖𝑖𝑖𝑖)[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2𝑇𝑇1𝐼𝐼3](𝑑𝑑 − 𝑏𝑏)

+ 𝐶𝐶2(−𝑖𝑖𝑖𝑖)[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2𝑇𝑇1𝐼𝐼3]}� 𝑎𝑎𝑎𝑎𝑑𝑑                                            (3-25) 

  𝐷𝐷 =
1

2(1 − 𝑏𝑏) �
{(−𝑖𝑖𝑖𝑖)[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 + 𝑇𝑇1𝐼𝐼3](1 − 𝑏𝑏) + 𝐶𝐶1(−𝑖𝑖𝑖𝑖)[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 + 𝑇𝑇1𝐼𝐼3]}

+ {(−𝑖𝑖𝑖𝑖)[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) − 𝐺𝐺2𝑇𝑇1𝐼𝐼3](𝑑𝑑 − 𝑏𝑏)

+ 𝐶𝐶2(−𝑖𝑖𝑖𝑖)[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) − 𝐺𝐺2𝑇𝑇1𝐼𝐼3]}�.                                                    (3-26) 
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where 

𝐺𝐺1 = �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� ,                                                    (3-27) 

𝐺𝐺2 = �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� ,                                                   (3-28) 

𝐶𝐶1 = 𝛼𝛼𝑘𝑘2 �−
𝑏𝑏3 − 3𝑏𝑏2 + 2𝑏𝑏

6
� ,                                                (3-29) 

𝐶𝐶2 = 𝛼𝛼𝑘𝑘2 �
(𝑑𝑑3 − 𝑏𝑏3) − 3(𝑑𝑑2 − 𝑏𝑏2) + 2(𝑑𝑑 − 𝑏𝑏)

6
� ,           (3-30) 

𝐼𝐼1 = 𝐼𝐼3 = 𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1),𝑎𝑎𝑎𝑎𝑑𝑑                                                     (3-31) 

𝐼𝐼2 = 𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1).                                                                 (3-32) 

For the unknown coefficients, 𝐴𝐴𝑗𝑗, (j = 1,2, … . )  and 𝐵𝐵𝑗𝑗 , (j = 1,2, … . ) , similarly, by 

substituting Eqs. (3-15), (3-16) and (3-17) into Eqns. (3-20) and (3-21), we have 

𝐴𝐴𝑗𝑗

=
{𝐶𝐶𝑎𝑎(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2 + 𝐺𝐺1 �(−𝑖𝑖𝑖𝑖) �1 + 1

3𝛼𝛼𝑘𝑘
2� 𝐶𝐶𝑏𝑏 + (−𝑖𝑖𝑖𝑖)(𝛼𝛼𝑘𝑘2)𝐶𝐶𝑐𝑐�}[𝐼𝐼2]

(1 − 𝑏𝑏) 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�

+
{𝐶𝐶𝑎𝑎(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2 + 𝐺𝐺1 �(−𝑖𝑖𝑖𝑖) �1 + 1

3𝛼𝛼𝑘𝑘
2� [−]𝐶𝐶𝑏𝑏 + (−𝑖𝑖𝑖𝑖)(𝛼𝛼𝑘𝑘2)[−]𝐶𝐶𝑐𝑐�}𝑅𝑅1[𝐼𝐼1]

(1 − 𝑏𝑏) 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�

+
{𝛼𝛼𝑘𝑘2(𝐶𝐶𝑎𝑎)(−𝑖𝑖𝑖𝑖)− 𝐺𝐺2 �(−𝑖𝑖𝑖𝑖) �1 + 1

3𝛼𝛼𝑘𝑘
2� (𝐶𝐶𝑏𝑏) + 𝛼𝛼𝑘𝑘2(−𝑖𝑖𝑖𝑖)(𝐶𝐶𝑐𝑐)�}𝑇𝑇1[𝐼𝐼3]

(1 − 𝑏𝑏) 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�
  𝑎𝑎𝑎𝑎𝑑𝑑  (3-33) 
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𝐵𝐵𝑗𝑗

=
{𝛼𝛼𝑘𝑘2(𝐶𝐶𝑎𝑎)(−𝑖𝑖𝑖𝑖) − 𝐺𝐺2 �(−𝑖𝑖𝑖𝑖) �1 + 1

3𝛼𝛼𝑘𝑘
2� (𝐶𝐶𝑏𝑏) + 𝛼𝛼𝑘𝑘2(−𝑖𝑖𝑖𝑖)(𝐶𝐶𝑐𝑐)� 𝑇𝑇1[𝐼𝐼3]

(1 − 𝑏𝑏)𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�

−
{𝐶𝐶𝑎𝑎(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2 + 𝐺𝐺1 �(−𝑖𝑖𝑖𝑖) �1 + 1

3𝛼𝛼𝑘𝑘
2� 𝐶𝐶𝑏𝑏 + (−𝑖𝑖𝑖𝑖)(𝛼𝛼𝑘𝑘2)𝐶𝐶𝑐𝑐�}𝐼𝐼2

(1 − 𝑏𝑏)𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�

−
{𝐶𝐶𝑎𝑎(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2 + 𝐺𝐺1 �(−𝑖𝑖𝑖𝑖) �1 + 1

3𝛼𝛼𝑘𝑘
2� (−𝐶𝐶𝑏𝑏) + (−𝑖𝑖𝑖𝑖)(𝛼𝛼𝑘𝑘2)(−𝐶𝐶𝑐𝑐)�}𝑅𝑅1𝐼𝐼1

(1 − 𝑏𝑏)𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�
,        (3-34) 

where  

𝐶𝐶𝑎𝑎 =
(1 − 𝑏𝑏)𝑠𝑠𝑐𝑐𝑠𝑠 (𝑗𝑗𝜋𝜋)

(𝑚𝑚𝑗𝑗)2
,                                                             (3-35) 

𝐶𝐶𝑏𝑏 = −
1
𝑚𝑚𝑗𝑗

𝑠𝑠𝑖𝑖𝑎𝑎 �𝑚𝑚𝑗𝑗(1 − 𝑑𝑑)� , 𝑎𝑎𝑎𝑎𝑑𝑑                                       (3-36) 

                 𝐶𝐶𝑐𝑐 =
�(𝑑𝑑2 − 2𝑑𝑑)𝑚𝑚𝑗𝑗

2 − 2� 𝑠𝑠𝑖𝑖𝑎𝑎 �𝑚𝑚𝑗𝑗(𝑑𝑑 − 1)� + (2𝑑𝑑 − 2)𝑚𝑚𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑑𝑑 − 1)�

2�𝑚𝑚𝑗𝑗�
3

+
(−2𝑏𝑏 + 2) 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑏𝑏 − 1)�

2�𝑚𝑚𝑗𝑗�
2 .                                                                 (3-37) 

Furthermore, the integrations of the remaining velocity related boundary conditions at 

the interfaces (Eqns. (39), (40), (43) and (44)) along the vertical flow domains in regions 

1 and 2 give 

�
𝜕𝜕𝜙𝜙1

𝑝𝑝

𝜕𝜕𝑥𝑥
 𝑑𝑑𝑧𝑧 = 

0

−1
�

𝜕𝜕𝜙𝜙2
𝑝𝑝

𝜕𝜕𝑥𝑥
 𝑑𝑑𝑧𝑧

−𝑏𝑏

−1
   @ 𝑥𝑥 = −𝑥𝑥1 𝑎𝑎𝑎𝑎𝑑𝑑                          (3-38) 
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�
𝜕𝜕𝜙𝜙3

𝑝𝑝

𝜕𝜕𝑥𝑥
 𝑑𝑑𝑧𝑧 = 

0

−1
�

𝜕𝜕𝜙𝜙2
𝑝𝑝

𝜕𝜕𝑥𝑥
 𝑑𝑑𝑧𝑧

−𝑏𝑏

−1
   @ 𝑥𝑥 = 𝑥𝑥1.                                  (3-39) 

By substituting Eqns. (3-15, 3-16 and 3-17) into Eqns. (3-38) and (3-39), we have  

𝑇𝑇1 =
𝐼𝐼2
𝐼𝐼3
−
𝑅𝑅1𝐼𝐼1
𝐼𝐼3

 𝑎𝑎𝑎𝑎𝑑𝑑                                                                     (3-40) 

𝑅𝑅1 =
2𝑥𝑥1(𝑖𝑖𝑘𝑘)𝐼𝐼2 + (𝐺𝐺1 + 𝐺𝐺2)𝐼𝐼2(𝐾𝐾2)

�(𝑖𝑖𝑘𝑘)𝐼𝐼12𝑥𝑥1 − [2𝐼𝐼1](𝐾𝐾1) + {(𝐺𝐺1 + 𝐺𝐺2)𝐼𝐼1(𝐾𝐾2)}�
,          (3-41) 

where  

𝐾𝐾1 = 1 − 𝑏𝑏 + 𝐶𝐶1 𝑎𝑎𝑎𝑎𝑑𝑑                                                                 (3-42) 

𝐾𝐾2 = 𝑑𝑑 − 𝑏𝑏 + 𝐶𝐶2                                                                        (3-43) 

After 𝑇𝑇1 and 𝑅𝑅1 are determined from Eqs. (3-40) and (3-41), Eqns. (3-1) and (3-2) can 

be applied to calculate analytically the velocity potentials in regions 1 and 3. Also, 

according to the obtained unknown coefficients  𝐴𝐴𝑗𝑗, (j = 1,2, … . ), 𝐵𝐵𝑗𝑗, (j = 1,2, … . ), C, and 

D from Eqns. (3-33)-(3-34) and (3-25)-(3-26), the velocity potentials in region 2 can be 

evaluated from Eqn. (3-5). Again, based on the linearized kinematic free-surface boundary 

condition, the free-surface elevations in regions including both region 1 and 3 are linearly 

proportional to the derivative of depth-averaged velocity potentials with respect to time as  

𝜂𝜂1 = −
𝜕𝜕𝜙𝜙1
𝜕𝜕𝑡𝑡

= −� {−(𝑖𝑖)(𝑘𝑘𝑠𝑠)[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)
∞

−∞
]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘 𝑎𝑎𝑎𝑎𝑑𝑑         (3-44) 

𝜂𝜂3 = −
𝜕𝜕𝜙𝜙2
𝜕𝜕𝑡𝑡

= −� {−(𝑖𝑖)(𝑘𝑘𝑠𝑠)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)
∞

−∞
]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘.                      (3-45) 
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It should be noted that the real part of the Eqns. (3-44) and (3-45) represent the physical 

values of the free-surface elevations in regions 1 and 3. 

The Bernoulli equation (Eqn. (2-31)) is applied again to determine the pressure field in 

the fluid domain. Once the pressure is calculated, the horizontal wave force on the partially 

submerged body system can be determined by integrating the pressure acting on the 

submerged left and right faces of the structure, including the porous walls, to have  

𝐹𝐹𝑥𝑥 = (� 𝑝𝑝1𝑑𝑑𝑧𝑧
0

−𝑑𝑑
+

1
2
𝜂𝜂1|𝜂𝜂1|) − (� 𝑝𝑝3𝑑𝑑𝑧𝑧

0

−𝑑𝑑
+

1
2
𝜂𝜂3|𝜂𝜂3|),                               (3-46) 

where 𝑝𝑝1 is the pressure acting on the structural surface at  𝑥𝑥 = −𝑥𝑥1 in region 1 whereas 

𝑝𝑝3  is the pressure acting on the structural surface at 𝑥𝑥 = 𝑥𝑥1  in region 3. The vertical 

uplifting force acting on the partially submerged body can be calculated by integrating the 

pressure acting on the bottom of the structure from the left to the right interfaces to have 

𝐹𝐹𝑧𝑧 = � 𝑝𝑝𝑑𝑑𝑥𝑥.
𝑥𝑥1

−𝑥𝑥1
                                                                  (3-47) 
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Chapter 4 Experimental Measurements 

 

In order to verify the derived analytical solutions for a solitary wave interactions with 

either a partially submerged porous wall (Chapter 2) or a partially submerged body system 

with attached dual porous walls (Chapter 3), laboratory tests were carried out to measure 

the free-surface elevations of the incident, reflected and transmitted waves for comparisons. 

The experiments were conducted in a 762-cm (25-ft) long, 30.48-cm (1-ft) wide and 91.44-

cm (3-ft) high glass-walled section of a 12.5-m (41-ft) long wave tank in the Hydraulic Lab 

of the University of Houston. Various setting parameters including the incident wave 

height, porous wall condition, and the draft of test structures were selected for the wavetank 

tests. 

4.1 Experimental Setup for a Solitary Wave Interacting with a Partially Submerged 

Porous Wall 

4.1.1 Wave Gauge Setup and Calibration 

A side-view of the schematic diagram of the wavetank setup is shown in Figure 4-1. 

By controlling the motions of a Tolomatic linear actuator, a solitary wave of a given wave 

height can be generated from a piston-type wavemaker at one end of the tank. At the other 

end of the tank, energy dissipaters were used to eliminate the reflections of the waves after 

encountering the end wall. Two resistance-type wave gauges were installed along the 

wavetank to measure the free-surface elevations of the incident, reflected and transmitted 

waves. Gauge 1 was placed at a distance 76.2 cm upstream of the partially submerged 
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porous wall to measure the incident and reflected waves. Meanwhile, gauge 2 is set at a 

distance 63.5 cm downstream of the porous wall to capture the transmitted waves.  

 

Figure 4-1: Side view of the schematic of the experimental setup in the study of solitary 
wave interacting with a partially submerged porous wall. 

Before recording the wave elevations, calibration of wave gauges was performed to 

ensure the accuracy of the measurements. The linear regressions were applied to 

demonstrate the linear relationships between the water depths and the voltages for both 

gauges and the results are shown in Figure 4-2. All the wave elevations measured from the 

gauges were collected and recorded by the LabVIEW data acquisition system. 
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Figure 4-2: Calibrations of gauge 1 and gauge 2. 

4.1.2 Parameters set for the experiments 

Two different values of the depth of water in the channel, ℎ∗, as 3 in (7.62 cm) and 4.5 

in (11.43 cm) were set for the experiments. By altering the submerged depth of the fixed 

porous wall, 𝑑𝑑∗, the effect of the draft of the porous wall as a ratio to the depth of water, 

𝑑𝑑∗/ℎ∗ , on the reflected and transmitted waves can be investigated. In this study, two 

predetermined values of 𝑑𝑑∗/ℎ∗, i.e. 𝑑𝑑∗/ℎ∗ = 0.5 and 𝑑𝑑∗/ℎ∗ = 1, are utilized. It should be 

noticed that the dimensionless form of 𝑑𝑑∗, d, represents the same value as 𝑑𝑑∗/ℎ∗. Various 

solitary waves with predetermined incident wave heights are generated to test the effect of 

the wave height on the reflected and transmitted waves. The incident wave heights, 𝛼𝛼 =

𝐻𝐻 = 𝐻𝐻∗/ℎ∗, which describes the original condition of the incident wave, vary from about 

0.1 to 0.4 in this study. 
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For the porous wall, thin porous plates are utilized as the substitutes. Each porous plate 

was made of 11 gauge galvanized steel and the pore pattern was the standard round 60 

degree staggered pattern. The properties of the four tested porous plates with various 

porosities, pore diameters, and calibrated 𝑏𝑏0∗ values as defined in Section 2.2 are shown in 

Table 4-1 (Chu, 2014). 

Table 4-1: Properties of the porous plates. 

Porosity (%) Pore Diameter (in) 𝑏𝑏0∗(ft) 

16.08 1/4 2.5 x 10-6 

22.67 1/4 4.0 x 10-6 

16.08 1/8 2.0 x 10-6 

22.67 1/8 2.5 x 10-6 

 

After knowing the water depth, we can calculate the corresponding constant value of 𝑅𝑅𝑒𝑒 

(𝑅𝑅𝑒𝑒 = 𝜌𝜌ℎ∗�𝑔𝑔∗ℎ∗/𝜇𝜇 ) for describing the flow condition passing through the porous wall. 

By adding the effect of 𝑏𝑏0 (𝑏𝑏0 = 𝑏𝑏0∗/ℎ∗), the value of 𝑅𝑅𝑒𝑒𝑏𝑏0 as an input parameter of the 

experimental setup can be obtained. The  𝑅𝑅𝑒𝑒𝑏𝑏0 values are summarized in Table 4-2. Table 

4-3 shows the setups and properties for three selected cases for the comparisons between 

the analytically obtained and experimentally recorded wave elevations in chapter 5. 
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Table 4-2: Values of Reb0. 

h (in) 𝑅𝑅𝑒𝑒 𝑏𝑏0 𝑅𝑅𝑒𝑒𝑏𝑏0 

3 65882 8.00E-06 0.527 

3 65882 1.00E-05 0.659 

3 65882 1.60E-05 1.054 

4.5 121033 5.33E-06 0.646 

4.5 121033 6.67E-06 0.807 

4.5 121033 1.07E-05 1.291 

 

Table 4-3: The setups and properties for each cases of experiments. 

Case h (in) Re b0 Reb0 d 
1 3 65882 1.00E-05 0.659 0.5 
2 3 65882 1.00E-05 0.659 1 
3 3 65882 1.60E-05 1.054 0.5 

 

4.2 Experimental Setup for a Solitary Wave Interacting with a 2-D Finite-Length 

Partially Submerged Body with Attached Dual Porous Walls 

4.2.1 Setup of Wavetank and Wave Gauge Calibration 

To enhance the verification of the analytical solutions for a solitary wave interacting 

with a 2-D finite-length partially submerged body with attached two porous walls, again, 

laboratory tests were carried out at the 12.5-m (41-ft) long wave tank as described above. 

The setup of the wave tank for the tests of the second topic is illustrated in Figure 4-3.  A 

plastic solid rectangular box with two porous walls attached separately on its front and 

back sides was mounted at a partially submerged position in the wavetank as the defined 
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partially submerged body system. The first gauge (Gauge 1) was placed at a distance (91.44 

cm) upstream of the centerline of the partially submerged body to measure the incident and 

reflected waves. Meanwhile, the second gauge (Gauge 2) was set at a distance (134.62 cm) 

downstream of the partially submerged body to capture the transmitted waves. The wave 

gauges were calibrated again to confirm the linear variations between the voltages and the 

recorded water levels.  

 

Figure 4-3: Side view of the schematic of the experimental setup in the study of solitary 
wave interacting with a 2-D finite-length partially submerged body with 
attached dual porous walls. 

4.2.2 Parameters 

The still water surface is set as a constant value of 3 inches. A series of measurements 

were conducted based on two predetermined values of d (or 𝑑𝑑∗/ℎ∗), i.e. d=0 and d=1. 

When d equals to 0, there will be no porous wall effect. By modifying the draft of the body 

under the still water level, 𝑏𝑏∗, the effect of the ratio of the draft of structure to the water 
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depth on the reflection and transmission of a solitary wave interaction with the partially 

submerged body can be investigated. Three different values of b, which is the 

dimensionless form of the draft of the partially submerged body, 0.3, 0.4 and 0.6, were set 

separately for the experiments. Also, by altering the length of the attached porous walls, 

the effect of the dual porous walls on reducing the transmitted waves can be studied. Two 

dimensionless values of L (𝐿𝐿 = 𝐿𝐿∗/ℎ∗), i.e. L=4 and L=6, were selected to test the structural 

length effect. Again, as described in Section 4.1.2, the properties of the porous plates 

selected in the experiments were predetermined by Chu (2014). The porous properties in 

terms of either 𝑏𝑏1∗ or 𝑏𝑏2∗ are summarized in Table 4-4. With various porous plates applied, 

in all, 6 experimental settings as shown in Table 4-5 for their corresponding parameters in 

dimensionless forms were considered to use for comparisons of free-surface elevations 

obtained from experiments and the analytical results. For each experimental setting, 

solitary waves with incident wave heights ranging from about 0.2 to 0.4 were generated for 

the experiments and data collections.  

Table 4-4: The material constant for each porous wall. 

Porosity (%) Pore Diameter (in) 𝑏𝑏1∗ or 𝑏𝑏2∗  (ft) 

40.31 1/8 6.00E-06 

29.31 1/4 6.20E-06 

16.08 1/8 2.00E-06 

16.08 1/4 2.50E-06 
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Table 4-5: The setups and properties for each set of experiments. 

Set # Porous wall 1 Porous wall 2 b1 b2 h d b L 

1 N/A N/A N/A N/A 3 0 0.6 4 

2 N/A N/A N/A N/A 3 0 0.6 6 

3 N/A N/A N/A N/A 3 0 0.3 6 

4 1/4in,29.61% 1/8in,40.31% 2.48E-05 2.40E-05 3 1 0.4 6 

5 1/4in,16.08% 1/8in,40.31% 1.00E-05 2.40E-05 3 1 0.4 6 

6 1/8in,16.08% 1/8in,40.31% 8.00E-06 2.40E-05 3 1 0.4 6 
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Chapter 5 Results for the Study of the Hydrodynamic Interactions 

between a Solitary Wave and a Partially Submerged Porous Wall 

 

In this chapter, the results for the study of the hydrodynamic interactions between a 

solitary wave and a partially submerged porous wall are presented. By applying the 

analytical solutions in Chapter 2, we can acquire the analytical results of the time-variations 

of the free-surface elevations of the incident, reflected and transmitted waves during the 

process of wave-structure interactions. The comparisons of the predicted free-surface 

elevations obtaining from the analytical solutions with the experimental data are conducted. 

By utilizing the analytical solutions, the effects of the physical variables, such as wave 

height, submerged structural depth of the wall, and 𝑅𝑅e𝑏𝑏0  (all the cases or plots in this 

chapter use the same Re value of 65882), on the reflection and transmission of an incident 

wave are also investigated. Horizontal forces acting on the partially submerged wall 

surfaces under various wave and porous wall conditions are examined. All the results in 

this chapter are dimensionless. 

5.1 Comparisons between the Analytical Results and Experimental Data  

To verify the derived analytical solutions for the interactions of a solitary wave with a 

partially submerged porous wall, the free-surface elevations obtained by applying Eqns. 

(2-29) and (2-30) are compared with the experimental measurements that were recorded 

by gauge 1 (incident wave and reflected waves) and gauge 2 (transmitted waves) in each 

experiment. In this validation study, cases with various values of the incident wave height, 
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𝐻𝐻, the submerged structural depth, d, and the material constant of the porous wall, 𝑏𝑏0, are 

included in the comparison plots.  

For the case with ℎ∗ = 3 inches, d = 0.5 (submerged depth=50% of the water depth), 

and 𝑏𝑏0 = 10−5 (case 1), Figure 5-1, Figure 5-2, and Figure 5-3 present the comparisons 

between the analytically obtained and experimentally recorded wave elevations 

considering the incident wave height of 0.09, 0.21, and 0.33, respectively. The upper plot 

of each of these three figures (Figure 5-1(a)-Figure 5-3(a)) shows the comparisons of 

incident and reflected waves from both the analytical and experimental results while the 

lower plots (Figure 5-1(b)-Figure 5-3(b)) reveal the comparisons of transmitted waves. All 

the cases in this chapter use the same Re value of 65882. As can be seen from Figure 5-1 

to Figure 5-3, the incident and transmitted waves predicted by the present analytical 

solutions in magnitudes and phases match well with the experimental data, and for the 

reflected waves, in general, the variation trend including the phase from the analytical 

solutions agree reasonably well with the measurements, however, with slightly over-

predicted wave peaks. As expected, since the analytical solutions neglect the energy 

dissipations, the experimentally measured reflected and transmitted waves, especially the 

reflected waves, due to their run-up, run down, and backward propagation, are shown to 

have smaller wave amplitudes than those from the analytical solutions. Also, by comparing 

Figure 5-1 through Figure 5-3, the errors of predicted amplitudes of reflected waves 

increase when the incident wave height increases due to partly the increased energy 

dissipation and partly the nonlinear effect of the solitary wave as the linearized 

approximation of the kinematic free-surface boundary condition is applied for the 

determination of the free surface elevations. For instance, Figure 5-2 presents the case of 
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𝐻𝐻 = 0.21 and the difference in the predication of reflected wave amplitude is slightly 

smaller than the difference shown in Figure 5-3, which presents the case of 𝐻𝐻 = 0.33. Also, 

the linearized approximation approach misses the predictions of the oscillatory tails 

observed in the recorded reflected waves (Figure 5-2 and Figure 5-3).  

 

Figure 5-1: Comparisons of free-surface elevation obtained from analytical solutions and 
experimental measurements for 𝐻𝐻 = 0.09, 𝑑𝑑 = 0.5 and b0 = 10-5: (a) incident 
and reflected wave; (b) transmitted wave. 

(a) x= -10 

(b) x= 25/3 

Incident Wave 
Reflected Wave 

Transmitted Wave 
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Figure 5-2: Comparisons of free-surface elevation obtained from analytical solutions and 
experimental measurements for 𝐻𝐻 = 0.21, 𝑑𝑑 = 0.5 and b0 = 10-5: (a) incident 
and reflected wave; (b) transmitted wave. 

 

Figure 5-3: Comparisons of free-surface elevation obtained from analytical solutions and 
experimental measurements for 𝐻𝐻 = 0.33, 𝑑𝑑 = 0.5 and b0 = 10-5: (a) incident 
and reflected wave; (b) transmitted wave. 

(a) x= -10 

(b) x= 25/3 

(a) x= -10 

(b) x= 25/3 
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In terms of validations of the results for cases using different depths of submergence of 

the porous wall and its corresponding porous conditions, Figure 5-4 shows the comparisons 

of measurements from the gauge1 and gauge 2 with analytical solutions for the case (case 

2) of a 𝐻𝐻 = 0.09  solitary wave interacting with a porous wall, which is completely 

submerged (d=1) with a material constant of 𝑏𝑏0 being equal to 10−5. When comparing to 

the results presented in Figure 5-1 for the case of d=0.5 and 𝐻𝐻 = 0.09, a greater reflected 

wave height for the case of d=1 (Figure 5-4) is noticed, which reflects that an increase in 

the submerged depth of the wall results in an increase in the reflected wave height. 

Considering the effect of porous wall property, Figure 5-5 illustrates the comparison results 

for the case (case 3) of a solitary wave with incident wave height 𝐻𝐻 = 0.33 interacting 

with a partially submerged porous wall (d=0.5) having material constant 𝑏𝑏0  being 

increased to 1.6 × 10−5. Comparing the results shown in Figure 5-3 and Figure 5-5, it 

clearly indicates that by increasing 𝑏𝑏0  the reflected wave height decreases slightly. As 

physically suggested when the opening of the porous wall increase (𝑏𝑏0 increases), the 

reflected wave height decreases and accordingly the transmitted wave height increases. 

Considering the comparisons shown in Figure 5-1 through Figure 5-5, the analytical 

solutions are demonstrated to be able to predict the transmitted waves well and tend to 

overestimate the reflected wave height for the study of interactions between a solitary wave 

and a partially submerged porous wall. 
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Figure 5-4: Comparisons of free-surface elevation obtained from analytical solutions and 
experimental measurements for 𝐻𝐻 = 0.09, 𝑑𝑑 = 1 and b0 = 10-5: (a) incident 
and reflected wave; (b) transmitted wave. 

 

Figure 5-5: Comparisons of free-surface elevation obtained from analytical solutions and 
experimental measurements for 𝐻𝐻 = 0.33 , 𝑑𝑑 = 0.5 and b0 = 1.6×10-5: (a) 
incident and reflected wave; (b) transmitted wave. 

(a) x=-10 

(b) x=25/3 

(a) x=-10 

(b) x=25/3 
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To further the verification of the analytical results for other incident wave height 

conditions, Figure 5-6 plots the comparisons of analytical results of the overall 

transmission coefficient (transmitted wave height/incident wave height) versus incident 

wave height with experiment data for the cases of d=0.5 and d=1 with  𝑏𝑏0 =  10−5. In 

general, the analytical solutions and the experimental data agree reasonably well with each 

other especially at the setting of d=0.5. When d=1, the analytical solutions of the overall 

transmission coefficients are slightly higher than the experimental data. Again, this may be 

caused by the increased energy dissipation during the experiments which is not included in 

the analytical formulations.  

 

Figure 5-6: Comparisons of analytical results of the overall transmission coefficient versus 
incident wave height with experiment data for the cases of d=0.5 and d=1 with 
b0 = 10-5. 
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5.2 Parametric Study of the Effects of the Physical Variables on the Reflection and 

Transmission of a Solitary Wave Interacting with a Partially Submerged Porous Wall 

Before carrying out the procedures of examining the effects of various physical 

variables on the outcomes of the reflection and transmission of a solitary wave interacting 

with a partially submerged porous wall, the variation behaviors of the reflection and 

transmission related coefficients 𝑅𝑅0 and 𝑇𝑇0 are discussed first. As described in Eqns. (2-27) 

and (2-18), the derived 𝑅𝑅0  and 𝑇𝑇0  are functions of the following dimensionless parameters: 

the submerged structural depth (draft) of the porous wall, d, the incident wave height, 𝐻𝐻, 

the material constant of the porous plate, 𝑏𝑏0, and the wave number like parameter, k. Here, 

every specific value of k has its associated 𝑅𝑅0 and 𝑇𝑇0 values. Even though the physical 

variables for describing the interactions between a solitary wave and a partially submerged 

porous wall require the integration of the derived solutions through wave number k from 

𝑘𝑘 = −∞ to 𝑘𝑘 = ∞, the variations of the 𝑅𝑅0  (or 𝑇𝑇0) versus the draft of porous wall, d , or 

wave number k for a constant incident wave height would be interesting to examine for 

their effects on the eventual reflection (or transmission) coefficient. Also, through the study 

of the variations of the 𝑅𝑅0 and 𝑇𝑇0 versus d or k with and without porous effect, we can 

estimate the influences of the porous properties on the reflection and transmission of an 

incident solitary wave after interacting with a partially submerged porous wall. 

For a case of a solitary wave with 𝐻𝐻 = 0.21 interacting with a solid wall, it can be 

considered as a special case of the present solutions by setting the material constant of the 

porous plate 𝑏𝑏0 to be equal to 0. Figure 5-7(a) and Figure 5-8(a) respectively illustrate the 

variations of 𝑅𝑅0 versus d for different k values and the variations of 𝑅𝑅0 versus k for 

different d values when 𝑏𝑏0 = 0. The correspondingly variations for 𝑇𝑇0 are shown in Figure 
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5-7(b) and Figure 5-8(b). The results indicate that when the wave number component k 

increases, the reflection related coefficient 𝑅𝑅0 increases (or 𝑇𝑇0 decreases). Physically, it 

suggests that for a given submerged wall depth the effect of 𝑅𝑅0 on wave reflection increases 

(or 𝑇𝑇0 on wave transmission decreases) when the value of k increases. Meanwhile, for a 

fixed wave number component k, as expected, when the submerged depth of the solid wall 

increases, the coefficient 𝑅𝑅0 increases (or 𝑇𝑇0 decreases).  

It is also interesting to note for the case of larger k value, the increasing rate of 

coefficient 𝑅𝑅0 is more significant in the range of small d when compare the case of smaller 

k value where the increasing rate is more significant when d is large. Reversely, the 

decreasing rate of coefficient 𝑇𝑇0 for larger k values is more significant when the values of 

d are small. However, for the cases with smaller k value the decreasing rate of 𝑇𝑇0 is more 

significant when d is large. For instance, for a case with k = 0.5 in Figure 5-8(b), the change 

of 𝑇𝑇0 between cases of d=0.8 and d=1 is greater than that between cases of d=0.2 and d=0.4, 

however, for a case with k = 4, the smaller change of 𝑇𝑇0 between conditions of d=0.8 and 

d=1 than that of d=0.2 and d=0.4 can be observed. Physically speaking, for a solid wall 

case, the initial increase of the draft of the wall tends to have more significant effect on 

decreasing the components of transmitted waves with higher wave number than the later 

increase of the submerged depth when it is already large. For the components with smaller 

wave number (like low frequency wave components), it is opposite, the change at the cases 

with larger draft has a stronger effect on decreasing those transmitted wave components. 

In terms of this limiting case of a partially submerged solid wall, the results in Figure 5-8 

agree with the analytical solutions of a special case presented by Jaf and Wang (2015). 
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Figure 5-7: Variations of reflection and transmission related coefficients versus d for 
various k for a solitary wave 𝐻𝐻 = 0.21 interacts with a solid wall: (a) R0; (b) 
T0. 

(a) 

(b) 
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Figure 5-8: Variations of reflection and transmission related coefficients versus k for 
various d for a solitary wave 𝐻𝐻 = 0.21 interacts with a solid wall: (a) R0; (b) 
T0. 

(a) 

(b) 
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In addition to the solid wall cases discussed above, the varying trend of 𝑇𝑇0  (or 𝑅𝑅0) for 

a solitary wave encountering a porous wall is also investigated. Let the incident wave 

height and material constant of porous wall be set as 𝐻𝐻 = 0.21 and 𝑏𝑏0 = 10−5, respectively. 

Here, only the results of 𝑇𝑇0 are presented. The variations of 𝑇𝑇0 versus d for different k 

values and the variations of 𝑇𝑇0 versus k for different d values are illustrated in Figure 5-9 

and Figure 5-10, respectively. Since a porous structure is considered, the minimum 𝑇𝑇0 for 

all k values, different from a solid wall case, reaches a constant of 0.57 when d=1. Certainly, 

the minimum 𝑇𝑇0 depends on the material constant of the porous wall, 𝑏𝑏0. Similar to the 

solid wall cases, for a constant k, an increase in submerged structural depth, d, the 

transmission related coefficient 𝑇𝑇0 decreases. And for a constant d, when the wave number 

k increases, the value of 𝑇𝑇0 decreases. However, for a porous wall case, with any given k’s, 

the effect of pore opening makes the changes of 𝑇𝑇0 to be more significant in the ranges of 

smaller d than those when d becomes large. It should be noted, for a given k, there is a 

corresponding transmission (or reflection) related coefficient 𝑇𝑇0  (or 𝑅𝑅0  ) and for the 

determination of the overall transmission (or reflection) coefficient, which is the ratio of 

the transmitted wave height (or reflected wave height) to the incident wave height, the 

integration of wave elevation solutions versus k from 𝑘𝑘 = −∞ to 𝑘𝑘 = ∞ is required. 

 



58 
 
 

 

Figure 5-9: Variations of transmission coefficients versus d for various k for a solitary wave 
𝐻𝐻 = 0.21 interacts with a porous wall with b0 = 10-5. 

 

Figure 5-10: Variations of transmission coefficients versus k for various d for a solitary 
wave 𝐻𝐻 = 0.21 interacts with a porous wall with b0 = 10-5. 
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5.2.1 Effect of Incident Wave Height 

As noticed, the incident wave height or wave amplitude is one of the important 

parameters in affecting the reflection and transmission of a solitary wave interacting with 

a partially submerged porous wall. Results of examining the effect of incident wave height 

on various physical variables including the wave run-up on the porous wall, time-variation 

of the free-surface elevation in regions 1 and 3, and the overall transmission coefficients 

are presented in this section. 

Figure 5-11 shows the maximum wave elevations (run-ups) of the incident wave on a 

solid wall of different submerged depths versus the incident wave height. The maximum 

crest is found to be twice of the incident wave height when the wave is subject to a complete 

reflection as d=1, which is slightly underestimated when comparing to those predicted by 

fully nonlinear approaches. It is clearly indicated that the wave run-up on the wall increases 

when the wave height of the incident wave increases. Also, as the submerged depth 

increases, the wave run-ups on the wall increase. It should be noticed that in Figure 5-11, 

the slope of the “d=1” line (as the increasing rate of the run-up) is greater than the slope of 

the “d=0.75” line. Physically speaking, for a solid wall case, the effect of incident wave 

height on the wave run-up increases when the submerged depth of the wall becomes larger. 
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Figure 5-11: Wave run-up vs. incident wave height for solid walls with various d. 

Now extending to porous wall cases, Figure 5-12 presents the variations of wave run-

ups versus the incident wave height for various submerged depths of a porous wall 

with 𝑏𝑏0 =  10−5. Again, as expected, when the incident wave height or the submerged 

depth increases, the wave run-up on the wall increases. However, due to the porous effect, 

the values of wave run-ups for the case of d=1 are less than those for the cases of solid 

walls. Certainly, the level of decrease of the wave run-ups for a porous wall case depends 

on the combined wave and porous wall condition defined by the dimensionless parameter 

of 𝑅𝑅𝑒𝑒𝑏𝑏0. For both solid wall and porous wall cases, the linearly increased trend of the wave 

run-up as the incident wave height increases is observed. 
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Figure 5-12: Wave run-up vs. incident wave height for porous wall with b0 = 10-5 with 
various d. 

Figure 5-13 and Figure 5-14 display, under cases of various incident wave heights, the 

time variations of the free-surface elevations in regions 1 and 3 for a solid wall with two 

different submerged wall depths, i.e. d=1 and d=0.5, respectively. A complete reflection 

case can be seen in Figure 5-13 where the transmitted wave elevation equals to 0. Figure 

5-14 shows the case of solitary waves interacting with a partially submerged solid wall 

(d=0.5). Both reflected and transmitted wave heights increase when the incident wave 

height increases. When the wall is in a partially submerged position, as expected, waves 

are transmitted to the region behind the wall and the reflected wave height is found to be 

less than that when the wall is extended to the bottom. It is interesting to note a wall with 

50% opening (d=0.5) can allow a large portion (more than 50%) of the incident long 

solitary wave to be transmitted towards downstream while allows only a small wave-height 

wave to be reflected back.  
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Figure 5-13: Time variations of derived analytical solutions of free-surface elevation for 
solitary waves with various H interact with a solid wall (d=1): (a) incident 
and reflected wave; (b) transmitted wave. 

 

Figure 5-14: Time variations of derived analytical solutions of free-surface elevation for 
solitary waves with various H interact with a partially submerged solid wall 
(d=0.5): (a) incident and reflected wave; (b) transmitted wave. 

(b) Transmitted Wave 
(x=25/3) 

(a) Incident and 
reflected wave 
(x=-10) 

 

(a)  

(b)  
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Figure 5-15 and Figure 5-16 show the effect of incident wave height on the time 

variations of the free-surface elevations in regions 1 and 3 for a porous wall case of  𝑏𝑏0 =

 10−5 with two wall heights which are d=1 and d=0.5 respectively. Similar to the solid 

wall cases by setting d=1 or d=0.5, however, considering a porous wall of  𝑏𝑏0 =  10−5, the 

time-variations of the free-surface elevations in regions 1 and 3 shown in Figure 5-15 and 

Figure 5-16, respectively suggest that when the incident wave height or the submerged 

structural depth increases, the reflected wave height increases and the transmitted wave 

height decreases. Comparing Figure 5-15 and Figure 5-16 with Figure 5-13 and Figure 

5-14, generally the values of reflected wave profiles for a case with a porous wall are 

smaller than those using a solid wall. However, from Figure 5-14 and Figure 5-16, we 

notice that the values of transmitted wave profiles are larger when a partially submerged 

porous wall is considered. Again, the overall reflection coefficient varies according to the 

value of 𝑅𝑅𝑒𝑒𝑏𝑏0.  
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Figure 5-15: Time variations of derived analytical solutions of free-surface elevation for 
solitary waves with various H interact with a porous wall (d=1 and b0 = 10-

5): (a) incident and reflected wave; (b) transmitted wave. 

 

Figure 5-16: Time variations of derived analytical solutions of free-surface elevation for 
solitary waves with various H interact with a partially submerged porous 
wall (d=0.5 and b0 = 10-5): (a) incident and reflected wave; (b) transmitted 
wave. 

(a) Incident and 
reflected wave (x=-10) 

(b) Transmitted Wave 
(x=25/3) 

(a)  

(b)  
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In order to further the investigation of the effect of the incident wave height on the 

levels of reflection and transmission of a solitary wave interacting with a partially 

submerged porous wall, the results of overall transmission coefficients (transmitted wave 

height/incident wave height) are presented. For a solid wall case, Figure 5-17 shows the 

variations of overall transmission coefficient versus incident wave height for various 

submerged depth. For a submerged porous wall with  𝑏𝑏0 =  10−5 , the transmission 

coefficients versus incident wave height are presented in Figure 5-18. It is can be concluded 

that, for either a solid or a porous wall, the observed downstream transmitted wave height 

when referenced to the incident wave height for any given incident wave condition is 

similar. This conclusion can also applied for any specified submergence of a porous or 

solid wall. Clearly, with an increase in submergence of either a porous or solid wall, the 

overall transmission coefficient decrease. Comparing results shown in Figure 5-18 and 

Figure 5-17, for cases with smaller submerged depths (e.g., d=0.1 or d=0.3 and d=0.5), the 

overall transmission coefficients for porous walls with  𝑏𝑏0 =  10−5 are slightly less than 

those for solid wall cases. However, when the submerged depth of porous wall increases, 

due to the additional pore areas introduced on porous walls, the transmission coefficients 

become much larger when compared to those under the solid wall conditions.   
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Figure 5-17: The overall transmission coefficient vs. incident wave height for various d for 
a solid wall case. 

 

Figure 5-18: The overall transmission coefficient vs. incident wave height for various d for 
a porous wall case with b0 = 10-5. 
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5.2.2 Effect of the Submerged Structural Depth 

The submerged structural depth d is a very critical parameter in the study of the 

reflection and transmission of a solitary wave interacting with a partially submerged porous 

wall. Similar physical variables including the wave run-ups on the porous wall, time 

variations of the free-surface elevations in regions 1 and 3, and the overall transmission 

coefficients are selected for the analyses. 

A limiting case of  𝑏𝑏0 = 0 (solid wall) is examined first. Figure 5-19 displays the 

variations of wave run-ups versus the submerged depth for various incident wave heights 

encountering a solid wall. It can be found that as the submerged depth increases the wave 

run-up increases, and clearly the relationship between the wave run-ups and the submerged 

depth is non-linear. Accordingly, when the submerged depth is small its effect on wave 

run-up is not as significant as that when the submerged depth is large. It should also be 

noticed that as the incident wave height become larger, the non-linear increasing trend of 

the wave run-up becomes more obvious. For the case of a porous wall with  𝑏𝑏0 =  10−5, 

the results of wave run-up versus the submerged depth with various inputs of incident wave 

heights are illustrated in Figure 5-20. Similar conclusions as for the case of a sold wall can 

be made that the wave run-up increases with an increase in submerged depth. However, in 

terms of the variation trend of the wave run-up by increasing the submerged depth, different 

from the solid wall case, for a porous wall with  𝑏𝑏0 =  10−5, the wave run-up shows a 

gradual increase and gives a relatively linear response with the submerged depth, especially 

for cases with 𝐻𝐻 ≤ 0.3. Comparing results shown in Figure 5-19 and Figure 5-20, clearly, 
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we can notice that by extending a porous wall to near the sea bottom, the wave run-up can 

be substantially reduced.   

 

Figure 5-19: Wave run-up vs. submerged structural depth of solid walls with various H. 
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Figure 5-20: Wave run-up vs. submerged structural depth of porous wall with various H. 

Figure 5-21 shows the time-variations of the free-surface elevations in regions 1 and 

region 3 for various submerged depths under the condition of a giving wave height 𝐻𝐻 = 0.3 

when the limiting case of a solid wall case is considered. Again, the complete reflection is 

observed when the solid wall is extended to the sea bottom (d=1). In general, when the 

submerged depth increases, the level of reflected waves increases whereas the transmitted 

waves decrease. As mentioned in previous section, it can also be noticed from Figure 5-21 

that when the submerged depth become larger, its influence on the reflected (or transmitted) 

waves becomes more significant. It is also an indicator of the nonlinear varying trends of 

reflected and transmitted wave heights under the changes of submerged depth of a partially 

submerged solid wall. 
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Figure 5-21: Time variations of derived analytical solutions of free-surface elevation for 
solitary waves with a constant H of 0.3 interact with solid walls with various 
d: (a) incident and reflected wave; (b) transmitted wave. 

For a partially submerged porous wall case, Figure 5-22 illustrates the time-variations 

of the free-surface elevations in regions 1 and region 3 for  𝑏𝑏0 =  10−5 , 𝐻𝐻  = 0.3, and 

various submerged depths. The reflected wave height increases and the transmitted wave 

height decreases as the submerged depth increases. It can be seen when a completely 

submerged porous wall is used, both the reflected and transmitted wave heights can be 

effectively reduced.  

(a) Incident and 
reflected wave 
(x=-10) 

 

H=0.3 

(b) Transmitted Wave 
(x=25/3) 
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Figure 5-22: Time variations of derived analytical solutions of free-surface elevation for 
solitary waves with a constant H of 0.3 interact with porous walls with various 
d (b0 = 10-5): (a) incident and reflected wave; (b) transmitted wave. 

In terms of the overall reflection coefficient (𝐶𝐶𝑅𝑅 = reflected wave height/incident wave 

height) or transmission coefficient (𝐶𝐶𝑇𝑇 = transmitted wave height/incident wave height) 

under the influence of submerged depth of a solid wall (𝑏𝑏0 = 0), Figure 5-23 presents the 

variations of  𝐶𝐶𝑇𝑇 versus the submerged depth for cases with 𝐻𝐻 = 0.3 and various incident 

wave heights. It is clearly shown that the submerged depth d is a dominant parameter on 

affecting the variations of the overall transmission coefficient while the incident wave 

height has an insignificant effect on the overall transmission coefficient. As the submerged 

depth increases, the overall transmission coefficient decreases, and the decreasing rate of 

𝐶𝐶𝑇𝑇 increases when the submerged depth becomes larger. 

(a)  

(b)  
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Figure 5-23: The overall transmission coefficient vs. submerged structural depth for 
various H for a solid wall case. 

For a 𝐻𝐻 = 0.3 incident solitary wave, Figure 5-24 presents the overall transmission 

coefficient, 𝐶𝐶𝑇𝑇 , versus the submerged depth for a porous wall having  𝑏𝑏0 =  10−5. It is also 

concluded that the overall transmission coefficient decreases when the submerged depth of 

the porous wall increases. Different from the results shown in solid wall cases, a nearly 

linear decreasing trend of 𝐶𝐶𝑇𝑇 when increasing the submerged depth can be observed.  The 

other important controlling factor, porous property of a porous wall, needs to be examined 

to further the understanding of the varying trend of the overall transmission (or reflection) 

coefficient.  
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Figure 5-24: The overall transmission coefficient vs. submerged structural depth for 
various H for a porous wall case with b0 = 10-5. 
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the free-surface elevations in regions 1 and 3, and the overall transmission coefficients are 

discussed. 

First, the variations of wave run-up versus 𝑅𝑅𝑒𝑒𝑏𝑏0  for various incident wave heights 

under the setting of a completely submerged porous wall (d=1) are presented in Figure 

5-25. It is found that for a completely submerged wall, the wave run-up reflects a nonlinear 

decreasing trend when 𝑅𝑅𝑒𝑒𝑏𝑏0  increases. For smaller values of 𝑅𝑅𝑒𝑒𝑏𝑏0 , more apparent 

variations of wave run-ups are observed , however, when 𝑅𝑅𝑒𝑒𝑏𝑏0 becomes larger, its effect 

on wave run-up becomes insignificant. Also, as the incident wave height increases, stronger 

nonlinear decreasing trends of the wave run-up as 𝑅𝑅𝑒𝑒𝑏𝑏0 increases can be noticed.  

 

Figure 5-25: Wave run-up vs. the Reb0 with various H for a complete submerged wall (d=1). 
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Figure 5-26 shows the wave run-ups versus 𝑅𝑅𝑒𝑒𝑏𝑏0 for various incident wave heights 

when a porous wall is set at partially submerged position with d=0.5. It is found that for a 

partially submerged porous wall with a 50% opening, the effect of 𝑅𝑅𝑒𝑒𝑏𝑏0 on the wave run-

ups is not significant, and the variation trend of wave run-up is close to linear when the 

incident wave height is small. This suggests that the 50% opening beneath the porous wall 

overtakes the effect of the porous-effect parameter.  

 

Figure 5-26: Wave run-up vs. the Reb0 with various H for a partially submerged wall 
(d=0.5). 

In order to further the investigation of the effect of the 𝑅𝑅𝑒𝑒𝑏𝑏0 on the wave run-ups for 
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can be clearly noticed that when the submerged depth of wall is small the effect of 𝑅𝑅𝑒𝑒𝑏𝑏0 

on the wave run-ups is insignificant and as the submerged depth become large, the effect 

of 𝑅𝑅𝑒𝑒𝑏𝑏0 on wave run-ups become more apparent. Also, for cases with smaller submerged 

depths (e.g. d=0.2 or d=0.4), it is interesting to note the overall maximum wave run-up in 

each case, although is not much different from the value under a solid wall case (𝑅𝑅𝑒𝑒𝑏𝑏0 =

0), take place under a porous wall condition with an associated value of 𝑅𝑅𝑒𝑒𝑏𝑏0 . This may 

be a result of the reduction of transmitted waves under a porous wall and large opening (or 

smaller d) condition that enhances slightly the wave run-up for later development of the 

reflected waves. 

 

Figure 5-27: Wave run-up vs. the Reb0 with various d for a case of H= 0.2. 
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The time variations of free-surface elevations in regions 1 and region 3 with varying 

𝑅𝑅𝑒𝑒𝑏𝑏0 for cases of a constant incident wave height of 0.3 and submerged depths of 1 and 

0.5 are respectively illustrated in Figure 5-28 and Figure 5-29. Comparing these two figures, 

we notice when the wall is completely submerged (i.e., d=1), the effect of 𝑅𝑅𝑒𝑒𝑏𝑏0 on both 

reflected and transmitted wave heights is significant, and when the level of submergence 

becomes smaller (e.g., d=0.5), the effect become less significant. When comparing results 

for a solid wall and a porous wall cases with d=0.5, it appears that the reflected wave height 

from a solid wall case is slightly less than that from each of porous wall cases while the 

transmitted wave height are slightly larger for a solid wall case.  

 

Figure 5-28: Time variations of derived analytical solutions of free-surface elevation for 
solitary waves with a constant H=0.3 interacts with porous walls (d=1) with 
various Reb0: (a) incident and reflected wave; (b) transmitted wave. 

(a) Incident and 
reflected wave 
(x=-10) 

 

(b) Transmitted Wave 
(x=25/3) 

H=0.3 
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Figure 5-29: Time variations of derived analytical solutions of free-surface elevation for 
solitary waves with a constant H=0.3 interacts with porous walls with various 
the Reb0: (a) incident and reflected wave; (b) transmitted wave. 

The overall transmission coefficient is plotted versus 𝑅𝑅𝑒𝑒𝑏𝑏0 for a completely submerged 

wall case in Figure 5-30. It is found that the overall transmission coefficient increases when 

𝑅𝑅𝑒𝑒𝑏𝑏0  increases for a completely submerged wall. The increasing trend of the overall 

transmission coefficient versus 𝑅𝑅𝑒𝑒𝑏𝑏0 is nonlinear. Meanwhile, no difference in terms of the 

variation trend of the overall transmission coefficient by varying incident wave height is 

noticed. As a result, we can conclude that for a completely submerged wall, the 𝑅𝑅𝑒𝑒𝑏𝑏0 is a 

dominant affecting parameter on the variations of the overall transmission coefficient.  

(a) 

 

(b) 
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Figure 5-30: The overall transmission coefficient vs. the Reb0 with various H for a 
completely submerged wall (d=1). 

Figure 5-31 shows the overall transmission coefficient varied versus 𝑅𝑅𝑒𝑒𝑏𝑏0 for various 

incident wave heights under the consideration of a partially submerged porous wall with 

d=0.5. Similar to Figure 5-30, the changing wave height is not shown to have a great 

influence on the overall transmission coefficient.  Also, for this partially submerged wall 

case, the variation of 𝑅𝑅𝑒𝑒𝑏𝑏0 has a limit effect on the overall transmission coefficient. When 

𝑅𝑅𝑒𝑒𝑏𝑏0  is small, the larger the wave height is, the slightly smaller overall transmission 

coefficient is observed. When  𝑅𝑅𝑒𝑒𝑏𝑏0 increases, the influence of incident wave height on the 

overall transmission coefficient decreases as shown in Figure 5-32. As the 𝑅𝑅𝑒𝑒𝑏𝑏0 increases 

towards a larger value, the overall transmission coefficient increases towards 1. Basically, 

the overall transmission coefficient for a partially submerged porous wall is less than that 
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of a partially submerged solid wall due to the induced energy dissipation from the porous 

wall. 

 

Figure 5-31: The overall transmission coefficient vs. the Reb0 with various H for a partially 
submerged wall (d=0.5). 
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Figure 5-32: The overall transmission coefficient vs. the Reb0 (extend to 7) with various H 
for a partially submerged wall (d=0.5). 

To further the analyses of the influences of the submerged depth and 𝑅𝑅𝑒𝑒𝑏𝑏0  on the 

overall transmission coefficient, Figure 5-33 illustrates the variations of the overall 

transmission coefficient (𝐶𝐶𝑇𝑇) versus 𝑅𝑅𝑒𝑒𝑏𝑏0 for cases of various submerged depths and a 

fixed incident wave height of 0.2. It is found that when the submerged depth is large (e.g. 

d=1 or d=0.8), the overall transmission coefficient is shown to have a nonlinear increasing 

trend as 𝑅𝑅𝑒𝑒𝑏𝑏0 increases, and when the submerged depth becomes smaller (e.g. d=0.2 or 

d=0.4), the increase of 𝑅𝑅𝑒𝑒𝑏𝑏0  has an insignificant effect on the variation of the overall 

transmission coefficient. From Figure 5-33, it can be noted that the role played by the 

submerged depth of wall on the overall transmission coefficient becomes important when 

the values of porous-effect parameter 𝑅𝑅𝑒𝑒𝑏𝑏0 is small. When 𝑅𝑅𝑒𝑒𝑏𝑏0 approaches to 2, the effect 

of submerged depth on 𝐶𝐶𝑇𝑇 is reduced.  
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Figure 5-33: The overall transmission coefficient vs. the Reb0 with various d for a case of 
H=0.2. 

5.3 Hydrodynamic Force on a Partially Submerged Porous Wall 

Hydrodynamic force is also an important and a critical physical variable to be 

determined for the design consideration of the coastal and offshore engineering 

applications. Based on Eqn. (2-32), the horizontal hydrodynamic forces acting on the wall 

can be calculated. Figure 5-34 shows the comparison plot of the estimated maximum 

horizontal forces on a partially submerged solid wall by applying Eqn. (2-32) with 𝑏𝑏0 =

0 versus the experimental data from Liu and Al-Banaa (2004)’s study, where 8 cases with 

different submerged depths and incident waves heights are included in the comparisons. 

The 45° line indicates the perfect fit. In general, the present analytical results agree 
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approximation of the velocity potential, it is more practical to be applied for smaller wave 

height waves, such as waves with H≤ 0.3. For waves with wave heights that are larger than 

0.3, the errors for estimated forces become larger.  

 

Figure 5-34: The Comparison of the analytical and experimental (Liu and Al-Banaa) results 
for maximum horizontal force (dashed line is 45 degree straight line). 
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dimensionless horizontal force acting on a completely submerged (d=1) solid wall (𝑏𝑏0 =

0) with various incident wave heights. The results indicate that as the incident wave height 
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0.2 wave. Comparing the results shown in Figure 5-35 and Figure 5-36, we notice that the 

forces on a completely submerged solid wall as expected are significantly larger than those 

on a partially submerged wall.  

 

Figure 5-35: Comparison of horizontal forces on a completely submerged (d=1) solid wall 
with various H. 
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Figure 5-36: Comparison of horizontal forces on a partially submerged (d=0.5) solid wall 
with various H. 

For porous wall conditions, Figure 5-37 and Figure 5-38 present the time variations of 

the horizontal force acting on a porous wall with 𝑏𝑏0 = 10−5  and respectively with the 

completely submerged (d=1) and partially submerged (d=0.5) conditions for various 

incident wave heights. Similar conclusions as those shown in Figure 5-35 and Figure 5-36 

that the horizontal force increases as the incident wave height increases can be drawn for 

porous wall cases. Comparing Figure 5-37 with Figure 5-35, the significant decrease of the 

horizontal force can be seen when a completely submerged wall is applied. However, 

comparing Figure 5-38 with Figure 5-36, for a partially submerged wall (d=0.5), the 

horizontal forces in a porous condition is slightly larger than those in the solid wall case 

due to slightly larger wave run-ups. 
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Figure 5-37: Comparison of horizontal forces on a completely submerged (d=1) porous 
wall b0 = 10-5 with various H. 

 

Figure 5-38: Comparison of horizontal forces on a partially submerged (d=0.5) porous wall 
b0 = 10-5 with various H. 
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Figure 5-39 shows the time variations of the horizontal force for cases with various 

submerged depths of solid walls when H= 0.2 and as a comparison Figure 5-40 displaces 

the results for porous wall cases by letting 𝑏𝑏0 = 10−5. By comparing these two figures, it 

can be concluded again that when the submerged depth is small, the maximum horizontal 

force for a solid case is slightly smaller than that for a porous wall with 𝑏𝑏0 = 10−5 whereas 

when the submerged depth becomes larger, the forces on porous walls are smaller than 

those on solid walls.  

 

Figure 5-39: Comparison of horizontal forces on a solid wall with various d and a constant 
H=0.2. 

H=0.2 
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Figure 5-40: Comparison of horizontal forces on a porous wall (b0 = 10-5) with various d 
and a constant H=0.2. 

The maximum force on a structure is a practical property that is widely required in the 

ocean and coastal engineering design consideration. Figure 5-41 illustrates the maximum 

horizontal force versus the incident wave height for various submerged depths of a solid 

wall. For a porous wall case with 𝑏𝑏0 =  10−5, the maximum horizontal force versus the 

incident wave height are presented in Figure 5-42. Basically, the maximum horizontal force 

is shown to increase as the incident wave height or submerged depth increases for both 

solid and porous wall cases. Again, for cases with larger submerged depths, the forces on 

a porous wall are much smaller than those on a solid wall.  

H=0.2 
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Figure 5-41: The maximum horizontal force vs. incident wave height with various d for 
solid wall case. 

 

Figure 5-42: The maximum horizontal force vs. incident wave height with various d for 
porous wall case (b0 = 10-5). 
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In terms of the effect of the submerged depth of wall on the maximum horizontal force, 

the results showing the maximum horizontal force versus the submerged depth for various 

incident wave heights under a solid wall condition are presented in Figure 5-43 and the 

results for a porous wall case with  𝑏𝑏0 =  10−5 are plotted in Figure 5-44. The nonlinear 

increasing trends of the maximum horizontal forces as the submerged depth of either a 

solid wall or a porous wall increases can be noticed. For a solid wall case, the maximum 

horizontal force is much greater than the force under a porous wall condition when the 

submerged depth of wall becomes larger. 

 

Figure 5-43: The maximum horizontal force vs. submerged structural depth with various 
H for solid wall case. 
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Figure 5-44: The maximum horizontal force vs. submerged structural depth with various 
H for porous wall case (b0 = 10-5). 

Considering the effect of porous-effect parameter, Figure 5-45 presents the plot of the 

maximum horizontal force versus 𝑅𝑅𝑒𝑒𝑏𝑏0 with the uses of various incident wave heights for 

the condition of a completely submerged wall. Meanwhile, Figure 5-46 illustrates the 

maximum horizontal force versus 𝑅𝑅𝑒𝑒𝑏𝑏0 for a partially submerged (d=0.5) wall. Again, as 

the incident wave height increases, the maximum horizontal force increases. It can be seen 

that when the wall is completely submerged, the maximum horizontal force decreases as 

the 𝑅𝑅𝑒𝑒𝑏𝑏0 increases which indicates that a porous wall receives a smaller wave force than a 

solid wall does. However, for a partially submerged (d=0.5) wall, a concave down variation 

trend of the maximum horizontal force is noticed, and the maximum values can be found 

at a specific value of 𝑅𝑅𝑒𝑒𝑏𝑏0 under a porous wall condition.  
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Figure 5-45: The maximum horizontal force vs. the Reb0 with various H for a completely 
submerged (d=1) wall case. 

 

Figure 5-46: The maximum horizontal force vs. the Reb0 with various H for a partially 
submerged (d=0.5) wall case. 
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The combined effects of submerged depth of wall and porous-effect parameter 𝑅𝑅𝑒𝑒𝑏𝑏0 

on the maximum horizontal force are shown in Figure 5-47 where the incident wave height 

is set to be 0.2. It is found that when the submerged depth is less than or equal to 0.5 (e.g. 

d=0.25 or d=0.5), the effect of 𝑅𝑅𝑒𝑒𝑏𝑏0 on the maximum horizontal force is insignificant. As 

the submerged depth become larger, the effect of 𝑅𝑅𝑒𝑒𝑏𝑏0 on the maximum horizontal force 

increases, especially for a complete submerged wall, the maximum horizontal force 

decreases as 𝑅𝑅𝑒𝑒𝑏𝑏0 increases.  

 

Figure 5-47: The maximum horizontal force vs. the Reb0 with various d for a case of H=0.2. 
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Chapter 6 Result for the Study of the Hydrodynamic Interactions 

between a Solitary Wave and a 2-D Finite-Length Body with Attached 

Dual Porous Walls 

 

In this chapter, similar to Chapter 5, the results for the study of the hydrodynamic 

interactions between a solitary wave and a 2-D finite-length body with attached dual porous 

walls are presented. By applying the analytical solutions given in Chapter 3, the analytical 

results of the time variations of the free-surface elevations of the incident, reflected and 

transmitted waves during the process of wave-structure interactions can be obtained. The 

comparisons between the predicted free-surface elevations obtaining from the analytical 

solutions and the experimental data are conducted. With the analytical solutions, the effects 

of the parameters including incident wave height, 2-D body draft, submerged depth of 

porous wall, 𝑅𝑅𝑒𝑒𝑏𝑏1, 𝑅𝑅𝑒𝑒𝑏𝑏2 (all the cases or plots in this chapter use the same Re value of 

65882) and structural length on the reflection and transmission of an incident wave are also 

examined. Horizontal and vertical forces acting on the partially submerged body system 

under various wave and structural conditions are investigated.  

6.1 Comparisons between the Analytical Results and Experimental Data  

In order to verify the analytical solutions shown in Chapter 3, the free-surface 

elevations obtained by applying Eqns. (3-44) and (3-45) are compared with the 

experimental measurements. In this validation study, cases with various values of the 

incident wave height, 2-D body draft, submerged depth of porous wall, 𝑅𝑅𝑒𝑒𝑏𝑏1, 𝑅𝑅𝑒𝑒𝑏𝑏2, and the 

structural length are examined with comparison plots presented.  
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First, a comparison plot between the analytical results and Lu and Wang’s (2015) 

experimental data for a case with b=0.5, L=4 and H=0.23 (without any porous conditions) 

is presented in Figure 6-1. The upper part of the figure shows the incident and reflected 

waves while the lower part reveals the transmitted waves. The analytical results agree well 

with the experimental data from Lu and Wang (2015) in magnitudes and phases for the 

incident and transmitted waves, however, slightly overestimated the peak of the reflected 

wave height. The present analytical model misses the predictions of the oscillatory tails as 

part of the reflected waves. 

 

Figure 6-1: Comparisons of free surface elevation obtained from analytical solution and 
experimental data from Lu and Wang (2015) for a case with b=d=0.5(no 
porous conditions), L=4 and H=0.23: (a) incident and reflected wave; (b) 
transmitted wave. 

(a) x= -19.5 

(b) x= 15.5 

Incident Wave Reflected Wave 

Transmitted Wave 
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Figure 6-2 shows the comparisons between the present analytical solutions and 

experimental measurements recorded by Gauges 1 and 2 for the case with b=0.6, L=4 and 

H=0.294 (without any porous conditions). As both the incident wave height and the body 

draft increase, the transmitted wave heights obtained from the analytical model still 

matches well with the measurements. For the reflected wave height, the difference between 

the analytical solutions and experimental data increases when comparing to the results 

shown in Figure 6-1. This may be caused by the nonlinear effect of the solitary wave, which 

is not completely retained in the analytical approach, where the linearized approximation 

is applied to each component of the integral forms of the solutions in velocity potentials 

and free-surface elevations. As a result, the solutions work better for waves with smaller 

incident wave heights. Also, as the body draft increases, experimentally, the enhanced 

energy dissipation effect may also cause the increase of comparison difference. 

 

Figure 6-2: Comparisons of free surface elevation obtained from analytical solution and 
experimental data for a case with b=d=0.6 (no porous conditions), L=4 and 
H=0.294: (a) incident and reflected wave; (b) transmitted wave. 

(a) x= -12 

     (b) x= 53/3 
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With further increase of the structural length, Figure 6-3 presents the comparisons 

between the present analytical and the experimental results for the case with b=0.6, L=6 

and H=0.311 (without any porous conditions). Again, the transmitted wave height and 

varying trend obtained from the analytical solutions match well with the experimental data. 

The analytical model again over-estimates the reflected wav height, although predicts 

reasonably well on the phase and varying trend. As the structural length increases, the 

reflected wave height increases and the transmitted wave height decreases. 

 

Figure 6-3: Comparisons of free surface elevation obtained from analytical solution and 
experimental data for a case with b=d=0.6 (no porous conditions), L=6 and 
H=0.311: (a) incident and reflected wave; (b) transmitted wave. 

For the case with a smaller incident wave height, the comparison plots showing both 

the analytical solutions and the experimental results recorded by Gauges 1 and 2 for the 

case having b=0.3, L=6 and H=0.2 (without any porous conditions) are given in Figure 

6-4. Again, comparing to the experimental measurements, the complete transmitted wave 

profile is well predicted by the present analytical model. In terms of wave peak, the 

(a) x= -12 

(b) x= 53/3 
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reflected wave height obtained from the analytical solutions and experimental data agree 

reasonably well with each other even under this intermediate incident wave height (H=0.2) 

condition.  Also, as the draft decreases, comparing with Figure 6-3, the error in the 

prediction of reflected wave height decreases. It should also be noticed that the smaller 

oscillatory tail following the main reflected wave is not completely captured by the present 

analytical solutions, which is again caused by the present approximated approach where 

the fully nonlinear interaction process is neglected in the solution procedure.   

 

Figure 6-4: Comparisons of free surface elevation obtained from analytical solution and 
experimental data for a case with b=d=0.3 (no porous conditions), L=6 and 
H=0.2: (a) incident and reflected wave; (b) transmitted wave. 

With the inclusion of the two attached porous walls, Figure 6-5 through Figure 6-7 

present the comparisons between the results from the analytical solutions and the 

experimental measurements at the two gauge locations (Gauge 1 and Gauge 2) for the 

setting of b=0.4, d=1, L=6 and H = 0.2 with various porous conditions. For the results 

(a) x= -12 

(b) x= 53/3 
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shown in Figure 6-5 to Figure 6-7, the value of  𝑏𝑏2 = 2.4 × 10−5 is kept as a constant and 

the values of  𝑏𝑏1 are respectively 2.4 × 10−5, 1.0 × 10−5, and 8 × 10−6. The analytically 

obtained wave peaks for both the reflected and transmitted waves match closely with the 

experimental data. When comparing the reflected wave profiles, the depressions that follow 

the main reflected waves from the analytical solutions are found to be slightly higher than 

the measurements. Again, the predicted time varying free-surface profiles for transmitted 

waves fit fairly well with the measured profiles.  Similar to the case presented in Figure 

6-7, however with H=0.285, the comparison results are shown in Figure 6-8. The errors, 

especially for the predictions of the reflected wave peak, increase. In general, based on the 

comparisons for various wave and partially submerged body conditions, the analytical 

solutions are demonstrated to be able to predict well the transmitted wave height and the 

time varying profiles. For the reflected wave heights, the analytical solutions slightly 

overestimate the values when compared to the experimental data, and as the incident wave 

height or the draft of the partially submerged body system increases the prediction errors 

may become larger. 
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Figure 6-5: Comparisons of free surface elevation obtained from analytical solutions and 
experimental data for a case with b=0.4, d=1, L=6, H=0.193, b1 =2.48×10-5 
and b2 =2.4×10-5: (a) incident and reflected wave; (b) transmitted wave. 

 

Figure 6-6: Comparisons of free surface elevation obtained from analytical solution and 
experimental data for a case with b=0.4, d=1, L=6, H=0.197, b1 = 10-5 and b2 
= 2.4×10-5: (a) incident and reflected wave; (b) transmitted wave. 

(a) x= -12 

(b) x= 53/3 

(a) x= -12 

(b) x= 53/3 
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Figure 6-7: Comparisons of free surface elevation obtained from analytical solution and 
experimental data for a case with b=0.4, d=1, L=6, H=0.197, b1 = 8×10-6 and 
b2 = 2.4×10-5: (a) incident and reflected wave; (b) transmitted wave. 

 

Figure 6-8: Comparisons of free surface elevation obtained from analytical solution and 
experimental data for a case with b=0.4, d=1, L=6, H=0.284, b1 = 8×10-6 and 
b2 = 2.4×10-5: (a) incident and reflected wave; (b) transmitted wave. 

Various comparisons of the overall reflection and transmission coefficients obtained 

from the present analytical solutions and Lu and Wang’s (2015) numerical results are 

(a) x= -12 

(a) x= -12 

(b) x= 53/3 

(b) x= 53/3 
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shown through Figure 6-9 to Figure 6-12. Figure 6-9 and Figure 6-10 respectively present 

the comparisons of the overall reflection coefficients (defined as 𝐶𝐶𝑅𝑅 in Chapter 5) obtained 

from the analytical solutions and Lu and Wang’s (2015) numerical results versus incident 

wave height with various body drafts for cases with L=6 and L=4. In Lu and Wang’s (2015) 

numerical study, only a 2-D partially submerged body was considered. Therefore, d is set 

to be equal to b, indicating the two porous walls are not included in the comparison study 

given in Figure 6-9 and Figure 6-10. It can be seen the difference in 𝐶𝐶𝑅𝑅 from both the 

analytical and numerical approaches is small for cases of smaller incident wave height, 

however, it becomes larger due to the increased effect of nonlinearity as the incident wave 

height increases. The maximum difference is about 20%. The causes of the overestimation 

on the overall reflection coefficient may be explained as the present approximated 

approach does not include the fully nonlinear interaction process for capturing the small 

time delay on wave reflection. 

Similar to the settings given in Figure 6-9 and Figure 6-10, Figure 6-11 and Figure 6-12 

show the comparisons of the overall transmission coefficient (defined as 𝐶𝐶𝑇𝑇 in Chapter 5) 

obtained from the present analytical solutions and Lu and Wang’s (2015) numerical results 

for various incident wave heights. Different from the comparisons made to 𝐶𝐶𝑅𝑅, the results 

from the present analytical solutions match well with  Lu and Wang’s (2015) numerical 

results and the largest error is about 5%.  
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Figure 6-9: Comparisons of the overall reflection coefficient obtained from the analytical 
solutions and Lu and Wang’s (2015) numerical results for a case with b=d (no 
porous conditions), and L=6. 

 

Figure 6-10: Comparisons of the overall reflection coefficient obtained from the analytical 
solutions and Lu and Wang’s (2015) numerical results for a case with b=d 
(no porous conditions), and L=4. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

O
ve

ra
ll 

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t

Incident wave height

b=0.7
b=0.5
b=0.2
Lu and Wang's (2015) numerical result (b=0.7)
Lu and Wang's (2015) numerical result (b=0.5)
Lu and Wang's (2015) numerical result (b=0.2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

O
ve

ra
ll 

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t

Incident wave height

b=0.7
b=0.5
b=0.2
Lu and Wang's (2015) numerical result (b=0.7)
Lu and Wang's (2015) numerical result (b=0.5)
Lu and Wang's (2015) numerical result (b=0.2)



104 
 
 

 

Figure 6-11: Comparisons of the overall transmission coefficient obtained from the 
analytical solutions and Lu and Wang’s (2015) numerical results for a case 
with b=d (no porous conditions), and L=6. 

 

Figure 6-12: Comparisons of the overall transmission coefficient obtained from the 
analytical solutions and Lu and Wang’s (2015) numerical results for a case 
with b=d (no porous conditions), and L=4. 
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6.2 Parametric Study of the Effects of Physical Variables on the Reflection and 

Transmission of a Solitary Wave Interacting with a 2-D Finite-Length Body with 

Attached Dual Porous Walls 

In this section, the influences of various affecting physical parameters including 

incident wave height, 2-D body draft, submerged depth of porous walls, 𝑅𝑅𝑒𝑒𝑏𝑏1,  𝑅𝑅𝑒𝑒𝑏𝑏2 and 

structural length on the reflection and transmission of the incident wave are examined. 

Results of examining the effects of the identified parameters on the physical variables of 

wave run-up on the encountering face of the body, time variation of the free-surface 

elevations in regions 1 and 3, and the overall reflection and transmission coefficients are 

presented in this section. 

6.2.1 Effect of Incident Wave Height 

The incident wave height is one of the important parameters affecting the reflection 

and transmission of a solitary wave interacting with a 2-D finite-length body with attached 

two porous walls. Figure 6-13 presents the variations of wave run-up versus the incident 

wave height for a 2-D finite-length body (L=6) with various body drafts, however, with no 

porous wall conditions, and Figure 6-14 shows the results of wave run-up under the similar 

conditions as described in Figure 6-13, but with dual porous walls applied, where d=1 

and 𝑏𝑏1 =  𝑏𝑏2 =  10−5). It is found that as the incident wave height increases, the wave run-

up on the encountering face of the body is shown to have a linearly increasing trend for 

both conditions with or without dual porous walls. When the body draft increases, the wave 

run-up also increases as expected. Comparing Figure 6-13 with Figure 6-14, the dual 

porous walls tend to increase slightly the wave run-ups for cases when the body draft is 
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smaller. This is mainly caused by the added impacts on the additional porous wall 

structures. Also, as the body draft positions to a large value, the effect of the dual porous 

walls on the wave run-up becomes less important. 

 

 

Figure 6-13: Wave run-up vs. incident wave height for a 2-D finite-length body (L=6) with 
various b (no porous conditions). 
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Figure 6-14: Wave run-up vs. incident wave height for a 2-D finite-length body (L=6) with 
various b (with porous conditions as d=1 and b1 = b2 = 10-5). 

When the body length is reduced from L=6 to L=4, the results of wave run-up versus 

the incident wave height for a 2-D finite-length body (L=4) for various body drafts (no 

porous conditions) are presented in Figure 6-15 while similar plots for the body system 

with additional dual porous walls (d=1 and 𝑏𝑏1 =  𝑏𝑏2 =  10−5) are displayed in Figure 6-16. 

By comparing Figure 6-13 with Figure 6-15, we notice that as the structural length 

decreases, the wave run-up decreases. Also, as the body length decreases, the effect of the 

body draft on wave run-up increases. Similar results from Figure 6-14 and Figure 6-16 

suggest that the dual porous walls decrease the effect of the structural length on the 

variation of wave run-up.  
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Figure 6-15: Wave run-up vs. incident wave height for a 2-D finite-length body (L=4) with 
various b (no porous conditions). 

 

Figure 6-16: Wave run-up vs. incident wave height for a 2-D finite-length body (L=4) with 
various b (with porous conditions as d=1 and b1 = b2 = 10-5). 
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Figure 6-17 presents the time variations of derived analytical solutions of free-surface 

elevation in regions 1 and 3 for solitary waves with various incident wave heights 

interacting with a partially submerged structure described above where its settings include 

b=d=0.5 (no porous walls) and L=6. The location for plotting the results of incident and 

reflected wave profiles is set at x=-12 in region 1 while the transmitted waves are presented 

at x=53/3 in region 2. Throughout this chapter, the same setups in terms of locations of 

showing the free-surface profiles are used for all figures giving the results of the free-

surface elevations. As expected, when the incident wave height increases, relatively, both 

the reflected and transmitted wave heights increase. Comparing Figure 6-17 with Figure 

6-18 which is a plot of similar case with a smaller body draft (b=d=0.2), it can be seen as 

the body draft decreases, the reflected wave heights decrease while the transmitted wave 

heights increase.  

Adding the effect of dual porous walls ( 𝑏𝑏1 =  𝑏𝑏2 =  10−5)Figure 6-19 to the partially 

submerged body with results shown in Figure 6-17, the free-surface elevations in regions 

1 and 3 are presented in Figure 6-19. Comparing to Figure 6-17, we notice that the reflected 

wave heights increase and the transmitted wave heights decrease. This suggests that the 

added porous walls can enhance the reduction of the transmitted waves. Finally, Different 

from the case presented in Figure 6-19, Figure 6-20 illustrates the results of wave profiles 

using a smaller structural length, i.e. L=4.  Again, the decreasing in structural length reflects 

a decrease in reflected wave height and accordingly an increase in transmitted wave height.  
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Figure 6-17: Time variations of derived analytical solutions of free-surface elevation for 
solitary waves with various H for a case with b=d=0.5 (no porous conditions) 
and L=6: (a) incident and reflected wave; (b) transmitted wave. 

 

Figure 6-18: Time variations of derived analytical solutions of free-surface elevation for 
solitary waves with various H for a case with b=d=0.2 (no porous conditions) 
and L=6: (a) incident and reflected wave; (b) transmitted wave. 
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(a) x=-12 

(b) x=53/3 
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Figure 6-19: Time variations of derived analytical solutions of free-surface elevation for 
solitary waves with various H for a case with b =0.5, d=1, L=6 and as b1 = 
b2 = 10-5: (a) incident and reflected wave; (b) transmitted wave. 

 

Figure 6-20: Time variations of derived analytical solutions of free-surface elevation for 
solitary waves with various H for a case with b =0.5, d=1, L=4 and as b1 = 
b2 = 10-5: (a) incident and reflected wave; (b) transmitted wave. 

(a) 

(b) 

(a) 

(b) 
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Additionally, the effect of incident wave height on the reflection coefficient (𝐶𝐶𝑅𝑅) and 

transmission coefficient (𝐶𝐶𝑇𝑇) for a solitary wave interacting with a 2-D finite-length body 

with attached dual porous walls under various body draft conditions is examined with 

results presented in Figure 6-21 to Figure 6-28. Figure 6-21 and Figure 6-22 give 

respectively the results of 𝐶𝐶𝑅𝑅 for L=6 and conditions of without and with dual porous walls 

attached. The corresponding plots for 𝐶𝐶𝑇𝑇 are shown in Figure 6-25 and Figure 6-26. For a 

smaller structural length, L=4, the results under the conditions of without and with dual 

porous walls are illustrated respectively in Figure 6-23 and Figure 6-24 for 𝐶𝐶𝑅𝑅 and in Figure 

6-27 and Figure 6-28 for 𝐶𝐶𝑇𝑇 . It is noted from the comparisons that as the incident wave 

height or the body draft increases, the overall reflection coefficient increases while the 

overall transmission coefficient decreases. Adding the dual porous walls results in slightly 

increase in reflection coefficient when the body draft is small. However, the overall 

transmission coefficient is found to be significantly reduced, especially for cases with 

smaller incident wave height waves.  Additionally, the dual porous walls are also found to 

have a greater influence on 𝐶𝐶𝑅𝑅 and 𝐶𝐶𝑇𝑇 for cases with smaller body draft than those with 

larger body draft. When the structural length decreases from 6 to 4, the variation trends of 

𝐶𝐶𝑅𝑅 and 𝐶𝐶𝑇𝑇 verse the incident wave height are similar to those with L=6 case. It is also noted 

that the influence of structural length on 𝐶𝐶𝑅𝑅 and 𝐶𝐶𝑇𝑇 is shown to be stronger when the body 

draft is small.  



113 
 
 

 

Figure 6-21: The overall reflection coefficient vs. incident wave height for various b for a 
case with L=6 and d=b (no porous condition). 

 

Figure 6-22: The overall reflection coefficient vs. incident wave height for various b for a 
case with L=6 and d=1 (b1 = 1.6×10-5 and b2 = 2.4×10-5). 
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Figure 6-23: The overall reflection coefficient vs. incident wave height for various b for a 
case with L=4 and d=b (no porous condition). 

 

Figure 6-24: The overall reflection coefficient vs. incident wave height for various b for a 
case with L=4 and d=1 (b1 = 1.6×10-5 and b2 = 2.4×10-5). 
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Figure 6-25: The overall transmission coefficient vs. incident wave height for various b for 
a case with L=6 and d=b (no porous condition). 

 

Figure 6-26: The overall transmission coefficient vs. incident wave height for various b for 
a case with L=6 and d=1 (b1 = 1.6×10-5 and b2 = 2.4×10-5). 
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Figure 6-27: The overall transmission coefficient vs. incident wave height for various b for 
a case with L=4 and d=b (no porous condition). 

 

Figure 6-28: The overall transmission coefficient vs. incident wave height for various b for 
a case with L=4 and d=1 (b1 = 1.6×10-5 and b2 = 2.4×10-5). 
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6.2.2 Effect of 2-D Body Draft 

Since the 2-D body draft is a very critical parameter in partially submerged barrier 

study, the effect of the draft of 2-D body on the physical variables, such as the wave run-

up on the front face of the body, time variation of the free-surface elevations in regions 1 

and 3, and the overall reflection and transmission coefficients is examined with the results 

plotted versus the body draft presented. For the variations of wave run-up versus the body 

draft for the cases of L=6 and various incident wave heights, Figure 6-29 and Figure 6-30 

are shown for cases without porous walls and with porous walls (d=1 and 𝑏𝑏1 =  𝑏𝑏2 =

 10−5), respectively. The comparison cases for L=4 are presented in Figure 6-29 and Figure 

6-32, respectively for not including the porous walls and including the porous walls. For 

all incident waves, with or without porous walls, the results indicate that when the body 

draft increases, the wave run-up shows a trend of gradual increase. Comparing Figure 6-29 

with Figure 6-30, the additions of the dual porous walls increases slightly the wave run-up, 

and when the body draft is small, the differences between the wave run-ups under the 

conditions with or without porous walls are more noticeable. Also, decreasing the structural 

length from 6 to 4, as shown in Figure 6-31 and Figure 6-32, the general variation trends 

of the wave run-up are similar to those shown in Figure 6-29 and Figure 6-30.  
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Figure 6-29: Wave run-up vs. the body draft (L=6) with various H (no porous conditions).  

 

Figure 6-30: Wave run-up vs. the body draft (L=6) with various H (with porous conditions 
as d=1 and b1 = b2 = 10-5). 
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Figure 6-31: Wave run-up vs. the body draft (L=4) with various H (no porous conditions).  

 

Figure 6-32: Wave run-up vs. the body draft (L=4) with various H (with porous conditions 
as d=1 and b1 = b2 = 10-5). 
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Figure 6-33 through Figure 6-36 present the time variations of the free-surface 

elevations of a solitary wave (H=0.2) interacting with a 2-D finite-length body with or 

without dual porous walls under various body draft conditions. For the cases with dual 

porous walls, the porous property constants are  𝑏𝑏1 =  𝑏𝑏2 =  10−5  and the submerged 

depth for positioning the porous walls is set as d =1. Again, as the body draft increases, the 

reflected wave height increases while the transmitted wave height decreases. From Figure 

6-33 (without porous walls) and Figure 6-34 (with dual porous walls), the results again 

indicate that the additional porous wall structures result in slight increase in reflected wave 

height but greatly reduce the transmitted wave height. Figure 6-35 and Figure 6-36 are free-

surface elevation plots for the corresponding results considering a smaller structural length, 

i.e. L=4. Similar conclusions can be made as the structural length decreases, the reflected 

wave height decreases and the transmitted wave height increases. 

 

Figure 6-33: Time variations of derived analytical solutions of free-surface elevation with 
various b for a case with H=0.2 and L=6 (no porous conditions): (a) incident 
and reflected wave; (b) transmitted wave. 
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Figure 6-34: Time variations of derived analytical solutions of free-surface elevation with 
various b for a case with H=0.2, L=6, d=1 and b1 = b2 = 10-5: (a) incident and 
reflected wave; (b) transmitted wave. 

 

Figure 6-35: Time variations of derived analytical solutions of free-surface elevation with 
various b for a case with H=0.2 and L=4 (no porous conditions): (a) incident 
and reflected wave; (b) transmitted wave. 
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Figure 6-36: Time variations of derived analytical solutions of free-surface elevation with 
various b for a case with H=0.2, L=4, d=1 and b1 = b2 = 10-5: (a) incident and 
reflected wave; (b) transmitted wave. 

Figure 6-37 through Figure 6-44 present the overall reflection and transmission 

coefficients versus body draft for cases with various incident wave heights and the 

conditions without or with the porous walls. The body length is set as L=6. Similar to the 

results discussed in the free-surface profiles, the result show that when the body draft 

increases, the overall reflection coefficient increases and the overall transmission 

coefficient decreases. The added dual porous walls can effectively reduce the overall 

transmission coefficient for most body draft conditions. Its effectiveness is more significant 

when the body draft is small. Figure 6-39 to Figure 6-40 illustrate the corresponding results 

as given in Figure 6-37 to Figure 6-38 by means of a smaller structural length which is 

equal to 4. Similar to the conclusions mentioned above for the wave profiles, the decrease 

(a) 
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of the structural length causes the decrease of the overall reflection coefficient and 

accordingly the increase in overall transmission coefficient. 

 

Figure 6-37: The overall reflection coefficient vs. body draft with various H for a case with 
L=6 and d=b (no porous conditions). 
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Figure 6-38: The overall reflection coefficient vs. body draft with various H for a case with 
L=6, d=1, b1 = 1.6*10-5 and b2 = 2.4*10-5. 

 

Figure 6-39: The overall reflection coefficient vs. body draft with various H for a case with 
L=4 and d=b (no porous conditions). 
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Figure 6-40: The overall reflection coefficient vs. body draft with various H for a case with 
L=4, d=1, b1 = 1.6×10-5 and b2 = 2.4×10-5. 

 

Figure 6-41: The overall transmission coefficient vs. body draft with various H for a case 
with L=6 and d=b (no porous conditions). 
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Figure 6-42: The overall transmission coefficient vs. body draft with various H for a case 
with L=6, d=1, b1 = 1.6×10-5 and b2 = 2.4×10-5. 

 

Figure 6-43: The overall transmission coefficient vs. body draft with various H for a case 
with L=4 and d=b (no porous conditions). 
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Figure 6-44: The overall transmission coefficient vs. body draft with various H for a case 
with L=4, d=1, b1 = 1.6×10-5 and b2 = 2.4×10-5. 

6.2.3 Effect of Dual Porous Walls 
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properties on the interactions between an incident solitary wave and a 2-D finite-length 
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the results showing the effects of the submerged depth of porous walls and the porous-

effect parameters 𝑅𝑅𝑒𝑒𝑏𝑏1 and 𝑅𝑅𝑒𝑒𝑏𝑏2 on different physical variables, including the wave run-

up, time variation of the free-surface elevations in regions 1 and 3, and the overall reflection 

and transmission coefficients are presented and discussed in this section. 

Figure 6-45 through Figure 6-47 present the wave run-ups versus the submerged depth 
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with various incident wave heights and b=0.2, L=6, and  𝑏𝑏1 =  𝑏𝑏2 =  10−5. Also, the 𝑅𝑅𝑒𝑒 is 

set as 65882. The results indicate that when the submerged depth of porous walls increases, 

the wave run-up increases. Due to the effect of porous walls, a gradual increase is noticed.  

By varying the draft of partially submerged body, Figure 6-46 presents the results of wave 

run-up versus the submerged depth of porous walls for a case with H=0.2, L=6 and  𝑏𝑏1 =

 𝑏𝑏2 =  10−5. As the body draft increases, the opening area to cover with porous walls 

decreases. As a result, the wave run-up increases. When considering a shorter body length, 

i.e. L=4, it can be seen the variation trends of the wave run-up versus the submerged depth 

of porous walls that are similar to the results given in Figure 6-45 are shown in Figure 6-47.  

 

Figure 6-45: Wave run-up vs. the submerged depth of porous walls with various H for the 
case with b=0.2, L=6 and b1 = b2 = 10-5. 
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Figure 6-46: Wave run-up vs. the submerged depth of porous walls with various b for the 
case with H=0.2, L=6 and b1 = b2 = 10-5. 

 

Figure 6-47: Wave run-up vs. the submerged depth of porous walls with various H for the 
case with b=0.2, L=4 and b1 = b2 = 10-5. 
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The effects of porous property parameters, 𝑅𝑅𝑒𝑒𝑏𝑏1 and 𝑅𝑅𝑒𝑒𝑏𝑏2, on the variations of wave 

run-up are examined in Figure 6-48 through Figure 6-50. 𝑅𝑅𝑒𝑒𝑏𝑏2 is set to be equal to 𝑅𝑅𝑒𝑒𝑏𝑏1 

for all the cases examined. The results of wave run-up are plotted versus 𝑅𝑅𝑒𝑒𝑏𝑏1. Here, we 

let 𝑅𝑅𝑒𝑒=65882 (using ℎ∗ = 3 inches).  𝑏𝑏1 and 𝑏𝑏2 are the material constants. Basically, the 

results suggest that when 𝑅𝑅𝑒𝑒𝑏𝑏1 increases, the wave run-up is shown to have a graduate 

decrease. Comparing results from Figure 6-48 (b=0.2) and Figure 6-49 (b=0.6), with an 

increase of the body draft, the effects of 𝑅𝑅𝑒𝑒𝑏𝑏1 and 𝑅𝑅𝑒𝑒𝑏𝑏2 on the rate of decreasing of the 

wave run-ups are reduced. Figure 6-50 presents the corresponding results for cases 

described for Figure 6-48 but with a smaller structural length L= 4. The results are shown 

to be similar to those illustrated in Figure 6-48.  

 

Figure 6-48: Wave run-up vs. the Reb1 with various H for the case with b=0.2, d=1, L=6 
and Reb1= Reb2. 
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Figure 6-49: Wave run-up vs.Reb1 with various H for the case with b=0.6, d=1, L=6 and 
Reb1= Reb2. 

 

Figure 6-50: Wave run-up vs. the Reb1.with various H for the case with b=0.2, d=1, L=4 
and Reb1= Reb2. 
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Figure 6-51 and Figure 6-52 show the plots of time variations of the free-surface 

elevation with varying submerged depth of porous walls for cases of H= 0.2, b=0.2, and 

respective structural length L= 6 and L=4. The condition of the porous walls is set as  𝑏𝑏1 =

 𝑏𝑏2 =  10−5. When the submerged depth of porous walls increases, the reflected wave 

elevations increase slightly whereas the transmitted wave levels are subject to a greater rate 

of decreasing. Also, when the structural length decreases, again, the transmitted wave 

elevations show the increasing trend. Figure 6-53 through Figure 6-55 present the time 

variations of the free-surface elevations for cases with various values of 𝑅𝑅𝑒𝑒𝑏𝑏1. The settings 

for Figure 6-53 are H=0.2, b=0.2, d=1, L=6 and 𝑅𝑅𝑒𝑒𝑏𝑏2 = 𝑅𝑅𝑒𝑒𝑏𝑏1 and for Figure 6-53 are 

H=0.2, b=0.6, d=1, L=6 and 𝑅𝑅𝑒𝑒𝑏𝑏2 = 𝑅𝑅𝑒𝑒𝑏𝑏1 .The results indicate that, for the structural 

setting conditions, when the porous-effect parameter 𝑅𝑅𝑒𝑒𝑏𝑏1 increases, the reflected wave 

elevations decrease and the transmitted wave elevations as expected increase. However, 

comparing with the incident wave profiles, the overall reflected and transmitted wave 

elevations are substantially reduced. By comparing results shown in Figure 6-53 and Figure 

6-54, we find that when the body draft is larger, the effect of 𝑅𝑅𝑒𝑒𝑏𝑏1, as the portion of the 

porous walls is reduced, is less significant on varying the free-surface profiles. However, 

from Figure 6-53 and Figure 6-55, it is noticed that when the structural length is smaller, 

the effect of 𝑅𝑅𝑒𝑒𝑏𝑏1 becomes more important in affecting the reflected and transmitted wave 

elevations. 
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Figure 6-51: Time variations of derived analytical solutions of free-surface elevation with 
various submerged depth of porous walls for a case with H=0.2, L=6, b=0.2 
and b1 = b2 = 10-5: (a) incident and reflected wave; (b) transmitted wave. 

 

Figure 6-52: Time variations of derived analytical solutions of free-surface elevation with 
various submerged depth of porous walls for a case with H=0.2, L=4, b=0.2 
and b1 = b2 = 10-5: (a) incident and reflected wave; (b) transmitted wave. 
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Figure 6-53: Time variations of derived analytical solutions of free-surface elevation with 
various Reb1 for a case with H=0.2, b=0.2, d=1, L=6 and Reb1= Reb2: (a) 
incident and reflected wave; (b) transmitted wave. 

 

Figure 6-54: Time variations of derived analytical solutions of free-surface elevation with 
various Reb1 for a case with H=0.2, b=0.6, d=1, L=6 and Reb1= Reb2: (a) 
incident and reflected wave; (b) transmitted wave. 
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Figure 6-55: Time variations of derived analytical solutions of free-surface elevation with 
various Reb1 for a case with H=0.2, b=0.2, d=1, L=4 and Reb1= Reb2: (a) 
incident and reflected wave; (b) transmitted wave. 

In terms of the overall reflection coefficients (𝐶𝐶𝑅𝑅 ), they are plotted versus the 

submerged depth of porous walls with inputs of b=0.2,  𝑏𝑏1 =  1.6 × 10−5 ,  𝑏𝑏2 = 2.4 ×

10−5 and various incident wave heights in Figure 6-56 for L=6 and Figure 6-57 for L=4. 

The results show that when the submerged depth of porous walls increases, the overall 

reflection coefficient increases and as the incident wave height increases, the effect of the 

submerged depth of porous walls decreases. Smaller structural length will lead to a smaller 

reflection coefficient for the same case. Figure 6-58 through Figure 6-60 show the plots of 

the overall reflection coefficients versus 𝑅𝑅𝑒𝑒𝑏𝑏1  with various incident wave heights and 

structural draft conditions. Again, it can be seen as 𝑅𝑅𝑒𝑒𝑏𝑏1 increases, the overall reflection 

coefficient decreases. When comparing the results shown in Figure 6-58 and Figure 6-59, 

(a) 

(b) 
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we notice again as the body draft increases the effect of 𝑅𝑅𝑒𝑒𝑏𝑏1 on the overall reflection 

coefficient decreases.  

 

Figure 6-56: The overall reflection coefficient vs. submerged depth of porous walls with 
various H for a case with L=6, b=0.2, b1 = 1.6×10-5 and b2 = 2.4×10-5. 

 

Figure 6-57: The overall reflection coefficient vs. submerged depth of porous walls with 
various H for a case with L=4, b=0.2, b1 = 1.6×10-5 and b2 = 2.4×10-5. 
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Figure 6-58: The overall reflection coefficient vs. Reb1with various H for a case with L=6, 
d=1, b=0.2 and Reb1= Reb2. 

 

Figure 6-59: The overall reflection coefficient vs. Reb1with various H for a case with L=6, 
d=1, b=0.6 and Reb1= Reb2. 
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Figure 6-60: The overall reflection coefficient vs. Reb1with various H for a case with L=4, 
d=1, b=0.2 and Reb1= Reb2. 

Corresponding to the results of overall reflection coefficients shown in Figure 6-56 to 

Figure 6-60, the overall transmission coefficients (𝐶𝐶𝑇𝑇) are presented in Figure 6-61 to 

Figure 6-62 where for Figure 6-61 and Figure 6-62, they are plotted versus the submerged 

depth of porous walls with b=0.2,  𝑏𝑏1 =  1.6 × 10−5  and  𝑏𝑏2 = 2.4 × 10−5  and 

respectively with L=6 and L=4. When the submerged depth of porous walls increases, the 

overall transmission coefficient decreases. Meanwhile, decreasing the structural length 

from 6 to 4 tends to cause an increase in the overall transmission coefficient, and when the 

incident wave height decreases, the effect of the submerged depth of porous walls on the 

overall transmission coefficient increases. In terms of the variations of 𝐶𝐶𝑇𝑇 versus 𝑅𝑅𝑒𝑒𝑏𝑏1 , the 

results are presented in Figure 6-63 through Figure 6-65. As the values of 𝑅𝑅𝑒𝑒𝑏𝑏1 increases, 

the transmission coefficient increases. However, relatively to the incident waves, the 
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overall transmission coefficient is considered to be reduced substantially. It can be noted 

from Figure 6-63 to Figure 6-65 that when the body draft or the structural length is larger, 

the overall transmission coefficient decreases. 

 

Figure 6-61: The overall transmission coefficient vs. submerged depth of porous walls with 
various H for a case with L=6, b=0.2, b1 = 1.6×10-5 and b2 = 2.4×10-5. 
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Figure 6-62: The overall transmission coefficient vs. submerged depth of porous walls with 
various H for a case with L=4, b=0.2, b1 = 1.6*10-5 and b2 = 2.4*10-5. 

 

Figure 6-63: The overall transmission coefficient vs. Reb1with various H for a case with 
L=6, d=1, b=0.2 and Reb1= Reb2. 
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Figure 6-64: The overall transmission coefficient vs. Reb1with various H for a case with 
L=6, d=1, b=0.6 and Reb1= Reb2. 

 

Figure 6-65: The overall transmission coefficient vs. Reb1with various H for a case with 
L=4, d=1, b=0.2 and Reb1= Reb2. 
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6.2.4 Effect of the Structural Length 

The structural length of a 2-D partially submerged body with attached two porous walls 

system also affect the wave reflection and transmission after the interactions by an incident 

solitary wave. Here, only the results showing the effect of the structural length on the time 

variations of the free-surface elevations in regions 1 and 3 are presented in this section. 

Figure 6-66 through Figure 6-68 present the time variations of the free-surface 

elevations with considerations of various structural lengths where for the results shown in 

Figure 6-66 and Figure 6-67, the porous walls are not included in the partially submerged 

body system and the other setting variables are respectively H=0.2, b=d=0.2 and are H=0.2, 

b=d=0.6. The free-surface plots by considering the effect of dual porous wall with  𝑏𝑏1 =

 𝑏𝑏2 =  10−5 are presented in Figure 6-68. It can be seen when the structural length is larger, 

the reflected wave height is larger and the transmitted wave height is smaller. Also, with 

the increase of the body draft b or the application of the dual porous walls, the reflected 

wave height increases and the transmitted wave height decreases. However, with the 

increase of the structural length and use of the dual porous walls, both the reflected and 

transmitted wave elevations can be effectively reduced. Meanwhile, the effect of the 

structural length on the reflected and transmitted wave elevations is less significant when 

the body draft increases or the dual porous walls are applied. 
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Figure 6-66: Time variations of derived analytical solutions of free-surface elevation with 
various structural lengths for a case with H=0.2, b= d=0.2 (no porous 
conditions): (a) incident and reflected wave; (b) transmitted wave. 

 

Figure 6-67: Time variations of derived analytical solutions of free-surface elevation with 
various structural lengths for a case with H=0.2, b= d=0.6 (no porous 
conditions): (a) incident and reflected wave; (b) transmitted wave. 

(a) 

(b) 

(a) 

(b) 
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Figure 6-68: Time variations of derived analytical solutions of free-surface elevation with 
various structural lengths for a case with H=0.2, b=0.2, d=1 and b1 = b2 = 10-

5: (a) incident and reflected wave; (b) transmitted wave. 

6.3 Hydrodynamic Forces on a 2-D Partially submerged Body with Attached Dual 

Porous Walls 

The hydrodynamic forces acting at various directions are important physical variables 

required in the design of coastal and offshore structures. By applying Eqns. (3-46) and (3-

47), separately, the horizontal force acting on a 2-D partially submerged body with two 

attached porous walls and the vertical force acting on the bottom of the structural system 

can be obtained . 

For horizontal forces, Figure 6-69 through Figure 6-76 present the time variations of 

the horizontal forces under various setting conditions. Figure 6-69 shows the time 

variations of the horizontal forces with various incident wave heights for a case with 

(a) 

(b) 
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b=d=0.2 and L=4 (without porous walls). The force results with consideration of two 

porous walls with  𝑏𝑏1 =  𝑏𝑏2 =  10−5  are given in Figure 6-70. When the wave height 

increases, the positive horizontal forces increase. The results in Figure 6-69 and Figure 

6-70 indicate that with the additions of the porous structures the positive horizontal forces 

increase, however, the negative forces (forces acting on the negative x direction) are greatly 

reduced as a result of the reduction of the transmitted wave heights. As a comparison, 

Figure 6-71 shows plots of the time variations of the horizontal forces with a greater body 

draft (b=0.6), which is equal to 0.6, for various incident wave heights and without the 

attached porous walls. When comparing to the results given in Figure 6-69, it is noted as 

the body draft increases, the positive horizontal force increases. The negative horizontal 

force also increases when the body draft increases. The structural length also affects the 

horizontal force, where in Figure 6-72  plots of horizontal forces similar to the cases for 

results shown in Figure 6-69 but with a larger structural length (L= 6) are presented. As 

the structural length increases, the horizontal force also increases.  

Figure 6-73 illustrates the time variations of the horizontal forces with various body 

draft for a case with H=0.2, b=d (with porous walls) and L=6. As the body draft increases, 

due to the increased body surface subject to wave impact, the maximum positive horizontal 

force increases and the time period for the partially submerged body experiencing the 

negative forces is also increases. With setting of various porous-effect parameter Reb1, 

Figure 6-74 shows the time variations of the horizontal forces for a case with H=0.2, b=0.2, 

d=1, L=6 and Reb1= Reb2. When Reb1 increases, the maximum horizontal force decreases 

and the negative horizontal force affected with a slightly increasing trend. The plots of time 

variations of horizontal forces with various submerged depth of porous walls are presented 
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in Figure 6-75. As the submerged depth of porous walls increases, the maximum horizontal 

force increases and the negative force decreases. In terms of the effect of structural length, 

Figure 6-76 gives the results of time varying horizontal force for cases with various 

structural lengths. As the structural length increases, the positive horizontal force increases, 

but the negative maximum force basically maintains at the similar level.  

 

Figure 6-69: Comparison of horizontal forces with various H for a case with d=b=0.2 (no 
porous conditions) and L=4. 
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Figure 6-70: Comparison of horizontal forces with various H for a case with d=1, b=0.2, 
L=4 and b1 = b2 = 10-5. 

 

Figure 6-71: Comparison of horizontal forces with various H for a case with b=d=0.6 (no 
porous conditions) and L=4. 
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Figure 6-72: Comparison of horizontal forces with various H for a case with d=b=0.2 (no 
porous conditions) and L=6. 

 

Figure 6-73: Comparison of horizontal forces with various b for a case with H=0.2, b=d 
(no porous conditions) and L=6. 
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Figure 6-74: Comparison of horizontal forces with various Reb1 for a case with H=0.2, 
b=0.2, d=1, L=6 and Reb1= Reb2. 

 

Figure 6-75: Comparison of horizontal forces with various d for a case with H=0.2, b=0.2, 
L=6 and b1 = b2 = 10-5. 



150 
 
 

 

Figure 6-76: Comparison of horizontal forces with various L for a case with H=0.2, and 
b=d=0.2 (no porous conditions). 

For the vertical or uplift forces, Figure 6-77 through Figure 6-81 present the time 

variations of the vertical forces acting on the bottom of a 2-D partially submerged structure 

with or without attached dual porous walls under various setting conditions. It should be 

noticed that all the forces presented here are hydrodynamic forces, and no hydrostatic force 

is considered. Figure 6-77 shows the time variations of the vertical forces with vary 

incident wave heights for a case with d=b=0.2 and L=6 without any dual porous walls 

applied. As the results indicated, when the wave height increases, the maximum vertical 

force increases. Meanwhile, Figure 6-78, Figure 6-79, and Figure 6-80 present the time 

variations of the vertical forces under various conditions with changing body draft, 

submerged depth of porous walls, and Reb1, respectively. All the results show that the body 

draft, submerged depth of porous walls and Reb1 have negligible effects on the vertical 

forces. On the contrary of the body draft, submerged depth of porous walls and Reb1, the 
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structural length, by examining the results of vertical forces presented in Figure 6-81, is 

one critical parameter in affecting the vertical forces. As expected, when the structural 

length increases, the maximum vertical force increases and the time period that the 

structure system experiences the vertical force becomes larger.  

 

Figure 6-77: Comparison of vertical forces with various H for a case with d=b=0.2 (no 
porous conditions) and L=6. 
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Figure 6-78: Comparison of vertical forces with various b for a case with H=0.2, d=b (no 
porous conditions) and L=6. 

 

Figure 6-79: Comparison of vertical forces with various d for a case with H=0.2, b=0.2, 
L=6 and b1 = b2 = 10-5. 
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Figure 6-80: Comparison of vertical forces with various Reb1 for a case with H=0.2, b=0.2, 
d=1 and L=6.  

  

Figure 6-81: Comparison of vertical forces with various L for a case with H=0.2, and 
d=b=0.2 (no porous conditions).  
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Chapter 7 Conclusions 

  

In this dissertation, the hydrodynamic interactions between a solitary wave and a 

partially submerged structure considering either a thin porous wall or a 2-D finite-length 

body with attached dual porous walls are studied with proposed solution procedures and 

laboratory verifications. According to the defined fluid domains, analytical solutions of the 

velocity potentials, wave elevations and hydrodynamic forces in terms of reflection and 

transmission related coefficients are derived by assuming the fluid is viscid and 

incompressible and the flow is irrotational. Since the reflection and transmission related 

coefficients are time-independent, the present analytical solutions provide an easier and 

more efficient way to estimate the reflected and transmitted wave profiles and 

hydrodynamic forces on the structures. 

The interactions of a solitary wave with a thin porous wall are firstly investigated 

analytically and experimentally. The analytical solutions of the velocity potentials and free-

surface elevations of incident, reflected and transmitted wave are derived by applying the 

Fourier integral method and solution superposition procedure proposed by Isaacson (1983) 

and Zhong and Wang (2006). The formulations of the porous-wall boundary conditions are 

included by using Chwang’s (1983) porous flow equations and Zhong and Wang’s (2006) 

work based on the Darcy’s law. To derive the reflection and transmission related 

coefficients, the least squares method is applied to the mixed boundary conditions at the 

interface of porous wall. By substituting the derived coefficients back to the equations of 

velocity potentials and free-surface elevations, the free-surface profiles for both reflected 
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and transmitted waves and their corresponding velocity potentials can be determined. 

Using the nonlinear Bernoulli equation, the pressure can be calculated and the 

hydrodynamic forces acting on the porous wall can be estimated by integrating the pressure 

distribution on the wall surfaces.  

Laboratory experiments under various conditions are conducted to collect the free-

surface elevations with two resistance-type wave gauges at locations of upstream (for 

incident and reflected waves) and downstream (for transmitted waves) of a thin porous 

wall. The experimental measurements are plotted to verify the analytical solutions of the 

free-surface elevations. As the results shown, the incident and transmitted waves predicted 

by the present analytical solutions in magnitudes and phases match well with the 

experimental data, and for the reflected waves, in general, the analytical solutions tends to 

overestimate the reflected wave height. The over-estimation of the reflected waves may be 

caused by the energy dissipation and damping effect that are not included in the analytical 

solutions.  

The parametric study is also performed to examine the effects of various physical 

variables, such as the incident wave height, submerged structural depth, and properties of 

porous wall, on the reflected/transmitted waves and hydrodynamic forces after an incident 

solitary wave encountering a partially submerged porous wall. For both solid wall (𝑏𝑏0 =

0) and porous wall (𝑏𝑏0 ≠ 0) cases, the linearly increased trend of the wave run-up as the 

incident wave height increases is observed. Similar conclusions can be made that the wave 

run-up increases with an increase in submerged depth of porous wall and by extending a 

porous wall to near the sea bottom, the wave run-up can be substantially reduced. For a 
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completely submerged (d=1) case, as the incident wave height increases, stronger nonlinear 

decreasing trends of the wave run-up as 𝑅𝑅𝑒𝑒𝑏𝑏0 increases can be noticed and for a partially 

submerged case (e.g. d=0.5), the effect of 𝑅𝑅𝑒𝑒𝑏𝑏0 on the wave run-ups is not significant. As 

expected, the submerged depth of porous wall is a dominant parameter on affecting the 

variations of the overall transmission coefficient; as the submerged depth of porous wall 

increases, the transmission coefficient ( 𝐶𝐶𝑇𝑇 ) decreases and the decreasing rate of 

𝐶𝐶𝑇𝑇 appears more substantial for a solid wall with a larger submerged depth case, however, 

becomes a nearly linear trend for a porous wall case. In contrast, as 𝑅𝑅𝑒𝑒𝑏𝑏0 increases, the 

overall transmission coefficient increases for a completely submerged wall and the 

increasing trend of the overall transmission coefficient versus 𝑅𝑅𝑒𝑒𝑏𝑏0 is nonlinear. For a 

porous wall with a relatively smaller draft, the variation of 𝑅𝑅𝑒𝑒𝑏𝑏0 has a limit effect on the 

overall transmission coefficient. The incident wave height also has negligible effects on 

the variation of the overall transmission coefficient for all cases. In terms of the maximum 

horizontal hydrodynamic forces on a partially submerged solid wall (𝑏𝑏0 = 0), the present 

analytical results match reasonably well with the experimental measurements from Liu and 

Al-Banaa (2004)’s study. Since the analytical solutions use a linearized approximation of 

the velocity potentials, they are more practical to be applied for waves with smaller incident 

wave heights, such as waves with H≤ 0.3.  Both incident wave height and submerged depth 

of porous wall have dominant effects on the variation of the horizontal hydrodynamic 

forces, and the 𝑅𝑅𝑒𝑒𝑏𝑏0 will have significant effect on the hydrodynamic forces when the 

submerged depth of porous wall is large. When the wall is completely submerged, the 

maximum horizontal force decreases as the 𝑅𝑅𝑒𝑒𝑏𝑏0 increases which indicates that a porous 

wall receives a smaller wave force than a solid wall does. However, for a partially 
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submerged wall (e.g. d=0.5), a concave down variation trend of the maximum horizontal 

force is noticed, and the maximum values can be found at a specific value of 𝑅𝑅𝑒𝑒𝑏𝑏0 under a 

porous wall condition.  

Similarly, the analytical and experimental approaches are utilized to study the 

interactions between a solitary wave and a partially submerged 2-D finite-length body with 

attached dual porous walls. The analytical solutions of the velocity potentials outside of 

the 2-D body are similar to those derived for the reflected and transmitted regions of the 

first topic considering a thin porous wall, and the velocity potential in region 2 underneath 

a partially submerged structure is derived by solving the Laplace equation with the 

kinematic boundary conditions on solid surfaces based on Lu and Wang’s (2015) work. 

The unknown coefficients can be derived by applying the matching conditions and the 

orthogonality property of solution based eigenfunctions at the interfaces of the inner and 

outer domains. By substituting the derived unknown coefficients into the solutions of 

physical variables, the free-surface elevations in regions 1 (upstream) and 3 (downstream), 

the horizontal hydrodynamic forces and the vertical hydrodynamic forces in region 2 can 

be determined. Experimental data collected in the lab and from Lu and Wang’s (2015) 

work are used to verify the derived analytical solutions of the free-surface elevations. The 

incident and transmitted waves predicted by the present analytical solutions in magnitudes 

and phases match well with the experimental measurements whereas the theoretically 

estimated reflected wave heights are higher than the experimental data. Additionally, the 

overall transmission coefficients from the present analytical solutions agree reasonably 

well with the numerical results from Lu and Wang (2015), but the overall reflection 

coefficients obtained from the analytical solutions are greater than Lu and Wang’s 



158 
 
 

numerical results. The differences between the compared overall reflection coefficients 

may be caused by the linearized approximations applied to express the free-surface 

elevation and the damping effect of the 2-D body, which is not included in the present 

analytical approach. The results indicate that the reflection process happens immediately 

in the analytical solutions, however, potentially, there will be a small time delay related to 

the wave run-up before the formation of the reflected waves. This immediate reflection 

process will narrow the shape of the reflected wave profile and accordingly with the 

amount of reflected fluid mass and energy allow the reflected wave height predicted by the 

present analytical solutions to be higher. Meanwhile, neglecting the damping effect may 

also physically cause slightly more wave energy reflected back and as a result increases 

the reflected wave height.  

It is found the wave run-up on the encountering face of the body is shown to have a 

linearly increasing trend for both conditions with or without dual porous walls attached to 

a partially submerged 2-D finite-length body as the incident wave height increases. When 

the body draft, submerged depth of the porous wall, or structural length increases, the wave 

run-up also increases. In contrast, as 𝑅𝑅𝑒𝑒𝑏𝑏1 increases, the wave run-up decreases. With the 

dual porous walls applied, the effects of incident wave height, body draft, or structural 

length on the variation of the wave run-up become less significant. As the results indicated, 

with an increase of the incident wave height or body draft, the overall reflection coefficient 

increases and the overall transmission coefficient decreases. Similarly, when the 

submerged depth of the porous walls and the structural length increase, the overall 

reflection coefficient increases while the overall transmission coefficient decreases. On the 

contrary, the overall reflection coefficient decreases and the overall transmission 
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coefficient increases as the Reb1 increases. Meanwhile, when the body draft or the structural 

length is smaller, the effects of the dual porous wall become more important in affecting 

the overall reflection and transmission coefficients. An increase of the incident wave height, 

body draft, submerged porous-wall depth or structural length and a decrease of Reb1 will 

cause an increase in the positive horizontal hydrodynamic force acting on the 2-D body 

system. The negative horizontal force also increases when the body draft increases. With 

the application of the dual porous walls, the negative horizontal forces become smaller. 

The incident wave height and the structural length are two dominant parameters on the 

variations of the vertical hydrodynamic forces. As the incident wave height or the structural 

length increases, the vertical hydrodynamic force increases. The body draft, submerged 

depth of the porous walls and Reb1 have negligible effects on the variations of the vertical 

hydrodynamic forces. 

In summary, through the comparisons between the derived analytical solutions and the 

present experimental measurements or other published results, the proposed analytical 

models presented in this study are demonstrated to be able to serve as efficient and 

reasonably accurate engineering tools to investigate the hydrodynamic interactions 

between a solitary wave and either a partially submerged thin porous wall or a 2-D finite-

length partially submerged body with attached dual porous walls in terms of the transmitted 

waves and the wave forces on the structures, although the models tend to slightly 

overestimate the overall reflection coefficients. For the design considerations, the present 

models can provide reasonable estimations on the solitary waves induced hydrodynamic 

forces on the two proposed partially submerged structures as breakwaters.  
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For future studies, the present analytical approaches may be modified by adding a term 

with damping effect or time-delay factor to improve the accuracy on estimating the 

reflected wave height. For more practical usages, extended laboratory experiments can be 

carried out to estimate the damping coefficients or time-delay factor for various cases, 

which potentially can be used to improve the predictions of the reflected waves. Also, due 

to the lack of the related data, laboratory measurements or numerical simulations on the 

reflected and transmitted wave heights (or the reflection and transmission coefficients) for 

the interactions between a solitary wave and a partially submerged (𝑑𝑑 < 1) thin solid wall 

are recommended to provide additional data or results for comparisons with model 

predictions. Furthermore, the laboratory experiments on the hydrodynamic forces are also 

very limited. It is recommended in the future study to carry out laboratory tests to measure 

the wave induced hydrodynamic forces on the proposed structures of the present studies 

that include either a partially submerged thin porous wall or a partially submerged 2-D 

finite-length body with attached dual porous walls.  
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Appendix A Derivation of the Analytical Solutions of a Solitary Wave 

Interacting with a Partially Submerged Porous Wall 

As shown in the Chapter 2, the velocity potentials in region 1 and 3 can be expressed 

as 

𝜙𝜙1 = � {(−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)
∞

−∞
] + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)                           

+ 𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘  𝑎𝑎𝑎𝑎𝑑𝑑                                                                         (A-1) 

𝜙𝜙3 = � {(−𝑖𝑖𝑖𝑖)[𝑇𝑇0𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)
∞

−∞
] + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑇𝑇0𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘,   (A-2)  

and the boundary conditions can be written as  

(
𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

)𝑥𝑥=0 = (
𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

)𝑥𝑥=0    @ − 1 ≤ 𝑧𝑧 ≤ 0,                                   (A-3)  

(
𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

)𝑥𝑥=0 = (
𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

)𝑥𝑥=0 = (𝑖𝑖𝑘𝑘)𝑅𝑅𝑒𝑒𝑏𝑏0(𝜙𝜙1 − 𝜙𝜙3)      @ − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0, 𝑎𝑎𝑎𝑎𝑑𝑑          (A-4)  

𝜙𝜙1 = 𝜙𝜙3   @ − 1 ≤ 𝑧𝑧 ≤ −𝑑𝑑.                                                 (A-5)  

Based on the velocity potentials in region 1 and 3, we can derive the velocity in x-axis 

in region 1 and 3 as 

𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

= � {(−𝑖𝑖𝑖𝑖)[(𝑖𝑖𝑘𝑘)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + (−𝑖𝑖𝑘𝑘)𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)] + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[(𝑖𝑖𝑘𝑘)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)

∞

−∞

+ (−𝑖𝑖𝑘𝑘)𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑑𝑑𝑘𝑘  𝑎𝑎𝑎𝑎𝑑𝑑                                                             (A-6) 
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𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

= � {(−𝑖𝑖𝑖𝑖)[(𝑖𝑖𝑘𝑘)𝑇𝑇0𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]
∞

−∞

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[(𝑖𝑖𝑘𝑘)𝑇𝑇0𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑑𝑑𝑘𝑘.                            (A-7) 

Substituting Eqns. (A-1), (A-2), (A-6) back into Eqn. (A-4) with the condition of 𝑇𝑇0 =

1 − 𝑅𝑅0, and take the integration off, we can have 

�(−𝑖𝑖𝑖𝑖)�(𝑖𝑖𝑘𝑘)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + (−𝑖𝑖𝑘𝑘)𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�(𝑖𝑖𝑘𝑘)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + (−𝑖𝑖𝑘𝑘)𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

= (𝑖𝑖𝑘𝑘𝑠𝑠)𝑅𝑅𝑒𝑒𝑏𝑏0 ��(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

− �(−𝑖𝑖𝑖𝑖)�(1 − 𝑅𝑅0)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�(1 − 𝑅𝑅0)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡�    

                                        @𝑥𝑥 = 0.                                                                                (A-8) 
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At x equals to 0, taking off the 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 on both side, we will have 

           �[1 − 𝑅𝑅0] + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [1 − 𝑅𝑅0]�

= 𝑅𝑅𝑒𝑒𝑏𝑏0𝑠𝑠{{[1 + 𝑅𝑅0] + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [1 + 𝑅𝑅0]} − {[(1 − 𝑅𝑅0)]

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [(1 − 𝑅𝑅0)}}.                                                                (A-9) 

 Then, it can be rewritten as 

1 − 𝑅𝑅0 − 2𝐺𝐺𝑅𝑅0 + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [1 − 𝑅𝑅0 − 2𝐺𝐺𝑅𝑅0] = 0    @ − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0.    (A-10) 

Substituting Eqns. (A-1) and (A-2) into Eqn. (A-5) the condition of 𝑇𝑇0 = 1 − 𝑅𝑅0, we 

have 

� {(−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)
∞

−∞
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3
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= � {(−𝑖𝑖𝑖𝑖)[(1 − 𝑅𝑅0)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)
∞

−∞
] + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[(1

− 𝑅𝑅0)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑘𝑘}.                                                                                                         (A-11) 

And taking the integration off, we can get 

��(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)� + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅0𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)��

− �(−𝑖𝑖𝑖𝑖)�(1− 𝑅𝑅0)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)� + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�(1− 𝑅𝑅0)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)���

= 0.                                                                                                                                             (A-12) 
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At x equals to 0, we can rewrite it as 

⎩
⎪
⎨

⎪
⎧ �[1 + 𝑅𝑅0] + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [1 + 𝑅𝑅0]� −

�[(1 − 𝑅𝑅0)] + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [(1 − 𝑅𝑅0)]�

⎭
⎪
⎬

⎪
⎫

= 0.                       (A-13) 

And we can simplify it as 

2𝑅𝑅0 + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (2𝑅𝑅0) = 0   − 1 ≤ 𝑧𝑧 ≤ −𝑑𝑑.                       (A-14) 

Applying lease-square method, we can get 

𝐻𝐻0

=

⎩
⎪
⎨

⎪
⎧1 + (−1 − 2𝐺𝐺)𝑅𝑅0 + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [1 + (−1− 2𝐺𝐺)𝑅𝑅0]     − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0 

2𝑅𝑅0 + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (2𝑅𝑅0)                   − 1 ≤ 𝑧𝑧 ≤ −𝑑𝑑

.  (A-15) 

As we discussed, the lease-square method should satisfy the condition that  

� 𝐻𝐻0(𝑧𝑧)
0

−1

𝜕𝜕𝐻𝐻0
𝜕𝜕𝑅𝑅0

𝑑𝑑𝑧𝑧 = 0,                                                      (A-16) 

where 𝜕𝜕𝐻𝐻0
𝜕𝜕𝑅𝑅0

 can be expressed as 

𝜕𝜕𝐻𝐻0
𝜕𝜕𝑅𝑅0

=

⎩
⎪
⎨

⎪
⎧(−1 − 2𝐺𝐺) + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [(−1 − 2𝐺𝐺)]     − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0 

2 + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (2)                   − 1 ≤ 𝑧𝑧 ≤ −𝑑𝑑

.                        (A-17) 
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So that Eqn. (A-16) can be rewritten as 

         � 𝐻𝐻0(𝑧𝑧)
0

−1

𝜕𝜕𝐻𝐻0
𝜕𝜕𝑅𝑅0

𝑑𝑑𝑧𝑧

= � �1 + 𝐵𝐵𝑅𝑅0 + 𝐶𝐶 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [1 + 𝐵𝐵𝑅𝑅0]�

0

−𝑑𝑑
�𝐵𝐵 + 𝐶𝐶 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [𝐵𝐵]� 𝑑𝑑𝑧𝑧

+ � �2𝑅𝑅0 + 𝐶𝐶 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (2𝑅𝑅0)�

−𝑑𝑑

−1
�2 + 𝐶𝐶 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (2)� 𝑑𝑑𝑧𝑧

= 0,                                                                                                                                              (A-18) 

where  

𝐵𝐵 = −1 − 2𝐺𝐺 𝑎𝑎𝑎𝑎𝑑𝑑                                                  (A-19) 

𝐶𝐶 = 𝛼𝛼𝑘𝑘2.                                                              (A-20) 

Then, we have 

� �1 + 𝐵𝐵𝑅𝑅0 + 𝐶𝐶 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [1 + 𝐵𝐵𝑅𝑅0]�

0

−𝑑𝑑
�𝐵𝐵 + 𝐶𝐶 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� [𝐵𝐵]� 𝑑𝑑𝑧𝑧

=
𝐵𝐵𝑑𝑑{9𝐶𝐶2𝑑𝑑4 − 45𝐶𝐶2𝑑𝑑3 + (80𝐶𝐶2 + 60𝐶𝐶)𝑑𝑑2 + (−60𝐶𝐶2 − 180𝐶𝐶)𝑑𝑑 + 20𝐶𝐶2 + 120𝐶𝐶 + 180}(𝐵𝐵𝑅𝑅0 + 1)

180

=
𝐵𝐵{9𝐶𝐶2𝑑𝑑5 − 45𝐶𝐶2𝑑𝑑4 + (80𝐶𝐶2 + 60𝐶𝐶)𝑑𝑑3 + (−60𝐶𝐶2 − 180𝐶𝐶)𝑑𝑑2 + (20𝐶𝐶2 + 120𝐶𝐶 + 180)𝑑𝑑}(𝐵𝐵𝑅𝑅0 + 1)

180

=
𝐵𝐵{𝐵𝐵}(𝐵𝐵𝑅𝑅0 + 1)

180
.                                                                                                                                            

       (A-21) 

where 

      𝐵𝐵 = 9𝐶𝐶2𝑑𝑑5 − 45𝐶𝐶2𝑑𝑑4 + (80𝐶𝐶2 + 60𝐶𝐶)𝑑𝑑3 + (−60𝐶𝐶2 − 180𝐶𝐶)𝑑𝑑2

+ (20𝐶𝐶2 + 120𝐶𝐶 + 180)𝑑𝑑,                                                                       (A-22) 
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and  

� �2𝑅𝑅0 + 𝐶𝐶 �
1
3 + 𝑧𝑧 +

𝑧𝑧2

2 �
(2𝑅𝑅0)�

−𝑑𝑑

−1
�2 + 𝐶𝐶 �

1
3 + 𝑧𝑧 +

𝑧𝑧2

2 �
(2)�𝑑𝑑𝑧𝑧

= −
𝑅𝑅0{9𝐶𝐶2𝑑𝑑5 − 45𝐶𝐶2𝑑𝑑4 + (80𝐶𝐶2 + 60𝐶𝐶)𝑑𝑑3 + (−60𝐶𝐶2 − 180𝐶𝐶)𝑑𝑑2 + (20𝐶𝐶2 + 120𝐶𝐶 + 180)𝑑𝑑 − 4𝐶𝐶2 − 180}

45

= −
𝑅𝑅0{𝐵𝐵 − 4𝐶𝐶2 − 180}

45 .                                                                                                                                                            

(A-23) 

Substituting Eqns. (A-21) and (A-23) back to Eqn. (A-18), we will get 

−
𝑅𝑅0{𝐵𝐵 − 4𝐶𝐶2 − 180}

45
+
𝐵𝐵{𝐵𝐵}(𝐵𝐵𝑅𝑅0 + 1)

180
= 0,                                  (A-24) 

so that  

𝑅𝑅0 =
− 𝐵𝐵𝐵𝐵

180
𝐵𝐵2𝐵𝐵
180 − {𝐵𝐵 − 4𝐶𝐶2 − 180}

45

=
−𝐵𝐵𝐵𝐵

𝐵𝐵2𝐵𝐵 − 4(𝐵𝐵 − 4𝐶𝐶2 − 180)
.             (A-25) 
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Appendix B Derivation of the Analytical Solutions of a Solitary Wave 

Interacting with a 2-D Finite-Length Body with Attached Dual Porous 

Walls 

As shown in Chapter 3, at the interface between region 1 and 2 (𝑥𝑥 = −𝑥𝑥1), we have 

� 𝜙𝜙1
𝑝𝑝 𝑑𝑑𝑧𝑧 = 

−𝑑𝑑

−1
� 𝜙𝜙2

𝑝𝑝 𝑑𝑑𝑧𝑧 @ − 1 ≤ 𝑧𝑧 ≤ −𝑑𝑑
−𝑑𝑑

−1
 𝑎𝑎𝑎𝑎𝑑𝑑                           (B-1) 

𝜕𝜕𝜙𝜙1
𝑝𝑝

𝜕𝜕𝑥𝑥
= −𝑅𝑅𝑒𝑒𝑏𝑏1 �

𝜕𝜕𝜙𝜙1
𝑝𝑝

𝜕𝜕𝑡𝑡
−
𝜕𝜕𝜙𝜙�2
𝜕𝜕𝑡𝑡

�   @ − 𝑑𝑑 ≤ 𝑧𝑧 ≤ −𝑏𝑏,                         (B-2) 

where Eqn. (B-2) can be rewritten as 

𝜕𝜕𝜙𝜙�2
𝜕𝜕𝑡𝑡

=
𝜕𝜕𝜙𝜙1

𝑝𝑝

𝜕𝜕𝑡𝑡
+
𝜕𝜕𝜙𝜙1

𝑝𝑝

𝜕𝜕𝑥𝑥
�

1
𝑅𝑅𝑒𝑒𝑏𝑏1

�  @ − 𝑑𝑑 ≤ 𝑧𝑧 ≤ −𝑏𝑏.                              (B-3) 

Eqns. (B-4) through (B-8) show the detail terms in Eqns. (B-1) and (B-3) shown 

above 

        𝜙𝜙1
𝑝𝑝 = �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,                      (B-4) 

𝜙𝜙2
𝑝𝑝 = ���𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)� + 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)��

∞

𝑗𝑗=1

𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� +𝐶𝐶(𝑥𝑥) + 𝐷𝐷�𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,      

                                                                                                                                                    (B-5)  
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𝜕𝜕𝜙𝜙1
𝑝𝑝

𝜕𝜕𝑥𝑥
= �(−𝑖𝑖𝑖𝑖)�(𝑖𝑖𝑘𝑘)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + (−𝑖𝑖𝑘𝑘)𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�(𝑖𝑖𝑘𝑘)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)

+ (−𝑖𝑖𝑘𝑘)𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,                                                                          (B-6) 

𝜕𝜕𝜙𝜙1
𝑝𝑝

𝜕𝜕𝑡𝑡
= (−𝑖𝑖𝑘𝑘𝑠𝑠) �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,𝑎𝑎𝑎𝑎𝑑𝑑              (B-7) 

𝜕𝜕𝜙𝜙�2
𝜕𝜕𝑡𝑡

= (−𝑖𝑖𝑘𝑘𝑠𝑠)���𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)� + 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)��
∞

𝑗𝑗=1

𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� +𝐶𝐶(𝑥𝑥)

+ 𝐷𝐷�𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 = (−𝑖𝑖𝑘𝑘𝑠𝑠)𝜙𝜙�2.                                                                            (B-8) 

By substituting the equations shown above back into Eqn. (B-3), we have 

           (−𝑖𝑖𝑘𝑘𝑠𝑠)𝜙𝜙�2      

= (−𝑖𝑖𝑘𝑘𝑠𝑠) �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

+ �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �(−𝑖𝑖𝑖𝑖)�(𝑖𝑖𝑘𝑘)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + (−𝑖𝑖𝑘𝑘)𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�(𝑖𝑖𝑘𝑘)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + (−𝑖𝑖𝑘𝑘)𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡.   (B-9) 
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Rearrange Eqn. (B-9), we have 

         𝜙𝜙�2 = �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

+ �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥�

+ 𝛼𝛼𝑥𝑥2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

= 𝜙𝜙1
𝑝𝑝 + �

1
𝑅𝑅𝑒𝑒𝑏𝑏1

� �
−1
𝑠𝑠
�𝜙𝜙�1,                                                                            (B-10) 

where  

                 𝜙𝜙�1 = �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥�

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘𝑥𝑥 − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘𝑥𝑥�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡.                         (B-11) 

 Eqn. (B-3) can be expressed as 

� 𝜙𝜙1
𝑝𝑝 𝑑𝑑𝑧𝑧 +

−𝑑𝑑

−1
 � 𝜙𝜙�2𝑑𝑑𝑧𝑧 =

−𝑏𝑏

−𝑑𝑑
� 𝜙𝜙2

𝑝𝑝 𝑑𝑑𝑧𝑧.
−𝑏𝑏

−1
                               (B-12) 

By multiplying the orthogonality property of eigenfunctions, 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�, we have 

 � 𝜙𝜙1
𝑝𝑝  𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�𝑑𝑑𝑧𝑧 +

−𝑑𝑑

−1
 � 𝜙𝜙�2 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�𝑑𝑑𝑧𝑧

−𝑏𝑏

−𝑑𝑑

= � 𝜙𝜙2
𝑝𝑝 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�  𝑑𝑑𝑧𝑧 

−𝑏𝑏

−1
      @ 𝑥𝑥 = −𝑥𝑥1, 𝑗𝑗 = 1,2, … ..            (B-13) 
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By rearranging Eqn. (B-13), we have 

                 � 𝜙𝜙1
𝑝𝑝  𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧 +

−𝑑𝑑

−1
 � (𝜙𝜙1

𝑝𝑝
−𝑏𝑏

−𝑑𝑑

+ �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
�𝜙𝜙�1 ) 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�𝑑𝑑𝑧𝑧

= � 𝜙𝜙2
𝑝𝑝 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�  𝑑𝑑𝑧𝑧 

−𝑏𝑏

−1
      @ 𝑥𝑥 = −𝑥𝑥1, 𝑗𝑗 = 1,2, … . . ,           (B-14) 

and then combining terms with 𝜙𝜙1
𝑝𝑝, we can get 

  � 𝜙𝜙1
𝑝𝑝  𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�𝑑𝑑𝑧𝑧 +

−𝑏𝑏

−1

+ � �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
�𝜙𝜙�1 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧

−𝑏𝑏

−𝑑𝑑

= � 𝜙𝜙2
𝑝𝑝 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�  𝑑𝑑𝑧𝑧.

−𝑏𝑏

−1
                                                               (B-15) 

Each of the term in Eqn. (B-15) can be expressed as 

         � 𝜙𝜙1
𝑝𝑝  𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�𝑑𝑑𝑧𝑧

−𝑏𝑏

−1

= � {(−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)] + 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)

−𝑏𝑏

−1

+ 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡  𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�𝑑𝑑𝑧𝑧

=
(1 − 𝑏𝑏)𝑠𝑠𝑐𝑐𝑠𝑠 (𝑗𝑗𝜋𝜋)

(𝑚𝑚𝑗𝑗)2
(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

= 𝐶𝐶𝑎𝑎(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,                                            (B-16) 
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� �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
�𝜙𝜙�1 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧

−𝑏𝑏

−𝑑𝑑

= �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
�� {(−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)] + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)

−𝑏𝑏

−𝑑𝑑

− 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧

= �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖) �1 +

1
3
𝛼𝛼𝑘𝑘2� �𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)� �−

1
𝑚𝑚𝑗𝑗

𝑠𝑠𝑖𝑖𝑎𝑎 �𝑚𝑚𝑗𝑗(1 − 𝑑𝑑)��

+ (−𝑖𝑖𝑖𝑖)(𝛼𝛼𝑘𝑘2)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)

− 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)� �
�(𝑑𝑑2 − 2𝑑𝑑)𝑚𝑚𝑗𝑗

2 − 2� 𝑠𝑠𝑖𝑖𝑎𝑎 �𝑚𝑚𝑗𝑗(𝑑𝑑 − 1)� + (2𝑑𝑑 − 2)𝑚𝑚𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑑𝑑 − 1)�

2�𝑚𝑚𝑗𝑗�
3

+
(−2𝑏𝑏 + 2) 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑏𝑏 − 1)�

2�𝑚𝑚𝑗𝑗�
2 �� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

= �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖) �1 +

1
3
𝛼𝛼𝑘𝑘2� �𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�𝐶𝐶𝑏𝑏

+ (−𝑖𝑖𝑖𝑖)(𝛼𝛼𝑘𝑘2)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�𝐶𝐶𝑐𝑐� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,                                                                   (B-17) 

 where  

𝐶𝐶𝑎𝑎 =
(1 − 𝑏𝑏)𝑠𝑠𝑐𝑐𝑠𝑠 (𝑗𝑗𝜋𝜋)

(𝑚𝑚𝑗𝑗)2
,                                                             (B-18) 

𝐶𝐶𝑏𝑏 = −
1
𝑚𝑚𝑗𝑗

𝑠𝑠𝑖𝑖𝑎𝑎 �𝑚𝑚𝑗𝑗(1 − 𝑑𝑑)� ,𝑎𝑎𝑎𝑎𝑑𝑑                                            (B-19) 
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                 𝐶𝐶𝑐𝑐 =
�(𝑑𝑑2 − 2𝑑𝑑)𝑚𝑚𝑗𝑗

2 − 2� 𝑠𝑠𝑖𝑖𝑎𝑎 �𝑚𝑚𝑗𝑗(𝑑𝑑 − 1)� + (2𝑑𝑑 − 2)𝑚𝑚𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑑𝑑 − 1)�

2�𝑚𝑚𝑗𝑗�
3

+
(−2𝑏𝑏 + 2) 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑏𝑏 − 1)�

2�𝑚𝑚𝑗𝑗�
2 .                                                                (B-20) 

� 𝜙𝜙2
𝑝𝑝 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�  𝑑𝑑𝑧𝑧 

−𝑏𝑏

−1

= � {��𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)� + 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)��
∞

𝑗𝑗=1

𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�
−𝑏𝑏

−1

+𝐶𝐶(𝑥𝑥) + 𝐷𝐷}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�  𝑑𝑑𝑧𝑧 

= ��𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)�

+ 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)��
𝑠𝑠𝑖𝑖𝑎𝑎 �2𝑚𝑚𝑗𝑗(1 − 𝑏𝑏)� + 2𝑚𝑚𝑗𝑗(1 − 𝑏𝑏)

4𝑚𝑚𝑗𝑗
� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

= �𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)�+ 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)��
(1 − 𝑏𝑏)

2
𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡.                   (B-21) 

By substituting these equations back into Eqn. (B-15), we have  

𝐶𝐶𝑎𝑎(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

+ �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖) �1 +

1
3
𝛼𝛼𝑘𝑘2� �𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�𝐶𝐶𝑏𝑏

+ (−𝑖𝑖𝑖𝑖)(𝛼𝛼𝑘𝑘2)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�𝐶𝐶𝑐𝑐� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

= (𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)�+ 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)�)
(1 − 𝑏𝑏)

2
𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡.                   (B-22) 
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By canceling 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡, we have 

𝐶𝐶𝑎𝑎(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]}

+ �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖) �1 +

1
3
𝛼𝛼𝑘𝑘2� �𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�𝐶𝐶𝑏𝑏

+ (−𝑖𝑖𝑖𝑖)(𝛼𝛼𝑘𝑘2)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�𝐶𝐶𝑐𝑐�

= (𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)� + 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)�)
(1 − 𝑏𝑏)

2
.                               (B-23) 

Applying the similar approach for the interface of region 2 and region 3, we have 

                  � 𝜙𝜙3
𝑝𝑝  𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧 +

−𝑑𝑑

−1
 � 𝜙𝜙�2 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�𝑑𝑑𝑧𝑧

−𝑏𝑏

−𝑑𝑑

= � 𝜙𝜙2
𝑝𝑝 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�  𝑑𝑑𝑧𝑧.

−𝑏𝑏

−1
                                                               (B-24) 

Since 

𝜕𝜕𝜙𝜙�2
𝜕𝜕𝑡𝑡

=
𝜕𝜕𝜙𝜙3

𝑝𝑝

𝜕𝜕𝑡𝑡
−
𝜕𝜕𝜙𝜙3

𝑝𝑝

𝜕𝜕𝑥𝑥
�

1
𝑅𝑅𝑒𝑒𝑏𝑏2

� ,                                              (B-25) 

similarly, we have 

 

𝜙𝜙�2 = 𝜙𝜙3
𝑝𝑝 − �

1
𝑅𝑅𝑒𝑒𝑏𝑏2

� �
−1
𝑠𝑠
�𝜙𝜙3

𝑝𝑝.                                                 (B-26) 
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By substituting Eqn. (B-26) back into Eqn. (B-24), we have 

          � 𝜙𝜙3
𝑝𝑝  𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧 +

−𝑑𝑑

−1
 � (𝜙𝜙3

𝑝𝑝 − �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
�𝜙𝜙3

𝑝𝑝) 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧
−𝑏𝑏

−𝑑𝑑

= � 𝜙𝜙2
𝑝𝑝 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�  𝑑𝑑𝑧𝑧,

−𝑏𝑏

−1
                                                               (B-27) 

so that 

 � 𝜙𝜙3
𝑝𝑝  𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�𝑑𝑑𝑧𝑧

−𝑏𝑏

−1

− � �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� 𝜙𝜙3

𝑝𝑝 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧
−𝑏𝑏

−𝑑𝑑

= � 𝜙𝜙2
𝑝𝑝 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�  𝑑𝑑𝑧𝑧.

−𝑏𝑏

−1
                                                               (B-28) 

Each term in the Eqn. (B-28) can be expressed as 

� 𝜙𝜙3
𝑝𝑝  𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧

−𝑏𝑏

−1

= � {(−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]
−𝑏𝑏

−1

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡  𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�𝑑𝑑𝑧𝑧

= 𝛼𝛼𝑘𝑘2 �
(1 − 𝑏𝑏)𝑠𝑠𝑐𝑐𝑠𝑠 (𝑗𝑗𝜋𝜋)

(𝑚𝑚𝑗𝑗)2
� (−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

= 𝛼𝛼𝑘𝑘2(𝐶𝐶𝑎𝑎)(−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,                                                                                      (B-29) 
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� �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
�𝜙𝜙3

𝑝𝑝 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧
−𝑏𝑏

−𝑑𝑑

=� �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� {(−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]

−𝑏𝑏

−𝑑𝑑

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� 𝑑𝑑𝑧𝑧

= �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)� �1 +

1
3
𝛼𝛼𝑘𝑘2� �−

1
𝑚𝑚𝑗𝑗

𝑠𝑠𝑖𝑖𝑎𝑎 �𝑚𝑚𝑗𝑗(1 − 𝑑𝑑)��

+ 𝛼𝛼𝑘𝑘2(−𝑖𝑖𝑖𝑖)�
�(𝑑𝑑2 − 2𝑑𝑑)𝑚𝑚𝑗𝑗

2 − 2� 𝑠𝑠𝑖𝑖𝑎𝑎 �𝑚𝑚𝑗𝑗(𝑑𝑑 − 1)� + (2𝑑𝑑 − 2)𝑚𝑚𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑑𝑑 − 1)�

2�𝑚𝑚𝑗𝑗�
3

+
(−2𝑏𝑏 + 2) 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑏𝑏 − 1)�

2�𝑚𝑚𝑗𝑗�
2 � �𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

= �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)� �1 +

1
3
𝛼𝛼𝑘𝑘2� (𝐶𝐶𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2(−𝑖𝑖𝑖𝑖)(𝐶𝐶𝑐𝑐)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,𝑎𝑎𝑎𝑎𝑑𝑑                                                                             (B-30) 
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� 𝜙𝜙2
𝑝𝑝 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�  𝑑𝑑𝑧𝑧 

−𝑏𝑏

−1

= � {��𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)� + 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)��
∞

𝑗𝑗=1

𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�
−𝑏𝑏

−1

+𝐶𝐶(𝑥𝑥) + 𝐷𝐷}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)�  𝑑𝑑𝑧𝑧 

= ��𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)�

+ 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)��
𝑠𝑠𝑖𝑖𝑎𝑎 �2𝑚𝑚𝑗𝑗(1 − 𝑏𝑏)� + 2𝑚𝑚𝑗𝑗(1 − 𝑏𝑏)

4𝑚𝑚𝑗𝑗
� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

= �𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)�+ 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)��
(1 − 𝑏𝑏)

2
𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡.                   (B-31) 

By substituting these equations back into Eqn. (B-28), we have 

𝛼𝛼𝑘𝑘2(𝐶𝐶𝑎𝑎)(−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

− �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)� �1 +

1
3
𝛼𝛼𝑘𝑘2� (𝐶𝐶𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2(−𝑖𝑖𝑖𝑖)(𝐶𝐶𝑐𝑐)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

= (𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)�+ 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)�)
(1 − 𝑏𝑏)

2
𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡.                   (B-32) 
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After canceling the 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡, we can get 

𝛼𝛼𝑘𝑘2(𝐶𝐶𝑎𝑎)(−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

− �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)� �1 +

1
3
𝛼𝛼𝑘𝑘2� (𝐶𝐶𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2(−𝑖𝑖𝑖𝑖)(𝐶𝐶𝑐𝑐)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)��

= (𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)� + 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)�)
(1 − 𝑏𝑏)

2
.                               (B-33) 

Since Eqn. (B-23) is at 𝑥𝑥 = −𝑥𝑥1 and Eqn. (B-33) is at 𝑥𝑥 = 𝑥𝑥1, we can rewrite them into 

𝐶𝐶𝑎𝑎(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)�

+ �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖) �1 +

1
3
𝛼𝛼𝑘𝑘2� �𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)�𝐶𝐶𝑏𝑏

+ (−𝑖𝑖𝑖𝑖)(𝛼𝛼𝑘𝑘2)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)�𝐶𝐶𝑐𝑐�

= �𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(−𝑥𝑥1)�+ 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(−𝑥𝑥1)��
(1 − 𝑏𝑏)

2

= �𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)� − 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)��
(1 − 𝑏𝑏)

2
 𝑎𝑎𝑎𝑎𝑑𝑑                  (B-34) 

𝛼𝛼𝑘𝑘2(𝐶𝐶𝑎𝑎)(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)�

− �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)� �1 +

1
3
𝛼𝛼𝑘𝑘2� (𝐶𝐶𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2(−𝑖𝑖𝑖𝑖)(𝐶𝐶𝑐𝑐)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)��

= �𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�+ 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)��
(1 − 𝑏𝑏)

2
.                          (B-35) 
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By solving these two equations, we can get 𝐴𝐴𝑗𝑗 and 𝐵𝐵𝑗𝑗 as 

𝐴𝐴𝑗𝑗

=
{𝐶𝐶𝑎𝑎(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2 + 𝐺𝐺1 �(−𝑖𝑖𝑖𝑖) �1 + 1

3𝛼𝛼𝑘𝑘
2�𝐶𝐶𝑏𝑏 + (−𝑖𝑖𝑖𝑖)�𝛼𝛼𝑘𝑘′2�𝐶𝐶𝑐𝑐�}[𝐼𝐼2]

(1 − 𝑏𝑏) 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�

+
{𝐶𝐶𝑎𝑎(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2 + 𝐺𝐺1 �(−𝑖𝑖𝑖𝑖) �1 + 1

3𝛼𝛼𝑘𝑘
2� (−𝐶𝐶𝑏𝑏) + (−𝑖𝑖𝑖𝑖)(𝛼𝛼𝑘𝑘2)(−𝐶𝐶𝑐𝑐)�}𝑅𝑅1[𝐼𝐼1]

(1 − 𝑏𝑏) 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�

+
{𝛼𝛼𝑘𝑘2(𝐶𝐶𝑎𝑎)(−𝑖𝑖𝑖𝑖)− 𝐺𝐺2 �(−𝑖𝑖𝑖𝑖) �1 + 1

3𝛼𝛼𝑘𝑘
2� (𝐶𝐶𝑏𝑏) + 𝛼𝛼𝑘𝑘2(−𝑖𝑖𝑖𝑖)(𝐶𝐶𝑐𝑐)�}𝑇𝑇1[𝐼𝐼3]

(1 − 𝑏𝑏) 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�
 𝑎𝑎𝑎𝑎𝑑𝑑   (B-36) 

𝐵𝐵𝑗𝑗

=
{𝛼𝛼𝑘𝑘2(𝐶𝐶𝑎𝑎)(−𝑖𝑖𝑖𝑖)− 𝐺𝐺2 �(−𝑖𝑖𝑖𝑖) �1 + 1

3𝛼𝛼𝑘𝑘
2� (𝐶𝐶𝑏𝑏) + 𝛼𝛼𝑘𝑘2(−𝑖𝑖𝑖𝑖)(𝐶𝐶𝑐𝑐)�}𝑇𝑇1[𝐼𝐼3]

(1 − 𝑏𝑏)𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�

−
{𝐶𝐶𝑎𝑎(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2 + 𝐺𝐺1 �(−𝑖𝑖𝑖𝑖) �1 + 1

3𝛼𝛼𝑘𝑘
2� 𝐶𝐶𝑏𝑏 + (−𝑖𝑖𝑖𝑖)(𝛼𝛼𝑘𝑘2)𝐶𝐶𝑐𝑐�}𝐼𝐼2

(1 − 𝑏𝑏)𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�

−
�𝐶𝐶𝑎𝑎(−𝑖𝑖𝑖𝑖)𝛼𝛼𝑘𝑘2 + 𝐺𝐺1 �(−𝑖𝑖𝑖𝑖) �1 + 1

3𝛼𝛼𝑘𝑘
2� (−𝐶𝐶𝑏𝑏) + (−𝑖𝑖𝑖𝑖)(𝛼𝛼𝑘𝑘2)(−𝐶𝐶𝑐𝑐)��𝑅𝑅1𝐼𝐼1

(1 − 𝑏𝑏)𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥1)�
,     (B-37) 

where  

𝐺𝐺1 = �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� ,                                                 (B-38) 

𝐺𝐺2 = �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� ,                                                 (B-39) 

𝐼𝐼1 = 𝐼𝐼3 = 𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1), 𝑎𝑎𝑎𝑎𝑑𝑑                                                    (B-40) 

𝐼𝐼2 = 𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1).                                                                 (B-41) 
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To solve C and D, each of the terms in Eqn. (B-14) without the orthogonality property 

of eigenfunctions, 𝑠𝑠𝑐𝑐𝑠𝑠 �𝑘𝑘𝑗𝑗(𝑧𝑧 + 1)�, can be expressed as 

� 𝜙𝜙1
𝑝𝑝 𝑑𝑑𝑧𝑧

−𝑏𝑏

−1
= � {(−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)] + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)

−𝑏𝑏

−1

+ 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑑𝑑𝑧𝑧

= �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�(1 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �−
𝑏𝑏3 − 3𝑏𝑏2 + 2𝑏𝑏

6
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,         (B-42) 

� �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
�𝜙𝜙�1𝑑𝑑𝑧𝑧

−𝑏𝑏

−𝑑𝑑

= �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
�� {(−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]

−𝑏𝑏

−𝑑𝑑

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑧𝑧

= �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�(𝑑𝑑 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �
(𝑑𝑑3 − 𝑏𝑏3) − 3(𝑑𝑑2 − 𝑏𝑏2) + 2(𝑑𝑑 − 𝑏𝑏)

6
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)

− 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,𝑎𝑎𝑎𝑎𝑑𝑑                                                                           (B-43) 

� 𝜙𝜙2
𝑝𝑝 𝑑𝑑𝑧𝑧 

−𝑏𝑏

−1
= � {��𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)� + 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)��

∞

𝑗𝑗=1

𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� +𝐶𝐶(𝑥𝑥)
−𝑏𝑏

−1

+ 𝐷𝐷}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑑𝑑𝑧𝑧 = �𝐶𝐶(𝑥𝑥)(1 − 𝑏𝑏) + 𝐷𝐷(1 − 𝑏𝑏)�𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡.                           (B-44) 
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Therefore, we have 

�(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�(1 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �−
𝑏𝑏3 − 3𝑏𝑏2 + 2𝑏𝑏

6
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

+ �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�(𝑑𝑑 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �
(𝑑𝑑3 − 𝑏𝑏3) − 3(𝑑𝑑2 − 𝑏𝑏2) + 2(𝑑𝑑 − 𝑏𝑏)

6
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)

− 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 = �𝐶𝐶(𝑥𝑥)(1 − 𝑏𝑏) + 𝐷𝐷(1 − 𝑏𝑏)�𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡.                (B-45) 

Since it is at 𝑥𝑥 = −𝑥𝑥1, it can be rewritten as 

�(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)�(1− 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �−
𝑏𝑏3 − 3𝑏𝑏2 + 2𝑏𝑏

6
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)��

+ �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)�(𝑑𝑑 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �
(𝑑𝑑3 − 𝑏𝑏3) − 3(𝑑𝑑2 − 𝑏𝑏2) + 2(𝑑𝑑 − 𝑏𝑏)

6
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1)

− 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)�� = 𝐶𝐶(−𝑥𝑥1)(1− 𝑏𝑏) + 𝐷𝐷(1 − 𝑏𝑏).                                  (B-46) 
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Similarly, for the interface of region 2 and region 3, the terms can be expressed as 

� 𝜙𝜙3
𝑝𝑝 𝑑𝑑𝑧𝑧

−𝑏𝑏

−1
= � {(−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)] + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑑𝑑𝑧𝑧

−𝑏𝑏

−1

= �(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�(1 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �−
𝑏𝑏3 − 3𝑏𝑏2 + 2𝑏𝑏

6
� (−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,                            (B-47) 

� �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
�𝜙𝜙3

𝑝𝑝𝑑𝑑𝑧𝑧
−𝑏𝑏

−𝑑𝑑

= �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
�� {(−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)] + 𝛼𝛼𝑘𝑘2 �

1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡𝑑𝑑𝑧𝑧

−𝑏𝑏

−𝑑𝑑

= �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�(𝑑𝑑 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �
(𝑑𝑑3 − 𝑏𝑏3) − 3(𝑑𝑑2 − 𝑏𝑏2) + 2(𝑑𝑑 − 𝑏𝑏)

6
� (−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,𝑎𝑎𝑎𝑎𝑑𝑑           (B-48) 

� 𝜙𝜙2
𝑝𝑝 𝑑𝑑𝑧𝑧 

−𝑏𝑏

−1
= � {��𝐴𝐴𝑗𝑗 𝑠𝑠𝑐𝑐𝑠𝑠ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)� + 𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖𝑎𝑎ℎ �𝑚𝑚𝑗𝑗(𝑥𝑥)��

∞

𝑗𝑗=1

𝑠𝑠𝑐𝑐𝑠𝑠 �𝑚𝑚𝑗𝑗(𝑧𝑧 + 1)� +𝐶𝐶(𝑥𝑥)
−𝑏𝑏

−1

+ 𝐷𝐷}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑑𝑑𝑧𝑧 = �𝐶𝐶(𝑥𝑥)(1 − 𝑏𝑏) + 𝐷𝐷(1 − 𝑏𝑏)�𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡.                           (B-49) 

By substituting these equations back, we have 

�
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�(𝑑𝑑 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �
(𝑑𝑑3 − 𝑏𝑏3) − 3(𝑑𝑑2 − 𝑏𝑏2) + 2(𝑑𝑑 − 𝑏𝑏)

6
� (−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

= �𝐶𝐶(𝑥𝑥)(1− 𝑏𝑏) + 𝐷𝐷(1 − 𝑏𝑏)�𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡,                                                       (B-50) 
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and by canceling 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 and 𝑥𝑥 = 𝑥𝑥1, we have 

�(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)�(1 − 𝑏𝑏) + 𝛼𝛼𝑘𝑘2 �−
𝑏𝑏3 − 3𝑏𝑏2 + 2𝑏𝑏

6
� (−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)��

− �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)�(𝑑𝑑 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �
(𝑑𝑑3 − 𝑏𝑏3) − 3(𝑑𝑑2 − 𝑏𝑏2) + 2(𝑑𝑑 − 𝑏𝑏)

6
� (−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)��

= 𝐶𝐶(𝑥𝑥1)(1− 𝑏𝑏) + 𝐷𝐷(1 − 𝑏𝑏).                                                                     (B-51) 

Solving Eqns. (B-46) and (B-51), we can get C and D as 

−𝐶𝐶(𝑥𝑥1)(1 − 𝑏𝑏) − 𝐷𝐷(1 − 𝑏𝑏) + �𝐶𝐶(−𝑥𝑥1)(1 − 𝑏𝑏) + 𝐷𝐷(1 − 𝑏𝑏)� = −2𝐶𝐶𝑥𝑥1(1 − 𝑏𝑏)

= �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)�(1 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �−
𝑏𝑏3 − 3𝑏𝑏2 + 2𝑏𝑏

6
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)��

+ �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)�(𝑑𝑑 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �
(𝑑𝑑3 − 𝑏𝑏3) − 3(𝑑𝑑2 − 𝑏𝑏2) + 2(𝑑𝑑 − 𝑏𝑏)

6
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)��

− ��(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)�(1 − 𝑏𝑏) + 𝛼𝛼𝑘𝑘2 �−
𝑏𝑏3 − 3𝑏𝑏2 + 2𝑏𝑏

6
� (−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)��

− �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)�(𝑑𝑑 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �
(𝑑𝑑3 − 𝑏𝑏3) − 3(𝑑𝑑2 − 𝑏𝑏2) + 2(𝑑𝑑 − 𝑏𝑏)

6
� (−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)���  𝑎𝑎𝑎𝑎𝑑𝑑                   (B-52) 



192 
 
 

𝐶𝐶(𝑥𝑥1)(1 − 𝑏𝑏) + 𝐷𝐷(1 − 𝑏𝑏) + �𝐶𝐶(−𝑥𝑥1)(1 − 𝑏𝑏) + 𝐷𝐷(1 − 𝑏𝑏)� = 2𝐷𝐷(1 − 𝑏𝑏)

= �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)�(1 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �−
𝑏𝑏3 − 3𝑏𝑏2 + 2𝑏𝑏

6
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) + 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)��

+ �
1

𝑅𝑅𝑒𝑒𝑏𝑏1
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)�(𝑑𝑑 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �
(𝑑𝑑3 − 𝑏𝑏3) − 3(𝑑𝑑2 − 𝑏𝑏2) + 2(𝑑𝑑 − 𝑏𝑏)

6
� (−𝑖𝑖𝑖𝑖)�𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) − 𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)��

+ ��(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)�(1 − 𝑏𝑏) + 𝛼𝛼𝑘𝑘2 �−
𝑏𝑏3 − 3𝑏𝑏2 + 2𝑏𝑏

6
� (−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)��

− �
1

𝑅𝑅𝑒𝑒𝑏𝑏2
� �
−1
𝑠𝑠
� �(−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)�(𝑑𝑑 − 𝑏𝑏)

+ 𝛼𝛼𝑘𝑘2 �
(𝑑𝑑3 − 𝑏𝑏3) − 3(𝑑𝑑2 − 𝑏𝑏2) + 2(𝑑𝑑 − 𝑏𝑏)

6
� (−𝑖𝑖𝑖𝑖)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥1)��� .                           (B-53) 

So that C and D can be written as 

𝐶𝐶 =
1

−2𝑥𝑥1(1 − 𝑏𝑏) �
{(−𝑖𝑖𝑖𝑖)[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − 𝑇𝑇1𝐼𝐼3](1 − 𝑏𝑏) + 𝐶𝐶1(−𝑖𝑖𝑖𝑖)[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − 𝑇𝑇1𝐼𝐼3]}

+ {(−𝑖𝑖𝑖𝑖)[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2𝑇𝑇1𝐼𝐼3](𝑑𝑑 − 𝑏𝑏)

+ 𝐶𝐶2(−𝑖𝑖𝑖𝑖)[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2𝑇𝑇1𝐼𝐼3]}� 𝑎𝑎𝑎𝑎𝑑𝑑                                            (B-54) 

𝐷𝐷 =
1

2(1 − 𝑏𝑏) �
{(−𝑖𝑖𝑖𝑖)[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 + 𝑇𝑇1𝐼𝐼3](1 − 𝑏𝑏) + 𝐶𝐶1(−𝑖𝑖𝑖𝑖)[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 + 𝑇𝑇1𝐼𝐼3]}

+ {(−𝑖𝑖𝑖𝑖)[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) − 𝐺𝐺2𝑇𝑇1𝐼𝐼3](𝑑𝑑 − 𝑏𝑏)

+ 𝐶𝐶2(−𝑖𝑖𝑖𝑖)[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) − 𝐺𝐺2𝑇𝑇1𝐼𝐼3]}�.                                                   (B-55) 
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where 

𝐶𝐶1 = 𝛼𝛼𝑘𝑘2 �−
𝑏𝑏3 − 3𝑏𝑏2 + 2𝑏𝑏

6
�  𝑎𝑎𝑎𝑎𝑑𝑑                          (B-56) 

𝐶𝐶2 = 𝛼𝛼𝑘𝑘2 �
(𝑑𝑑3 − 𝑏𝑏3) − 3(𝑑𝑑2 − 𝑏𝑏2) + 2(𝑑𝑑 − 𝑏𝑏)

6
� .         (B-57) 

In order to solve 𝑅𝑅1 and 𝑇𝑇1, we have the condition on the interface of region 1 and 3 as 

�
𝜕𝜕𝜙𝜙1

𝑝𝑝

𝜕𝜕𝑥𝑥
 𝑑𝑑𝑧𝑧 = 

−0

−1
�

𝜕𝜕𝜙𝜙2
𝑝𝑝

𝜕𝜕𝑥𝑥
 𝑑𝑑𝑧𝑧

−𝑏𝑏

−1
.                                   (B-58) 

For each term in the equation above, we have 

�
𝜕𝜕𝜙𝜙1

𝑝𝑝

𝜕𝜕𝑥𝑥
 𝑑𝑑𝑧𝑧 = 

−0

−1
� {(−𝑖𝑖𝑖𝑖)[(𝑖𝑖𝑘𝑘)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − (𝑖𝑖𝑘𝑘)𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]
−0

−1

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)[(𝑖𝑖𝑘𝑘)𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥) − (𝑖𝑖𝑘𝑘)𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(𝑥𝑥)]}𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑑𝑑𝑧𝑧

= (−𝑖𝑖𝑖𝑖)�(𝑖𝑖𝑘𝑘)𝑠𝑠𝑖𝑖𝑘𝑘(−𝑥𝑥1) − (𝑖𝑖𝑘𝑘)𝑅𝑅1𝑠𝑠−𝑖𝑖𝑘𝑘(−𝑥𝑥1)�𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡

= (−𝑖𝑖𝑖𝑖)[(𝑖𝑖𝑘𝑘)𝐼𝐼2 − (𝑖𝑖𝑘𝑘)𝑅𝑅1𝐼𝐼1]𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑎𝑎𝑎𝑎𝑑𝑑                                                   (B-59) 

�
𝜕𝜕𝜙𝜙2

𝑝𝑝

𝜕𝜕𝑥𝑥
 𝑑𝑑𝑧𝑧

−𝑏𝑏

−1
= 𝐶𝐶(1 − 𝑏𝑏)

=
1

−2𝑥𝑥1
�{(−𝑖𝑖𝑖𝑖)[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − 𝑇𝑇1𝐼𝐼3](1 − 𝑏𝑏) + 𝐶𝐶1(−𝑖𝑖𝑖𝑖)[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − 𝑇𝑇1𝐼𝐼3]}

+ {(−𝑖𝑖𝑖𝑖)[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2𝑇𝑇1𝐼𝐼3](𝑑𝑑 − 𝑏𝑏)

+ 𝐶𝐶2(−𝑖𝑖𝑖𝑖)[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2𝑇𝑇1𝐼𝐼3]}�𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡.                                        (B-60) 
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So that, we can get 

(𝑖𝑖𝑘𝑘)𝐼𝐼2 − (𝑖𝑖𝑘𝑘)𝑅𝑅1𝐼𝐼1

=
1

−2𝑥𝑥1
�{[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − 𝑇𝑇1𝐼𝐼3](1 − 𝑏𝑏) + 𝐶𝐶1[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − 𝑇𝑇1𝐼𝐼3]}

+ {[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2𝑇𝑇1𝐼𝐼3](𝑑𝑑 − 𝑏𝑏)

+ 𝐶𝐶2[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2𝑇𝑇1𝐼𝐼3]}�.                                                               (B-61) 

Similarly, for the interface of region 2 and 3, we have 

�
𝜕𝜕𝜙𝜙3

𝑝𝑝

𝜕𝜕𝑥𝑥
 𝑑𝑑𝑧𝑧 = 

−0

−1
� �(−𝑖𝑖𝑖𝑖)�(𝑖𝑖𝑘𝑘)𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�
−0

−1

+ 𝛼𝛼𝑘𝑘2 �
1
3

+ 𝑧𝑧 +
𝑧𝑧2

2
� (−𝑖𝑖𝑖𝑖)�(𝑖𝑖𝑘𝑘)𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�� 𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑑𝑑𝑧𝑧

= (−𝑖𝑖𝑖𝑖)(𝑖𝑖𝑘𝑘)�𝑇𝑇1𝑠𝑠𝑖𝑖𝑘𝑘(𝑥𝑥)�𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 = (−𝑖𝑖𝑖𝑖)(𝑖𝑖𝑘𝑘)[𝑇𝑇1𝐼𝐼3]𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 𝑎𝑎𝑎𝑎𝑑𝑑             (B-62) 

�
𝜕𝜕𝜙𝜙2

𝑝𝑝

𝜕𝜕𝑥𝑥
 𝑑𝑑𝑧𝑧

−𝑏𝑏

−1
= 𝐶𝐶(1 − 𝑏𝑏)

=
1

−2𝑥𝑥1
�{(−𝑖𝑖𝑖𝑖)[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − 𝑇𝑇1𝐼𝐼3](1 − 𝑏𝑏) + 𝐶𝐶1(−𝑖𝑖𝑖𝑖)[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − 𝑇𝑇1𝐼𝐼3]}

+ {(−𝑖𝑖𝑖𝑖)[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2𝑇𝑇1𝐼𝐼3](𝑑𝑑 − 𝑏𝑏)

+ 𝐶𝐶2(−𝑖𝑖𝑖𝑖)[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2𝑇𝑇1𝐼𝐼3]}�𝑠𝑠−𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡.                                        (B-63) 

So that, we can get 

(𝑖𝑖𝑘𝑘)[𝑇𝑇1𝐼𝐼3] =
1

−2𝑥𝑥1
�{[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − 𝑇𝑇1𝐼𝐼3](1 − 𝑏𝑏) + 𝐶𝐶1[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − 𝑇𝑇1𝐼𝐼3]}

+ {[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2𝑇𝑇1𝐼𝐼3](𝑑𝑑 − 𝑏𝑏)

+ 𝐶𝐶2[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2𝑇𝑇1𝐼𝐼3]}�.                                                               (B-64) 
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Combining Eqns. (B-61) and (B-64), we have  

𝑇𝑇1𝐼𝐼3 = 𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1.                                                  (B-65) 

So, 𝑇𝑇1 can be written as a function of 𝑅𝑅0  

𝑇𝑇1 =
𝐼𝐼2
𝐼𝐼3
−
𝑅𝑅1𝐼𝐼1
𝐼𝐼3

.                                                    (B-66) 

Substituting Eqn. (B-66) back into Eqn. (B-61), we can get 

(𝑖𝑖𝑘𝑘)𝐼𝐼2 − (𝑖𝑖𝑘𝑘)𝑅𝑅1𝐼𝐼1

=
1

−2𝑥𝑥1
�{[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − (𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1)](1 − 𝑏𝑏)

+ 𝐶𝐶1[𝐼𝐼2 + 𝑅𝑅1𝐼𝐼1 − (𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1)]}

+ {[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1)](𝑑𝑑 − 𝑏𝑏)

+ 𝐶𝐶2[𝐺𝐺1(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1) + 𝐺𝐺2(𝐼𝐼2 − 𝑅𝑅1𝐼𝐼1)]}�.                                                 (B-67) 

Rearrange the equation, we have  

(𝑖𝑖𝑘𝑘)𝐼𝐼2 − (𝑖𝑖𝑘𝑘)𝑅𝑅1𝐼𝐼1

=
1

−2𝑥𝑥1
�{[2𝑅𝑅1𝐼𝐼1](1− 𝑏𝑏) + 𝐶𝐶1[2𝑅𝑅1𝐼𝐼1]}

+ {[(𝐺𝐺1 + 𝐺𝐺2)𝐼𝐼2 − (𝐺𝐺1 + 𝐺𝐺2)𝑅𝑅1𝐼𝐼1)](𝑑𝑑 − 𝑏𝑏)

+ 𝐶𝐶2[(𝐺𝐺1 + 𝐺𝐺2)𝐼𝐼2 − (𝐺𝐺1 + 𝐺𝐺2)𝑅𝑅1𝐼𝐼1)]}�.                                                  (B-68) 
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So that  

�(𝑖𝑖𝑘𝑘)𝑅𝑅1𝐼𝐼12𝑥𝑥1 − [2𝑅𝑅1𝐼𝐼1](1− 𝑏𝑏) + 𝐶𝐶1[2𝑅𝑅1𝐼𝐼1]

+ {(𝐺𝐺1 + 𝐺𝐺2)𝑅𝑅1𝐼𝐼1(𝑑𝑑 − 𝑏𝑏) + (𝐺𝐺1 + 𝐺𝐺2)𝑅𝑅1𝐼𝐼1𝐶𝐶2}�

= 2𝑥𝑥1(𝑖𝑖𝑘𝑘)𝐼𝐼2 + (𝐺𝐺1 + 𝐺𝐺2)𝐼𝐼2(𝑑𝑑 − 𝑏𝑏) + (𝐺𝐺1 + 𝐺𝐺2)𝐼𝐼2𝐶𝐶2.                         (B-69) 

Taking 𝑅𝑅1 out on the left, we have  

                       �(𝑖𝑖𝑘𝑘)𝐼𝐼12𝑥𝑥1 − [2𝐼𝐼1](𝐾𝐾1) + {(𝐺𝐺1 + 𝐺𝐺2)𝐼𝐼1(𝐾𝐾2)}�𝑅𝑅1    

= 2𝑥𝑥1(𝑖𝑖𝑘𝑘)𝐼𝐼2 + (𝐺𝐺1 + 𝐺𝐺2)𝐼𝐼2(𝐾𝐾2),                                                               (B-70) 

where  

                                                               𝐾𝐾1 = 1 − 𝑏𝑏 + 𝐶𝐶1 𝑎𝑎𝑎𝑎𝑑𝑑                                      (B-71)       

                                                                     𝐾𝐾2 = 𝑑𝑑 − 𝑏𝑏 + 𝐶𝐶2.                                          (B-72) 

Finally, we can solve 𝑅𝑅1 as  

R1 =
2x1(ik)I2 + (G1 + G2)I2(K2)

�(ik)I12x1 − [2I1](K1) + {(G1 + G2)I1(K2)}�
.                      (B-73) 
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