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Abstract

In this dissertation, we study the structure of correlation minimizing frames. A

correlation minimizing (N,d)-frame is any uniform Parseval frame of N vectors in

dimension, d, such that the largest absolute value of the inner products of any pair

of vectors is as small as possible. We call this value the correlation constant. These

frames are important as they are optimal for the 2-erasures problem.

We produce the actual correlation minimizing frames. To further study the struc-

ture of correlation minimizing frames, we obtain upper bounds on the correlation

constant. In the real case, we find an upper bound on the correlation constant of

a correlation minimizing (N,d)-frame. As a result, we prove the correlation con-

stant goes to zero for fixed redundancy as the dimension and number of vectors

increases proportionally by 2k. When addressing the correlation constant for com-

plex correlation minimizing (N,d)-frames, we consider circulant matrices which are

also projections as the Grammian matrix of a uniform Parseval frame. We derive a

relationship between these Grammian matrices and the Dirichelet kernel as well as

the structure of quadratic residue. Utilizing these relationships, we obtain two upper

bounds on the correlation constant. Furthermore, we investigate how the correlation

constant behaves asymptotically in comparison to the Welch bound. In L2[0, 1], the

Laurent matrix is a projection defined by the Fourier transform of the characteristic

function on an interval of fixed finite length in [0,1]. Considering the magnitude of

the Fourier transform of the characteristic function on a set of sufficiently small size,

we derive a bound on the correlation constant and construct a method to create a

correlation constant that is arbitrarily small.

vi



Contents

1 Background 1

1.1 History of Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Optimal frames for the 2-erasure problem . . . . . . . . . . . 3

1.1.3 The Optimal Line Packing Problem . . . . . . . . . . . . . . . 6

1.2 Frame-Basics and Notation . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Correlation Minimizing Frames 12

2.1 Optimal Frames for Erasures . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Correlation Minimizing Frames . . . . . . . . . . . . . . . . . . . . . 19

2.3 Grassmannian and Correlation Minimizing Frames in R3 . . . . . . . 24

3 Bounds on Correlation Minimizing frames 37

3.0.1 Direct Sums and Tensor Products . . . . . . . . . . . . . . . . 38

3.0.2 Correlation Constant Bounds . . . . . . . . . . . . . . . . . . 40

vii



CONTENTS

3.1 Correlation Minimization for Circulant Matrices . . . . . . . . . . . . 42

3.2 Circulant Matrices as Projections . . . . . . . . . . . . . . . . . . . . 43

3.2.1 An upper bound for Ccirc(N, d) . . . . . . . . . . . . . . . . . 45

3.2.2 The Dirichlet kernel . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Application of Dirichlet Kernel in bounding the Correlation
Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Correlation Constant upper bound via Difference sets . . . . . . . . . 58

3.3.1 Shift invariant projections and cyclic equiangular frames . . . 58

3.3.2 Quadratic Residues . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Correlation Minimization for Laurent Matrices 64

4.0.1 Laurent Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.0.2 Minimizing entries of the Laurent matrices . . . . . . . . . . 66

Bibliography 70

viii



CHAPTER 1

Background

1.1 History of Frames

1.1.1 Frames

A frame is a set of vectors in a Hilbert space that can be used to reconstruct each

vector in the space from its inner products with the frame vectors. These inner

products are generally called the frame coefficients of the vector. But unlike an

orthonormal basis each vector may have infinitely many different representations in

terms of its frame coefficients.

1



1.1. HISTORY OF FRAMES

Frames for Hilbert spaces were introduced by Duffin and Schaeffer [13] in 1952

to study some deep problems in nonharmonic Fourier series by abstracting the fun-

damental notion of Gabor [15] for signal processing. These ideas did not generate

much interest outside of nonharmonic Fourier series and signal processing until the

landmark paper of Daubechies, Grossmannn, and Meyer [11] in 1986, where they

developed the class of tight frames for signal reconstruction. After this innovative

work the theory of frames began to be widely studied. While orthonormal bases

have been widely used for many applications, [12] [14] [27], it is the redundancy that

makes frames useful in applications.

Today, frames play an important role in many applications in mathematics, sci-

ence, and engineering. Some of these applications include internet coding [35], time-

frequency analysis [19], speech and music processing [42][28], wireless communication

[27], medical imaging [40][20], digital copy-write infringement [31], quantum com-

puting [24], and many other areas. Applications often use Parseval or tight frames

because these frames have the added advantage that each vector has one natural

representation given by a simple formula involving its frame coefficients. If, in addi-

tion, the frame is equal-norm (or uniform) somewhat equal weight is given to each

vector in the space. Examples of classes of uniform Parseval frames can be found in

[7]. A special case, called a 2-uniform frame, is a uniform Parseval frame with the

additional condition that the inner products between distinct pairs of frame vectors

has equal modulus. These frames were discovered by Holmes and Paulsen [22] to be

optimal for the 2 erasure problem.
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1.1. HISTORY OF FRAMES

1.1.2 Optimal frames for the 2-erasure problem

Suppose that we want to transmit the information contained in a d-tuple of numbers

to a receiver over a noisy channel. Given a vector in a d-dimensional Hilbert space,

if we use a frame with N > d vectors then the information contained in this vector

is now encoded in its N frame coefficients. When information is stored or encoded

redundantly, so that it is spread among a large number of coefficients, then our

chances of communicating the vector within some margin of error should be increased.

The erasure problem assumes that the only types of errors that can occur is that each

coefficient as it is transmitted is either lost entirely or received perfectly. If m of the

coefficients are lost during transmission one wants the best possible reconstruction

of the data, using ”blind reconstruction”. This means that one always reconstructs

the same way, ignoring that m frame coefficients lost have been set to zero. The

erasures problem asks: what is the best set of N vectors to encode the information

so that when up to m coefficients are lost and the blind reconstruction formula is

used, the most accurate reconstruction can occur, i.e., where the maximum over all

input vectors of the error between the original and it are ”best”, or in some sense

optimal, were studied in [22]. Frames that satisfied their optimality properties were

called m-erasure frames.

In the case of the 1-erasure problem, only one coefficient is lost before reconstruc-

tion, it was proven by Cassaza-Kovacevic that uniform Parseval frames are the best,

or optimal, choices of vectors to encode the data [6]. Thus, the 1-erasure frames are

exactly the uniform Parseval frames.
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1.1. HISTORY OF FRAMES

The 2-erasure frames, introduced by Holmes and Paulsen [22], are the frames

that are the optimal solution for the 2-erasure problem among all uniform Parseval

frames, i.e., among all frames that are optimal for the 1-erasure problem. Holmes

and Paulsen proved that the set of uniform Parseval frames for which the minimal

angle between any pair of vectors is as large as possible are exactly the 2-erasure

frames.

Furthermore, they identified that for some (N,d) pairs there exist frames that

they called 2-uniform frames, where the angle between each pair of distinct frame

vectors is equal, and that when 2-uniform frames exist then they are exactly the

set of 2-erasure frames. The 2-uniform frames are exactly the set of equiangular,

uniform Parseval frames and this latter terminology is now much better known.

The problem with 2-uniform and equiangular tight frames is that for most pairs

(N,d), they do not exist. For example, when d = 3 these are known to exist only for

N = 3, 4, and 6. The lack of existence in most cases leads to the questions: For a

given pair (N,d), what is the set of 2-erasure frames? Answering this question has

also been addressed as minimizing the worst case coherence, finding Grassmannian

equal-norm Parseval frames and finding frames with low coherence in [37] [38].

Heath and Strohmer in [35] studied frames from the aspect of coding theory.

Consequently, they also considered the problem, for a given N and d, which unit norm

tight frames satisfy the property that the largest magnitude of the inner products

between two frame vectors is as small as possible. For given N and d, they called the

unit norm frames that solved the problem Grassmannian frames. In the case when

all of those magnitudes between frame vectors are equal, the magnitude equals the
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1.1. HISTORY OF FRAMES

Welch Bound [41] and the equiangular tight frame, was called optimal Grassmannian.

The Grassmannian space G(d, n) is the set of all n-dimensional subspaces of the space

Rd or Cd. The Grassmannian packing problem is the problem of finding the best

packing of N n-dimensional subspaces in Rd or Cd, such that the angle between any

two of these subspaces becomes as large as possible. In the real case where n=1, the

subspaces are real lines through the origin in Rd and the goal is to arrange N lines

such that the angle between any two of the lines becomes as large as possible. Since

maximizing the angle between lines is equivalent to minimizing the magnitude of the

inner product of the unit vectors generating these lines, therefore finding optimal

packings in G(d, 1) is equivalent to finding finite Grassmannian frames, which is

what motivated the name Grassmannian frames and optimal Grassmannian frames.

Applications of 2-uniform frames or equiangular tight frames occur in combina-

torial design theory [35], digital fingerprinting codes [31], and many other areas. An

illustration of one current application is in digital fingerprinting. Digital fingerprint-

ing is a framework for marking media files, where user-specific signatures are used to

deter illegal duplication and distribution. It is possible for multiple users to collude

to produce a forgery that can potentially overcome a fingerprinting system. It was

proposed, that an equiangular tight-frame fingerprint design is robust to such attacks

[31].
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1.2. FRAME-BASICS AND NOTATION

1.1.3 The Optimal Line Packing Problem

Optimal line packings were first researched by Hanntjes, in 1948, where he posed

the problem of packing equiangular lines in real Euclidean space [21]. Then in 1973

this problem was analyzed by Lemmens and Seidel [26]. The optimal packings of N

lines in R3 were studied by Conway, Hardin, and Sloan [9] for all values of N ≤ 55.

For some values of N , they were able to give closed form descriptions of these sets

of lines, along with proofs that they were indeed optimal packings, while for many

values of N , they were only able to give numerical approximations to these optimal

packings.

Holmes and Paulsen [22] did numerical experiments that computed the approxi-

mate minimum angle between vectors for 2-erasure frames of N vectors in R3. Their

computations showed that for some values of N the minimum angle between vectors

appeared to be identical to the angle determined by [9] for optimal line packing re-

sults, up to the number of decimal places published. This lead them to conjecture

that for these values of N , one could obtain a unit norm tight frame by choosing a

unit vector from each line in the optimal line packing, and that, after scaling, the

resulting uniform Parseval frame would be a 2-erasure frame.

1.2 Frame-Basics and Notation

Definition 1.2.1. Let I be a countable index set. A family F = {fi}i∈I of elements

in a (real or complex) Hilbert space H is called a frame for H if there are constants

6



1.2. FRAME-BASICS AND NOTATION

0 < A ≤ B < ∞, called the lower and upper frame bounds, respectively so that for

all f ∈ H

A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2. (1.1)

If A=B, then F is called a tight frame and when A=B=1, F is called a Parseval

frame.

We denote the collection of all Parseval frames for a d dimensional Hilbert space

consisting of N vectors as F(N, d). If F = {f1, ..., fN} is a Parseval frame for a

d-dimensional Hilbert space, then we call F a (N, d)-frame.

We say F = {fi}i∈I is a uniform (or equal-norm) frame if its vectors are all the

same length and equiangular if in addition there is a c ≥ 0 where | 〈fj, fk〉 | = c, for

all j 6= k.

In general, a frame can have more vectors than the dimension of the Hilbert space

and, in the case that the space is finite dimensional, we call

card(I)

dim(H)

the redundancy of the frame.

If F = {fi}i∈I is a frame for H, the analysis operator is the bounded linear

operator V : H → `2(I) given by V (x)i = 〈x, fi〉 for all i ∈ I. The synthesis

operator, the adjoint of the analysis operator, V ∗ : `2(I) → H is defined by the

formula, V ∗(ei) = fi, where {ei}i∈I is the standard basis for H. Therefore, the frame

operator defined by,

Sx = V ∗V x =
∑
i∈I

〈x, fi〉fi,

7



1.2. FRAME-BASICS AND NOTATION

is a positive, continuous invertible operator that satisfies AI ≤ S ≤ BI. The canon-

ical dual frame is H = {hi}i∈I , where hi = S−1fi. If F has frame bounds A and B,

the canonical dual frame bounds are 1
B

and 1
A

.

In particular, F is a Parseval frame if and only if V is an isometry and this is if

and only if V ∗V = IH.

Thus, F = {fi}i∈I is a Parseval frame if and only if we have that

h =
∑
i∈I

〈h, fi〉fi, ∀h ∈ H.

More generally, if F = {fi}i∈I is a tight frame for a Hilbert space H with constant

A then

h =
1

A

∑
i∈I

〈h, fi〉fi, ∀h ∈ H.

This is known as the sampling and reconstruction formula.

On the other hand, the analysis operator V is an isometry if and only if the

Grammian matrix V V ∗ = (〈fj, fi〉) is a projection with rank equal to dim(H), and

hence gives another characterization of Parseval frames.

If F is a uniform (N, d)-frame with analysis operator V , then V ∗V = Id the d×d

identity matrix and

d = rank(V V ∗) = Tr(V V ∗) =
N∑
i=1

‖fi‖2 = N‖fk‖2,

for any k. Thus, for a (N, d)-frame,

1

‖fk‖2
=
N

d
,

is the redundancy. For this reason, when F = {fi}i∈I is a uniform Parseval frame

for an infinite dimensional Hilbert space, we still call 1
‖fk‖2

the frame redundancy.

8



1.2. FRAME-BASICS AND NOTATION

Furthermore, when F is a uniform (N,d)-frame, each of the diagonal entries of

V V ∗ must be equal to d/N and therefore each frame vector must be of length
√
d/N .

Conversely, given an N × N self-adjoint projection P of rank d, we can always

factor it as P = V V ∗ for some N × d matrix V. It readily follows that V ∗V = Id

and hence V is the matrix of an isometry and so is the analysis operator of an

(N,d)-frame. The vectors in this frame are the complex conjugates of the rows of V .

Moreover, if P = WW ∗ is another factorization of P, then there exists a unitary U

such that W ∗ = UV ∗ and hence the two corresponding frames differ by multiplication

by this unitary. Thus, P determines a unique unitary type I equivalence class of

frames. A projection P corresponds to a uniform (N,d)-frame if and only if all of its

diagonal entries are d/N .

Definition 1.2.2. Frames F = {fi}ni=1 and G = {gi}ni=1, are type I equivalent if there

exists a unitary (orthogonal matrix, in the real case) U such that gi = Ufi for all i.

Theorem 1.2.3. [22] If V and W are the analysis operators for F and G, respec-

tively, then the following are equivalent

1. F and G are type I equivalent

2. there exists a unitary(respectively, orthogonal matrix) U such that V = WU

3. V V ∗ = WW ∗.

Definition 1.2.4. Frames F = {fi}ni=1 and G = {gi}ni=1 are type II equivalent if they

are a permutation of the same set of vectors and they are type III equivalent if there

exist numbers {λi}ni=1 of modulus such that fi = λigi. Thus, in the real case if they

differ by multiplication by ±1. Two frames are equivalent if they belong to the same

9



1.3. OUTLINE

equivalence class in the equivalence relation generated by these three equivalence

relations.

Theorem 1.2.5. [22] If F and G are (N, d)-frames with analysis operators V and

W , respectively, then they are equivalent if and only if UV V ∗U∗ = WW ∗ for some

N ×N unitary U that is the product of a permutation matrix and a diagonal matrix

with entries of modulus 1(±1, in the real case).

1.3 Outline

In Chapter 2, we define correlation minimizing frames and derive properties. Then

we give examples for some of these correlation minimizing frames, some of which

are also 2-uniform frames, in R3 for some values of N and prove that for some of

the values of N where these two angles were shown to numerically agree, that one

does indeed obtain tight frames. Additionally, we produce the actual correlation

minimizing frames by using the geometric descriptions of the optimal line packings

to find closed coordinates, and then choose unit vectors from those the optimal line

packing coordinates. Also, we identify cases where the numerical estimates match

but the line packing does not yield a correlation minimizing frame.

In Chapter 3, we begin by finding bounds on the correlation constant of a cor-

relation minimizing (N,d)-frame. As a result, we show that the correlation constant

goes to zero for fixed redundancy as the dimension and number of vectors increases

proportionally by 2k. Then, we consider the problem of finding bounds on the corre-

lation constant in the complex case. We begin by laying out the structure of circulant

10



1.3. OUTLINE

matrices which are also projections. We view these circulant matrices as the Gram-

mian matrix of a uniform (N,d)-frame. We obtain a relationships between these

Grammian matrices and the Dirichelet kernel as well as the structure of quadratic

residues in ZN . Finally, we utilize these relationship to derive bounds on the corre-

lation constant. Furthermore, we investigate how the correlation constant behaves

asymptotically in comparison to the Welch bound.

In Chapter 4, we consider when the Hilbert space is infinite dimensional. In

this case, the Laurent matrix is a projection defined by the Fourier transform of the

characteristic function on an interval of fixed finite length in [0,1]. We derive bounds

on the magnitude of the Fourier transform of the characteristic function on a set of

sufficiently small size. Additionally, we construct a method to create a correlation

constant that is arbitrarily small.

11



CHAPTER 2

Correlation Minimizing Frames

Correlation Minimizing Frames were first defined by Holmes and Paulsen [22] as 2-

erasure frames. Later Getzelman, Leonhard, and Paulsen renamed these correlation

minimizing frames [16]. Chapters 2 includes an exposition of these results.

2.1 Optimal Frames for Erasures

To motivate the definition of corrlation minimizing frames we first consider the m-

erasure problem and which frames are optimal, in a sense made precise by [22] for

m=1 and m=2.

12



2.1. OPTIMAL FRAMES FOR ERASURES

The idea behind treating frames as codes is that, given an original vector x ∈ Fd,

where Fd s a d dimensional field, and an (N, d)-frame with analysis operator V, one

regards the vector V x ∈ FN as an encoded version of x, which then is transmitted,

received, and finally decoded by applying V ∗. If V is the analysis operator for the

frame used to encode x, choose V ∗ to be the unique left inverse that minimizes both

the operator norm and Hilbert-Schmidt norm.

Furthermore, suppose that during transmission some number, say m, of the frame

coefficients, i.e components of the vector V x, are lost prior to the reconstruction of x.

In this case, we remove the components using the matrix E and represent the received

vector as EV x, where E is a diagonal matrix of m 0’s and N-m 1’s corresponding

to the entries of V x that are, respectively, lost and received. The 0’s in E can be

thought of as the coordinates of V x that have been erased.

There are two methods by which one could attempt to reconstruct x. Both require

computation of a left inverse. For active reconstruction, the left inverse of EV is used.

In the case of blind reconstruction, the left inverse V ∗ for analysis operator V can

continue be used in which case x will only have been approximately reconstructed.

If EV has a left inverse, then the left inverse of minimum norm is given by T−1W ∗

where EV = WT is the polar decomposition and T = |EV | = (V ∗EV )
1
2 . Thus, the

minimum norm of a left inverse is given by the inverse of the minimum eigenvalue of

T, t−1min.

The 2-erasure problem was characterized by Holmes and Paulsen [22]. In their

research, the norms of the error operators were considered, rather than those of the

left inverses. This approach yields cleaner formulas. Their research described the

13



2.1. OPTIMAL FRAMES FOR ERASURES

frames for which the norms of these error operators are in some sense minimized,

independent of which erasures occur. That is, for analysis operator V, V ∗ is used to

reconstruct x.

The error in reconstructing x is given by

x− V ∗EV x = V ∗(I − E)V x = (I − T 2)x = V ∗DV x,

where D is a diagonal matrix of m 1’s and N-m 0’s. It follows that the norm of the

error operator is 1− t2min.

Consequently, when a left inverse exists, the problem of minimizing the norm of

a left inverse over all frames and all E with m-erasures is equivalent to minimizing

the norm of the error operator over all frames. Moreover, they are both achieved by

maximizing the minimal eigenvalue of T.

The first quantity defined, dm(V ), represents the maximal norm of an error op-

erator given that some set of m erasures occurs.

Definition 2.1.1. First, let Dm, 1 < m ≤ N denote the set of N × N diagonal

matrices with m 1’s and N −m 0’s and for any isometry V ∈ F(N, d) set

dm(V ) = max {‖V ∗DV ‖ : D ∈ Dm}.

Since F(N, d) is a compact set the value

e1(N, d) = inf{d1(V ) : V ∈ F(N, d)}

is attained. We define the 1-erasure frames to be the nonempty compact set

E1(N, d) = {V ∈ F(N, d) : d1(V ) = e1(N, d)}

14



2.1. OPTIMAL FRAMES FOR ERASURES

.

Proceeding inductively,for 1 ≤ m ≤ N , set

em(N, d) = inf{dm(V ) : V ∈ Em−1(N, d)} (2.1)

and define the m-erasure frames to be the nonempty compact subset Em(N, d) of

Em−1(N, d) where this infimum is attained.

As evident from the definition, we have decreasing sets of equivalent frames that

will be the optimal solutions for fixed (N,d). Consequently, we examine the solution

for the 1-erasure problem to rephrase and further motivate the solution for the 2-

erasure problem. Casazza and Kovačević, in [6], proved that the optimal solution for

the 1-erasure problem is the family of uniform (N, d)-frames. The theorem as stated

in [22] is below.

Theorem 2.1.2. [6] The set E1(N, d) coincides with the family of uniform (N, d)-

frames, and consequently, e1(N, d) = N/d.

Proof. Given an (N, d)-frame F = {f1, . . . , fN}, if we regard the frame vectors as

column vectors, then the analysis operator V is the matrix whose j-th row is f ∗j .

Given D ∈ D1 which is 1 in the Dj,j entry, we have that

‖V ∗DV ‖ = ‖DV ∗V D‖ = ‖fj‖2.

Hence,

d1(V ) = max{‖fj‖2 : 1 ≤ j ≤ N}.

15



2.1. OPTIMAL FRAMES FOR ERASURES

Since
∑N

j=1 ‖fj‖2 = tr(V V ∗) = N , we have that ‖fj‖2 ≥ d
N

for some 1 ≤ j ≤ N . So

d1(V ) is clearly minimized when ‖fj‖2 = d
N

independent of j. That is, when F is a

uniform (N, d)-frame.

As a special class of uniform (N,d)-frames which will be analyzed later, we use

the correspondence between projection and the equivalence classes of these frames

as proven in [22].

Theorem 2.1.3. [22] There is a one-to-one correspondence between N ×N rank d

projections and type I equivalence classes of uniform (N,d)-frames.

Proof. Given type I equivalent frames F = {fi}Ni=1 and G = {gi}Ni=1, with analysis

operators V and W respectively. Since F and G are type I equivalent there exists a

unitary (orthogonal matrix, in the real case) U such that gi = Ufi for all 1 ≤ i ≤ N .

This is true if and only if V and W are the analysis operators for V = WU or

equivalently, if and only if V V ∗ = WW ∗. Thus, there is a one-to-one correspondence

between N by N rank d projections and type I equivalence classes of (N, d)-frames

and consequently type I equivalence classes of uniform (N, d)-frame.

By observing the relationship between E1(N, d) and

E2(N, d) = {V ∈ F(N, d) : d2(V ) = e2(N, d)}

and uniform (N,d)-frames, we can consider the corresponding NxN projection to

analyse the structure of equivalence classes of uniform (N,d)-frames. When consid-

ering the class of 2-erasure frames, there are some (N,d) pairs where 2-uniform frames

occur.
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2.1. OPTIMAL FRAMES FOR ERASURES

Definition 2.1.4. (Definition 2.4, [22]) A (N,d)-frame, F is 2-uniform provided that

F is a uniform (N,d)-frame and in addition ‖V ∗DV ‖ is a constant for all D ∈ D2.

Theorem 2.1.5. (Theorem 2.5, [22]) Let F be a uniform (N, d)-frame. Then F is

2-uniform if and only if | 〈fj, fi〉 | = cN,d is constant for all i 6= j, where

cN,d =

√
d(N − d)

N2(N − 1)

.

Proof. Fix i 6= j, let V be the analysis operator for the uniform (N,d)-frame F and

let D be the diagonal matrix that is 1 in the (i, i) and (j, j) entries and 0 elsewhere.

Since D2 = D = D∗, we have that

‖V ∗DV ‖ = ‖(DV )∗(DV )‖ = ‖DV V ∗D‖ = ‖

 d
N

〈fi, fj〉

〈fj, fi〉 d
N

 ‖.
The norm of this 2x2 matrix is easily found to be d

N
+ |〈fj, fi〉| and thus F is

2-uniform if and only if |〈fj, fi〉| is constant, say c, for all i 6= j. To see the final

claim, use the fact that P = V V ∗ satisfies P = P 2. Equating diagonal entries of P

and P 2, yields the equation

d

N
=

(
d

N

)2

+ (N − 1)c2.

This equation, when solved for c, yields the above formula for c = cN,d =
√

d(N−d)
N2(N−1) .

Previously, Holmes and Pauslen find the exact value of magnitudes of the inner

product of a 2-uniform (N,d)-frame, i.e. the off diagonal entries of the Grammian

17
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matrix. Since these entries are equal, it follows that the angle between each pair of

frame vectors will be the same.

Corollary 2.1.6. (Corollary 2.6, [22]) Let F be a uniform (N,d)-frame. Then F is

2-uniform if and only if the angle between the lines spanned by every pair of frame

vectors is equal to cos−1
(√

N−d
d(N−1)

)
.

The families of frames satisfying the latter condition in the above proposition have

also been studied independently in [35], where they are called equiangular frames and

the corresponding unit norm frame optimal Grassmannain frames. For those (N,d)

pairs where 2-uniform frames do not exist, a lower bound for the maximal norm of

an error operator was identified.

Theorem 2.1.7. (Proposition 2.7, [22]) Let natural numbers d ≤ N be given. If

F = {f1, . . . , fn} is a uniform (N,d)-frame, then for each i there exists j 6= i such

that |〈fj, fi〉| ≥ cN,d. Consequently, if V denotes the analysis operator of F, then

d2(V ) ≥ d
N

+ cN,d.

Proof. Let P = (pi,j) = V V ∗ denote the Grammian matrix of F . Using the fact that

P 2 = P and equating the (i,i)-th entry yields
∑N

j=1 |pi,j|2 = d
N

and hence,

N∑
j=1,j 6=i

|pi,j|2 =
d

N
− |pi,i|2 =

d

N
−
(
d

N

)2

=
d(N − d)

N2

Since there are (N-1) terms in the above sum, at least one term must be larger than

N(N−d)
(N−1)N2 = c2N,d and the first result follows. The second claim follows from the formula

for ‖V ∗DV ‖ for any D ∈ D2 obtained in the proof of Proposition 2.1.5.
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Consequently, the previous theorem can be used to determine the relationship

2-uniform frames have to the m-erasure problem and when a 2-uniform frame does

not exist, a lower bound can be established.

Theorem 2.1.8. (Theorem 2.8, [22]) Let natural numbers d ≤ N be given. If

there exists a 2-uniform (N, d)-frame, then every frame in Em(N, d) is 2-uniform for

2 ≤ m and e2(N, d) = d
N

+ cN,d. If there does not exist a 2-uniform (N,d)-frame,

then necessarily e2(N, d) > d
N

+ cN,d.

Proof. The first statement follows from Proposition 2.1.5. To see the second state-

ment, note that by compactness there must exist a uniform (N,d)-frame F with anal-

ysis operator V such that e2(N, d) = d2(V ). If e2(N, d) = N
d

+ cN,d, then the proof

proposition 2.1.5 shows that for all j 6= i, we would have that 〈fj, fi〉 = |pi,j| = cN,d,

which implies that F is 2-uniform. Thus if F is not 2-uniform e2(N, d) > d
N

+cN,d.

2.2 Correlation Minimizing Frames

Now, we define correlation minimizing frames and relate them to 2-erasure frames

and, when they exist, 2-uniform frames and their properties.

Definition 2.2.1. Let F = {f1, ...fN} ∈ E1(N, d). Then the maximum correlation

is

M∞(F) =
N

d
·max{|〈fk, fl〉| : k 6= l}.

and

C(N, d) = inf{M∞(F) : F ∈ E1(N, d)}. (2.2)
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is the correlation constant for frames in E1(N, d). We call a uniform (N,d)-frame F

correlation minimizing if M∞(F) = C(N, d).

Note that the factor N
d

must be included because F ∈ E1(N, d) implies that each

vector in F has norm
√
d/N. Clearly, 0 ≤ M∞(F) ≤ 1 If N = d, then we take F

to be an orthonormal basis for H. For the case where F is ”overcomplete”, N > d,

then |〈fj, fl〉| will depend the redundancy. For smaller redundancy M∞(F) should

be smaller. Smaller maximum correlation means a set is more nearly orthogonal. If

M∞(F) = 1 and the supremum is attained, then any two vectors where the supremum

is attained are parallel. Therefore, larger maximum correlation indicates that the set

contains vectors that are more nearly parallel.

These constants were introduced in [22] where it was proven that C(N, d) was

always attained, i.e., the infimum is actually a minimum. Frames called 2-uniform

in [22] or tight equiangular frames in [35] are correlation minimizing frames. The

following result is essentially from [16].

Theorem 2.2.2. A uniform (N,d)-frame is correlation minimizing if and only if it

is in the set E2(N, d). Consequently,

E2(N, d) = {F ∈ E1(N, d) : M∞(F) = C(N, d)}

and a uniform (N,d)-frame is correlation minimizing if and only if it is a 2-erasure

frame.

Then the relationship between correlation minimizing frames to 2-uniform and

equiangular frames we have the result from [22]
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Theorem 2.2.3. ([35][22]) Let N ≥ d, and let F ∈ E1(N, d). Then

M∞(F) ≥

√
N − d
d(N − 1)

, (2.3)

and equality holds iff F is equiangular.

If there exists an equiangular frame F ∈ E1(N, d), then it is 2-uniform, and neces-

sarily a correlation minimizing (N,d)-frame. In this case every frame in E2(N, d) is

2-uniform.

Furthermore, if N > d(d+1)
2

in the real case and N > d2 in the complex case, then

there is no equiangular frame in E1(N, d) and equality cannot hold in the above equa-

tion.

Thus, we see that

C(N, d) ≥

√
N − d
d(N − 1)

,

with equality if and only if there exists an equiangular frame. The quantity appearing

on the right hand side of the above equation is known as the Welch bound.

Also, Θ(N, d) = arccos(C(N, d)). Note that since arccos is a decreasing function,

Θ(N, d) = sup{Θ(F) : F ∈ E1(N, d)}.

We shall call C(N, d) the correlation constant for frames in E1(N, d) and so Θ(N, d)

is the maximum angle between vectors for frames in E1(N, d).

Example 2.2.4. (Proposition 2.3, [22]) For m ≥ 2 and N ≥ 2, every frame in

Em(N, 2) is frame equivalent to the frame given by setting

fj =

√
2

N

(
cos

(
πj

N

)
, sin

(
πj

N

))
,

for j = 1, . . . , N .
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It is clear from the definition that F is a uniform (N,d)-frame. However, it is not

a 2-uniform frame. To see it is correlation minimizing, we compute

|〈fi, fj〉| =
2

N
|cos

(
iπ

N

)
sin

(
jπ

N

)
+ cos

(
jπ

N

)
sin

(
iπ

N

)
| = 2

N
|cos(

(
π(i+ j)

N

)
)|.

Note |cos(θ)| = |cos(θ−π)| and cos(θ) is decreasing on
(
0, π

2

)
. Therefore, N

2
M∞(F) =

cos
(
π
N

)
. This is the lower bound for the (N,2)-Grassmannian frame, given in [2].

Hence, by scaling,
√

N
2
F is the (N,2)-Grassmannian frame and we conclude F is

correlation minimizing, with C(N, 2) = cos
(
π
N

)
.

Since correlation minimizing frames are uniform (N,d)-frames, we know by com-

pactness that the infimum is attained for all (N,d) pairs. So now, we look at the

relationship Naimark’s Theorem and the Naimark complement give when applied to

correlation minimizing frames.

Theorem 2.2.5 (Naimark’s Dilation Theorem). Let Hd be a d-dimensional Hilbert

space and HN be a N-dimensional Hilbert space. A family of vectors F = {fi}Ni=1

is a Parseval frame for Hd if and only if the analysis operator V ∗ is an isometry

satisfying V ∗fi = Pei for all i = 1, 2, . . . , d where {ei}Ni=1 is an orthonormal basis for

HN and P is an orthogonal projection from HN onto Hd. Moreover, {(I − P )ei}Ni=1

is a Parseval frame for an (N − d)-dimensional Hilbert space.

{(I − P )ei}Ni=1 is called a Naimark complement. Since a Naimark complement

is a Parseval frame for its span, the analysis operator is a projection of {Pei}Ni=1

and therefore the Grammian for a (N,N − d)-frame. This leads us to the relation-

ship found in [16] between a correlation minimizing (N,d)-frame and a correlation

minimizing (N,N − d)-frame.
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Theorem 2.2.6. [16] Let F = {fi}Ni=1 be a correlation minimizing (N,d)-frame with

Grammian matrix G. Then IN − G is the Grammian matrix of a correlation min-

imizing (N,N − d)-frame where C(N,N − d) = d
N−dC(N, d) Moreover, there is

a one-to-one correspondence between equivalence classes of correlation minimizing

(N,d)-frames and equivalence classes of correlation minimizing (N,N − d)-frames.

Proof. Let F = {fi}Ni=1 be any uniform (N, d)-frame with Grammian matrix G. Then

G is a rank d projection all of whose diagonal entries are equal to d
N
. Hence, IN −G

is a rank N − d projection all of whose diagonal entries are N−d
N
. Hence, if we let

WW ∗ = IN −G be any factorization, then by the results of the last section the rows

of W (or their complex conjugates in the complex case) form a uniform (N,N − d)-

frame whose Grammian is IN −G. This frame is not uniquely determined by IN −G,

since many factorizations are possible, but it is unique up to type I equivalence by

Theorem 1.2.3.

So choose one such uniform (N,N − d)-frame and denote it by F⊥. Now if Fi

i = 1, 2 are any uniform (N, d)-frames with Grammians Gi i = 1, 2 and we let F⊥i

i = 1, 2 be (N,N − d)-frames with Grammians IN −Gi obtained as above, then, by

applying Theorem 1.2.5, we see that F1 and F2 are equivalent if and only if F⊥1 and

F⊥2 are equivalent.

Finally, since the maximum correlation of a frame is really just the maximum

off-diagonal entry of its Grammian (appropriately scaled), we see that

M∞(F⊥) =
d

N − d
M∞(F),

and so whenever F is a correlation minimizing uniform (N, d)-frame that F⊥ is a
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2.3. GRASSMANNIAN AND CORRELATION MINIMIZING FRAMES IN R3

correlation minimizing uniform (N,N − d)-frame. This also shows

C(N,N − d) =
d

N − d
C(N, d).

Example 2.2.7. Referring back to Example 2.2.4 and using Theorem 2.2.6 we see

that all (N,N-2) correlation minimizing frames are unique up to equivalence. Also,

we obtain a formula for the correlation constant,

C(N,N − 2) =
2

N − 2
C(N, 2).

2.3 Grassmannian and Correlation Minimizing Frames

in R3

The line packing problem is the problem of packing N lines in Rd so that the minimal

angle between any two of them is as large as possible. Any solution to this problem is

called a Grassmannian line packing. Given a Grassmannian line packing with N ≥ d

if we choose one unit vector from each line, then this set of vectors always yields a

frame for Rd. Any frame obtained this way is called a Grassmannian frame by [35].

If a Grassmannian frame is a unit-norm tight frame, then after scaling the vectors

by
√
d/N we would obtain a uniform (N, d)-frame that is necessarily correlation

minimizing.

A geometric approach to solving the line packing problem and list of best-known

packings is posted on [32]. Conway, Hardin, and Sloane [9] find the Grassmannian
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line packings of N lines through the origin in R3, describe the packings geometrically

and compute this minimal angle for 2 ≤ N ≤ 55. For some values of N , they produce

what the numerical calculations indicate to be the optimal packings and then are

able to describe these packings, but do not provide proofs that these are the optimal

line packings. In these cases, they refer to these explicit packings as the putative

optimal line packings and we shall adopt their language.

A natural question that we shall study below is whether or not the Grassmannian

frames arising from these Grassmannian line packings, putative and/or proven, are

tight. The numerical experiments of [22] indicates that the answer should be “yes”

for some values of N and “no” for other values.

In [22], the uniform (N, 2)-frames that are correlation minimizing were con-

structed, it was shown that these frames form a single equivalence class, and that

these are Grassmannian.

First, note that whenever N = d then any Parseval frame must be an orthonormal

basis, since the frame operator V will be an isometry from Rd to Rd and hence will be

an orthogonal matrix. Hence, the rows of V will be an orthonormal set. Moreover,

every orthonormal basis is type I equivalent. Thus, there is a unique equivalence

class of (d, d)-frames and an orthonormal basis is clearly correlation minimizing and

Grassmannian.

So the first interesting case is the (4, 3)-frames. For this a corollary to Theorem

2.2.6 is useful. Let JN denote the N ×N matrix of all 1’s.
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Corollary 2.3.1. [16] Up to equivalence there is a unique correlation minimizing

(N, 1)-frame and a unique correlation minimizing (N,N − 1)-frame. These equiv-

alence classes are represented by the uniform frames with Grammians 1
N
JN and

IN − 1
N
JN , respectively. Moreover, both these frames are equiangular and so these

frames are also Grassmannian.

Proof. To obtain a uniform (N, 1)-frame one must choose N numbers of modulus

1/
√
N. But these are all equivalent to choosing the number 1/

√
N N -times. Thus,

up to equivalence there is only one uniform (N, 1)-frame and it has Grammian 1
N
JN .

Hence, by the above theorem, up to equivalence there is only one (N,N−1)-frame

and it has Grammian given by IN − 1
N
JN .

All these frames are equiangular since all the off-diagonal entries in their Gram-

mians are of constant modulus 1
N
.

We can now give a proof for the description of one representative of this equiva-

lence class of frames in the case N = 4, d = N − 1 = 3.

Theorem 2.3.2. [16] The lines generated by opposite vertices of the inscribed cube

in the sphere centered at the origin is the optimal packing of 4 lines in 3-space. If

we take the sphere of radius
√
3
2

centered at the origin and consider the 8 vectors

determined by the vertices of this cube, then any set of 4 of these vectors that are

not collinear yields a correlation minimizing, equiangular (4, 3)-frame. In particular,

one correlation minimizing, equiangular (4, 3)-frame is given by

(+
1

2
,+

1

2
,+

1

2
), (−1

2
,−1

2
,+

1

2
), (−1

2
,+

1

2
,−1

2
), (+

1

2
,−1

2
,−1

2
)
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and every other correlation minimizing (4,3)-frame is equivalent to this frame.

Proof. Let

V =



f1
∗

f2
∗

f3
∗

f4
∗


=



+1
2

+1
2

+1
2

−1
2
−1

2
+1

2

−1
2

+1
2
−1

2

+1
2
−1

2
−1

2


.

Computing the Grammian yields G = V V ∗ = I4 − 1
4
J4 so that this is one represen-

tative of the unique correlation minimizing (4, 3)-frame. The remaining claims are

now straightforward to verify.

Now, we will look at the (5,3) correlation minimizing frame and the (5,3) Grass-

mannian frame and find that they are not the equivalent frames.

Theorem 2.3.3. [16] A correlation minimizing (5, 3)-frame is given by the vectors:

c(1, 0, 0), c(
−1−

√
5

6
,
15−

√
5

a
, 0)

c(
1−
√

5

6
,
−5− 3

√
5

a
,
150− 30

√
5

ab
), c(
−1 +

√
5

6
,
5− 3

√
5

a
,
−60
√

5

ab
)

c(
1 +
√

5

6
,
4
√

5

a
,
150− 30

√
5

ab
),

where a =
√

18
(
15−

√
5
)
, b =

√
150− 30

√
5, and c =

√
3/5. Every other correla-

tion minimizing (5, 3)-frame is equivalent to this frame.

Proof. From [22] we have that the correlation minimizing (5, 2)-frame is unique up

to equivalence and one representative is given by the vectors

{
(
cos

(
πk

5

)
, sin

(
πk

5

))
: k = 1, 2, 3, 4, 5}.
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Thus, by Theorem 2.2.6 the correlation minimizing (5, 3)-frame will be unique up to

equivalence and a representative Grammian will be given by G = I5 −G(5,2), where

G(5,2) is the Grammian of the above vectors.

Computing this Grammian yields,

G =


3/5 2

5
cos(π/5) 2

5
cos(2π/5) 2

5
cos(3π/5) 2

5
cos(4π/5)

2
5
cos(π/5) 3/5 2

5
cos(π/5) 2

5
cos(2π/5) frac25cos(3π/5)

2
5
cos(2π/5) 2

5
cos(π/5) 3/5 2

5
cos(π/5) 2

5
cos(2π/5)

2
5
cos(3π/5) 2

5
cos(2π/5) 2

5
cos(π/5) 3/5 2

5
cos(π/5)

2
5
cos(4π/5) 2

5
cos(3π/5) 2

5
cos(2π/5) 2

5
cos(π/5) 3/5

 .

This can be factored as G = 3
5
UU∗ where

U =



1 0 0

−1−
√
5

6
15−
√
5

a
0

1−
√
5

6
−5−3

√
5

a
150−30

√
5

ab

−1+
√
5

6
5−3
√
5

a
−60
√
5

ab

1+
√
5

6
4
√
5

a
150−30

√
5

ab


,

with a and b as above.

Corollary 2.3.4. [16]The Grassmannian frame of 5 vectors in R3 is not a tight

frame and hence is not a correlation minimizing frame.

Proof. By inspection the largest off diagonal entry of the above G is 2
5
cos(π/5), and

the smallest angle produced by the vectors of this Grammian is equal to

arccos(
2

3
cos(π/5))

which is approximately 57.361 degrees. This is not equal to the angle of the optimal

packing of 5 lines found in [9]. Thus, if we take one unit vector from each of the 5
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lines corresponding to the optimal packing of 5 lines through the origin in R3, then

this set of vectors can not be a tight frame since its correlation is smaller.

Thus, the correlation minimizing (5, 3)-frame is an example that is not obtained

via the optimal line packing. In the language of [35], the correlation minimizing

(5, 3)-frame is not a Grassmannian frame.

Holmes and Paulsen [22, Example 3.6] showed that the correlation minimizing

(6, 3)-frame is equiangular, that it is unique up to equivalence and a formula for

obtaining its Grammian was given. Below we give a geometric description of the

set of vectors for one representative of this equivalence class and give the vectors

explicitly.

Theorem 2.3.5. [16] The 6 vertices, that lie in the upper half plane of an icosa-

hedron centered at the origin and symmetric about the xy-plane, form a correlation

minimizing (6, 3)-frame. Set α = 1√
5
, then these are the vectors given by:

f1 = 1√
2

(0, 0, 1),

f2 = 1√
2

(√
1− α2, 0, α

)
,

f3 = 1√
2

(
α
√

1−α
1+α

,
√

(1+2α)(1−α)
1+α

, α

)
,

f4 = 1√
2

(
α
√

1−α
1+α

,−
√

(1+2α)(1−α)
1+α

, α

)
,

f5 = 1√
2

(
−α
√

1−α
1+α

,
√

(1−2α)(1+α)
1−α , α

)
,

f6 = 1√
2

(
−α
√

1+α
1−α ,−

√
(1−2α)(1+α)

1−α , α

)
.

Every other correlation minimizing (6, 3)-frame is equivalent to this frame.

Proof. From [2] we have the vectors defined above. For k 6= l, we compute |〈fk, fl〉| =
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1√
5
. Thus, this set of vectors is equiangular and and each vector has norm

√
3√
6

so these

must be a correlation minimizing (6, 3)-frame.

In [9], it is observed that the 6 lines obtained by taking antipodal pairs of points

on an icosahedron are equiangular.

To construct the (7,3) correlation minimizing frame we need the following propo-

sition.

Proposition 2.3.6. [16]If {f1, . . . , fN} is a uniform (N, d)-frame and {g1, . . . , gM}

is a uniform (M,d)-frame, then {af1, . . . , afN , bg1, . . . , bgM} is a uniform (M+N, d)-

frame, where a =
√
N/(N +M) and b =

√
M/(N +M).

Proof. Since ‖fi‖ =
√
d/N and ‖gj‖ =

√
d/M we have that ‖afi‖ = ‖bgj‖ =√

d/(N +M), so this set of vectors is uniform in norm. Finally, for any vector

x ∈ Rd, we have that

N∑
i=1

|〈x, afi〉|2 +
M∑
j=1

|〈x, bgj〉|2 = a2‖x‖2 + b2‖x‖2 = ‖x‖2,

so the Parseval condition is met.

Theorem 2.3.7. [16] Let {f1, f2, f3, f4} be the correlation minimizing (4, 3)-frame

of Theorem 2.3.2 and let {e1, e2, e3} be the standard orthonormal basis for R3, then

{
√

4/7 f1,
√

4/7 f2,
√

4/7 f3,
√

4/7 f4,
√

3/7 e1,
√

3/7 e2,
√

3/7 e3} is a correlation min-

imizing (7, 3)-frame.

Proof. By the above proposition, this set of vectors is a uniform (7, 3)-frame. The

inner products of pairs of these unequal vectors take on the values, {0, ±
√
3
7
, ±1

7
},
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so that for this frame, M∞(F) = 7
3

√
3
7

=
√
3
3
. Since cos−1

(√
3
3

)
corresponds to the

minimum angle for the Rhombic Dodecahedron [18], which is an optimal line pack-

ing angle for 7 lines in 3 space found by [9], this uniform Parseval frame must be

correlation minimizing.

Since the correlation minimizing (7,3)-frame corresponds to an optimal line pack-

ing and N ≤ 7, every correlation minimizing (7,3)-frame would yield an optimal line

packing. But we do not know if every correlation minimizing (7,3)-frame is equiva-

lent to this frame. In [9], they remark that the optimal packing of 7 lines in 3 space

appears to be unique, but do not supply a proof. A related, and possibly easier,

problem would be to decide if every optimal line packing of 7 lines in 3 space yields

a tight frame.

Unfortunately, for N ≥ 8 the results from Conway, Hardin, and Sloan in [9] come

from running their optimization program 1500 times. In the cases of N=10, 12, and

16, the angle estimates match the estimates from Holmes and Paulsen in [22] and

those estimated coordinates seem to correspond to geometric shapes. Since these are

both simulation based and when the vectors are not equiangular there is no nice way

to check to see if they indeed form a correlation minimizing frame. We also observe

that in the N=10 case the vectors do not form a tight frame.

The optimal line packing for 10 lines in R3 is given numerically on Sloane’s web

site [32]. In [9], it was determined that there are infinitely many solutions to this

optimal line packing problem. This occurs because the axial line can move freely

over a small range of angles without affecting the minimum angle.

31



2.3. GRASSMANNIAN AND CORRELATION MINIMIZING FRAMES IN R3

Theorem 2.3.8. [16] The optimal line packing for 10 lines in R3 comprised of 2

axis vectors and the set of 8 vectors that are not collinear from the scaled hexakis

bi-antiprism, given by

(1, 0, 0) , (0,−1, 0) , (
±
√

3

2
,
1

2
, 0

)
,

(
β, 0,±β

√√
3− 1

)
(
β

2
, β

√
3

2
, β

√√
3− 1

)
,

(
−β

2
,−β
√

3

2
, β

√√
3− 1

)
,(

β

2
,−β
√

3

2
,−β

√√
3− 1

)
,

(
−β

2
, β

√
3

2
,−β

√√
3− 1

)
.

where β = 3−
1
4 , is not a tight frame. Moreover, there does not exist a “rattle” of the

axis that will yield a tight frame.

Proof. First, we construct the hexakis bi-antiprim by taking two hexagonal an-

tiprisms and joining them at the base. To create the first half, shift the coordinates

for the hexigonal antiprism from [30]. For the second half, we use a shift and rotation

of the same coordinates from [30]. Now, we join them at the base to complete the

construction. From the set of 18 unique scaled vectors in the construction we consider

2 axis together with the set of 8 vectors that are not collinear. Set β = 3−
1
4 and define
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V =



1 0 0

0 −1 0

−
√
3
2

1
2

0
√
3
2

1
2

0

β 0 β
√√

3− 1

β 0 −β
√√

3− 1

β
2

β
√
3
2

β
√√

3− 1

−β
2
−β

√
3
2

β
√√

3− 1

β
2
−β

√
3
2
−β
√√

3− 1

−β
2

β
√
3
2
−β
√√

3− 1


Recall that a set of vectors forms a uniform tight frame if and only if they are of

equal norm and when they are entered as the rows of a matrix, then that matrix is

a multiple of an isometry. Moreover, to be a multiple of an isometry, the columns of

the matrix must be orthogonal and of equal norm.

The rows of V are unit norm. By inspection we see the columns are orthogonal.

However, the columns of V do not have equal norm. Hence, no multiple of V is an

isometry and so the rows are not a tight frame.

Now, we will consider the case where the axial lines ”rattle” to try to gain equality

in the norm of the columns. Consider the first row as v1 = (a1, b1, c1) and the second

as v2 = (a2, b2, c2). Since the vectors comprising the last eight entries of V are

orthogonal, to keep the columns orthogonal, we will need the vectors (a1, a2), (b1, b2)

and (c1, c2) to be orthogonal. Since this is three vectors in R2, one of them must be
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2.3. GRASSMANNIAN AND CORRELATION MINIMIZING FRAMES IN R3

zero. The norm of the first column is the largest so a1 = a2 = 0. The rows must

be unit norm so b21 + c21 = 1 and b22 + c22 = 1. We still need the norms of the three

columns to be equal. Thus, we get the system of equations.

b21 + c21 = 1

b22 + c22 = 1

b21 + b22 = 1

c21 + c22 = 3
√

3− 9
2

.

By subtracting the third equation from the first we see that c21 = b22. Plugging into

equation 2 we get c21 + c22 = 1, which contradicts the fourth equation. Therefore,

there is no choice of vectors that can make V a multiple of an isometry.

There are two more examples where the optimal angles in [22] and [9] for N ≥ 8

match. In these cases, the simulations seem to show a relationship to a 3 dimensional

shape. We know they are not 2-uniform, since of the number of vectors in dimension

3 violates Theorem 2.2. Taking into account that these angles in [9] are not proven to

be optimal, these results are essentially from [16]. Unlike optimal (10,3) line packing,

the closed form of the vectors do form a tight frame and give us a numerical upper

bound for C(12,3) and C(16,3).

Theorem 2.3.9. The putative (12, 3) optimal line packing is obtained by considering

the lines through the origin generated by opposite vertices of the rhombicubocathe-

dron. Scaling the set of vertices of the rhombicuboctahedron to be vectors of length 1
2
,

yields all permutations of the vectors 1
4

(
± 1√

2
√
2+5

,± 1√
2
√
2+5

,± (1+
√
2)√

2
√
2+5

)
. Any set

of 12 non-collinear vertices is a uniform (12,3)-frame. Moreover,
√

3
11
< C(12, 3) ≤

7+8
√
2

17
.
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Proof. In [9], the putative optimal line packing of 12 lines in R3 is a rhombicuboc-

tahedron. Define V such that the rows are the vectors of the rhombicuboctahedron

in [18] . So,

V =
1

2
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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.

Each row V is of norm 1
2
. Additionally,we see the columns are orthogonal and of

equal norm. Therefore, V is an isometry and we can conclude that the rows form a

uniform Parseval frame that is a putative correlation minimizing frame. The scaled

magnitude of the off diagonals of the Gram matrix are
∣∣3−8√2

17

∣∣ ≈ .48904,
∣∣7+8

√
2

17

∣∣ ≈
.74452,

∣∣ 1
2
√
2+5

∣∣ ≈ .12774. Since there is no equiangular (12,3)-frame, we can conclude

that the Welch bound,
√

12−3
3(12−1) =

√
3
11
< C(12, 3) while C(12, 3) ≤ 7+8

√
2

17
.
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Theorem 2.3.10. The putative (16, 3) optimal line packing is given by the lines

generated by opposite vertices of the Biscribed Penatkis Dodecahedron. The set of

vectors produced by scaling a set of opposite vertices to be unit norm is given by

(0, c0,±c4) , (c4, 0,±c0) , (c0,±c4, 0) , (c1, 0,±c3) , (c3,±c1, 0) , (0, c3,±c1) ,

(c2, c2, c2) , (c2,−c2,−c2) , (−c2, c2,−c2) , (−c2,−c2, c2) .

c0 =
√
15−
√
3

6
, c1 =

√
10(5−

√
5)

10
, c2 =

√
3
3

,c3 =

√
10(5+

√
5)

10
, and c4 =

√
15+
√
3

6
. These

vectors scaled by
√
3
4

yield a uniform (16,3)-frame. Moreover,
√

13
45
< C(16, 3) ≤

√
10
60

(
√

5 +
√

5)(
√

15 +
√

3)

Proof. Let the columns of W ∗ be the opposite vertices of the Biscribed Pentakis

Dodecahedron with radius one centered at the origin in [30]. Set c0 =
√
15−
√
3

6
,

c1 =

√
10(5−

√
5)

10
, c2 =

√
3
3

,c3 =

√
10(5+

√
5)

10
, and c4 =

√
15+
√
3

6
. It follows that,

W ∗ =


0 0 c4 c4 c0 c0 c1 c1 c3 c3 0 0 c2 c2 −c2 −c2

c0 c0 0 0 c4 −c4 0 0 c1 −c1 c3 c3 c2 −c2 c2 −c2

c4 −c4 c0 −c0 0 0 c3 −c3 0 0 c1 −c1 c2 −c2 −c2 c2

 .

By inspection we see that the columns of W ∗ are unit norm, the rows are equal norm

and the rows are orthogonal. Hence, V =
√
3
4
W is an isometry and so its rows are a

uniform (16, 3)-frame. The scaled magnitude of the off diagonals of the Gram matrix

are 1
3
,
√
5
3
≈ .74536,

√
10
60

√
5 +
√

5(
√

15 +
√

3) ≈ .79465,
√
10
60

√
5−
√

5(
√

15 −
√

3) ≈

.18759, and
√
10
10

(√√
5 + 3−

√
−
√

5 + 3
)
≈ .44721. Therefore, using the Welch

bound, we can conclude
√

16−3
3(16−1) =

√
13
45
< C(16, 3) ≤

√
10
60

√
5 +
√

5(
√

15 +
√

3)
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CHAPTER 3

Bounds on Correlation Minimizing frames

In this chapter, we study the asymptotic behavior of C(N,d). When d = pl is a power

of a prime, then it is known that there exists a set of pl + 1 mutually unbiased bases.

The union of these vectors when appropriately scaled gives rise to a uniform Parseval

frame F of N = pl(pl+1) vectors with M∞(F) = d−1/2, which is approximately r−1/2

where r = N/d is the frame redundancy. In this section we prove the stronger result

that for fixed redundancy r, C(N, d)→ 0 as N → +∞.
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3.0.1 Direct Sums and Tensor Products

Definition 3.0.11. LetA be anm×nmatrix andB be a p×q matrix. Then the direct

sum of A and B is denoted A⊕B=

A 0

0 B

. The Kronecker or tensor product of A

and B is the block matrix whose i,j block is (ai,jB) and is denoted A⊗B=(ai,jB)i,j.

If C is a n× r matrix and D is a q × p matrix, then (A⊗B)(C ⊗D)= (AC ⊗BD).

The 2x2 rotation matrix Rj=

cos(θj) −sin(θj)

sin(θj) cos(θj)

 rotates vectors in the xy-

Cartesian plane counter clockwise by the angle θj. Given a vector v ∈ R2, one

computes the rotated vector, by the matrix multiplication Rjv. The inverse, R∗j ,

rotates the vector counter clockwise by −θj or clockwise by θj. Below we consider

the rotation matrix R∗iRj, which rotates a vector in the counter clockwise direction

by θi − θj. We observe that applying the rotation matrix k times to a vector simply

rotates the vector counter clockwise by the angle k(θi − θj).

Lemma 3.0.12. Let Rj be the rotation matrix Rj=

cos(θj) −sin(θj)

sin(θj) cos(θj)

 then

(R∗iRj)
k =

cos(k(θi − θj)) −sin(k(θi − θj))

sin(k(θi − θj)) cos(k(θi − θj))
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Proof. LetRj =

cos(θj) −sin(θj)

sin(θj) cos(θj)

. Then

R∗iRj =

 cos(θi) sin(θi)

−sin(θi) cos(θi)


cos(θj) −sin(θj)

sin(θj) cos(θj)


=

 cos(θi)cos(θj) + sin(θi)sin(θj) cos(θj)sin(θi)− cos(θi)sin(θj)

−cos(θj)sin(θi) + cos(θi)sin(θj) cos(θi)cos(θj) + sin(θi)sin(θj)


=

cos(θi − θj) −sin(θi − θj)

sin(θi − θj) cos(θi − θj)

 .

Now, assume (R∗iRj)
k=

cos(k(θi − θj)) −sin(k(θi − θj))

sin(k(θi − θj)) cos(k(θi − θj))

. Then

(R∗iRj)
k+1 = (R∗iRj)

k(R∗iRj)

=

 cos(θi)cos(θj) + sin(θi)sin(θj) cos(θj)sin(θi)− cos(θi)sin(θj)

−cos(θj)sin(θi) + cos(θi)sin(θj) cos(θi)cos(θj) + sin(θi)sin(θj)


=

cos((k + 1)(θi − θj)) −sin((k + 1)(θi − θj))

sin((k + 1)(θi − θj)) cos((k + 1)(θi − θj))



Definition 3.0.13. Let A∈Mn(R) then we let max{A} denote the maximum of the

absolute values of the entries in A. This is also known as the `∞ norm of the matrix

A, denoted as ‖A‖∞.

Lemma 3.0.14. Let A,B ∈Mn (R), then max{A⊗B} = maxA ·maxB.
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Proof. Let A and B ∈Mn (R) and A = (ai,j). Then A⊗B = (ai,jB). If |aij| = maxA

is the maximum entry in absolute values then the maximum element of A⊗B is in

block of (maxA)B. Furthermore, if |bkl| = maxB is the maximum entry in B then

maxAmaxB is the maximum element of A⊗B.

The direct sum of projection matrices is a projection matrix. Also, the Kronecker

tensor of projection matrices is also a projection matrix.

3.0.2 Correlation Constant Bounds

Lemma 3.0.15. Let k be a natural number greater than 1, fix N to be a natural

number greater than 1. Then there exist unitary matrices, U1, . . . , UN ∈ M2k(R),

such that

max{U∗i Uj} ≤ cosk(
π

2N
)

for all i 6= j, 1 ≤ i, j ≤ N .

Proof. Let j be a natural number between 1 and N and Rj be the rotation matrix

through the angle θj and set θj=
jπ
2N

. Define Uj= ⊗kl=1(Rj)l.

Since Rj is unitary matrix and Uj is the tensor product of k unitary matrices it is

also unitary. Lemma 3.0.12 gives us

U∗i Uj = (⊗kl=1(Ri)l)
∗(⊗kl=1(Rj)l) = (⊗kl=1(Ri)

∗(Rj))l

is the tensor product of rotations.

Since N is greater than one, cosine is decreasing and is greater than sine values in

[0, π
4
] the max of R∗iRj is cos( (i−j)π

2N
), which is less than or equal to cos( π

2N
).
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We now will proceed by induction on k.

For k=2,

max{U∗i Uj} = max{⊗2
l=1(R

∗
iRj)l}

= cos(
(i− j)π

2N
)cos(

(i− j)π
2N

)

≤ cos2(
π

2N
)

Assume, for k max{U∗i Uj} ≤ cosk( π
2N

). So for k+1 U∗i Uj = ⊗k+1
l=1 (R∗iRj)l. Therefore,

max{U∗i Uj} = max{⊗kl=1(R
∗
iRj)l ⊗ (R∗iRj)}

= cosk(
(i− j)π

2N
)cos(

(i− j)π
2N

)

≤ cosk+1(
π

2N
)

Theorem 3.0.16. For k a natural number greater than or equal to 1,

C(2kN, 2kd) ≤ cosk(
π

2N
)C(N, d)

Proof. Let PF=(pi,j) be the NxN projection matrix that is the Grammian of uni-

form (N,d)-frame F with correlation constant C(N,d). Define P=PF ⊗ I2k=(pi,jI2k).

Since the tensor product of projections is a projection, P is a projection. So P

is the Grammian matrix of a (2kN, 2kd) Parseval frame with correlation constant

C(2kN, 2kd). By Theorem 3.0.15 there exists U1, . . . , UN unitary matrices in M2k(R)

where for i 6= j max{U∗i Uj} ≤ cosk( π
2N

).
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3.1. CORRELATION MINIMIZATION FOR CIRCULANT MATRICES

Define U=⊕Nl=1(Ui)l. So U∗PU=(pijU
∗
i Uj)l is unitary equivalent to P and there-

fore has equal rank. Then, C(2kN, 2kd) = C(N, d) max{U∗i Uj} with Lemma 3.0.15

applied yields C(2kN, 2kd) ≤ C(N, d)cosk( π
2N

).

Corollary 3.0.17. For fixed redundancy, r = N/d the correlation constant C(2kN, 2kd)

goes to zero as k goes to infinity.

Proof. For k in the natural numbers we have

0 ≤ C(2kN, 2kd) ≤ cosk(
π

2N
)C(N, d).

Since cos( π
2N

)<1 and C(N,d) is a constant, cosk( π
2N

)C(N, d) goes to zero as k goes

to infinity. So C(2kN, 2kd) goes to zero as k goes to infinity.

3.1 Correlation Minimization for Circulant Ma-

trices

Circulant matrices have many applications and are a well known family of matri-

ces. Their basic properties and applications in pure mathematics use linear algebra,

abstract algebra, geometry, and the discrete Fourier transform and can be found in

[12]. Real world applications range from wireless communications in [27] to hard-

ware complexity [14]. For our purposes, we will consider only a subset of circulant

matrices with the property that they are also projection matrices. Since these pro-

jection matrices are also the grammian of a Parseval frame, we can establish bounds
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3.2. CIRCULANT MATRICES AS PROJECTIONS

on the correlation constant of correlation minimizing frame, which we will denote

Ccirc(N, d). Using this upper bound, we then study the asymptotic behavior of

Ccirc(N, d) and the Welch bound.

3.2 Circulant Matrices as Projections

We begin with the definition and useful properties of the subset of circulant matrices

that are projections.

Definition 3.2.1. A circulant matrix is defined as

C =



c0 cN−1 cN−2 . . . . . . c1

c1 c0 cN−1 . . . . . . c2
...

...
. . . . . . c3

...
...

. . . . . .
...

cN−1 cN−2 cN−3 . . .
. . . c0


= circ(c0, . . . , cN−1)

To analyze the structure of these circulant matrices that are projections, we will

look at the relationship between matrices in NxN circulant matrices and the discrete

Fourier transform matrix.

Definition 3.2.2. Given N ∈ N, the discrete Fourier transform (DFT) matrix is

defined by F = 1√
N

(e
2πijl
N )N−1j,l=0.

Proposition 3.2.3. If C is an N × N circulant matrix, then C can be written as

C = FΣF ∗, where F is the discrete Fourier transform matrix and Σ is a diagonal

matrix with the diagonal containing the eigenvalues of C. Conversely, every matrix

of the form FΣF ∗ for some diagonal matrix Σ is circulant.
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3.2. CIRCULANT MATRICES AS PROJECTIONS

FΣF ∗ is called the spectral decomposition of the circulant matrix C. We will de-

note the set of NxN rank d circulant matrices by C(N,d). Since C ∈ C(N,d) is uniquely

determined by its spectral decomposition, and more specifically Σ, we will identify

C by its spectral decomposition. That is, given an ordered set Λ = {λ0, . . . , λN−1},

let Σ = diag {λ0, . . . , λN−1} and set C = F ∗ΣF . Now, consider the specific subset of

circulant matrices that are projections, with notation C
(N,d)
P . We identify a matrix

C = circ(c0, . . . , cN−1) = F ∗ΣF ∈ C(N,d) by its spectral decomposition with Σ =

diag {λ0, . . . , λN−1}. However, for C ∈ C
(N,d)
P the ordered set {λ0, . . . , λN−1} that

become the diagonals of Σ, are a combination of zeros and ones that will be assigned

as follows. Given a subset S ∈ {0, . . . , N − 1}, |S| = d, define λj =

1 j ∈ S

0 otherwise
,

for j = 0, . . . , N − 1. From Proposition 3.2.3 we see that there is a one to one cor-

respondence between C ∈ C
(N,d)
P and subsets of {0, . . . , N − 1} with cardinality d

given by S → FΣSF
∗. Now, using well known properties of diagonalized matrices,

matrix algebra, and the previous lemma, we find an equation for the entries in a

circulant matrix that is a projection.

Definition 3.2.4. Given N, d ∈ N, N > d, let C = circ(c0, . . . , cN−1) ∈ C
(N,d)
P .

Then the constant Ccirc(N, d) = min
C∈C(N,d)

P

max
0<j≤N−1

|cj|.

Remark 3.2.5. When computing or bounding the correlation constant, C(N,d), for

complex (N,d)-frames we have C(N, d) ≤ Ccirc(N, d)
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3.2. CIRCULANT MATRICES AS PROJECTIONS

3.2.1 An upper bound for Ccirc(N, d)

In this section we will consider the circulant projection matrix

C = F ∗ΣF = circ(c0, . . . , cN−1) ∈ C(N,d)
P

uniquely determined by Σ = diag(λ0, . . . , λN−1) with λj =

1 0 ≤ j ≤ d− 1

0 otherwise
.

To begin, we will need some basic definitions and properties or the Fejer and Dirichlet

kernel.

Definition 3.2.6. Let n be a natural number. Then the Dirichlet kernel is

Dm(x) =
m∑

j=−m

exij

and the Fejer Kernel is

FM(x) =
∑
|j|=M

(1− |j|
M

)exij =
M∑
n=0

Dm(x)

Lemma 3.2.7. Let n and N be natural numbers. Then the Dirichlet Kernel has

closed form

Dm(x) =
sin((2m+ 1)x

2
)

sin(x
2
)

and the Fejer Kernel has closed form

FM(x) =
1

M

sin2(Mx
2

)

sin2(x
2
)
.

Furthermore, for M > 1 odd,

FM(x) =
1

M
(DM−1

2
(x))2
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3.2. CIRCULANT MATRICES AS PROJECTIONS

Lemma 3.2.8. Let N and d be natural numbers with N > d and d odd. Let

C = F ∗ΣF = circ(c0, . . . , cN−1) ∈ C(N,d)
P with Σ = diag(λ0, . . . , λN−1) defined by

λj =

1 0 ≤ j ≤ d− 1

0 otherwise
. Then |ck| =

√
d
N
|D d−1

2

(
2πk
N

)
|.

Proof. Let N and d be natural numbers with N > d and d odd. Set C = F ∗ΣF =

circ(c0, . . . , cN−1) ∈ C(N,d)
P with Σ = diag(λ0, . . . , λN−1) defined by

λj =

1 0 ≤ j ≤ d− 1

0 otherwise
and ωk = e

2πik
N . Then,

|ck|2 =
1

N2

d−1∑
l,j=0

e
2πik(j−l)

N

=
1

N2

(
d+ (d− 1)ωk + (d− 2)ω2

k + . . .+ ωd−1k +(d− 1)ωk + (d− 2)ω2
k + . . .+ ωd−1k

)
=

d

N2

∑
|j|≤d

(1− |j|
d

)ωjk = d2
1

Nd

∑
|j|=d

(1− |j|
d

)ωjk

=
d2

N2

1

d

∑
|j|=d

(1− |j|
d

)(e
2πik
N )j

=
d2

N2
Fd(

2πk

N
)

= d2
1

N2d
(D d−1

2
(
2πk

N
))2.

Therefore, |ck| =
√
d
N
|D d−1

2
(2πk
N

)|.

Remark 3.2.9. Before continuing, we review a few key facts about the maximum

and minimum of the Dirichlet Kernel. While these facts are not new, in our case

they are not specifically addressed in the literature.
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3.2.2 The Dirichlet kernel

The Dirichlet kernel has zeros every 2jπ
2m+1

for j = 1, . . . , 2m. Between consecutive

zeros, Dm(x) must have at least one local extrema, making a total of 2m local

extrema. However, D′m(x) is a trigonometric polynomial of degree m, so it can have

at most 2m roots. Therefore, we can conclude that there is exactly one local extrema

between each pair of consecutive zeros. For our purposes we are only interested in

the unique maximum and minimum and where they occur. The unique maximum of

Dm(x) is in
[ −2π
2m+1

, 2π
2m+1

]
at x=0. Let x0 = 0 and xj denote the unique critical point

of Dm(x) in the interval
[

2jπ
2m+1

, 2(j+1)π
2m+1

]
, for j = 1, . . . , 2m− 1. The Dirichlet kernel

lies between the envelopes 1
sin(x/2)

and − 1
sin(x/2)

and is tangent to one or the other

at the points π(2j−1)
2m+1

for j = 1, . . . , 2m+ 1, the second point produces the minimum

on the interval
[

2π
2m+1

, 4π
2m+1

]
and the first giving the absolute value of the minimum.

Also, on the interval 0 < x ≤ π, 1/sin(x/2) is decreasing. Hence, it follows that for

1 ≤ j ≤ m

|Dm(xj−1)| > |Dm(xj−1 −
2π

2m+ 1
)| > |Dm(xj)|. (3.1)

Given the relationship established between |ck| and the Dirichlet kernel for d odd

and the nice properties of the maximum and minimum and critical points of Dm(x),

we will give an upper bound on C(N,d) by looking at NxN circulant matrices that

are projections with odd rank d.

In addition to these facts, we need the following lemma.

Lemma 3.2.10. Let d be an odd natural number. For 0 ≤ y ≤ π
d
,

D d−1
2

(y) >
∣∣D d−1

2

(
3π

d

) ∣∣.
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Proof. Let d be an odd natural number. Using the definition above, we know D d−1
2

(x)

has a maximum at x=0 and is strictly decreasing on the interval
[
0, 2π

d

]
, where x = 2π

d

is the first positive zero. Clearly, the interval
[
0, π

d

]
⊂
[
0, 2π

d

]
. Hence D d−1

2
(x) is

strictly decreasing on
[
0, π

d

]
. Furthermore, we know from the above properties that

the minimum of D d−1
2

(x) is at x = 3π
d

and |D d−1
2

(x)| is strictly increasing on
[
2π
d
, 3π
d

]
.

Since |sin
(
π
2d

)
| < |sin

(
3π
2d

)
|, we have

∣∣D d−1
2

(π
d

)
)
∣∣ =

1

sin( π
2d

)
>

1

|sin(3π
2d

)|
=
∣∣D d−1

2

(
3π

d

) ∣∣.
Therefore, we can conclude for 0 ≤ y ≤ π

d
, D d−1

2
(y) >

∣∣D d−1
2

(
3π
d

) ∣∣.

3.2.3 Application of Dirichlet Kernel in bounding the Cor-

relation Constant

Proposition 3.2.11. Let N and d be natural numbers with N > d and d odd, where

N
d
> 2. Let C = F ∗ΣF = circ(c0, . . . , cN−1) ∈ C(N,d)

P with Σ = diag(λ0, . . . , λN−1)

defined by λj =

1 0 ≤ j ≤ d− 1

0 otherwise
. Then |c1| ≥ |ck|, for 1 < k ≤ N − 1.

Proof. Let N and d be natural numbers, d odd, where N
d
> 2. Define C = F ∗ΣF =

circ(c0, . . . , cN−1) ∈ C(N,d)
P by Σ = diag(λ0, . . . , λN−1) where λj =

1 0 ≤ j ≤ d− 1

0 otherwise
.

From Lemma 3.3.1, for 0 ≤ k ≤ N−1, |ck| =
√
d
N
|D d−1

2
(2πk
N

)|. To apply Lemma 3.2.10

we need 0 ≤ 2πk
N

< π
d
. On this interval k=1 gives the smallest x value and therefore
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largest value of D d−1
2

(2πk
N

). Hence, we need 2π
N
< π

d
, so 2 < N

d
. We have, for 2 < N

d
,

√
d|D d−1

2
(2πk
N

)| is largest at k=1. Given the decreasing local extrema property of the

absolute value of the Dirichlet kernel, for 1 < k ≤ N − 1, |c1| ≥ |ck|.

Corollary 3.2.12. Let N and d be natural numbers, d odd, where N
d
> 2. Then

1√
d
|D d−1

2
(
2π

N
)| ≥ Ccirc(N, d).

Proof. Let N and d be natural numbers, d odd, where N
d
> 2. If

C = F ∗ΣF = circ(c0, . . . , cN−1) ∈ C
(N,d)
P with Σ = diag(λ0, . . . , λN−1) defined

by λj =

1 0 ≤ j ≤ d− 1

0 otherwise
, then N

d
maxk |ck| ≥ Ccirc(N, d). From the previous

proposition we have |c1| ≥ |ck|, for 1 < k ≤ N − 1. Therefore, we can conclude

1√
d
|D d−1

2
(2π
N

)| ≥ Ccirc(N, d)

Corollary 3.2.12 provides an bound on Ccirc(N, d). Now, we determine how

asymptotically close Ccirc(N, d) will get to the Welch bound. Going forward, we

consider the case of where d is a fixed odd natural number and N is a natural num-

ber that will vary with the condition that N
d
> 2.

Proposition 3.2.13. Let N and d be natural numbers, d > 1 odd, where N
d
> 2.

Then

lim
N→∞

Ccirc(N, d)

W (N, d)
= d.

Proof. Let N and d be natural numbers, d odd, where N
d
> 2. Proposition 3.2.12
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gives a bound on Ccirc(N, d). Hence,

Ccirc(N, d)

W (N, d)
≤

1√
d
|D d−1

2
(2π
N

)|√
N−d
d(N−1)

=

√
N − 1

N − d
sin
(
dπ
N

)
sin
(
π
N

) . (3.2)

Then, using l’Hospital’s rule to take the limit we have, the limit of the right hand

side of 3.2 goes to d.

Now, we consider the ratio

Ccirc(N, d)

W (N, d)
≤
√
N − 1

N − d
sin
(
dπ
N

)
sin
(
π
N

)
as a function of x. Define N = 1

x
. Then as N goes to infinity x will go to zero.

Consequently, we consider the function f(x) =
√

1−x
1−dx

sin(dπx)
sin(πx)

, where 0 < x ≤ 1
d+1

.

To determine the behavior of f(x) on the interval
(
0, 1

d+1

]
, we start by looking

the first derivative. This will determine when f(x) is increasing and when f(x) is

decreasing on
(
0, 1

d+1

]
. Using the chain rule, we obtain

f ′(x) =
1

2

(
1− x
1− dx

)− 1
2 d− 1

(1− dx)2
sin(dπx)

sin(πx)
+(

1− x
1− dx

) 1
2 πd cos(dπx) sin(πx)− π sin(dπx) cos(πx)

sin2(πx)
.

First, we define

h(x) = πd cos(dπx) sin(πx)− π sin(dπx) cos(πx).

Notice h(0) = 0 and

h′(x) = −(d2 − 1) sin(dπx) sin(πx)
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is negative for all x ∈
(
0, 1

d+1

]
. Thus, h(x) is negative on

(
0, 1

d+1

]
. Given this fact, it

will be useful to rewrite f ′(x).

f ′(x) =

(
1− x
1− dx

) 1
2
(

(d− 1) sin(dπx) sin(πx) + 2(1− x)(1− dx)h(x)

2(1− dx)(1− x) sin2(πx)

)
.

Now, we see that both
(

1−x
1−dx

) 1
2 and the denominator are positive on

(
0, 1

d+1

]
. There-

fore, we turn our attention to the sign of the numerator. To begin, we observe that

the numerator,

g(x) = (d− 1) sin(dπx) sin(πx) + 2(1− x)(1− dx)h(x)

is zero at x=0. As before, we take the derivative of g(x). That is,

g′(x) = (d− 1)h(x)− 2(1− dx)h(x)− 2d(1− x)h(x) + h′(x).

We know that h′(x) is negative. Hence, only the first term is what needs to be

considered. Now, rewrite the first term of the numerator as,

(d− 1)h(x)− 2(1− dx)h(x)− 2d(1− x)h(x) = h(x)(−3− d+ 4dx).

Recall that h(x) is negative on
(
0, 1

d+1

]
. Hence the second term is negative on(

d+3
4d
, 1
d+1

]
and positive on

(
0, d+3

4d

)
. Moreover, we now know the numerator is neg-

ative on the interval
(
d+3
4d
, 1
d+1

)
and may not be negative on

(
0, d+3

4d

)
. This leads to

the following properties of f(x).

Lemma 3.2.14. Let f(x) =
√

1−x
1−dx

sin(dπx)
sin(πx)

, with 0 < x ≤ 1
d+1

. Then there exists a

unique x∗ ∈
(

1
4d
, 1
3d

)
such that f(x) is increasing on (0, x∗) and decreasing on

(
x∗, 1

d+1

]
Proof. Letf(x) =

√
1−x
1−dx

sin(dπx)
sin(πx)

and x ∈
(
0, 1

d+1

]
. Since x = 1

3d
∈
(
d+3
4d
, 1
d+1

)
, we

know f ′
(

1
3d

)
< 0. Hence f(x) is decreasing on

(
1
3d
, 1
d+1

]
. The case where x = 1

4d
will
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need to be addressed more precisely. We proceed by computing the numerator of

f ′(x). Recall the numerator of f(x),

g (x) = (−3− d+ 4dx)h(x) + h′(x).

Plugging in x = 1
4d

we have,

g

(
1

4d

)
=

(
−3− d+ 4d

1

4d

)
h

(
1

4d

)
+ h′

(
1

4d

)
=
−π
√

2

2

(
(d+ 2)

(
dsin

( π
4d

)
− cos

( π
4d

))
− (d2 − 1)πsin

( π
4d

))
> 0.

Therefore, f ′( 1
4d

) > 0. Moreover, since f ′( 1
3d

) < 0 and f ′( 1
4d

) > 0, there exists at

least one x∗ ∈
(

1
4d
, 1
3d

)
such that f ′(x∗) = 0. To get the uniqueness, we need only

look at the second derivative on the interval on
[

1
4d
, 1
3d

]
.

f ′′(x) = − (d− 1)2sin(dπx)

4(1− x)
3
2 (1− dx)

5
2 sin(πx)

+
(d− 1)dπcos(dπx)

(1− x)
1
2 (1− dx)

3
2 sin(πx)

− (d− 1)πsin(dπx)cos(πx)

(1− x)
1
2 (1− dx)

3
2 sin2(πx)

+
d(d− 1)sin(dπx)

(1− x)
1
2 (1− dx)

5
2 sin(πx)

−
(

1− x
1− dx

) 1
2 d2π2sin(dπx)

sin(πx)
−
(

1− x
1− dx

) 1
2 2dπ2cos(dπx)cos(πx)

sin2(πx)

+

(
1− x
1− dx

) 1
2 2π2sin(dπx)cos2(πx)

sin3(πx)

+

(
1− x
1− dx

) 1
2 π2sin(dπx)

sin(πx)
.

Combining all the terms, the denominator becomes

4(1− x)
3
2 (1− dx)

5
2 sin3(πx).
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For x ∈
[

1
4d
, 1
3d

]
, πx is less than π

2
, thus sin3(πx) > 0. Since x ∈

[
1
4d
, 1
3d

]
is always

less than 1 and 1
4
≤ dx ≤ 1

3
, we can conclude

4(1− x)
3
2 (1− dx)

5
2 sin3(πx) > 0.

Now, we turn our attention to the numerator. To determine that the numerator

is negative, we will need a couple of facts. When x ∈
[

1
4d
, 1
3d

]
with d > 1 and odd,

πx will be less than π
4
. Hence cos(πx) > sin(πx). Furthermore, dπx ∈

[
π
4
, π
3

]
. So, it

follows that sin(dπx) > cos(dπx).

The numerator is,

− (d− 1)2sin(dπx)sin2(πx) + 4πd(d− 1)(1− x)(1− dx)sin2(πx)cos(dπx)

−4π(d−1)(1−x)(1−dx)sin(dπx)sin(πx)cos(πx)+4d(d−1)(1−x)sin(dπx)sin2(πx)

− 4π2d2(1− x)2(1− dx)2sin(dπx)sin2(πx)− 8π2d(1− x)2(1− dx)2cos(dπx)cos2(πx)

+ 8π2(1− x)2(1− dx)2cos2(πx)sin(dπx) + 4π2(1− x)2(1− dx)2sin(dπx)sin2(πx),

= T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8.

We will proceed by grouping the terms and determine that each grouping is negative.
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First, we consider T2 + T3.

T2 + T3 = 4πd(d− 1)(1− x)(1− dx)sin2(πx)cos(dπx)

− 4π(d− 1)(1− x)(1− dx)sin(dπx)sin(πx)cos(πx)

= 4π(d− 1)(1− x)(1− dx)sin(πx)(dcos(dπx)sin(πx)− sin(dπx)cos(πx))

= 4π(d− 1)(1− x)(1− dx)sin(πx)
h(x)

π

= 4(d− 1)(1− x)(1− dx)sin(πx)h(x)

Clearly, the first 5 factors are positive. From the proof of Proposition 3.2.13, h(x) is

negative on
(
0, 1

d+1

]
. Hence, we conclude that T2 + T3 < 0.

Now, we consider T6 + T7.

T6 + T7 = −8π2d(1− x)2(1− dx)2cos(dπx)cos2(πx)+

8π2(1− x)2(1− dx)2cos2(πx)sin(dπx)

= 8π2d(1− x)2(1− dx)2cos2(πx)(−dcos(dπx) + sin(dπx))

The first 6 factors are positive. Hence we need to show −dcos(dπx) + sin(dπx) is

negative. Plugging in x = 1
4d

, we have −d
√
2
2

+
√
2
2
< 0. At x = 1

3d
, we get −d

2
+
√
3
2

.

Since d > 1 and odd −d
2

+
√
3
2
< 0. Furthermore, the first derivative,

d2πsin(dπx) + dπcos(dπx) is strictly positive. So we can conclude

−dcos(dπx) + sin(dπx) is negative on
[

1
4d
, 1
3d

]
,as well as T6 + T7 < 0.
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3.2. CIRCULANT MATRICES AS PROJECTIONS

Finally, we look at T1 + T4 + T5 + T8.

T1 + T4 + T5 + T8 = −(d− 1)2sin(dπx)sin2(πx) + 4d(d− 1)(1− x)sin(dπx)sin2(πx)

− 4π2d2(1− x)2(1− dx)2sin(dπx)sin2(πx)

+ 4π2(1− x)2(1− dx)2sin(dπx)sin2(πx)

= (d− 1)sin(dπx)sin2(πx)(−(d− 1) + 4d(1− x))

+ 4π2(1− x)2(1− dx)2sin(dπx)sin2(πx)(d2 − 1)

Hence,

T1+T4+T5+T8 = (d−1)sin(dπx)sin2(πx)(−4π2(1−x)2(1−dx)2(d+1)+3d+1−4dx)

The first 3 factors are positive. Which leaves the sign of

k(x) = −4π2(1− x)2(1− dx)2(d+ 1) + 3d+ 1− 4dx

to be determined. To conclude this is less than zero, we begin by looking at the

values at x = 1
4d

and 1
3d

. At x = 1
4d

we have

k

(
1

4d

)
= −4π2

(
1− 1

4d

)2(
1− d 1

4d

)2

(d+ 1) + 3d+ 1− 4d
1

4d

=
(−144π2 + 192)d3 − 72π2d2 + 62π2d− 9π2

64d2

< 0.

At x = 1
3d

we have

k

(
1

3d

)
= −4π2

(
1− 1

3d

)2(
1− d 1

3d

)2

(d+ 1) + 3d+ 1− 4d
1

3d

=
(−144π2 + 243)d3 − 75π2d2 + 80π2d− 16π2

81d2

< 0
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Also,

k′(x) = 8π2(d+ 1)(1− x)(1− dx)2 + 8π2d(d+ 1)(1− x)(1− dx)2 − 4d > 0.

So k(x) < 0 on
[

1
4d
, 1
3d

]
., which means T1 + T4 + T5 + T8 < 0.

Therefore the numerator is less than zero for all x ∈
[

1
4d
, 1
3d

]
. Therefore, f ′(x)

has exactly one zero, x∗ ∈
[

1
4d
, 1
3d

]
, which proves the claim.

The previous proof also yields that f(x) is concave down on
(
0, 1

d+1

]
. This

prompts the following lemma.

Lemma 3.2.15. Let d be an odd natural number greater than 1. Then f(x) =√
1−x
1−dx

sin(dπx)
sin(πx)

is strictly increasing near zero on
(
0, 1

d+1

]
.

Proof. Let d be an odd natural number greater than one and f(x) =
√

1−x
1−dx

sin(dπx)
sin(πx)

.

Taking the derivative of f(x), we have

f ′(x) =
d− 1

2(1− x)
1
2 (1− dx)

3
2

sin(dπx)

sin(πx)
+(

1− x
1− dx

) 1
2 πd cos(dπx) sin(πx)− π sin(dπx) cos(πx)

sin2(πx)
.

Then, using L’Hopsital’s rule two times, we have f ′(0) = lim
x→0

d(d−1)
2

> 0. Hence, f(x)

is increasing near zero.

This lemma allows us to get a better approximation of Ccirc(N,d)
W (N,d)

, for N sufficiently

large.
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Corollary 3.2.16. Let N and d be natural numbers, d odd, where N
d
> 2. Then, for

N large enough Ccirc(N,d)
W (N,d)

≤ d+ d(d−1)
2N

.

Proof. Let N and d be natural numbers, d odd, where N
d
> 2. Using the previous

lemma, for large enough N, f
(

1
N

)
≥ d. Furthermore, since f ′(x) is decreasing, the

maximum value of f ′(x) will be as x approaches 0, which is d(d−1)
2

. Thus we can

write, for sufficiently large N,

d ≤ f

(
1

N

)
= f(x) ≤ f(0) +

d(d− 1)

2N
= d+

d(d− 1)

2N
.

Now, we consider the case where N is small.

Corollary 3.2.17. Let f(x) =
√

1−x
1−dx

sin(dπx)
sin(πx)

. Then as x− → 1
d+1

, f(x) decreases to
√
d.

Proof. Let f(x) =
√

1−x
1−dx

sin(dπx)
sin(πx)

. From Lemma 3.2.14, f(x) decreases on
(

1
3d
, 1
d+1

]
.

Furthermore, since sin
(
dπ
d+1

)
− sin

(
π
d+1

)
= 2cos

(
dπ
d+1

+ π
d+1

2

)
sin

(
dπ
d+1
− π
d+1

2

)
= 0, we

get that sin
(
dπ
d+1

)
= sin

(
π
d+1

)
. Therefore,

lim
x→ 1

d+1

√
1− x
1− dx

sin(dπx)

sin(πx)
=

√
1− dπ

d+1

1− π
d+1

sin(dπx)

sin(πx)
=
√
d

Initially, we defined N = 1
x
, so x = 1

N
. Then using the previous Corollary, we

can conclude that as N
d
→ 1,

C(N, d)

W (N, d)
≤ Ccirc(N, d)

W (N, d)
≤ 1√

d
|D d−1

2
(
2π

N
)| →

√
d.

57
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3.3 Correlation Constant upper bound via Differ-

ence sets

Lemma 3.3.1. Let C = F ∗ΣF = circ(c0, . . . , cN−1) ∈ C(N,d)
P , with

Σ = diag(λ0, . . . , λN−1) defined by the ordered set λ0, . . . , λN−1. Then

ck =
1

N

N−1∑
j=0

λje
2πijk
N .

Proof. Let C = F ∗ΣF = circ(c0, . . . , cN−1) ∈ C
(N,d)
P with Σ = diag(λ0, . . . , λN−1)

and Fj = [ 1√
N
e

−2πijn
N ],n = 0, . . . , N − 1, is the associated jth column from F. Define

k = j − l. Thus for each k,

ck = FjΣF
∗
l =

N−1∑
j−l=0

1√
N
e

2πinj
N λj−l

1√
N
e

−2πiln
N =

1

N

N−1∑
k=0

λke
2πink
N .

Lemma 3.2.8 precisely defines the optimization problem for finding C(N,d), for

C ∈ C(N,d)
P .

3.3.1 Shift invariant projections and cyclic equiangular frames

Kalra, in [23], defined the relationship between cyclic equiangular frames and dif-

ference sets. To begin, we will look at the relationship between cyclic equiangular

frames and circulant matrices.

Definition 3.3.2. A subset D of a finite (additive) Abelian group G is said to be a

(N, d, λ)-difference set of G if for some fixed natural number λ, every nonzero element
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3.3. CORRELATION CONSTANT UPPER BOUND VIA DIFFERENCE SETS

of G can be written as the difference of two elements in D in exactly λ ways, where

|G| = N and |H| = d.

Given a (N, d, λ)-difference set, we define the circulant matrix C = F ∗ΣF =

circ(c0, . . . , cN−1) ∈ C
(N,d)
P , with Σ = diag(λ0, . . . , λN−1), by λj =

1 j ∈ D

0 otherwise
,

for j = 0, . . . , N − 1.

Defining circulant matrices in this manner, we have the following Lemma.

Lemma 3.3.3. Let D be a (N, d, λ)-difference set. Then, for the corresponding

C = F ∗ΣF = circ(c0, . . . , cN−1) ∈ C(N,d)
P , |ck|2 = 1

N2 (|D| − λ).

Proof. Let D be a (N, d, λ)-difference set and ck, be an entry in the circulant matrix

C = F ∗ΣF = circ(c0, . . . , cN−1) ∈ C
(N,d)
P , with Σ = diag(λ0, . . . , λN−1) defined by

λj =

1 j ∈ D

0 otherwise
. From Lemma 3.3.1 we know ck = 1

N

∑N−1
j=0 λje

2πikj
N . So,

|ck|2 = ckc̄k

=
1

N

N−1∑
j=0

λje
2πikj
N

1

N

N−1∑
l=0

λle
−2πikl
N

=
1

N2

∑
l,j∈D

e
2πik(j−l)

N

=
1

N2

( ∑
l=j∈D

e
2πik(j−l)

N︸ ︷︷ ︸
=1

+
∑
l 6=j∈D

e
2πik(j−l)

N

)

=
1

N2

|D| − λ ∑
j−l∈ZN\{0}

e
2πik(j−l)

N


=

1

N2
(|D| − λ) .
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Since every nonzero element of ZN must be a difference in exactly λ distinct ways

and there are d(d-1) total differences, λ = d(d−1)
N−1 . Now, it follows that

|ck|2 =
1

N2
(|D| − λ) =

1

N2

(
d− d(d− 1)

N − 1

)
=

N − d
N2d(N − 1)

.

So, we have |ck| =
√

N−d
N2d(N−1) , which is the Welch Bound scaled for uniform (N,d)-

frames.

By increasing the rank by one, we don’t necessarily have an equiangular frame.

Since a difference set yields a equiangular frame, we will consider the construction

of a (N, d+ 1)-frame by taking a one element of ZN\D to how close it will be to the

Welch bound.

Theorem 3.3.4. Let D be a (N, d, λ)-difference set and p ∈ ZN\D. For

C = F ∗ΣF = circ(c0, . . . , cN−1) ∈ C(N,d)
P , with Σ = diag(λ0, . . . , λN−1)

defined by λj =

1 j ∈ D ∪ {p}

0 otherwise
,

|ck|2 =
1

N2

(
|D| − λ+ 2

∑
j∈D

cos(
2πk(j − p)

N
)

)
.

Proof. Let D be a (N, d, λ)-difference set and fix p ∈ ZN\D and

C = F ∗ΣF = circ(c0, . . . , cN−1) ∈ C(N,d)
P , with Σ = diag(λ0, . . . , λN−1) defined by
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λj =

1 j ∈ D ∪ {p}

0 otherwise
. Then,

|ck|2 = ckc̄k =
1

N

N−1∑
j=0

λje
2πikj
N

1

N

N−1∑
l=0

λle
−2πikl
N

=
1

N2

 ∑
l,j∈D∪{p}

e
2πik(j−l)

N


=

1

N2

|D| − λ+
∑
j∈D
l=p

e
2πik(j−p)

N +
∑
l∈D
j=p

e
2πik(p−l)

N


=

1

N2

(
|D| − λ+ 2

∑
j∈D

Re(e
2πik(j−p)

N )

)

=
1

N2

(
|D| − λ+ 2

∑
j∈D

cos(
2πk(j − p)

N
)

)
.

3.3.2 Quadratic Residues

We begin with the (2d+ 1, d+ 1, λ)-difference set, where d is odd, that is the set of

quadratic residues including zero. Then we increase the rank of C = circ(c0, . . . , cN−1) ∈

C
(N,d+1)
P by one. Now we chose a specific case of C = circ(c0, . . . , cN−1) ∈ C(N,d+2)

P

and determine how close we get to the correlation constant, C(2d+ 1, d+ 2).

Definition 3.3.5. a ∈ ZN such that gcd(a,N) = 1, is called a quadratic residue of

an odd prime N if and only if x2 ≡ a mod N has a solution in ZN . If a is not a

quadratic residue, then it is called a quadratic nonresidue of N.

61



3.3. CORRELATION CONSTANT UPPER BOUND VIA DIFFERENCE SETS

Due to the multiplicative properties of ZN , we know that the product of two

quadratic residues is a residue, the product of two quadratic nonresidues is a quadratic

residue, and the product of a quadratic nonresidue and a quadratic residue is a

quadratic nonresidue. Additionally, if a is a quadratic residue then its additive in-

verse, −a will be a quadratic nonresidue.

Lemma 3.3.6. Let N = 2d + 1 be an odd prime and d be prime. If D is the set of

quadratic residues mod N, then D is a multiplicative subgroup of Z∗N and the set of

quadratic nonresidues is −D. Moreover, ZN = D ∪ −D ∪ {0}.

Lemma 3.3.7. Let N be a prime integer such that N = 2d+1, where d is odd. Then

the set of quadratic residues form a difference set. Moreover, the set of residues

together with {0} forms a (N, d+ 1, λ′)-difference set, where λ′ = d(d+1)
N−1 = d+1

2
.

Since d is odd λ′ will be a natural number. For the corresponding C ∈ C
(N,d)
P

we then have |ck| = 1
2d+1

√
d+1
2

. We will denote the set of quadratic residues to-

gether with zero as D0 and the set of quadratic nonresidues with zero as (−D)0,

which is −D0 . Applying the previous lemma, ZN = D0 ∪ (−D). Going forward,

we define Dp = D0 ∪ {p} and the corresponding circulant matrix C = F ∗ΣF =

circ(c0, . . . , cN−1) ∈ C(N,d)
P by Σ = diag(λ0, . . . , λN−1) with λj =

1 j ∈ Dp

0 otherwise
.

Proposition 3.3.8. Let N be an prime integer such that N = 2d + 1, where d is

odd. If p ∈ −D, then
{∑

j∈D0
cos(2πk(j−p)

N
)
}N−1
k=0

is independent of p.

Proof. Let p ∈ −D and k ∈ Z∗N . Since p is a quadratic nonresidue, −p is a quadratic

residue. Then for j ∈ D0, consider the set of values k(j − p) = k(−p) + kj for
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1 ≤ k ≤ N − 1. This set can be written as k(−p) + kD0. Using the multiplication

properties of quadratic residues,

k(−p+D0) =


k(−p) +D0 k ∈ D

k(−p) + (−D)0 k ∈ −D
.

Furthermore, since 0 ≤ k ≤ N − 1 can be thought of as the additive subgroup

generated by one, which is ZN . ZN is a field. Therefore, for any choice of p ∈ −D,

(−p) 〈1〉 is ZN . Since the only place zero appears is when k = 0, we can restrict k to

1 ≤ k ≤ N − 1. So, for 1 ≤ k ≤ N − 1, k(−p+D0) is the same set for any choice of

p. Hence,
{∑

j∈D0
cos(2πk(j−p)

N
)
}N−1
k=0

is independent of p.

Corollary 3.3.9. Let N be an prime integer such that N = 2d + 1, where d is odd.

If p ∈ −(D0), then min
Dp

max
1≤k≤N−1

|ck| is independent of p.

Proof. Let p ∈ −(D0). From Theorem 3.3.4 and Lemma 3.3.7,

|ck|2 =
|D0| − λ′

N2
+

2

N2

∑
j∈D0

cos(
2πk(j − p)

N
).

The first term is independent of p ∈ −D. Proposition 3.3.8 gives us that the third

term is independent of p. Therefore, min
Dp

max
1≤k≤N−1

|ck| is independent of p.
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CHAPTER 4

Correlation Minimization for Laurent Matrices

In this section we will consider the problem of finding a measurable set in [0, 1] where

the correlation constant of the associated Laurent matrix is as small as possible. To

do this, we will examine the behavior of the Fourier coefficients of the characteristic

function on a measurable set A ⊂ [0, 1]. To begin, we examine the relationship

between a Laurent matrix and the Fourier coefficients of a bounded measurable

function.
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4.0.1 Laurent Matrices

Definition 4.0.10. Given a sequence of complex numbers a = (ap)p∈Z, the Laurent

matrix of the sequence is the matrix

La = [ap−q]p,q∈Z =



. . . . . . . . . . . .

. . . a0 a−1 a−2
. . .

. . . a1 a0 a−1
. . .

. . . a2 a1 a0
. . .

. . . . . . . . . . . .


.

By a classical theorem of Toeplitz [39], the Laurent matrix La is a bounded linear

operator on `2 (Z) if and only if the entries are the Fourier coefficients of some function

fa ∈ L∞ ([0, 1]). If such a function exists, then it is unique almost everywhere.

For L2 ([0, 1]) with orthonormal basis {e2πinx}∞n=−∞ and f ∈ L∞([0, 1]) define the

multiplication operator Mf : L2 ([0, 1]) → L2 ([0, 1]) by φ → fφ. If U : L2([0, 1]) →

`2(Z) is the unitary transformation defined by Uen = e2πinx, then UMfaU
∗ = La.

So Mfa and La are unitarily equivalent. Also, notice that this equivalence gives us

that LaLb = Lc, with multiplication defined as fc = fafb. Now, we will examine

the special case of the infinite matrix generated by the multiplication operator with

f (x) = χA. If A is a measurable subset of [0,1], then f = χA =

1 x ∈ A

0 x /∈ A
is an

L∞ ([0, 1]) function.
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Defined by ap−q = 〈MχAe
2πipt, e2πiqt〉. For p 6= q

〈
MχAe

2πipt, e2πiqt
〉

=

ˆ 1

0

MχAe
2πipt · ¯e2πiqtdt

=

ˆ
A

e2πi(p−q)tdt

=
1

2πi (p− q)
e2πi(p−q)t|A

= χ̂A(p− q).

Since 〈MχAe
2πipt, e2πiqt〉 is the (p− q)th Fourier coefficient of χA, we can define

the values of a particular set of Laurent matrices by 〈MχAe
2πipt, e2πiqt〉. Also, we have

that the set of Laurent matrices constructed in this manner are bounded.

Remark 4.0.11. In particular, we see that La is a projection if and only if fa is

equal almost everywhere to the characteristic function of some measurable subset

of [0, 1]. Then, by equivalence, Mf is a projection if and only if there exists A is a

measurable subset of [0, 1] and f = χA almost everywhere.

4.0.2 Minimizing entries of the Laurent matrices

This construction for Laurent matrices yield projections, and therefore produces

Grammian matrices of Parseval frames.

Going forward, we will only consider those Laurent matrices of the form above

with the goal of fixing the measure of A and determining how small |χ̂A(p− q)| can

be for p 6= q. To begin, we need the following lemmas.
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Lemma 4.0.12. Let δ > 0 and p, k ∈ N. If A = ∪p−1j=0[ j
p
, j
p

+ δ] ⊂ [0, 1] and n ∈ Z,

then

χ̂A(−n) =


0 p - n

e2πikpδ−1
2πik

n = kp,

. (4.1)

Proof. Choose δ > 0. Let A = ∪p−1j=0[ j
p
, j
p

+ δ] ⊂ [0, 1] with p, k ∈ N . Then for n ∈ Z,

χ̂A(−n) =

p−1∑
j=0

ˆ j
p
+δ

j
p

e2πintdt

=
1

2πin

p−1∑
j=0

e2πin(
j
p
+δ) − e2πin

j
p

=
1

2πin

p−1∑
j=0

e2πin
j
p (e2πinδ − 1)

=
e2πinδ − 1

2πin

p−1∑
j=0

e2πin
j
p

Now, if n is not divisible by p

χ̂A(−n) =
e2πinδ − 1

2πin
(

1− 1

1− e2πin
n
p

) = 0
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Otherwise, n can be written as n = kp. Then

χ̂A(−n) =
e2πinδ − 1

2πikp

p−1∑
j=0

e2πinaj︸ ︷︷ ︸
=1

=
e2πinδ − 1

2πikp
p

=
e2πinδ − 1

2πik
.

For constructed set A = ∪p−1j=0

[
j
p
, j
p

+ δ
]
⊂ [0, 1], we can now derive a bound on

|χ̂A(n)|.

Lemma 4.0.13. Let δ > 0 and p ∈ N. If A = ∪p−1j=0[ j
p
, j
p

+ δ] ⊂ [0, 1] and n, k ∈ Z,

then

|χ̂A(n)| ≤ 1

πk

Proof. Choose δ > 0. Let p ∈ N and define A = ∪p−1j=0[ j
p
, j
p

+ δ] ⊂ [0, 1]. Then, for

n, k ∈ Z, using lemma 4.0.12 we have

χ̂A(−n) =


0 p - n

e2πikpδ−1
2πik

n = kp,

.

So, for n not divisible by p we trivially have it. Otherwise, write n as n = kp. Now,

|χ̂A(n)| = |e
2πikpδ − 1

2πik
|

≤ |e
2πikpδ|+ 1

2πk

≤ 1

πk
,

which proves the claim.
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Theorem 4.0.14. Given ε > 0, by choosing p ∈ N and δ > 0 so that pδ < 1 and

pδ < ε there exists a set A ⊂ [0, 1], with |A| = pδ, where |χ̂A(n)| < ε is achieved for

all n 6= 0

Proof. Let ε > 0, choose p ∈ N and δ > 0 so that pδ < 1 and pδ < ε. Define the set

A = ∪p−1j=0[ j
p
, j
p

+ δ] ⊂ [0, 1] =, so |A| = pδ. Now, fix k ∈ N so that 1
πk

< ε. Then,

from Lemma 4.0.13, we have for k > 1
πε

that |χ̂A| < ε

For 1 ≤ k ≤ 1
πε

, from Lemma 4.0.13, we have that

|χ̂A(n)| = |e
2πikpδ − 1

2πk
| ≤ 2πkpδ

2πk
≤ pδ < ε.

So, given ε > 0, we have built a set A with measure |A| < ε such that |χ̂A(n)| < ε

for n 6= 0.

Remark 4.0.15. Furthermore, since |χ̂A| = 1 − |χ̂Ac | for all n 6= 0 we also have a

set where |Ac| > 1− ε

In general, for any A

|χ̂A(n)| = | < χA, e
2πint > |

≤ ‖χA‖‖̇e2πint‖

=
√
|A|

< ε

when |A| < ε2. So we have improved the bound by constructing this special case of

the set A.
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