Accelerator Benchmark Suite

Using OpenACC Directives

A Thesis Presented to
the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Pooja Chitral

December 2014

Accelerator Benchmark Suite

Using OpenACC Directives

Pooja Chitral

APPROVED:

Dr. Barbara Chapman, Chairman

Dept. of Computer Science

Dr. Omprakash Gnawali

Dept. of Computer Science

Dr. Deniz Gurkan

Dept. of Technology

Dean, College of Natural Sciences and

Mathematics

i

Acknowledgements

I would like to express my gratitude to my advisor, Dr. Barbara Chapman, for giving me
an excellent opportunity to be part of the HPC (High Performance Computing) Tools
group. It was an absolute privilege to work under her tutelage as she inspired me to
explore prospective research topics and provided her feedback during the course of my
stay. It’s my privilege to be part of such an enthusiastic, energetic, and inspiring team.

I would also like to extend my sincere gratitude to my mentor, Dr. Sunita
Chandrashekaran. Her continuous guidance and support throughout my research work
have been tremendous. Her directions at every point of my thesis helped me understand
the problem better and motivated me to resolve them in the right spirit.

I would like to thank everyone in the HPC Tools group who has helped and
motivated me at one point or another. I extend my gratitude to the Department of
Computer Science for giving me this opportunity to be part of such a prestigious
department at the University of Houston.

Last but not least, I would like to thank my family and friends who motivated and
supported me throughout this journey. I would like to thank one of the most important

persons in my life, my grandmother, for always inspiring me and believing in me.

il

Accelerator Benchmark Suite

Using OpenACC Directives

An Abstract of a Thesis
Presented to
the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Pooja Chitral

December 2014

v

Abstract

In recent years, GPU computing has been very popular for scientific applications,
especially after the release of programming languages like CUDA, OpenCL, and
OpenACC. The growing popularity of GPU computation in commercial and scientific
fields is attributed to the high computational power of GPU cores. The accelerator
benchmark suite using OpenACC 2.0 is a combination of very popular benchmarks — the
Parboil and NAS Parallel benchmarks. These benchmarks contain a wide range of
throughput computing applications, which are useful for studying the performance of
computing architectures and compilers. The Parboil benchmark includes applications
from different scientific and commercial fields including image processing, biomolecular
simulation, and astronomy. The NAS Parallel benchmark has a set of applications that
target different areas of computational fluid dynamics.

The accelerator benchmark suite that has been designed exploits the
computational power of GPU architecture by using the emerging directives and clauses
provided by OpenACC 2.0. This benchmark can act as a reference point for new
programmers in GPU computing, reducing the time taken to understand one of the most
powerful parallel programming paradigms.

Finally, the goal of the accelerator benchmark is to evaluate the applicability of one of the
high-level programming models OpenACC for accelerators. This benchmark will help

provide the OpenACC community with valuable feedback to improve the model further.

Table of Contents

Chapter 1. INtrodUCHION ... sssssssssssssssssssssssassssssssassssnssans 1
1.1 Problem Statement 2
1.2 Thesis Contribution 3
1.3 Thesis Outline 5

Chapter 2. Emerging Heterogeneous SYSteIMSummsmsmsssmsssssssssssssssssssssasasssssases 6
2.1 Need for Heterogeneous Computing 6
2.2 Heterogeneous Systems 7

2.2.1 Graphical Processing Unit (GPU) ... sesessessessssssssessssssssssesssesssassssessseses 7
2.2.2 Digital Signal Processor (DSP) ... seeeseeseessessseesssssesssssssssssesssessssesssesssesssseenss 9
2.3 Challenges in Heterogeneous Computing 11
2.3.1 Programming MOdel SUPPOTt.... . erreeneeseesseesseesseesssessesssssssssssesssesssesssssssssssssssssssssessnes 11
2.3.2 DAta TTANSEET covueetreeereeeresseesesssssesses s ss s sesssssesses s sss s b s bbb s s 12
2.3.3 MemOry ManagemENTccceueemrerseeseesessesssesssssesssessesssssssssessessssssssssessesssssssssesssesssssssssesasesss 12

Chapter 3. GPUs for Extreme Computing - State-of-the-Art........ommnmmnnmsnnenes 14
3.1 Evolution of GPUs 14
3.2 NVIDIA GPUs 19

3.2.1 NVIDIA GPU ACCEIETAtION c.reereereeurereeneeeessessesesssesssessessessssssesssesssssssssssssssssssssssesssssssssesssesasesns 19
3.2.2 KePler ATrChItECIUIE .o ssesssssss s ssssssssss st s sssssssss s st sesssssssss s sanssns 21
3.3 AMD APUs 26
3.3.1 Heterogeneous SyStem ATrCHItECTUTE ... reeeeeeeeseesseessnesssesssesssessseesseesssessssesssesssessessnes 27

Vi

3.3.2 KQVerIT ATCHITECTUTE ...ouveereecrreereerrersens e seeeseesssesssessssessesssss s sssessasssssesssesssesssssssssessesssssessessaes 30
Chapter 4. Programming Models for Heterogeneous SyStemsoussssasasssans 34
4.1 CUDA 34
4.2 OpenACC 40
4.3 OpenMP 43
4.3.1 Memory Model of OPENMP...... e sseesssesssessss s ssesssssssssseses 44
4.3.2 Execution Model of OPENMP ...t ssssss s ess s sessss s ssases 45
4.3.3 OpenMP Programming Dir€CtIVES.......oummreerrnsererneessesssessesssesssssesssesssssssssesssesssassssnes 45
4.4 OpenCL 51
Chapter 5. Developing an Accelerator Benchmark Suite........ccocooniisisiciiisnininnn 52
5.1 Heterogeneous Benchmark Suite 53
5. 1.1 OVEIVIBW ..eeriureveeuseersesssessseseeesssesssesesseesss s s e ss s s8R R R bbb 53
5.2 Using OpenACC 2.0 56
5.2.1 ROULINE DITECHIVE....coiereeerereeerseetsseesseessesssssss s sssssssesssssssssssssssssssssssssss s sssasssessssssssassssssans 56
5.2.2 Nested OPENACC REGIONS ...cueeeeeemeereerresseessessssessseesseessssssssesssessssessesssssssssssssssessssesssesssssssss 57
5.2.3 Unstructured Data REZIONSeerirniimeessssesesssesssssssssssssesssssssssssssss s sssssssassssasssasssssssss 58
5.2.4 AtOMIC DIFeCLIVE it ssssssses 60
5.2.5 THlE CONSIIUCE..omiuuuirrirureeeseeesesesseessssessessssesssssse s e ss st e s s sssssess s st sessssasssessssssans 61
5.2.6 Support for Multiple Device TYPES ..cermernerreesseerseeessessssessessssesesssssssssssssessssssssessssssnss 62
5.2.7 Extended RUntime APL......sssssssssssssssssssssssssssss 63
5.3 Testbed Setup 64
5.4 Parboil OpenACC 2.0 65

vii

5.4.1 Benchmark Porting and Result ANALYSISoueeeereeeeeemeeeseeseessessesssesssesessesssesssseenss 66

5.5 NAS Parallel Benchmark 88
5.6 Analysis and Observations 100
Chapter 6. Conclusion and Future WorkK.......cummmmmmmmmmmmmmn. 103
6.1 Conclusion 103
6.2 Future Work 105
13310) 110 e 1221 1) 112 106
2N 0 7<) o T 1 110
Compiling and Running Benchmarks ... 110
A1. Compiling and Running Parboil Benchmark 110
A2. Compiling and Running NAS Parallel Benchmark 111
APPENAIX B urrurrsrsmssssssssssmssssmssssssssssssssssssssssssssssssssssssassssssssssssssssssssssssssssssassssssssssassssssssassssssnsass 114
Explanation of Abbreviations 114

viii

List of Figures

Figure 3.1: Trends in GPU Computing [15]ccciveviiiiieiiieieeieeeesieceeee e 15
Figure 3.2: Comparing CPU and GPU Compute Cores [18].......ccceevvveevreerienieerreenrennnenn 16
Figure 3.3: How GPU Acceleration Works [18]ccceovivviiiriieriiiiieniecieeieee e 17
Figure 3.4: Floating-point Operations per Second for CPU and GPU [30].........c.c........ 18
Figure 3.5: Memory Bandwidth for CPU and GPU [30]......c.cccceeviiviievienieeiieieeeee e 18
Figure 3.6: Three Ways to Accelerate Applications for NVIDIA GPUs [19].................. 19
Figure 3.7: Kepler GK110 Full Chip Block Diagram [24].........cccooiiievinienininieeneen 22
Figure 3.8: Streaming Multiprocessor (SMX) Architecture [24]ccccccveeveevieeneenveennen. 23
Figure 3.9: Kepler Memory Hierarchy [24]........ccccoviiiiieiiieniiiiieiecieeieeiee e 25
Figure 3.10: Heterogeneous System Architecture [26].........ccocvverieriiienieenieeiieenieenreenenn 29
Figure 3.11: Kaveri APU [20] ..ottt e 31
Figure 3.12: Block Diagram of Kaveri — hUMA [29]cccovviiiiiiiiiiiieiecieeeeeeee e 32
Figure 3.13: Kaveri hQ [29]....ccviiiieeiieieee ettt ettt et 33
Figure 4.1: Grid of Thread BIOCKS [30] ...ccovveiiiieiieiiiiiieie et 38
Figure 4.2: Memory Hierarchy [30].......cooovieriiieiieeiieeeeeee et 39
Figure 4.3: Memory Model for OpenMP [31]....cccoviiviiiiiiiriieiieieeeieeieeiee e 44
Figure 4.4: Fork-join OpenMP Execution Model [48]cccvevvieviieiieeciieiieeieeeeeee e 45
Figure 4.5: Work-sharing Constructs [31].....c..coveeviiiiieiiieiieeie e 48
Figure 5.1: Architecture of the Coil SYStemccceiviiieiieciiiiiecieeeee e 65
Figure 5.2: Execution Time Graph — Stencilcccoevviiviiiniieniiiiicciece e 70

Figure 5.3: Execution Time Graph - HiStOZramcoccovevviiniininniineencnieneneeneeeeeen 73

Figure 5.4: Execution Time Graph — CUTCPcc.ccocoiiiiiiiiniiiceceneeee 75
Figure 5.5: Execution Time Graph — SPMV ..o 77
Figure 5.6: Execution Time Graph — LBM.......ccccooiiiiiiiininiinieccceneseeee e 79
Figure 5.7: Execution Time Graph — MRI-Q........cccooiiiiiiiiiiiiiicceeeeee 82
Figure 5.8: Execution Time Graph - SGEMMccccoiiiiiiiiiiiiiccceec 86

List of Tables

Table 4.1: Code Snippet for Matrix Multiplication using CUDA [30].......cccccvvvenvreennen. 36
Table 4.2: OpenACC Pragma’s SYNtaXccccoeevieriiiiinienenieneeieetesieeeesieesie e 41
Table 4.3: Code Snippet for Sample Kernel Constructs..........cccoevveevieniieeniieniieneenieeee. 42
Table 4.4: Code Snippet for Sample Parallel Constructs...........coocuvevierieerieniieneenieeee. 43
Table 4.5: OpenMP Directive USAZEcccveruieiiriiiiiniinieeieniteieetesieetesieeie et 46
Table 4.6: Sample OpenMP Code SNIPPetcocveriiiirieniriinieeecceeeee e 47
Table 4.7: OpenMP Task Clauses........ccceeuieiiiiieeiieiie ettt 49
Table 5.1: Usage of Routine Directive [35].....ccoiviiiiiiiiiiiiieeeeeeeeeeee e 57
Table 5.2: Nested Parallel RegIonscccoeiiiiiiiiiiiiiiiiieeeeeee e 58
Table 5.3: Unstructured Data Lifetime [35]cooieeiiiiiiiiiiieeeeeeee e 59
Table 5.4: AtomicC CONSIIUCE.cc.ieiiiiiieitieeiie ettt et tee e e enbeeee e 61
Table 5.5: Explaining Tile Clause Code Snippet..........cccccereiririiniinenienenieneeieseeeeen 61
Table 5.6: Syntax for Using Multiple Device Types [43] ..coeevieeiieiieeiieiieceeeeee e 62
Table 5.7: New OpenACC 2.0 Clauses and Directives for Data Management [45] 63
Table 5.8: Stencil Code SNIPPEL.......ccueeiiieriiiiiiiieeie ettt 68
Table 5.9: Use of Atomic Update in HiStoramcccceeeiieviieniiniiienieniieeesee e 71
Table 5.10: Unstructured Data Lifetime Featurecccoocveviriiiniiiinieniiiineeicneen 72
Table 5.11: Code Snippet for CUTCPc..cooiiiiiieiiiiiece ettt 74

X1

Table 5.12:

Table 5.13:

Table 5.14:

Table 5.15:

Table 5.16:

Table 5.17:

Table 5.18:

Table 5.19:

Table 5.20:

Table 5.21:

Table 5.22:

Table 5.23:

Table 5.24:

Code Snippet for SPMV Compute LOOP ...ccveeveveriienieeiieierieeieeeieeie 76
LBM FUNCHONS ...ttt ettt et 78
Code Snippet for ComputeQ CPU Functionccceeeveeieeniiieniienienieeneene 81
Code Snippet for Vectorising Column Major Matrixes to Vector Array 83
Code Snippet for SGEMM — sgemm_kernel.........ccccoeovveiiiniiiiiiininiiens 84
Code Snippet for BFS OpenMP Version..........ccocceeveeeiieeneeniiienienieeieenene 87
Randlc ep FUNCHIONcc.coiiiiiiiiiiiiiic e 91
EP COde SNIPPEL...eeouiiiiiiiiiieieiieiieteee et 93
FT Code Snippet for return _complex_abs Routing...........c.cccceevvvevrenriiennnns 95
MG Inline Functions Replaced by Routine Functionsccccceceeniniene. 97
Vranlc FUNCHON SNIPPEL.......cccvieriiieiieiiesiieeieeieecee e 98
Bubble Function in MGcoceiiiiiiieiiiieeeieceeee e 99
Mops Comparison between OpenACC 1.0 and OpenACC 2.0................... 100

Xil

Chapter 1. Introduction

Benchmarks are a set of programs designed for a very specific field, such as scientific
computing, computational fluid dynamics, commercial applications, numerical analysis,
and image processing. Many benchmarks are designed to target particular architectures.
We use benchmarks for measuring performance characteristics related to the target
platforms such as database management systems, I/O benchmarks, micro-benchmarks,
parallel benchmarks, etc.

Benchmarks are extremely important in research, as they can be used to evaluate
new technologies, architectures, and languages at their inception. Many vendors are
willing to invest in the new technologies and research when the results of these
benchmarks are promising. Benchmarks play a very important role in computer
architecture research by helping programmers work on a set of shared data code and
understand the behavior and performance of various technologies and system
architecture. Benchmarks can also assist in understanding the best optimization
techniques with respect to the computing architecture and the programming environment

by enabling the comparison of different result sets.

1.1 Problem Statement

The main aim of the created accelerator benchmark is to understand GPU computing in
general, specifically OpenACC. This setup gives insight into OpenACC 1.0 features and
how OpenACC 2.0 has improved drastically by implementing more advanced features.
OpenACC 2.0 simplifies application portability, thereby improving the productivity of
the developer.

OpenACC is an emerging accelerator model, and a lot of work has been done to
improve features of OpenACC while maintaining performance improvement and
portability aspects in mind.

Porting using OpenACC 1.0 is cumbersome, as it involves a lot of code
restructuring, function inlining, etc. With OpenACC 2.0, porting of an application is easy
and can be done in a more natural way that helps achieve the best performance for
sequential code. OpenACC 2.0 drastically improves productivity and also adds flexibility
in data handling by providing clauses for expressing an unstructured data lifetime for the

variables.

1.2 Thesis Contribution

Developing an accelerator benchmark suite helped us study and analyze the
emerging high-level programming model OpenACC 2.0. The benchmark is used
to evaluate different types of computations to characterize execution behavior of
several of the most frequently used OpenACC features. We also present different
challenges while porting existing multithreaded accelerator benchmark suites to

GPUs.

Applications from the Parboil benchmark were ported to GPUs using OpenACC
2.0. The unique challenges while porting programs from OpenMP and the serial
version to OpenACC are analyzed and discussed. As Parboil implements
applications from different domains, the accelerator benchmark suite can give an
overview of how to port applications from different architecture to accelerator

architecture.

OpenACC is an evolving programming model. Although NAS Parallel
Benchmark codes were ported to OpenACC 1.0 [46], there were several
limitations posed by the version of OpenACC (V 1.0) used for that work. In this
thesis, those limitations are overcome by using the most recent version of the

specification, OpenACC 2.0, that fills some of the programming gaps discussed in

3

[46]. Routine directives, unstructured data lifetime, and optimization techniques

were some of the features used for this work.

We analyzed the performance of OpenACC applications by comparing their
performances with the alternative, accelerated version that used CUDA, OpenMP,
and OpenCL. We optimized the accelerator benchmark suite applications by
applying the loop collapse, loop unrolling, code restructuring, and some new data

management techniques.

1.3 Thesis Outline

This thesis is organized into the following sections:

Chapter 2 introduces heterogeneous computing, the need for heterogeneous computing,
and popular heterogeneous systems used in scientific and commercial computing. It also

describes different challenges in heterogeneous computing.

Chapter 3 discusses the evolution of GPUs, the architecture of NVIDIA and AMD GPUs,

including latest Kepler GPU from NVIDIA and Kaveri from AMD.

Chapter 4 presents some of the popular programming models for accelerators like

CUDA, OpenMP, OpenACC, and OpenCL.

Chapter 5 provides the rationale for creating the accelerator benchmark suite. This
chapter also involves discussion of OpenACC 2.0 features and how they are used in the
accelerator benchmark. Further, we discuss implementation details of OpenACC 2.0 for

NPB and Parboil benchmarks and performance analysis for the same.

Chapter 6 presents conclusions and related future work.

Chapter 2. Emerging Heterogeneous Systems

The heterogeneous computing environment, in contrast to the homogeneous systems, is a
combination of different processing units. For some applications, we see considerable
performance improvement when we combine different processing elements that
incorporate special processing capabilities while handling some aspects of tasks, instead
of adding more homogeneous cores [3].

A heterogeneous computing environment presents new challenges, as different
architectures have different memory and execution models. The level of heterogeneity in
the system can introduce non-uniformity in system development, programming practices,

and overall system capability [1].

2.1 Need for Heterogeneous Computing
Understanding the nature of the application in terms of structure of the program,
computational needs, and memory requirements will help us decide which devices will
deliver better performance and productivity. Unlike CPUs, which are designed for
handling large sequential programs with significant branching and complexity, GPUs are
good for performing computationally intense applications with considerably less
branching and complexity.

HPC allows exploitation of the inherent capabilities of a wide range of

accelerators to solve computationally intensive problems.

The importance of heterogeneous computing is that we can achieve very large
performance gains if we can consolidate and integrate the strengths of all the different
platforms used. GPUs is excellent for floating point operations [4]. Multicore CPUs are
good for command and control operations. FPGAs is an ideal solution for all kinds of
operations other than floating point operations like binary, integer, fix point, text, and
special formats [5]. As quoted by different companies that comprise the high-
performance computing industry, “The future is heterogeneous” [54].

When we study the problems prevalent in heterogeneous systems, we divide the
entire problem into many subproblems and then categorize and distribute these problems

to different processing elements designed for specific types of operations.

2.2 Heterogeneous Systems

Coprocessors are used to supplement the functions of the primary processor or CPU.
These are attached to the CPU via interconnect. Computationally intensive tasks can be
offloaded to coprocessors in order to accelerate the performance of the application

(coprocessors can be anything from general-purpose CPUs, GPUs, FPGAs, etc.).

2.2.1 Graphical Processing Unit (GPU)
The Graphical Processing Unit (GPU) is a specialized electronic circuit created to

perform graphical processing operations. Computer graphics is fundamentally an

“embarrassingly” parallel-problem as the workload can easily be spread across multiple
compute unit, since each pixel on the screen can (mostly) be worked on independently
[6].

GPUs are very fast compared to CPUs because every GPU contains hundreds of
thousands “GPU cores” internally. And these cores work in parallel, as they are
independent of each other while performing the computation. Thus, for some
applications, using GPU cores is much better than adding more CPU cores.

As mentioned earlier, GPUs are specifically designed for graphics processing.
Thus, they have very restricted operations, and their programming model is not same as
CPU computing. To maximize GPU performance, programs are executed using streaming
processing model [54].

A “stream” can simply be a set of data that requires similar computation, by
providing data parallelism. As each data set is computed independently, there is no scope
for having static or shared data in streaming processing. The order of the workflow would
be to read the input, compute the results using input data, and then write the output back
to the host device [54].

Ideally, GPU applications should have large data sets with structured loops for
high parallelism and minimal dependency between data elements.

In our early efforts for harnessing the power of GPUs for general purpose
computing, we used OpenGL and DirectX API. These APIs were difficult to understand

and reduced productivity of the programmers. Later in 2006, NVIDIA developed a

CUDA programming extension for C/C++ and FORTRAN. OpenACC is a programming

standard for parallel computing developed by Cray, CAPS, NVIDIA, and PGI.

2.2.2 Digital Signal Processor (DSP)

A digital signal processor (DSP) is a microprocessor chip that is widely used in many
electronic devices. DSPs take signals as input, digitizes them by enhancing the quality,
and then apply mathematical functions and manipulates them for the target application.

Though general-purpose DSPs can be used for many of the manipulations, it is
very practical to have a dedicated DSP for specific applications. Portability is one of the
major advantages of dedicated DSPs, as they address the power constraints associated
with devices like mobile phones [7].

DSPs process the data in real time with precise output. Thus DSPs are used in
audio signal processing, audio and video compression, speech processing and
recognition, digital image processing, digital communications, biomedicine, seismology,
and radar applications [7].

Digital signal processing typically requires a large number of mathematical
operations to be performed concurrently on a large set of data. Heavy computation in the
DSP is due to continuous conversion of data from analog to digital and vice versa [7].

One of the very important bottlenecks in digital signal processing is the transfer of
data to and from memory. Memory-transfer operations typically include data from the

signals to be processed, the instructions for processing the data, and the binary code that

needs to be fed to the sequencer. Because of the high intensity of data processing and

data movement in the memory DSPs have a special architecture [7].

2.2.2.1 Keystone Architecture

Keystone architecture is based on Texas Instruments (TI)'s System-on-Chip (SoC)
processors. The design methodology and the architecture enable high-performance gains.
This architecture gives the flexibility to include a single or multicore mix of DSP [8] [9].
Keystone architecture has a C66x Core Pac, memory subsystem, application-specific
coprocessor, multicore navigator, network coprocessor, interfaces, embedded trace
buffer, and system trace buffers for debugging. Keystone architecture can be used in
many of the important wireless applications like base-station transceiver systems, cellular
systems like 3G, 4G. Some of the media applications using keystone architecture are
video infrastructure, medical imaging, military and defense, smart grids, etc. Because of
the SoC concept, C66x-generation DSPs maximize throughput of on-chip data flows by
eliminating the most important bottleneck caused by data flow. One of the very important
features of this architecture is TeraNet, which is a packet-based high-speed non-blocking
channel that transfers as much as two terabytes of data per second [8] [10].

With TeraNet and an extensive two-layer memory structure, data flows freely and
effectively through C66x devices. Although it provides direct chip-to-chip connectivity
for local devices, hyperlink is also integral to the internal processing architecture of C66x
DSPs. The hyperlink is a fast and efficient interface with low protocol overhead and high

throughput, running at an aggregate speed of 50 Gbps (four lanes at 12.5 Gbps each).
10

Working in conjunction with Multicore Navigator, Hyperlink transparently dispatches
tasks to other local devices where they are executed as if they were being processed on
local resources. In the keystone architecture, CorePac is defined as the main processing
element in a multicore SoC. CorePac includes the infrastructure that supports the DSP
cores, including shared memory and memory controllers. There are three levels of
memory in the keystone architecture. Each C66x CorePac has level-1 program (L1P) and

level-1 data (L1D) memory [8] [10].

2.3 Challenges in Heterogeneous Computing

Computing in a heterogeneous environment requires the separate compilation of code for
different architectures. Mapping of the sub-programs on different architectures can
sometimes be challenging. In a heterogeneous environment, program debugging becomes

increasingly complicated because of heterogeneity [12].

2.3.1 Programming Model Support

When programming in a heterogeneous environment, it is very important to have an
efficient programming model that will help us maximize computational output from the
underlying architecture. The programming model should be easy to understand and
follow a natural migration path from serial programs, without affecting the productivity
of the programmer. These programming models should also allow portability across

multiple machine generations. Finally, the programming model should provide evolved

11

APD’s that will hide the low-level details of the underlying hardware, thus making

heterogeneous programming seamless.

2.3.2 Data Transfer

In heterogeneous computing, the host is connected to all its devices via an interconnect.
Thus, it is very important to understand the data transfer rate and limitations of
interconnects to optimize the data transfers between hosts and devices. This will help in
understanding how and when the data should be moved to the device and returned to the
host. Neglecting data activity will undermine the entire computation and, in turn, lead to
a performance reduction caused by bottlenecks in the interconnect.

Heterogeneous systems typically have hundreds and thousands of computing
nodes when compared to many-core processors with more than 100 cores on a single
electronic chip. This increases the distance between the memory and cores, placing
limitations on the electronic networks used to connect the systems. The latency for
accessing the external memory modules differs strongly, depending on the distance

between the cores and memory and its locality in the network [11].

2.3.3 Memory Management
In multicore computing, parallelism is spread across multiple system levels, and the data
used for computation is stored redundantly in memory subsystems at several levels. From

1986 to 2000, CPU speed improved at an annual rate of 55%, while memory speed only

12

improved by 10% [13]. As cores become faster and faster, data moves in and out, leading
to a bottleneck in the supply of data for computations.

As heterogeneous computing is host-directed, CPU allocates tasks to the
connected subsystems. Thus, the entire computation moves to the device space, and then
the results are brought back to the host.

As different systems have a different memory hierarchy and their private memory
for computation, it is very important to synchronize these two memories between the host
and device and also schedule tasks as effectively as possible.

The devices mainly differ in the configuration and arrangement of functional and control
units, and the data flow from the main memory to the compute cores is organized
differently. Consequently, the instruction set and the generic or vendor-specific
programming concepts differ. In some programming approaches, only parts of the

hardware structure are exposed to the user and are accessible to the programmer [1].

13

Chapter 3. GPUs for Extreme Computing — State-of-the-Art

With the emergence of extreme scale computing, modern GPUs have been extensively
used in HPC applications like large data centers and supercomputers. The highly parallel
nature of the GPU is attributed to its large number of compute cores and high-
performance memory subsystems. We have GPUs from many different vendors. The
most popular GPUs in the market are NVIDIA and AMD, which are used in high-
performance computing. These two GPUs are different in many aspects with respect to

the architecture, execution model, and memory hierarchy [23] [18].

3.1 Evolution of GPUs

Graphics processing units were created with graphic and image processing in mind.
Entertainment and game industries use GPUs extensively for building games with high-
quality graphics. A huge revolution in the GPU programming industry was when GPU
industries realized that we could use the available programming infrastructure for
performing scientific applications. This was when NVIDIA came up with C-like
programming language called CUDA targeting scientific computing in 2008 [15]. In
almost same time, AMD came up with OpenCL programming language for (Accelerator

processing unit) APUs.

14

_AE
CFD
Finance
Rendering
Diata Analytics
Life Sciences
Defense
Weather
Climate

Early Adopters Plasma Physics

Present

Figure 3.1: Trends in GPU Computing [15]

GPUs and their computing capabilities have changed over time, adding more computing
power. In the gaming industry, these features enhance the user experience by adding rich
graphics. The number of transistors in GPU hardware has increased drastically, providing
increasingly advanced features in memory and execution models [15].

GPU computing tries to achieve the best performance by combining the power of
both the CPU and GUP. CPUs are highly effective at making single threads go fast.
Similarly, GPUs are excellent at creating thousands of threads and making all of them run
really fast. In GPU computing, we combine the best computing capabilities of two worlds
[18].

The basic idea behind GPU computing is running the majority of sequential code

like file I/0, running the OS, and exchanging the data with sensors on the CPU. Then, we
15

identify the computationally intensive parts of the program, which are highly parallel, and
run them on GPUs. This helps to exploit both CPU and GPU architectures efficiently

[18].

|

CPU GPU
MULTIPLE CORES THOUSAMDS OF CORES

Figure 3.2: Comparing CPU and GPU Compute Cores [18]

In GPU acceleration, we transfer the parallel code to the GPU, and the sequential code is
run on the CPU. Being the host, the CPU controls how part of the program is transferred
to the GPU, and how the results are collected again upon completion of the program by

GPUs.

16

How GPU Acceleration Works

Application Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

Figure 3.3: How GPU Acceleration Works [18]

Per Moore’s law, we have almost realized the highest performance, which can be drawn
from the CPUs [15].

The new version of Moore’s law of NVIDIA states, “As computers are not getting
any faster they are just getting wider, parallel programming is here to stay”. Because of
this, data parallel computing is a more scalable solution for highly intensive applications
[54].

These below graphs clearly indicate that parallel programming using GPUs will

become the norm in the near future.

17

GFLOR/s

3250 -
3000
=i WWIDIA GPU Single Predision
2750 g V] DA GPU Double Predision
2500 =g |itel CPU Single Precsion
e Intel CPU Diuble Precision
2250
2000
1750
1500
1250
1000
750
pil F Tesla C2050 Sandy Brid
Tesla C1060
20 ” Wooderest Bl
0 o= arpertown . Westmere '
SepBFENtUM4 jup 04 Mar-07" Dec.09 Aug-12

Figure 3.4: Floating-point Operations per Second for CPU and GPU [30]

Theoretical GB/s

200
180 eforceGlT X458
g CP U J
160
=B=GPU ¢ rorceGT 280
140
120
100
BOD
lili] Sandy Bridge
f5Tpreet800GT Wesunere_/.
i "}/ BIOM
eForce FX 5900 Woodcrest
20 Prescott
Harpertown
1]

orthwiood T : T T F T T ¥
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Figure 3.5: Memory Bandwidth for CPU and GPU [30]

18

3.2 NVIDIA GPUs

In recent years, the NVIDIA GPU has gained more popularity within the scientific
computing fields because of language support provided for efficient programming and

effective use of hardware.

3.2.1 NVIDIA GPU Acceleration

There are three ways to accelerate applications for NVIDIA GPUs as shown in the figure

below:
DIRECTIVES FOR ACCELERATORS /
GPU Accelerated Libraries GPU Directives Programming Languages

Figure 3.6: Three Ways to Accelerate Applications for NVIDIA GPUs [19]

GPU — Accelerated Libraries: In this approach, we use libraries in order to accelerate
the application. This method does not require any special knowledge of GPU architecture
or programming language. As the libraries are designed to provide a standard API format,
they are conducive to high-quality performance with minimal code change. Some of the

GPU libraries include cuDNN (for high-level machine-learning frameworks), cuFFT

19

(Fast Fourier Transform Library), cuBLAS-XT (Basic Linear Algebra Subroutine), and

MAGMA (next-generation linear algebra) [19] [20].

GPU Directives — OpenACC: OpenACC provides compiler directives for parallel
programming to run the code on CPUs, GPUs, APUs, and coprocessors. This directive
around the parallel region will help move the computation to the accelerator and execute
the instructions on the accelerator [19] [21]. One of the benefits of using OpenACC is
that we can improve the performance drastically by spending significantly less time on
understating and writing the code. OpenACC as a parallel programming model will be

discussed in the upcoming chapters of this document.

CUDA Language: CUDA C or C++ is a C / C++ interface to the parallel programming
on accelerators. CUDA provides an extension to the C / C++ language, allowing the
programs to execute on GPUs using GPU threads. In CUDA, we write kernels that are
meant to run using the GPU thread model. These kernels are the computationally
intensive loops that we transfer to the GPU. In the meantime, we also have to transfer
data to and from the CPU to the GPU, which is required for computation. Thus, data
transfer and kernel writing are two critical tasks that the CUDA user should understand to
get the most from GPUs. CUDA 1is one of the low-level programming languages for

GPUs compared to OpenACC and to use of GPU libraries. Thus, coding in CUDA has a

20

learning curve that requires comparably more time to understand [19] [22]. We will

discuss CUDA in a later section.

3.2.2 Kepler Architecture
Kepler is one of the fastest and architecturally most complex microprocessors, with as
many as 7.1 billion transistors. One of the greatest improvements over previous GPUs
like Fermi is Kepler’s superior power efficiency mechanism. Kepler provides over 1Tflop
of a double precision throughput. A Kepler GK110 implementation includes 15 SMX
units and six 64-bit memory controllers [24] [25].

Key features of the Kepler architecture include: 1. New SMX processor
architecture, 2. Enhanced memory subsystem, 3. Hardware support for new programming

models [24].

21

Memory Controller Memory Controller Memory Controller

]
b -
g
=
o
x
-
»
@
£
2
a
o
a

Maemory Controller Memory Controller

Figure 3.7: Kepler GK110 Full Chip Block Diagram [24]

3.2.2.1 Streaming Multiprocessor (SMX) Architecture

-precision CUDA cores, 64 double-

Each streaming multiprocessor has 192 single

precision units, 32 special function units (SFU), and 32 load/store units (LD/ST).

22

Instruction Cache
Warp Bchaduler ‘Warp Schoduler Warp Scheduler Warp Schedular
Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
S 4 & & + L 3 £ 4

Reglster Flle (65,536 x 32-bit)

£

g
H

Com
(=]
Corn
Core
Cora
Corm

g

g

g

o
i

BFU

BFU

L

64 KB Shared Memory / L1 Cache
43 KB Read-Only Data Cacho
Tex

Tax

Figure 3.8: Streaming Multiprocessor (SMX) Architecture [24]

Each SMX unit contains 192 single-precision CUDA cores, each of which has a pipelined
floating point and integer arithmetic logic unit. Kepler has exhibited significant
performance improvement as a result of double precision operations as they are at the
heart of HPC applications. Each SMX schedule threads in a group of 32 parallel threads,

which are called warps. Each SMX has four warp schedulers and eight instruction

23

dispatch units, allowing four warps to be issued and executed concurrently. Kepler's quad
warp scheduler selects four warps, and two independent instructions per warp can be
dispatched at every cycle. The number of threads that can be accessed by the thread has
been improved 4X times compared to Fermi [24].

Kepler implements a new shuffle instruction, which allows threads within a warp
to share data. Atomic operations are an integral part of any HPC application. Kepler has
improved throughput of global memory atomic operations by expanding native support

for 64-bit atomic operations in global memory [24].

3.2.2.2 Memory Subsystem
In Kepler GK110 every SMX has 64 KB of on-chip memory, which can be configured as
48 KB of shared memory with 16 KB of L1 cache or as 16 KB of shared memory with 48
KB of L1 cache. With Kepler, there is an additional flexibility in configuring the on-chip
memory by permitting a 32KB/32KB split between the shared and L1 cache. In addition
to the L1 cache, Kepler introduces a 48-KB cache for data that is known to be read-only
for the duration of the function.

The Kepler GK110 GPU provides 1536 KB of dedicated L2 cache memory. The
L2 cache is the primary point of data unification between the SMX units, servicing all
load, store, and texture requests and providing efficient, high-speed data sharing across
the GPU. The L2 cache on the Kepler offers up to twice the bandwidth per available
clock in Fermi. Algorithms for which data addresses are not known beforehand, such as

physics solvers, ray-tracing, and sparse matrix multiplication, especially benefit from the

24

cache hierarchy. Filter and convolution kernels that require multiple SMs to read the

same data also benefit [24].

Figure 3.9: Kepler Memory Hierarchy [24]

Some of the new features in the Kepler GK110 are listed below. These features enable

increased GPU utilization, making the parallel program design much simpler [24] [25].

Dynamic Parallelism - adds the capability for the GPU to generate new work for itself,
synchronize results, and control the scheduling of that work via dedicated, accelerated
hardware paths, all without involving the CPU. This capability allows less structured,
more complex tasks run easily and effectively, enabling larger portions of an application
to run entirely on the GPU. In addition, programs are easier to create, and the CPU is
freed for other tasks [24] [25].

25

Hyper-Q - enables multiple CPU cores to launch work on a single GPU simultaneously,

thereby dramatically increasing GPU utilization and significantly reducing CPU idle

times. Hyper - Q increases the total number of connections (work queues) between the
host and the GK110 GPU by allowing 32 simultaneous hardware - managed connections.

Hyper - Q is a flexible solution that allows separate connections from multiple CUDA
streams, from multiple Message Passing Interface (MPI) processes, or even from multiple
threads within a process. Applications that previously encountered a false serialization
across tasks, thereby limiting achieved GPU utilization, can realize a dramatic

performance increase without changing any existing code [24][25].

Grid Management Unit — Enabling Dynamic Parallelism requires an advanced, flexible
grid management and dispatch control system. The new GK110 Grid Management Unit
(GMU) manages and prioritizes grids to be executed on the GPU. The GMU can pause
the dispatch of new grids and queue pending and suspended grids until they are ready to
execute, providing the flexibility to enable powerful runtimes, such as Dynamic

Parallelism. The GMU ensures both CPU - and GPU - generated workloads are properly

managed and dispatched [24] [25].

3.3 AMD APUs

One of the biggest challenges in heterogeneous computing is memory management. In

traditional architecture, CPUs and GPUs have different pools of memory with different

26

hierarchies. Computation on a GPU involves movement of data from system memory to
GPU memory and back from the GPU to CPU after completing the computation. One of
the biggest challenges in heterogeneous computing, especially GPU computing, is the
movement of data between two architecturally different systems. Sometimes this negates
the advantage of computing on GPU completely and adds more overhead.

AMD has been very keen to resolve the problems associated with data movements
in heterogeneous computing. To address this problem and also to address different
problems related to heterogeneous computing, AMD developed the Heterogeneous
Systems Architecture (HSA). This architecture involves changes to the hardware

platform as well as to software runtime systems.

3.3.1 Heterogeneous System Architecture

While computing in a heterogeneous environment, some of the challenges faced by
programmers are very crucial to address. The primary concern in today’s world is
reducing power consumption. Consumers expect more longevity in batteries, for
example, for many handheld and portable devices. Even the data centers, which process
and store huge amounts of data, need cooling, which increases the cost of overall
maintenance. Secondly, there is always a demand for improving the performance of
current technology. Consumers naturally want their devices to handle increasingly greater
volumes of data with reasonable performance. Finally, the productivity of the
programmer is an important factor in using evolving hardware and software technologies.

It should be easy for new programmers to tap into the capabilities of new architectures

27

without a considerable effort. One of the priorities of memory development should be the
ability to run the same code on different platforms, targeting different devices without
having to rewrite the code again and again for each specific platform [26].

HSA is one of the best comprehensive solutions for all the problems discussed. It
promises improvement across all of the above parameters: power, performance,
programmability, and portability [26].

The main goal of HSA design is to integrate the different processing elements
tightly. HSA helps applications create and initialize data structures in a single unified
address space to use the hardware effectively. The HSA model does not require
fundamental changes to be implemented by software developers. Unified addressing used
in HSA makes sharing of data between the CPU and GPU simple. The HSA architecture
allows multiple compute tasks to work on the same coherent memory regions, using
barriers and atomic memory operations, erasing the limitations associated with dissimilar
memory systems [26].

The HSA Foundation aims to help system designers integrate different kinds of
computing elements in a way that eliminates the inefficiencies of sharing data and
sending work items between them. The HSA design allows multiple hardware solutions
to be exposed to software through a common standard low-level interface layer, called
the HSA Intermediate Language (HSAIL). HSAIL provides a single target for low-level
software and tools. HSAIL is sufficiently flexible and yet low-level enough to allow each

hardware vendor to map its individual underlying hardware design.. HSAIL frees the

28

programmer from the burden of tailoring a program to a specific hardware platform — the
same code runs on target systems with different CPU/GPU configurations [26].

A very important feature of HSA is its simplification of the process of running
applications on the architecture. HSA brings hardware to the application programmer.
The different layers of HSA include hardware, interfaces, standard runtime components,
and common intermediate languages. These layers work together to maintain memory
coherence and work queues synchronized [26].

HSA is all about delivering improved user experiences through advances in
computing architectures by providing improved power -efficiency, performance,

programmability, and portability [26].

A
= HSA Accelerated Applications di ‘&
5‘9 Access to Broad Set of Programming = 9
© © Languages O &
> O £ iz
— o @) c
< 0 <
HSA Runtime Infrastructure
LLVM Compiler HSAIL
HSAIL Finalizer Standard
AQL — Architected
Queuing Language =
— O
(A
= ©
GPU 5 >
- O
©
HSA Platform vTI £

HSA Solution Stack

Figure 3.10: Heterogeneous System Architecture [26]

29

3.3.2 Kaveri Architecture
AMD’s most important leap towards the heterogeneous computing for HSA was
heterogeneous Uniform Memory Access (hUMA). This architecture promises to solve
this problem associated with the previous architecture. In hUMA memory space is cache-
coherent which allows CPUs and GPUs use the same pointers to access the entire
memory space. hUMA supports paged virtual memory, which makes it possible to work
with larger data sets. This architecture allows the developer to write their applications
using standard programming languages like Java, C++, and Python [28].

Kaveri is AMD's first processor to support hUMA. It has the new Steamroller
CPU cores, combined with Radeon GCN (Graphics Core Next 2.0) architecture [29]. The
main idea behind Kaveri is that current processors are too heavily CPU-biased. This
technology utilizes the GPU core and draws on its maximum performance. Context
switching between the CPU and GPU cores brings heavy overhead. Kaveri APUs are
optimized to overcome this problem by increasing CPU frequencies, but these losses are

buffered by a boost of almost 20% with new Steamroller cores [29].

30

Figure 3.11: Kaveri APU [29]

In Kaveri architecture, all the cores, CPUs, and GPUs, are called compute cores. Each
compute core acts as a programmable hardware block that can run processes in its context
and virtual memory space. The architecture contains four multi-threaded Steamroller
CPU cores and eight GCN-based Radeon GPU cores. Two very important technologies
which are implemented in Kaveri and HSA for making the computing possible on the
cores are hUMA and heterogeneous Queuing (hQ) [29].

In Kaveri, using the hUMA memory access pattern allows both CPU and GPU
access the same memory. hUMA reduces almost all the issues associated with data
movement and data management on two different memory systems, which enhances the

performance of the programs [29].

31

Figure 3.12: Block Diagram of Kaveri - hUMA [29]

hQ is a very important element in Kaveri, as it allows the GPU to send its tasks to the
queue, which can then be dispatched to the GPU or CPU. In the previously discussed
architecture, the GPUs did not have any role in an event or work dispatch. This new
feature increases performance by eliminating bottlenecks associated with latency in
processing, leading to less power consumption. AMD claims that as these features are
implemented in the architecture, programmers no longer have to write a code specific to
the GPU [29].

The new HSA architecture features support for OpenCL 2.0 as a programming

standard.

32

hQ

! i
III il
CPU I(?-iPU

Figure 3.13: Kaveri hQ [29]

33

Chapter 4. Programming Models for Heterogeneous Systems

Parallel programming models are the basis for drawing extreme compute parallelism
from heterogeneous systems. These programming models help map parallel applications
to the hardware of the compute elements, execute applications on hundreds of these
devices, and finally produce results with high performance and greater accuracy.
Development of parallel programming models has become a recent priority, as we are
using large heterogeneous compute elements for application processing more than ever.

How do we decide which is the best programming model for a given application?
There is no "best" model, although there are certainly better implementations involving
some models compared to others.

Different parallel programming models have been designed not only to target
GPUs, but especially to target accelerators in common, are OpenMP, CUDA, OpenACC,
OpenCL, and OpenGL. We will discuss how each of these models work in providing the

best strategies for writing parallel code for accelerator architectures.

4.1 CUDA
NVIDIA introduced CUDA at the end of 2006 as a parallel computing platform and
programming model for general processing units [30]. NVIDIA’s GPUs use CUDA to

solve many complex computational problems more efficiently than CPUs. CUDA

34

provides a software environment for developers by allowing them to use C as a high-level
programming language.

The three key abstractions provided by CUDA are a hierarchy of thread groups,
shared memories, and barrier synchronization [30]. CUDA exposes all these features by
providing a set of language extensions to C. These extensions allow CUDA to be a

scalable programming language by running the programs on a number of multicores.

Programming Model:

CUDA provides fine-grained data parallelism and thread parallelism, which are
nested within coarse-grained data and task parallelism. They also guide the programmer
to partition the problem into coarse sub-problems that can be solved independently in
parallel by blocks of threads. Each sub-problem is further divided into finer pieces, which
can be solved cooperatively in parallel by all threads within the block. Some important
elements of CUDA are discussed below.

Kernels are the main computational units that execute the code section on the
GPU using CUDA C extensions. Kernels are executed N times by N CUDA threads. A
kernel is defined using the global declaration specifier, and the number of CUDA
threads that execute the kernel is specified using a new <<<...>>> execution
configuration syntax. Each thread that executes the kernel is given a unique threadID that

is accessible within the kernel through the built-in threadldx variable [30].

35

Thread Hierarchy is one of the important properties for CUDA programming. It
specifies the level of parallelism applied to the loop. threadldx is a three-vector
component so that threads can be identified using a one-, two-, or three-dimensional
thread index, forming a one-, two-, or three-dimensional thread block, respectively. This
provides a natural way to invoke computation across the elements in a domain such as a
vector, matrix, or volume [30].

In the following example, we add two matrices A and B of size NxN and store the result

in matrix C:

// Kernel definition
_ global__ void MatAdd(float A[N][N], float B[N][N],float C[N][N])
{ int i = threadIdx.x;
int j = threadIdx.y;
C[i][3] = A[i1[3] + B[1i][J1;
}
int main()
{
// Kernel invocation with one block of N * N * 1 threads
int numBlocks = 1;
dim3 threadsPerBlock(N, N);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
..}

Table 4.1: Code Snippet for Matrix Multiplication using CUDA [30]

36

There is an upper limit on the number of threads that can be spawned per block, and these
threads of a block are expected to reside on the same processor core and must share the
limited memory resources of that core. On current GPUs, a thread block may contain up
to 1024 threads. However, the kernel can be executed by multiple equally shaped thread
blocks so that the total number of threads is equal to the number of threads per block
times the number of blocks [30]. The number of thread blocks in a grid is usually dictated
by the size of the data being processed or the number of processors in the system.

The number of threads per block and the number of blocks per grid specified in
the <<<..>>> gyntax can be of type int or dim3 [30]. Two-dimensional blocks or grids
can be specified as shown in the example above.

Each block within the grid can be identified by a one-dimensional, two-
dimensional, or three-dimensional index accessible within the kernel through the built-in
blockldx variable. The dimension of the thread block is accessible within the kernel

through the built-in blockDim variable [30].

37

Grid

Block (0 0) | Blode {1, 0) | Block (2, 0)

Block [0 1) Blode (1, 1) %ﬂ, 1)

Figure 4.1: Grid of Thread Blocks [30]

Thread blocks are required to be executed independently: It must be possible to execute
them in any order, in parallel or series. This independence requirement allows thread
blocks to be scheduled in any order across any number of cores, enabling programmers to
write code that scales with the number of cores. Threads within a block can cooperate by
sharing data through shared memory and by synchronizing their execution to coordinate
memory accesses. __syncthreads() acts as a barrier at which all threads in the block must
wait before any of them is allowed to proceed. For efficiency, the shared memory is

expected to be low-latency, and __ syncthreads () is expected to be lightweight [30].

38

CUDA threads can access data from multiple memory spaces during their
execution as shown in the figure below. Each thread has private local memory. Each
thread block has shared memory visible to all threads of the block and with the same
lifetime as the block. All of these created threads have access to the same global memory

[30].

Thread
i3 . Per-thread lol
N i MEemory
Thread Block s
- 3 Per-block shared
4 p memory
Gl.'id o
Blodk (0, 0) || Block {1, 0) || Black (2, 0)
Blode (0, 1) || Block (1, 1) || Block (2. 1) |
Grid 1
Global memory
Block (0, 0) Block (1, O)
Block [0, 1) Block (1. 1)
P ——
Block [0,) Block (1. 2)

W W

Figure 4.2: Memory Hierarchy [30]

39

Heterogeneous Programming

The CUDA programming model assumes that the CUDA threads execute on a separate
device connected to the main CPU via interconnect. This host and device execution
model will have a different memory space, which needs to be allocated, deallocated, and

synchronized.

4.2 OpenACC
OpenACC 1s a high-level directive-based programming model for accelerators that
enables scientific and technical C, C++, and Fortran programmers to easily take
advantage of the power of heterogeneous CPU/accelerator systems. This model provides
a set of pragmas and high-level APIs for the non-native programmer hiding all the low-
level details of the programming language compared to CUDA. OpenACC provides set
of pragmas which serve as hints to the compiler regarding how different portions of the
code should be run.
OpenACC allows programmers to use simple compiler directives to identify which areas
of code to accelerate, without requiring modification to the underlying code itself. By
identifying parallel code segments, OpenACC directives allow the compiler to perform
the detailed work of mapping the computation on the accelerator.

Understanding the memory model and architecture of the systems will help the
programmer to achieve better performance, as it helps to map the program to the

hardware more efficiently.
40

OpenACC Basic Syntax: OpenACC supports C/C++ and FORTRAN languages for

directive-based programming. Table 4.2 gives the syntax for C/C++ and FORTRAN.

Syntax for C/C++ Syntax for Fortran

#pragma acc directive [clause [,] clause] | !$ acc directive [clause [,] clause]

Often followed by structured code

block

Often followed by structured code block

Paired with the matching end

directive

1$ acc end directive

Table 4.2: OpenACC Pragma’s Syntax

The directives and clauses in italics can be replaced by appropriate implementations
depending on the structure of the code. We can have only one directive on each line of

code, which can be followed by more than one clause.

41

Compute Constructs of OpenACC: OpenACC API has two compute constructs namely
1. Kernels and 2. Parallel construct. Both constructs have the same goal, but they are used
in different contexts.

1. Kernels Construct: When the kernels construct is applied to the loop nest, it is
converted to parallel kernels by compiler to run efficiently on the GPU. This is a three-
step process. The first step is to identify a parallelizable loop. The second is to map this
abstract loop parallelism on to the concrete hardware parallelism. For NVIDIA GPU, this
means mapping a parallel loop onto a grid-level or thread-level parallelism. In OpenACC,
gang level parallelism is mapped to grid-level parallelism and vector parallelism mapped
to thread-level parallelism. In the third step, the compiler has to generate and optimize the
block of code to implement the selected parallelism. Hence, the kernels directive uses

classical automatic parallelization to identify and parallelize the loops.

#pragma acc kernels

{
for(1 =0; i< n; ++i)
a[i] = b[i] + c[i];

Table 4.3: Code Snippet for Sample Kernel Constructs

2. Parallel Construct: OpenACC parallel construct tries to solve the same problem as
that of the kernels directive. The only difference between the two is that the kernels
construct is implicit, giving more freedom to the compiler to analyze the loop, find
parallelism, and then map parallelism to the hardware threads. But in the case of parallel

constructs, the compile command is more explicit. Whenever we use the parallel

42

construct, it is the programmer's responsibility to analyze the loop and determine when it

is legal and appropriate to parallelize the loop.

#pragma acc parallel
{
#pragma acc loop
for(1 =09; i < n; ++i)
a[i] = b[i] + c[i];

Table 4.4: Code Snippet for Sample Parallel Constructs

Loop clause: An important observation from Table 4.4 is the use of the loop clause.
Loop is a work-sharing construct. When we do not use the loop clause with the

kernels/parallel directive, all the threads execute the code redundantly.

4.3 OpenMP

OpenMP is a high-level directive-based programming API for shared memory
multiprocessor architecture, which uses incremental changes to the existing program to
parallelize it. It includes a set of compiler directives/pragmas, library functions, and
environment variables. OpenMP is sufficiently expressive and efficient for many
applications. The directives used for parallelizing serve as compiler commands for C,
C++, and FORTRAN languages. The main aim of the OpenMP model is improving the
productivity of a programmer by accelerating the performance of the sequential code to
get comparatively better performance [31]. A better understanding of the programming
model and architecture of the target platform will help in implementing the right kind of

optimization techniques to achieve better performance.

43

4.3.1 Memory Model of OpenMP
As indicated above, OpenMP is a programming model for shared memory multicore

architecture.

Bus Interconnect

Uniform Memory Access Non-Uniform Memory Access

Figure 4.3: Memory Model for OpenMP [31]

In shared memory programming, each node is called a symmetric multi-processor (SMP),
and these SMPs access memory simultaneously in order to provide communications
among the processing elements. Compared to different heterogeneous memory
subsystems, programming a shared memory system is relatively easy. This is because all
SMPs share a single view of data and the communication between processors can be as
fast as memory accesses to the same location. We can have systems with two different
types of shared memory architecture: 1. Uniform memory access (UMA) as shown in
Figure 4.3, where all SPMs share the same memory and the memory access time is the
same for all cores. 2. Non-uniform memory access (NUMA) as shown in Figure 4.3

memory access time depends on memory system from which the processor is requesting

the data [31].
44

4.3.2 Execution Model of OpenMP

OpenMP uses the fork-join model for parallel execution. As shown in the figure below,
the execution of the program starts with a single thread, which is the main/master thread
created by the program. When the master thread encounters the parallel construct, it
creates a team of threads to perform the computation in parallel. The number of threads
created by the master thread depends on the value assigned to the environment variable
OMP_NUM THREADS or the number of threads provided, which is denoted as the

routine omp_set_num_threads (number_threads) [31].

master thread = L1
e Seal threads
e -
. . threads ./
parallel region parallel region parallel region

Figure 4.4: Fork-join OpenMP Execution Model [48]

4.3.3 OpenMP Programming Directives
OpenMP provides the compiler directives that can be inserted into the existing serial
program. We have a slightly different syntax for using OpenMP pragmas in C/C++ and

FORTRAN as shown in the Table 4.5 below.

45

C/C++ directive

#pragma omp parallel [clause ...] newline

format if (scalar_expression)
private (list)
shared (list)
default (shared | none)
firstprivate (list)
reduction (operator: list)
copyin (list)
num_threads (integer-expression)

structured_block
1$OMP PARALLEL [clause ...]
Fortran IF (scalar_logical_expression)

PRIVATE (list)

SHARED (1list)

DEFAULT (PRIVATE | FIRSTPRIVATE |
SHARED | NONE)

FIRSTPRIVATE (list)

REDUCTION (operator: list)

COPYIN (list)

NUM_THREADS (scalar-integer-expression)

structured_block

I$OMP END PARALLEL

Some important sets of directives for OpenMP API are described briefly in the following

Table 4.5: OpenMP Directive Usage

sections. The list is not exhaustive.

Parallel Region Construct:

Parallel region construct is one of the most important parts of the OpenMP
programming, as this construct is responsible for creating the threads that are, in turn,
responsible for parallel programming. In the program, a single thread is executed until it

meets the PARALLEL construct. Once the program encounters the PARALLEL

46

construct, it creates a pool of threads, and all these threads execute the upcoming block of
code in parallel. Every thread executes each line of code in parallel until they encounter
the implicit barrier at the end of the parallel clause [31]. After this point, the master

thread takes over the execution as shown below.

int nthreads, tid;

/* Fork, a team of threads with each thread having a private tid
variable */
#pragma omp parallel private(tid)

/* Obtain and print thread id */
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);

/* Only master thread does this */

if (tid == 0)
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}

} /* All threads join master thread and terminate */

Table 4.6: Sample OpenMP Code Snippet

Work-sharing Constructs:

Work-sharing constructs are very important, as they help in dividing work among all the
threads, which are created using the PARALLEL construct. Work-sharing constructs do
not create more or new threads. If we do not have the work-sharing constructs, and if we
have only parallel constructs for a block, multiple threads will be created, but every

thread executes the entire block of code. This will degradation the performance because
47

of the overhead associated with the construct itself. We have different types of work-
sharing constructs. Do/for constructs allow data parallelism by dividing the loop
iterations among the threads. Sections' construct allows functional parallelism, as they
allow different pieces of code to be executed by a single thread. The single construct is
used to serialize the block or section of code; that is when we want some code to be

executed by a single thread, we use a single construct [31].

l master thread l master thread l master thread
| _FORK_|
% team l s%lo* l team l lsniE l team

JOIN JOIN JOIN
l master thread l master thread l st thraad

Figure 4.5: Work-sharing Constructs [31]

Nested Parallelism in OpenMP:
OpenMP allows nested parallelism. When a thread executing in a team encounters one
more parallel construct, the executing thread creates a group of threads and acts as a

master thread. This feature allows parallelizing recursive algorithms in a natural way [2].

48

Task Parallelism:

The TASK construct defines an explicit task, which may be executed by the encountering
thread, or deferred for execution by any other thread in the team. The data environment
of the task is determined by the data-sharing attribute clauses. Task execution is subject
to task scheduling. For more information on task scheduling and clauses, see the

OpenMP 3.1 specification document [31].

1$OMP TASK [clause ...]
IF (scalar logical expression)
FINAL (scalar logical expression)
UNTIED
DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
MERGEABLE
PRIVATE (list)

Fortran FIRSTPRIVATE (list)

SHARED (list)

block

1$OMP END TASK

#pragma omp task [clause ...] newline
if (scalar expression)
final (scalar expression)
untied
default (shared | none)
mergeable
private (list)
firstprivate (list)
shared (list)

C/C++

structured_block

Table 4.7: OpenMP Task Clauses

49

Synchronization Constructs:

Synchronization is a kind of inter-process communication that is required to maintain
order and data dependencies in the program. PARALLEL has implicit synchronization at
the end and in the beginning. DO, MASTER, and SINGLE constructs have implicit
synchronization at the end of the construct. OpenMP provides a rich set of
synchronization constructs like ATOMIC (to perform atomic operations), and FLUSH

(provides point-to-point synchronization) [31].

Data Scope Attributes:

Defining the scope of the variables is performed explicitly in OpenMP in order to ensure
the correct results. As OpenMP is a shared memory programming model and many of the
threads work on the same data, some variables change, and some should retain their
values. Some variables should be the same for all threads, but some will have an updated
value. All these conditions are taken care in OpenMP using the data scoping clauses
explicitly. These overwrite the scoping provided by the programming environment /
language. Data scoping is provided by PRIVATE, FIRSTPRIVATE, LASTPRIVATE,
SHARED, DEFAULT, REDUCTION, and COPYIN constructs. These are used in
conjunction with the PARALLEL constructs to define the data scope for the entire block

[31

50

4.4 OpenCL

OpenCL is a programming language that helps in writing the programs for heterogeneous
platforms. OpenCL routines are called kernels, which are executed on accelerators.
OpenCL can be used to program, NVIDIA GPUs as well as AMD APUs. One of the
biggest disadvantages of OpenCL is it has a significant learning curve compared to other
heterogeneous programming languages.

Host Application Development:

The first step in OpenCL programming is writing a host application. This program
runs on the host and dispatches kernels to the coprocessor. This application can be
programmed using C or C++, and every host application requires five data structures
from OpenCL: cl device id, cl kernel, ¢l program, cl command queue, and cl context
[33].

A host application distributes kernels to devices, and this kernel is represented by
a cl_kernel. The device receives kernels from the host represented by a cl device id.
The host selects kernels from a program, which is represented by a ¢l program. Each
device receives kernels through a command queue. In code, a command queue is
represented by a ¢l command queue [33] [32]. The OpenCL context allows devices to

receive kernels and transfer data. In code, a context is represented by a cl_context.

51

Chapter 5. Developing an Accelerator Benchmark Suite

The main goal of developing an accelerator benchmark is to evaluate an OpenACC
model for heterogeneous computing. This benchmark also helps to understand how
different clauses implemented in new OpenACC2.0 can be used to improve performance
compared to OpenACC 1.0, CUDA, and OpenMP.

We have different programming models and standards like OpenCL, CUDA, and
OpenMP, all of which support accelerator programming. OpenACC intends to achieve
better portability across different accelerator architectures.

OpenACC code interoperates well with the broader ecosystem of libraries and
parallel programming languages for accelerated development. Developers may choose
vast majority of their application development with OpenACC.

We compare the performances of the benchmarks created using an accelerator
benchmark suite with already existing accelerator models like CUDA and OpenMP.

Portability is of major concern while programming heterogeneous systems.
Although there are low-level languages, such as CUDA, which is widely used to program
GPUs, it is certainly not a portable approach. The main advantage of using CUDA is that
it has more control over GPU architecture and offers programmers efficient programming
techniques. Using OpenACC for accelerators is a viable approach while addressing the
portability factor. In this work, we have certainly achieved portability by using

OpenACC, but not the same performance as with a CUDA program. For example,
52

stencil code shows that the performance of the OpenACC code is ~77% of that of CUDA
code. It may be acceptable to trade off higher productivity for lower performance as long
as the performance of the high-level approach is not too low.

The OpenACC model is inspired by OpenMP; both are high-level programming
model approaches. OpenACC as of today is more mature for accelerator programming
compared to OpenMP. This helps in exploiting the massive capabilities of GPUs.
Although the hardware used for OpenMP and OpenACC are significantly different from
each other, comparative analysis between both models helps to understand how an
OpenMP-like model, i.e. OpenACC, can be used efficiently for accelerators. The
OpenMP 4.0 version, which was released recently, also adds support for GPU
accelerators [42]. This comparison will help us in understanding how well OpenMP

supports programming for GPU architecture.

5.1 Heterogeneous Benchmark Suite

There are various accelerator benchmarks created to compare and analyze the
performance of applications with respect to runtime, power consumption, etc. We select
the benchmarks, depending on the aim with which they are created and their usefulness

with the given architecture.

5.1.1 Overview
On using OpenACC for GPU programming, “Let me start by stating that OpenACC does

not make GPU programming easy. You will hear some vendors or presenters saying that

53

OpenACC or some other language, library or framework makes GPU programming or
makes parallel programming easy. Do not believe any of these statements. GPU
programming and parallel programming is not easy. It cannot be made easy. However,
GPU programming need not be difficult, and certainly can be made straightforward,
once you know how to program and know enough about the GPU architecture to
optimize your algorithms and data structures to make effective use of the GPU for
computing. OpenACC is designed to fill that role.” - Michael Wolfe, The Portland
Group [35].

Background work involves understanding a different set of benchmarks, target

architecture and intent of developing. Some benchmarks are listed in the section below.

SHOC Benchmark: The Scalable Heterogeneous Computing Benchmark Suite (SHOC)
is a collection of benchmark programs that test the performance and stability of systems
using computing devices with non-traditional architectures for general-purpose
computing and the software used to program them. Its initial focus is on systems
containing Graphics Processing Units (GPUs) and multi-core processors and on the
OpenCL programming standard. It can be used on clusters as well as individual hosts
[36].

In addition to OpenCL-based benchmark programs, SHOC also includes a Compute
Unified Device Architecture (CUDA) version of many of its benchmarks for comparison

with the OpenCL version. Multiple benchmark applications are written in both OpenCL

54

and CUDA. SHOC implements cluster-level parallelism with MPI. For multiple GPUs
per node, SHOC provides node-level parallelism [37].

The SHOC benchmark suite is divided into two primary categories: stress tests
and performance tests. The stress tests use computationally demanding kernels to identify
OpenCL devices with bad memory, insufficient cooling, or other component problems
[37]. The performance tests are further subdivided according to their complexity and the

nature of the device capability they exercise.

Rodinia Benchmark: The Rodinia benchmark is published by the University of
Virginia. A researcher desiring a set of GPU computing source codes to experiment with,
but who does not need any kind of uniform scripting environment for code multi-
versioning, collecting performance, results, or changing platform settings across all
benchmarks, may find the Rodinia benchmarks to be a better fit [34]. The Rodinia
benchmarks have no compilation complexity other than standard source code and
makefiles to understand. The support in Parboil provides easy solutions for conducting
certain kinds of research experiments at the cost of a slightly more complex compilation
and execution system. Rodinia is similar in philosophy and development of applications
compared to the Parboil benchmarks. They contain a similar mixture of building-block
kernels and applications, and also support both CUDA and OpenCL for most benchmarks

[38].

55

5.2 Using OpenACC 2.0

OpenACC is an emerging high-level model available for GPU programming. It gained a
lot of popularity in a very short period of time. We have some of the benchmarks that
have implemented OpenACC versions. Porting applications using OpenACC1.0 are
complicated, as they lack some key features. As OpenACC 1.0 did not have support for
separate compilation units, it also lacked support for function calls as separate
compilation units [14].

The rationale behind the release of OpenACC 2.0 was to enhance the productivity
of programmers with more tools to enable them to write code and exploit the underlying
GPU architecture.

Adding separate compilation unit is one of the most important features of
OpenACC2.0. Function calls, which are very important elements of the programming
language, are missing from the OpenACC 1.0 spec, because of the unavailability of the
linkers to some targets. Thus, we needed to inline all the function calls in OpenACC 1.0

[41].

5.2.1 Routine Directive

Procedure calls and separate compilations are two of the most important features of any
high-level programming language, as they allow modularity and also help in adding
libraries and other components. OpenACC 1.0 did not support function calls from inside

the parallel or the kernels region, as it lacked linker support. Thus, programmers must

56

manually inline the function calls in OpenACC 1.0. This was one of the main limitations
of OpenACC 1.0 [35] [43].

OpenACC 2.0 introduces a new routine directive that enables calls to the routines
to be made from within the compute region. This allows the compiler to build a host and
device version of the function separately, allowing the device version to be called from
the compute region. Using the routine directive, we can also specify the level of
parallelism that should be applied to the called routine by inserting one of the gang,

worker, vector, or seq clauses [43].

#pragma acc routine worker extern #pragma acc routine worker
void matvec(float *v, float *x , void matvec(float *v, float *x ,
float *a, int i,int n); float *a,int i, int n)
{
#pragam acc parallel loop gang float xx=0;
for(int i=@;i<n;i++) #pragma acc loop reduction(+:x)
{ for(int j=0;j<n;++j)
v[i]+=rhs[i]; xx+=al[i*n+j]1*v[]j];
matvec(v,x,a,i,n);
//procedure call on the device x[1i]=xx;
//in OpenACC 1.0 inlines the function
call }
}

Table 5.1: Usage of Routine Directive [35]

5.2.2 Nested OpenACC Regions
Nested parallelism, which is introduced in OpenACC 2.0, allows kernel launches from
within the kernels.

Dynamic parallelism and function calls complement each other. In the sense,

when we have function calls on the GPUs, it is most likely that the function that is called
57

will also have structured loops that can be parallelized. If dynamic parallelism were not

supported, then function calls would not have been very useful.

#pragma acc routine worker extern #pragma acc routine void matvec(float

void matvec(float *v, float *x , *v, float *x , float *a,
float *a, int i,int n); int i, int n)

{
main{ -
.. #pragma acc parallel loop
#pragam acc parallel loop for(int j=0;j<n;++j){..}
for(int i=0@;i<n;i++) }
matvec(v,x,a,i,n);
}

Table 5.2: Nested Parallel Regions

The goal of the routine calls and nested parallelism is to move as much code to the
accelerator as possible. This allows decoupling of the device code from the host and

reducing the data movements as much as possible.

5.2.3 Unstructured Data Regions

OpenACC 1.0 fostered structured data lifetimes, which are not always very practical
because of the structure of the code. OpenACC 2.0 allows unstructured data lifetime for
variables by implementing two new constructs: “acc enter”” and “acc exit” clauses. Enter
and exit data region clauses provide flexibility on how long the data can stay on the
device or moved back to the host only when it is finally done. This will further reduce
some of the unwanted data movements compared to the structured data movement and
help overcome the bottlenecks associated with data transfer on the PCI bus. In C++

programming, we can relate the use of unstructured data with the use of constructors and

58

destructors, as data is created in one function and deleted in order. Thus, we can keep the
data on the device longer. If there is no “exit data”, then the lifetime of the variable

continues until the end of the program [43].

class Matrix {
Matrix(int n) {
len = n;
v = new double[len];
#pragma acc enter data create(v[@:len])
}
~Matrix() {
#pragma acc exit data delete(v[@:1len])
delete[] v;

#pragma acc enter data
copyin(a[@:n]) create(b[@:n])

//some blocks of code, need not be
structured block

#pragma acc exit data delete(a[@:n])

}
#pragma acc exit copyout .
; private:
delete(b[0©:n]) double* v;
int len;
}s

Table 5.3: Unstructured Data Lifetime [35]

In OpenACC 1.0, the lifetime of the data is only defined between the structured blocks.
With the unstructured data region, the lifetime of the data region is not controlled by the
set of curly braces, but rather we can define the data lifetime of the variables depending
on the program flow [44]. There are three types of unstructured data regions. The first
one is enter and exit data constructs, which can be added anywhere in the code, but are
normally added where data is created and deleted in the program respectively. Secondly,
“acc_malloc” is used to allocate data on the device and “acc_free” to free data from the

device. Data allocated using acc malloc is only available on the device when no host

59

copy exists. To indicate that only a device copy is available, we use a device pointer,
which is done using “acc declare” pragma; for example: acc declare deviceptr (result).
OpenACC 2.0 also allows the creation of global variables. The need for global
variables comes from the fact that OpenACC 2.0 allows the separate compilation of
subprograms. We create global variables using the “Declare” directive, and these
variables are shared among multiple kernels. We have different versions of this directive:
1. Declare create - creates static data for both the host and device. Both copies should be
synchronized using the update directive. 2. Declare device resident - creates data only on
the device and the memory is not allocated to this variable on the host. Thus, this variable
can be used only on the device for computation. For instance, if we are using some arrays
that contribute to the computation as input elements, then it’s better to make these

variables device-resident [35] [45].

5.2.4 Atomic Directive

The OpenACC atomic directive ensures that a particular variable is accessed and/or
updated atomically (no two gangs, workers, or vector threads access the location
simultaneously) to prevent indeterminate results and race conditions. In other words, it
prevents one thread from encroaching on other threads due to accessing a variable

simultaneously, resulting in different results run-to-run [45].

60

void main() {

if (val and condition=true)

{

#pragma acc atomic capture
Number_of_waves++;

Table 5.4: Atomic Construct

Without the atomic directive, it is not possible for multiple threads to increment the value
of Number of waves simultaneously, which will likely result in an incorrect final count.
The atomic directive ensures that no two threads access Number of waves at the same

time.

5.2.5 Tile Construct

Loop tiling is one of the compiler optimizations that partition the loop of the larger
multidimensional array into smaller chunks. The aim of creating blocks of data is to
ensure that data stays in the cache for loop iteration. This enhances cache reuse.

Normally, the tile clause is used along with the cache clause.

for(i=0; i<N; for(j=0; j<N; j+=S) #pragma acc parallel loop
++1) for(i=j; i<min(N, private(i,j) tile(s8,8)
{ j+S); ++i){ for(i=0; i<rows; i++)
e cee {
//blocks of code // S - is the tile size for(j=0; j<cols; j++)
} //blocks of code
} out[i*rows + j] =
in[j*cols + i];
}
}

Table 5.5: Explaining Tile Clause Code Snippet

61

5.2.6 Support for Multiple Device Types
OpenACC 2.0 implements the device type clause, and the compiler can direct the part of
the code to run on a particular device that is a parameter to the clause. We can tune the

program, according to the particular device architecture by using these directives [43].

#pragma acc parallel loop \
device_type(NVIDIA) vector_length(256) \
device_type(radeon) vector_length(512) \
vector_length(64)
for (int i=0; i<n; ++i)

{
}

sum[i] = a[i] + b[i];

Table 5.6: Syntax for Using Multiple Device Types [43]

62

5.2.7 Extended Runtime API

A complete set of runtime APIs added to OpenAC2.0 are shown in the table.

acc_wait_async

Enqueues wait operations on one async queue
for the operations previously enqueued on
another async queue.

acc_copyin,
acc_present_or_copyin

Allocates memory on the accelerator device to
correspond to the specified host memory, and
copies the host data to that device memory if the
data is not already present on the device.

acc_create,
acc_present_or create

Allocates memory on the accelerator device to
correspond to the specified host memory if the
data is not already present on the device.

acc_copyout

Copies data from the device memory back to
host memory and deallocates the device
memory.

acc delete

Deallocates the device memory corresponding
to the specified host memory.

acc_map_data,
acc_unmap_data

Maps and unmaps previously allocated device
data to the specified host data, respectively.

acc_deviceptr

Returns the device pointer associated with a
specific host address.

acc_hostptr

Returns the host pointer associated with a
specific device address.

acc_is_present

Tests whether a host variable or the array region
is present on the device.

acc_memcpy_to_device,
acc_memcpy_from_device

Routine copies data to and from local memory to
device memory, respectively

acc_update device,
acc_update self

Copies data from device memory to the
corresponding host memory.

acc_wait, acc_wait_all
instead of
acc_async_wait and
acc_async_wait_all

Wait routine waits for completion of all
associated asynchronous operations.

Table 5.7: New OpenACC 2.0 Clauses and Directives for Data Management [45]

63

OpenACC 2.0 includes some of the run-time library routines to enhance data
management. Acc_deviceptr and acc hostptr are used to access the device and host
copies of the variables that are allocated using the declare directive. acc_copyin is used to
allocate memory on the device and then copy the data, which is specified in the clause to
allocate device memory. The acc_create clause creates memory on the device, which is

similar to using “acc data enter” with the create clause [43].

5.3 Testbed Setup

Features of the testbed used for measuring the performance of the benchmarks are as
listed:

GPU details: NVIDIA Tesla K20c (GK110GL), with width of PCI bus: 64-bit

CPU details: Intel (R) Xeon (R) E5520@ 2.27GHz, 2 sockets, 4 cores per socket, two
hyper threads per core

Operating system: Linux 2.6.18-398.¢el5, 64-bit

Compiler: PGI 14.9

64

Mach nz |3263)

i i o
MUMA&N3de P20 (1636 NUVAN0de P21 [15G3)
F—{—— ac1z0851c8:
Soikel PAN Seckel PA1
13 (197KF) | | 13 1R1974R! |
L2 (2064D; | | L2 256K} | | LZ (255KD) | | L2 (ZZ64D! | | L2123EK) | LZ (256KDi | | _Z(2564D0) | | L2 |23EKD) | —{+—— =C13085.1092
_ N . _ _ N _ _ = |
L1d (Z24B! Llc i32K3) Lid132KE) L1d (Z24E! L1d [3ZK3) LId i32KEi 1d (224B) Llc [3ZK3)
| L1t (42KB| ” LLi{224k) ” Lot k3] | | LIni32KE| | | LL [32kE) | | Liij32kE) | | (3 2KE) ” LI [32KE) | =
Core P20 Core P£] Core F23 Corz P83 Cere P20 Cors PE1 Zote PE2 Core P23 —— FC E036:3822
FLIPL0 P.oF&7 FLIPL4 FLIP2R IR FLIPL3 Al pis P17
FLIPZR PLFLI0 PLIPLTZ FLIPX14 IETE] PLIPLT AIPIT P12L15

Heost: zeil.ez.ah.cde

Incescs: paysical

Figure 5.1: Architecture of the Coil System

5.4 Parboil OpenACC 2.0
The Parboil benchmark has multiple scientific and commercial applications including
image processing, bimolecular simulation, fluid dynamics, and astronomy, which are
written in C and C++ applications. As of today, this benchmark has been used by many
researchers to implement the latest versions of the applications for different programming
architectures and programming languages, permitting a performance comparison over the
other already present accelerator versions. Parboil has been implemented for Serial,
OpenMP-base, OpenCL-base, CUDA-base, CUDA-Fermi, and CUDA-generic in the
latest release, which targets multicore CPUs and GPUs [34].

The goal of the Parboil benchmark is to: 1) Represent the emerging scientific and
commercial applications of throughput computing; 2) Represent application algorithms

exhibiting low algorithmic complexity; 3) Scale to very wide parallel architecture,

65

anticipating the potential for exponential growth in machine width and choosing
algorithms that will remain applicable for several years; and 4) Provide application
implementations and a benchmarking infrastructure that will support the work of various
research interests, at minimum encompassing architecture, microarchitecture, compiler,
language, and programming environment research [34].

The benchmarks below are ported to the GPU architecture using the OpenACC
programming model. We have also used advanced compute directives and constructs
provided by OpenACC 2.0, which enhances the portability and also to get better

performance results for the benchmark.

5.4.1 Benchmark Porting and Result Analysis

Stencil: Stencil computations are fundamental to many of the large applications in
scientific computing. Stencil computations are used for solving partial differential
equations, which are the building blocks for solving the Jacobi kernel, the Gauss—Seidel
method for image processing, etc. The computationally intensive nature of a stencil
algorithm makes it the best candidate for accelerator computing.

Parboil uses stencil code to represent the iterative Jacobi solver of the heat
equation on a 3D structured grid [34]. In stencil code, we perform sequential iterations
through a given array. In every iteration array elements are updated with the new values
using neighboring array elements with the specified pattern. The pattern in which new

values are computed is repeated for the entire computation, hence the highly parallel

66

nature of the code. Computations in the stencil are tightly coupled to neighboring points,
making it memory-bound and, thus, increasing computing time [48].

In the code snippet, line 1 is where the OpenACC kernel is placed, which has a
parallel computation. When the compiler encounters a “pragma acc kernels” keyword, it
launches multiple threads that perform the following computation in parallel. On the
same line, we also have copy construct with A0 [0:nx*ny*nz] and Anext[0:nx*ny*nz]
attributes. This construct is shorthand for present copy, which first confirms if the
variables are already present on the GPU for computation. If yes, then the data that are
already on the GPU is used for the computation, ignoring the copy command. And if the
data are not present on the GPU, then the compiler copies the data to the GPU, which will
be followed by the computation in the loop. One important thing to observe is while
performing computations on the GPU, the data are moved back and forth between the

host and GPU, which definitely degrades the performance.

67

O 0 N O U1 A W N R

[
N RO

13
14
15
16
17
18
19
20
21
22

#tpragma acc kernels pcopy(A@[@:nx*ny*nz], Anext[@:nx*ny*nz])

{

#pragma acc loop independent vector
for(i=1;i<nx-1;i++)

{
#pragma acc loop independent gang vector
for(j=1;j<ny-1;j++)
{
#pragma acc loop independent gang vector
for(k=1;k<nz-1;k++)
{
Anext[Index3D (nx, ny, i, j, k)] =
(A@[Index3D (nx, ny, i, j, k + 1)]
AQ[Index3D (nx, ny, i, j, k - 1)] +
A@[Index3D (nx, ny, i, j + 1, k)] +
AQ[Index3D (nx, ny, i, j - 1, k)] +
A@[Index3D (nx, ny, i + 1, j, k)] +
AB[Index3D (nx, ny, i - 1, j, k)])*c1
- A@[Index3D (nx, ny, i, j, k)]*co;
}
}
}

One of the best optimization techniques that programmers can implement for accelerator
codes is to place a data construct to cover the larger scope of the program. This is
important when we have more than one kernel and all the data computation is
predominantly performed on the main array for the program, on the arrays used as input,
and on some arrays that are constantly updated. On lines 3, 6, and 9, we have an acc loop
clause; these are the work-sharing constructs. If we do not place these clauses on these

lines, then all the threads end up performing all the computations. The consequence of

Table 5.8: Stencil Code Snippet

68

this is much worse when compared to serial code. This is because we are creating more
overhead for the program to run with threads, but without distributing the work across
threads.

On lines 3, 6, and 9, we also have an independent clause, which informs the
compiler explicitly to consider the array elements as independent with respect to the
previous iterations. If we do not specify this clause, then the compiler warns the user by
raising an error flag, stating that a loop carried dependency exists between the loop
iterations.

On lines 3, 6, and 9, we have vector, gang vector, and gang vector clauses. By
using these clauses, we tell the compiler explicitly which level of parallelism should be
applied for the loops that follow. Specifying these, we can achieve fine-grained
parallelism.

Stencil gives the best performance with OpenACC with respect to CUDA, which
exhibit nearly identical results. For the default problem size [total number of elements:
6777216 (nx = 512 : ny = 512 : nz = 64)], CUDA and OpenACC exhibit good
performance gains over OpenMP. This indicates that as the problem size increases, we
can see better performance in CUDA and OpenACC as they are best suited for large sets
of data that are highly parallel in nature. The performance gain of OpenACC with respect
to OpenMP for the default size is attributed to the fine-grained parallelism applied to the

main computational loop of the stencil program.

69

Stencil Benchmark

\

w
o
i

N
ol
i

® OpenMP

H Cuda

[y
vl
3

_
(=]
3

Openacc

Execution Time(Seconds)
N
o

AR—

oS v
1

default small
Problem Size

Figure 5.2: Execution Time Graph — Stencil

Histogram (histo): The histogram input set follows a Gaussian distribution in the input.
The histogram benchmark is a straightforward histogramming operation that accumulates
the number of occurrences of each output value in the input data set. The output
histogram is a two-dimensional matrix of char type that saturates at 255. The dimensions
of the histogram (256 W x 8192 H) are very large, yet the input set follows a roughly
Gaussian distribution, centered in the output histogram. Recognizing this high
concentration of contributions to the histogram’s central region, the benchmark
optimizations mainly focus on improving the throughput of contributions to this area
[34].

For creating an output of histogram operations, we need to check if each and

every pixel value is less than 255. If yes, then we have to update the internal value

70

associated with the image. Updating the histo value is atomic, as only one thread should
be updating this value at any given time. Thus, we use the “acc atomic update” feature
provided by OpenACC 2.0. This feature was not available in OpenACC 1.0. Atomic is
one of the most important features in thread programming, as it allows the programmer to
have a lock on the variable so that only one thread can access the variable at any given

point. We use atomic update on line 7, which locks the histo array to be accessed by only

one thread.
1 #pragma acc parallel loop
5 for (i = 0; i < img_width*img_height; ++i)
3 {
4 const unsigned int value = img[i];
5 if (histo[value] < 255)
6 {
7
8 #pragma acc atomic write
9 {
10 histo[value]=histo[value]+1 ;
11 }
12 }
13 !}

Table 5.9: Use of Atomic Update in Histogram

Atomic is one of the most important implementations provided by OpenACC 2.0.
Without this directive, we would not be able to parallelize any part of the computation.

We can also use the new data management features “acc enter data” and “acc exit data

provided by OpenACC 2.0. We move data to the GPU once data are allocated on the host

71

and then free the data just before the data is completely utilized. This is one of the most
powerful features provided by the new OpenACC implementation because it allows the

porting processes to follow the natural program flow.

unsigned int* img = (unsigned int*) malloc
1 (img_width*img_height*sizeof(unsigned int));
unsigned char* histo = (unsigned char*) calloc

2 (histo_width*histo_height, sizeof(unsigned char));

#pragma acc enter data

3 create(histo[@:histo_width*histo_height],img[0@:img_width*img_height])

121 pb_SwitchToSubTimer(&timers, outputStr, pb_TimerID_I0);
#pragma acc exit data copyout(histo[@:histo_width*histo_height])
122 delete(img)

Table 5.10: Unstructured Data Lifetime Feature

The histogram benchmark localizes atomic operation of the main loop while calculating
values for the output histogram. The OpenMP version does not run for large problem
size, as it fails to allocate enough memory. The execution time of OpenACC is greater
when compared to the CUDA version. This is because of the atomic region. CUDA,
which is a low-level language, has more control of the architecture, maximizing the
performance of the architecture. In OpenACC, atomic regions are not as mature as
CUDA. When we have an atomic region inside the main loop, which has parallelism, it
makes the part of the code sequential. This adds overhead and, hence, increases the

runtime of the program.

72

Histogram - Benchmark

///

@ 30 -

S i

Q

‘;-,‘20 —// OpenMP
® Open

g 15 v

= H Cuda

£ 10 1

= Openacc

< 5 A

Q

&

0

default large
Problem Size

Figure 5.3: Execution Time Graph - Histogram

Cutoff-limited Coulombic Potential (CUTCP): Some molecular modeling tasks require
a high-resolution map of the electrostatic potential field produced by charging atoms
distributed throughout a volume [17]. Cutoff-limited Coulombic Potential (CUTCP)
computes a short-range component of this map, in which the potential at a given point
comes only from atoms within a cutoff radius of 12 A [34].

This program contains the definition and usage of struct elements, which are
structure for atom, lattice, and vec3. OpenACC 1.0 versions did not support computation
of complex structure elements, but the newer version facilitates the use of complex
structures. In this application, we traverse the grid, which is spatially distributed, and then

find the closest grid point with a position less than or equal to the atom. Next, we identify

73

the extent of the surrounding box of grid points, trim the box edges so that they are within

the grid point lattice, and then finally loop over the surrounding grid points.

112 #pragma acc parallel data copy(next[@:sizel], first[@:ncell])

113 #pragma acc loop gang, vector private(atom)

Table 5.11: Code Snippet for CUTCP

We use acc parallel to start a kernel, and then use loop gang to divide the
computation among the gang of threads. We make the atom as private so that every
thread can have its own copy of the atom and process it independently, as sharing an
atom among the threads will lead to inconsistent results. Analyzing these features in the
programs is very important to ensure accuracy of results while performing the
optimization techniques.

The optimized CUTCP application is compute-bound. Unlike the other compute-
bound benchmarks, this kernel achieves high computational throughput partly at the cost
of performing redundant computation.

The percentage of redundant computation is the primary performance limiter for
the hardware configuration. The reasonable performance of an Opencc version of the

CutCP application for large problem size is due to the fine-grained level of parallelism.

74

CUTCP - Benchmark

=20 -4

=

=

g 15 -

T ® OpenMP
£ 10 -

: E Cuda

.% 5 _/ p Openacc
* .

K

(=)

large small
Problem Size

Figure 5.4: Execution Time Graph — CUTCP

Sparse Matrix-dense Vector Multiplication (SpMV): Sparse matrix-vector
multiplication is the core of many iterative solvers. SpMV is memory-bandwidth-bound
when the matrix is large. Thus, most optimization efforts have focused on improving the
memory bandwidth for both regular and irregular access. In this program, we store sparse
matrix data in the Jagged Diagonal Storage (JDS) format. JDS works with parallelism of
finer granularity more easily than others. Accessing data in the JDS format naturally
results in stride-one access to the sparse matrix elements. Preaching is also applied to
hide more memory latency when high thread-level parallelism is not sufficiently available
to hide latency alone [34].

SpMV computes the product of a sparse matrix with a dense vector. The sparse

matrix is read from files in a coordinate format, converted to the JDS format with

75

configurable padding, and translated for distribution to different devices. As the problem

size increases, OpenACC clearly delivers the best performance among all three

languages.
#pragma acc data copyin(h_nzcnt,h_perm,h_ptr,h_indices,h_data,h_x_vector),
copy (h_Ax_vector)
{
#pragma acc loop gang, vector
for(p=0;p<50;p++)
#pragma acc loop gang, vector
for (1 =0; i < dim; i++)
{
sum = 0.0f;
bound = h_nzcnt[i];
#pragma acc loop seq
for(k=0; k<bound; k++)
{
j = h_ptr[k] + i;
in = h_indices[]j];
d = h_data[j];
t = h_x_vector[in];
sum += d*t;
}
h_Ax_vector[h_perm[i]] = sum;
}
}
}

Table 5.12: Code Snippet for SPMV Compute Loop

76

SPMV - Benchmark

h

\:\\\\\\\\

w

® OpenMP

H Cuda

=

Openacc

Exection Time(seconds)
[\

i

o A

small large

Problem Size

Figure 5.5: Execution Time Graph — SPMV

Lattice-Boltzman Method Simulation (LBM): The LBM is a method of solving the
systems of partial differential equations governing fluid dynamics [49]. Its
implementations typically represent a cell in a lattice with 20 words of data: 18 represent
fluid flows through the six faces and 12 edges of the lattice cell, one represents the
density of fluid within the cell, and one represents cell type or other properties. In a
timestep, each cell uses the input flows to compute the resulting output flows from that
cell and an updated local fluid density [34].

The major difference between LBM and a stencil application is that no input data
is shared between cells; the fluid flowing into a cell is not read by any other cell.
Therefore, the application has been memory-bandwidth-bound in current studies, and

optimization efforts have focused on improving achieved memory bandwidth [34].

77

Functions

Computation performed

LBM_allocateGrid

Allocates grid points, which will be used for simulation.

LBM_freeGrid

Deallocate the memory after the computation is done.

LBM_initializeGrid

Set the grid with initial values like position, velocity, and time.

LBM_swapGrids

Swaps the grids to initiate a simulation.

LBM_loadObstacleFile

This file reads the collision objects in the grid space to create

a scenario for elastic collisions.

LBM_initializeSpecialCellsForLDC

Initializes special cells for accelerators.

loadValue

Loads the present state of each grid element.

LBM_initializeSpecialCellsForCha

nnel

Sets the IN_OUT_FLOW for the channel to be true or false

by calculating the position of the grid elements and obstacles.

LBM_performStreamCollide

Creates a destination grid, which is created after the collision
on the source grid by applying multiple sweeps against

obstacles.

LBM_handleInOutFlow

This function is very important in LBM. This handles the
simulation by handling the rate at which we have influx and

outflux of the particles.

LBM_showGridStatistics

Gives statistics for grid molecules like position, mass,

velocity, obstacle cells, and fluid cells.

storeValue

Stores the present state of each grid element.

LBM_storeVelocityField

Every time there is a collision, the velocity of the grid

molecule changes. This function stores the new velocity.

LBM_compareVelocityField

Compares velocity of molecule before and after collision.

Table 5.13: LBM Functions

78

GPU version of the LBM benchmark uses the most logical layout for software
engineering: a large array of cell structures. Data layout transformation results in an
optimized GPU version using a tiled structure-of-arrays [34].

The LBM simulation is a problem in the fluid dynamics simulation for an
enclosed, lid-driven cavity. This is one of the standalone applications with an execution
time of 170 seconds in OpenMP for long problem size. This program is heavily nested,
requiring fine-grained parallelism for better performance. We achieve reasonable
performance in LBM as we applied fine-grained parallelism to the innermost loop in the

LBM initializeSpecialCellsForChannel and LBM_performStreamCollide functions.

LBM - Benchmark
= 250 '
o y
§ 200 v
[
T 150 '/ B OpenMP
£ |~
: 100 - ® Cuda
=]
.§ 50 _// Openacc
X o AR S y

short long
Problem Size

Figure 5.6: Execution Time Graph - LBM

79

MRI non-Cartesian Q matrix calculation (MRI-Q): One of the original Parboil
benchmarks, MRI-Q, computes equation 3 in the GPU-based MRI reconstruction paper
by Stone et al. [50], and is based on the implementation used to publish their work. The
algorithm examines a large input data set representing the intended MRI-scanning
trajectory and the points that will be sampled. Each element of the Q matrix is computed
by a summation of contributions from all trajectory sample points. Each contribution
involves a three-element vector dot product of the input and output 3D location and a few
trigonometric operations. The output Q elements are complex numbers, but the inputs are
multi-element vectors. An output element (and its corresponding input denoting its 3D
location) is assigned to a single thread. To ensure that the thread-private data structures
exhibit good coalescing, a structure-of-arrays layout was chosen for the complex values
and physical positions for a thread’s output.

The shared input data set, however, is cached using GPU constant memory or
some other high-bandwidth resource, and elects an array-of-structures implementation to

keep each structure in a single cache line [34].

80

#pragma acc parallel loop
for (indexK = @; indexK < numK; indexK++) {
for (indexX = @; indexX < numX; indexX++) {
expArg = PIx2 * (kVals[indexK].Kx * x[indexX] +
kvals[indexK].Ky * y[indexX] +
kvals[indexK].Kz * z[indexX]);

cosArg = cosf(expArg);

sinArg = sinf(expArg);
float phi = kVals[indexK].PhiMag;
Qr[indexX] += phi * cosArg;

Qi[indexX] += phi * sinArg;

Table 5.14: Code Snippet for ComputeQ CPU Function

MRI-Q is a fundamentally compute-bound application, as trigonometric functions are
expensive and the regularity of the problem allows for easy management of bandwidth
[34]. Therefore, once tiling and data layout removes any artificial bandwidth bottleneck,
the most important optimizations where the low-level sequential code optimizations
improving the instruction stream efficiency by applying loop unrolling.

The MRI-Q application computes a matrix Q, representing the scanner
configuration for calibration, used in a 3D magnetic resonance image reconstruction

algorithm in non-Cartesian space. This benchmark uses complicated structure data types

81

as program variables that are not supported in OpenACC 1.0. As seen in the code snippet
above, calling the trigonometric functions from inside the parallel region increases

overhead somewhat.

_
o
3

MRI-Q - Benchmark

//
= 60 1
E 50 %
;é, 40 Vv
% 30 —// ® OpenMP
E 2 -/ lguda
g // penacc
><
4]

(=)

small large
Problem Size

Figure 5.7: Execution Time Graph — MRI-Q

SGEMM: SGEMM is a dense matrix multiplication application, which is a building
block of many linear algebra equation systems. Some of the popular implementations of
this algorithm from major vendors are CUBLAS (from CUDA), MKL, and ACML. We
use the C++ version of the application’s inside-out code to implement the OpenACC
version. This application optimizes the input matrix into a vector array; this provides the
first level of wvery important optimization. Matrices are two-dimensional or

multidimensional in nature. When we use matrices, especially when the matrices are

82

dense and are very large, accessing elements will pose the biggest challenge and result in
a bottleneck, thus reducing the performance of the program.

We read column major matrix rows and columns and then convert them into
vector elements in the application. This helps improve the data locality and cache
performance significantly because of their access pattern. These features improve

computational performance as the size increases.

int matArow, matAcol;
int matBrow, matBcol;
std: :vector<float> matA, matBT;

/* Read command line. Expect 3 inputs: A, B and BT
in column-major layout*/

// load A
readColMajorMatrixFile(params->inpFiles[@],
matArow, matAcol, matA);

// load B~T
readColMajorMatrixFile(params->inpFiles[2],
matBcol, matBrow, matBT);

// allocate space for C
std: :vector<float> matC(matArow*matBcol);
Table 5.15: Code Snippet for Vectorising Column Major Matrixes to Vector Array

The code snippet shows how the input matrices are converted into vectors, and then these
vectors are used in GPUs for performing computations.

Sgemm contains one parallel OpenACC kernel — Sgemm_kernel, which is called from
the main function. Below is the code snippet showing how the computation is parallelized

using OpenACC.

&3

O 00N O U B WN B

[S Y
N P O

13
14
15
16
17
18
19

#pragma acc data copyin(A[(m*k)],B[(k*n)]) copy(C[(m*n)])
copyin(alpha,lda,ldb,beta,ldc)

{

#pragma acc parallel loop gang, vector (8)

for (int mm = @; mm < m; ++mm)

{

#pragma acc loop gang, vector (8)
for (int nn = @; nn < n; ++nn)
{

c = 0.0f;

#pragma acc loop seq

for (int i = 0; i < k; ++1i)

{

Q
1}

A[mm]+I * 1lda];
B[hn + i * 1db];

C += a * b;

o
1}

}

C[mm+nn*1dc] = C[mm+nn*1ldc] * beta + alpha * c;

The first step in parallelizing any loop using OpenACC is taking care of data movements.
In the program, vectors A and B are input elements that move to the GPU space for
computation, and C is the vector array where we store the results. The important thing to
observe here is we use copying (A,B) and copy (C), so A and B are copied to the GPU,
and once we complete the computation, vector C is copied as a result array back to the
host. Thus, after exiting the parallel compute region, A and B are deleted from GPU

memory, making space for the new kernels to be launched later in time. The data

Table 5.16: Code Snippet for SGEMM — sgemm_Kkernel

84

constructs help maintain the data for the entire loop iteration time, which reduces the
overhead involved in moving data back and forth for every iteration, which is the case in
the absence of the data clause.

Further down the function, we apply acc parallel on the outermost loop, creating
the threads needed for the parallel region. We split the computation of the outermost loop
into gangs and vectors of length. The second inner loop also spreads the computation
across the gang and vector, and finally the acc loop seq executes the innermost loop using
a sequence of threads. We have applied a fine-grained level of parallelism to the compute
kernel. Applying fine-grained parallelism is architecture- and compiler-dependent. Thus,
when we change the architectures, we should change the level of parallelism and
determine for every change how the performance varies. Implementing different levels of
parallelism help understand how different architectures react to specific levels of
parallelism.

One of the most widely and intensely studied benchmarks, this application
performs a dense matrix multiplication using the standard BLAS format. We apply loop
unrolling for realizing the best performance. Moreover, usage of efficient data

management constructs optimizes results.

85

SGEMM - Benchmark

® OpenMP

H Cuda

Openacc

small medium

Execution Time(seconds)
S - N w E €2 B
NN K
\\\ NN

Problem Size

Figure 5.8: Execution Time Graph - SGEMM

Breadth-first Search (BFS): The Breadth-first Search algorithm is a graph algorithm
used to search for a particular node in a given graph. We can also identify the shortest
path between two nodes using BFS. The Parboil benchmark uses the code from Luo et al.
[52] for implementing the BFS application. In BFS, we use the queue data structure to
store the data for the visited node. Then, the node is checked for conditions if the current
node is the one that we are looking for, and then we end the algorithms and return to the
main program. If the node does not match the requirement, then we enqueue the
neighboring nodes. If the node that we are searching for is not found, then we end the
search. Suppose we have V vertices and E edges in the program. Then, the complexity of

the program when we have to search the entire graph will be O(|E[+|V|).

86

std: :deque<int> wavefront;
wavefront.push_back(source);
color[source] = GRAY;
int index;
while(!wavefront.empty()){
index = wavefront.front();
wavefront.pop_front();
#pragma omp parallel for
for(int i=h_graph_nodes[index].x;
i<(h_graph_nodes[index].y +
h_graph_nodes[index].x); i++){
int id = h_graph_edges[i].x;
if(color[id] == WHITE){
h_cost[id]=h_cost[index]+1;

#pragma omp critical
wavefront.push_back(id);
color[id] = GRAY; }

color[index] = BLACK;

Table 5.17: Code Snippet for BFS OpenMP Version

This implementation does not work right now in OpenACC 2.0 because we do not have
“critical” incorporated into the script.

Openacc 2.0 does not support section functionality yet compare to OpenMP. Here
we tried using the “acc atomic” clause around the push back function because when we
are pushing an element or retrieving an element from the queue, it is always an atomic
operation. Applying “acc atomic” does not work because in the code above, because the
atomic function exists inside the push back function; thus, the surrounding
wavefront.push.back will not work. These changes should be performed inside the

push_back function because we are using a queue implementation from the std library.

87

In the section above, we measure the performance of Parboil benchmarks, which
are successfully ported using the OpenACC 2.0 specification. The performance parameter
used for the graphs is execution time. In general, we observe that the execution time for
the CUDA version is the best. This is because CUDA is a low-level language used for
GPU computation. The level of optimization provided by low-level languages is always
better than higher-level languages. This is because of the overhead associated with
implementing the pragma directives and then converting them to machine code. CUDA
implementation is very close to the machine level/assembly level implementation. As
OpenMP is a high-level language for shared memory programming, the number of

threads used here are less comparable to the number of threads spawned in the GPU.

5.5 NAS Parallel Benchmark
NASA developed the NASA Parallel Benchmarks (NPB), which are designed for high-
performance computing. NPB has issued a newly created set of parallel-aware
algorithms. These benchmarks are architecturally neutral, address generic problems, and
readily distributable. The best feature of NPB is accommodating newly emerging
systems with increased power and extended new software implementations [39].

NASA Advanced Supercomputing (NAS) is a benchmark suite used to evaluate
the performance of highly parallel HPC computing systems. This benchmark mimics the
complex scientific computational, communication, and data movement characteristics of

large-scale computational fluid dynamics (CFD) applications [40].

88

NPB has five kernel benchmarks, namely Integer Sort (IS), Embarrassingly
Parallel (EP), Conjugate Gradient (CG), irregular memory access and communication,
Multi-Grid (MG) on a sequence of meshes, and discrete 3D fast Fourier Transform (FT),
which has all-to-all communication. Three pseudo-applications that are part of NPB are
Block Tri-diagonal solver (BT), Scalar Penta-diagonal solver (SP), and Lower-Upper
Gauss-Seidel solver (LU).

The NPB benchmark has a different class of problem size for measuring and
comparing performances. These classes are Class S (small for quick test purposes); Class
W (90s workstation size; now likely too small); Classes A, B, C (standard test problems),
~4X size increase going from one class to the next; Classes D, E, F (large test problems,
~16X size increase for each of the previous classes) [39].

We have identified some NAS OpenACC 1.0 implementations in [46], for
prospective porting to the OpenACC 2.0 accelerator benchmark. We have focused mainly
on three benchmarks: Embarrassingly Parallel (EP) benchmark, Fast Fourier Transfer
(FFT), and Multi Grid (MG). The reason for choosing these benchmarks is that they have
potential applications in a variety of fields given their usability and parallelism with
respect to accelerators. All of these benchmarks require significant computational
resources [47]. All of the above-mentioned benchmarks have many function calls inlined,
as there was no support for the routine calls in OpenACC 2.0. All these applications
inline many of the function calls manually, thus running all of these functions in

sequential mode. The main aim of porting these applications is to understand the best

&9

way for implementing function calls using OpenACC 2.0 features and to understand the
parameters that affect the performance of the applications.

Without the facility of function calls, porting applications required significant
code restructuring, as function calls are inherent features of any high-level programming
languages. Programmers have to sacrifice some level of parallelism because of a lack of
function calls from inside the parallel constructs. By including function calls inside the
parallel or kernel constructs, we move a number of lines of the computation to the GPU,
which improves the millions of operations per second (MOPs) for the application.
Improving MOPs implies the better utilization of computing power and, thereby, an

improvement in the performance of the benchmarks.

Let us explore the different optimization techniques and the new features used for the

above-mentioned benchmarks one by one.

Embarrassingly Parallel (EP): These are the problems that are inherently parallel in
nature. They require much less communication between the intermediate results. This
kind of program helps in exploiting as much parallelism as the hardware can offer. These
applications help in understanding how the architecture best supports parallelism [39].

NAS implements an algorithm that generates independent “Gaussian random variables”
using the Marsaglia-polar method. This function generates random variables, which will

have different probability distributions [47].

90

The "embarrassingly parallel" kernel provides an estimate of the upper achievable
limits for floating point performance, i.e. the performance without significant inter-
processor communication. The only requirement for communication is generating the
sums at the end of the program. This typically follows Monte Carlo simulation

applications [47].

#pragma acc routine

double randlc_epl(double *x, double a)

{
double r;

#tpragma acc data pcopy(x , a, r)
double t1, t2, t3, t4, al, a2, x1, x2, z;
t1l = r23 * a;

al = (int) t1;

a2 = a - t23 * al;

tl = r23 * (*x);

x1 = (int) t1;

X2 = *x - t23 * x1;

t1l = al * x2 + a2 * x1;
t2 = (int) (r23 * t1);

z t1 - t23 * t2;

t3 = t23 * z + a2 * x2;
t4 = (int) (r46 * t3);
*x t3 - t46 * t4;

r = rd6 * (*x);

return r;

Table 5.18: Randlc_ep Function

We apply the loop unrolling optimization technique for many of the functions, as
OpenACC does not support nested if-else statements inside a parallel region. The EP
benchmark has a routine “double randlc_ep(double *x, double a)”, which is inlined in

OpenACC 1.0. This routine returns a uniform pseudorandom double precision number in

91

the range (0, 1) by using the linear congruential generator given by the formula - x
{k+1} =ax k (mod 2°46). This routine is called approximately (100+ BLKSIZE [1792]
+ MK [16]) times from inside the parallel loop.

The computation related to this function is run on the GPU using the routine
directive. While using the routine directive, we have to understand the data flow between
parts of the subprogram. If the data are not synchronized between the GPU and CPU,
then there is a significant deviation from the actual result. By making this a function call
on the GPU, we reduce the context switch, which is required when a host version of the
function is called. This also reduces the data movement between the functions for moving
the computed result back to the parallel loop. Using the acc routine directive enables all
these calls to be performed on the GPU. With the addition of the routine feature to the
entire program, Mops increases drastically by improving the execution time. Though
there is improvement in the execution time, it is not as drastic as expected. This is
because the code in the routine does not have much parallelism. When we have code that
is not parallel on the GPU, sometimes it degrades the performance by adding more
overhead in computation.

As shown in Table 5.9, the function call on lines 373 and 375, though they are
called blk+100 times, do not exhibit much performance because of the “if” clause
surrounding the function call. This serial nature of the code frustrates the ideal

performance even after running the code on the GPU.

92

#pragma acc kernels loop independent
366 private(tl,t2,kk)reduction(+:sx,sy)
for (k = 1; k <= blksize; k++) {
367
kk = k_offset + k + koff;
368
tl = S;
369
t2 = an;
370
for (i = 1; i <= 100; i++) {
371
ik = kk / 2;
372
if ((2 * ik) != kk) t3 = randlc_ep(&tl, t2);
373
if (ik == @) break;
374
t3 = randlc_ep(&t2, t2);
375
kk = ik;
376
}
377
gpg T
}
379
#pragma acc kernels loop independent private(til,t2,kk)
reduction(+:sx,sy)
380

Table 5.19: EP Code Snippet

Fast Fourier Transfer (FFT): Fast Fourier transfer is an algorithm used to compute the
discrete Fourier transfer (DFT) and it’s inverse. It is one of the most important numerical
algorithms, as it converts them to a frequency and vice versa by factorizing the FT matrix
into a product of sparse factors. FFT transfers are widely used in many applications in

engineering, science, and mathematics [47].

93

The FT application is time-bound. It does show some improvements in runtime, but it
also increases the communication time very significantly. The 3D FFTs are key parts of
certain CFD (computational fluid dynamics) applications, notably large eddy turbulence
simulations. The 3D FFT steps require considerable communication for operations such
as array transpositions [47].

In the FT benchmark, we apply the routine directive by removing the inline
function. And this routine has a gang-level parallelism. Because of the routine call

support, we restructure the code to run more computations on the GPU [47].

94

#pragma acc routine gang
void return_complex_abs(dcomplex *z1, dcomplex *z2, double *err,int nt)
{
int i;
#pragma acc data copyin(zl,z2) copy(err)
{
#pragma acc loop gang

for (i =1; i <= nt; i++)

{
dcomplex z3;
z3 = (dcomplex){zi[i].real-z2[i].real,z1[i].imag-z2[1i].imag};

double a z3.real;

double b = z3.imag;
double c¢ = z2[i].real;
double d = z2[i].imag;

double divisor = c*c + d*d;

double real (a*c + b*d) / divisor;
double imag = (b*c - a*d) / divisor;
dcomplex result = (dcomplex){real, imag};

err[i]= (sqrt(result.real*result.real)+result.imag*result.imag);

Table 5.20: FT Code Snippet for return_complex_abs Routine

As shown in the code, we copy the double complex number object dcomplex to the GPU

and perform the computation and then calculate the result, which is stored in the result
95

variable. In the non-GPU version of the code, the result was computed in the
return_complex_abs function, which was inlined, and then the result was returned to the
calling function. In the revised OpenACC version, we not only put the entire function
computation on the GPU, but we go one step further to compute the absolute error in the
calculated results. As we want to return the results of these computed errors to the host,
we have a copy clause in front of the err variable, which takes care of moving err back to
the host once we exit the parallel region.

The performance and Mops for this application increase as input size increases.
We observe the best performance for CLASS B, which improves the Mops from 3841 to

3912, which, in turn, enhances the performance of the overall application.

Multigrid (MG): MG is a simplified 3D multigrid kernel. This benchmark requires
highly structured long-distance communication and tests both short- and long-distance
data communication. MG approximates the solution to a three-dimensional discrete
Poisson equation using the V-cycle multigrid method [23]. MG methods in numerical
analysis are a group of algorithms for solving differential equations using a hierarchy of
discretization [47].

This benchmark contains almost 1800 lines of code. This can be compared to
more real-world applications. The MG benchmark contains three functions that are
inlined in OpenACC 1.0 versions. The functions that were inlined are bubble, randlc, and

vranlc.

96

#pragma acc routine(bubble) gang

void bubble(double ten[][2], int ji1[][2], int j2[][2], int j3[][2],int
m, int ind)

#pragma acc routine vector

double randlc(double *x, double a)

#pragma acc routine(vranlc)

void vranlc(int n, double *x, double a, double y[])

Table 5.21: MG Inline Functions Replaced by Routine Functions

Bubble function implements a bubble-sort algorithm for the grid elements, which
compares each element with its neighbor and bubbles out the smallest/biggest element if
necessary by swapping; traversing the entire list until it is sorted. Bubble sort has an
average and a best-case complexity of O (n2). This function is inherently not so parallel
because of significant branching in the algorithm. As shown in the code below, multiple
if-else statements and loop unrolling are applied in order to ensure code parallelism. We
apply gang-level parallelism to each unrolled loop, which distributes the computation

across the gang of the thread block.

97

#pragma acc loop seq

for (1 =0; 1i<n
t1 = r23 * (*x);
x1 = (int) t1;
X2 = *x - t23 *
tl =al * x2 + a
t2 = (int) (r23
z =11 - t23 * t
t3 =t23 *z + a
t4 = (int) (r46

*x = t3 - t46 *

5 i++) {

x1;
2 * x1;
*t1);
2;
2 * x2;
*13)

t4;

y[i] = ra6 * (*x);

Table 5.22: Vranlc Function Snippet

98

if (ind == 1) {
#pragma acc loop gang
for (1 =0; i < m-1; i++) {
if (ten[i][ind] > ten[i+1][ind]) {
temp = ten[i+1][ind];
ten[i+1][ind] = ten[i][ind];
ten[i][ind] = temp;

j_temp = ji[i+1][ind];
ji[i+1][ind] = j1[i][ind];
j1[i][ind] = j_temp;

j_temp = j2[i+1][ind];
j2[i+1][ind] = j2[i][ind];
j2[i][ind] = j_temp;

j_temp = j3[i+1][ind];
j3[i+1][ind] = j3[i][ind];
j3[i][ind] = j_temp; } }
#pragma acc loop gang
for (1 =0; i < m-1; i++) {
if (ten[i][ind] <= ten[i+1][ind]) {
return; } } 3
if(ind!=1)
{
#pragma acc loop gang
for (i =0; i < m-1; i++) {
if (ten[i][ind] < ten[i+1][ind]) {
temp = ten[i+1][ind];
ten[i+1][ind] = ten[i][ind];
ten[i][ind] = temp;

j_temp = ji1[i+1][ind];
ji[i+1][ind] = j1[i][ind];
j1[i][ind] = j_temp;

j_temp = j2[i+1][ind];
j2[i+1][ind] = j2[i][ind];
j2[i][ind] = j_temp;

j_temp = j3[i+1][ind];
j3[i+1][ind] = j3[i][ind];
j3[i][ind] = j_temp;

}

}

#pragma acc loop gang
for (i =0; 1 < m-1; i++) {
if (ten[i][ind] < ten[i+1][ind]) {
return;

I S

Table 5.23: Bubble Function in MG

99

The Vranlc function has the computations where most of the lines in the function have
dependency over the previous lines. Because of these dependencies, we direct the code to
execute in sequence. Launching threads is not costly when compared to CPU thread
creation. Thus, there is no harm in creating the threads even if the code is not highly
parallel. The final code will still be faster than the normal computation.
The randlc function is called zran3, also referred to as the vranlc function. This function
is executed in sequence because of the dependencies.

In this application, we transfer extensive computation to the GPU. Though all
three functions put on the GPU are not highly parallel, there is still an increase in the
number of maps for the execution, thereby increasing the performance in the OpenACC

2.0 when compared to the OpenACC 1.0.

Class OpenACC 1.0 (Mops) OpenACC 2.0 (Mops)
S 970 1102
A 7894 8310
B 8078 8202

Table 5.24: Mops Comparison between OpenACC 1.0 and OpenACC 2.0

5.6 Analysis and Observations
When we are parallelizing the code to run on the GPU, as observed in the previous
benchmarks, the number of lines of code in the program tends to increase. But this

definitely does not complicate the code structure. Rather, we simplify the code by
100

vectorising it and extracting the best results on the GPU. This is because when compared
to CPUs, GPUs are structurally very simple. They do not have mechanisms for handling
complex situations like context switching or using shared memory. But they have a very
powerful computational capacity. This can be best harnessed using simple and
vectorizable loops. The OpenACC 2.0 routine directive does not support library function
calls. If a loop that is reasonably vectorizable has a simple function call to the library,
then we cannot parallelize the loop.

Using routine directives for function calls improve portability of the application.
This directive helps retain the natural program structure, which reduces the time required
for porting the application.

We use the routine directive only when we have a function that is called from
inside the parallel loop. In the absence of a routine directive, we use code inlining.
Inlining is easier from the normal programming perspective, as it does not need much
analysis; the code can simply be inserted into the function or code space.

Using the routine directive, the routines are compiled separately for each GPU
version and linked later using the linker provided by the OpenACC runtime. The routine
directive gives the highest performance when we are calling the function from inside the
highly parallel loop, and even the called function has more computation and the loops
inside the routine are vectorizable.

In NAS, the performance of the benchmarks does not increase drastically after

inlining the functions because the functions that are inlined do not contribute heavily

101

towards the execution time of the entire program. But using the routine directive has
increased the number of MOPs, which is one of the performance parameters indicating
improved resource utilization. We also have more lines of code executed on the GPU. As
kernels/parallel constructs allow only one 'if' statement inside, the number of lines of

code increases to preclude many if-else statements.

102

Chapter 6. Conclusion and Future Work

6.1 Conclusion
In this thesis, we develop an accelerator benchmark suite that provides an extensive
overview of its scientific applications. These applications are selected from the NPB and
Parboil benchmarks, both of which are widely used in research areas. Of all of these
applications, we concentrate on the regions of code with computationally intense loops
and also present some of the best approaches for mapping these loops to the GPU
architecture using OpenACC parallel programming API. We also discuss optimization
techniques like loop unrolling, loop scheduling, and cache optimization. We convert
multidimensional matrixes to vectors for better cache utilization and for the improvement
of memory access. We use an unstructured data lifetime of the variables on the GPUs,
which will reduce unnecessary data movement between the host and device. Data
management is always one of the biggest challenges in GPU computing. Applying all the
mentioned optimization techniques will help to align the performance of OpenACC very
closely to that of CUDA. These benchmarks help evaluate the programming model itself
and its suitability to accelerators.

OpenACC 2.0 has implemented some of the most important features like the

routine directive, atomics directive, unstructured data lifetime clauses, etc. All these

103

features were missing in OpenACC 1.0. These are some of the very high-level features
implemented for programmers.

Sometimes implementing these features poses challenges, as many are not very
straightforward due to the lack of different use cases describing these directives. For
example, not all the directives work when used for the first time. They need different
levels of architectural understanding.

Understanding and porting applications to GPUs using OpenACC is not only
challenging, but becomes overwhelming sometimes. We do not see one-to-one mapping
between the problems in porting the application and the directives for handling a specific
problem. For instance, applying fine-grained parallelism to a loop looks simple once we
have the code running, but much effort is required to check which level of parallelism
best suits the different combinations of clauses and directives. Many sections of these
optimizations are the result of trial and error by using different clauses.

The developed accelerator benchmark will highlight many of the difficulties we
face in porting applications by addressing how to overcome some of the challenges
encountered in validating the effectiveness of certain working applications.

This research aims to provide feedback to the OpenACC committee to help improve the
model by using analysis of performance during creation of the implementation with

respect to particular clauses.

104

6.2 Future Work

Although the results presented in this thesis are very promising and cogent, there are
some areas that can definitely be improved.

As a topic of future research, we should explore new optimization technologies
for the benchmarks to further enhance performance. As GPU computing is an emerging
field, and as there are not many benchmarks implemented for OpenACC, it will be a
good idea to develop a set of applications involving computational complexity and to
create a new brand benchmark for accelerators. This benchmark suite can be used for
performance comparison between different architectures like NVIDIA’s GPU, Intel Xeon
Phi, AMD’s GPU, APU, etc.

OpenACC has not yet implemented the concept of tasking as we have in
OpenMP. Tasking will help in parallelizing the applications, which will have recursive
calls. Coordinating the implementation of tasks for OpenACC and then porting the
applications from the Barcelona OpenMP Tasks Suite (BOTS) [53] would also be an

interesting topic of future research.

105

Bibliography

[1] Rainer Buchty, Vincent Heuveline, Wolfgang Karl, Jan-Philipp Weis, “A Survey on
Hardware-aware and Heterogeneous Computing on Multicore Processors and
Accelerators, Special Issue Paper, Concurrency and Computation: Practice and

Experience”, Volume 24, Issue 7, pages 663—-675, May 2012.

[2] D.M.Kunzman, "International Symposium on Parallel and Distributed Processing
Workshops, Programming Heterogeneous Systems", Page(s):2061 — 2064, Issue
16-20 May 2011

[3] Amar Shan. (2006, Jan). "Heterogeneous Processing: a Strategy for Augmenting

Moore's Law, Linux Journal”. [Online]. Available:
http://www.linuxjournal.com/article/8368
[4] CUDA Parallel Computing Platform,[Online]. Available:

http://www.NVIDIA.com/object/ CUDA_home new.html

[5] Stefan Mohl, “FPGAs in HPC: Part 1, Introduction to Hybrid Computing”.[Online].
Available: http://www.vidqt.com/id/Vthyl1pKPggs?lang=en

[6] GPU (Graphics Processing Unit).[Online]. Available:
http://www.ubergizmo.com/what-is/gpu-graphics-processing-unit/

[7] Steven W. Smith. (1997). The Scientist and Engineer's Guide to Digital Signal
Processing. [Online]. Available: http://www.dspguide.com/

[8] Chunhua Hu, David Bell, “KeyStone Memory Architecture”, Texas Instruments.

[9] Zoran Nikolic, Gaurav Agarwal, Brooke Williams, Stephanie Pearson, “IT Gives
Sight to Vision-enabled Automotive Technologies”,Texas Instruments.

[10] Grzegorz Budzyn, Advanced Micro controllers, Lecture 11: Digital Signal
Controllers & Digital Signal Processors. Wroclaw University of
Technology.[Online].Available:
http://www.ue.pwr.wroc.pl/advanced microcontrollers/adv._m_11.pdf

[11] Oliver Mattes, Wolfgang Karl, “Targeting Self-organizing Memory Management in
Future Silicon Photonics System Architecture”, 2014.

[12] Rainer Buchty, Vincent Heuveline, Wolfgang Karl, Jan-Philipp Weis, “A Survey on
Hardware-aware and Heterogeneous Computing on Multicore Processors and
Accelerators, Special Issue Paper, Concurrency and Computation: Practice and
Experience”, Volume 24, Issue 7, pages 663—675, May 2012.

[13] Wm.A.Wulf, A.Sally, McKee, “Hitting the Memory Wall: Implications of the
Obvious, Computer Architecture News”, Volume 23, Issue 1, March 1995

[14] Andrew, David, Targhetta, (2008, April), Heterogeneous Parallel Computing,

106

[Online]. Available: https://cs.nmt.edu/~cs451/lectures/grad/targhetta.pdf

[15] Peter Messmer, GPU Architecture Overview and CUDA Basics, (NVIDIA).
[Online]. Available:https://www.youtube.com/watch?v=nRSxp5ZKwhQ

[16] Mantha Anil Srimanth, Naveen Jawalkar, Ashwini Deshmukh, ”State Of Art
Technologies In Graphics Processing Unit (GPU) Architectures, Global Journal
of Advanced Engineering Technologies”, Vol 3, Issue3- 2014,ISSN: 2277-6370

[17] Ying Zhang, Lu Peng, Bin Li, Jih-Kwon Peir, Jianmin Chen, “Architecture
Comparisons between NVIDIA and ATI GPUs: Computation Parallelism and
Data Communications, Workload Characterization”, 2011,E-ISBN: 978-1-
4577-2062-8,Pages: 205 — 215.

[18] GPU Accelerated Computing, NVIDIA, [Online]. Available:
http://www.NVIDIA.com/object/what-is-gpu-computing.html

[19] “GPU Programming, NVIDIA Tesla GPU Servers”, Thinkmate NVIDIA, [Online].
Available: http://www.thinkmate.com/systems/gpu

[20] GPU- Accelerated Libraries, NVIDIA, [Online]. Available:
https://developer.NVIDIA.com/gpu-accelerated-libraries

[21] OpenACC, CUDA Zone, NVIDIA, [Online]. Available:
https://developer.NVIDIA.com/OpenACC

[22] About CUDA, CUDA Zone, NVIDIA, [Online].

Available: https://developer. NVIDIA.com/about-CUDA

[23] While AMD goes for Brains, NVIDIA goes for Brawn,[Online]. Available:
http://www.destructoid.com/while-amd-goes-for-brains-NVIDIA-goes-for-
brawn-210726.phtml

[24] NVIDIA's Next Generation CUDA Compute Architecture - Kepler GKI110,
whitepaper, NVIDIA.

[25] Jen-Hsun Huang, “The Kepler GPU Architecture, GPU Technology Conference”,
San Jose, CA, 2012 , May 14- 17,

[27] John Morris, A closer look at AMD's Heterogeneous Computing,
[Online].Available:http://www.zdnet.com/a-closer-look-at-amds-heterogeneous-
computing-7000014840/

[28] AMD Kaveri APU Architecture Detailed — Next Generation APU Featuring
Steamroller and GCN Cores, [Online].Available: http://wccftech.com/amd-
kaveri-apu-architecture-detailed-generation-apu-featuring-steamroller-gen-
cores/

[29] Hank Tolman, AMD Kaveri APU Architecture Overview, [Online].Available:
http://benchmarkreviews.com/11622/amd-kaveri-apu-architecture-overview/

[30] CUDA C Programming Guide, NVIDIA, Developer Zone, [Online].

107

Available:https://www.clear.rice.edu/comp422/resources/ CUDA/html/CUDA-c-
programming-guide/#programming-model

[31] Blaise Barney, OpenMP tutorial, Lawrence Livermore National Laboratory,
[Online]. Available: https://computing.lInl.gov/tutorials/OpenMP/

[32] Matthew Scarpino, A4 Gentle Introduction to OpenCL.[Online]. Available:
http://www.drdobbs.com/parallel/a-gentle-introduction-to-OpenCL/231002854

[33] Overview about OpenCL and Parallel Processing, [Online]. Available:
http://www.cmsoft.com.br/OpenCL-tutorial/overview-OpenCL-parallel-
processing/

[34] John A.Stratton, Chistopher Rodrigues, I-Jui Sung, nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, Wen-mei W.Hwu, “Parboil : A Revised

Benchmark Suite for Scientific and Commercial Throughput Computing,
IMPACT Technical Report”, March 2,2012; Revised : March 19,2012.

[35] Michael Wolfe,(2014), “OpenACC 2.0 and the PGI Accelerator Compilers,
GPU Technology Conference”.The Portland group

[36] A.Danalis, G.Marin, C.McCurdy, J.Meredith, P.Roth, K.Spafford, V.Tipparaju,
J.Vetter, “The Scalable Heterogeneous Computing (SHOC) Benchmark Suite.
Proceedings of the Third Workshop on General-Purpose Computation on
Graphics Processors”, March 2010.

[37] Md. Rezaur Rahman, The Scalable Heterogeneous Computing Benchmark Suite
(SHOC) for Intel® Xeon Phi™, Intel, April 9, 2013.

[38] M.Boyer, Jiayuan Meng, D.Tarjan, J.W.Sheaffer, Sang-Ha Lee, Skadron, K.Shuai
Che, "Rodinia: A Benchmark Suite for Heterogeneous Computing, Workload
Characterization", Page(s):44 - 54 ,Austin, Texas.

[39] D.H.Bailey, E.Barszcz, J.T.Barton, D.S.Browning, R.L.Carter, L.Dagum,
R.A Fatoohi, P.O. Frederickson3, T.A.Lasinskil, R.S.Schreiber3, H.D.Simon2,
V.Venkatakrishnan2 and S.K. Weeratunga2, “The NAS Parallel Benchmarks,
Journal of Supercomputer Applications”, vol. 5, no. 3 (Fall 1991).

[40] Geyong Min, Beniamino Di Martino, Laurence T.Yang, “Frontiers of High
Performance Computing and Networking, International Workshops”, FHPCN,
XHPC, S-GRACE, GridGIS, HPC-GTP, PDCE, ParDMCom, WOMP, ISDF,
and UPWN, Sorrento, Italy, December 2006, Proceesings.

[41] James Beyer, OpenACC 2.0 Elucidated, Cray. [Online]. [Available:
http://blog.cray.com/?p=6455

[42] David Wallace, @ OpenACC for HPC Accelerator Programming,
Cray.[Online].Available: http://blog.cray.com/?p=6371

[43] Jeff Larkin, 7 Powerful New Features in OpenACC 2.0,
NVIDIA.[Online].Available: http://devblogs.NVIDIA.com/parallelforall/7-
powerful-new-features-OpenACC-2-0/

108

[44] Mark Ebersole, The How to GPU series, CUDA Casts Episode #17,Unstructured
data lifetimes in OpenACC 2.0,
.[Online].Available:https://www.youtube.com/watch?v=dsffyNx7m5Q

[45] The OpenACC™ Application Programming Interface, Specification Version 2.0,
NVIDIA, June, 2013, Corrected, August, 2013

[46] Rengan Xu, Xiaonan Tian, Sunita Chandrasekaran, Yonghong Yan, Barbara
Chapman, “OpenACC Parallelization and Optimization of NAS Parallel
Benchmarks™ , 2014, S4340.

[47] D.Bailey, E.Barszcz, J.Barton, D.Browning, R.Carter, L.Dagum, R.Fatoohi,
S.Fineberg, P.Frederickson, T.Lasinski, R.Schreiber, H.Simon,
V.Venkatakrishnan and S.Weeratunga, "The NAS Parallel Benchmarks", RNR
Technical Report RNR-94-007, March 1994, [Online],
Available:http://www.nas.nasa.gov/assets/pdf/techreports/1994/rnr-94-007.pdf

[48] Sloot, Peter M.A. et al. (May 28, 2002), “Computational Science — ICCS 2002:
International Conference”, Amsterdam, The Netherlands, April 21-24, 2002.
Proceedings, Part I. Page 843. Publisher: Springer.

[49] Y.H.Qian, D.D’Humieres, and P.Lallemand. “Lattice BGK Models for Navier-
Stokes Equation, Europhysics Letters” Pages:479—484, 1992.

[50] S.S.Stone, J.P.Haldar, S.C.Tsao, W.W.Hwu, Z.Liang, and B.P. Sutton.
“Accelerating Advanced MRI Reconstructions on GPUs. In International
Conference on Computing Frontiers”, pages 261-272, 2008.

[51] V.Volkov and J.W.Demmel.“Benchmarking GPUs to Tune Dense Linear Algebra.
In Supercomputing”, pages 1-11, Piscataway, NJ, USA, 2008.

[52] L.Luo, M.Wong, and W.m.Hwu. “An Effective GPU Implementation of Breadth-
first Search, Design Automation Conference”, pages 52-55, June 2010.

[53] A.Duran, X.Teruel, R.Ferrer, X.Martorell, E.Ayguade, “Barcelona OpenMP Tasks
Suite”, Page(s):124 - 131, 22-25 Sept. 2009.

[54] Mark Ebersole, “Accelerate Your Programming or Science Career with GPU
Computing: An Introduction to Using CUDA”.[Online]. Available:
https://www.youtube.com/watch?v=K{fGnLItyRH4

109

Appendix A

Compiling and Running Benchmarks
Al. Compiling and Running Parboil Benchmark
1. Download the benchmark suite.

2. Use module load command to load the compiler. The compiler used for the

development is pgi/14.9 from PGI.

$ module avail

$ module load pgi/14.9 // for enabling the pgi compiler

3. Navigate inside the PARBOIL parent folder, you should find a ‘parboil’
executable file. Now run the bellow commands to compile and run the different

benchmarks, with different problem size.

S././lparboil command benchmark version problem_size //syntax for

executing benchmarks

110

Examples :

§./parboil compile stencil OpenACC // to compile , problem_size is optional

$.parboil run stencil OpenACC // to run, problem_size is mandatory

Benchmark folder contains all the benchmarks that are implemented and the src folder
contains different versions of the benchmark; we have folders for each benchmark inside
the src folder.

Dataset folder contains different problem sizes for each benchmark. We have to choose

this problem size of the folder dataset->{benchmark} ->{problem_size} ->input.

A2. Compiling and Running NAS Parallel Benchmark

1. Download the benchmark suite.
2. Use module load command to load the compiler. We can use either pgi or hmpp

compiler.

$module avail

$module load hmpp/3.4.1 // for hmpp compiler

$module load pgi/14.9 // for pgi compiler

111

3. Navigate to the benchmark you want to compile from the parent directory. When
you navigate for the first time in the benchmark directory, before you hit the same
child directory inside, create ‘bin’ and ‘femp’ folders if they are not already

present.

4. Example, if we want to compile FT benchmark, then follow the steps below:

$cd FT/FT
$make CC=pgcc CLASS=S // case sensitive commands, this will

compile FT benchmark

5. Now from the current directory, navigate back one step, where you have created
the ‘bin’ directory. After compilation, the executable files are pushed into the bin
directory according to the make rules. Execute the benchmark that you just

compiled for a specific class.

//from current directory, where we left off in the last section

$cd ..

112

$cd bin

$./ft.S.x

// the executable file created after compilation

from the previous step.

// This step will execute and produce the results

113

Appendix B

Explanation of Abbreviations

Table B. 1: Abbreviations used in this document

Abbreviation Acronym Meaning
Accelerator programming standard for
CPU/accelerator system for scientific
OpenACC | Open Accelerators computing.
A programming model for multi-platform
OpenMP Open Multi-Processing | shared memory multiprocessing platform.
Compute Unified | NVIDIA’s parallel computing architecture
CUDA Device Architecture for GPUs.
Open Computing
OpenCL Language API for heterogeneous programming.
Area of parallel computing, which delivers
High Performance | high-performance for most complicated
HPC Computing scientific and commercial applications.
Electronic circuit capable of performing
Graphics Processing | rapid calculations, especially for graphics
GPU Unit processing.
The electronic circuitry within a computer
that carries out the basic arithmetic, logical,
CPU Central Processing Unit | control, and input/output operations.
Set of 64-bit microprocessors from AMD
Accelerated Processing | designed to act as a CPU and graphics
APU Unit accelerator (GPU) on a single chip.
The NASA Advanced Supercomputing
NASA Advanced | (NAS) Division is enabling advances in
NAS Supercomputing high-end computing technologies.
NAS Parallel | Set of performance benchmarks for highly
NPB Benchmarks parallel architectures.

114

Abbreviation Acronym Meaning

Measurement of computer performance
Million Operations per | using number of operations performed per

Mops second second.
Standard set of routines and/or protocols
Application that will help to communicate with different
API Programming Interface | software components.

115

