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Abstract

In this dissertation, we consider a new mixed finite element discretization, its

error estimation, monotonicity and the approaches to implement local refinement.

We also do some numerical experiments to verify error estimates and to see the effect

of distorted faces.

In the first part, we introduce a discontinuous Galerkin method based on piece-

wise constant fluxes, we elaborate its construction and discretization on triangular

meshes. We then consider the monotonicity of this method, compare it with classical

RT0 method and extend to KR methods. Finally, error estimation is investigated.

In the second part, we start from reviewing traditional approaches to implement

local refinement for the new mixed finite element method. Because of disappearance

of monotonicity, we then try to find an alternative way to do local refinement to keep

monotonicity.

In the third part, we implement this method on a specially constructed prismatic

grid. Numerical results are provided. We then verify the error estimates from the

numerical results.
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CHAPTER 1

Introduction

The diffusion equation is one type of partial differential equations describing den-

sity dynamics in a material undergoing diffusion. The diffusion type problems are

governed by the second-order elliptic differential equation:

−∇ · (K∇p) + cp = f in Ω, (1.1)

where K = K(x) is a diffusion tension, f = f(x) is a source function, c = c(x) is a

non-negative function (dissipation coefficient) and Ω is a bounded domain in R2 or

R3 with boundary ∂Ω.
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1.1. REVIEW OF APPROXIMATION METHODS FOR DIFFUSION
EQUATIONS

Equation (1.1) usually has the boundary conditions:

p = gD on ΓD,

(K∇p) · n = gN on ΓN ,
(1.2)

where n is the outward unit normal vector to ∂Ω, ΓD ∩ ΓN = ∅ and ∂Ω = ΓD ∩ ΓN ,

gD, gN are given functions defined on ΓD and ΓN , respectively.

1.1 Review of approximation methods for diffu-

sion equations

There are many discretization methods deveploed for diffusion equations. The most

famous ones are Finite Difference (FD), Finite Element (FE), Finite Volume (FV),

Mixed Finite Element (MFE) and Mixed Hybrid Finite Element (MHFE) methods.

The finite difference methods are one of the oldest and simplest methods to

solve differential equations. It was first introduced by L. Euler in one-dimensional

space in 1768 and then was extended to dimension two probably by C. Runge in

1908. FD is widely used for uniform rectangular grids because of its simplicity for

implementing. However, there are also some disadvantages and restrictions for FD.

For instace, because of restriction to rectangular grids, there are potential bottlenecks

of FD when handling complex geometries in multiple dimensions. Please refer to G.

Forsythe, W. Wasow [24] for complete information about FD method.

The finite element methods are the most popular and powerful methods for mod-

ern applications. Its development started from the work by A. Hrennikoff [29] and

6



1.1. REVIEW OF APPROXIMATION METHODS FOR DIFFUSION
EQUATIONS

R. Courant [18]. Later in China, to do the computations of dam constructions, a

systematic numerical method for solving partial differential equations was proposed

by K. Feng, which was called the finite difference method based on variational prin-

ciple [22], and actually was another independent invention of finite element method.

The term “finite element method” was proposed by R.W. Clough in [17].

A FE method is often composed by a variational formulation, a discretization

method, solution algorithms and post-processing procedures. The solution from vari-

ational formulation is called “weak solution”. The weak solution belongs to a certain

explicitly constructed Hilbert space Q. Existence and uniqueness of the solution can

be proved by using certain properties of Hilbert space. Then, by following three steps

of discretization method: (1) construction of finite element mesh, (2) definition of

basis function on reference elements and (3) mapping of reference elements onto the

elements of the mesh, we can contructe the corresponding algebraic system. At last,

by direct or iterative solvers, a finite element approximation ph ∈ Qh of the solution

p of corresponding diffusion problems is obtained.

The main advantage of FE method over FD method is that FE method is more

flexible in terms of dealing with complex geometry and complicated boundary con-

ditions. The application of FE method on domain with curved boundaries can be

found at [3, 7, 42, 55].

Different from FD method, which is based on a discretization of the differential

form of the conservation equations, the finite volume (FV) method [21] is based on

discretization of the integral forms of the conservation equations. “Finite volume”

refers to the small volume surrounding each node point on a mesh. In the FV

7



1.1. REVIEW OF APPROXIMATION METHODS FOR DIFFUSION
EQUATIONS

methods, by using the divergence theorem, volume integrals involving divergence

terms are converted to surface integrals. These terms on surfaces are called fluxes.

Since the flux entering a given volume is identical to that leaving the adjacent volume,

FV methods are conservative. The fluxes on the surfaces are then approximated by

the discrete unknowns for the solution function. Although conservative, compared

to FE methods, FV methods are limited to certain types of meshes, for instance,

Voronoi mesh [44].

Very often instead of the second-order diffusion equation, researchers and engi-

neers consider the first order system:

K−1u + ∇p = 0 in Ω,

∇ · u + cp = f in Ω,
(1.3)

where the unknown vector function u is called the flux. The corresponding mixed

variational formulation is: find (u, p) ∈ V ×Q such that


´

Ω
(K−1u) · vdx −

´
Ω
p(∇ · v)dx = −

´
∂Ω
∇ · (gDv)ds

´
Ω

(∇ · u)qdx +
´

Ω
cpqdx =

´
Ω
fqdx

(1.4)

for all (v, q) ∈ V ×Q, where V = Hdiv(Ω) and Q = L2(Ω). For this mixed formula-

tion, both flux u and solution p are computed simultaneously. Mixed finite element

(MFE) methods are then introduced based on this mixed formulation and certain

discretization strategies Vh ⊂ V and Qh ⊂ Q. Subspaces Vh and Qh are required

8



1.1. REVIEW OF APPROXIMATION METHODS FOR DIFFUSION
EQUATIONS

to satisfy so-called discrete LBB (Ladyzhenskaya-Babushka-Brezzi) condition:

β||qh||Q ≤ sup
vh∈Vh

(∇ · vh, q)
||vh||H(div,Ω)

, (1.5)

for all qh ∈ Qh and certain constant β > 0. This condition is essential for the stability

and error estimation of the numerical solutions.

For MFE method, the spaces Vh for fluxes are first constructed on simple mesh

cells, such as triangles and rectangles in 2D, and tetrahedra, triangular prisms, rect-

angular parallelepipeds in 3D. The examples of such spaces include the Raviart-

Thomas spaces RTm, Brezzi-Douglas-Fortin-Marini spaces BDFMm, and Brezzi-

Douglas-Marini spaces BDMm, etc, which are introduced and investigated in [8, 9,

13, 46, 48].

By the strategy of change of variables, “simple” FE spaces can be extended to

general convex quadrilaterals in 2D, and hexahedral or distorted prismatic cells in

3D. MFE spaces based on Piola transformation are investigated in [25, 51]. Error

estimates are strongly dependent on the properties of the Jacobian of transformation.

Convergence and superconvergence estimates for MFE method can be found in [48,

20, 45, 54, 26], for instace.

Lots of effort are also involved in how to solve the linear system efficiently from

MFE method, which is a saddle-point problem, for example, [28, 19, 27, 2]. The

earliest successful technique was the mixed hybrid finite element method (MHFE)

[25]. This strategy turns the saddle-point problem into a semi-definite problem, but

pays the price of significantly inceasing the degree of freedoms.

The relationship between MFE method and cell-centered FV method has been

9



1.1. REVIEW OF APPROXIMATION METHODS FOR DIFFUSION
EQUATIONS

researched, under the assumption that K in (1.1) is a scalar or diagonal matrix. For

rectangular meshes, RT0 can be reduced to a standard cell-centered FV method, by

applying appropriate quadrature rules [49, 12]. Based on this observation, Weiser and

Wheeler [54] were able to analyze and prove superconvergence for the approximation

solution generated by this method. This result was also extendeded to triangular

meshes [1].

In [41, 36], Yu. Kuznetsov and S. Repin introduced one new approach to define

a space of fluxes Vh on general polygonal and polyhedral meshes. The idea of this

discretization is to partition a complicated polygonal or polyhedral cell into simple

cells, the finite element space of fluxes Vh is then defined as a subset of corresponding

RT0 space on this cell. They imposed the condition ∇ · u = const on the cell to

eliminate the degrees of freedom on auxiliary interfaces between partitioned cells.

In [38], Yu. Kuznetsov proposed another new discretization method for 2D diffu-

sion equation on polygonal meshes with mixed cells. In [39], the method was further

extended to 3D diffusion problems. In [40], the error estimates on fluxes for this new

approach was proved:

||u∗ − uh||K−1 ≤ 2||u∗ − u∗h,int||K−1 , (1.6)

for triangular and quadrilateral mesh in 2D, and tetrahedral and pyramidal mesh in

3D.

In this dissertation, we will take further investigation on the new discretization

method proposed by Yu. Kuznetsov. We will verify the error estimate (1.6) by

numerical experiments, explore the error estimate on solution p, investigate the case

10



1.2. REVIEW OF DISCRETE MAXIMUM PRINCIPLE AND MONOTONICITY

when local refinement appears, and check if discrete maximum principle holds for

this method.

1.2 Review of discrete maximum principle and mono-

tonicity

The maximum principle is one of the most important and useful properties for some

partial differential equations. A natural question in numerical analysis is whether

the approximate solution keeps the property of the maximum principle as well. This

problem is referred to the discrete maximum principle (DMP) or monotonicity of the

numerical method.

In mathematical modeling, the maximum principle indicates natural nonnega-

tivity of some quantities like temperature, density, concentration, etc. Therefore,

the reliability of numerical models often highly depends on validity of the discrete

maximum principle. Numerical results with negative concentrations, or heat fluxes

from colder to warmer places are not accepted and considered as unreliable.

Mathematicians have studied and analyzed the DMP for a long time. The ealiest

results on the FD discretization appeared in 1960s [6, 5, 15, 52], etc. The DMP for FE

approximations was first derived in [16] for linear elliptic equations. Other techniques

are basd on elliptic estimates [50] or matrix properties [30]. It is well known that

the DMP are strongly related to monotone matrices, especially the theory of M-

matrices. The monograph [53] is fundamental and pioneering in this field. It is also

well known that the validity of DMP is closely related to geometric properties of the

11



1.3. DISSERTATION OUTLINE

finite-element meshes, see, [14, 33, 34]. DMP for convection-diffusion equations have

been derived in [11]. It has also been studied for finite volume [4], finite difference

schemes [35], RT0 in 2D [43].

1.3 Dissertation outline

The dissertation is organized as follows. Chapter 2 focus on the MFE formulation.

In Section 2.1, we introduce the differential diffusion problem and corresponding

integration, mixed and macro-hybrid mixed forms. In Section 2.2, we introduce how

to construct FV scheme and a general way to obtain discretization of mixed form. In

Section 2.3, a well-known mesh, Voronoi mesh is described. This section introduces

the algorithms to generate such meshes and investigates when Voronoi mesh is not

good for finite volume scheme.

The topic for Chapter 3 is the new discretization method, PWCF method, without

refinement. In Section 3.1, we show how to construct such PWCF scheme based on

Discontinuous Galerkin method. Although it is similar to but still different from clas-

sical MFE methods. In Section 3.2, we investigate the monotonicity of this method

on triangular and tetrahedral meshes, and do a comparison with RT0 methods. For

rectangular mesh, monotonicity is obvious. In Section 3.3, the error estimation on

solution p is derived for triangular mesh. In Section 3.4, we compare PWCF method

with classical finite volume method on rectangular and triangular meshes, to see if

they are equivalent under certain assumptions.

In Chapter 4, PWCF method on the meshes with local refinement is investigated.

In Section 4.1, we first introduce a straight-forward way to construct refinement for

12



1.3. DISSERTATION OUTLINE

rectangular mesh. In Section 4.2, we compare different refinement approaches for

triangular meshes.

Chapter 5 gives some numerical results for PWCF methods. We start from in-

troducing a 3D prismatic grid, where diffusion problem is defined. The prismatic

grid cells may have distorted faces. Then, the algebraic system from PWCF method

is built. At last, by checking numerical results, the theoretical error estimations are

verified.

The main results obtained in this thesis are:

1. Under the condition of regular and quasi-uniform for meshes, the error estimate

holds for numerical solutions from PWCF methods on triangular meshes:

||ph − p∗||2 ≤ c(||u∗h,int − u∗||2 + ||p∗h,int − p∗||2). (1.7)

2. The condensed matrices Sλ for RT0 and PWCF methods coincide.

3. PWCF methods are monotone on triangular and tetrahedral meshes for certain

geometric conditions, i.e., the angle between any two sides or faces for triangular

or tetrahedral cells is less than or equal to 90 degree.

4. The usual approach to implement local refinement on triangular mesh destroys

monotonicity for PWCF methods.

13



CHAPTER 2

Classical Numerical Methods and Voronoi Mesh

2.1 Problem formulation

2.1.1 Differential formulation

Consider the diffusion equation:

−∇ · (K∇p) = f in Ω, (2.1)

where K = K(x) is a diffusion tension, f = f(x) is a source function, Ω is a simply-

connect bounded polygonal domain in R2 or polyhedral domain in R3 with boundary

∂Ω. We assume f and K are piecewise smooth and bounded. We also assume K(x)

14



2.1. PROBLEM FORMULATION

is a symmetric positive definite matrix for any point x ∈ Ω.

We consider the case with Dirichlet boundary only, i.e., ∂Ω = ΓD. Then, we

complete equation (2.1) with the boundary condition:

p = gD on ΓD, (2.2)

where gD is a given function defined on ΓD.

Let u = −K∇p, which is called flux. Then, (2.1), (2.2) have equivalent mixed

form:



K−1u + ∇p = 0 in Ω,

∇ · u = f in Ω,

p = gD on ∂Ω.

(2.3)

2.1.2 Balance formulation

The balance equation for (2.1) is:

−
ˆ
∂E

(K∇p) · nds =

ˆ
E

fdx, ∀E ⊂ Ω, (2.4)

where n denotes the unit outwards normal vector of ∂E.
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2.1. PROBLEM FORMULATION

2.1.3 Mixed variational formulation

The weak form for (2.3) is as follows: find (u, p) ∈ V ×P such that


´

Ω
(K−1u) · vdx −

´
Ω
p(∇ · v)dx = −

´
∂Ω
∇ · (gDv)ds

´
Ω

(∇ · u)qdx =
´

Ω
fqdx

(2.5)

for all (v, q) ∈ V ×P. Here, V = Hdiv(Ω) and P = L2(Ω).

2.1.4 Macro-hybrid mixed formulation

If Ω is partitioned into non-overlapping polygonal or polyhedral cells Ek, k = 1, · · · ,m,

and f is sufficiently smooth and bounded in each Ek, then (2.3) is equivalent to the

problem:



K−1uk + ∇pk = 0 in Ek,

∇ · uk = fk in Ek,

pk = pl on Γkl,

uk · nk + ul · nl = 0 on Γkl,

pk = gD on ∂Ω.

(2.6)

The weak formulation of (2.6), or the maco-hybrid mixed formulation of (2.1),

16



2.1. PROBLEM FORMULATION

(2.2) is as follows: find (ū, p̄, λ̄) ∈ V ×P×Λ such that



a(ū, v̄) + b(p̄, v̄) + c(λ̄, v̄) = lD(v̄)

b(q̄, ū) = l(q̄)

c(ū, µ̄) = 0

(2.7)

for all (v̄, q̄, µ̄) ∈ V ×P×Λ, where

V = V1 × · · · × Vm, (2.8)

P = P1 × · · · × Pm, (2.9)

Λ =
m∏

1≤k<l≤m

Λkl, (2.10)

with Vk = Hdiv(Ek), Pk = L2(Ek), and Λkl = L2(Γkl), k < l, |Γkl| 6= 0. And

a(ū, v̄) =
∑
k

ˆ
Ek

(K−1uk) · vkdx, (2.11)

b(p̄, v̄) =
∑
k

ˆ
Ek

pk(∇ · vk)dx, (2.12)

c(λ̄, v̄) =
∑
k<l

ˆ
Γkl

λ(vk · nkl)ds, (2.13)

lD(v̄) = −
∑

Γki⊂∂Ω

ˆ
Γki

gD(vk · nki)ds, (2.14)

l(q̄) =
∑
k

ˆ
Ek

fqkdx. (2.15)

Here, nkl is the unit outward normal vector on Γkl from Ek to El and Γki = ∂Ek∩∂Ωi.
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2.2. CLASSICAL DISCRETIZATION METHODS

2.2 Classical discretization methods

2.2.1 Finite volume methods

Finite volume methods are based on the discretization on balance equation (2.4).

The discretization consists by following steps:

1. Approximate domain Ω by a finite non-overlapping subset E = {Ek, k =

1, · · · , n}.

2. Approximate the function p by ph in a N -dimensional space V.

3. Approximate boundary flux (K∇p) · n on ∂Ek by a discrete one (K∇hph) · n.

As a result, finite volume methods can be written as:

−
ˆ
∂Ek

(K∇hph) · nds =

ˆ
Ek

fdx, ∀Ek ⊂ Ω, k = 1, · · · , n. (2.16)

Because boundary fluxes need to be approximated by corresponding function

values ph, the meshes for finite volume methods are usually specially constructed.

One of the most famous meshes for finite volume methods is Voronoi mesh, for

example, Figure 2.1. On such Voronoi meshes, the term
´
∂Ek

(∇hph).nds can be

written as: ˆ
∂Ek

(∇hph) · nds =
m∑
j=1

(pj − pk)|Γkj|
d(cj, ck)

, (2.17)

where m is the number of sides for Ek, Γkj = Ek ∩Ej, cj is the node in Ej, d(cj, ck)

is the distance between two nodes in two cells, and pj is the solution on cj.

Further discussion on Voronoi meshes continues in Section 2.3.
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Figure 2.1: Voronoi mesh generated from 100 uniform distributed random points
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2.2. CLASSICAL DISCRETIZATION METHODS

2.2.2 Mixed hybrid finite element methods

In order to obtain a proper algebraic system from (2.7), the approximation spaces

for V, P, Λ need to be introduced. In this thesis, we define subspaces Ph ≡ Ph(E) ⊂

P = L2(E) and Λi,h ≡ Λi,h(Γi) ⊂ L2(Γi) by

Ph = {q : q ≡ const in E}, (2.18)

Λi,h = {λ : λ ≡ const on Γi}, (2.19)

and space Λh by

Λh = Λh(∂E) =

tN∏
i=1

Λi,h. (2.20)

We assume that any vector function vh ∈ Vh ≡ Vh(E) ⊆ Hdiv(E) satisfies the

following conditions:

(a) ∇ · vh = constE in E,

(b) vh · ni = vi = const on each Γi,

(2.21)

where ni are outward unit normals to ∂E on Γi.

One of the most widely used subspace Vh(E) ⊆ Hdiv(E) is called lowest order

Raviart-Thomas space (RT0) on triangular cells in 2D or tetrahedral cells in 3D. In

addition to conditions (a), (b) in (2.21), if we further assume that in cell E, for every

basis vector function wi, there exists a function ψi, s.t.

wi = −∇ψi, (2.22)
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2.2. CLASSICAL DISCRETIZATION METHODS

then, the basis vector functions obtained from discretization method discribed above

are exactly the basis functions of RT0 method. For example, if E is a triangle, the

lowest order Raviart-Thomas basis vector function wi (i = 1, 2, 3) can be represented

as:

wi =
1

hi
(x− xi), (2.23)

where xi are three vertices of triangle E, and hi is the height from xi to the opposite

side Γi.

Another way to choose the basis functions on quadrilateral cells is also based on

the condition:

wi = −K∇ψi. (2.24)

This method is known as Kuznetsov-Repin (KR) method. For more information

about this method, please refer to [41, 36].

We define local finite element spaces by using the above definitions of the spaces

Vh, Ph, Λh:

Vk,h = Vh(Ek), Pk,h = Ph(Ek), k = 1, · · · ,m, (2.25)

and the global finite element spaces

Vh =
m∏
k=1

Vk,h, Ph =
m∏
k=1

Pk,h,

Λh =
∏

1≤k<l≤m

Λh(Γkl).

(2.26)

Therefore, the mixed hybrid finite element discretization of (2.1), (2.2) is: find
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2.2. CLASSICAL DISCRETIZATION METHODS

(ūh, p̄h, λ̄h) ∈ Vh ×Ph ×Λh such that



a(ūh, v̄h) + b(p̄h, v̄h) + c(λ̄h, v̄h) = lD(v̄h)

b(q̄h, ūh) = l(q̄h)

c(ūh, µ̄h) = 0

(2.27)

for all (v̄h, q̄h, µ̄h) ∈ Vh ×Ph ×Λh.

Problem (2.27) is equivalent to the algebraic system

A


ū

p̄

λ̄

 =


ḠD

F̄

0

 , (2.28)

with the 3× 3 block symmetric matrix

A =


M BT CT

B 0 0

C 0 0

 =
m∑
k=1

NkAkN T
k , (2.29)

where

Ak =


Mk BT

k CT
k

Bk 0 0

Ck 0 0

 (2.30)

is local matrix defined on Ek, and Nk is an appropriate subassembling matrix, k =
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2.3. VORONOI MESH

1, · · · ,m. In fact,

M = diag{M1, · · · ,Mm}, (2.31)

B = diag{B1, · · · , Bm}, (2.32)

C = (C̃1, · · · , C̃m), (2.33)

where C̃k = Nk,λCk, k = 1, · · · ,m.

In Chapter 3, a new mixed finite element method based on so-called “weak for-

mulation” is introduced, which is one type of discontinuous galerkin (DG) methods.

2.3 Voronoi mesh

Let P be a set of n distinct points (nodes or sites) in a region Ω. The Voronoi mesh

(or Voronoi diagram) of P is the subdivison of the region Ω into n cells, one for each

node. A point q lies in the cell corresponding to a node pi ∈ P if and only if

d(q, pi) < d(q, pj), (2.34)

for each pj ∈ P, j 6= i, where d(·, ·) reprensents the Euclidean distance. There are

some important properties for Voronoi mesh:

1. The line segment connecting two nodes whose cells are adjacent to each other

is perpendicular to the edge shared by these two cells.

2. Each point on an edge is the center of a circle passing through two nodes.
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3. Each vertex (not on the boundary) is the center of a circle passing through

three nodes (see Figure 2.2).
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Figure 2.2: Circle centering at a vertex and crossing three nodes

There are several famous algorithms to generate Voronoi mesh:

� Compute the intersection of n− 1 half-planes for each node, and “merge” the

cells into the mesh
[
O(n2log(n))

]
� Divide-and-conquer (1975, Shamos & Hoey)

[
O(nlog(n))

]
� Plane-sweep (1987, Fortune)

[
O(nlog(n))

]
� Randomized incremental construction (1992, Guibas, Knuth & Sharir)[

O(nlog(n))
]
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2.3. VORONOI MESH

2.3.1 Plane-sweep algorithm

In this subsection, we use plane-sweep algorithm to generate Voronoi mesh. The

main idea of this algorithm is as follows: (See Figure 2.3 to Figure 2.5, graphs are

from [47].)

1. Voronoi mesh is constructed as horizontal line sweeps the set of nodes from top

to bottom.

2. The bisector between a node and the horizontal line is a parabola. The beach

line is the lower envelope of all the parabolas already seen.

3. When sweeping the horizontal line from above, the Voronoi diagram is correct

up to the beach line.

4. The breakpoints of the beach line lie on the Voronoi edges of the final diagram.

5. There are two possible events, node(site) event and vertex event. The former

one is the sweep line meets a node, so a possible parabola appears.The latter

one is an existing arc of the beach line shrinks to a point and disappears, so a

Voronoi vertex is created.

Animation of this process can be found at: http://en.wikipedia.org/wiki/

Sweep_line_algorithm.

2.3.2 “Bad” edges

In Figure 2.2, both Voronoi meshes are composed by three cells, who share one vertex

at origin. However, the left-hand side mesh is better than the right-hand side one,
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2.3. VORONOI MESH

Figure 2.3: Sweep line and beach line, from [47]

Figure 2.4: Node(site) event, from [47]

Figure 2.5: Vertex event, from [47]
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2.3. VORONOI MESH

because the line segment connecting any two nodes intersects with the edge shared

by these two cells. This is important, because normal fluxes on such edges can be

reasonablely approximated by the values from corresponding two nodes, and finite

volume method can be properly applied. However, it is not true for the bottom inner

edge from the right-hand side Voronoi mesh.

From Figure 2.2, we can easily find that a “bad” edge appears when all the three

line segments between three nodes are at one side of the circle, or equivalently, there

exists one diameter that all the three nodes are on one side of the diameter (see

Figure 2.6). As a consequence, the triangle formed by these three nodes is an obtuse

triangle, and the following statement holds:

A “bad” edge appears only when there are three neighbour nodes who form an

obtuse triangle.
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Figure 2.6: Reason why “bad” edge appears
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CHAPTER 3

Piece-Wise Constant-Flux (PWCF) Method

Let us consider meshes composed by polygonal cells in 2D and polyhedral cells in 3D.

Suppose each mesh cell can be partitioned into two or more triangles or tetrahedrons,

with interfaces being line segments in 2D or triangles in 3D. Next, we will show how

to construct PWCF scheme on triangular meshes. Implementations of this method

on other types of meshes are similar.

3.1 Discretization on triangular mesh

Let Ωh be a conformal triangular mesh in Ω, i.e., Ωh = ∪Ek, with interface Γkl

between mesh cells Ek and El. This disretization first requires to split each triangular

cell into two subtriangles. If we consider the union of two cells, the splitting will have
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3.1. DISCRETIZATION ON TRIANGULAR MESH

three different cases, see Figure 3.1 to 3.3.
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γ
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Γ
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Figure 3.1: Split two adjacent triangular cells into four subtriangles, case 1

E
k

E
l

γ
k

γ
l

Γ
kl

Figure 3.2: Split two adjacent triangular cells into four subtriangles, case 2

Suppose (u∗, p∗) be the exact solution of (2.3), then for any piecewise constant

vector field wkl satisfying:

1. wkl is constant in each subtriangles ωkl ∩ ei correspondingly,
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E
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Figure 3.3: Split two adjacent triangular cells into four subtriangles, case 3

2. wkl · nkl = 1 on Γkl,

3. wkl · n = 0 on all other edges of ωkl ∩ Ek and ωkl ∩ El,

4. wkl = 0 in Ω\ωkl,

we have: ˆ
Ω

(K−1u∗) ·wkldx+

ˆ
Ω

(∇p∗) ·wkldx

=

ˆ
Ω

(K−1u∗) ·wkldx+

ˆ
ωkl

(∇p∗) ·wkldx

=

ˆ
Ω

(K−1u∗) ·wkldx+

ˆ
∂ωkl

p∗(nωkl
·wkl)ds = 0,

(3.1)

or equivalently, ˆ
Ω

(K−1u∗) ·wkldx+ |Γkl|(p∗l − p∗k) = 0, (3.2)

where p∗l = 1
|γl|

´
γl
p∗ds and p∗k = 1

|γk|

´
γk
p∗ds, and ωkl is the union of two or three or
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3.1. DISCRETIZATION ON TRIANGULAR MESH

four subtriangles with the common interface Γkl. Illustrations on ωkl and wkl are in

Figure 3.4 to 3.6.

Figure 3.4: ωkl and corresponding piecewise constant vector field wkl for case 1

Define the finite element spaces as:

Vh = span{wkl, k < l}, (3.3)

Ph = span{φk, φk = 1 in Ek, φk = 0 in Ω\Ek}, (3.4)

then, the discontinuous Galerkin method can be formulated as: find uh =
∑

kl uklwkl ∈

Vh and ph =
∑

k pkφk ∈ Ph, such that


´

Ω
(K−1uh) ·wkldx− |Γkl|(pk − pl) = 0 ∀ k < l,

´
∂Ek

uh · n∂Ek
ds =

´
Ek
fdx ∀k.

(3.5)
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Figure 3.5: ωkl and corresponding piecewise constant vector field wkl for case 2

Figure 3.6: ωkl and corresponding piecewise constant vector field wkl for case 3
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3.1. DISCRETIZATION ON TRIANGULAR MESH

If we further define the operators:

a(u,v) =

ˆ
Ω

(K−1u) · vdx, (3.6)

b(p,v) =
∑
k<l

|Γkl|(pl − pk)vkl, (3.7)

F (q) = −
ˆ

Ω

fqdx, (3.8)

GD(v) = −
∑

Γki⊂∂Ω

ˆ
Γki

gDvkids, (3.9)

then (3.5) is equivalent to: find (uh, ph) ∈ Vh ×Ph, such that


a(uh,vh) + b(ph,vh) = GD(vh)

b(qh,uh) = F (qh)

(3.10)

for any (vh, qh) ∈ Vh × Ph. This finite element problem results in an algebraic

system:

M BT

B 0


ū
p̄

 =

ḠD

F̄

 . (3.11)

If we consider local systems on every macro cells Ek, introduce new variables

λ∗kl = 1
|Γkl|

´
Γkl
p∗ds for all Γkl * ∂Ω, then integration (3.2) becomes

ˆ
ωkl∩Ek

(K−1u∗) ·wkldx+ |Γkl|(λ∗kl − p∗k) = 0. (3.12)
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Assemble all such local systems into universal system, (3.11) will then have a equiv-

alent mixed hybrid form, which results in the following algebraic system:


M BT CT

B 0 0

C 0 0



ū

p̄

λ̄

 =


ḠD

F̄

0

 . (3.13)

Remark 3.1. The 3× 3 block matrix in (3.13) has exactly same blocks B and C as

in classical macro-hybrid mixed finite element methods in (2.29), for instance, RT0

method, the only difference lies on the block diagonal matrix M .

3.2 Monotonicity

Definition 3.2. An n × n real matrix A is monotone if Ax ≥ 0 implies x ≥ 0, or

equivalently if A is nonsingular with A−1 ≥ 0.

Definition 3.3. A real square matrix A is an M-matrix if all its off-diagonal entries

are nonpositive and if it is nonsingular and A−1 ≥ 0.

Definition 3.4. A real square matrix A is a Stieltjes matrix if all its off-diagonal

entries are nonpositive and if it is symmetric and positive definite.

Definition 3.5. A real square matrix A is a singular M-matrix if it is singular, and

for any positive number ε, the matrix A+ εI is a M-matrix.

Theorem 3.6. If A is a Stieltjes matrix then it is also an M-matrix, so it is mono-

tone.
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From Section 3.1, we derive that mixed hybrid PWCF method results in a linear

system:


M BT CT

B 0 0

C 0 0



ū

p̄

λ̄

 =


ḠD

F̄

0

 , (3.14)

where

B = diag{B1, · · · , Bm},

C = (C̃1, · · · , C̃m) = (N1C1, · · · , NmCm),

(3.15)

with Bk, Ck being local matrices on mesh cell Ek and Nk being assembling matrices.

In this section, the monotonicity of linear system (3.14) is investigated (the results

are also published in [32]), i.e., if f ≥ 0 in Ω (or say, F̄ ≤ 0), can we get p̄ ≥

gD and λ̄ ≥ gD? To simplify the problem, we assume that the diffusion problem

has homogenous Dirichlet boundary condition, i.e., ḠD ≡ 0. In order to get the

monotonicity property, we do the following condensation procedure:

1. First eliminating variable ū, we get the system:

BM−1BT BM−1CT

CM−1BT CM−1CT


p̄
λ̄

 =

−F̄
0

 . (3.16)

2. Then, eliminating variable p̄, we come to the Schur complement system:

Sλ̄ = φ̄, (3.17)
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with Schur complement matrix

S = CM−1[M −BT (BM−1BT )−1B]M−1CT , (3.18)

and right-hand side

φ̄ = C[M−1 −M−1BT (BM−1BT )−1BM−1]ḠD + C[M−1BT (BM−1BT )−1]F̄

= C[M−1BT (BM−1BT )−1]F̄ .

(3.19)

By the representations of matrices B and C in (3.15), matrix S and right-hand

side φ̄ can be written in the forms:

S =
m∑
k=1

C̃kM
−1
k [Mk −BT

k (BkM
−1
k BT

k )−1Bk]M
−1
k C̃T

k

=
m∑
k=1

NkSkN
T
k ,

(3.20)

and

φ̄ =
m∑
k=1

NkCkM
−1
k BT

k (BkM
−1
k BT

k )−1Fk, (3.21)

where Nk are assembling matrices and

Sk = CkM
−1
k [Mk −BT

k (BkM
−1
k BT

k )−1Bk]M
−1
k CT

k . (3.22)

Therefore, the monotonicities for local matrices Sk and global matrix S are equiv-

alent, i.e., if Sk are M-matrices (either singular or nonsingular) and at least one of
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them is nonsingular, then S is monotone. Next, we will start to focus on local

monotonicities for different types of meshes.

3.2.1 Triangular mesh

Figure 3.7: Triangular mesh cell with arbitrary shape

Shape of a triangle can be uniquely determined by two angles, so we can fix shape

of a triangular cell Ek by fixing two base angles θ1 and θ2 ( 0 < θ1 + θ2 < π). If we

further fix the height of this triangle to be h, it is uniquely determined. In addition,

we suppose |BD||BC| = r and |CD|
|BC| = 1− r.
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PWCF basis for this cell is:

w1 =


( 1

sin θ1
, 0) in e1,

(0, 0) in e2.

(3.23)

w2 =


( cos θ1

sin θ1
,−1) in e1,

(0, 0) in e2.

(3.24)

w′2 =


(0, 0) in e1,

(− cos θ2
sin θ2

,−1) in e2.

(3.25)

w3 =


(0, 0) in e1,

(− 1
sin θ2

, 0) in e2.

(3.26)

and consequently the matrices Mk, Bk and Ck are:

Mk = Areak.


r

sin2 θ1

r cos θ1
sin2 θ1

0

r cos θ1
sin2 θ1

r
sin2 θ1

+ 1−r
sin2 θ2

(1−r) cos θ2
sin2 θ2

0 (1−r) cos θ2
sin2 θ2

1−r
sin2 θ2

 , (3.27)

Bk = (− h

sin θ1

,−h cos θ1

sin θ1

− h cos θ2

sin θ2

,− h

sin θ2

), (3.28)

Ck = diag{ h

sin θ1

,
h cos θ1

sin θ1

+
h cos θ2

sin θ2

,
h

sin θ2

}. (3.29)

where Areak is the area of triangle Ek, i.e., Areak = cot θ1+cot θ2
2

h2. Hence, condensed
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matrix Sk can be written as:

Sk =
h2

Areak

(
csc2 θ1 − cot2 θ1−cot θ1 cot θ2 cot θ1 cot θ2−1

− cot2 θ1−cot θ1 cot θ2 (cot θ1+cot θ2)2 − cot θ1 cot θ2−cot2 θ2
cot θ1 cot θ2−1 − cot θ1 cot θ2−cot2 θ2 csc2 θ2

)
=

1

Areak

(
s21||n1||2 s1s2(n1·n2) s1s3(n1·n3)

s2s1(n2·n1) s22||n2||2 s2s3(n2·n3)

s3s1(n3·n1) s3s2(n3·n2) s23||n3||2

)
,

(3.30)

where ni are outward unit vectors on Γi and si are lengths of Γi, i = 1, 2, 3. Finally,

we reach to the monotone condition on condensed matrix for triangular mesh cells:

Theorem 3.7. Sk is a singular M-matrix if and only if all three angles of Ek are

non-obtuse angles.

3.2.2 Tetrahedral mesh

Let Vi and Γi be the vertices and faces of a tetrahedral mesh cell, where Vi is opposite

to Γi. Let ni be the outward normal fluxes on face Γi, respectively, i = 1, · · · , 4. By

applying PWCF method, the mesh cell is partitioned into two subtetrahedrons e1 and

e2 by connecting V1 and mid-point of edge V2V3, and connecting V4 and mid-point

of edge V2V3, see Figure 3.8. PWCF basis has the properties:

In e1,

w1 · n1 = 1, w1 · n3 = 0, w1 · n4 = 0,

w2 = 0,

w3 · n1 = 0, w3 · n3 = 1, w3 · n4 = 0,

w4 · n1 = 0, w4 · n3 = 0, w4 · n4 = 1,

39



3.2. MONOTONICITY

v2

v4

e
2

v1

e
1

v3

Figure 3.8: Tetrahedral mesh cell
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and in e2,

w1 · n1 = 1, w1 · n2 = 0, w1 · n4 = 0,

w2 · n1 = 0, w2 · n2 = 1, w2 · n4 = 0,

w3 = 0,

w4 · n1 = 0, w4 · n2 = 0, w4 · n4 = 1,

where ni are unit outward normal vectors on Γi, i = 1, 2, 3, 4.

Then, PWCF basis can be represented as:

w1 =


n3×n4

n1·(n3×n4)
in e1,

n2×n4

n1·(n2×n4)
in e2.

(3.31)

w2 =


0 in e1,

n1×n4

n2·(n1×n4)
in e2.

(3.32)

w3 =


n1×n4

n3·(n1×n4)
in e1,

0 in e2.

(3.33)

w4 =


n1×n3

n4·(n1×n3)
in e1,

n1×n2

n4·(n1×n2)
in e2.

(3.34)
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and matrices Mk, Bk and Ck:

Mk =
vol

2



||w1||2 w1 ·w2 w1 ·w3 w1 ·w4

w2 ·w1 ||w2||2 w2 ·w3 w2 ·w4

w3 ·w1 w3 ·w2 ||w3||2 w3 ·w4

w4 ·w1 w4 ·w2 w4 ·w3 ||w4||2


, (3.35)

Bk = (−s1,−s2,−s3,−s4), (3.36)

Ck = diag{s1, s2, s3, s4}, (3.37)

where vol denotes the volume of tetrahedral mesh cell Ek, si is the area of face Γi,

i = 1, · · · , 4.

Theorem 3.8. Let Sk be the condensed matrix defined in (3.22) from PWCF method,

then Sk can be represented as:

Sk =
1

vol



s2
1||n1||2 s1s2(n1 · n2) s1s3(n1 · n3) s1s4(n1 · n4)

s2s1(n2 · n1) s2
2||n2||2 s2s3(n2 · n3) s2s4(n2 · n4)

s3s1(n3 · n1) s3s2(n3 · n2) s2
3||n3||2 s3s4(n3 · n4)

s4s1(n4 · n1) s4s2(n4 · n2) s4s3(n4 · n3) s2
4||n4||2


. (3.38)

Therefore, Sk is a singular M-matrix if and only if angle between any two faces is

less than or equal to 90 degree.

To prove this theorem, we need to introduce some useful lemmas.
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Lemma 3.9. Let a, b, c be vectors in R3, then

a× (b× c) = (a · c)b− (a · b)c. (3.39)

Lemma 3.10. Let a, b, c be vectors in R3, then

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c). (3.40)

Lemma 3.11. Let a, b, c be vectors in R3, then

[
a·(b×c)

]2

= ||a||2||b×c||2−(a·b)
[
(b×c)·(a×c)

]
+(a·c)

[
(b×c)·(a×b)

]
. (3.41)

Lemma 3.12. Let a, b, c, d be vectors in R3, then

[
a · (c× d)

]
∗
[
b · (c× d)

]
=(a · b)||c× d||2 − (a · c)

[
(c× d) · (b× d)

]
+ (a · d)

[
(c× d) · (b× c)

]
=(a · b)||c× d||2 − (b · c)

[
(c× d) · (a× d)

]
+ (b · d)

[
(c× d) · (a× c)

]
.

(3.42)

Lemma 3.13. The inverse of matrix Mk defined in (3.35) is:

M−1
k =

1

vol


||n1||2 n1·n2 n1·n3 n1·n4

n2·n1 ||n2||2+
(n2·(n1×n4))2

||n1×n4||2
n2·n3− (n2·(n1×n4))(n3·(n1×n4))

||n1×n4||2
n2·n4

n3·n1 n3·n2− (n3·(n1×n4))(n2·(n1×n4))

||n1×n4||2
||n3||2+

(n3·(n1×n4))2

||n1×n4||2
n3·n4

n4·n1 n4·n2 n4·n3 ||n4||2

. (3.43)
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Lemma 3.14.

s2

[
n2 · (n1 × n4)

]
= −s3

[
n3 · (n1 × n4)

]
. (3.44)

Proof of Theorm 3.8. Since

M−1BT =
1

vol



0{
2

[
n2·(n1×n4)

][
n3·(n1×n4)

]
||n1×n4||2

}
s3{

2

[
n2·(n1×n4)

][
n3·(n1×n4)

]
||n1×n4||2

}
s2

0


, (3.45)

BM−1BT = − 4

vol

{[
n2 · (n1 × n4)

][
n3 · (n1 × n4)

]
||n1 × n4||2

}
s2s3, (3.46)

M−1BT (BM−1BT )−1BM−1

=
1

vol



0 0 0 0

0

[
n2·(n1×n4)

]2

||n1×n4||2 −

[
n2·(n1×n4)

][
n3·(n1×n4)

]
||n1×n4||2 0

0 −

[
n2·(n1×n4)

][
n3·(n1×n4)

]
||n1×n4||2

[
n3·(n1×n4)

]2

||n1×n4||2 0

0 0 0 0


,

(3.47)
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M−1 −M−1BT (BM−1BT )−1BM−1

=
1

vol



||n1||2 n1 · n2 n1 · n3 n1 · n4

n2 · n1 ||n2||2 n2 · n3 n2 · n4

n3 · n1 n3 · n2 ||n3||2 n3 · n4

n4 · n1 n4 · n2 n4 · n3 ||n4||2


,

(3.48)

so,

S = CM−1
[
M −BT (BM−1BT )−1B

]
M−1CT

=
1

vol



s2
1||n1||2 s1s2(n1 · n2) s1s3(n1 · n3) s1s4(n1 · n4)

s2s1(n2 · n1) s2
2||n2||2 s2s3(n2 · n3) s2s4(n2 · n4)

s3s1(n3 · n1) s3s2(n3 · n2) s2
3||n3||2 s3s4(n3 · n4)

s4s1(n4 · n1) s4s2(n4 · n2) s4s3(n4 · n3) s2
4||n4||2


.

(3.49)

3.2.3 Equivalence of condensed matrices Sλ for PWCF and

RT0 methods

Consider the same diffusion problem (2.3) and same triangular mesh in 2D or tetra-

hedral mesh in 3D descibed in previous sections. Instead of PWCF method, we apply

RT0 method for this problem. Next, we will show that based on the computation

of condensed matrix Sλ for 3D tetrahedral cells (2D triangular cell case was already

investigated in [43]), the following theorem holds:
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Theorem 3.15. The condensed matrices Sλ for PWCF and RT0 methods coincide.

Remark 3.16. This theorem is an important observation. In [37], it is proved

that the discrete LBB condition for RT0 method is equivalent to say the minimal

eigenvalue αh for the problem


Mw̄ −BT p̄ = 0

Bw̄ = αhMpp̄

(3.50)

has a lower bound. It is also proved that it does have lower bound for RT0 method.

As a result, Theorem 3.15 guarantees that the discrete LBB condition for PWCF

method holds as well, and it is essential when investigating error estimation for

PWCF method.

Remark 3.17. The condensed matrix Sλ is independent of basis choice on RT0(K)

space. The reason is that suppose {wi}, {ei} are two sets of basis for RT0(K), then

there exists a linear transformation P such that

P (w1,w2,w3,w4) = (e1, e2, e3, e4). (3.51)

As a result, for matrices M , B, C for two different basis, we have

Me = P TMwP,

Be = BwP,

Ce = CwP.

(3.52)
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Hence,

Se = CeM
−1
e [Me −BT

e (BeM
−1
e BT

e )
−1Be]M

−1
e CT

e

= CwPP
−1M−1w P−T [PTMwP − PTBT

w(BwPP
−1M−1w P−TPTBw)

−1BwP ]P
−1M−1w P−TPTCT

w

= CwM
−1
w [Mw −BT

w(BwM
−1
w BT

w)
−1Bw]M

−1
w CT

w

= Sk.

(3.53)

Proof of Theorm 3.15. Since Sλ is independent of basis choice on RT0(K) space,

instead of using classical basis {wi}, s.t., wi · nj = δij on Γj, we use the following

basis:

e1 =


1

0

0

 , e2 =


0

1

0

 , e3 =


0

0

1

 , e4 =


x1 − xc1

x2 − xc2

x3 − xc3

 , (3.54)

where xc = (xc1, x
c
2, x

c
3)T is the barycenter of Ek, i.e.,

xc1 =
1

|Ek|

ˆ
Ek

x1dx, (3.55)

xc2 =
1

|Ek|

ˆ
Ek

x2dx, (3.56)

xc3 =
1

|Ek|

ˆ
Ek

x3dx. (3.57)
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The matrix Mk now becomes a diagonal matrix and can be easily inverted:

Mk = vol.



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
vol

´
Ek

(x1 − xc1)2 + (x2 − xc2)2 + (x3 − xc3)2dx


, (3.58)

where vol = |Ek|. The corresponding Bk and Ck become:

Bk = −
(´

Ek
∇ · e1dx,

´
Ek
∇ · e2dx,

´
Ek
∇ · e3dx,

´
Ek
∇ · e4dx

)
= −(0, 0, 0, 3vol),

(3.59)

Ck =


´
Γ1

e1·n1dx
´
Γ1

e2·n1dx
´
Γ1

e3·n1dx
´
Γ1

e4·n1dx´
Γ2

e1·n2dx
´
Γ2

e2·n2dx
´
Γ2

e3·n2dx
´
Γ2

e4·n2dx´
Γ3

e1·n3dx
´
Γ3

e2·n3dx
´
Γ3

e3·n3dx
´
Γ3

e4·n3dx´
Γ4

e1·n4dx
´
Γ4

e2·n4dx
´
Γ4

e3·n4dx
´
Γ4

e4·n4dx


=


|Γ1|n1,x1 |Γ1|n1,x2 |Γ1|n1,x3

´
Γ1
n1,x1 (x1−xc1)+n1,x2 (x2−xc2)+n1,x3 (x3−xc3)dx

|Γ2|n2,x1 |Γ2|n2,x2 |Γ2|n2,x3

´
Γ2
n2,x1 (x1−xc1)+n2,x2 (x2−xc2)+n2,x3 (x3−xc3)dx

|Γ3|n3,x1 |Γ3|n3,x2 |Γ3|n3,x3

´
Γ3
n3,x1 (x1−xc1)+n3,x2 (x2−xc2)+n3,x3 (x3−xc3)dx

|Γ4|n4,x1 |Γ4|n4,x2 |Γ4|n4,x3

´
Γ4
n4,x1 (x1−xc1)+n4,x2 (x2−xc2)+n4,x3 (x3−xc3)dx

,
(3.60)

where ni = (ni,x1 , ni,x2 , ni,x3)T , i = 1, 2, 3, 4.

Simple calculation leads to:

Gk = M−1
k BT

k = (0, 0, 0,− 3.vol´
Ek

(x1 − xc1)2 + (x2 − xc2)2 + (x3 − xc3)2dx
)T , (3.61)

gk = BkM
−1
k BT

k =
9.vol2´

Ek
(x1 − xc1)2 + (x2 − xc2)2 + (x3 − xc3)2dx

, (3.62)

Hk = M−1
k −

1

gk
GkG

T
k =

1

vol
.diag{1, 1, 1, 0}, (3.63)
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and the condensed matrix Sk = CkHkC
T
k with entries:

(Sk)i,j =
1

vol
|Γi||Γj|ni · nj, i, j = 1, 2, 3, 4. (3.64)

This matrix is exactly same as the one from PWCF method in (3.38). Similarly, we

can reach the same conclusion for 2D triangular cells.

Hence, the monotone condition on condensed matrix for RT0 methods is:

Theorem 3.18. Sλ,RT0 is a singular M-matrix if and only if angle between any two

sides (for triangles) or faces (for tetrahedrons) is less than or equal to 90 degree.

Remark 3.19. Since the condensed matrices for PWCF and RT0 are the same, why

do we find a new method instead of using the classical one? What are the advantages

for PWCF method over RT0 method? There are mainly two reasons:

1. The matrix M is much easier to compute for PWCF than RT0.

2. For some meshes, matrix M from RT0 is much more ill-conditioned than the

one from PWCF. Consider two types of irregular tetrahedral cells in Figure 3.9

and Figure 3.10. By numerical experiment, for cells of type 1, when hz
hxy

= 102,

cond(MPWCF ) = 6.8546 and cond(MRT0) = 5.33×103; for cells of type 2, when

hz
hxy

= 10−2, cond(MPWCF ) = 4.5 × 104 and cond(MRT0) = 1.5 × 104. Same

discussion on triangular cells continues in next section when investigating error

estimation.
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v3

v1

v2

v4

Figure 3.9: Irregular tetrahedral cell of type 1, too tall

v3
v1

v2

v4

Figure 3.10: Irregular tetrahedral cell of type 2, too flat
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3.2.4 Condensed matrix Sp,λ

Let us consider the condensed matrix on p and λ:

Sp,λ =

BM−1BT BM−1CT

CM−1BT CM−1CT

 . (3.65)

Next we will derive the formula of this matrix for both PWCF and RT0 methods.

3.2.4.1 PWCF method

Let

α =
n2 · (n1 × n4)

||n1 × n4||
, (3.66)

β =
n3 · (n1 × n4)

||n1 × n4||
, (3.67)

then from (3.46), (3.45) and (3.43), we have

BM−1BT = −4αβs2s3

vol
, (3.68)

and

BM−1CT =
1

vol

(
0, 2αβs2s3, 2αβs2s3, 0

)
, (3.69)
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and

CM−1CT

=
1

vol



s2
1||n1||2 s1s2(n1 · n2) s1s3(n1 · n3) s1s4(n1 · n4)

s2s1(n2 · n1) s2
2(||n2||2 + α2) s2s3(n2 · n3 − αβ) s2s4(n2n4)

s3s1(n3 · n1) s3s2(n3 · n2 − αβ) s2
3(||n3||2 + β2) s3s4(n3 · n4)

s4s1(n4 · n1) s4s2(n4 · n2) s4s3(n4 · n3) s2
4||n4||2


.

(3.70)

3.2.4.2 RT0 method

Let

η =

ˆ
Ek

(x1 − xc1)2 + (x2 − xc2)2 + (x3 − xc3)2dx, (3.71)

then from (3.61),

BM−1BT =
9vol2

η
. (3.72)

Before exploring the explict representation for other blocks, we need first take a

deeper investigation on matrix Ck in (3.60). The last column of Ck is composed by
´

Γi
e4.nidx, where

e4 =


x1 − xc1

x2 − xc2

x3 − xc3

 . (3.73)

For any point on face Γi, e4.ni = dist(xc,Γi), so
´

Γi
e4.nidx is equal to 3 times the

volume of subtetrahedrons whose vertexes are xc and three vertexes on Γi. One

important property for barycenter xc is that the the volumes of four subtetrahedrons
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obtained by connecting xc and 4 faces Γi are equal, therefore,

ˆ
Γ1

e4 · n1dx =

ˆ
Γ2

e4 · n2dx =

ˆ
Γ3

e4 · n3dx =

ˆ
Γ4

e4 · n4dx. (3.74)

Another important equation is:

4∑
i=1

ˆ
Γi

e4 · nidx =

ˆ
E

∇ · e4dx = 3.vol, (3.75)

hence, ˆ
Γi

e4 · nidx =
3vol

4
, i = 1, 2, 3, 4. (3.76)

Let us come back to the calculation of Sp,λ. It follows from (3.61) that

BM−1CT =

(
−9.vol2

4η
, −9.vol2

4η
, −9.vol2

4η
, −9.vol2

4η

)
, (3.77)

and

CM−1CT =
1

vol



s2
1||n1||2 s1s2(n1 · n2) s1s3(n1 · n3) s1s4(n1 · n4)

s2s1(n2 · n1) s2
2||n2||2 s2s3(n2 · n3) s2s4(n2n4)

s3s1(n3 · n1) s3s2(n3 · n2) s2
3||n3||2 s3s4(n3 · n4)

s4s1(n4 · n1) s4s2(n4 · n2) s4s3(n4 · n3) s2
4||n4||2



+
1

vol



9.vol3

16η
9.vol3

16η
9.vol3

16η
9.vol3

16η

9.vol3

16η
9.vol3

16η
9.vol3

16η
9.vol3

16η

9.vol3

16η
9.vol3

16η
9.vol3

16η
9.vol3

16η

9.vol3

16η
9.vol3

16η
9.vol3

16η
9.vol3

16η


.

(3.78)
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3.2.5 Monotonicity for KR method

Theorem 3.20. KR methods based on RT0 or PWCF discretization are monotone

if all tetrahedrons from partitions of polyhedral cells satisfy the geometric condition

in Theorem 3.8 and Theorem 3.18, i.e., the angle between any two faces is less than

or equal to 90 degree.

Remark 3.21. With this property, we can apply KR methods based on RT0 or PWCF

methods on many types of polyhedral meshes, with keeping the monotonicity. We

show some examples on cube, pyramid and prism from Figure 3.11 to Figure 3.13.

Figure 3.11: Divide a cube into five “good” subtetrahedrons

3.2.6 Monotonicity of condensed system

Now, we already obtained the monotone condition of Sλ from PWCF method for

triangular and tetrahedral meshes. By the property of monotone matrix, it follows

that φ̄ ≥ 0 ⇒ λ̄ ≥ 0. However, we are more interested in the relationship between
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Figure 3.12: Divide a pyramid into two “good” subtetrahedrons

Figure 3.13: Divide a prism into three “good” subtetrahedrons

F̄ and λ̄. Let us investigate the equality (3.21) again:

CkM
−1
k BT

k (BkM
−1
k BT

k )−1 = −(1− r, 0, r)T for 2D triangular cells, (3.79)

CkM
−1
k BT

k (BkM
−1
k BT

k )−1 = −(0,
1

2
,
1

2
, 0)T for 3D tetrahedral cells. (3.80)

When F̄ ≤ 0,

φ̄ =
m∑
i=1

NiCiM
−1
i BT

i (BiM
−1
i BT

i )−1Fi

=
m∑
i=1

Ni

(
− (1− r)Fi, 0,−rFi

)T
≥ 0 in 2D,

(3.81)

and

φ̄ =
m∑
i=1

Ni

(
0,− 1

2Fi
,− 1

2Fi
, 0
)T
≥ 0 in 3D. (3.82)
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By the monotonicity property of Sλ in (3.17), λ̄ ≥ 0 holds. Hence, we reach to the

first conclusion:

Theorem 3.22. If a mesh has all cells satisfying the conditions in Theorem 3.7 or

Theorem 3.8, and if f ≥ 0 in Ω, then λ̄ obtained from system (3.14) by PWCF

method is also non-negative, i.e.,

F̄ ≤ 0⇒ λ̄ ≥ 0. (3.83)

3.2.7 Monotonicity of original system

Can we get a similar conclusion of (3.83) for p̄, i.e., F̄ ≤ 0⇒ p̄ ≥ 0? To answer this

question, we need to explore the system (3.16). The first equation in (3.16) is:

BM−1BT p̄ = −F̄ −BM−1CT λ̄. (3.84)

By representing B and C in (3.15), we get:


B1M

−1
1 BT

1

. . .

BmM
−1
m BT

m



p1

...

pm

 =


−F1 −B1M

−1
1 CT

1 N
T
1 λ̄

...

−Fm −BmM
−1
m CT

mN
T
mλ̄

 , (3.85)

or equally,

BkM
−1
k BT

k pk = −Fk −BkM
−1
k CT

k N
T
k λ̄, ∀1 ≤ k ≤ m. (3.86)
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For 2D triangular cell, BkM
−1
k BT

k = 1
r(1−r) > 0 and BkM

−1
k CT

k = (−1
r
, 0,− 1

1−r ) for all

k. For 3D tetrahedral cell, BkM
−1
k BT

k > 0 by (3.46) and Lemma 3.14, BkM
−1
k CT

k =

(0, µ, µ, 0), where

µ =
1

vol
∗ 2s2s3[n2 · (n1 × n4)][n3 · (n1 × n4)]

||n1 × n4||2
< 0, (3.87)

therefore, if F̄ ≤ 0, by Theorem 3.22 and above equalities, λ̄ ≥ 0 andBkM
−1
k CT

k N
T
k λ̄ ≥

0. Then (3.86) implies:

pk ≥ 0, ∀1 ≤ k ≤ m. (3.88)

Theorem 3.23. By applying PWCF method on 2D triangular mesh or 3D tetrahe-

dral mesh, if mesh cells satisfy conditions in Theorem 3.7 or Theorem 3.8, then the

following monotone property holds:

f ≥ 0 (or F̄ ≤ 0)⇒ λ̄ ≥ 0 and p̄ ≥ 0 in system (3.14). (3.89)

3.3 Error estimation for triangular mesh

Consider the diffusion equation (2.1) with diffusion tension K = I and gD ≡ 0. If

we apply mixed PWCF method, we can get the following linear system:


Mūh +BT p̄h = 0

Būh = F̄h

(3.90)
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It is shown by Yu. Kuznetsov in [40] that the error estimate on flux uh holds:

||uh − u∗||2 ≤ 2||u∗h,int − u∗||2, (3.91)

where u∗ is the exact solution and

u∗h,int · nkl =
1

|Γkl|

ˆ
Γkl

u∗ · nds, k < l. (3.92)

Next, we start investigating error estimate on ph for triangular meshes.

3.3.1 Relation between errors on uh and on p̄h

In Section 3.1, we showed that the exact solution (u∗, p∗) of (2.3) satisfies (3.2).

Define the bilinear functional

b(p,v) =
∑
k<l

|Γkl|(pl − pk)vkl, (3.93)

where v =
∑

k<l vklwkl. Sum up all the integrations in all ω, we can get the system:


´

Ω
u∗ · vdx+ b(p∗,v) = 0

b(q,u∗) = F (q)

(3.94)
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Let u∗ = u∗h,int +
−→
φh, then the previous system becomes:


´

Ω
u∗h,int · vdx+ b(p̄∗h,int,v) = −

´
Ω

−→
φh.vdx

b(q,u∗h,int) = F (q)

(3.95)

where p̄∗h,int has components p∗int,k defined in Ek such that

p∗int,k =
1

|γk|

ˆ
γk

p∗ds. (3.96)

By choosing proper basis of v (need to meet the same three requirements on w) and

q (constant over each mesh cell), we can derive a linear system:


Mū∗h,int +BT p̄∗h,int = φ̄h

Bū∗h,int = F̄h

(3.97)

Matrices M and B in this system are exactly same as the ones in (3.90). By assuming

ψ̄h = ū∗h,int − ūh, (3.98)

ϕ̄h = p̄∗h,int − p̄h, (3.99)

φ̄h = ū∗ − ū∗h,int, (3.100)
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and subtracting (3.90) from (3.97), we can get:


Mψ̄h +BT ϕ̄h = φ̄h

Bψ̄h = 0

(3.101)

The corresponding condensed system is:

BM−1BT ϕ̄h = BM−1φ̄h. (3.102)

Let

Mp = diag{|E1|, · · · , |Em|}, (3.103)

S = M
− 1

2
p BM−1BTM

− 1
2

p , (3.104)

then (3.102) can be written as:

SM
1
2
p ϕ̄h = M

− 1
2

p BM−1φ̄h. (3.105)

Take inner product with M
1
2
p ϕ̄h on both sides:

(SM
1
2
p ϕ̄h,M

1
2
p ϕ̄h) = (M

− 1
2

p BM−1φ̄h,M
1
2
p ϕ̄h). (3.106)
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Let αh be the smallest eigenvalue of matrix S, then:

αh||ϕ̄h||2Mp
= αh(Mpϕ̄h, ϕ̄h)

= αh(M
1
2
p ϕ̄h,M

1
2
p ϕ̄h)

≤ (SM
1
2
p ϕ̄h,M

1
2
p ϕ̄h)

= (M
− 1

2
p BM−1φ̄h,M

1
2
p ϕ̄h)

= (M− 1
2 φ̄h,M

− 1
2BTM

− 1
2

p M
1
2
p ϕ̄h)

≤ ||M− 1
2 φ̄h||2||M− 1

2BTM
− 1

2
p M

1
2
p ϕ̄h||2.

(3.107)

Moreover, because

||M− 1
2BTM

− 1
2

p M
1
2
p ϕ̄h||22 = (M− 1

2BTM
− 1

2
p M

1
2
p ϕ̄h,M

− 1
2BTM

− 1
2

p M
1
2
p ϕ̄h)

= (M
− 1

2
p BM−1BTM

− 1
2

p M
1
2
p ϕ̄h,M

1
2
p ϕ̄h)

= (SM
1
2
p ϕ̄h,M

1
2
p ϕ̄h)

= (M
− 1

2
p BM−1φ̄h,M

1
2
p ϕ̄h)

= (M− 1
2 φ̄h,M

− 1
2BTM

− 1
2

p M
1
2
p ϕ̄h)

≤ ||M− 1
2 φ̄h||2||M− 1

2BTM
− 1

2
p M

1
2
p ϕ̄h||2,

(3.108)

it follows that

||M− 1
2BTM

− 1
2

p M
1
2
p ϕ̄h||2 ≤ ||M− 1

2 φ̄h||2. (3.109)

Hence, (3.107) becomes

αh||ϕ̄h||2Mp
≤ ||M− 1

2 φ̄h||22, (3.110)
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or equivalently,

||ϕ̄h||Mp ≤
1
√
αh
||M− 1

2 φ̄h||2. (3.111)

3.3.2 Equivalence of vector norm and corresponding vector

function norm

In (3.111), φ̄h is a vector which is composed by elements:

φh,kl = −
ˆ

Ω

−→
φh ·wkldx = −

ˆ
ωkl

−→
φh ·wkldx, (3.112)

where ωkl is the region defined in Figure 3.4 to 3.6, wkl is the basis function in ωkl,

and
−→
φh is a vector function defined in Ω.

People are more familiar with the following errors represented by vector function

norm

||
−→
φh||2 = ||u∗ − u∗h,int||2, (3.113)

instead of ||M− 1
2 φ̄h||2 in (3.111), so we need to find a constant c > 0, s.t. ||M− 1

2 φ̄h||2 ≤

c||
−→
φh||2.
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By the definition of φ̄h in (3.112), we have:

||φ̄h||22 =
∑
k<l

(ˆ
ωkl

−→
φh ·wkldx

)2

≤
∑
k<l

(ˆ
ωkl

−→
φhdx

)2(ˆ
ωkl

wkldx
)2

≤
∑
k<l

(ˆ
ωkl

−→
φh

2dx
)(ˆ

ωkl

w2
kldx

)
≤
(∑
k<l

ˆ
ωkl

−→
φh

2dx
)(

max
k<l

ˆ
ωkl

w2
kldx

)
≤ 2||

−→
φh||22

(
max
k<l

ˆ
ωkl

w2
kldx

)
.

(3.114)

We suppose the partition {ωkl} is quasi-uniform, i.e., there exist two positive con-

stants c1 and c2, independent of number of cells, such that for all ωkl,

c1h
2 ≤ |ωkl| ≤ c2h

2, (3.115)

where h := maxk<l{diam(ωkl)}. Or equivalently there exists a positive number α,

such that

maxkl |ωkl|
minkl |ωkl|

≤ α. (3.116)

We also suppose the triangluation is shape regular, i.e., in 2D, there is no triangle

whose angle is very small, or say there exists a positive number β, such that

maxkl ||wkl||
minkl ||wkl||

≤ β. (3.117)
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By above two inequalities from two properties of mesh, we can get

max
k<l

ˆ
ωkl

w2
kldx ≤

αβ

n

(∑
k<l

ˆ
ωkl

w2
kldx

)
=
αβ

n
tr(M)

=
αβ

n

∑
i

λi(M),

(3.118)

where n is the size of vector φ̄h (or the number of regions ωkl), M is the matrix in

(3.90), tr(M) is the trace of M , λi(M) are eigenvalues of M . Moreover, since M is

a normal matrix, it has the property

||M ||2 = max
i

{
λi(M)

}
, (3.119)

so (3.115) can be then written as:

max
k<l

ˆ
ωkl

w2
kldx ≤

αβ

n

(
nmax

i

{
λi(M)

})
= αβ||M ||2.

(3.120)
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By applying (3.114) and (3.120), we can get:

||M− 1
2 φ̄h||22 = (M−1φ̄h, φ̄h)

≤ ||M−1φ̄h||2||φ̄h||2

≤ ||M−1||2||φ̄h||22

≤ ||M−1||2
(

2||
−→
φh||22

)(
max
kl

ˆ
ωkl

w2
kldx

)
≤ 2αβ||M−1||2||M ||2||

−→
φh||22

≤ 2αβ.cond(M)||
−→
φh||22,

(3.121)

where cond(M) is the condition number of matrix M . Here, since M is normal,

cond(M) =
∣∣∣λmax(M)

λmin(M)

∣∣∣. (3.122)

M is a n× n sparse matrix, every row of M is composed by at most 5 elements:

one diagonal and four off-diagonals from two adjacent cells. Next, we will show

cond(M) =
∣∣∣λmax(M)

λmin(M)

∣∣∣ ∼ O(1). (3.123)

Before we prove this, we need introduce one important theorem:

Theorem 3.24. If M is a positive definite matrix, and M =
∑n

k=1NkMkN
T
k , where

Mk are local matrices which are also positive definite, Nk are assembling matrices,

then:

min
k

(Mkv̄k, v̄k)

(Dkv̄k, v̄k)
≤ (Mv̄, v̄)

(Dv̄, v̄)
≤ max

k

(Mkv̄k, v̄k)

(Dkv̄k, v̄k)
(3.124)

65



3.3. ERROR ESTIMATION FOR TRIANGULAR MESH

where D = diag(M), Dk = diag(Mk) and v̄ =
∑n

k=1 Nkv̄k.

Theorem 3.24 indicates that if in each mesh cell, local matrices Mk and Dk

are spectrally equivalent, then the universal matrices M and D are also spectrally

equivalent. It will be immediately followed that under the assumption Ωh is both

regular and quasi-uniform,
∣∣∣λmax(D)
λmin(D)

∣∣∣ ∼ O(1), therefore, cond(M) =
∣∣∣λmax(M)
λmin(M)

∣∣∣ ∼
O(1). Now we will focus on local matrices Mk for triangular mesh cells. From

Subsection 3.2.1, Mk has the form:

Mk = Areak


r

sin2 θ1

r cos θ1
sin2 θ1

0

r cos θ1
sin2 θ1

r
sin2 θ1

+ 1−r
sin2 θ2

(1−r) cos θ2
sin2 θ2

0 (1−r) cos θ2
sin2 θ2

1−r
sin2 θ2

 , (3.125)

where Areak is a constant, θ1, θ2 are two base angles, and r is the ratio between the

area of subtriangle e1 and the area of triangular cell Ek = e1 ∪ e2, see Figure 3.14.

We consider the ideal case, when r = 1
2
, then Mk becomes:

Mk =
Areak

2


1

sin2 θ1

cos θ1
sin2 θ1

0

cos θ1
sin2 θ1

1
sin2 θ1

+ 1
sin2 θ2

cos θ2
sin2 θ2

0 cos θ2
sin2 θ2

1
sin2 θ2

 . (3.126)

Because (Mk v̄k,v̄k)
(Dk v̄k,v̄k)

is independent with the constant coefficient Areak
2

, it is ignored in

the following steps.
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Figure 3.14: Triangular mesh cell with arbitrary shape

(Mkv̄k, v̄k)

=
1

sin2 θ1

v2
1 +

2 cos θ1

sin2 θ1

v1v2 +
( 1

sin2 θ1

+
1

sin2 θ2

)
v2

2 +
1

sin2 θ2

v2
3 +

2 cos θ2

sin2 θ2

v2v3

≤2

(
1

sin2 θ1

v2
1 +

( 1

sin2 θ1

+
1

sin2 θ2

)
v2

2 +
1

sin2 θ2

v2
3

)

=2(Dkv̄k, v̄k),

(3.127)
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and

101(Mkv̄k, v̄k)

=101

(
1

sin2 θ1

v2
1 +

2 cos θ1

sin2 θ1

v1v2 +
( 1

sin2 θ1

+
1

sin2 θ2

)
v2

2 +
1

sin2 θ2

v2
3 +

2 cos θ2

sin2 θ2

v2v3

)

≥ 1

sin2 θ1

v2
1 +

( 1

sin2 θ1

+
1

sin2 θ2

)
v2

2 +
1

sin2 θ2

v2
3

=(Dkv̄k, v̄k).

(3.128)

(3.127) holds because

1

sin2 θ1

v2
1 −

2 cos θ1

sin2 θ1

v1v2 +
( 1

sin2 θ1

+
1

sin2 θ2

)
v2

2 +
1

sin2 θ2

v2
3 −

2 cos θ2

sin2 θ2

v2v3

=
( v1

sin θ1

− cos θ1

sin θ1

v2

)2

+
( v3

sin θ2

− cos θ2

sin θ2

v2

)2

+ 2v2
2 ≥ 0.

(3.129)

(3.128) holds because

100

sin2 θ1

v2
1 +

202 cos θ1

sin2 θ1

v1v2 +
( 100

sin2 θ1

+
100

sin2 θ2

)
v2

2 +
100

sin2 θ2

v2
3 +

202 cos θ2

sin2 θ2

v2v3

=
( 10v1

sin θ1

+
101 cos θ1

10 sin θ1

v2

)2

+
( 10v3

sin θ2

+
101 cos θ2

10 sin θ2

v2

)2

+
v2

2

sin2 θ1

(
100 sin2 θ1 −

201

100
cos2 θ1

)
+

v2
2

sin2 θ2

(
100 sin2 θ2 −

201

100
cos2 θ2

)
≥ 0,

(3.130)

under the regularity condition for triangulation.

Therefore, we are able to find two positive constants c1 and c2 which are inde-

pendent of step size h, such that for any k

c1 ≤
(Mkv̄k, v̄k)

(Dkv̄k, v̄k)
≤ c2. (3.131)
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Hence, by Theorem 3.24, it holds that:

c1 ≤
(Mv̄, v̄)

(Dv̄, v̄)
≤ c2. (3.132)

Consequently, under the assumption triangulation is both regular and quasi-uniform,

we have the conclusion:

cond(M) =
∣∣∣λmax(M)

λmin(M)

∣∣∣ ∼ O(1). (3.133)

3.3.3 Lower bound on spectrum of condensed matrix S

(3.133) can be equivalently expressed into the following propostion:

Proposition 3.25. Under the regularity assumption made the inequalities

c1h
2I ≤Mpwcf ≤ c2h

2I (3.134)

hold with the constants c1 and c2 independent of Ωh, i.e., the matrices Mpwcf defined

in (3.126) is spectrally equivalent to h2I.

Remark 3.26. Here, we can loose the regularity condition on triangulation Ωh.

There are two types of irregular triangular cells in general:

1. At least one base angle is very small, see Figure 3.15.

2. The top angle is very small, see Figure 3.16.
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To make all inequalities above hold for PWCF method, we only need to guarantee

that all mesh cells are not of type 1, but type 2 is acceptable. However, for RT0

method, neither type 1 or 2 is acceptable.

Figure 3.15: Irregular triangular mesh cell of type 1

Figure 3.16: Irregular triangular mesh cell of type 2

Now, error estimate (3.111) can be written as:

||ϕ̄h||Mp ≤
c
√
αh
||
−→
φh||2, (3.135)

where c is a constant independent of Ωh. Our final task is to find an lower bound for

αh.
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Recall that αh is the minimal eigenvalue for the eigenvalue problem

M
− 1

2
p BM−1BTM

− 1
2

p p̄ = αp̄, (3.136)

which is equivalent to the problem:

BM−1BT p̄ = αMpp̄, (3.137)

which can also be written into the form:
Mw̄ −BT p̄ = 0

Bw̄ = αMpp̄

(3.138)

It is shown by Yu. Kuznetsov in [37] that the minimal eigenvalue for problem (3.138)

has a lower bound independent of Ωh if M is the mass matrix for classical mixed finite

element methods, including RT0 method, for regular shaped triangular meshes. How-

ever, there is no such conclusion for general PWCF method. From Proposition 3.25,

Mpwcf and h2I are spectrally equivalent, hence, if we can show MRT0 is also spectrally

equivalent to h2I, then αh in (3.135) will have a lower bound independent of mesh

Ωh.

Consider a general triangular mesh cell in Figure 3.17. Suppose the height of

the triangle is always 1, and two base angles are θ1 and θ2. Then RT0 basis for this

triangle is composed by:
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θ
1

θ
2

h=1

Figure 3.17: General triangular mesh cell for RT0 method

w1 =
1

h1

 x1

x2 − 1

 ,

w2 =
1

h2

x1 + cot θ1

x2

 ,

w3 =
1

h3

x1 − cot θ2

x2

 ,

(3.139)

where three heights are:

h1 = 1,

h2 = sin θ2(cot θ1 + cot θ2),

h3 = sin θ1(cot θ1 + cot θ2).

(3.140)

By Newton-Cotes quadrature rule, the symmetric positive definite mass matrix Mk =
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Areak
6
M̃k can be explicitly represented as:

M̃k(1, 1) =
cot2 θ1 + cot2 θ2 − cot θ1 cot θ2 + 3

h2
1

,

M̃k(2, 2) =
3 cot2 θ1 + cot2 θ2 + 3 cot θ1 cot θ2 + 1

h2
2

,

M̃k(3, 3) =
cot2 θ1 + 3 cot2 θ2 + 3 cot θ1 cot θ2 + 1

h2
3

,

M̃k(1, 2) =
− cot2 θ1 + cot2 θ2 + cot θ1 cot θ2 − 1

h1h2

,

M̃k(1, 3) =
cot2 θ1 − cot2 θ2 + cot θ1 cot θ2 − 1

h1h3

,

M̃k(2, 3) =
− cot2 θ1 − cot2 θ2 − 3 cot θ1 cot θ2 + 1

h2h3

,

(3.141)

where Areak is the area of triangular cell Ek.

The minimal eigenvalue for matrix M̃k is 2, therefore,

c1h
2I ≤Mk, (3.142)

where c1 is a constant. On the other hand, let Dk = diag(Mk), it is not difficult to

show that

Mk ≤ 3Dk. (3.143)
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The reason is, for any ū ∈ R3, we have:

(Mkū, ū)

=

ˆ
Ek

(u1w1 + u2w2 + u3w3)2dx

=

ˆ
Ek

u2
1w

2
1 + u2

2w
2
2 + u2

3w
2
3 + 2u1u2(w1 ·w2) + 2u1u3(w1 ·w3) + 2u2u3(w2 ·w3)dx,

(3.144)

so

((3Dk −Mk)ū, ū)

=

ˆ
Ek

2u2
1w

2
1 + 2u2

2w
2
2 + 2u2

3w
2
3

− 2u1u2(w1 ·w2)− 2u1u3(w1 ·w3)− 2u2u3(w2 ·w3)dx

=

ˆ
Ek

(u1w1 − u2w2)2 + (u1w1 − u3w3)2 + (u2w2 − u3w3)2dx ≥ 0.

(3.145)

Therefore, if the maximum element of Dk has a upper bound c2, then Mk is spectrally

equivalent to h2I.

Observe the diagonal entries in (3.141), under the assumption of regular triangu-

lation, i.e., there exists an angle ϑ > 0, such that θ1, θ2, θ3 ≥ ϑ, then

M̃k(1, 1) ≤ 3 cot2 ϑ+ 3,

M̃k(2, 2) ≤ 7 cot2 ϑ+ 1

sin2 ϑ tan2 ϑ
2

,

M̃k(3, 3) ≤ 7 cot2 ϑ+ 1

sin2 ϑ tan2 ϑ
2

.

(3.146)
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Choose c′2 = max{3 cot2 ϑ+ 3, 7 cot2 ϑ+1
sin2 ϑ tan2 ϑ

2

}, then

Mk ≤ 3Dk ≤
1

2
c′2AreakI ≤ c2h

2I. (3.147)

Proposition 3.27. Under the regularity assumption made the inequalities

c1h
2I ≤MRT0 ≤ c2h

2I (3.148)

hold with the constants c1 and c2 independent of Ωh, i.e., the matrices MRT0 defined

in (3.141) is spectrally equivalent to h2I.

Consequently, minimal eigenvalue αh in (3.135) has a lower bound independent

of Ωh. The final result for error estimate on p̄h is:

Theorem 3.28. If a triangulation Ωh is quasi-uniform and regular, then

||p̄h − p̄∗h,int||Mp ≤ c0||u∗h,int − u∗||2, (3.149)

where c is a positive constant independent of Ωh. Or equivalently,

||ph − p∗||2 ≤ c(||u∗h,int − u∗||2 + ||p∗h,int − p∗||2), (3.150)

where p∗ is the exact solution, ph and p∗h,int are piecewise constant functions in Ph.
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3.4 Algebraic equivalance to finite volume method

Consider the algebraic system (3.14) with homogenous Dirichlet boundary, i.e., ḠD ≡

0. Eliminating the variables ū and λ̄, we can obtain the system in terms of the variable

p̄ only:

Spp̄ = −F̄ , (3.151)

with the reduced matrix

Sp = BM−1(M − CT (CM−1CT )−1C)M−1BT . (3.152)

In this section, we will explore the matrix Sp for different types of meshes, and find

their relationships to finite volume methods.

3.4.1 Rectangular mesh

Consider two adjacent mesh cells Ek and El with a common interface Γkl ≡ Γk,2 ≡

Γl,4, as shown in Figure 3.18. Assembling two local systems for the cells Ek and El,

we can get the following equations:



|Γk,2|uk,2 + |Γl,4|ul,4 = 0,

1
2
|Ek|uk,2 − |Γk,2|pk + |Γk,2|λkl = 0,

1
2
|El|ul,4 − |Γl,4|pl + |Γl,4|λkl = 0.

(3.153)
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3.4. ALGEBRAIC EQUIVALANCE TO FINITE VOLUME METHOD
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Figure 3.18: Two adjacent rectangular cells Ek and El with common interface Γkl

The mesh is uniform, therefore |Ek| = |El| = hxhy, and Γkl = hy. This implies

uk,2 = −ul,4 = −pl − pk
hx

, (3.154)

which is same as the formula used in finite volume method. Note that for PWCF

method, variables are defined as

pk =
1

γk

ˆ
γk

phds, (3.155)

uk,j =
1

Γk,j

ˆ
Γk,j

(uh · nk,j)ds, (3.156)

with ph ∈ Ph, uh ∈ Vh.

It is proved in [40] that for any quadrilateral mesh and diffusion problem (2.1)

with piecewise constant symmetric positive tensor K, the classical solution u∗ and
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its interpolant in Vh, u∗h,int, the following error estimate holds:

||uh − u∗||K−1 ≤ 2||u∗h,int − u∗||K−1 , (3.157)

where uh ∈ Vh is the solution obtained by PWCF method. Therefore, this error

estimate also holds for corresponding finite volume method.

3.4.2 Triangular mesh

Can we get a similar result for triangular mesh? Consider a mesh composed by

congruent equilateral triangles. Let us investigate two adjacent mesh cells Ek and

El with a common interface Γkl ≡ Γk,2 ≡ Γl,2, as shown in Figure 3.19. Assembling

two local systems for the cells Ek and El, we can get the following equations:



|Γk,2|uk,2 + |Γl,2|ul,2 = 0,

1
3
|Ek|uk,1 + 4

3
|Ek|uk,2 + 1

3
|Ek|uk,3 − |Γk,2|pk + |Γk,2|λkl = 0,

1
3
|El|ul,1 + 4

3
|El|ul,2 + 1

3
|El|ul,3 − |Γl,2|pl + |Γl,2|λkl = 0.

(3.158)

After simplification, we will get

uk,2 = −ul,2 =
1

8
(ul,1 + ul,3 − uk,1 − uk,3) +

√
3

4
(pk − pl). (3.159)

If we further consider two adjacent mesh cells Ek and Em with common interface

Γk,1, then uk,1 can be represented as linear combination of pk, pm and more uk,· and
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Figure 3.19: Two adjacent triangular cells Ek and El with common interface Γkl
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um,·. Do this again and again, we will find out that uk,2 is represented as linear

combination of all pi over the mesh. Therefore, for triangular meshes, algebraic

systems for PWCF method and finite volume method are not equivalent.
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CHAPTER 4

PWCF Method on Locally Refined Meshes

In this chapter, we will investigate PWCF method on locally refined meshes. Rect-

angular and triangular meshes are discussed. We will focus on the following topics:

approaches to implement local refinement and their monotonicities, stencils.

4.1 Rectangular mesh

For the sake of simplicity, let us consider a square mesh with size h on its coarse part

and size h
2

on the fine part. Let Ek be a coarse cell which has a common interface

Γ1 with two fine cells. We denote the other coarse cells that share the interface Γj

with Ek by Ek,j, j = 2, 3, 4, and two fine cells by Ek,11 and Ek,12. An illustration is

given in Figure 4.1.
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Figure 4.1: Rectangular mesh with local refinement

The discretization of the conservation law for the cell Ek can be written as:

4∑
j=1

|Γj|uk,j = Fk, (4.1)

with

uk,j = −pk,j − pk
h

, j = 2, 3, 4. (4.2)

Here, pk and pk,j are discrete solutions approximating p∗k and p∗k,j, respectively, where

p∗k =
1

|γk,0|

ˆ
γk,0

p∗ds, (4.3)

p∗k,j =
1

|γk,j|

ˆ
γk,j

p∗ds, j = 2, 3, 4. (4.4)
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Similar to the computation in Section 3.4.1, on Γ1, we have:

1
2
|Ek|uk,1 − |Γk,1|pk + |Γk,1|λk,1 = 0,

−1
2
(|Ek,11|+ |Ek,12|)uk,1 − 1

2
|Γk,1|pk,11 − 1

2
|Γk,1|pk,12 + |Γk,1|λk,1 = 0,

(4.5)

therefore,

uk,1 = −2pk,11 + 2pk,12 − 4pk
3h

. (4.6)

Substituting (4.2), (4.6) into (4.1), the following 6-point stencil is obtained:

13

3
pk −

2

3
pk,11 −

2

3
pk,12 − pk,2 − pk,3 − pk,4 = Fk. (4.7)

One immediate consequence from this scheme is that the global condensed matrix

Sp is monotone.

4.2 Triangular mesh

Let us consider a triangular mesh with local refinement, see Figure 4.2. In this

section, we first review the usual refinement procedure and find out that the mono-

tonicity disappears under both conformal and non-conformal schemes. Then, we

introduce a new approach to implement refinement, and investigate its monotone

condition.
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Figure 4.2: Triangular mesh with local refinement

4.2.1 Usual approach to implement refinement

4.2.1.1 Description of the usual refinement procedure and respective

monotone condition

Suppose there are two triangular mesh cells with no refinement, i.e., cell E1 and E2

have same step size h, and E1 ∩ E2 = Γ1. The usual refinement procedure is:

1. Choose arbitrary point F on Γ1, and connect AF . E1 is then partitioned into

two triangular cells with size h. (We often choose the mid-point of Γ1)

2. Choose two points G and H on Γ4 and Γ5, correspondingly, connect FG, FH,

and GH. E2 is then partitioned into four triangular cells with size h
2
. (We also

pick mid-points of Γ4 and Γ5)

By these two steps, we can obtain local refinement: cells with sizes h and h
2

are

adjacent. However, by doing such refinement procedure, is the condensed matrix Sλ

defined in (3.20) monotone?

The answer is “no”. As discussed in Subsection 3.2.1, the universal system is

assembled by local systems, so Sλ is monotone if and only if every local condensed
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4.2. TRIANGULAR MESH

Figure 4.3: Mesh cell before refine-
ment procedure

Figure 4.4: Mesh cell after refinement
procedure

matrices Sλ,k on mesh cell Ek are (singular) M-matrices. Moreover, for triangular

mesh cell Ek, local condensed matrix Sλ,k (for both RT0 and PWCF methods) is a

singular M-matrix if and only if Ek is not an obtuse triangle. However, by usual

refinement procedure, when E1 is partitioned into two subtriangles by connecting

one vertex and one point on opposite side, we cannot guarantee neither of the two

new subtriangles are obtuse triangles, for instance, E1,1 in Figure 4.4 is an obtuse

triangles. Therefore, although original discretization scheme is monotone, after usual

refinement procedure, its monotonicity disappears.

4.2.1.2 Non-conforming scheme and resulting special pentagonal element

Instead of a conforming scheme for the usual refinement procedure, let us now con-

sider a new non-conforming scheme. Suppose one triangular cell E1 with height h is

adjacent with two triangular cells E2 and E3 with height h
2
, see Figure 4.5. On the
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interface Γ1 = E1 ∩ (E2 ∪ E3), we introduce degree of freedom u1 and λ1, and sup-

pose p(E2) = p(E3). As a result, two “macro” cells are formed (Figure 4.6), namely,

triangular element E1 and pentagonal element E2,3 = E2∪E3. The universal system

(3.14) is then assembling of local systems on triangular elements and pentagonal

elements. We have already discussed the monotone condition for triangular elements

in Subsection 3.2.1, next we will take an exploration on the pentagonal elements.

Figure 4.5: Local refinment appears Figure 4.6: One triangular and one
pentagonal element
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4.2.1.3 PWCF basis vector functions on pentagonal elements

PWCF basis for the pentagonal element in Figure 4.7 are:

w1 =



(− cos θ1
sin θ1

, 1) in E1,1,

( cos θ2
sin θ2

, 1) in E1,2,

(− cos θ3
sin θ3

, 1) in E2,1,

( cos θ4
sin θ4

, 1) in E2,2.

(4.8)

w2 =


(− 1

sin θ1
, 0) in E1,1,

(0, 0) in others.

(4.9)

w3 =


( 1

sin θ2
, 0) in E1,2,

(0, 0) in others.

(4.10)

w4 =


(− 1

sin θ3
, 0) in E2,1,

(0, 0) in others.

(4.11)

w5 =


( 1

sin θ4
, 0) in E2,2,

(0, 0) in others.

(4.12)

4.2.1.4 PWCF matrices on pentagonal elements

From this subsection, we assume pentagonal element Ek is composed by two congru-

ent triangles e1 and e2 with height h, and each triangle is partitioned into two by

connecting bottom vertex and mid-point of its opposite side. By selecting the basis
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Figure 4.7: General case of pentagonal element

derived from previous subsection, we can get the local PWCF matrices:

Mk = Areak



1
2 sin2 θ1

+ 1
2 sin2 θ2

cos θ1
4 sin2 θ1

cos θ2
4 sin2 θ2

cos θ1
4 sin2 θ1

cos θ2
4 sin2 θ2

cos θ1
4 sin2 θ1

1
4 sin2 θ1

0 0 0

cos θ2
4 sin2 θ2

0 1
4 sin2 θ2

0 0

cos θ1
4 sin2 θ1

0 0 1
4 sin2 θ1

0

cos θ2
4 sin2 θ2

0 0 0 1
4 sin2 θ2


, (4.13)

Bk = h2

− cos θ1
sin θ1

− cos θ2
sin θ2

− 1
sin θ1

− 1
sin θ2

0 0

− cos θ1
sin θ1

− cos θ2
sin θ2

0 0 − 1
sin θ1

− 1
sin θ2

 , (4.14)

Ck = h2



2 cos θ1
sin θ1

+ 2 cos θ2
sin θ2

1
sin θ1

1
sin θ2

1
sin θ1

1
sin θ2


. (4.15)
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Therefore, the local condensed matrix is:

Sλ,k =
h2

Areak


4(cot θ1+cot θ2)2

−2 cot θ1(cot θ1+cot θ2) csc2 θ1+1 Symmentry

−2 cot θ2(cot θ1+cot θ2) cot θ1 cot θ2−2 csc2 θ2+1

−2 cot θ1(cot θ1+cot θ2) cot2 θ1 cot θ1 cot θ2 csc2 θ1+1

−2 cot θ2(cot θ1+cot θ2) cot θ1 cot θ2 cot2 θ2 cot θ1 cot θ2−2 csc2 θ2+1

, (4.16)

where Areak is the area of pentagonal element Ek.

From (4.16), we can easily derive 4 types stencil for variable λ̄, see Figure 4.8 to

Figure 4.11. (Here, we suppose the coarse and fine triangular cells are equilateral

triangles, and hc/hf = 2.)

Figure 4.8: Stencil type 1 Figure 4.9: Stencil type 2

4.2.1.5 Monotone condition for Sλ,k on pentagonal elements

By checking the components of condensed matrix Sλ,k in (4.16), we find that the

off-diagonal entries cot2 θ1, cot2 θ2 are always positive, therefore, under the non-

conformal scheme for usual refinement procedure, we still have:
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Figure 4.10: Stencil type 3 Figure 4.11: Stencil type 4

Theorem 4.1. Sλ,k is not (singular) M-matrix on any pentagonal element.

4.2.2 New approach to do refinement

Since by usual refinement method, the algebraic system cannot be monotone for

either conformal or non-conformal schemes, people may consider one alternative

refinement method:

Connect vertex D and mid-point F on Γ1, and a special triangular element composed

by two subtriangles is obtained, see Figure 4.13.

The local condensed matrix Sλ,k on the special triangular element is (equilateral

triangular cell, h = 1):

Sλ,k =



1.0104 −0.2887 −0.8660 0.1443

−0.2887 0.5774 0 −0.2887

−0.8660 0 1.7321 −0.8660

0.1443 −0.2887 −0.8660 1.0104


. (4.17)
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Figure 4.12: Local refinment by an alternative way

Figure 4.13: Special triangular element
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It indicates that Sλ is not monotone even for equilateral triangular mesh. There-

fore, in order to keep the monotonicity of condensed matrix Sλ, we cannot partition

mesh cell by choosing any point on Γ1, instead, we need to find a way of partition to

make every subtriangles to be non-obtuse.

4.2.2.1 Right-triangular meshes

For the triangular meshes with cells having one base angle being right angle, we can

do the refinement procedure as in Figure 4.14 to keep montonicity.

Figure 4.14: Refinement on right triangular mesh

4.2.2.2 Isoceles meshes

In Figure 4.15, we show one feasible procedure to implement refinement. For equi-

lateral mesh, all the small triangles are non-obtuse, so the monotonicity is kept. The
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critical condition on base angle θ to successfully apply this refinement method is

tan(θ) ≥ 1 +
√

5

2
, (4.18)

or approximately, θ ≥ 58◦. Figure 4.16 shows the case when θ reaches this critical

value.

Figure 4.15: Refinement on equilateral triangular mesh

Figure 4.16: Refinement on critical triangular mesh

When θ < 58◦, by doing such refinement, the monotonicity disappears, because

obtuse triangles appear. When this happens, we can make hlarge/hsmall = 1/4 or less
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to overcome this problem. See Figure 4.17 and Figure 4.18.

Figure 4.17: Bad refinement on isoceles triangular mesh, θ = 56◦

Figure 4.18: Good refinement on isoceles triangular mesh, θ = 56◦

4.2.2.3 General triangular meshes

For general triangular meshes, we can do refinement similarly as in Subsection 4.2.2.2,

see Figure 4.19. However, under some circumstances, obtuse triangles may appear:

1. Two base angles are two small, see Figure 4.20. (By experiment, it happens

when θ1 + θ2 ≥ 123◦ approximately.)

2. The upper angle is two small, see Figure 4.21. (By experiment, it happens

when θ3 ≥ 30◦ approximately.)
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Figure 4.19: Good refinement on one general mesh cell

3. Two base angles have huge difference, see Figure 4.22. (By experiment, it

happens when |θ1 − θ2| ≤ 30◦ approximately.)

Figure 4.20: Bad refinement on one general mesh cell, reason 1
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Figure 4.21: Bad refinement on one general mesh cell, reason 2

Figure 4.22: Bad refinement on one general mesh cell, reason 3
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CHAPTER 5

Numerical Experiments

Consider the diffusion equation (2.1) with Direchelet boundary (2.2) in 3D, with

diffusion tension K = I and domain Ω being a cuboid in R3. In this chapter, a

special prismatic grid generated based on Voronoi mesh is first build, whose cells

are prisms with lateral faces orthogonal to (x, y)-plane, top and bottom faces being

polygons with same number of vertices and parallel to (x, y)-plane. Then, after

constructing dual grid to this prismatic grid, we implement PWCF method, and

verify error estimations from numerical results.
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5.1 Prismatic grid

Let Ω be a cube, i.e., Ω = [−1, 1]× [−1, 1]× [−1, 1]. To generate prismatic grid, we

do the following procedures:

1. Generate n + 1 parallel layers inside cube Ω (including top and bottom faces

of Ω). Denote them by layer 0 to layer n (top to bottom). See Figure 5.1.

2. On the top square face, randomly generate a polygonal mesh. For our imple-

mentation, quadrilateral Voronoi mesh is generated. See Figure 5.2.

3. The mesh for layer k is derived from the mesh for layer k−1, where 1 ≤ k ≤ n.

In particular, to generate the quadrilateral mesh for layer k, we do some very

small and random perturbations on every vertices of the mesh cells on layer

k−1, and denote the new perturbed mesh to be mesh for layer k. See Figure 5.3.

4. Connect corresponding vertices of meshes on layer k−1 and layer k to generate

prismatic cells between these two layers. See Figure 5.4.

5. Repeat 3 and 4 for all k, so that all the desired cells for 3D prismatic grid are

generated.

On this prismatic grid, we will apply PWCF method. However, the discretization

scheme on this prismatic grid is different from the classical one. For the classical one,

people introduce unknowns pi in cells and ui on interfaces between cells. While for

the new approach, pi are defined on interfaces between cells, and ui are defined on

some certain faces inside cells.
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Figure 5.1: Layers in Ω

Figure 5.2: Polygonal mesh on top layer
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Figure 5.3: How to derive mesh on layer k from layer k − 1

Figure 5.4: Prismatic grid generated from two layers in Figure 5.3
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Figure 5.5: Magic cube is a grid generated from 3 uniform square mesh layers

To implement the new discretization scheme, the prismatic grid need to be pro-

ceeded further. First, divide all polygonal interfaces into triangles. (Since for our

experiment, all interfaces are quadrilaterals, so we simply connect one pair of ver-

tices on either diagonal.) Then connect center (geometric mean) of each grid cell

to all vertices of this cell. As a result, every prismatic cell is divided into several

tetrahedrons, see Figure 5.6. Other consequences are:

� Triangular faces on the interface of two grid cells are the interfaces of two

tetrahedrons belonging to two different grid cells, see Figure 5.7.

� Triangular faces inside a grid cell are the interfaces of two tetrahedrons belong-

ing to the same cell.

Unknowns for the new discretization method are then defined on these two types

of triangular faces, i.e., pi are defined on triangular faces (a), and ui are defined on
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triangular face (b). For instance, for the cell in Figure 5.6, locally speaking, DOF on

pi is 12, and DOF on ui is 18.

+

Figure 5.6: Divide one prismatic cell into six pyramids and then divide each pyramid
with quadrilateral base into two tetrahedrons

5.2 Mixed fomulation

Consider the mixed form of the diffusion problem:



u +∇p = 0 in Ω,

∇ · u = f in Ω,

p = g on ∂Ω.

(5.1)

In order to get the mixed finite element discretization by PWCF method, in each

prismatic cell V , we need to introduce piecewise constant vector field basis w on each
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Figure 5.7: Union of two tetrahedrons which belong to different prismatic cells is a
PWCF “macro” cell

union of two tetrahedrons which have a triangular interface inside V . We denote these

two tetrahedrons by Ek and El. (In Figure 5.6, blue and red tetrahedrons are one

pair of such tetrahedrons in yellow prismatic cell.) w satisfies:

1. w are two constants in two tetrahedrons of Ek and El correspondingly.

2. w · nΓkl
= 1 on Γkl, where Γkl = Ek ∩ El is a triangular interface.

3. w · n = 0 on other four triangular faces of Ek and El inside prismatic cell V .

(There are two more triangular faces γl and γk for Ek and El, which are on the

boundary of V .)

Let ω = Ek ∪ El, then we have:

ˆ
ω

u ·wdx+

ˆ
ω

(∇p) ·wdx

=

ˆ
ω

u ·wdx+

ˆ
∂ω

p(nω ·w)ds = 0,

(5.2)
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or equivalently, ˆ
ω

u ·wdx+ |Γkl|(pl − pk) = 0, (5.3)

where pl = 1
|γl|

´
γl
pds, pk = 1

|γk|

´
γk
pds, and γl = El ∩ ∂V , γk = Ek ∩ ∂V .

If we find all such basis vectors w for all cells, write u as linear combination of

w, and introduce boundary condition (if necessay), we can get the linear system:


Mūh +BT p̄h = Ḡh

Būh = F̄h

(5.4)

A good property for this system is, M is a block diagonal matrix and can be easily

inverted, i.e., M = diag{M1, · · · ,Mm}, where m is the number of prismatic cells,

and Mi is exactly right defined on prismatic grid cells Vi, with entries Mi(l, k) =
´
Vi

wl · wkdx. Therefore, we can take advantage of this property by using Schur

complement to solve this system, i.e.,


BM−1BT p̄h = BM−1Ḡh − F̄h

ūh = M−1(Ḡh −BT p̄h)

, (5.5)

where M−1 = diag{M−1
1 , · · · ,M−1

m } is very cheap to obtain.

5.3 Numerical results

In this section, we use the method described above to test some functions on grids

with different step sizes. On the very top layer, the mesh is uniform square mesh,
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with number of squares n = 4k, k = 1, 2, 3 · · · . The following information and results

are provided:

1. Number of layers.

2. Total number of prismatic grid cells.

3. Grid cell size h, which is the diagonal length of prismatic cells.

4. Degree of freedoms on p̄h.

5. Degree of freedoms on ūh.

6. Error on uh, i.e., ||uh − u∗||2, where u∗ is the real solution.

7. Error on u∗h,int, i.e., ||u∗h,int − u∗||2, where

u∗h,int · nkl =
1

|Γkl|

ˆ
Γkl

u∗ · nds, k < l. (5.6)

8. Ratio c = ||uh−u∗||2
||u∗h,int−u∗||2

. The reason to check this ratio is: it is already proved

that

||uh − u∗||2 ≤ 2||u∗h,int − u∗||2, (5.7)

so we want to verify it from numerical results and investigate how large the

real ratio between these two errors goes to.

In addition, in the C++ program, we use Simpson’s method to evaluate line and

triangular integrals, use Newton-Cotes quadrature rule that is accurate up to order
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2 to evaluate integrals in tetrahedrons, and use conjugate gradient method to solve

the first linear equation in (5.5).

Table 5.1 to Table 5.6 show the results without and with small perturbations

(meshes on lower layer is derived from the meshes on higher layer with small random

perturbations). For the perturbation, we tested on several values, for instance, 1%,

2%, here, the percentage indicates how significant the perturbation is. For example,

in our test case, the region is a sqaure [−1, 1] × [−1, 1], if the perturbations have

percentage 1%, then they are random numbers from interval [−0.01, 0.01] in the

directions of both x-axis and y-axis.

Table 5.1: f(x, y, z) = 0, g(x, y, z) = 1, real solution is p(x, y, z) = 1
# of layers total # of cells h DOF on ph DOF on uh ||uh − u∗||2 ||u∗h,int − u∗||2 c

No Perturbation
3 8 1.73205 24 144 1.66447e-15 0 inf
5 64 0.866025 288 1152 6.89779e-15 0 inf
9 512 0.433013 2688 9216 2.21199e-14 0 inf

Perturbation Percentage: 0.5%
3 8 1.73205 24 144 1.62973e-15 0 inf
5 64 0.866025 288 1152 6.21557e-15 0 inf
9 512 0.433013 2688 9216 1.67631e-14 0 inf

Perturbation Percentage: 1%
3 8 1.73205 24 144 1.33398e-15 0 inf
5 64 0.866025 288 1152 5.98046e-15 0 inf
9 512 0.433013 2688 9216 1.70497e-14 0 inf

Perturbation Percentage: 2%
3 8 1.73205 24 144 1.73771e-15 0 inf
5 64 0.866025 288 1152 6.14535e-15 0 inf
9 512 0.433013 2688 9216 1.73529e-14 0 inf
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Table 5.2: f(x, y, z) = 0, g(x, y, z) = x+ y + z, real solution is p(x, y, z) = x+ y + z
# of layers total # of cells h DOF on ph DOF on uh ||uh − u∗||2 ||u∗h,int − u∗||2 c

No Perturbation
3 8 1.73205 24 144 2.12471e-15 0 inf
5 64 0.866025 288 1152 5.59639e-15 0 inf
9 512 0.433013 2688 9216 1.82666e-14 0 inf

Perturbation Percentage: 0.5%
3 8 1.73205 24 144 2.57654e-15 8.37545e-16 3.0763
5 64 0.866025 288 1152 6.13208e-15 9.72204e-16 6.3074
9 512 0.433013 2688 9216 1.59932e-14 9.72002e-16 16.4539

Perturbation Percentage: 1%
3 8 1.73205 24 144 2.26871e-15 9.81696e-16 2.31101
5 64 0.866025 288 1152 6.23175e-15 9.88107e-16 6.30676
9 512 0.433013 2688 9216 1.67775e-14 1.02385e-15 16.3867

Perturbation Percentage: 2%
3 8 1.73205 24 144 2.2555e-15 9.45372e-16 2.38583
5 64 0.866025 288 1152 5.73213e-15 1.00068e-15 5.72824
9 512 0.433013 2688 9216 1.64681e-14 1.03479e-15 15.9145

Table 5.3: f(x, y, z) = −6, g(x, y, z) = x2 + y2 + z2, real solution is p(x, y, z) =
x2 + y2 + z2

# of layers total # of cells h DOF on ph DOF on uh ||uh − u∗||2 ||u∗h,int − u∗||2 c

No Perturbation
3 8 1.73205 24 144 2.82843 2.82843 1
5 64 0.866025 288 1152 1.41421 1.41421 1
9 512 0.433013 2688 9216 0.707107 0.707107 1

Perturbation Percentage: 0.5%
3 8 1.73205 24 144 2.82844 2.82845 0.999996
5 64 0.866025 288 1152 1.41431 1.41437 0.999957
9 512 0.433013 2688 9216 0.707422 0.707627 0.999711

Perturbation Percentage: 1%
3 8 1.73205 24 144 2.82847 2.82851 0.999985
5 64 0.866025 288 1152 1.41462 1.41486 0.999828
9 512 0.433013 2688 9216 0.708376 0.70919 0.998852

Perturbation Percentage: 2%
3 8 1.73205 24 144 2.8286 2.82877 0.999942
5 64 0.866025 288 1152 1.41583 1.4168 0.999315
9 512 0.433013 2688 9216 0.712248 0.715431 0.995551
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Table 5.4: f(x, y, z) = 0, g(x, y, z) = xyz, real solution is p(x, y, z) = xyz
# of layers total # of cells h DOF on ph DOF on uh ||uh − u∗||2 ||u∗h,int − u∗||2 c

No Perturbation
3 8 1.73205 24 144 0.924493 0.959872 0.963142
5 64 0.866025 288 1152 0.451019 0.473552 0.952417
9 512 0.433013 2688 9216 0.224084 0.235971 0.949625

Perturbation Percentage: 0.5%
3 8 1.73205 24 144 0.924498 0.959869 0.963151
5 64 0.866025 288 1152 0.451381 0.474124 0.952033
9 512 0.433013 2688 9216 0.224515 0.236577 0.949016

Perturbation Percentage: 1%
3 8 1.73205 24 144 0.924517 0.959884 0.963155
5 64 0.866025 288 1152 0.451873 0.474878 0.951557
9 512 0.433013 2688 9216 0.225448 0.23792 0.94758

Perturbation Percentage: 2%
3 8 1.73205 24 144 0.924595 0.959968 0.963152
5 64 0.866025 288 1152 0.453246 0.476932 0.950337
9 512 0.433013 2688 9216 0.228799 0.242828 0.942226

Table 5.5: f(x, y, z) = −6(x + y + z), g(x, y, z) = x3 + y3 + z3, real solution is
p(x, y, z) = x3 + y3 + z3

# of layers total # of cells h DOF on ph DOF on uh ||uh − u∗||2 ||u∗h,int − u∗||2 c

No Perturbation
3 8 1.73205 24 144 3.6702 3.98336 0.921382
5 64 0.866025 288 1152 2.04946 2.11936 0.967015
9 512 0.433013 2688 9216 1.06231 1.07505 0.988152

Perturbation Percentage: 0.5%
3 8 1.73205 24 144 3.66968 3.98348 0.921226
5 64 0.866025 288 1152 2.05124 2.12164 0.966818
9 512 0.433013 2688 9216 1.06261 1.07567 0.987854

Perturbation Percentage: 1%
3 8 1.73205 24 144 3.66916 3.98361 0.921064
5 64 0.866025 288 1152 2.05331 2.12447 0.966506
9 512 0.433013 2688 9216 1.06392 1.07806 0.986887

Perturbation Percentage: 2%
3 8 1.73205 24 144 3.66811 3.98396 0.920721
5 64 0.866025 288 1152 2.05831 2.13176 0.965547
9 512 0.433013 2688 9216 1.06966 1.08818 0.982974
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Table 5.6: f(x, y, z) = 3π2 sin(πx) sin(πy) sin(πz), g(x, y, z) = 0, real solution is
p(x, y, z) = sin(πx) sin(πy) sin(πz)

# of layers total # of cells h DOF on ph DOF on uh ||uh − u∗||2 ||u∗h,int − u∗||2 c

No Perturbation
3 8 1.73205 24 144 6.44923 6.44923 1
5 64 0.866025 288 1152 3.29991 3.40107 0.970256
9 512 0.433013 2688 9216 1.77977 1.83436 0.97024

Perturbation Percentage: 0.5%
3 8 1.73205 24 144 6.44931 6.44931 0.999999
5 64 0.866025 288 1152 3.29901 3.40073 0.970091
9 512 0.433013 2688 9216 1.78113 1.83595 0.970141

Perturbation Percentage: 1%
3 8 1.73205 24 144 6.44924 6.44926 0.999997
5 64 0.866025 288 1152 3.29846 3.4013 0.969766
9 512 0.433013 2688 9216 1.78496 1.84152 0.969284

Perturbation Percentage: 2%
3 8 1.73205 24 144 6.44871 6.44879 0.999988
5 64 0.866025 288 1152 3.29841 3.40517 0.968648
9 512 0.433013 2688 9216 1.80005 1.86459 0.965388
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5.4 Conclusion

From the numerical results, we can get the following conclusions:

1. ||uh − u∗||2 ∼ O(h).

2. c < 2, actually c is close to 1.

3. For constant and linear functions, the numerical solutions are accurate.
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APPENDIX A

Proofs of Lemmas

A.1 Proof of Lemma 3.9

Lemma 3.9. Let a, b, c be vectors in R3, then

a× (b× c) = (a · c)b− (a · b)c. (3.39)

Proof. This equality is known as triple product expansion, or Lagrange’s formula

([31], p.1679).
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A.2 Proof of Lemma 3.10

Lemma 3.10. Let a, b, c be vectors in R3, then

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c). (3.40)

Proof. This equality is known as Binet-Cauchy identity ([23], p.114) or Lagrange’s

identity ([10], p.185).

A.3 Proof of Lemma 3.11

Lemma 3.11. Let a, b, c be vectors in R3, then

[
a·(b×c)

]2

= ||a||2||b×c||2−(a·b)
[
(b×c)·(a×c)

]
+(a·c)

[
(b×c)·(a×b)

]
. (3.41)

Proof. By triple product expansion formula, the left-hand side is:

(a · (b× c))2

=||a||2||b× c||2 −
[
a× (b× c)

]2

=||a||2||b× c||2 −
[
(a · c)b− (a · b)c

]2

=||a||2||b× c||2 − (a · c)2||b||2 − (a · b)2||c||2 + 2(a · c)(a · b)(b · c).

(A.1)
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On the other hand, by Binet-Cauchy identity, the right-hand side is:

||a||2||b× c||2 − (a · b)
[
(b× c) · (a× c)

]
+ (a · c)

[
(b× c) · (a× b)

]
=||a||2||b× c||2 − (a · c)2||b||2 − (a · b)2||c||2 + 2(a · c)(a · b)(b · c).

(A.2)

A.4 Proof of Lemma 3.12

Lemma 3.12. Let a, b, c, d be vectors in R3, then

[
a · (c× d)

]
∗
[
b · (c× d)

]
=(a · b)||c× d||2 − (a · c)

[
(c× d) · (b× d)

]
+ (a · d)

[
(c× d) · (b× c)

]
=(a · b)||c× d||2 − (b · c)

[
(c× d) · (a× d)

]
+ (b · d)

[
(c× d) · (a× c)

]
.

(3.42)
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Proof. By using Lemma 3.11 and Binet-Cauchy identity, we have:

[
a · (c× d)

]
∗
[
b · (c× d)

]
=
1

2

{[
(a+ b) · (c× d)

]2
−
[
a · (c× d)

]2
−
[
b · (c× d)

]2}

=
1

2

{[
(a+ b)2 − ||a||2 − ||b||2

]
∗ ||c× d||2 −

[
(a+ b) · c

][
(c× d) ·

[
(a+ b)× d

]]
+
[
(a+ b) · d

][
(c× d) ·

[
(a+ b)× c

]]
+ (a · c)

[
(c× d) · (a× d)

]
− (a · d)

[
(c× d) · (a× c)

]
+ (b · c)

[
(c× d) · (b× d)

]
− (b · d)

[
(c× d) · (b× c)

]}

=(a · b)||c× d||2 + 1

2

{
− (a · c)

[
(c× d) · (b× d)

]
+ (a · d)

[
(c× d) · (b× c)

]
− (b · c)

[
(a× d) · (a× d)

]
+ (b · d)

[
(c× d) · (a× c)

]}

=(a · b)||c× d||2 − (a · c)
[
(c× d) · (b× d)

]
+ (a · d)

[
(c× d) · (b× c)

]
=(a · b)||c× d||2 − (b · c)

[
(c× d) · (a× d)

]
+ (b · d)

[
(c× d) · (a× c)

]
.

(A.3)

A.5 Proof of Lemma 3.13

Lemma 3.13. The inverse of matrix Mk defined in (3.35) is:

M−1
k =

1

vol


||n1||2 n1·n2 n1·n3 n1·n4

n2·n1 ||n2||2+
(n2·(n1×n4))2

||n1×n4||2
n2·n3− (n2·(n1×n4))(n3·(n1×n4))

||n1×n4||2
n2·n4

n3·n1 n3·n2− (n3·(n1×n4))(n2·(n1×n4))

||n1×n4||2
||n3||2+

(n3·(n1×n4))2

||n1×n4||2
n3·n4

n4·n1 n4·n2 n4·n3 ||n4||2

. (3.43)

Proof. We prove this lemma by matrix multiplication.

115



A.5. PROOF OF LEMMA 3.13

M(1, :) ∗M−1(:, 1)

=
1

2

{ ||n1||2||n3 × n4||2 − (n3 · n1)
[
(n3 × n4) · (n1 × n4)

]
+ (n4 · n1)

[
(n3 × n4) · (n1 × n3)

]
(n1 · (n3 × n4))2

+
||n1||2||n2 × n4||2 − (n2 · n1)

[
(n2 × n4) · (n1 × n4)

]
+ (n4 · n1)

[
(n2 × n4) · (n1 × n2)

]
(n1 · (n2 × n4))2

}

=1.

(A.4)

M(1, :) ∗M−1(:, 4)

=
1

2

{
(n1 · n4)||n3 × n4||2 − (n3 · n4)

[
(n3 × n4) · (n1 × n4)

]
+ ||n4||2

[
(n3 × n4) · (n1 × n3)

]
(n1 · (n3 × n4))2

+
(n1 · n4)||n2 × n4||2 − (n2 · n4)

[
(n2 × n4) · (n1 × n4)

]
+ ||n4||2

[
(n2 × n4) · (n1 × n2)

]
(n1 · (n2 × n4))2

}

=
(n1 · n4)

[
1− (n3 · n4)

2
]
− (n3 · n4)

[
n1 · n3 − (n1 · n4)(n3 · n4)

]
+ (n1 · n3)(n3 · n4)− n1 · n4

2(n1 · (n3 × n4))2

+
(n1 · n4)

[
1− (n2 · n4)

2
]
− (n2 · n4)

[
n1 · n2 − (n1 · n4)(n2 · n4)

]
+ (n1 · n2)(n2 · n4)− n1 · n4

2(n1 · (n2 × n4))2

=0.

(A.5)

116



A.5. PROOF OF LEMMA 3.13

M(1, :) ∗M−1(:, 2)

=
1

2

{
(n1 · n2)||n3 × n4||2 + (n4 · n2)

[
(n3 × n4) · (n1 × n3)

]
(n1 · (n3 × n4))2

−

[
n3 · n2 − (n3·(n1×n4))(n2·(n1×n4))

||n1×n4||2

]
(n3 × n4) · (n1 × n4)

(n1 · (n3 × n4))2

+
(n1 · n2)||n2 × n4||2 + (n4 · n2)

[
(n2 × n4) · (n1 × n2)

]
(n1 · (n2 × n4))2

−

[
||n2||2 + (n2·(n1×n4))

2

||n1×n4||2

]
(n2 × n4) · (n1 × n4)

(n1 · (n2 × n4))2

}

=
1

2

{
(n1 · n2)||n3 × n4||2||n1 × n4||2 − (n1 · n2)

[
(n1 × n4) · (n3 × n4)

]2
(n1 · (n3 × n4))2||n1 × n4||2

−
(n2 · n4)

[
(n1 × n4) · (n3 × n4)

][
(n1 × n3) · (n1 × n4)

]
(n1 · (n3 × n4))2||n1 × n4||2

+
(n2 · n4)

[
(n3 × n4) · (n1 × n3)

]
||n1 × n4||2

(n1 · (n3 × n4))2||n1 × n4||2

+
(n1 · n2)

[
1− (n2 · n4)

2
]
+ (n4 · n2)

[
(n1 · n2) · (n2 · n4)− n1 · n4

]
(n1 · (n2 × n4))2

−

[
||n2||2 + (n2·(n1×n4))

2

||n1×n4||2

][
(n2 × n4) · (n1 × n4)

]
(n1 · (n2 × n4))2

}

=
1

2

{
(n1 · n2)||(n1 × n4)× (n3 × n4)||2

(n1 · (n3 × n4))2||n1 × n4||2

+
(n2 · n4)(n1 · n4) ∗

[
(n1 · n4)

2 + (n3 · n4)
2 + (n1 · n3)

2 − (n3 · n4)
]

(n1 · (n3 × n4))2||n1 × n4||2

− 2(n1 · n3)(n1 · n4)

(n1 · (n3 × n4))2||n1 × n4||2
+

(n1 × n4) · (n2 × n4)

(n1 · (n2 × n4))2

−

[
||n2||2 + (n2·(n1×n4))

2

||n1×n4||2

][
(n2 × n4) · (n1 × n4)

]
(n1 · (n2 × n4))2

}

=
1

2

{ ||(n1 × n4)× (n3 × n4)||2
[
(n1 × n4) · (n2 × n4)

]
(n1 · (n3 × n4))2||n1 × n4||2

− (n1 × n4) · (n2 × n4)

||n1 × n4||2

}

=0.

(A.6)
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M(2, :) ∗M−1(:, 1)

=
1

2

{−||n1||2
[
(n1 × n4) · (n2 × n4)

]
+ (n2 · n1)||n1 × n4||2 − (n4 · n1)

[
(n1 × n4) · (n1 × n2)

]
(n2 · (n1 × n4))2

}

=
1

2

{−[n1 · n2 − (n1 · n4)(n2 · n4)
]
+ (n2 · n1)

[
1− (n1 · n4)

2
]

(n2 · (n1 × n4))2

−
(n4 · n1)

[
n2 · n4 − (n1 · n2)(n1 · n4)

]
(n2 · (n1 × n4))2

}

=0.

(A.7)

M(2, :) ∗M−1(:, 2)

=
1

2

{−(n1 · n2)
[
(n1 × n4) · (n2 × n4)

]
− (n4 · n2)

[
(n1 × n4) · (n1 × n2)

]
(n2 · (n1 × n4))2

+

[
||n2||2 + (n2·(n1×n4))

2

||n1×n4||2

]
||n1 × n4||2

(n2 · (n1 × n4))2

}

=
1

2

{−(n1 · n2)
[
(n1 × n4) · (n2 × n4)

]
− (n4 · n2)

[
(n1 × n4) · (n1 × n2)

]
(n2 · (n1 × n4))2

+
||n2||2||n1 × n4||2 + (n2 · (n1 × n4))

2

(n2 · (n1 × n4))2

}

=
1

2
∗ 2(n2 · (n1 × n4))

2

(n2 · (n1 × n4))2

=1.

(A.8)
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M(2, :) ∗M−1(:, 3)

=
1

2

{−(n1 · n3)
[
(n1 × n4) · (n2 × n4)

]
− (n4 · n3)

[
(n1 × n4) · (n1 × n2)

]
(n2 · (n1 × n4))2

+

[
n2 · n3 − (n3·(n1×n4))(n2·(n1×n4))

||n1×n4||2

]
||n1 × n4||2

(n2 · (n1 × n4))2

}

=
1

2

{−(n1 · n3)
[
(n1 × n4) · (n2 × n4)

]
+ (n1 · n3)

[
(n1 × n4) · (n2 × n4)

]
(n2 · (n1 × n4))2

+
(n4 · n3)

[
(n1 × n4) · (n1 × n2)

]
− (n4 · n3)

[
(n1 × n4) · (n1 × n2)

]
(n2 · (n1 × n4))2

}

=0.

(A.9)

M(2, :) ∗M−1(:, 4)

=
1

2

{−(n1 · n4)
[
(n1 × n4) · (n2 × n4)

]
+ (n2 · n4)||n1 × n4||2 − ||n4||2

[
(n1 × n4) · (n1 × n2)

]
(n2 · (n1 × n4))2

}

=
1

2

{−(n1 · n4)
[
n1 · n2 − (n1 · n4)(n2 · n4)

]
+ (n2 · n4)

[
1− (n1 · n4)

2
]

(n2 · (n1 × n4))2

+
−n2 · n4 + (n1 · n4)(n1 · n2)

]
(n2 · (n1 × n4))2

}

=0.

(A.10)

Similarly, we can get other elements of MM−1, and the result is MM−1 = I.

A.6 Proof of Lemma 3.14

Lemma 3.14.

s2

[
n2 · (n1 × n4)

]
= −s3

[
n3 · (n1 × n4)

]
. (3.44)
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Proof. Let u1 =
−−→
V1V2, u2 =

−−→
V1V3, u3 =

−−→
V1V4, then we have

n1 =
(u3 − u2)× (u2 − u1)

s1

, (A.11)

n2 =
u2 × u3

s2

, (A.12)

n3 =
u3 × u1

s3

, (A.13)

n4 =
u1 × u2

s4

. (A.14)

As a result,

n2 · (n1 × n4) = n1 · (n4 × n2) = n1 ·

{
(u1 × u2)× (u2 × u3)

s2s4

}

=

[
(u3 × u1) · u2

][
u2 · (u1 × u3)

]
s1s2s4

,

(A.15)

and

n3 · (n1 × n4) = n1 · (n4 × n3) = n1 ·

{
(u1 × u2)× (u3 × u1)

s3s4

}

= −

[
(u3 × u2) · u1

][
u1 · (u2 × u3)

]
s1s3s4

.

(A.16)

Therefore, s2

[
n2 · (n1 × n4)

]
= −s3

[
n3 · (n1 × n4)

]
.
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