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Abstract 

Exploration in shale formations has experienced substantial popularity growth 

in recent history. With this, the importance of understanding the elastic properties of 

the sub-surface in exploration areas has also grown. Dynamic elastic properties can be 

extracted from seismic or well log velocity information; however for geomechanical 

modeling purposes, it is often desirable to obtain static measurements directly from 

core samples. Accurate static measurements are of significant importance to many 

applications, namely hydraulic fracturing and reservoir engineering, and are often 

used to determine reservoir behavior in completions engineering. Widely unavailable 

or not properly preserved core data has resulted in the development of correlation 

functions to relate dynamic and static measurements for estimation of static rock 

properties in exploration regions where static data are not available. The relationship 

between static and dynamic measurements of both Poisson’s Ratio and Young’s 

Modulus has attracted some interest with regard to exploration, and has even been 

proposed as a product indicator for shales. This work is targeted at investigation of 

this relationship from the perspective of thermodynamics. Results here provide a 

schematic for relating adiabatic and isothermal measurements of elastic properties in 

shales and various aggregates, and the effect due to anisotropy. This method uses 

elastic velocity data to extract the adiabatic material properties, coupled with 

compositional information and thermal characteristics for estimation of the isothermal 

material properties. Variation due to anisotropy is examined by manipulating the 
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tensor of thermal expansion for the isothermal calculations. Analysis was conducted 

for several core samples found throughout the referenced literature for Barnett, 

Haynesville, and Bossier shales. Results of this work conclude only a qualitative 

understanding of the extent to which static properties can be estimated via the 

adiabatic-isothermal relationship. As such, the developed formulae described here do 

not accurately depict the differences between static and dynamic deformation, and 

consequently cannot be used for estimation of static properties from dynamic 

measurements as originally hypothesized. Further developments in this area may 

provide an alternative mechanism for estimation of these properties.  
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Chapter 1 Introduction 

1.1 Motivation 

Increased attention toward exploration in unconventional shale plays 

throughout the US has inspired the need for greater understanding of mechanical 

properties of both current and prospective reservoirs. Accomplishing this task is 

encouraged by the development of more sophisticated analysis tools and modeling 

techniques. Geomechanical models rely on mathematical relationships made from 

measureable geophysical characteristics, as well as in-situ mechanical properties of 

rocks in the study region. These models require a thorough understanding of both 

ambient and induced stress fields throughout the exploration and production lifecycle. 

Extraction of physical rock properties within the study region is accomplished 

primarily through a process called inversion, which is simply the transformation of 

seismic data into a quantitative description of the rock properties. It is also common 

practice to perform tests directly on core samples (in areas where they are available) 

to link laboratory-scale measurements to field-scale measurements, and to assist in the 

inversion process. These practices aim at resolving the stress characteristics of rocks 

within the study region to optimize the efficiency of engineering operations. The 

relationship between stress and strain is characterized by a fourth rank tensor, which 

is composed of elastic constants that define the response of a material when subjected 

to an applied stress. A combination of measurements enables the extraction of these 
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elastic constants, and consequently the corresponding stiffness or compliance tensor 

for a given material. Both Poisson’s Ratio and Young’s Modulus are elastic properties 

of significant importance, as they describe a material’s specific strain-strain and stress 

– strain relationships, respectively. These can either be extracted intrinsically from 

sonic data (seismic, sonic-log, or laboratory ultrasonic), or they can be extracted via 

tri-axial compression testing in a laboratory environment. The above mentioned sonic 

measurements are referred to as dynamic measurements, where compression tests 

result in static measurements. The importance of the distinction between these types 

of measurements is expressed in many of the referenced publications; “Exploratory 

techniques see dynamic moduli of the formation, whereas reservoir deformations at 

longer time scales obey its static mechanical properties” (Sone, 2012). Although the 

difference between dynamic and static moduli has been discussed extensively, this 

effort investigates only the seemingly analogous thermodynamic relationship, i.e., the 

adiabatic vs. isothermal behavior. As a preface to this investigation, it is necessary to 

first describe both dynamic and static measurements in a fashion warranted by 

thermodynamics. This entails a comprehensive understanding of the conditions under 

which the associated measurements are made, for further use of the fundamental 

equations of state from thermodynamics.  

Dynamic Case  

For elastic wave measurements, the deformation can be regarded as adiabatic, 

meaning it is a process occurring without the exchanging of heat between the system 

and its environment. In this sense, system refers to the mechanical propagation of 
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sound energy, and the environment is the media through which it is propagating. This 

premise is one of general acceptance, as the period of elastic deformation for sonic 

waves during typical dynamic experiments is too rapid for heat exchange to be 

considered.  

Static Case  

In contrast, laboratory compressional measurements can be regarded as 

isothermal; here the system changes, but maintains a constant temperature throughout 

the process. Here, the system is the media and its environment, and the process is the 

mechanical compression of the material. Compressional loading measurements occur 

over much larger periods of time and typically experience stress changes much greater 

in magnitude than equivalent dynamic measurements. In an open environment this 

allows heat energy to be exchanged between core samples and the surrounding area, 

thus maintaining a constant temperature.  

Henceforth, the validity of these investigations as they apply to static and dynamic 

measurements of Poisson’s Ratio and Young’s Modulus is satisfied by acceptance of 

the premise that the adiabatic-isothermal behavior is considered analogous to the 

static-dynamic relationship. This however, is subjected to investigation and found to 

be generally untrue, as it is discussed in the later chapters of this thesis. Dynamic rock 

property measurements (from elastic wave measurements) rely on a well understood 

marriage in rock physics between general Hooke’s law and the Elastic Wave equation, 

and use directionally sensitive velocity measurements as the input to obtain elastic 

rock property information. Static experiments are direct measurements of the elastic 
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(and often inelastic) properties of the rock via core analyses. Dynamic methods 

typically observe deformation on the order of 10
-7

 GPa, whereas deformation 

observed during static load experiments is generally on the order of 10
-2

 GPa or 

higher.  

“Observing the change in dynamic moduli will tell how the elastic pore structure 

changes with pressure, but will not provide information about the deformation 

itself that is changing the pore structure. Therefore dynamic measurements are a 

snapshot of the elastic structure at a certain point in the experiment” (Sone, 

2012).  

As previously mentioned, core analyses are not always accessible, giving rise to the 

desire to estimate static characteristics from available data. The importance of the 

accuracy in which static elastic rock properties are estimated from dynamic 

measurements is expressed through many works in the field of geomechanics. 

Although there is a wealth of correlation functions allowing one to obtain static 

moduli by using dynamic moduli as the input, these correlation functions often rely on 

a variety of assumptions about mineralogy, composition, and stress state to relate 

velocity measurements to static properties measured on similar core samples through 

compressional testing in a laboratory environment. Understanding the effect of 

anisotropy on this relationship, and consequently these correlation functions, is an 

additional factor contributing to the potential error of these estimations. These 

investigations aim to evaluate the following questions:  

1. What is the nature of the relationship between adiabatic and isothermal 

measurements of Young’s Modulus and Poisson’s Ratio?  

2. How does anisotropy affect this behavior? 
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As a consequence, these questions invoke the following necessary inquiry as to how 

these developments apply to real data.  

3. Does the adiabatic – isothermal relationship accurately describe the case of 

dynamic and static measurements? 

4. Can static material properties be estimated via this relationship? 

1.2 Investigation Procedures  

As stated above, the primary objective is to describe the behavior of the elastic 

moduli in different environments, utilizing the well-known thermodynamic equations 

of state. Effectively, this derivation can be broken into two main components: 

1. Extraction of moduli for the adiabatic state with respect to material 

symmetry;  

2. Relationship of isothermal moduli to adiabatic moduli with respect to 

symmetry using state equations from thermodynamics and appropriate 

environmental considerations. 

The first objective comes in the usual form as a relatively rigorous derivation of both 

Young’s Modulus and Poisson’s Ratio from the observed adiabatic stiffness tensor

 S
ijklC , with respect to the investigated symmetries. These equations are used to 

calculate adiabatic elastic moduli for the following symmetries: isotropic, cubic, 

transversely isotropic, and orthorhombic. The next task is slightly more ambitious, as 

it requires moving from the ‘conventional’ adiabatic observations, to the isothermal 



 

6 
 

estimations using a series of state equations from thermodynamics. This involves 

another rigorous evaluation to develop the necessary formulae. Once the groundwork 

is in place however, equations are presented to calculate the isothermal moduli 

(including Young’s Modulus and Poisson’s Ratio) with respect to the adiabatic 

measurements and symmetry constraints. Next, a method for examining this 

relationship in aggregates is presented, where it is applied to two shale data sets 

gathered from the referenced literature. 

1.4 Overview of Thesis 

 This evaluation is broken into five components. Chapter 2 contains the necessary 

derivation of adiabatic relationships for both Poisson’s Ratio and Young’s Modulus in 

the symmetry types of interest. Chapter 3 presents solutions to the other half of the 

problem, the isothermal moduli as a function of the adiabatic measurements. Chapter 

4 uses data from various sources to examine the discrepancies between the adiabatic 

and isothermal values. This is accomplished by application of the equations derived in 

the previous two chapters for monophasic materials of cubic and hexagonal symmetry 

type. In Chapter 5 the methodology for examination of this behavior is extended to 

aggregates. This enables a qualitative estimation of this relationship for the above 

mentioned shales. Chapter 6 presents an overview of discussion in the literature 

regarding the effects of porosity and pore-fluids, where some insightful calculations 

are made to encourage the understanding of the impact of organic material and 
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porosity on these calculations. Finally, Chapter 7 is a comprehensive discussion 

reviewing the strengths and weaknesses of the arguments presented here.  
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Chapter 2 Adiabatic Measurements 

The relationship between stiffness and compliance tensors for dynamic 

measurements is derived in this section. Subsequent sections of this chapter establish 

equations defining Young’s Modulus and Poisson’s Ratio for the investigated 

symmetries. It is worthwhile to begin with the case of orthorhombic material 

symmetry and work toward higher orders of symmetry such as hexagonal, cubic, and 

isotropic. This approach is intuitively designed, as solutions to higher symmetries are 

subsets of the orthorhombic case. Pursuant to the above statement, cases of higher 

symmetry will refer to results provided in the derivation for orthorhombic symmetry 

for simplicity.  

2.1 Orthorhombic Derivation 

Beginning with Hooke’s law:  

 klijklij C    -or- 
klijklij S    (2.1) 

Using the first notation, the following is the component form for the stiffness tensor:  

 

2323231323131223123323332223221123112323

2313231313131213123313332213221113111313

2312231312131212123312332212221112111212

2333231333131233123333332233221133113333

2322231322131222123322332222221122112222

231123131113121123311332211221111111111

222

222

222

222

222

222













CCCCCCC

CCCCCCC

CCCCCCC

CCCCCCC

CCCCCCC

CCCCCCC

klkl

klkl

klkl

klkl

klkl

klkl













 (2.2) 

This is made simpler when written in matrix notation:  
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2344134512463334222411142323

2345135512563335222511151313

2346135612663336222611161212

2334133512363333222311133333

2324132512263323222211122222

2314131512163313221211111111

222

222

222

222

222

222













CCCCCCC

CCCCCCC

CCCCCCC

CCCCCCC

CCCCCCC

CCCCCCC

klkl

klkl

klkl

klkl

klkl

klkl













 
(2.3) 

Using the second expression from Hooke’s law in (2.1) provides the following 

expression in terms of the compliance tensor:  

 

2344134512463334222411142323

2345135512563335222511151313

2346135612663336222611161212

2334133512363333222311133333

2324132512263323222211122222

2314131512163313221211111111

222

222

222

222

222

222













SSSSSSS

SSSSSSS

SSSSSSS

SSSSSSS

SSSSSSS

SSSSSSS

klkl

klkl

klkl

klkl

klkl

klkl













 
(2.4) 

To write the compliance tensor  
ijklS  in terms of the stiffness tensor  ijklC  requires 

the following solution to the system presented above (component form of the stiffness 

tensor) with respect to strain  kl . For orthorhombic symmetry both stiffness and 

compliance tensors can be written in matrix notation as in the following:  





























66

55

44

332313

232212

131211

00000

00000

00000

000

000

000

C

C

C

CCC

CCC

CCC

Cmn  





























66

55

44

332313

232212

131211

00000

00000

00000

000

000

000

S

S

S

SSS

SSS

SSS

Smn  

Taking advantage of the above matrix notation permits the expressions in equations 

(2.4) and (2.5) to be written with less complexity: 

 

23442323

13551313

12661212

3333222311133333

3323222211122222

3313221211111111

2

2

2













CC

CC

CC

CCCC

CCCC

CCCC

klkl

klkl

klkl

klkl
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Solution of the first 3 equations of the stress tensor ( ij from equation (2.5)) for strain, 

as expressed above results in the following:  
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Combining the results of (2.7)-(2.10) with the second series of equations, results in 

the following definition of the compliance tensor components:  

 

     

     

2

1233

2

1322

2

2311231312332211

2

122211
33

23111312

23

2

133311

22

22132312

13

33122313

12

2

233322

11

2

;;;

;;;

CCCCCCCCCCCCD

D

CCC
S

D

CCCC
S

D

CCC
S

D

CCCC
S

D

CCCC
S

D

CCC
S





















 

(2.11) 

The last 3 equations for the stress tensor ( 231312 ,,   from (2.5)) can be solved in 

terms of strain: 
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resulting from symmetry:  
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Finally, we can write the compliance tensor in terms of the stiffness tensor:  
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(2.14) 

For the case of orthorhombic symmetry, the compliance tensor can be written via both 

the Young’s Modulus and the Poisson’s Ratio as described in the literature 

(Chesnokov, 2013):  
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From this definition, both Young’s Modulus and Poisson’s Ratio for orthorhombic 

media can be expressed via the compliance tensor coefficients.  
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Appropriate substitution of the results in equations (2.16) and (2.17) into the 

compliance tensor definition in (2.14) results in the following definitions for the 

moduli of interest in materials obeying orthorhombic symmetry: 
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Defining the matrix determinant, (D from the compliance tensor in (2.14)) results in 

the following:  
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2.2 Transversely Isotropic Derivation 

The stiffness tensor components for transversely isotropic media (hexagonal 

symmetry) have the following relationship (2.29), permitting calculation of the 

compliance tensor as a subset of the solutions from the previous section for 

orthorhombic symmetry.  

  121166554423132211
2

1
;;; CCCCCCCCC   (2.29) 

This consequently implies:  
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(2.30) 

Because of the added symmetry requirements shown in (2.29), D can be redefined:  

 )(2)( 1112
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13

2
12

2
1133 CCCCCCD   (2.31) 

The compliance tensor for transversely isotropic media can be expressed in terms of 

the stiffness tensor coefficients as shown in equation (2.32).  
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Similar to the orthorhombic case, the compliance tensor can be described via Young’s 

Modulus and Poisson’s Ratio for transversely isotropic media, with some 

modification due to the aforementioned symmetry constraints observed in equation 

(2.30). 
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This results in the following expressions for transversely isotropic materials: 
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Using the results from equations (2.34) and (2.35) and the tensor expression in (2.32):  
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2.3 Cubic Derivation 

Symmetry constraints for the stiffness tensor in cubic materials are shown in 

equation (2.41). These constraints enable calculation of the compliance tensor as a 

further subset of the previous solutions. 
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The compliance tensor is shown below:  
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Accordingly, this can be written in terms of Young’s Modulus and Poisson’s Ratio: 
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Allowing the following expressions for materials of cubic symmetry: 
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With the results from equations (2.44) and (2.45), and the tensor expression in (2.42), 

the below equations are crafted for the properties of interest:  
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2.4 Isotropic Derivation 

The stiffness tensor components for isotropic media have the following relationship 

due to symmetry: 

 332211 CCC  ,  1211665544
2

1
CCCCC  , 231312 CCC   (2.48) 

Given the above symmetry constraints, the compliance tensor can be described in 
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terms of the stiffness tensor coefficients:  
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For isotropic materials, the symmetry relationship can be further explained using the 

lame coefficient    and the shear modulus   :  

  211 C , 12C , 44C  (2.50) 

resulting in the following definition of the stiffness tensor:  
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The relationship between the lame coefficient    and the shear modulus    can be 

described using the bulk modulus  k . 

 
3

2
 K  (2.52) 

 
3

4
2  K  (2.53) 

 
 213 


E

K  (2.54) 

 
 





12

E
 (2.55) 

Then by substitution of equations (2.52-2.55) into the above tensor expression (2.51):  
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Substitution of the above stiffness tensor (2.56) into the isotropic compliance tensor 

(2.49) yields the isotropic compliance tensor expressed via Young’s Modulus and 

Poisson’s Ratio, shown in equation (2.57).  
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Both Poisson’s Ratio and Young’s Modulus can now be described via the compliance 

tensor coefficients:  
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Chapter 3 Isothermal Calculations 

3.1 Isothermal Introduction 

Examination of the isothermal case, with respect to the adiabatic measurements, 

requires some extended derivation to accurately describe the thermodynamic behavior 

of such systems. This section focuses on the framework for deriving this relationship 

for arbitrary symmetry. In the subsequent sections, this chapter explores the effect due 

to the changes in symmetry previously discussed in Chapter 2. We begin here by 

discussion of the fundamental thermodynamic relationships that accompany small 

elastic deformations, such as those observed during dynamic measurements. The 

derivation for key relationships is shown in many of the referenced works (Landau & 

Lifshitz, 1959 and 1970), (Nye, 1957), and (Chesnokov, 2013) which provide the 

fundamental building blocks for the investigations discussed here.  

For some small elastic deformation, the work done by the internal stresses in terms of 

change in the strain tensor is defined:  

 ikik uA    (3.1) 

The change in internal energy can be described as heat acquired by the body, less the 

work done by internal stresses (from (3.1)), and accordingly:  

 ATdSdE   (3.2) 

Substitution of equation (3.1) into the above equation results in the following 

expression for change in internal energy:  
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 ikik dTdSdE   (3.3) 

The change in free energy has the form:  

 ijij dSdTdF   (3.4) 

With the above mentioned independent variables, equations for stress at constant 

entropy or temperature (adiabatic or isothermal respectively) are defined in equation 

(3.5):  

 TijSijij ddFddE )/()/(    (3.5) 

Further derivation and expansion of  TF ij ,  shows:  
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(3.6) 

Then, it follows:  
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Taking the derivative of S, in equation (3.8): 
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where, from previous expressions:  
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 (3.11) 

Then, by comparison:  
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Through integration, and keeping in mind that S=0 and F=0 in the initial state:  
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The equation for entropy becomes:  
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For 1
0


T


, the Duhamel-Neyman equations are expressed as the following: 

 


















0T

C
S

C

ijij

ijij
T
ijklij

 (3.17) 

The equation for Free Energy becomes: 

   2
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CTF ijijklijijklij   (3.18) 

Resolving equation (3.18) for stress in terms of strain, results in equation (3.19). 

Expansion of the Duhamel-Neyman equations (3.17), yields the expressions in (3.20).  
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The equation of motion is defined:  
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Then, from equations (3.17) and (3.21) above:  
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Hence, the above equations take the form: 
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However, the term
jx


 requires the definition of thermal conductivity. 
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
,  (3.26) 
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Fourier’s law for heat conduction in an anisotropic body: 

 
j

ijjiji
x

T
kTkq




 ,  (3.28) 

Combining the above two equations:  
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Starting from the previously described equation for entropy shown in equation (3.17): 
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Differentiating equation (3.3) and multiplying by T:  
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This results in the following theoretical expression, linking the adiabatic and 

isothermal stiffness and compliance tensors.  

     0T
C

CC

T
kl

T
ij

TijklSijkl



  (3.32) 

     0T
C

SS

T
kl

T
ij

TijklSijkl



  (3.33) 

Using matrix notation, equation (3.34) can be easily re-written in the following 

format: 

 0T
C

SS

T
kl

T
ijT

MN
S
MN




  (3.34) 

Equations (3.32) and (3.33) (analogously (3.34) in matrix form) allow calculation of 

the corresponding tensor values (isothermal or adiabatic) given a set of measureable 

thermal properties for the material under investigation. It is previously conjectured 

that these thermal properties may be estimated from compositional information, and 

thermal characteristics of the constituent minerals, as a substitute for an abundance of 

measured rock properties. This concept is evaluated and discussed in later chapters of 

this work. Subsequent sections within this chapter discuss permutations of the 

resulting equations presented (equations (3.32) and (3.33)) as they apply to different 

symmetries. Outcomes here provide a relationship between the adiabatic elastic 

material properties (Young’s Modulus and Poisson’s Ratio) as described in Chapter 2, 

and their isothermal counterpart.  
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3.2 Orthorhombic Symmetry  

This section begins with the case of orthorhombic symmetry, as the remaining 

symmetries are all subsets of the orthorhombic solution. As the goal is to use the 

above equation (3.34) to extract a relationship for the moduli of interest, it is 

important to first describe the tensor of thermal expansion  T
ij . It is shown in the 

literature (Landau & Lifshitz, 1959 and 1970) that there are 3 independent coefficients 

of linear thermal expansion (CLTE), which correspond with the three principal axes. 

Hence, the term T

kl

T

ij  in the above relationship can be expressed:  
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It is observed in the literature (Kim, 1996) that for most cases, estimations of 

T
kl

T
ij   are sufficiently accurate. Without loss of generality, this can be written in the 

form of a nm  matrix: 
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As the remaining values from equation (3.34) are scalar, extracting the components of 

the adiabatic compliance tensor becomes routine.  
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3.3 Transversely Isotropic Symmetry 

Crystal systems of transversely isotropic symmetry have two independent thermal 

expansion coefficients, corresponding to the independent principal axes (Landau & 

Lifshitz, 1959 and 1970). Hence, for transversely isotropic media, the CLTE tensor 

may be expressed as shown in equation (3.49). 
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Similar to the solution for orthorhombic symmetry, the isothermal compliance tensor 

can be defined, and the resultant adiabatic-isothermal relationship can be expressed in 

terms of both the Young’s Modulus and Poisson’s Ratio. 
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3.4 Cubic Symmetry 

Crystal systems of cubic symmetry have one coefficient of thermal expansion, in 

which case it is common to refer to the volumetric expansion coefficient as opposed 

to the linear value. This work makes use of an appropriate amendment to the current 
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nomenclature;  = coefficient of linear thermal expansion (CLTE) and  = 

coefficient of volumetric thermal expansion (CTE). It is also of common practice in 

the literature to estimate  3 . Since expansion is equal in all directions, the tensor 

of thermal expansion can be safely defined such that the sum of the diagonal 

components is equal to the volumetric coefficient, as shown in equation (3.60): 
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Similar to the above cases, the resultant relations for cubic materials can now be 

expressed accordingly: 
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3.5 Isotropic Symmetry  

This relationship, as it applies to materials of isotropic symmetry, is described in 

the following section using the same methodology as the previous sections. Presented 

in the appendix, is the analogous solution for the adiabatic and isothermal moduli, as 

presented in the literature (Landau & Lifshitz, 1959 and 1970). The method discussed 
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in the referenced text makes use of Hooke’s law, and is specific to the isotropic case. 

It is presented merely as reassurance in the above results. The tensor of thermal 

expansion is the same for cases of both isotropic and cubic symmetry. For this reason 

(also agreeing with solutions presented in the literature) the volumetric coefficient of 

thermal expansion (CTE) is chosen again.  
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Finally, the resultant relations for isotropic materials can be expressed accordingly:  
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Chapter 4 Results and Analysis 

4.1 Data Introduction  

 Using the results from the previous chapter, this section applies the defined 

relationships to real data acquired both for monocrystalline and polycrystalline 

materials. Data on elastic properties of many single phase crystals have been tabulated 

by Simmons and Wang (Simmons & Wang, 1971) which, along with other references, 

is used here to provide values for the adiabatic stiffness and/or compliance tensors. 

This chapter examines results for crystals having both isotropic and transversely 

isotropic symmetry type, combined with thermal data to estimate the isothermal 

moduli. Here, the expected magnitude of the difference between adiabatic and 

isothermal moduli is previewed for individual materials, without the additional 

consideration of aggregates. This encourages a more sensitive understanding of this 

behaviour prior to any potential error introduced during estimation of aggregate 

thermal properties discussed in the next chapter.  

4.2 Analysis on Cubic Crystals  

A reference table is assembled from the literature for three materials of cubic 

symmetry; copper, gold, and iron. These elements are useful because of the 

abundance of thermal property information for common metals, as well as their 

insensitivity to small environmental changes such as pressure and temperature. Using 

the values from the following table, this section advances some examples of the 
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calculations for isothermal moduli from the adiabatic measurements found in the 

literature.  

Table 1: Adiabatic material properties for some common metals of cubic crystal structure 

(Simmons & Wang, 1971).  

Material  







3cm

g
 .temp   k  11C  Mb  12C  Mb  44C  Mb  

Copper 8.96 294.5 1.684 1.214 0.754 

Gold 19.30 294.5 1.789 1.486 0.437 

Iron 7.86 298 2.260 1.401 1.160 

 

Table 2: Thermal properties for some common metals of cubic crystal structure (Toolbox) 

Material lin  1610  k  vol  1610  k  C
kkg

kj


 

Copper 17 51 0.39 

Gold 14 42 0.13 

Iron 11.8 33.3 0.45 

Equation (2.42) is used to calculate the adiabatic compliance tensor values, from the 

above provided stiffness tensor coefficients in Table 1: 

Table 3: Compliance tensor for the above metals, calculated using equation (2.42). 

Material 11S  1Mb  12S  1Mb  44S  1Mb  

Copper 1.499 -0.628 1.326 

Gold 2.270 -1.030 2.290 

Iron 0.841 -0.321 0.877 

Equations (2.44) and (2.45) from Chapter 2 along with (3.61) and (3.64), are then 

used to calculate the adiabatic and isothermal values of Young’s Modulus and 
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Poisson’s Ratio for these materials as shown in Table 4. 

   

Table 4: Calculated adiabatic and isothermal values for both Young's Modulus and Poisson’s ratio, 

for the selected cubic metals 

Material 
SE  Mb  TE  Mb  S  T  

Copper 0.667 0.650 0.419 0.409 

Gold 0.441 0.423 0.453 0.435 

Iron 1.189 1.159 0.381 0.372 

As is to be expected, the isothermal moduli are smaller than the adiabatic moduli. 

Intuitively, the compressibility of a material measured adiabatically should be smaller 

in magnitude than the isothermal measurements, due to the change in temperature. As 

a material is compressed, its temperature will increase if not held constant, thus 

increasing the difficulty of compression. This is observed by noting the inverse 

relationship of compressibility to the calculated moduli.   

4.3 Analysis on Hexagonal Crystals 

This section extends the examination to the effects of anisotropic thermal 

expansion of a crystal. Adiabatic data for a sample of apatite (hexagonal symmetry) is 

presented from the Simmons and Wang handbook (Simmons & Wang, 1971). Here, 

the case of transversely isotropic (hexagonal) symmetry offers the opportunity for the 

deviation between measurements to be more significant relative to direction, as a 

consequence of the anisotropy in the CLTE tensor. This enables the assessment of the 

difference between adiabatic moduli of interest both perpendicular and parallel to the 
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crystallographic symmetry axis. In turn, this behaviour may be extended to shales, 

which are also of hexagonal symmetry structure.  

Stiffness tensor values (Simmons & Wang, 1971) for apatite are gathered in Table 5 

where the associated thermal properties are shown in Table 6.   

Table 5: Adiabatic material properties for apatite, which is of hexagonal crystal structure 

gathered from (Simmons & Wang, 1971). 

Material 11C  Mb  12C  Mb  13C  Mb  33C  Mb  44C  Mb  66C  Mb  

Apatite 1.434 0.445 0.575 1.805 0.415 0.940 

Table 6: Thermal properties of apatite. (Waples & Waples, 2004) & (Chernorukov, Knyazev, & 

Bulanov, 2011).  

Material .temp  k   







3cm

g
 11  1610  k  33  1610  k  C

kkg

kj


 

Apatite 293.15 3.2147 8.7 8.3 0.7 

Equation (2.42) is used to calculate the adiabatic compliance tensor values from the 

above stiffness tensor coefficients provided in the literature. 

Table 7: Compliance tensor for apatite, calculated from equation (2.42) 

Material 11S  1Mb  12S  1Mb  13S  1Mb  33S  1Mb  44S  1Mb  66S  1Mb  

Apatite 0.836 -0.175 -0.210 0.688 2.411 2.022 

Using equations (2.44) and (2.45), as well as equations (3.61) and (3.64), permits 

calculation of the adiabatic and isothermal values of Young’s Modulus and Poisson’s 

Ratio.  

Table 8: Calculated adiabatic and isothermal values for Young's Modulus for apatite 

Material 
SE11
 Mb  TE11

 Mb  SE33
 Mb  TE33

 Mb  

Apatite 1.196 1.194 1.454 1.451 
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Table 9: Calculated adiabatic and isothermal values for Poisson’s ratio, for apatite 

Material S
12  S

13  S
31  T

12  T
13  T

31  

Apatite 0.2093 0.2512 0.3052 0.2091 0.2509 0.3049 
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Chapter 5 Shales and Aggregates 

  Extending these methods to aggregates and composite materials, it is necessary to 

define which parameters are compositionally dependent. The equations governing the 

behavioural relationship between adiabatic and isothermal moduli are dependent upon 

the following variables; temperature, heat capacity, and the tensor of thermal 

expansion, of which the latter two (heat capacity, and thermal expansion) are 

compositionally dependent. Section 5.1 presents a necessary mixing law to estimate 

both heat capacity and thermal expansions as a function of composition for aggregate 

materials. The subsequent sections apply these additional constraints to shale data 

from the Barnett, Bossier, and Haynesville formations found in the literature.  

5.1 Aggregates   

Heat Capacity 

From the literature (Waples & Waples, 2004) various methods for estimating heat 

capacity as both a function of temperature and composition are clearly defined. For 

the purposes of these investigations however, temperature dependence is neglected for 

the time being, assuming all samples are at room temperature. As a caveat, it is worth 

noting that many of the thermal properties of rocks and aggregate materials are found 

to be temperature and pressure dependent. However, a lack of fundamental data 

permits only consideration neglecting these features. It is intuitive to assume a mixing 

law for heat capacities of rocks that is proportional to the weighted average of the heat 
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capacities of the constituent mineral components, from Kopp’s law. In equation (5.1),

iN  represents the volume fraction and iC  is the specific heat, where the index 

represents the mineral components. 

  
n

ii CNC

1

  (5.1) 

 

“Because rocks are composed of minerals, and because the thermal capacity of a 

mineral mixture is simply the sum of the thermal capacities of its components 

(Gambill, 1957; Holland, 1981; Robertson, 1988), the thermal capacity of a real rock 

can be calculated as the weighted average of the thermal capacities of its mineral 

components.” (Waples & Waples, 2004) 

Equation (5.2) uses the notation C (without the subscript) to denote thermal capacity, 

where 
pCC *  yielding the following for the case of a mineral aggregate:  

  

n

ii CNC

1

 (5.2) 

For matters where the thermal capacity data of some of the constituent matter are 

unknown, a sufficiently accurate method of estimating these values is provided from 

the literature (Waples & Waples, 2004):  

 2697.0023.1 eC   (5.3) 

This formula is empirically derived from a large body of low-medium density 

inorganic minerals, to provide means for estimation of thermal capacity based on 

density. Equation (5.3) is speculated in the literature as having a standard deviation of 

16% for thermal capacities.  

Thermal Expansion 

Just as the Mercury and glass in a thermometer, different minerals of a rock 
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conglomerate expand at different rates, proportions and directions. Hence, it is 

perhaps beyond the scope of this work to correctly identify a mixing law for thermal 

expansion that works 100% correctly for all scenarios. In the referenced works many 

of the pitfalls associated with different aggregate thermal expansion estimation 

methods are explored, as some are speculated to work better than others. To that end 

however, there are a few key aspects to understanding the variables and potential 

nuisances in estimating this combined value; such as crystal structure, orientation, 

anisotropy in α, temperature, micro-cracks…etc. (Huotari & Kokkonen, 2004). The 

distribution and orientation of the mineral components within the aggregate has a 

significant impact on the combined thermal expansion tensor. Randomly distributed 

and/or random orientation of minerals will cause random distribution of the associated 

linear thermal expansion values. For mixtures of anisotropic materials, this will likely 

reduce the level of anisotropy observed in the aggregate. Conversely, if many of the 

materials in the compound exhibit anisotropic behaviour in their CLTE tensor, and 

happen to be layered such that the high and low coefficients are in similar planes, the 

effect of the anisotropy will be increased. Compound materials expanding at different 

rates will impose mechanical stress on one another, which will in turn induce thermal 

fracturing. As an example of this, fractures caused by thermal strain are seen quite 

often in roadways due to the variety of materials used in the cement mixture. Here, it 

is sufficient to analyse the theoretical upper and lower bounds of the values for the 

thermal expansion tensors, for the purpose of understanding the effect of the 

previously mentioned pitfalls. The likely scenario in shales is preferential to 
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orientation of anisotropy planes of thermal expansion in similar direction, and is 

perhaps skewed toward that particular extreme. This methodology for examining the 

upper and lower bounds of the linear thermal expansion coefficient is presented in the 

literature (Huotari & Kokkonen, 2004), where the weighted means are calculated 

using the usual equations. 

The weighted arithmetic mean: 

 




n

i

iia p

1

max   (5.4) 

The weighted harmonic mean:  

 



n

i i

i

h
p

1

min

1



  
(5.5) 

The weighted geometric mean: 

 ip
ig    (5.6) 

Here, i represents the thermal expansion coefficient of the i
th

 mineral species, and ip  

represents the volume fraction of the mineral species in the conglomerate. Equations 

(5.4) and (5.5) can be used to estimate the minimum and maximum values of the 

linear expansivity, respectively. It is noted in the literature that the harmonic and 

geometric means may only be used for non-negative values (cases where the 

specimen length decreases with increased temperature). This limitation restricts us to 

calculations using the volumetric thermal expansion coefficients if examining the 

lower bound of aggregate thermal expansion for rocks possessing mineral constituents 

with negative linear thermal expansion in some direction. One example of such a 

mineral is calcite, which has a negative thermal expansion coefficient (at room 



 

38 
 

conditions) perpendicular to its crystallographic axis of symmetry, and a positive 

value in the plane of symmetry. For minerals with such anisotropic thermal expansion 

behaviour, it often suffices to calculate the mean values for linear thermal expansion 

as seen in the literature (Huotari & Kokkonen, 2004).  

  zyxa  
3

1
 (5.7) 

 

















zyx

h




111

3
 

(5.8) 

 3
zyxg    (5.9) 

Of course, here the subscripts x, y, and z refer to the directions of the principal axes. A 

theoretical layered model is shown from the literature for estimation of thermal 

expansivity of rocks with a layered structure.  

Figure 1: Hypothetical layered model taken from the literature (Huotari & Kokkonen, 2004) 

 

Use of the provided thermal expansion coefficients, allows similar calculation of the 

averages using the above referenced equations in the following illustration. For 

simplicity, the thermal expansion tensor is assumed to be of a hexagonal symmetry; 

hence, both of the coefficients parallel to the bedding plane are set to be equal. For 

this sample calculation, volume fractions of 50%, 25%, and 25% were used for quartz, 

biotite, and plagioclase respectively.  
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Table 10: Calculated CLTE values for the aggregate rock model. Values in this table are calculated 

using equation (5.4). 

Mineral 11  1610  k  33  1610  k  avg  1610  k  

Quartz 23.33 10.00 16.66 

Plagioclase 5.00 2.50 3.75 

Biotite 13.79 9.94 11.86 

 

Table 11: Calculated CLTE values for the aggregate rock model. Values in this table are calculated 

using equation (5.5) 

Aggregate 11  1610  k  33  1610  k  avg  1610  k  

αa 16.36 8.11 12.23 

αh 11.17 5.70 8.49 

αg 13.92 7.06 10.54 

This simple model only takes into account the mineral composition, and volume 

fraction of the rock aggregate for calculation of the mean expansivity. Influential 

factors such as orientation of material within layers, thermal stress fractures, porosity, 

and fluid saturation are all excluded in this exercise. 

5.2 Barnett Shale Data  

Twelve core samples from the Barnett shale were intensively studied in the 

works of both Kefei Lu (Lu, 2012), and Jiang Tao (Tao, 2013). This research provides 

core sample data with both velocity and compositional information, which are used to 

evaluate the resultant formulae from previous chapters. However, several samples 

were deemed insufficient for these purposes due to the amount of heterogeneity 
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included as a result of the coring technique. Further information about the velocity 

measurements and coring technique can be found in the referenced literature. Below 

is the list of samples used in this work.  

Table 12: Core samples from the literature (Lu, 2012) 

No. Well Name County  State Depth (ft.) Sample No.  

1 AS-lower Wise TX xx86 A 

2 AS-upper Wise TX xx86 B 

7 RS-upper Johnson TX xx30 G 

8 RS-lower Johnson TX xx30 H 

9 BR-lower Tarrant TX xx90 I 

12 SC-upper Wise TX xx91 L 

The table below shows the ultrasonic velocity measurements for the core samples in 

Table 12. These velocities are used to extract the adiabatic stiffness and compliance 

tensors.  
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Table 13: Velocity measurements from the core samples (Lu, 2012) 

  Degree Length Density VP VS1 VS2 

Sample  inch g/cm
3
 km/s km/s km/s 

A-1 90
o
 1.663 2.522 4.923 2.352 2.983 

A-2 0
o
 0.406 2.548 3.130 2.236 2.255 

A-3 45
o
 0.204 2.535 4.056 2.012 2.449 

B-1 90
o
 0.942 2.662 5.952 3.207 3.260 

B-2 0
o
 0.734 2.670 5.793 3.170 3.192 

B-3 45
o
 0.479 2.665 5.794 3.202 3.271 

G-1 90
o
 0.915 2.490 4.469 2.083 2.905 

G-2 0
o
 0.306 2.499 2.944 2.313 2.313 

G-3 45
o
 0.355 2.545 3.665 2.437 2.732 

H-1 90
o
 0.712 2.607 4.734 2.249 3.014 

H-2 0
o
 0.209 2.461 3.160 2.176 2.176 

H-3 45
o
 0.422 2.625 4.060 1.798 2.094 

I-1 90
o
 0.567 2.675 4.338 2.466 2.483 

I-2 0
o
 0.287 2.637 4.238 2.497 2.497 

I-3 45
o
 0.268 2.613 4.420 2.484 2.521 

L-1 90
o
 1.252 2.666 5.301 2.810 3.125 

L-2 0
o
 0.377 2.735 3.787 2.520 2.533 

L-3 45
o
 0.134 2.700 4.613 2.438 2.474 
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Table 14 shows the compositional information for these samples. The compositional 

information was gathered using the X-ray diffraction method.  

Table 14: Composition analysis for the core samples (Lu, 2012), in % total 

Sample A B G H I L 

Quartz 57 7 66 52 71 71 

Orthoclase 0 0 0 0 0 0 

Albite 4 1 3 4 3 1 

Pyrite 3 0 1 2 3 2 

Calcite 8 58 3 9 0 2 

Dolomite 2 3 0 3 1 1 

Aragonite 1 0 2 1 1 3 

Siderite 1 0 0 1 1 1 

Apatite 1 0 0 1 2 1 

Smectite 2 2 2 3 2 2 

Illite 9 2 10 9 9 9 

Mixed Layer 4 2 4 4 3 3 

Kaolinite 1 1 1 2 1 1 

Mica 2 1 2 2 2 2 

Chlorite 0 0 0 1 0 0 

Total  100 100 100 100 100 100 
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Table 15: Collected thermal properties for the constituent minerals from the literature (Waples & 

Waples, 2004), (Harvey, 1967), (McKinstry, 1965), (Simmons & Wang, 1971), (Ramachandran & 

Srinivasan, 1972). * represents values estimated by equation (5.4). ** CLTE data for illite is 

estimated from mica. 

Mineral C
kkg

kj


 11  1610  k  33  1610  k  

Quartz 740 17.50 10.00 

Orthoclase 628 14.97 0.49 

Albite 730 7.46 7.46 

Pyrite 510 8.99 8.99 

Calcite 815 -6.00 25.00 

Dolomite 870 10.33 9.00 

Aragonite 785 8.80 19.20 

Siderite 740 -- -- 

Apatite 700 8.70 8.30 

Smectite 820* -- -- 

Illite 781* 17.8** 3.5** 

Mixed Layer 774* -- -- 

Kaolinite 974 18.60 5.20 

Mica 776 17.80 3.50 

Chlorite 600 9.00 3.50 
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Table 15 is comprised with a collection of heat capacity and thermal expansion data 

for pure mineral phases from many sources, the latter of which are used in 

cooperation with the mixing law described in equation (5.4) to estimate the thermal 

expansion tensor for the aggregate. Sparse availability of pure mineral data, not to 

mention thermal expansion data as a whole (for both rocks and minerals), promotes 

exploration of the estimation of this parameter from a more academic perspective. Not 

all of the above mentioned minerals have hexagonal symmetry, as the above thermal 

expansion coefficients imply. The chart is comprised of various minerals, each with 

different crystallographic symmetries, as are shales. For cubic minerals, the same 

linear thermal expansion coefficient for directions is used both perpendicular and 

parallel to the symmetry axis. In minerals possessing symmetry higher than hexagonal, 

estimation is made based on available data, typically following a similar orientation to 

the remaining samples. Although this method is slightly dubious, some of the possible 

error will be eradicated by the averaging methodology when estimating the expansion 

tensor for the aggregate. For shales, the primary interest is in the thermal expansion 

coefficients both parallel and perpendicular to the bedding plane, due to the 

transversely isotropic nature of these rocks.  

5.3 Barnett Shale calculations  

Shale is generally understood to be a transversely isotropic elastic media having a 

hexagonal symmetry with five independent elastic constants, where the axis of 

symmetry is perpendicular to the bedding plane. Table 16 shows the results of the 
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adiabatic stiffness tensor components as calculated from the velocity data in Table 13 

for the selected samples.  

Table 16: Adiabatic stiffness tensor calculated from the velocities listed in Table 13 

Sample avg  









3cm

g  

11C

 GPa  

12C

 GPa  

33C

 GPa  

13C  

 GPa  

44C  

 GPa  

66C

 GPa  

A 2.535 61.443 16.325 24.839 4.793 14.022 22.559 

B 2.665 94.429 37.779 89.452 32.110 27.420 28.324 

G 2.5113 50.165 7.775 21.767 4.066 10.891 21.195 

H 2.564 57.475 10.880 25.604 12.481 12.975 23.297 

I 2.642 49.712 17.135 47.454 22.503 16.066 16.288 

L 2.700 75.896 23.166 38.730 9.866 21.322 26.365 

The adiabatic values of Young’s Modulus and Poisson’s Ratio are estimated using 

equations (2.36)-(2.40) and shown in Table 17.  

Table 17: Calculated adiabatic values for both Young's Modulus and Poisson’s ratio, for the shale 

samples 

Sample 
SE11

  GPa  SE33
 GPa  SV12

 SV13
 SV31

 

A 56.600 24.248 0.254 0.144 0.062 

B 74.589 73.855 0.317 0.245 0.243 

G 48.410 21.197 0.142 0.160 0.070 

H 50.944 21.047 0.093 0.442 0.183 

I 37.971 32.303 0.166 0.396 0.337 

L 67.571 36.765 0.281 0.183 0.100 

The calculated values for the adiabatic moduli are advanced to the calculation of the 
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isothermal moduli, using equations (5.1) and (5.4) for calculation of the aggregate 

thermal properties. Using equations (5.1) and (5.3) with the compositional data found 

in Table 14 and the thermal property data found in Table 15 yields the estimated heat 

capacities for the shale samples.  

 

Table 18: Specific heat values calculated from the pure phase mineral data found in Table 15, 

using the mixing law in equation (5.1) and also estimated from equation (5.3) using the density 

of the provided shale samples.  

Sample avg  







3cm

g   1.5PC  
kkg

kj


  3.5PC

kkg

kj


 % diff 5.1 and 5.3 

A 2.535 0.714 0.799 10.683 

B 2.666 0.623 0.788 20.909 

G 2.511 0.706 0.802 11.923 

H 2.564 0.713 0.797 10.527 

I 2.642 0.736 0.790 6.821 

L 2.700 0.741 0.785 5.572 

Estimations of the thermal expansion tensor prove to be slightly more rigorous 

however. The CLTE values are estimated using the weighted arithmetic mean 

equation (5.4) with the compositional information in Table 14 and mineral thermal 

property data found in Table 15.  
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Table 19: Calculated CLTE values for the shale data set. Values are calculated using equation 5.4. 

Sample 11  1610  k  33  1610  k  % Anisotropy 

A 12.588 9.160 72.76 

B -1.151 15.702 n/a 

G 14.182 8.520 60.08 

H 11.943 8.997 75.33 

I 15.428 8.479 54.96 

L 15.158 9.040 59.64 

Estimations of the isothermal elastic properties are carried out using the thermal 

properties calculated for the shale samples shown in the above tables. Equations 

(3.50)-(3.59) are used to calculate the required Young’s Modulus and Poisson’s Ratio 

for these samples. Discussion from the literature (Huotari & Kokkonen, 2004) 

indicates that calculations of thermal expansivity for aggregates using the arithmetic 

mean, systematically underestimate the true values. As the arithmetic mean is chosen 

to be the upper bound, further calculations use the linear thermal expansion 

coefficients estimated by use of equation (5.4), as this seems to be closest to reality.  
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Table 20: Isothermal moduli for the shale data set. 

Sample 
TE11

  GPa  TE33
  GPa  TV12

 TV13
 TV31

 

A 56.5232 24.2407 0.2541 0.1438 0.0616 

B 74.5879 73.6347 0.3167 0.2446 0.2421 

G 48.3374 21.1917 0.1418 0.1602 0.0702 

H 50.8889 21.0420 0.0932 0.4418 0.1825 

I 37.9225 32.2929 0.1654 0.3956 0.3365 

L 67.4278 36.7500 0.2808 0.1830 0.0996 

 

To assess the effect of the CLTE estimation technique, examination of the effect of 

using the thermal expansion tensor values for the mode mineral of each aggregate is 

conducted. As the composition of each sample is provided in Table 14, the 

coefficients chosen here are from quartz for all but sample B. The results of this 

examination show the potential deviation based on improper estimation of thermal 

expansion mixing behaviour.  
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Table 21: Isothermal properties calculated using the CLTE values from the mode mineral for each 

sample 

Sample 
TE11

  GPa  TE33
  GPa  TV12

  TV13
  TV31

  

A 56.4521 24.2393 0.2538 0.1438 0.0616 

B 74.5562 73.2987 0.3165 0.2434 0.2410 

G 48.2996 21.1898 0.1417 0.1602 0.0702 

H 50.8256 21.0408 0.0931 0.4418 0.1825 

I 37.9087 32.2888 0.1653 0.3955 0.3365 

L 67.3804 36.7466 0.2806 0.1830 0.0995 

 

5.4 Barnett Shale Results    

Table 22: Comparison of the adiabatic and isothermal moduli recorded in Table 17 and Table 20 

respectively. 

Sample 
SE11  GPa  TE11  GPa  % diff 

SE33  GPa  TE33  GPa  % diff 

A 56.600 56.523 0.135 24.248 24.241 0.031 

B 74.589 74.588 0.002 73.855 73.635 0.299 

G 48.410 48.337 0.150 21.197 21.192 0.024 

H 50.944 50.889 0.108 21.047 21.042 0.025 

I 37.971 37.922 0.127 32.303 32.293 0.033 

L 67.571 67.428 0.211 36.765 36.750 0.041 
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Table 23: Comparison of the adiabatic and isothermal values of Poisson’s Ratio recorded in Table 

17 and Table 20 respectively. 

Sample SV12
 TV12

 SV13
 TV13

 SV31
 TV31

 

A 0.25447 0.25412 0.14389 0.14384 0.06164 0.06162 

B 0.31668 0.31667 0.24529 0.24456 0.24287 0.24215 

G 0.14201 0.14180 0.16028 0.16024 0.07018 0.07016 

H 0.09335 0.09325 0.44193 0.44182 0.18258 0.18254 

I 0.16556 0.16535 0.39570 0.39557 0.33664 0.33653 

L 0.28144 0.28085 0.18305 0.18297 0.09959 0.09955 

Table 22 shows that the percentage differences between isothermal and adiabatic 

values in these calculations are surprisingly small. One may even conjecture that the 

differences noticed here are significantly less than the margin of error assumed by the 

measurement techniques themselves. Table 24 displays the results of calculations 

using thermal expansion values from the mode mineral for each shale sample as 

provided in Table 21. 
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Table 24: Comparison of the adiabatic and isothermal moduli recorded in Table 17 and Table 21 

respectively. Isothermal moduli are computed via the CLTE values of the Mode (M) mineral.  

Sample 
SE11  GPa  TE11 (M)  GPa  % diff SE33  GPa  TE33 (M)  GPa  % diff 

A 56.600 56.4521 0.2609 24.248 24.2393 0.0366 

B 74.589 74.5562 0.0442 73.855 73.2987 0.7536 

G 48.410 48.2996 0.2278 21.197 21.1898 0.0326 

H 50.944 50.8256 0.2326 21.047 21.0408 0.0314 

I 37.971 37.9087 0.1632 32.303 32.2888 0.0454 

L 67.571 67.3804 0.2817 36.765 36.7466 0.0502 

As is evident in the above table, the percentage differences still remain below 1%. 

The effect due to anisotropy is shown via examination of the percent-difference 

between adiabatic and isothermal values of Young’s Modulus. Differences between 

values perpendicular to the bedding plane are significantly higher due to the observed 

anisotropy in the CLTE values. These results are expected, because the remaining 

thermal properties included in the governing equations are all scalar quantities and 

only compositionally dependent. The anisotropy in the CLTE tensor however, is not 

specifically related to the observed anisotropy via adiabatic measurements. 

5.5 Example Calculation 

“For a given pore-space compressibility, the fluid mixture filling the pore-space has a 

major influence on P-wave velocity and may cause under pressure or overpressure 

depending on its compressibility and thermal expansion coefficient. Rocks saturated 

with fluids of high compressibility and low thermal expansion coefficients are 

generally under pressured, and rocks saturated with fluids of low compressibility and 

high thermal expansion coefficients are generally over pressured, and can be 

seismically ‘visible’.” (Ghabezloo, 2012) 
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As is evident from the above arguments, composition plays an effective role in 

this relationship. The work of Duvall (Duvall, et al., 1983) investigates the changing 

nature of the linear thermal expansion coefficient for shale samples from Anvil Points 

Mine, CO, as a function of both grade and temperature. These measurements were 

conducted in directions parallel, perpendicular, and at 45̊ with respect to the bedding 

plane, providing a reasonable understanding of the anisotropic nature of the tensor of 

thermal expansion for these shale samples. The effect of temperature on thermal 

expansions is neglected here (previously mentioned), as there is little variation over 

the temperature range of interest. This work highlights the dramatic impact of organic 

matter (kerogen content) on the CLTE. The effect of kerogen content here is made 

especially visible by comparison of CLTE values from Figure 2 against the shale 

results estimated via compositional information in the previous section.   
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Figure 2: Taken from (Duvall, et al., 1983). Thermal expansion coefficient vs. grade in the 

temperature range of 373-473 K for three orientations of the bedding plane. Triangles are 

representative of the CLTE measured perpendicular to the shale bedding plane, where squares 

represent measurements parallel to the shale bedding plane.  

Figure 2 shows the variation of the measured CLTE vs. Grade for three specific 

grades over the temperature range of 373-473K.  

 

Table 25: CLTE values for kerogen enriched shales estimated from the above table. Shale grades 

were chosen from the literature. 

Grade  13 kgdm  11  1410  k  33  1410  k  

0.086 1.50 0.30 

0.167 1.75 0.40 

0.253 2.50 0.35 
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Table 25 (estimated from Figure 2) shows a significant increase, on the order of 10 

times for thermal expansion values perpendicular to the bedding plane, but only three 

times for the coefficients parallel to the shale bedding plane. These results inspire 

further investigation into the magnitude of the estimated CLTE results from the 

previous sections. In a strictly academic exercise, the above values recorded from the 

Duvall experiments are used to examine their effect on the Barnett Shale data set. This 

comes with the necessary caveat that the following considerations are well 

understood:  

 Mineral composition for the shale species discussed in the literature differs 

somewhat from the shale species referenced in Chapter 5.  

 Neither density or heat capacity data are provided for the shale samples 

examined in the literature  

 The shale specimens were examined under zero load  

 These coefficients were measured for the temperature range of 373-473K, 

where the previous calculations assumed 273.15K.  

The potential deviations arising from the above considerations constrain the 

appreciation of this exercise to a general understanding of the magnitude of the effect 

of the CLTE tensor values. Hence, using values from the above table to compute the 

isothermal Young’s Modulus and compare it to previous results, allows a conditional   

observation of the significance of the effect of the much more thermally compliant 

values observed in these kerogen enriched shale samples. For these calculations only 

the CLTE tensor coefficients are changed, to simulate those of kerogen enriched shale 
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having a similar mineralogical composition, all other thermal properties are left 

unaltered.   

 

Table 26: Comparison of adiabatic and isothermal moduli calculated with CLTE values for the 

0.086 dm3kg-1 shale sample, provided in Table 25. 

Sample 
SE11  GPa   086.011 GET  % diff 

SE33  GPa   086.033 GET  % diff 

A 56.600 47.477 16.118 24.248 24.169 0.328 

B 74.589 58.452 21.635 73.855 73.056 1.082 

G 48.410 41.456 14.364 21.197 21.135 0.293 

H 50.944 43.494 14.624 21.047 20.988 0.282 

I 37.971 33.900 10.719 32.303 32.172 0.407 

L 67.571 55.958 17.186 36.765 36.600 0.450 

 

Table 27: Comparison of adiabatic and isothermal moduli calculated with CLTE values for the 

0.250 dm3kg-1 shale sample, provided in Table 25. 

Sample 
SE11  GPa   253.011 GET  % diff 

SE33  GPa   253.033 GET  % diff 

A 56.600 36.902 34.801 24.248 24.140 0.446 

B 74.589 42.215 43.404 73.855 72.772 1.467 

G 48.410 33.023 31.784 21.197 21.112 0.398 

H 50.944 34.519 32.241 21.047 20.967 0.384 

I 37.971 28.474 25.010 32.303 32.125 0.553 

L 67.571 42.863 36.566 36.765 36.540 0.611 

In the above tables, there is a notable percentage difference increase between the 

original adiabatic values, and newly calculated isothermal moduli. The results here are 
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remarkable in showing the magnitude of the effect of the CLTE on these calculations. 

It is suspected here that the influence of kerogen content has the strongest significance, 

as it shown in this literature that fluctuation of CLTE with temperature is markedly 

stable below approximately 500K.  

 5.6 Bossier and Haynesville Shale Data 

The following data set comes from the doctoral thesis of Hiroki Sone (Sone, 

2012), and is included to complement the results shown for the above Barnett Shale 

data. In the literature, Sone investigates the differences between static and dynamic 

measurements in shale plays throughout the continental United States. Provided with 

this work is a database of ultrasonic velocity and static compressional analysis data. 

Here, a table of transversely isotropic stiffness values calculated from elastic wave 

measurements (dynamic) is provided for the various core samples from the 

Haynesville and Bossier shales.  
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Table 28: Dynamic elastic stiffness tensor coefficients of samples from the Haynesville and 

Bossier shales (Sone, 2012). 

Sample 

avg  









3cm

g  

11C

 GPa  

12C

 GPa  

33C

 GPa  

13C  

 GPa  

44C  

 GPa  

66C

 GPa  

1 2.646 83.200 26.200 30.500 15.000 10.100 28.500 

2 2.661 76.000 24.000 32.200 17.200 11.400 26.000 

3 2.659 78.700 22.500 41.100 17.600 10.900 28.100 

4 2.554 65.100 17.100 27.600 10.500 9.900 24.000 

5 2.587 65.300 21.300 51.900 19.100 19.600 22.000 

6 2.522 56.300 13.300 35.500 11.700 12.800 21.500 

7 2.497 59.200 14.800 34.500 12.200 11.900 22.200 

8 2.518 67.800 21.400 42.600 18.300 10.100 23.200 

9 2.565 56.300 17.900 47.600 17.200 15.700 19.200 

10 2.532 59.800 15.600 41.500 13.400 14.600 22.100 

11 2.534 60.900 17.300 36.500 14.400 13.100 21.800 

12 2.492 60.300 15.700 34.200 12.800 11.500 22.300 

13 2.518 58.200 15.200 34.100 12.800 11.500 21.500 

14 2.516 64.000 19.200 37.200 15.300 12.900 22.400 

15 2.582 70.500 20.700 54.100 16.100 17.800 24.900 

16 2.660 102.500 42.900 95.400 42.700 28.200 29.800 
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The adiabatic values of Young’s Modulus and Poisson’s Ratio are estimated using 

equations (2.36)-(2.40) and shown in Table 29.  

Table 29: Calculated adiabatic values for both Young’s Modulus and Poisson’s Ratio from the 

dynamic data provided in Table 28. 

Sample 
SE11

  GPa  SE33
 GPa  SV12

 SV13
 SV31

 

1 71.150 26.387 0.248 0.370 0.137 

2 63.528 26.283 0.222 0.416 0.172 

3 68.017 34.978 0.210 0.338 0.174 

4 58.295 24.918 0.214 0.299 0.128 

5 54.776 43.475 0.245 0.278 0.221 

6 50.743 31.566 0.180 0.270 0.168 

7 52.883 30.477 0.191 0.286 0.165 

8 56.881 35.091 0.226 0.333 0.205 

9 47.359 39.626 0.233 0.277 0.232 

10 53.182 36.737 0.203 0.257 0.178 

11 52.774 31.197 0.210 0.312 0.184 

12 53.365 29.888 0.197 0.301 0.168 

13 51.371 29.636 0.195 0.302 0.174 

14 54.820 31.573 0.224 0.319 0.184 

15 61.857 48.416 0.242 0.226 0.177 

16 76.602 70.320 0.285 0.320 0.294 
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To estimate the isothermal properties, equation (5.3) is used to estimate the specific 

heat, given density information for sedimentary rocks as shown in the literature 

(Waples & Waples, 2004). In the absence of specific compositional information, 

CLTE values recorded from the Duvall literature (shown in the previous section) are 

used for estimation of the isothermal moduli. This simultaneously enables 

examination of the effect of increased kerogen content for these shale samples as in 

the results of section 5.5 for the Barnett Shale data.  
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Table 30: Calculated isothermal values for both Young’s Modulus and Poisson’s Ratio from the 

dynamic data provided in Table 28. Calculations here use CLTE values from (Duvall, et. al., 1983) 

for Grade = 0.086. 

Sample 
TE11

  GPa  TE33
 GPa  TV12

 TV13
 TV31

 

1 58.831 26.305 0.205 0.369 0.137 

2 53.556 26.202 0.187 0.414 0.171 

3 56.706 34.835 0.175 0.337 0.173 

4 49.576 24.843 0.182 0.298 0.127 

5 47.067 43.250 0.210 0.276 0.219 

6 43.956 31.446 0.156 0.269 0.167 

7 45.509 30.364 0.164 0.285 0.164 

8 48.480 34.942 0.193 0.331 0.204 

9 41.454 39.438 0.204 0.276 0.231 

10 45.792 36.574 0.175 0.256 0.177 

11 45.492 31.079 0.181 0.310 0.183 

12 45.858 29.779 0.169 0.300 0.168 

13 44.420 29.529 0.168 0.301 0.174 

14 46.972 31.452 0.192 0.318 0.183 

15 52.191 48.136 0.204 0.224 0.176 

16 62.553 69.745 0.233 0.317 0.291 
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Table 31: Calculated isothermal values for both Young’s Modulus and Poisson’s Ratio from the 

dynamic data provided in Table 28. Calculations here use CLTE values from (Duvall, et. al., 1983) 

for Grade = 0.253. 

Sample 
TE11

  GPa  TE33
 GPa  TV12

 TV13
 TV31

 

1 44.985 26.383 0.157 0.370 0.137 

2 41.871 26.279 0.146 0.416 0.172 

3 43.767 34.972 0.135 0.338 0.174 

4 39.163 24.914 0.144 0.299 0.128 

5 37.647 43.463 0.168 0.278 0.220 

6 35.511 31.559 0.126 0.270 0.168 

7 36.470 30.471 0.132 0.286 0.165 

8 38.398 35.084 0.152 0.332 0.205 

9 33.932 39.614 0.167 0.277 0.232 

10 36.720 36.728 0.140 0.257 0.178 

11 36.531 31.190 0.146 0.311 0.184 

12 36.683 29.882 0.135 0.301 0.168 

13 35.806 29.629 0.136 0.302 0.174 

14 37.442 31.566 0.153 0.319 0.184 

15 40.844 48.402 0.160 0.225 0.176 

16 47.173 70.300 0.176 0.320 0.294 

Static measurements for both Young’s Modulus and Poisson’s Ratio are also provided 

in the literature (Sone, 2012) and shown in Table 32. Further information regarding 

the details of these static measurements can be found in the referenced text. 
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Table 32: Static measurements for both Young’s Modulus and Poisson’s Ratio taken from the 

literature (Sone, 2012). 

Sample 
RE11

  GPa  RE33
 GPa  RV12

 RV31
 

1 40.400 13.800 0.338 0.130 

2 34.400 17.600 0.297 0.191 

3 40.500 18.500 0.273 0.167 

4 31.500 15.400 0.190 0.138 

5 29.200 16.700 0.235 0.214 

6 29.400 10.900 0.241 0.186 

7 28.400 10.700 0.239 0.156 

8 33.000 8.800 0.315 0.262 

9 28.200 14.200 0.277 0.221 

10 28.900 15.000 0.252 0.229 

11 29.000 12.300 0.285 0.149 

12 31.700 11.300 0.434 0.179 

13 25.800 9.700 0.267 0.172 

14 32.200 17.200 0.341 0.144 

15 33.000 21.000 0.265 0.139 

16 57.800 45.400 0.291 0.267 
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5.7 Bossier and Haynesville Shale Results 

The CLTE values used here are not estimated in the same fashion as the CLTE 

values calculated via compositional information for the shale samples of the Barnett 

Shale formation in section 5.3, and likely improve the correlation between the static 

and isothermal values. This estimate is provided however, to not only display the 

gross magnitude of the difference between static and isothermal observations, but also 

to emphasize the effect of kerogen content in these estimations. For direct comparison 

between estimations made for isothermal moduli and static measurements with 

respect to the moduli computed from the ultrasonic velocity analyses, the following 

figures are presented.  

 

Figure 3: Comparison of Isothermal calculations of Young’s Modulus and Static measurements, 

with respect to calculations from adiabatic measurements. Adiabatic and static data was taken 

from (Sone, 2012) 
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Figure 4: Comparison of Isothermal calculations of Young’s Modulus and Static measurements, 

with respect to calculations from adiabatic measurements. Adiabatic and static data was taken 

from (Sone, 2012). 

 

Close analysis of the figures presented above (Figure 3 and Figure 4), shows that 

the estimations from the isothermal calculations significantly over predict the static 

moduli. The effect of kerogen content on the CLTE values (discussed in section 5.5) is 

of great significance to the resulting isothermal moduli. Results from Figure 3 clearly 

show a direct-positive correlation between the calculated isothermal moduli and static 

moduli with increased kerogen content for Young’s Modulus calculated perpendicular 

to the shale bedding plane. However, it is observed in Figure 4, that increased CLTE 

values had little effect on the resulting isothermal calculations parallel to the bedding 

plane. In this direction, the change in CLTE values with increased kerogen content 

was negligible. Large margins between static and isothermal values indicate that the 

isothermal calculations fail to account for a large portion of the static deformation, 
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especially in directions parallel to the shale bedding plane. Anisotropy of the dynamic, 

isothermal, and static values for Young’s Modulus is calculated as











11

33

E

E . 

Comparison of the anisotropy observed in all three cases is shown in Figure 5.    

 

Figure 5: Comparison of Dynamic, Static and Isothermal calculations for anisotropy (E33/E11). 

Error bars here indicate a 20% margin around static measurements. Data was taken from (Sone, 

2012). 

Error bars in the above figure show a margin of 20% about the static calculations. 

Approximately 33% of the shale samples show dynamic anisotropy that is within this 

margin, where only 13% of isothermal calculations fall within this range. In all cases 

differences between anisotropy observed from isothermal-static values is less than 

differences between anisotropy observed for dynamic-static values. This behaviour is 

a consequence of the negligible difference in isothermal and adiabatic moduli 

estimated in the direction parallel to the shale bedding plane. The results shown in the 

above figure indicate large magnitude differences (higher than 20% in most cases) 
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between anisotropy observed in mechanical and dynamic measurements. These results 

support the conclusion that estimations of isothermal moduli are an insufficient 

representation of static behaviour.   
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Chapter 6 Pore Considerations 

Hereto, these investigations are primarily targeted toward the adiabatic isothermal 

relations, sans any contributions made by porosity. More specifically, this relationship 

is considered while neglecting the effect of any intrinsic porosity of the shale samples 

on the adiabatic measurements, and consequently such isothermal calculations. Hence, 

results from the above work simply describe the mentioned relationship with respect 

to the thermoelastic properties of the rock skeleton (porous or non-porous), without 

considering the effect of any pore fluids. To that end, it seems an important segue to 

extend this discussion to the effect of porosity on these observations as well as those 

scenarios involving trapped fluids. Although it is evident in the previous section that 

many factors contribute to the observed deviations in measurements, certainly the 

thermoelastic properties of the rock aggregate prove to be most significant. This 

chapter discusses the effect of both porosity and pore fluid saturation only 

qualitatively, and by observations found throughout the literature. Provided here is a 

brief analysis of the magnitude of these effects, and how their contribution to the 

deviation between isothermal and adiabatic measurements may vary.  

6.1 Porosity    

Discussion of the effect of porosity on the coefficients of thermal expansion is 

found in the literature (Ghabezloo, 2012). Here, a relationship for heterogeneous 

porous media is explored using a micromechanical evaluation technique on a 2-phase 
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heterogeneous isotropic representative elementary volume. Results here conclude that 

the porosity dependence of the volumetric thermal expansion coefficient is directly 

related to the poro-dependence of the elastic moduli of the reference media. Below, 

Figure 6 shows the schematic for the representative volume (REV) being examined.  

 

Figure 6: A schematic view of the REV included in the discussion. (Ghabezloo, 2012) 

 

Next, the effect of composition is examined using a non-porous material having the 

same constituents (with an equal volume fraction) of the above porous model. This 

shows the correlation between the effective bulk modulus of the material to the ratio 

of thermal expansion values for the constituent materials. The results indicate that the 

CTE of the homogenized non-porous material  0  increases with the ratio of the 

CTE for the constituent materials 
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
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Figure 7: Variations of the effective thermal expansion coefficient of non-porous heterogeneous 

solid with the ratio of CTE values for various values of the ratio of bulk moduli for the constituent 

materials. (Ghabezloo, 2012) 

Figure 8 illustrates the result of extending this investigation to porous media using the 

same schematic (equal volume fractions for constituents) but varying the porosity. It 

is observed that the thermal expansion will increase or decrease with porosity 

depending on the nature of both the bulk modulus and the thermal expansion 

coefficient of the constituent material.  

 

Figure 8: Variations of the effective CTE for the heterogeneous porous material with porosity 

(Ghabezloo, 2012) 
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Even as porosity is shown to influence the effective thermal expansion of the material, 

it is made clear in the above figure that this relationship is governed by the behaviour 

of both 










2

1

K

K
 and 











2

1




. Ghabezloo concludes that the effect of porosity on the 

thermal expansion is visible only through the poro-dependency of the shear modulus 

( 0 in the below equation) for the reference media; here it is shown that the associated 

decrease in hom
0 with increasing porosity will generate the observed effect on the 

thermal expansion of the homogenized porous media.  
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Although, there is no definitive formula for the calculation of the effective thermal 

expansion coefficient for a heterogeneous medium based on porosity, observations 

from the above work show that the behaviour of the elastic moduli with porosity 

strongly governs the resulting thermal expansions.  

6.2 Effect of Pore Fluids    

In this section, a somewhat qualitative investigation is performed for better 

understanding the effect of pore fluid saturation on the thermal properties of rocks, 

and ultimately its effect on the elastic properties. Table 33 lists some of the thermal 

characteristics of interest for pore fluids in this discussion.  
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Table 33: Collected values for CTE and specific heat found throughout the literature for some 

likely pore fluids. Values with the * symbol are estimated using a single provided value for 

petroleum products found in the literature (Toolbox). 

Fluid avg  
V  1610  k  C

kkg

kj


 

Water 1 214 4.190* 

Crude Oil 0.8 937 2.140* 

Crude Oil 0.85 831 2.140* 

Crude Oil 0.9 693 2.140* 

Crude Oil 1.0 490 2.140* 

From the literature (Ghabezloo, 2010) the following formula is presented describing 

the undrained CTE  u  as a function of the drained  d  and pore-fluid  f  CTE 

measurements:  

    fdu B0
 (6.1) 

This equation is in terms of porosity  0 , and the skempton coefficient  B , which is 

simply the ratio of pore pressure to the change in applied stress for an undrained 

condition (any pore fluids are confined). This allows us to calculate the effective 

thermal expansion coefficient as a function of porosity, and the relative 

compressibility of the fluid and solid constituents. In the absence of proper 

information (such as this example), the skempton coefficient from equation (6.1) can 

be neglected by assuming incompressibility of the constituents setting 1B , and 

consequently  d
. 

   fdu  001   (6.2) 
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The above equation permits examination of a crude estimate of the CLTE behaviour 

for the shale data set with the presence of trapped pore fluids.  

Table 34: Calculated CTE values for the shale data set using equation (6.2). Here the superscript 

indicates that saturating fluid, i.e. “w” for water and “o” for oil. Porosity is provided in the 

literature (Tao, 2013). 

Sample 0  11  W
11  O

11  33  W
33  O

33  

A 0.0735 1.258 2.739 7.274 0.91601 2.422 6.957 

B 0.0217 -0.1150 0.3518 1.691 1.57016 2.000 3.339 

G 0.0638 1.418 2.693 6.629 0.85197 2.163 6.099 

H 0.0608 1.194 2.422 6.174 0.89972 2.146 5.897 

I 0.0351 1.542 2.239 4.405 0.84785 1.569 3.735 

L 0.001 1.515 1.535 1.597 9.040 9.245 9.862 

 

The above table shows that the estimated expansion coefficients are still significantly 

smaller than those found for the Anvil Points shale data (Duvall, et al., 1983). 

Manipulation of equations (5.1) and (5.2) allows the definition of the specific heat 

capacity for a saturated porous rock via the weighted sum of the specific heat capacity 

of its constituent matrix and fluid properties in agreement with the literature 

(McTigue, 1986).  

   fS CCC  001   (6.3) 

Without loss of generality, density can be found in the same fashion resulting in the 

following table of estimated thermal capacities for the above shale samples:  
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Table 35: Calculated density and heat capacity values for the shale data set using equation (6.2). 

Superscripts follow the convention noted in Table 34. 

Sample avg  W
avg  O

avg  PC  W
PC  O

PC  

A 2.535 2.422 2.411 0.714 0.970 0.818 

B 2.666 2.629 2.626 0.623 0.700 0.656 

G 2.511 2.415 2.405 0.706 0.929 0.797 

H 2.564 2.469 2.460 0.713 0.924 0.799 

I 2.642 2.584 2.579 0.736 0.857 0.785 

L 2.700 2.698 2.698 0.741 0.744 0.742 

The above calculations now encourage use of equations (3.51) and (3.59) for 

isothermal values of Young’s Modulus both perpendicular and parallel to the shale 

bedding plane.  

Table 36: Comparison of moduli calculated using the thermal values for water saturated pores as 

provided in Table 34 and Table 35. Moduli are listed in GPa.  

Sample 
SE11  GPa   WET

11  GPa  % diff 
SE33  GPa   WET

33  GPa  % diff 

A 56.600 56.322 0.492 24.248 24.208 0.165 

B 74.589 74.579 0.014 73.855 73.533 0.437 

G 48.410 48.204 0.426 21.197 21.171 0.121 

H 50.944 50.762 0.357 21.047 21.023 0.116 

I 37.971 37.882 0.234 32.303 32.272 0.098 

L 67.571 67.425 0.216 36.765 36.749 0.043 
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Table 37: Comparison of moduli calculated using the thermal values for oil saturated pores as 

provided in Table 34 and Table 35. Moduli are listed in GPa. 

Sample 
SE11  GPa   OET

11  GPa  % diff 
SE33  GPa   OET

33  GPa  % diff 

A 56.600 54.346 3.982 24.248 23.861 1.599 

B 74.589 74.338 0.337 73.855 72.903 1.290 

G 48.410 46.986 2.942 21.197 20.961 1.111 

H 50.944 49.605 2.628 21.047 20.835 1.007 

I 37.971 37.597 0.985 32.303 32.108 0.605 

L 67.571 67.412 0.235 36.765 36.747 0.049 

The above results show that the percentage difference between adiabatic and 

isothermal moduli is more dramatic for calculations in the direction parallel to the 

bedding plane. This difference is suspected to be due to the heightened CLTE value in 

this direction, arising from a coupled effect between the thermal expansion of the pore 

fluid and the directional dependence of the porosity. Ideally, pore fluids are likely to 

expand with temperature isotropically, however in reality their expansion will be 

governed by the anisotropic nature of the expansion properties of the rock skeleton as 

well as the directionally sensitive nature of the pore space.  
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Chapter 7 Final Comments 

 

Typical to the nature of this type of academic proceeding, the intentions of this 

work have evolved dramatically throughout the course of the prolonged investigation. 

As it was originally intended to prescribe adequate methodology for estimations of 

static behaviour via the adiabatic-isothermal relationship described herein; it has 

revealed the opposite conclusion. The equations described here, although analogous in 

principle, are insufficient for describing the dynamic – static behaviour of rock 

systems. It is made abundantly clear through the exercises here however, that the 

dynamic elastic behaviour as acquired through seismic procedures differs 

significantly from the elastic behaviour measured via static methodology. Results 

from the Haynesville and Bossier shale data show a significant disagreement between 

mechanical and dynamic elastic anisotropy, a factor of great importance to the fidelity 

of the geomechanical model. It is evident that additional factors contribute to this 

difference in measurements, where factors such as grain crushing and pore 

compression in the static case perhaps exhibit some degree of inelastic deformation.  

These results do however, promote a rigorous qualitative understanding of the 

relationship between adiabatic and isothermal moduli, and further emphasize the 

factors of greatest impact on this behaviour. Equations linking isothermal and 

adiabatic compliance tensors are discussed in many forms throughout the references; 
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one significant outcome of this work is the extension of these equations to formulae 

relating the adiabatic and isothermal material properties (Young’s Modulus and 

Poisson’s Ratio) with decreased symmetry. This enables a much more accurate 

understanding of these relationships, which can be applied in many scientific 

disciplines. Listed below are a few easily identifiable areas in this report that call for 

further investigation in future works.  

Thermal Expansion Tensor: Estimation of the thermal expansion tensors for 

aggregates is shown to be rather suspicious in this work. Parameters such as structural 

orientation, porosity, fluid saturation…etc. are necessary to include in estimation 

algorithms and the greatly affect the resultant material’s expansion properties.  

Thermal Conductivity Tensor:  As mentioned in the text, the analyses discussed in 

this thesis assume homogeneous strain, which simply implies a uniform strain 

throughout the body. This effectively renders the thermal conductivity tensor useless, 

as it implies a non-uniform thermal strain, and thus deviates from the theoretical 

solutions discussed here and in the referenced work. Aggregate materials, especially 

porous media containing some degree of fluid saturation are especially sensitive to 

thermal conductivity; thermal diffusivity of pore fluids governs the relaxation time of 

saturated pores upon heating, changing the dynamic between applied stress and 

internal pore pressure.  

Error: Great care was taken in this work while gathering thermal data to assure that 

the conditions during measurement of the thermal characteristics of the constituent 

materials were similar to the environmental conditions for the adiabatic velocity 
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measurements. Unfortunately, a lack of readily available data in this area invokes the 

use of inappropriate values for such measurements, and increases the corresponding 

error of these calculations. Temperature and pressure variations for these estimations 

were allowed to deviate somewhat, resulting in a systematic error in the calculations 

for the aggregate materials. Error here is random and may result in variation of 

calculated values of isothermal Young’s Modulus and Poisson’s Ratio as high as 10%. 

Many of the assumptions in the above work rely on environmental similarity between 

assorted data for rock properties, this source of error in the above calculations is 

however extremely difficult to quantify. 
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Appendix 

A.1 Derivation of Isotropic Relationship 

This section summarizes the derivation found in the text (Landau & Lifshitz, 

1959 and 1970) to establish the isotropic relationship between adiabatic and 

isothermal moduli to show results in agreement with the above equations …  

Beginning with (3.5) from Section 3.1: 

 TijSijij dudFdudE )/()/(   (3.5) 

To evaluate the free energy as a function of the strain tensor, we expand the free 

energy as a Taylor series:  

 22
0

2

1
ijii uuFF    (0.1) 

where , are the Lame coefficients. Writing deformation as a sum of shear and 

hydrostatic components:  

 iiijiiijikik uuuu 
3

1
)

3

1
(   (0.2) 

Substitution of this way of writing deformation by shear and hydrostatic components 

into (0.1):  
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(0.3) 

where K is the bulk modulus and  is the shear modulus. Now, with use of (3.5) and 
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the above representation for free energy (0.3):  
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resulting in the isothermal stress tensor, in terms of the strain tensor for isotropic 

bodies: 

 







 iiijijijiiTijij uudKududF 

3

1
2)/(  (0.7) 

In isothermal deformation, the temperature of the body does not change. In adiabatic 

deformation, there is no heat exchange between parts of the body or its surrounding 

medium, the entropy however is to remain constant. Next we consider deformations 

with change in temperature. The free energy expression is now:  

 2
2

00
2

1

3

1
)()()( iiiiikikii KuuuuTTKTFTF 








   (0.8) 

where the coefficient  is the thermal expansion coefficient of the body. Then, 

differentiating F with respect to the strain tensor we obtain:  

 







 ijiiijijiiijik uuKuTTK 

3

1
2)( 0  (0.9) 

In the above equation, if we leave temperature constant, we observe results from (0.4). 

Now, examining the temperature change with constant entropy, entropy is the 

derivative of free energy with respect to temperature:  

 iiuKTSTSTF  )()(/ 0  (0.10) 

Holding entropy constant and determining change in temperature, allows substitution 

of these results back into (0.6) to obtain a result similar to (0.4). 
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Here, adK  is the adiabatic bulk modulus. The shear modulus (  ) remains the same. 

The following relation can be used to link the adiabatic and isothermal bulk modulus:  
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Here 
PC is the specific heat per unit volume for constant pressure. Thus:  
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Now we can directly relate the terms adiabatic and isothermal bulk moduli:  
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resulting in the following for the adiabatic Young’s Modulus and Poisson’s Ratio:  
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A.2 Elastic Moduli Directly from Velocity  

To simplify the calculations in the above work, moduli are calculated using the 

adiabatic stiffness values as determined from the velocities. This section provides 

method of calculating these directly from the velocities for a transversely isotropic 

material, a method that can be extended to any symmetry group of interest with the 

appropriate modifications. 

Beginning with equation (2.25) defining the matrix determinant D for orthorhombic 

symmetry. 

 2
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From transversely isotropic symmetry this can be reduced to reduce to the following:  
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Observing the definitions for Young’s Modulus and Poisson’s Ratio in terms of the 

stiffness tensor values similar to equations (2.36)-(2.40), here the terms are expanded: 
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These parameters can now be calculated via the velocities, with the following 

representation of the stiffness tensor in a VTI medium:  
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resulting in the following expressions for Young’s Modulus and Poisson’s Ratio in 

transversely isotropic materials:  
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