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Abstract

Accurate mapping of subsurface structure through seismic techniques is essential

in oil and gas exploration. With the development of computational power, there

has been an increased focus on data-fitting related seismic-inversion techniques for

producing high fidelity seismic velocity models and images, such as full-waveform

inversion and least-squares migration. However, more advanced methods, such as

data-fitting techniques, are generally formulated in least-squares optimization, and

can be less robust and expensive in terms of computational cost. The nonlinearity

of inversion problems also pose another issue for successful mapping of subsurface

structure. Recently, various techniques to optimize data-fitting seismic-inversion

problems have been implemented for the industrial need to better efficiency.

The primary objective of this study is to optimize least-squares techniques for

seismic-velocity model building and imaging. This work can be divided into three

equally important parts. The first part of this work is developing a new multi-level

temporal integration to make full-waveform inversion (FWI) more robust than its

classic implementation. The second contribution is to maximize the capability of the

least-squares migration through numerical optimization and Hessian preconditioning.

The third part is to account for the large amplitude differences between field and

modeled data. A new local normalization scheme is proposed for better performance

of the least-squares migration. The field examples demonstrate the effectiveness of

the proposed methods in generating high quality images and improving the inversion

efficiency.
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Chapter 1

Introduction

The comprehensive estimation of subsurface structures is essential for oil and gas

exploration, and is normally achieved by inverting the geophysical parameters from

seismic signals. Seismic-imaging consists of acquiring seismic data and retrieving the

subsurface properties, which can be formulated as inversion problems (Bamberger

et al., 1982; Tarantola, 1987; Berkhout, 1982). Fast development of oil and gas

resources requires more accurate velocity models and subsurface structure maps.

With the development of computational power, there has been an increased focus

on least-squares fitting seismic-inversion techniques for high-fidelity seismic-velocity

model and image, such as full-waveform inversion (FWI) and least-squares migration

(LSM), which is the focus of this study. In this chapter, I briefly outline the general

concepts and key developments for least-squares inversion and detailed research goals

and contributions.
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1.1 Background and overview

Pioneer work of using seismic waves to map subsurface structures for the oil and

gas industry was done by (Claerbout, 1971), where mapping subsurface reflectors

from different imaging conditions were presented. The mapping of subsurface

structure using seismic data is generally done using an estimated velocity model

and certain migration techniques.

The early velocity model estimations were based on the assumption that the

earth is a layer-caked model. However, it was recognized that more accurate

velocity models are needed for the oil and gas industry. With the fast development

of acquisition techniques, more accurate velocity techniques are in high demand

to maximize the capability of seismic data. Ray-based tomography emerged as

model-building tools in the 90s, and now the ray-based tomography has become the

standard model-building tool for seismic depth imaging (Woodward et al., 2008).

The industry has widely adopted the ray-based, prestack depth migration (PSDM)

domain tomographies to perform migration velocity estimation (Stork, 1992).

Ray tomography is based on the high frequency approximation of ray paths, and

is generally inadequate in high velocity contrast. Ray-based velocity model building

is limited by the high-frequency approximation that fails at large velocity variations

(Woodward et al., 2008). Recent industrial and academic efforts have shifted

from ray-based tomography to wave-equation based velocity inversion techniques.

The biggest advantage wave-equation based techniques have over ray-based ones

is wave-equations are more accurate in describing the seismic wave propagation
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in the presence of large velocity variations (Vigh and Starr, 2008). Among the

wave-equation based velocity inversion techniques, full waveform inversion (FWI) is

the most investigated technique in recent years (Virieux and Operto, 2009). The FWI

has been implemented in different domains, including the time domain (Tarantola,

1984; Vigh and Starr, 2008), the frequency domain (Pratt et al., 1998), and the

Laplacian domain (Shin et al., 2014; Ha et al., 2012).

Ray-based tomography uses the phase or travel time information to update

velocity model, while the full-waveform inversion, proposed by (Tarantola, 1984) and

(Lailly, 1983), inverts the velocity through matching both the phase and amplitude

between the field and modeled data. Although there have been several successful

industrial-sized FWI projects (Huang et al., 2012; Vigh and Starr, 2008), many

challenges still exist for real-world FWI practice. First, this minimization is achieved

by a non-linear optimization algorithm that updates the model properties based on

back-propagating the differences between the real and modeled data through the

model itself. While such a minimization will commonly converge to a particular

model realization, it is well known that the problem we are trying to solve in FWI

is ill-posed. The physical meaning of ill-posed in this case can be characterized as

any given set of data residuals for which multiple wave propagation models which fit

the data equally-well (Backus and Glbert, 1968; Jackson, 1972). This result suggests

that multiple minima can occur.

When properly implemented, FWI is able to achieve high quality seismic velocity.

On the other hand, FWI needs a initial velocity model that is very close to the

true velocity; otherwise, FWI can easily get into local minimum (Mulder and
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Plessix, 2008). To alleviate the requirement for an accurate initial velocity model,

low-frequency and large offset dataset are required by FWI. In general, multi-scale

approaches are used (Bunks et al., 1995). In real world FWI, only the refraction part

of the seismic data is used to update large scale variation (Huang et al., 2013), while

the reflection data is generally neglected to avoid cycle-skipping.

One of the other difficulties is that no single acoustic wave equation can represent

real-world wave propagation (Zhou et al., 2012). FWI transfers the difference

between modeled and observed data to update velocity, which implies that an

accurate modeling operator is the key to a successful velocity inversion. However,

it is apparent that the propagation of a real seismic waveform is complicated

by elastic effects, such as attenuation and anisotropy (Thomsen, 1986; Alkhalifah

and Tsvankin, 1995). The amplitude information can also be distorted by data

processing, source signature variations, and background noise. All these factors make

it challenging to extract the amplitude information from real-world seismic data. In

general, the phase information in seismic waveform is directly related to the velocity

structure, which makes it more desirable to remove the impacts from amplitude.

To partially remove the source signature effects and ’unknown’ physical processes

that cause the amplitude difference, a number of authors proposed cross-correlation

based objective functions (Luo and Schuster, 1990, 1991; Van Leeuwan and Mulder,

2010). A most recent development used adaptive filtering to suppress the amplitude

contribution in velocity inversion (Warner and Guasch, 2014).

Although removing the amplitude impact can make FWI more stable, its

conventional format is still limited by its migration resolution kernel (Fichtner
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and Trampert, 2011). The original FWI derivation is only valid for transmitters

and refracted waves with large scale velocity errors (Zhou et al., 2012). Realizing

the limitation of FWI, some efforts have been put toward the image-domain

wave-equation velocity analysis (Sava, 2004; Sava and Biondi, 2004; Albertin et al.,

2006; Yang and Sava, 2011; Shen, 2004). Image-domain wave-equation velocity

analysis uses image-focusing as the criteria for velocity correctness (Mackay and

Abma, 1992). This can have many different focusing measurements. However,

the paucity of real-world successful application of wave-equation velocity analysis

is partially due to the high computational cost incurred in the iterative velocity

updates.

On the other hand, migration of seismic data is a complement tool for validating

velocity model, such that, a valid velocity model should result in a well-focused

seismic image. With a predefined velocity model, seismic data can be mapped

from their surface location to subsurface structures by different migration algorithms

(Claerbout, 1971). Early imaging algorithms relied on ray-based methods, and fails

when there are large velocity variations. Wave-equation based imaging methods,

such as reverse-time migration (RTM) (Baysal et al., 1983), accommodate high

velocity variations in real world analysis (Farmer et al., 2009). For example, only

RTM can generate high quality images of the high impedance contrast between

the salt-dome flank and surrounding reflectors. In general, a high resolution image

is greatly desired for geological interpretation; however, a migrated seismic image

is limited by the theoretical resolution (Chen and Schuster, 1999; Berkhout, 1984;

Safar, 1985). The migrated image, even generated by an accurate velocity model,
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can be blurred because of the migration point spread effect (Yu et al., 2006). In real

practice, data quality and limited aperture can also strongly affect the resolution of

the migrated image. In order to deconvolve the source signature effects and migration

spreading, imaging through inversion using least-squares migration (LSM), has been

shown by various authors to achieve high-quality images (Nemeth et al., 1999; Dai

and Schuster, 2013; Zhang et al., 2013; Huang and Zhou, 2014, 2015). Migration

artifacts due to limited aperture and irregular sampling are suppressed through the

least-squares inversion process. However, for field data applications, it is not easy

to match the recorded amplitudes because of the visco-elastic nature of the earth

and inaccuracies in the estimation of seismic sources. Objective functions based on

cross-correlation have the advantage of being less-sensitive to the source signature

and amplitude variation (Dutta et al., 2013; Zhang et al., 2013).

On the computational side, both FWI and LSM share the same challenge, a high

computational cost. In the FWI or LSM, wave-equation based seismic simulations are

performed for individual sources and the differences between simulated and observed

common-shot-gathers drive the updating of the velocity model or reflectivity (Krebs

et al., 2009; Dai and Schuster, 2013; Nemeth et al., 1999). Therefore, the cost of

FWI and LSM is proportional to the number of common-shot-gathers, which could

be prohibitively high for industrial-sized 3D seismic surveys (Huang et al., 2013).

To improve the efficiency of FWI and LSM, numerous numerical schemes

have been suggested to reduce the computational cost. In general, current

optimizations for least-squares seismic inversion problems can be categorized

into several different groups: super-grouping, source encoding, and stochastic
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optimization. Super-grouping is more of a standard practice in industrial seismic

imaging projects (Huang et al., 2013), where recorded shots are moved spatially to

be combined into a giant super-shot. Special treatment is required to compensate

the spatial change, called partial move-out. This method has limited accuracy

and can generate artifacts by moving field records to designated positions. The

second major optimization scheme is the source-encoding technique. Instead of

moving shots spatially to join several shots together, the source-encoding scheme

is to simulate several shots simultaneously with an assigned random time delay for

different shots. This method reduces the computational cost for forward simulation

(Krebs et al., 2009). Source-encoding schemes can be efficient in most 2D cases.

For real-world large 3D surveys, source-encoding may have several issues, including,

an increased number of random shots requires propagation in a larger velocity grid;

also, the cross-talk artifact between different shots offsets the huge advantage over

conventional non-source-encoding methods.

Stochastic optimization has been a popular algorithm for many applications

in machine learning (Schraudolph and Graepel, 2003), where stochastic sampling

techniques are used to reduce the data volume required for optimization. Recent

development in stochastic optimization has received much attention in seismic

inversion. FWI with the stochastic optimization has achieved results comparable to

that of conventional methods but with only a fraction of conventional shot-by-shot

method (Van Leeuwan et al., 2011). Implementations of stochastic optimization for

seismic inversion were also presented by several other authors (Huang and Zhou,

2015, 2014; Wang et al., 2014; Gao et al., 2010).

7



1.2 Motivation and objective of this study

Different kinds of wave-equation velocity inversion and imaging techniques

have been implemented using different methods, and are generally in the form

of least-squares inversion. Least-squares inversion based techniques use iterative

optimization of a specific objective function. Iteration is typically performed using

a local gradient or a steepest descent method to minimize an objective function.

An objective function is generally defined as the the least-squares misfit between

observed and modeled data. Because of the nature of this objective function, it

is well known that multiple minima can occur. In general, least-squares velocity

model-building and imaging are not as robust as conventional ray-based techniques

and can be computationally expensive for industrial-sized projects.

The major motivation of this research is to reduce the nonuniqueness in

solving ill-posed inverse problems and to improve the stability and efficiency of the

least-squares inversion method to seismic data. The specific motivation of this study

is trying to understand and solve the following problems:

• FWI in its classic form have been proved to be unstable for real

world applications, and requires improved efficiently under classic FWI

implementation.

• Least-squares migrations (LSM) is highly computational demanding. How

can the efficiency of LSM be improved to make it applicable for practical

application?
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• Real-world least-squares imaging poses more challenges due to the elastic effects

in the wave propagation. How can the amplitude variations from the elastic

effects be effciently compensated?

Motivated by above mentioned questions, this thesis is organized as follows:

• While reflection FWI is able to provide more a stable result, it is much more

computational demanding. FWI, in its classic form, is still more appealing for

practical use when a good initial model from a robust ray-based tomography

is available. However, FWI is very unstable for most cases, which can lead to

erroneous velocity update. In Chapter 2, I presented a multi-level temporal

integration objective function to improve the performance of FWI.

• The biggest challenge for least-squares migration is the high computational cost

assuming we have already achieved a correct velocity. In Chapter 3, I propose

using a stochastic conjugate gradient to improve the efficiency of LSM. In

Chapter 4, an approximate Hessian preconditioning is applied to improve the

efficiency and performance of least-squares reverse-time migration (LSRTM).

• In order to compensate the big amplitude difference between field and modeled

data, I propose a local normalization scheme to suppress the amplitude

impact and enhance the phase information. A field example for least-square

reverse-time migration with the local normalization is presented to conclude

this study.

• Conclusion and potential future work are given in Chapter 6.

9



Chapter 2

Full waveform inversion with

multi-level temporal integration

Generally, stabilizing the performance of FWI can be devided into two equally

important categories: First is to change the objective function from a time domain

to a different domain. Second, using certain regularization method, e.g. using total

variation regularization to make the model more blocky (Wang et al., 2012) or using

preconditioning, e.g. smoothing to make the model smooth. In this section, we

propose a multi-level temporal integration scheme to stabilize the FWI performance,

which belongs to the first category of optimization.

10



2.1 Introduction

The theory of FWI was brought to the geophysical community by (Tarantola,

1984), where the velocity model was updated through calculating the gradient of the

misfit objective function. Due to limited computation power, it was recently possible

for the FWI to achieve high fidelity images for industrial-sized projects (Vigh and

Starr, 2008; Huang et al., 2013; Mothi and Kumar, 2014). In the full-waveform

inversion, wave-equation based seismic simulations are performed for individual

sources and the differences between simulated and observed commmon-shot-gathers

are used to update the velocity model (Krebs et al., 2009). Therefore, the cost of

FWI is proportional to the number of shot gathers, which could be prohibitively high

for industrial-sized 3D seismic surveys (Huang et al., 2013).

Numerous numerical schemes have been suggested to reduce the computational

cost and improve the effciency of FWI (Huang and Zhou, 2015; Krebs et al., 2009;

Van Leeuwan et al., 2011). (Krebs et al., 2009) introduce the shots-encoding

scheme, where the modeling and the gradient calculations are optimized through an

encoding technique. Stochastic optimization has been a popular algorithm applied to

many applications in machine learning (Schraudolph and Graepel, 2003). Stochastic

sampling techniques are used to reduce the data volume required for optimization.

Recent development in stochastic optimization has received much attention in seismic

inversion. FWI with stochastic optimization achieved results comparable to that

of conventional methods but with only a few percent of CPU time demanded by

conventional shot-by-shot methods (Van Leeuwan et al., 2011).

11



However, an efficient implementation of FWI does not guarantee the success

in velocity update. To avoid the algorithm being trapped into a local minima,

FWI requires an initial velocity model that is close to the true velocity model.

Low-frequency content and ultra-long-offset are essential for a successful FWI update

(Huang et al., 2013; Mothi and Kumar, 2014). However, in most seismic acquisitions,

long-offset data are not available, and low-frequency data are contaminated by

various noises.

Aside from the norm objective function used in early FWI implementations

(Tarantola, 1984), different techniques have been invented to reduce the possibility

of being trapped in local minima or cycle skipping in the absence of low frequency

and long-offset data. Early efforts have been put toward delineating the phase from

the amplitude information, such as the cross-correlation objective function (Luo and

Schuster, 1991). (Ha et al., 2012) showed that the Laplacian objective function

is less sensitive to the lack of low frequencies. (Luo and Wu, 2013) proposed to

use envelope inversion to recover the large-scale component of the model, and the

envelope objective function was shown to be more efficient and noise insensitive.

Seismic inversion through a multi-level approach has been presented by a number

of authors (Bunks et al., 1995; Zhou, 2003), where inversions were performed from

coarse to fine scales. Multi-level approaches are generally more stable in comparison

to a single level approach. The techniques of temporal and spatial signal integration

have been widely used in acoustic motion detection (Moore and Tan, 2003; Hopkins

and Moore, 2007). Temporal integration involves combining information over time to

improve detection or discrimination, and can often be thought of as an accumulation

12



process, or energy integration (Moore and Tan, 2003). Apparently, information

extracted from one part of a signal can influence the evaluation and interpretation of

information extracted from another part at a different time. In this study, I briefly

review the theoretical background of conventional FWI and our proposed multi-level

temporal integral scheme. I conclude by comparing the results from a conventional

implementation to our multi-level temporal integral approach.

2.2 FWI with multi-level temporal integration

The state function for wave propagation with constant density can be described

as

1

m2(x)

∂2p(x, t; xs)

∂t2
−∇2p(x, t; xs) = f(t; xs) (2.1)

where m(x) is the velocity model, p(x, t; xs) is the state variable and f(t; xs) is the

source function. Conventional misfit objective function compares the observed and

modeled wavefield at the receiver location through standard L2 norm and is given

by

J(m(x)) =
∑
x∈xs

∫ T

0

‖pres(x, τ ;xs)‖dτ (2.2)

where ‖.‖ denotes a L2 norm, T is the total recording time, and the misfit pres(x, τ ;xs)

is the difference between the modeled and measured at the observation location by

subtraction

pres(x, τ ;xs) = p(x, τ ;xs)− d(x, τ ;xs) (2.3)
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where p(x, τ ;xs) is the modeled wavefield and d(x, τ ;xs) is the observed wavefield.

Using the adjoint state method (Symes, 2008), the adjoint source can be readily

calculated by the derivative of the objective function J(m(x)) with respect to the

state variable, and the gradient of the objective function can be written as

∂J

∂m
= RE

∑
x∈xg

∫ T

0

(
∂2p(x, τ ;xs)

∂t2
2

m3(x)

)
ares(x, τ ;xs)ds (2.4)

where ares(x, τ ;xs) is the residual state variable that generated by the adjoint source

and adjoint state function. In this study, a non-linear conjugate gradient method is

used to calculate the step length (Hager, 2006).

The temporal integration involves combining information over time, which can

improve information detection or discrimination (Moore and Tan, 2003). To

maximize the ability of temporal integral, we define multi-level physical variables

that are a measurement of the temporal integral through the following deductive

definition

Pk(x, t; xs) =

∫ t

0

Pk−1(x, τ ; xs)dτ (2.5)

where Pk(x, t; xs) is the kth level temporal integral and Pk−1(x, τ ; xs) is the (k− 1)th

level temporal integral. We also define

P0(x, t; xs) = p(x, t; xs) (2.6)

where p(x, t; xs) is the wavefield with the original source injection function. With

above definitions, we further define the multi-level temporal integration objective

function as

J(m(x)) =
∑
x∈xg

∫ T

0

‖Pk,res(x, τ ; xs)‖dτ (2.7)
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where Pk,res(x, τ ; xs) indicates a misfit at k level temporal integration. Under Leibniz

integral rule for derivative functions (Harley, 1973), the state function for the new

state variable becomes

1

m2(x)

∂2Pk(x, t; xs)

∂t2
−∇2Pk(x, t; xs) = Fk(t; xs) (2.8)

where Fk(t; xs) is kth level temporal integral of the source wavefield

Fk(x, t; xs) =

∫ t

0

Fk−1(x, τ ; xs)dτ (2.9)

where we let F0(x, t; xs) = f(x, t; xs). Equation 2.1 and Equation 2.8 have identical

mathematical formulations, except that the variables have different physical contents.

The physical meaning of Equation 2.8 can be explained by the fact that the

temporal integrated physical field is the result of temporal integrated source injection.

Mathematically, the integral over time t is effectively an operator of 1
iω

in frequency

domain plus a DC or extremely low frequency term, which can be removed through

a low-pass filter.

With the new physical state variable defined in Equation 2.5 and the state

function indicated by Equation 2.8, the new gradient can be readily caculated by:

∂J

∂m
= RE

∑
x∈xg

∫ T

0

(
∂2Pk(x, τ ; xs

∂t2
2

m3(x)

)
Ares,k(x, τ ; xs)ds (2.10)

where Ares,k(x, τ ; xs)ds is the residual state variable which is generated by

the adjoint source Pres,k(x, τ ; xs) and adjoint state function. Modification of this

multi-level temporal integration implementation can be straightforward, such as the

cross correlation objective function proposed by Luo and Schuster (1991).
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2.3 Synthetic results

To validate the multi-level temporal integral FWI, we performed a synthetic test

with the Marmousi model. A 2D synthetic prestack dataset was created by forward

modeling which uses a Ricker source wavelet with the dominant frequency at 10 Hz

and the Marmousi velocity model shown in Figure 2.1(A) . The velocity ranges from

about 1500 m/s to 5500 m/s. The acquisition geometry is similar to that of marine

acquisition, which has a maximum offset to 8 km and recording time of 4 seconds.

(A) (B)

Figure 2.1: Velocity models for the synthetic test. (A) True velocity model for

forward modeling (B) Smoothed velocity as the initial model for FWI and MTI FWI

update.
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(A) (B)

Figure 2.2: Velocity models inverted by two different FWI implementations. (A)

Velocity model inverted by the classic FWI (B) Velocity model inverted by MTI

FWI.

The initial velocity is an overly smoothed Marmousi model in Figure 2.1(B). We

first applied the FWI with its original formulation at 10 Hz for 200 iterations, and

the result is shown in Figure 2.2(A). The FWI, in its original form, starts to capture

some of the fine features of the sedimentary structures in the true velocity model.

However, with a dominant frequency at 10 Hz, this FWI is inadequate to recover the

large structure of the velocity or low frequency part of the velocity, especially when

the initial velocity is far from the true velocity. These is noticeable when comparing

the shallow portion, ranging from 0 to 1000 m depth, of Figure 2.1(A) and Figure

2.2(A).
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Figure 2.3: Synthetic common-shot-gather with marine acquisition configuration.

Top: regular common-shot-gather. Bottom: common-shot-gather generated by

level-3 temporal-integral.
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We then applied the FWI using the multi-level temporal integration. A total

number of 200 iterations are conducted and 50 iterations for consecutive levels

from 3 to 0 respectively. A comparison of the original shot and the level 3

temporal integrated shots is presented in Figure 2.3. It is noticeable that the

temporal integrated shots demonstrate much lower frequency content, which is clearly

demonstrated in the spectra comparison in Figure 2.4. The FWI update starts with

the level 3 temporal integral update and then progressively moves to level 0, e.g. we

run 50 iterations of FWI with level 3 integration. Followed by run 50 iterations of

FWI with level 2.
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Figure 2.4: Frequency content comparison between the level-3 temporal-integrated

common-shot-gather and the regular common-shot-gather.
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Figure 2.5: Convergnce comparison between the conventional FWI and the level 3

MTI FWI.

The normalized misfits of the conventional FWI and multi-level temporal

integration in the first 50 iterations are presented in Figure 2.5. The decreasing

rates of the misfit in data space from these two different FWI are about the same for

the first 50 iterations, which suggest that the misfit cannot be the unique criteria for a

successful FWI update. The final updates from 200 iterations for these FWI methods

are presented in Figure 2.2(A) and Figure 2.2(B), respectively. It is clear that

conventional implementation fails to recover the bulk properties of the true velocity

model. We also compare the velocity profiles at 4 km in lateral distance, which is
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shown in Figure 2.6. From Figure 2.6, we observe that the FWI in conventional

implementation is already trapped in the local minima, which is demonstrated by

some bad updates in the shallow region ranging from surface to 1000 m depth. The

implementation of the FWI by multi-level temporal integral shows a more stable

behavior, and the update recovers most of the feature of the velocity model. However,

the deeper update is still very challenging due to large velocity difference between

the initial model and the true velocity model. This difference in the updates is

seen around the extremely high velocity salt layer at about 2500 m depth. In

general, the FWI with multi-level temporal integration performs much better than

the conventional FWI. However, a field dataset can be more challenging because of

the low-frequency noise in real-world acquisition, e.g. swell noise. Future studies

involve the application of this method to the field data.

2.4 Conclusion

We have presented a new numerical scheme to accelerate and stabilize the

full-waveform inversion (FWI). This scheme is based on a multi-level temporal

integration of the wavefield. The multi-level integration of the original wavefield

invokes new state variables and satisfies the wave equation through a temporal

integrated source wavefield. The new method is validated using the Marmousi

synthetic model. Using simulated data with a dominant frequency at 10 Hz, the

classic implementation of the FWI can be easily trapped in local minima; in contrast,

the FWI with multi-level temporal integration (MTI) is more robust in recovering

22



the true velocity model.

Figure 2.6: Comparison of velocity profiles extracted from the true velocity, the

initial velocity, the velocity inverted by conventional FWI, and the velocity inverted

by MTI FWI at the center of the velocity model.
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Chapter 3

Least-squares seismic-inversion

with stochastic conjugate gradient

method

With the development of computational power, there has been an increased focus

on data-fitting related seismic-inversion techniques for high-fidelity seismic velocity

models and images, such as full-waveform inversion and least-squares migration.

However, these data-fitting methods can be very expensive in terms of computational

cost. Various techniques to optimize these data-fitting seismic-inversion problems

have been implemented in recent years to improve efficiency. In this chapter, we

propose a stochastic conjugate gradient method for these data-fitting related inverse

problems. We first describe the basic theory of the stochastic conjugate gradient

method and then give synthetic examples. The numerical experiments illustrate the
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potential of this method for large-size seismic-inversion applications.

3.1 Introduction

The possibility of using a data-fitting technique for seismic-inversion problems

was shown by (Tarantola, 1984) in the 1980s. However, limited by the computational

power, only recently the least-squares data-fitting technique was used in industrial

imaging projects, e.g., full waveform inversion (FWI), to help velocity model building

and imaging for the seismic industry (Vigh and Starr, 2008). In the full-waveform

inversion, wave-equation based seismic simulations were performed for individual

sources, and the differences between simulated shots and observed shots were used

to update the velocity model (Krebs et al., 2009). Therefore, the cost of FWI is

proportional to the number of shots, and can be prohibitively high for industrial-sized

3D seismic surveys. Another important seismic-inversion technique that draws a

lot of attention in recent years is the least-squares migration with the goal to

suppress the migration artifacts and achieve a high-resolution seismic image (Dai

and Schuster, 2013; Nemeth et al., 1999). Similar to that of full-waveform inversion,

the least- squares migration incurs iterative data-fitting through modeling process,

called Born modeling. This modeling can be as huge a computational burden as that

of conventional FWI. Recent developments in acquisition technology can provide

the exploration industry with high-density and rich-azimuth dataset, which can

potentially generate high quality seismic image and velocity model. For example,

recent circular-type acquisition can generate datasets with shot density that is several
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times greater than that of a typical WAZ (wide azimuth) design, resulting in a

much higher fold and improved signal-to-noise ratio for subsalt imaging (Huang

et al., 2013). Even under current computational power, the size of these datasets

makes the data-fitting based inversion computationally formidable. Thus, numerical

optimization is highly desired for industrial applications.

In general, current optimizations for least-squares seismic inversion problems can

be categorized into several different groups: super-grouping, source encoding and

stochastic optimization. Super-grouping is more of a standard practice in industrial

seismic imaging projects (Huang et al., 2013), where recorded shots are moved

spatially to be combined into a giant super-shot. Special treatment to compensate

the spatial change has to be performed, and called a partial move-out. This method

has limited accuracy and can bring artifacts by moving field records to a designated

position. The second major optimization scheme is the source-encoding technique.

Instead of moving shots spatially to join several shots together, the source-encoding

scheme is to simulate several shots simultaneously with an assigned random time

delay for different shots. This reduces the computational cost for forward simulation

(Godwin and Sava, 2010; Krebs et al., 2009). Source encoding schemes can be

efficient in most 2D cases. However, source-encoding can have several issues in

real-world application, including, an increased number of random shots require to

propagate in a larger velocity grid. Also, source-encoding can generate cross-talk

artifacts between different shots, which offsets the huge advantage over conventional

non-source-encoding methods.

Stochastic optimization is a popular algorithm for many application in machine
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learning (Schraudolgh and Greapel, 2003), where stochastic sampling techniques are

used to reduce computational cost. Recent development in stochastic optimization

had received a lot of attention in seismic-inversion problems. (Van Leeuwan et al.,

2011) made the application of stochastic optimization application in FWI, and they

achieved comparable results to that of the conventional method using only a fraction

of computational cost of the conventional method. Rather than combining different

shots into one giant super-shot spatially or temporally, the stochastic sampling

technique uses different small batches of original data in subsequent iterations to

reduce the computational cost. However, due to the stochastic nature of the random

sampling over iterations, it is hard to find the conjugate direction for the consecutive

iterations, thus a steepest gradient method is actually practiced.

Recent numerical study in function simulation (Jiang and Wilford, 2013)

showed the advantage of the stochastic conjugate gradient method (SCG), which

could increase the efficiency of the seismic-inversion problems. In this study, we

prescribe the stochastic conjugate gradient method for the general least-squares

data-fitting seismic-inversion problems. The stochastic conjugate gradient method

could potentially increase the convergence rate in comparison to stochastic gradient

method. Detailed description of the stochastic conjugate gradient algorithm for

least-squares inversion is first given, and numerical results based on a least-squares

Kirchhoff migration are presented to prove this methodology. It is conclusive that,

by using stochastic conjugate gradient method, the inversion process can reach a

faster convergence rate than conventional stochastic sampling methods.
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3.2 Theory

3.2.1 Solving of least-squares seismic-inversion problems

The general seismic-inversion problem can be mathematically explained by

finding a model vector from following equation

d = Lm (3.1)

where d is the observed data vector, L is the forward modeling operator describing a

physical process, which is in principle non-linear for most geophysical problems, such

as, wave equation modeling or Kirchhoff operator, and m is the model vector we want

to invert. Because of the complexity of the forward modeling operator L, a linear

modeling operator is practiced in this study. In general, the solution of Equation 3.1

cannot be achieved directly; least-squares techniques are invoked to solve Equation

3.1. The objective function for inversion of model m in a least-squares manner is

written by

J(m) = ‖Lm− d‖ (3.2)

where J(m) is called the objective function or the misfit and ‖.‖ denotes the L2

norm. However, because most seismic-inversion problems are ill-posed, different

regularization methods have to be used to stabilize the results by least-squares

inversion. The most commonly used regularization scheme is the L2 norm Tikhonov

regularization, and the regularized objective function can be written as

J(m) = ‖Lm− d‖+ ε‖Dm‖ (3.3)
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where ‖Lm − d‖ is the misfit between the modeled and observed data, is the

regularization term, and D denotes the regularization operator, e.g., smoothing

operator or unity matrix. There are many different regularization methods other than

the Tikhonov regularization method, such as the LASSO method to promote model

sparsity (Tibshirani, 1996), which are out the scope of this work. The regularization

improves the conditioning of the inverse problem, thus enabling a direct numerical

solution, and can be written as shown by (Tarantola, 1984),

m =
(
LTL + εDTD

)−1
LTd (3.4)

where LT and DT are the adjoint operators to the forward and regularization operator

respectively. However, because of the large size of the Hessian matrix LTL for most

geophysical problems, it is impractical to invert the Hessian matrix directly. Instead,

the model is often solved iteratively through numerical methods. Iterative methods

have computational advantages in large-scale geophysical problems when forward and

adjoint operators are represented by a sparse matrix and can be computed efficiently

(Saad, 2014). One of the simplest numerical methods to solve the least-squares

problem is the steepest gradient method. To find the model vector m that minimizes

the objective function prescribed in Equation 3.1, one takes steps proportional to the

negative of the gradient or the approximate gradient of J(m). The update of the

model vector for the kth iteration can be written as

mk+1 = mk − αgk (3.5)

where gk denotes the gradient of objective function J(m) and is given by

gk = LT (Lmk − d) + εDTDmk (3.6)
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Apparently, the magnitude of the update is related to the value α which can be

achieved by standard quadratic line search or analytic solutions to reduce the value

of the objective function.

The conjugate gradient method is another powerful method to find the solution

to Equation 3.3. The fundamental idea of conjugate gradient method is to update

the model in a conjugate direction of the current gradient, which can increase the

convergence rate in comparison to the steepest descendent method (Schraudolph and

Graepel, 2003). After the first iteration in the steepest descendent direction ∇J(m),

the following steps constitute one iteration moving along a subsequent conjugate

direction sk. The update on the model vector can be described as

mk+1 = mk − αsk (3.7)

where g0 = s0 for the first iteration, and subsequent conjugate gradient direction

can be written as

sk = gk + βksk−1 (3.8)

where different versions of βk are available, such as the Fletcher-Reeves (FR) formula

(Fletcher and Reeves, 1964)

βk =
gT
k gk

gT
k−1gk−1

(3.9)

To solve seismic-inversion by minimizing the objective function, which is denoted

as Equation 3.2, multiple iterations of modeling are involved. A series of least-squares

seismic-inversion studies using conjugate gradient methods have been performed with
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success (Dai and Schuster, 2013; Nemeth et al., 1999). The computational cost of

least-squares seismic-inversion problems is proportional to the sample space, and

one iteration of the gradient based model update usually invokes a set of forward

modeling and its adjoint operation. For example, one model update with a standard

steepest gradient method, described by Equation 3.5, requires the calculation of

gradient, described by Equation 3.6, and two more forward modeling processes are

needed to find the optimal step-length through a quadratic line search.

3.2.2 Stochastic conjugate gradient method

Stochastic method is invoked to reduce the computational cost for large

geophysical inversion problems. Stochastic optimization for least-squares inversion

is used to approximate the objective function in a stochastic sense, where the

expectation of the objective function is unchanged in a statistical sense. This can be

described as

Js(m) =
1

Ns

(Lm− d)TWTW(Lm− d) (3.10)

where W denotes the random sampling function, normally in the norm distribution

format with a zero mean. With the statistical expectation of WTW being Ns,

Equation 3.10 can be reduced back to the normal objective function described by

Equation 3.2. Apparently, the stochasticity of Equation 3.10 is decreased with the

increase of sampling size.

Current stochastic sampling methods for least-squares seismic-inversion propose

changing of the sampling subset during each iteration (Van Leeuwan et al., 2011).
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In each iteration, a new subset data sample is used to calculate the optimization

direction, which is the gradient of the objective function. When fully non-stochastic,

where the sampling batch is the whole data, these stochastic sampling methods are

reduced to the conventional steepest gradient method. Different random-sampling

functions can be used to estimate the objective function in a real-world application,

e.g., limiting the sampled data over a prescribed area.

For conventional non-stochastic least-squares inversion problem, the conjugate

gradient method has a higher convergence rate than the steepest gradient method.

However, solving the stochastic least-squares problem through Equation 3.10 is more

difficult than the conventional one (Van Leeuwan et al., 2011), which is described

by Equation 3.2. In the case of stochastic sampling, the global minimum is probed

by limited stochastic input, giving rise to the noisy estimation of the true Hessian

LTL and the gradient LT (Lmk − d) + εDTDm. One of the other difficulties that

stochastic sampling may encounter is that conventional conjugate gradient method

can fail during iterations because changing of the sampling subset with no overlap

breaks the conjugacy of the searching direction over many iterations (Jiang and

Wilford, 2013).

To mitigate the breakdown of conjugacy of the searching direction for the

stochastic sampling technique, we use a similar approach from that of approximation

of function (Jiang and Wilford, 2013) for least-squares seismic-inversion problems.

Assuming the sampled subset can still be representative of the large eigenvalues of the

original system, we can perform a predefined number of iterations of the conjugate

gradient update on each sampled dataset. For each random sampled subset with a
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sampling function, W, the gradient is calculated by

gw,k = LTWTW(Lmk − d) (3.11)

where the subscript w denotes a subset of the data space, subscript k is the iteration

number within the same batch sample w, and m is the current updated model. The

subsequent conjugate gradient direction can be calculated by

sw,k = gw,k + βw,ksw,k−1 (3.12)

where sw,0 = gw,0 for the start of inversion with a current velocity model and current

sampled data. The update of the model has a similar format to that of a conventional

conjugate gradient, except that the conjugate gradient is calculated stochastically

only within the same subset

mk+1 = mk − αw,ksw,k (3.13)

where αw,k can be calculated through a line search over the sampled subset or analytic

solutions for linear forward operator.

The critical difference between the stochastic conjugate gradient and the standard

stochastic steepest gradient method is that, stochastic conjugate gradient method

performs just a few iterations of conjugate gradient within each stochastically

sampled dataset to speed up the convergence. However, in order to keep the

stochasticity of the inversion problem defined by Equation 3.10, the inversion must

be moved towards a different subset after several iterations to prevent the model

from being trapped within a local minimum.
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3.3 Synthetic examples

3.3.1 Synthetic setup

(A) (B)
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Figure 3.1: Synthetic modeling. (A) Jon’s Reflectivity model for generating the

synthetic data (B) synthetic time data generated by the reflective model.

To demonstrate the benefits of the stochastic conjugate gradient method, we

use a least-squares post-stack Kirchhoff time migration to show this numerical

optimization. In order to simplify the idea and separate the benefit of the stochastic

conjugate gradient method from other inversion uncertainties, the setup of the test is

quite idealized. The earth reflectivity model from (Claerbout, 1985) is selected and is
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shown in Figure 3.1(A). A constant background velocity of 2000 m/s is used for both

the forward and inversion process. The forward modeling and the migration operator

are set to be adjoint for this study. The forward operator is the direct Kirchhoff

mapping of the reflectivity and adjoint operator is the Kirchhoff time migration.

The modeled time data is shown in Figure 3.1(B).

Least-squares Kirchhoff time migration was first carried out by using all the traces

with 100 iterations of the regular conjugate gradient as a basis, where the whole

dataset was used for each iteration for the model update. Conventional Kirchhoff

time migration was also carried out by using the same parameters. Comparison of

the results from regular migration and least-squares migration is shown in Figure 3.2,

where the advantage of LSM is clearly demonstrated. The least-squares migration

results show a much higher resolution, more balanced amplitude and less migration

artifact (Dai and Schuster, 2013; Nemeth et al., 1999). The blurring effect from

conventional migration is removed through the least-squares process. And LSM can

generate a reflectivity map that is close to the true reflectivity, as shown in Figure

3.1(A). The image quality in the deeper boundary of the model is degraded because

of the limited migration aperture.
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Figure 3.2: Image comparison from LSM and regular migration. (A) Regular

migration using the entire traces (B) Least-squares migration using entire traces

(C) Regular migration using 50% of the traces (D) Least-squares migration using

50% of the traces.
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One of the biggest advantages of the least-squares migration in comparison to

conventional migration is the ability to handle incomplete reflection data (Nemeth

et al., 1999). To demonstrate the ability of least-squares migration to handle

incomplete reflection data, we randomly remove 50% traces from original data, and

migrate the data with conventional and the least-squares operator. Figure 3.3 shows

the subsets with randomly selected 50% and 20% of the original datasets. The

migration results with 50% of original trace using conventional and least-squares

migration are demonstrated in Figure 3.2(C) and Figure 3.2(D). From Figure 3.2(C)

and 3.2(D) it is conclusive that, conventional migration using incomplete dataset will

generate strong migration artifacts, such as the migration swing ; while least-squares

migration can efficiently suppress the migration artifacts due to the incompleteness

of the input data.

3.3.2 Stochastic conjugate gradient method

To validate the stochastic update scheme, we first apply conventional stochastic

approach, which uses a different subset of data over consecutive iterations. Figure

3.4 shows the results from stochastic gradient method, using different sizes of batch

sample, which ranges from 5% to 100% of the entire traces. Apparently, the stochastic

gradient (SG) method with a 100% trace percentage is identical to that of the

conventional gradient method without any computational advantage. From Figure

3.4, it is obvious that, the difference between images from varying the percentage

of batch samples is marginal, especially in the shallow section. The trace-by-trace

normalized misfit, as a function of the number of iterations, is shown in Figure 3.6.
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Figure 3.3: Stochastic sampling of data. (A) 50 % of the original data using random
sampling (B) 20 % of the original data using random sampling.

It can be observed that the convergence rates of stochastic gradient method with

different batch sizes are about the same. The deep reflectors are slightly better

imaged when migrated with all the traces, which is observed in Figure 3.4.
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Figure 3.4: Migration image comparison. (A) LSM using the entire traces (B) SCG

using 20% of the traces for each iteration (C) SCG using 10% of the traces for each

iteration (D) SCG using 5% of the traces for each iteration.
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Figure 3.5: Migration image comparison. (A) LSM with stochastic steepest gradient

(B) LSM with stochastic conjugate gradient.

To compare the stochastic steepest decent method and stochastic conjugate

gradient method, 100 iterations of image updates were performed. The sampled

batch size is fixed for both the stochastic conjugate gradient and stochastic gradient

method, which is 5% for this test. For stochastic gradient method, different sample

traces are selected for consecutive iterations, and standard line search was used in

combination with the stochastic gradient to update the reflectivity model. In order

to make the results comparable with that of the stochastic gradient, 5 iterations of

conjugate updates were performed for each sampled batch, and a total of 20 total

sampling batches were used for each update, which makes the computational cost
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the same as that of stochastic gradient. However, because of the random nature

of our sampling scheme, using 20 random batches may not cover the every trace in

the data . It can be concluded that using data batches with overlapping traces will

not break down the convergence of the stochastic method as long as the sampling

function is completely random.
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Figure 3.6: Convergence comparison for the least-squares migration with different

batch sample sizes.

The results of the stochastic gradient and stochastic conjugate gradient method

are shown in Figure 3.5. The difference between the image from SCG and that from

SG are marginal, because in this much idealized testing, both methods can achieve
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good convergence over 100 iterations. It is also clear that stochastic optimization

results are quite comparable to that of conventional least-squares method using

whole-data space, which is shown by Figure 3.4(A). The differences between these

methods are prominent when we present the misfit as a function of iteration number

in a log-scale view as shown in Figure 3.7. In general, the misfit drop from stochastic

optimization is not as fast as that of regular optimization using the entire data space,

because of the stochastic nature of approximating the Hessian and the gradient.

Comparing SCG and SG, it is clear that the stochastic conjugate gradient method

shows a higher convergence rate than that of stochastic gradient method. The

misfit drop for SCG shows a zig-zag pattern, which can be explained by the fact

that, when iteration using the same randomly sampled batch, the conjugacy is well

maintained thus resulting in a more steep misfit drop or a better model update.

The convergence of SG method shows a smoother damping behavior. In particular,

stochastic optimizations demand more iteration to achieve the same level of misfit

as that of regular inversion using the entire dataset. This partially offsets the saving

of simulating smaller dataset required by each iteration. For example, in order

to achieve a 90% percent misfit drop, while the conventional least-squares method

using the entire data space required around 10 iterations, SCG requires around 40

iterations, and the SG method demanded around 80 iterations.
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Figure 3.7: Convergence comparison for least-squares migration with conjugate

gradient method using 100% trace, stochastic gradient, and stochastic conjugate

gradient method.

3.4 Discussion and conclusion

High computational cost has been a big drawback for least-squares

seismic-inversion problems. Stochastic sampling techniques have been used to

optimize these seismic-inversion problems. In most stochastic sampling applications

on seismic imaging and inversion, sample batches are changed over each iteration,
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which generally invokes steepest decent gradient method. The conjugate gradient

method, in its standard form, cannot be carried out when the gradient is calculated

stochastically, because of the loss of the conjugacy from non-overlap samples.

Stochastic conjugate gradient method for function approximation has shown promise

with higher convergence rates than the stochastic steepest gradient method. We

further extend this method to general least-squares seismic inversion problems.

Rather than changing the sampling subset each iteration, the model update can

be performed with a limited number of conjugate gradient updates using the same

sampled subset.

We used a least-squares Kirchhoff time migration to prove this method. The

results show that the stochastic conjugate gradient method has a higher convergence

rate than that of conventional stochastic steepest gradient method. However, for

a real-world dataset, the convergence is subject to the uncertainties in the velocity

model. The modeling and imaging operators are not exact adjoint, which influence

the convergence rate. From the synthetic test, we conclude that it is possible for the

stochastic conjugate gradient method to be applied to large-scale seismic-inversion

problems, which can out-perform the current stochastic gradient method.
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Chapter 4

Least-squares reverse-time

migration with Hessian

preconditioning

Least-squares reverse-time migration (LSRTM) has been shown to be able

to improve image quality over conventional migration method; however, the

computational cost of LSRTM prevents it from large scale industrial application.

Least-squares inversion process normally invokes a Newton-like method to optimize

the objective function, and the full-Hessian is hard to compute for large scale

geophysical problems. In this chapter, we developed a numerical scheme using

approximate Hessian to reduce the computational cost. Compared with the classic

approach, the proposed scheme can generate a more balanced image and make the

LSRTM more efficient.
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4.1 Introduction

Least-squares inversion techniques has been an important part of estimating the

sub-surface velocity, e.g., full-waveform inversion (FWI), and building true amplitude

reflectivity model, e.g., least-squares reverse-time migration (LSRTM). Unlike the

conventional migration, where the reflectivity image is achieved by applying the

adjoint operator to the data (Plessix, 2006), least-squares inversion updates the

model through minimizing the objective function. The objective function is generally

given as the difference between modeled and observed data.

Solving the least-squares problem generally invokes the gradient method. The

gradient formed by cross-correlation suffers from geometrical spreading effects, which

results in poor amplitudes for deep reflectors and a slow convergence rate. The

approximate Hessian in the Gauss-Newton method ignores the nonlinear term in full

Hessian matrix (Pratt et al., 1998), and is too expensive to be calculated directly.

(Shin et al., 2001) proposed to use the pseudo-Hessian matrix as a substitution for the

approximate Hessian in the full-waveform inversion. The diagonal pseudo-Hessian

is limited to balancing the amplitudes due to the source-side spreading and ignores

the receiver-side Greens functions. (Tang, 2009) used a phase-encoding technique to

calculate the Hessian for a targeted area and performed the inversion in the model

space. This method is still expensive. Under the reciprocity theory, the receiver-side

Greens functions can be replaced by the source-side Greens functions under the

assumption that the sources and receivers are collocated (Plessix and Mulder, 2004).

This method forms the double illumination strategy seen in the FWI application.
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In this study, we first briefly outline the basics of RTM and LSRTM. We focus on

an efficient Hessian approximation, which is based on the reciprocity of sources and

receivers. The Hessian preconditioning makes LSRTM more efficient in generating a

high quality image. We also employ a smoothing operator as the preconditioner for

the Hessian matrix, which is similar to that of smoothing-imaging condition proposed

by (Guitton et al., 2006). Synthetic examples of Sigsbee2B velocity model show the

efficiency of the proposed method in generating high quality images.

4.2 Born modeling and reverse-time migration

The theory of LSRTM has been established by a number of authors (Dai and

Schuster, 2013; Plessix, 2006). In this section, we briefly outline the derivation of

the Born modeling operator and reverse-time migration operator. The least-squares

inversion using Born modeling is shown as the linear operator relative to the

reflectivity model.

4.2.1 Born modeling

The wave equation can be very complex if taking into account the elastic effects.

For simplicity, we start with the acoustic wave equation with velocity model m(x)

and a constant density, ρ, to derive the Born modeling operator and reverse-time

migration operators. The wave-equation can be written as

1

m(x)2
∂2p(x, t;m(x))

∂t2
−∇2p(x, t;m) = s(x, t) (4.1)
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where s(x, t) is the source signature and p(x, t;m) is the resulting wavefield. Given

the source at x′ and t′, the Green’s function solution G(x, t;m) can be written as:

1

m(x)2
∂2G(x, t;m(x))

∂t2
−∇2G(x, t;m) = δ(x− x′)δ(t− t′) (4.2)

We can perturb the background model to relate the reflectivity model to seismic

data

m(x) = m0 + ∆m (4.3)

For simplicity, we rewrite the wave equation with Green’s function in the frequency

domain [
ω2

m2
0

+∇2

]
G(xi,xs;m0;ω) = −δ(xi − xs) (4.4)

The solution of wave equation with sourcing term S(xj;ω) can be written as

P0(xi,xj;m0;ω) =
M∑
j=1

G(xi,xj;m0;ω)S(xj;ω) (4.5)

where P0 is the seismic response or background wavefield from M different sources

with source signature S(xj;ω). When we perturb the velocity model with a small

perturbation ∆m, the perturbed wavefield P = P0 + ∆P is a solution of following

Green’s function[
ω2

(m0 + ∆m)2
+∇2

]
(G(xi,xs;m0;ω) + ∆G(xi,xs;m0 + ∆m;ω)) = −δ(xi − xs)

(4.6)

with a small perturbation approximation, by neglecting high order terms, to yield

1

(m0 + ∆m)2
≈ 1

m2
0

(
1− 2∆m

m0

)
(4.7)
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which can be plugged into Equation 4.6, and we can have[
ω2

m2
0

+∇2

]
∆G(xi,xs;m0 + ∆m;ω) = 2ω2 r(x)

m2
0

G(xi,xs;m0;ω) (4.8)

where the reflectivity r(x) is defined as

r(x) =
∆m(x)

m(x)
(4.9)

We can see the perturbed Green’s function ∆G is the result of the secondary source

of 2ω2 r(x)

m2
0
G0(xi,xs;m0;ω). With the Green’s function solution for the secondary

source, we can have the perturbed data as:

∆P (xi,xs;ω) =
M∑
j=1

S(ω)ω2 2

m2
0

G(xi,xj;m0;ω)G(xj,xs;m0;ω)r(xj) (4.10)

Equation 4.10 is the Born modeling expressed in the frequency domain, where the

Green’s function G(xi,xj;m0;ω) and G(xj,xs;m0;ω) denote the impluse response

from xi to xj, and xj to xs respectively. Apparently, Equation 4.10 represents a single

scattering process. The interpretation of Equation 4.10 can be straightforward, which

is an illustration of Huygens construction. The observed wavefield at xi is generated

by superposition of wave field scattered from scatters located at xj, where these

scatters have sourcing functions that are proportional to the product of incident

source wavefield S(ω)G(xj,xs;m0;ω) and the reflectivity r(xj) at point xj.

4.2.2 Reverse-time migration (RTM) operator

With the development of computational power, reverse-time migration (RTM)

have now been widely adopted as the standard algorithm for imaging complex
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subsurface structures. Mathematically, the RTM operator is the adjoint of the Born

modeling operator defined as Equation 4.10 and can be further simplified as

∆P (xi,xs;ω) = Lr(xj) (4.11)

and L is

L =
M∑
j=1

S(ω)ω2 2

m2
0

G(xi,xj;m0;ω)G(xj,xs;m0;ω) (4.12)

where the adjoint of L can be achieved by the making the complex conjugate of L,

which lead to the adjoint operation on data ∆P :

r(xj) =
M∑
j=1

S(ω)ω2 2

m2
0

G∗(xi,xj;m0;ω)G∗(xj,xs;m0;ω)∆P (xi,xs;ω) (4.13)

Equation 4.13 is the definition of RTM in the frequency domain, where we have

two complex conjugates on the Green’s function G, which can be interpreted as

the correlation imaging condition in the time domain with reversed time input

on the receiver side. In real world practice, the term m2
0 is generally neglected.

Practically, Equation 4.13 is generally implemented in the time domain. When

transfer from frequency to time domain, multiplication of two function A(ω)B(ω)∗

becomes cross-correlation of their inverse Fourier transformed function a(t)
⊗

b(t).

The source is forward propagated in time, which is mathematically equivalent

to the term S(ω)ω2 2
m2

0
G(xi,xj;m0;ω). The term G∗(xj,xs;m0;ω)∆P (xi,xs;ω) is

implemented as propagating the reverse-timed data from the receiver side.
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4.3 Least-squares reverse-time migration with

Hessian preconditioning

In the previous section, the Born modeling operator and its adjoint operator,

the RTM operator, are given explicitly. The Born modeling process with reflectivity

model m can be further simplified in operator form, and is given by

d = Lm (4.14)

where L is the Born modeling operator. Equation 4.14 can be solved through

least-squares inversion discussed in Chapter 3. In practice, the performance of

least-squares inversion can be improved through different methods. Aside from the

numerical optimization, e.g., stochastic optimization, preconditioning of the gradient

can also improve the performance of the least-squares inversion. In this section,

we briefly outline the background of Hessian preconditioning on the least-squares

reverse-time migration.

4.3.1 The update gradient for LSRTM

The iterative update of reflectivity image by least-squares migration can be

written as

mi+1 = mi − αgi (4.15)

where i denotes the iteration number, mi is current reflectivity image , gi is the

gradient, and α is the step length. The gradient gi can be calculated through

51



Newton’s method, Gauss-Newton’s methods, and other Quasi-Newton’s methods.

In Newton’s method, the gradient g is calculated by ignoring higher-order (> 2)

terms in the Taylor expansion of the objective function

J(m + δm) = J(m) + δmTg +
1

2
δmTLTLδm + ... (4.16)

Ignoring the higher order term, we can see the update can be explicitly written

as

δm = −H−1g (4.17)

where H−1 =
(
LTL

)−1
is the inverse Hessian matrix and can be written as

Hjk =
∂2J

∂mj∂mk

(4.18)

where j and k denote the different grid point in the model. If the direct Hessian can

be achieved, the update step length α is unity, and the inversion does not incur a line

search. However, for models with large numbers of parameters, the computational

cost to compute the Hessian can be large, and prevents the direct Newton’s method

to be used in real-world applications. For example, in order to invert a 2D model

with 1000 × 1000 grids points, a total of 1012 forward modeling steps have to be

calculated. However, it is possible to find the approximate Hessian to precondition

the gradient g, and the line search method to find the step length α.

4.3.2 Approximate Hessian

From Equation 4.16 and Equation 4.17, it is clear that the Hessian matrix can

be used to precondition the gradient g. With a proper Hessian preconditioning,

52



the model perturbation δm can be very close to the true perturbation. The exact

expression of the Hessian in the linear inversion case can be written in the Greens

function format (Plessix and Mulder, 2004; Pratt et al., 1998)

H(xj,xk) =
∑
ω

ω4S2
ω

∑
s

G∗(s,xj, ω)G(s,xk, ω)
∑
r

G∗(r,xj, ω)G(r,xk, ω) (4.19)

where f 2
ω is the source forcing signature, s and r correspond to the source and

receiver locations. Physically, the complete Hessian denotes the matrix of the second

derivatives of the error functional with respect to the model parameters (Plessix and

Mulder, 2004). Due to the high computational cost in calculation of the Hessian

matrix, the off-diagonal terms are generally ignored. For example, we assume

G∗(s,xj, ω)G(s,xk, ω) = 0, when j 6= k, and we only keep the diagonal terms in

the Hessian matrix, which is given by

H(xj,xj) =
∑
ω

ω4S2
ω

∑
s

G∗(s,xj, ω)G(s,xj, ω)
∑
r

G∗(r,xj, ω)G(r,xj, ω) (4.20)

In general, the source side component of the Hessian can be readily computed, which

can be stored during the wave propagation process, and the receiver side Hessian

component has to be computed separately. This is computationally unpractical for

large numbers of receivers. For infinite receiver coverage, the receiver part of the

Hessian can be regarded as a constant. In marine acquisition, most geometries can

be regularized into a fixed spread, where receivers are symmetric around the source

location. In general, the assumption that source and receiver data are collocated

is acceptable to some extent, especially for tow-streamer acquisition. Under the

reciprocity assumption, the source and receiver side Hessian have the relation

G∗(s,xj, ω)G(s,xj, ω) = G∗(r,xj, ω)G(r,xj, ω) (4.21)
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With this approximation, the gradient can be readily conditioned by the approximate

Hessian. Also, we can notice that preconditioning the Hessian using the reciprocity

is equivalent to applying a double illumination compensation to the gradient. To

compensate for the fast change of the diagonal component of Hessian due to large

velocity variations, we further impose a smoothing operator on the Hessian to

improve the stability. This is given by

H(xj,xk)smooth =< H(xj,xk) > (4.22)

where < . > stands for smoothing in the image space in the x, y and z directions.

Equation 4.22 is very similar to the smoothing imaging condition proposed by

(Guitton et al., 2006), where the smoothing is proved to be providing more balanced

amplitude map. The smoothing of the Hessian is to achieve a more balanced

distribution of Hessian when there is a strong scattering component in the velocity

model, such as, a rugose salt boundary.
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4.4 Synthetic examples

(A)

(B)

Figure 4.1: Velocity models for modeling and migration. (A) Sigsbee2B stratigraphic

velocity used for forward modeling (B) Migration velocity for migration with the

forward modeled data.
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The synthetic simulation is performed using the Sigsbee2B model (Paffenholz

et al., 2002). The seismic data is first forward modeled using a fine stratigraphic

velocity model as shown in Figure 4.1(A). The migration velocity is shown in Figure

4.1(B), which is smoothed version of the original stratigraphic velocity. Source and

receivers are put in the surface level to avoid the impact of ghost reflections. Acoustic

forward modeling is used to generate the synthetic shots with an absorbing boundary

to eliminate the surface related multiples. A total of 680 seismic shots were generated

with maximum offset of 8000 m , similar to that seen for real-world acquisition with

a receiver spacing of 12.5 m.

We first investigated the preconditioning scheme on the LSRTM gradient by

comparing the gradients with and without Hessian preconditioning. This is shown by

a two-shot migration covering both the sediment and subsalt region of Sigsbee2B. The

low frequency backscatter is first removed though a Laplacian filter (Zhang and Sun,

2009). The comparison of the original Hessian and the smoothed one is presented in

Figure 4.2 (A) and (B). The smoothing retains the main Hessian contribution while

attenuates the strong variations in the illumination path. This stripy pattern comes

from the destructive interference of the wave traveling over the rugose salt boundary.

The gradients of the LSRTM with and without Hessian preconditioning are shown

in Figure 4.3. It is clear that with Hessian preconditioning, the resulting gradient

amplitudes are more balanced, especially in the deeper sessions of the image. The

deeper reflectors are better illuminated due to the Hessian preconditioning.
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(A)

(B)

Figure 4.2: Hessian comparison between with and without smoothing operator. (A)

Hessian without smoothing (B) Hessian with smoothing.
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Figure 4.3: Comparison of gradients generated by different methods. (A) RAW

RTM gradient (B) Laplacian-filtered RTM gradient (C) Hessian-preconditioned

Laplacian-filtered RTM gradient. 58



The final migrated images using RTM, LSRTM and Hessian preconditioned

LSRTM are shown in Figure 4.4. The LSRTM result of the sedimentary structure

on the left is more sharper than the RTM results. It is prominent that the salt flank

is more focused by the least-squares inversion process, as shown in the comparison

of RTM and LSRTM image on the subsalt area. The sedimentary layers beneath the

salt are better imaged in LSRTM with the Hessian preconditioning, when compared

with the regular LSRTM. We also compare the convergence rates with and without

Hessian preconditioning using a conjugate gradient method, where the normalized

misfit over 15 iterations is shown in Figure 4.5. From the convergence comparison

in Figure 4.5, it can be conclusive that better convergence is achieved through the

simplified efficient Hessian preconditioning.
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Figure 4.4: Comparison of images generated by different methods. (A) RTM image

(B) LSRTM image without Hessian preconditioning (C) LSRTM image with Hessian

preconditioning. 60
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4.5 Conclusion

LSRTM is an attractive method for high resolution imaging; however, the

computational cost is extraordinary high due to multiple iterations of the migration

and forward modeling process. The Hessian matrix in least-squares migration can

be used as a preconditioning operator to compensate geometrical spreading effects

and improve the performance of the least-squares inversion. The off-diagonal part of

the Hessian is ignored and the receiver side Hessian is approximated by the source

side Hessian, assuming reciprocity. In addition to approximating the receiver side

Hessian, we further smoothed the Hessian to reduce the destructive contribution

from rugose salt boundary to improve the amplitude balancing. In our synthetic test

over the Sigsbee2B model, our proposed method can generate more balanced images

than the RTM and traditional LSRTM.
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Chapter 5

Locally normalized least-squares

reverse-time migration: Field

examples

Conventional least-squares migration uses acoustic modeling for a reflectivity

image that best matches the amplitude of the observed data. However, real-world

datasets are more challenging to match the amplitude than in the synthetic case.

This can be attributed to several reasons, first, most migration algorithms are based

on an acoustic approximation, which cannot account for the elastic effects in real

data, such as amplitude attenuation. Second, amplitude information is more easily

distorted by preprocessing and variation of actural seismic sources. In practice, we

are more interested in the relative amplitude and location of the reflectors from a

seismic image. To relax the requirement to match the signal amplitude, we proposed
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a localized amplitude correction for the objective function. Mathematically, the

amplitude normalization scheme is equivalent to a time-domain phase inversion,

where the inversion focuses on matching the phase of the data rather than the

amplitude.

5.1 Introduction

Least-squares migration (LSM) has been shown to produce images with balanced

amplitudes, higher resolution, and much less migration artifacts than conventional

migration (Dai and Schuster, 2013; Nemeth et al., 1999; Zhang et al., 2013). The

seismic image quality can be improved by matching the amplitude and phase of

the observed data and modeled data under Born approximation, where the wave is

scattered only once.

The standard implementation of LSM generally uses the L2 norm of the direct

difference between the observed and modeled data as the objective function. Image

update is done by calculating the gradient of the L2 norm objective function,

and the optimal image is achieved by minimizing the L2 norm of the difference.

The implementation emphasizes the matching in both amplitude and phase of the

observed and modeled data. However, real-world seismic data is more complicated

than the synthetic data, it is challenging to match the amplitude directly (Zhang

et al., 2013).

There are several reasons that prevent a successful matching of the seismic

amplitude between observed and modeled data. First, most current seismic models
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are based on an acoustic approximation, while the real earth is visco-elastic.

Generally, the estimation of an attenuation parameter Q is difficult (Zhang et al.,

2012), which is computationally demanding in general. Also, reflection seismic

data is determined by both the velocity and the density. However, the density is

often assumed to be constant in most applications. Small scale density variations

contributes to the seismic amplitude variation in most cases, and further increase

the difficulty in matching the amplitude.

The amplitude information can be further distorted by pre-processing and

variation of seismic source signatures. Real-world seismic data has undergone

numerous pre-processing for final imaging, such as using different shaping filters

and denoise operations. Variation of seismic source signatures can be due to cable

sensitivity or natural variation of source guns, which is hard to predict and thus

makes matching the amplitude more difficult.

In this study, the objective function for least-squares reverse-time migration is

formulated as the difference between observed data and locally normalized modeled

data. The new adjoint source is calculated according to the normalization scheme.

Such an implementation is partially equivalent to the time-domain phase inversion

method where the phase spectra of the observed data are matched with that of the

modeled data (Luo and Schuster, 1991; Routh et al., 2011; Zhang et al., 2013). This

method has more freedom to be implemented in different scales, such as different time

window or different offset windows. Field test was done in this study to demonstrate

the effectiveness of this method.
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5.2 Theory

The detailed derivation of least-squares reverse-time migration has been discussed

in Chapter 4, where the two-way wave equation is used as the modeling operator.

The conventional objective for least-squares reverse-time migration for a given source

s, and receiver g can be written as

J(m) =
ns∑
s=1

ng∑
g=1

‖dmod,g,s − dobs,g,s‖ (5.1)

where ns is the total source number, ng is the total receiver number, dmod,g,s

and dobs,g,s are the data vector for modeled and observed data, respectively. To

compensate the large amplitude difference, a result of improper amplitude simulation

in the modeling process, the locally normalized objective function for least-squares

reverse-time migration can be written as

J(m) =
ns∑
s=1

ng∑
g=1

1

2

∥∥∥∥ ‖dobs,g,s‖
‖dmod,g,s‖

dmod,g,s − dobs,g,s

∥∥∥∥ (5.2)

The normalization is done on each trace. This can be further extended to window by

window normalization. Apparently, the physical meaning of the normalization is to

normalize the response for each source s and receiver g pair. By making derivative

in relative to model operator m and the gradient can be written as

∂J(m)

∂m
=
∂dT

mod,g,s

∂m

‖dobs,g,s‖
‖dmod,g,s‖

[
dT
mod,g,sdobs,g,s

‖dmod,g,s‖2
dmod,g,s − dobs,g,s

]
(5.3)

The adjoint source dadj (Plessix, 2006), which is to propagate in the receiver side,

can be written as

dadj =
‖dobs,g,s‖
‖dmod,g,s‖

[
dT
mod,g,sdobs,g,s

‖dmod,g,s‖2
dmod,g,s − dobs,g,s

]
(5.4)
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The detailed derivation of the gradient with locally normalized objective function

is written at Appendix A. We can see that the gradient or update is calculated by

following the steps. First, the cross-product of the observed data and the modeled

data are calculated. It is then normalized by the norm of the modeled data. The

resulting scalar is applied to the modeled data to scale the synthetic data. For

example, if dobs equals dmod, normalization will result in a zero value for the objective

function. Similarly, if dobs has the same amplitude distribution over the offset and

time axis as dmod, only a global amplitude difference, Equation 5.3, will still result

in a zero value. This suggests we already have a good reflectivity model. The

normalization prescribed by Equation 5.3 is a general form for the data point to point

normalization, and can be easily transformed into a shot by shot normalization, or

a window by window normalization.

To compare the gradient of classic L2 norm objective function with the proposed

locally normalized objective function, the gradient of classic L2 norm objective

function is given as

∂J(m)

∂m
=
∂dT

mod,g,s

∂m
(dmod,g,s − dobs,g,s) (5.5)

where the adjoint source is defined as

dadj = dmod,g,s − dobs,g,s (5.6)

The adjoint source of the regular direct difference denoted by Equation 5.6, is similar

to that of normalized objective function, which is given by Equation 5.4. The

difference between a classic objective function and the normalized objective function

is that the modeled data is scaled by the ratio of a cross-product between the modeled
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and observed to the norm of observed data. In summary, the proposed normalized

objective function is a more general definition and the classic objective function can

be regarded as a special case of the normalized objective function.

Numerical implementation of the gradient g is done by taking the zero-lag

cross-correlation of the forward propagated source wave-field and back-propagated

adjoint source. In real-world seismic data, the true modeling operator is generally

non-linear. The forward modeling and migration operators are not exactly adjoint.

It is difficult to achieve adjoint by using a RTM operator, which may lead to an

inaccurate step length by using the conjugate gradient method. For the field data

application, the more practical quadratic line search was implemented. The iterative

update can be written by

mk+1 = mk − αgk (5.7)

where α is the optimal step length derived from a line search along the gradient

direction using a parabolic fit (Nash, 1979), which is similar to the line-search used

in full-waveform inversion, e.g., the method used by (Vigh and Starr, 2008).
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5.3 Field examples

Figure 5.1: Field data location map. The field data are acquired in the Porcupine

basin located west of Ireland.

To validate our approach, we applied our implementation on a dataset from

Porcupine basin. The location of the dataset is shown in Figure 5.1. The Porcupine

basin has proved to be productive since the 1970s. The field data is composed of two

passes of sparse sources at a distance of 150 m and sparse crossline about 200 m.

The survey has a lateral distance of 45 km and width about 4 km, which has about
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3000 shots in total. The data has been processed only with preliminary denoise.

Due to the high computational cost by LSRTM, a total of 10 iterations of

updates were performed. Figure 5.2 shows the inline images from the RTM and

the implemented LSRTM with both normalization and Hessian preconditioning,

where we can see the amplitude is more balanced inside the yellow circle. The

reflection event in the sediment layer show enhanced details seen in Figure 5.2,

suggesting a higher spatial resolution. Figure 5.3 shows the depth slices at 2500

m, and demonstrates the ability of LSRTM to generate better geological structures

in comparison to conventional RTM. The depth slice clearly demonstrates the benefit

of LSRTM, with a better fault delinearization and better horizontal structure seen

at the center of the basin.

In order to have a more quantitative view of the amplitude variations of the

seismic images, we extract the amplitude information by using a moving average

absolute value for different image windows, which can be written as

I(xi) =
n∑

j=−k,k

I(xi+j) (5.8)

I(xi) is the amplitude for specific imaging point and k is the size of the moving

window. Practically, the amplitude information can be extracted by the amplitude

gain control (AGC). The amplitude distributions extracted from RTM and LSRTM

migration are shown in Figure 5.4. The yellow circle on the top image of Figure 5.4

clearly shows the amplitude variation stripes due to acquisition gap of shots, which

is a result of the sparse sources; while in the amplitude map for LSRTM, which is

the bottom of Figure 5.4, the acquisition footprint is partially removed due to the
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inversion process in LSRTM, which is prominent inside the yellow circle. Under

the assumption that earth reflectivity is white, the amplitude of migrated image

should be well balanced with much less horizontal variations due to acquisition or

illumination. The amplitude comparison by Figure 5.4 justifies that the LSRTM can

handle, at least partially, the acquisition footprint.
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(A)

(B)

Figure 5.2: Image comparison between the RTM image and the LSRTM image in the

inline direction. (A) RTM image of the field data in the inline direction (B) LSRTM

image of the field data in the inline direction.
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(A)

(B)

Figure 5.3: Image comparison between the RTM image and the LSRTM image in

the depth slice. (A) Depth slice of the RTM image at 2500 m depth (B) Depth slice

of the LSRTM image at 2500 m depth.
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(A)

(B)

Figure 5.4: Amplitude comparison between the RTM image and the LSRTM image.

(A) Amplitude map of the RTM image in the inline direction (B) Amplitude map of

the LSRTM image in the inline direction.
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5.4 Conclusion

Least-squares reverse-time migration with a locally-normalized objective function

is presented in this study. The local-normalization emphasizes matching the phases

of the observed data and modeled data. The normalization is to take into account

the real-world amplitude variations due to elastic effects, as well as source signal

variations. By comparing the classic misfit objective function, we concluded that

the classic misfit objective is a special case prescribed by the normalized objective

function. The proposed normalized objective function has more freedom to be

implemented in different scales, such as time window based normalization for

practical applications.

We apply our implemented LSRTM to a field dataset, where both Hessian

preconditioning and locally normalized objective functions are applied. The resulted

image from LSRTM is much better than the conventional RTM in terms of amplitude

balancing and resolution. The observed strong acquisition footprints in RTM image,

due to sparse sources, are partially removed by LSRTM.
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Chapter 6

Conclusion

With the development of computational power, inversion-based imaging and

model-building algorithms have received a lot of attention in recent years. These

inversion-based techniques normally involve modeling and back projection processes,

which will generate stability and efficiency issues. The focus of this study is to

optimize the performance of least-square inversions, e.g. FWI and LSM, as well as

making them applicable for real-world industrial-sized datasets.

The current established workflow for FWI in industrial application uses iterative

minimization of the data residuals. The inversion generally progresses from low to

high frequencies in order to mitigate the effects of nonlinearity and relies on the use of

diving wave energy to achieve a low frequency model. In absence of an accurate initial

model, FWI will fail in most real-world cases. Under classic FWI implementation,

the velocity model is not decomposed into background and reflectivity component.

I propose a multi-level temporal integration (MTI) for better performance of FWI
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that shows better results in the synthetic case . The MTI uses temporal integration

to maximize the low-frequency content of the data difference, where we derive

the relation between temporal integrated source wavefield and modeled wavefield.

However, the MTI FWI shares the same migration kernel as that of RTM and can

still be problematic when the velocity errors are large. Future development may

include combining the MTI FWI with the reflection FWI to a better extraction

of the background velocity. In real world seismic data, the low frequency data is

contaminated by different noises, which adds additional difficulties in applying this

method.

Migration is a complimentary component of velocity model building and in

general provides a more direct view of the subsurface structure. Mathematically, the

migration operator is an adjoint operator, which we use to approximate the inverse

operator. However, the quality of migration can be limited due to the migration

spreading effects, which blurs the image through point spread function. In order to

achieve high quality image, least-squares inversion techniques are used to to achieve

the exact inverse operator.

Although the least-squares migration (LSM) can generate high quality image

data, there are a lot of challenges for LSM. The challenge of least squares migration

lies in the fact that multiple migration and demigration processes have to be

performed. LSM demands a much higher computational cost in comparison to the

conventional migration, especially when wave-equation based imaging algorithms

are used. In order to make the LSM less expensive for field data, I propose using

stochastic conjugate gradient method and Hessian preconditioning to make the LSM
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more efficient. In the synthetic test, the stochastic conjugate gradient method

generally perform much better, and can successfully generate better image. The

stochastic conjugate method includes using different sample batches to update the

model iteratively. The conjugate gradient directions are calculated over the same

sample space for several iterations to make the convergence faster. A simplified

Hessian preconditioning is also proposed in this study. The Hessian precondition is

proved to be very efficient. The physical interpretation of Hessian preconditioning

is that the receiver side illumination can be approximated as the source side. This

assumption is generally valid for marine seismic surveys.

Application of the least-squares inversion on field data is more challenging than on

the synthetic data. The ground truth for synthetic data is generally known, and there

are more uncertainties in field data. In order to apply the least-squares reverse-time

migration to field data, I proposed a normalization scheme in the objective function,

which can partially remove the amplitude difference between field and modeled data.

The new normalized objective function can preserve the phase and reflector location

information. I applied the LSRTM incorporating the normalized objective function

and the Hessian preconditioning to a porcupine field dataset. The result of LSRTM

from the field data shows that the LSRTM outperforms the conventional RTM, which

suggests LSRTM can be promising for future development. In the field example, the

real-world forward wave propagator is far from the adjoint of the Born operator,

which makes the standard line search more efficient than the conjugate gradient

method in general. However, the convergence of real-world least-squares migration

is extremely slow, suggesting future development on preconditioning the gradient or
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image using higher order of Hessian is needed.
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Appendix A

Normalized objective function for

field data

We propose the following normalized objection function in the LSRTM for

amplitude correction when we deal with real data

J(m) =
1

2

∣∣∣∣∣∣∣∣ ‖dobs‖
‖dmod‖

dmod − dobs

∣∣∣∣∣∣∣∣ (A.1)

where m is the reflectivity model we want to invert, dmod is the modeled data, and

dobs is the field data. The normalization can be done on synthetic data by shot, trace

by trace, and window by window. A seismic trace can be treated as a data vector,

where each sample is a function of the model space. Before we derive the Frechet

derivative of J(m), we make the derivation of the data vector in according to model

vectors. Assuming we have function g(x), which is a norm of a function vector, and
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can be described as

g(x) = ‖f(x)‖ (A.2)

where f(x) is is a function vector

f(x) =
n∑

i=1

fi(x) (A.3)

This makes g(x) = (
∑n

i=1 f
2
i (x))

1
2 . By making derivative of g(x) in relative to x, we

have

∂g(x)

∂x
=

1

2

(
n∑

i=1

f 2
i (x)

) 1
2 (

2fi(x)
∂fi(x)

x

)
(A.4)

which can be compactly written in the vector form as

∂g(x)

∂x
=

1

‖f(x)‖

(
∂f(x)

∂x

)T

f(x) (A.5)

where T denote transpose operator. After reordering, the gradient of J(m) in relative

to m can be written as

∂J(m)

∂m
=

∂

∂m

(
‖dobs‖
‖dmod‖

dT
moddobs − dT

obs

‖dobs‖
‖dmod‖

dmod

)
(A.6)

By using the derivation from Equation A.5, the gradient g = ∂J(m)
m

can be described

as

∂J(m)

∂m
=
∂dT

mod

∂m

‖dobs‖
‖dmod‖

[
dT
moddobs

‖dmod‖2
dmod − dobs

]
(A.7)

where the residual between the normalized synthetic data and the field data is the

term

dnorm,residual =
‖dobs‖
‖dmod‖

[
dT
moddobs

‖dmod‖2
dmod − dobs

]
(A.8)
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which can be physically explained by backpropagating the data residual, dnorm,residual,

and forward propagating the source signature to calculate the gradient. After

computing the gradient g, the reflectivity update can be written as

mn+1 = mn + αg (A.9)

where α is the update step length, which can be achieved by a standard quadratic

line search or a conjugate gradient method.
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