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ABSTRACT

The purpose of this study was to examine sensitivity 

analysis as an analytical tool. The method of procedure 

was to examine the definition, use and techniques of sensi­

tivity analysis. In addition the application of sensitivity 

analysis was illustrated on models tractable to partial 

derivative, simulation and linear programming solution 

methods. As opposed to an analysis of specific problems, 

the study was a procedure oriented approach. Sensitivity 

analysis is useful in identifying variables which require 

precise estimates, and in observing the best and worst 

possible outcomes of decisions under uncertainty. Three 

steps were identified which constitute an analysis: 

(1) determine which variables to examine; (2) establish 

the range of each variable examined; and (3) determine the 

measure of sensitivity. The problems of size of the model 

and interaction of variables are limiting factors in an 

analysis. Experimental design and linear programming range 

techniques were illustrated as procedures for resolving 

such limitations.
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CHAPTER I

INTRODUCTION

Analysis of a system by Operations Research techni­

ques involves several well defined steps including (1) con­

structing a model of the system; (2) estimating the 

operating conditions included in the model; and (3) deriv­

ing results from that model. If the actual operating con­

ditions of a system are different than the estimated, a 

significant difference in results may occur.*  One can 

observe the effect variations in operating conditions have 

upon the behavior of a system by using sensitivity analysis. 

For the user of sensitivity analysis, a reference contain­

ing the concepts and applications would be helpful. It 

was the intent of this study to contribute a reference of 

this nature.

*In this study significant was used in a non- 
statistical sense. When a statistical sense applied, 
"statistically significant" was used.

The purpose of this study was to examine sensitivity 

analysis as an analytical tool. Specifically the following 

points were examined: (1) the use of sensitivity analysis; 

(2) the procedures that constitute an analysis; and (3) the 

techniques and limitations of applying sensitivity analysis.

The study was limited to the problem of examining
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the behavior of a given model. Model formulation, valida­

tion, and such factors as stability, and economics are only 

briefly mentioned in this study. Some limitations on the 

number of models examined was necessary. As a result the 

application of sensitivity analysis was illustrated on three 

models grouped by solution method. The user of sensitivity 

analysis should find that in most cases the concepts illus­

trated herein either apply or can be extended to a parti­

cular problem.

The general approach of this thesis was to present 

the concepts of sensitivity' analysis, and to illustrate 

the application of these concepts on a representative group 

of models. The concepts section contains the definition, 

uses, and techniques of applied sensitivity analysis along 

with the limitations to such applications. As opposed to 

an analysis of specific problems, the study was a procedure 

oriented approach. The organization of the remainder of the 

thesis is as follows: (1) review of related work; (2) con­

cepts; (3) applications; and (4) conclusions.



CHAPTER II

REVIEW OF RELATED WORK

In reviewing previous related work it was found 

that Demski provided a sound basis for this study. He 

stressed that the theoretical limitations have not been 

documented, rather work has been mostly concerned with 

either technique or use.l Tomovic attempted to estab­

lish sensitivity analysis as an autonomous scientific 

and engineering field. Specifically his work was in the 

area of dynamic systems, which he defined as physical 

systems whose behavior is described by linear or nonlinear
2 differential equations. Boot reported on sensitivity 

analysis for the purpose of illustrating the concepts.^ 

These three references were the only previous work found 

which were related to examining sensitivity analysis as 

an analytical tool. However, none of the three provide 

a comprehensive examination of that concept. Other refer­

ences found were problem oriented. For example, Bonini

lj. S. Demski, "Some Considerations in Sensitizing 
an Optimization Model," Industrial Engineering, vol. XIX 
(September 1968), pp. 463-467.

^Rajko Tomovic, Sensitivity Analysis of Dynamic 
Systems, New York: McGraw-Hill, 1963.

. C. Boot, Mathemetical Reasoning in Economics 
and Management Science, Englewood Cliffs, New Jersey: 
Prentice-Hall, 1967, pp. 126-137.
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developed a simulation model of a firm, and used an experi­

mental design and classical analysis of variance techniques 

to test the sensitivity to selected variables.Forrester 

reported on his simulation model of industrial systems in 

which the effect of variations in selected operating condi­

tions was determined.In addition sensitivity analysis 

was found to be widely used in the linear programming and 

Lagrangian multiplier sense.

4c. P. Bonini, Simulation of Information and Decision 
Making in the Firm, Englewood Cliffs, New Jersey: Prentice- 
Hall, 19 6 3.

. W. Forrester, Industrial Dynamics, New York: The 
M.I.T. Press and John Wiley § Sons, 1961.



CHAPTER III

CONCEPTS OF SENSITIVITY ANALYSIS

Definition. Various definitions of sensitivity 

analysis were found in the literature.. Boot states that 

the basic problem of sensitivity analysis is "how do the 

results of a model change when the data or parameters or 
assumptions of the model change?"^ Essentially the defini­

tion can be stated as observing the effect on system behavior 

of a variation in operating conditions. For example, if 

y is determined from estimated values for and X2 in the 

model y = f (xj, , a change in x^ causes some change in the 

resulting y. One approach is to find out what change in y 

results from a specified change in x^. An alternative ap­

proach is to determine by how much x^ can vary before y 

changes a significant amount. The question of determining 

what degree of change is considered significant is relative 

to the problem context. One index of significance is per 

cent change.

Uses. Sensitivity studies provide practical informa­

tion in several cases. Some of the more obvious are as 

follows: (1) identifying variables which significantly effect

Boot, op. cit. , p . 12 8.
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the behavior of a system; (2) identifying interaction of 

variables; and (3) observing the distribution of possible 

outcomes due to uncertainty in estimating variables. An 

illustration is the case of a model with one hundred data 

elements. Actual cost data may be infeasible to collect 

for all elements. One can use estimated values for costs, 

and observe the sensitivity of the results to variations in 

each variable over a specified range. If the results are 

judged insensitive to certain variations, it may not be 

necessary to collect more precise values for the correspond­

ing variables.

Interaction occurs if the effect of one variable on 

the result is dependent upon the level of another variable. 

For example, if y changes 5 units for a 10 unit change in x-^ 

when X2 is 50, and y changes 1 unit for a 10 unit change in 

Xj when is 25, then interaction exists between x^ and x^ .

By testing the effect of changing variables simultaneously 

one can identify interaction.

If one is reasonably certain of the estimates included 

in a model, and that model is a realistic abstraction of the 

system under study, then the results will be reasonably valid. 

This may not be the case in a practical situation. In at­

tempting to forecast demand, for example, only some degree 

of certainty can be expected. By establishing a range of
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probable values for each uncertain variable it is possible 

to determine the best and worst possible outcomes of a de­

cision. Sensitivity analysis is also useful in determining 

what variables to include in the model.

Techniques and limitations. A sensitivity analysis 

can be performed by changing each variable in the model, and 

observing the resulting effect. However, the problems of 

size and interaction place limitations on such a simplified 

approach. In the case of the one hundred data element model 

for example, the problem of size is a limiting factor. Also 

unless the assumption can be made that interaction is insig­

nificant, the problem of testing a large number of variables 

simultaneously becomes a limiting factor. Even in the case 

of a model with four variables, a simultaneous test-proce­

dure would require sixteen runs for all combinations of 

changes with one alternative value for each variable.

In order to reduce the problem of size to a workable 

level, certain techniques can be used. One possibility is 

to test the variables that are most likely to have a signif­

icant effect on the result, and hold other variables con­

stant. Statistical methods are also useful in performing 
an analysis; for example, experimental design techniques.?

70. C. Davies, The Design and Analysis of Indus tri a 1 
Experiments, New York: Hafner Publishing Co., 1960.
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In any case the first step in an analysis is determining 

which variables to examine.

Step two is to establish the range of each variable 

that is to be examined. In arriving at estimates for the 

variables, the likely procedure is to decide what possible 

values each variable can assume. Then one assigns the 

corresponding probability of occurrence of each value. The 

objective is to observe system behavior for variations over 

the established possible range.

The third step is that of measuring sensitivity, 

i.e. what change is significant. A standard decision rule 

cannot be established, as each model must be evaluated in 

each problem context. Statistical tests for statistical 

significance are an alternative means of interjecting ob­

jectivity in determining sensitivity. In most cases the 

decision rule is a subjective one.

The solution method is an important factor in the 

application of an analysis. For example, a linear program­

ming method provides for sensitivity information in addition 

to computing the results. For a simulation model an analy­

sis involves changing variable values and rerunning the 

model. Economic factors play a major role in the method of 

solution because of the cost of performing the computations. 

One may find that the cost of computer time offsets any
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economic benefits realized from the sensitivity information. 

The problem of stability, which is not examined in this 

study, is essentially the problem of whether sensitivity 

identified for a time period will in fact remain constant 

over additional time periods.



CHAPTER IV

APPLICATION OF SENSITIVITY ANALYSIS

In general a sensitivity analysis is performed by 

-changing the operating conditions, and recomputing the re­

sults. The complexity of an analysis is determined by the 

number of variables and by interaction. In addition the 

type of model is an important factor in applying sensitivity 

analysis. For example the problem of determining the change 

in results is greatly facilitated, if the model is tractable 

to a solution method such as partial derivatives. In any 

case, an analysis is based on three decision rules: (1) se­

lecting which variables to test for variations; (2) deter­

mining the range of each variable tested; and (3) determin­

ing the significance of effect upon the results. Applica­

tions of sensitivity analysis are illustrated in the sequel, 

using the concepts established in this study. Three types 

of models are illustrated corresponding to the following 

solution methods: (1) partial derivatives; (2) simulation; 

and (3) linear programming.

Model 1-- Parti al derivatives method.

The economic lot size equation was selected for the 

purpose of illustrating solutions by partial derivatives. 

For the purpose of this study, the following model was used:
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K = bn + ex 
x 2 

where:

K is total cost per year in dollars

b is'cost per order in dollars

n is sales demand per year in pounds

x is lot size in pounds

c is average inventory cost per pound in dollars

The objective for the problem was to minimize K. The mini­

mum cost equation was obtained as follows:

dK = 0 = -bji + £ 
dx x^ 2

x2 = 2bn 
c

x*  = V 2bn
1 c

Using estimates of n = 12,000 pounds, b = $40, and

c = $6/pound resulted in an optimum lot size of 400 pounds.

The corresponding minimum cost was computed as follows:

K = ($40)(12,000 Lbs.) + ($6)(400 Lbs.) = $2400 
(400 Lbs.) (Lb.) 2

If the model is a valid abstraction of the system under 

analysis, and the variable estimates are reasonably accurate 

then the results are reasonably valid. However, if uncer­

tainty prevails in predicting n (the actual demand), one is 

concerned with the effect upon K and x*  if actual demand 

differs from the estimated. The effect can be observed by 
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changing demand for each possible value over the specified 

range, and recomputing cost. An analysis was performed for 

a range of possible values from a minimum of 6,000 pounds to 

a maximum of 24,000 pounds. The results are shown in Table 

I. For example if n is actually 14,400 lbs. (20% increase), 

then x*  is 438 lbs. (10% increase). However, the relevant 

question, that of effect on K, reveals that, an x of 400 lbs. 

results in K = $2,640 while an x*  of 438 lbs. results in K*  = 

$2,629, a difference of less than .05% in K. From Table I 

one observes that the change in K was less than 5% for varia­

tions in n from -40% to +50%. In this case K was relatively 

insensitive to variations in n, assuming a corresponding 

decision rule.

The existence of interaction is apparent from observ­

ing the model, i.e. the effect of changes in n becomes more 

significant as b becomes larger. For the purpose of illus­

tration, x was held constant at 400 pounds. In the analysis 

each of the variables b, c and n were tested at two possible 

values. The results are shown in Table II. Eight computa­

tions were required to account for all combinations of values. 

The estimated values were repeated as follows: (1) n = 12,000 

pounds; (2) c = $6; and (3) b = $40; with corresponding 

K = $2,400. Each variable was assigned an alternative higher 

value. For example, if n is 14,400 pounds, the resulting
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TABLE I

ANALYSIS OF ECONONIC LOT SIZE MODEL 
FOR

UNCERTAIN DEMAND

n 
(Lbs)

X*  
(Lbs)

%^n K 
($)

K*
($)

%z\K

6,000 282 -50 1800 1697 -6.1
7,200 309 -40 1920 1859 -3.3
8.400 334 -30 2040 2008 -1.6
9,600 357 -20 2160 2146 -0.7

10,800 379 -10 2280 2277 -0.1
12,000 400 2400
13,200 419 10 2520 2517 0 . 1
14,400 438 20 2640 2629 0.4
15,600 455 30 2760 2736 0.9
16,800 473 40 2880 2840 1.4
18,000 489 50 3000 2939 2 . 1
24,000 565 100 3600 3394 6.1

NOTE:
n is Demand (12,000 Lbs. is estimated demand)
x*  is Optimun lot size for corresponding n

%An is Percent change between actual and estimated demand
K is Cost for actual demand with anticipated optimum lotsize 
K*  is Cost for actual demand with actual optimum lot size

%AK is Percent difference in K and K*
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K is $2,640. However, changing n and b simultaneously re­

sulted in the following:

K = bn + ex = (50)(14,400) + (6) (400) = $3,000 
x 2 400 2

As shown in Table II the increase in n resulted in a

AK of $240 for b = $40 and a difference in AK of $300 for 

b = $50. Thus the observation that interaction existed 

is verified. The number of computations can be reduced if 

interaction does not occur between all variables. In this 

model c does not interact with either variables b or n. 

As a result the differences in ZK were the same at both 

values of c for corresponding changes in n and b. For 

example, with b = $40 and c = $6 an increase in n resulted 

in a AK of $240, and with c = $8 an increase in n resulted 

in a difference in AK of $240.

An alternative approach to the treatment of uncer­

tainty in demand, is to assign probabilities to the possible 

outcomes. As a result n is treated as a random variable. 

The resulting expected cost is computed by using the ex­

pected value for demand:

E £kT| = b E \nj + ex 
x 2

In addition the variance of cost is computed as follows: 
V fK] = b2 VM 

x2

The procedure for a sensitivity analysis is to test the
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TABLE II

ANALYSIS OF ECONOMIC LOT SIZE MODEL 
FOR 

CHANGES IN THREE VARIABLES

n
(Lbs)

c 
($)

b 
($)

K 
($)

AK AK1

12,000 6 40 2400
14,400 6 40 2640 240 240
12,000 6 50 2700 300 60
14,400 6 50 3000 600 300
12,000 8 40 2800 400
14,400 8 40 3040 640 240
12,000 8 50 3100 700 60
14,400 8 50 3400 1000 300

NOTE :
n is Demand
c is Inventory cost
b is Order cost
K is Total cost

AK is Difference in corresponding K and the value of K
for n = 12,000 Lbs.

AK1 is Difference in K and proceeding K



effect of changes in E [nJ and V [n^ rather than changes in 

point estimates as previously illustrated.
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One can simplify the problem of finding the change 

in result by the use of partial derivatives:

yK = b = 40 = .1
n x 400

AK = . 1 (An)

The resulting equation for ZXK indicates that for each pound 

increase in demand, cost increases by 10 cents. Extending 

the approach to b and c results in the following:

= x = 400 = 200
£ c 2 2

ZK = 200 (Ac)

= n = 2400 = 6
^b x 400

4K = 6 (Ab)

If demand is actually 14,400 pounds or a An of 2,400 pounds, 

AK = .1(2400) = 240. To illustrate the effect of interaction, 

since K = b_, for b = $60 each pound change in demand results 
6 n x

in a 15 cent change in cost.

The economic lot size model was a case where the equa­

tions and interaction were linear. As a result the problem 

of testing the range of each variable was simplified by 

treating the variables as discrete, and using relatively 

large intervals. In addition, size and interaction were 

not significant factors in the analysis.
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Model 2_- - Simulation method .

If the problem cannot be structured as a mathematical 

model, an alternative method is a simulation model. The 

following problem was used to illustrate this case. Passen- 

"gers arrive at a bus stop in a poission fashion with a mean 

arrival rate, X = 4 per hour. Buses arrive normally with 

a mean interval /I = 15 minutes and a standard deviation 

= 3 minutes. The number of seats available on each bus 

is a poission distribution with a mean m = 1.5. The ob­

jective was to minimize the average waiting time of passen­

gers at the bus stop. Average waiting time for the parameter 

estimates given was 18.2 minutes. A FORTRAN program was used 

to perform the simulation computations. By changing the 

parameter estimates and rerunning the simulation model, any 

change in average waiting time was observed. Random variates 

were selected from the probability distribution specified 

for each variable, in order to determine the occurrence of 

each event. Four variables were included in the model. There­

fore, to test the sensitivity for each variable at two levels 

of values involves 16 computer runs. If it is not feasible 

to test all variables, a decision is required to determine 

which variables are held constant. For the purpose of this 

analysis, X was held constant. The range of possible values 

was determined as follows: (1) Al, 14-15; (2) , 2-3; and
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TABLE III

ANALYSIS OF SIMULATION MODEL 
FOR CHANGES IN THREE VARIABLES

Variables Average
Waiting

Time

Reduction
Avg. Wait

Time-JU. .S' m

15 3 1.5 18.2
14 3 1.5 17.1 1. 1
15 2 1.5 14.8 3.4
14 2 1.5 14.5 3.7
15 3 2.0 15.5 2.7
14 3 2.0 15.1 3.1
15 2 2.0 13.6 4.6
14 2 2.0 11.4 6.8

NOTE:
M is Mean interval between buses
<5 is Standard deviation of interval 
m is Number of seats available
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(3) m, 1.5-2.0. Even though information was not available 

as to whether linearity existed over the range of values, 

the interval was small enough to run a discrete case. In 

addition, it was decided to check for interaction; therefore 

each combination of levels was run. Results of the analysis 

are shown in Table III. Interaction is illustrated between 

JLL and <S by the difference in effect of changes in z< on the 

average waiting time for the two levels of . For example 

the average waiting time decreases by 1.1 minutes for a 

change in ZZ with <5 = 3 minutes, and by 0.3 minutes for a 

change in // with 6 = 2 minutes. The results in Table III 

show that as Ji decreases 1 minute for constant, the average 

waiting time decreases 1.1 minutes. The average waiting time 

was relatively sensitive to changes in each variable for 

this case.

Results of a classical analysis of variance are shown 

in Table IV. Applying an F-test, the effect of a change in 

either<Sor m for the range given was statistically signifi­

cant at the 75% level. The interaction term for all three 

variables was used as the error term. Next all interaction 

terms were pooled as an error term. The results in Table IV 

show at least a 95% confidence level for each of the three 

variab1es.

Experimental designs are a possible means of reducing
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TABLE IV

ANALYSIS OF SIMULATION MODEL 
USING

ANALYSIS OF VARIANCE

Source 
of 

Variation

Degrees 
of

Freedom

Sum 
of 

Squares'
Mean 
Square

F 
Statistic

Level 
o f 

Significance

1 16.00 2.00 2.4 50%
6 1 134.56 16.82 19.8 75%
nt 1 81.00 10.12 11.9 75%

1 2.00 0.25
1 1.44 0.18
1 0.16 0.02

6 fil (E r r o r) 1 6.76 0.85

(Pooling of all interaction terms)

1 2.00 6.2 95%
6 1 16.82 51.8 9 9%
m 1 10.12 31.1 99%

Error 4 1.30 ____________
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the problem of analyzing a large number of variables. For 

example in this case, the mean passenger arrival rate was 

held constant. In addition only two levels of each variable 

were examined in order to keep the number of computer runs 

at a minimum. It was possible that jUL and could vary over 

a wider range than the two levels in Table III. More specif­

ically the range for JUL is 13-15, and the range for is 2-4 

with X and m unchanged from the previous problem. A random 

balance design was used whereby A was fixed and values of 

JU. , €" and m were selected randomly. The procedure is in­

tended to screen a large number of samples in an effort to 

identify those contributing significantly to the results. 

Table V shows the results of this procedure. The results 

indicate that a change in each variable is significant.

The greatest change in results of -6.5 minutes occurs when 

all three variables are changed simultaneously. Identifying 

which of the three variables has the most significant effect 

is not readily apparent from Table V. However, since the 

result decreased -4.6 minutes for a change in m with the 

other variables fixed, m was the most likely choice.

8p. E. Satterthwaite, 
tion," Techometrics, vol. I,

"Random Balance Experimenta- 
(1959), p. Ill.
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TABLE V

ANALYSIS OF SIMULATION MODEL 
USING A RANDOM BALANCE EXPERIMENTAL

DESIGN

Variables Average
Waiting

Time

Change 
Avg.Wai t 

Timeu. 6 m

15 2 1.5 14.8 -3.4
15 2 2.0 13.6 -4.6
13 4 1.5 15 . 8 -2.4
15 3 2.0 15.5 -2.7
15 4 1.5 21.3 3.1
13 3 2.0 12.9 -5.3
14 2 1.5 14.5 -3.7
13 4 2.0 11.7 -6.5

NOTE :
iU. is Mean interval between buses
6 is Standard deviation of interval
m is Mean number of seats available
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Model 3-- Linear programming method.

Once an optimal solution has been reached, one can 

obtain information about that particular optimum. IBM 360 

system's mathematical programming package provides for 

determining the effect of varying the constraints, objective 

function coefficients and matrix coefficients upon this 
optimal solution.^ The question answered is how far can a 

given constraint value move in either direction while hold­

ing all other constraint values constant, before the optimal 

basis changes? This procedure is a one at a time analysis. 

As a result no test for interaction is included. The same 

procedure is used for other elements in the model. However, 

by using parametric programming a change in variables can be 

defined as input. The function is to retain optimality and 

feasibility as the problem continues to change. In this 

manner variables can be changed simultaneously. In addition 

as in Model 1 and Model 2, one can change the specified 

variables and recompute the solution. However, an advantage 

of range and parametric procedures is that the initial opti­

mum is retained.

A transportation problem shown in Table VI was chosen 

for the purpose of this study. The problem involved the

^International Business Machines Corporation. Mathema- 
tical Programming System/360, Reference 360 A-CO-14X. IBM, 
1967.
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distribution of inventory from five warehouses to twenty­

eight customers. Given the constraints on demand and warehouse 

capacity, the objective was to minimize the total distribution 

cost. More than a hundred cost variables were included in 

the model. The procedure of changing variables in order 

to observe their effect was illustrated in Model 1 and Model 

2. One limitation in Model 3 was the number of variables, 

since it was not feasible to test a change in all cost vari­

ables. A possible solution to this limitation was the random 

balance technique illustrated in Model 2.

For the purpose of this study an illustration of the 

range feature in mathematical programming systems was chosen. 

The use was that of determining which distribution costs re­

quired more precise data. It was not feasible in the case 

of Model 3 to collect actual data on all distribution costs. 

As a result estimates were used as input to obtain the opti­

mum solution. Shown in Table VII are the results of the 

analysis. For example in Table VI, the estimated cost of 

distribution from W1 to 01 was .185 per unit. It was found 

that the maximum level of 01 before the results changed was .890 

per unit. In most cases a wide range of cost was allowable. 

The cost of distributing from W2 to 015 was rather critical, 

indicating a need for more precise data. One can only con­

clude that costs such as W2 to 015 are sensitive over the
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TABLE VI

TRANSPORTATION PROBLEM 
FOR

LINEAR PROGRAMMING
SOLUTION METHOD

_____Distribution Costs Per Unit
iVarehous e

Customer W1 W2 W3 W4 W5
Cl .185 . 950 1.090 1.130 1.410 880
C2 1.430 1.480 1.160 . 660 . 820 270
C3 . 720 .410 . . 810 . 750 1.700 1350
C4 .980 . 545 1.030 1.800 .695 900
C5 . 200 . 295 .080 .230 1.060 2490
C6 1 .010 .840 .840 . 750 . 950 200
C7 1.960 1.150 .470 1 . 700 .470 120
C8 . 275 . 870 .400 .600 . 855 10
C9 1.430 1.270 1.070 1.490 . 375 60

CIO 1.655 1.270 1.070 1.750 .600 130
Cll 1 . 290 .655 .060 .202 . 720 140
C12 1.430 1.270 .890 1.490 1.375 70
C13 . 890 1.090 1.290 .125 1.025 30
C14 1.740 1.590 1.550 2.040 1.180 30
C15 1 . 000 . 800 .675 1.360 . 980 10
C16 . 275 .870 . 200 . 600 . 855 120
C17 . 920 1.290 .920 1.040 .420 170
CIS 1 . 290 .655 .220 . 760 . 720 50
C19 . 545 1.030 .880 .620 . 370 70
C20 1.550 1.220 .100 . 235 .310 450
C21 . 760 1.030 .110 .410 . 300 330
C22 . 545 1.030 .880 .620 . 545 30
C23 1 .650 1.350 1.160 1 . 850 .750 20
C24 .275 .870 . 200 .600 .855 50
C25 1.910 1.760 1.650 2.220 1.270 210
C26 1.800 1 .630 1.560 2 . 100 1 . 200 20
C27 1.550 1 . 240 1.090 1 . 740 .470 20
C28 . 050 . 700 . 300 .100 1 .275 2600

Equality
1100 1800 500 4980 2450 Cons traints

(Units)
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TABLE VII

ANALYSIS OF TRANSPORTATION PROBLEM 
USING LINEAR PROGRAMMING

RANGE TECHNIQUE

Upper Limits of Cost
in Optimum Solution

W1 W2 W3 W4 W5

Cl .890
C2 . 695 . 860
C3 . 760
C4 .600 .725
C5 .088 . 250
C6 .790
C7 . 620
C8 .500
C9 1 . 290

CIO 1.380
Cll .210
C12 1.400
C13 . 260
C14 1.670
CIS .830
C16 . 300
C17 1.130
CIS .410
C19 .755
C2O . 395
C21 .420
C22 . 755
C23 1.430
C24 . 300
C25 1.910
C26 1 . 740
C27 1 .220
C28 .070 .116
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range analyzed. In addition an analysis of interaction was 

excluded.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions.

Sensitivity analysis is used to observe changes in 

the results of a model caused by changes in the variables 

of that model. An analysis is useful in identifying variable 

estimates which require more precise data, and in observing 

the best and worst possible outcomes of a decision under un­

certainty. In addition interaction of variables is observed 

from using sensitivity analysis. The procedure of performing 

an analysis may be a case of observing all possible changes, 

provided the model is simple enough. In any case three 

rules apply to an analysis: (1) determine which variables 

to examine; (2) establish the range of values to examine; 

and (3) determine the measure of sensitivity. The problems 

of size and interaction are limitations for the case of a 

complex model. At the present time techniques to resolve 

these problems are limited. If it is not possible to sub­

jectively choose which variables to examine, experimental 

design techniques are an alternative. In most cases the 

measure of sensitivity is in terms of change in the results, 

with significance of change determined subjectively. How­

ever, features of linear programming methods generate 
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sensitivity information as to the allowable change in vari­

ables before a change in results occurs. In addition,the 

range and parametric procedures of linear programming methods 

facilitate the use of sensitivity analysis. For simulation 

models comparable algorithms are not available. This study 

was somewhat general in approach, but then the topic of sen­

sitivity analysis is general in nature. The concepts pre­

sented herein hopefully will contribute to a more effective 

use of sensitivity analysis.

Recommendations.

It is possible to devote entire studies to specific 

problems that were noted in this work. For example, the 

problem of size is a major limitation in applications. 

Statistical techniques appear to be a fruitful area" of re­

search related to that problem. Another possible area of 

study is in development of mathematical algorithms; for 

example the ranging feature of linear programming, for 

use in other solution methods. In addition a more exten­

sive examination of the effect of interaction on the validity 

of an analysis appears justified. Finally, the work of this 

thesis on the definition, uses and techniques of sensitivity 

analysis requires additional investigation.
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