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ABSTRACT 

Host response to Mycobacterium tuberculosis (Mtb) is distinctive in the use of a spatial 

immunological response to limit the progression of infection. This results in the formation 

granulomas, aggregations of immune cells that isolate invading microbes, a hallmark of the 

adaptive immune response to Mtb infection. Traditional in vivo studies have investigated the 

mature granuloma, but relatively fewer studies investigate how these structures form during 

the early stages of infection nor how spatial organization impacts control, resolution, or 

dissemination of the bacterium. Research has shown that initial aggregation of macrophages 

during innate immune response influences the progression of disease and formation of 

granulomas during adaptive immunity. However, current experimental methods for studying 

cellular interactions during early stages of infection are ill adapted for concurrent spatial and 

temporal quantification of host-pathogen dynamics, which is necessary for a quantitative 

understanding of the innate spatial immune response to Mtb and to inform the development of 

accurate computational models of tuberculosis disease. To address this, we developed a three-

dimensional (3D) ex vivo model of mycobacterium infected macrophages cultured in 

reconstituted basement membrane and characterized the structural impact of 3D structure on 

infection dynamics in comparison to standard two-dimensional (2D) infection models. We 

quantified temporal immune response using standard biological sampling methodologies and 

long-term time-lapse confocal imaging to quantify the early spatiotemporal dynamics of 

macrophage response to mycobacterium infection. Our studies using Mycobacterium 

smegmatis indicate that the 3D environment induces a shift in dynamics. In 3D we see 

significantly higher cellular velocities in infected conditions as compared to control non-
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infected conditions, whereas the converse occurs in 2D. This may impact computational models 

that utilize 2D assumptions. We developed a data analysis pipeline to quantify macrophage 

state with respect to infection and cellular microenvironment. Results show non-infected and 

non-active macrophages within infected environments present dynamics comparable to 

controls, while infected and activated macrophages exhibit comparable spatiotemporal 

dynamics in 2D and 3D. Using the more virulent Mycobacterium bovis BCG, we observe a 

greater distinction between control and infected conditions and preliminary evidence of a more 

distinct 3D immune response resulting in increased cell death and extracellular bacteria.  
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1 INTRODUCTION 

The study of infection traditionally focuses on the biochemical responses produced 

during host-pathogen interactions. However, this focus does not highlight the 

importance of the cellular spatiotemporal dynamics that are vital to the progression of 

diseases such as tuberculosis, caused by the bacterium Mycobacterium tuberculosis 

(Mtb). During Mtb infection, the bacterial dissemination can be chemically and 

physiologically inhibited by a coordinated multicellular immune response process 

involving modulation of the biochemical components of the inflammatory 

microenvironment, extracellular matrix (ECM) remodeling, regulation of cellular 

interactions, and formation of cellular aggregates, which can lead to the eventual 

development of granulomas [1]–[3]. This highly spatial response of granuloma 

formation, traditionally associated with adaptive immune response, actually begins in 

the early innate immune response to infection by macrophages the primary phagocytic 

cell involved in immune response to Mtb, mobilizing in a three-dimensional 

environment and recruiting cells to the sight of infection and providing the 

inflammatory signals for their activation [4], [5]. Involvement of the ECM is critical in this 

context as it provides for physiological limitations on inflammatory signaling and the 

proteolytic migration and activity of macrophages that impact the course of infection 

[1], [6], [7]. 
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1.1 Granulomas 

In both mice and humans, the progression of early Mycobacterium tuberculosis 

infection is comparable. The early innate response after the initial uptake by local 

primary phagocytes leads to the accumulation of neutrophils, inflammatory monocytes, 

interstitial macrophages and dendritic cells in the lungs. These cells help to establish 

early nascent granulomas [4], [8]. Over time, granulomas become more defined 

following the initiation of the adaptive immune response and are characterized by 

organized collections of macrophages, lymphocytes, and fibroblasts that, along with 

biochemical effectors, help contain the bacterial infection. The mature adaptive 

granuloma has been classically described as a host-protective response as protective 

cellular barrier between the pathogen and the surrounding host tissue allowing the host 

immune system to localize its efforts to treat the infection[2], [9], [10]. However, 

granulomas that are unable to fully clear the infection produce a stalemate between the 

host pathogen that can eventually lead to bacterial dissemination [11]–[13]. While 

dissemination from granulomas has been primarily noted during late stage infection 

after the introduction of adaptive immunity, there is now evidence that the aggregation 

of macrophages during innate immune response can lead to the formation of nascent 

granulomas that benefit the pathogen and possibly promote bacterial dissemination 

during early infection [9], [14], [15]. The spatiotemporal dynamics governing the 

formation and immune function of nascent granulomas are pertinent to understanding 

host-pathogen dynamics during mycobacterial infection, disease, latency, and ultimately 

reactivation. However, in part due to imaging constraints, the investigation of the initial 
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dynamics of mycobacterium infection has mainly been limited to studies within 

zebrafish embryos.  

1.2 In vivo models of Mtb infection 

Animal in vivo models of Mtb infection have provided an in-depth view of 

structural features of the granuloma through histological analysis of cellular 

organization post activation of the adaptive immune response. Mouse models have 

granted insight into the roles that specific genes play in the progression of disease, [16]. 

Guinea pig and rabbit models have provided a method to study necrotic granulomas, 

and non-human primates infected with Mtb produce granulomas, cavitation and disease 

progression comparable to human, and allow for the study coinfection with HIV and 

treatment with anti-TNF compounds [17]–[20]. 

However, a significant limitation of in vivo investigations is that the study of the 

structural immune response to Mtb requires extraction and fixation of tissue samples, 

limiting temporal analysis of granuloma formation particularly during early granuloma 

formation and initial cell recruitment [16]–[19]. This temporal limitation makes it 

infeasible to monitor the formation of a specific granuloma over time and characterize 

the dynamic innate response that drives the complex developmental process of nascent 

granuloma. A few experimental models utilize live cell imaging to begin dissecting these 

dynamics, mainly utilizing either zebrafish embryo models [9], [14], [15] or short-term 

intravital imaging in mice [10] . 
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1.3 In vitro and ex vivo models of Mtb infection 

In an effort to maintain the spatial components of in vivo models including 

nutrient and oxygen gradients, cell-matrix interactions, and gene expression that are 

vital in modeling mycobacterial infection, there has been recent focus on the 

development of 3D in vitro models[21]. These models have implemented multiple cell 

types and allowed for the investigation of individual variables of infection within a 

simplified environment and structure. The model developed by Puissegur et al. utilized 

human peripheral blood mononuclear cells (PBMCs) and mycobacterial antigen coated 

beads to induce the formation of cell aggregation comparable to native granulomas 

[22]. Braian et al. produced a model of human lung tissue which consisted of a collagen 

gel with embedded fibroblasts, epithelial cells and macrophages infected with Mtb [23]. 

Bielecka et al. developed a microfluidic model of Mtb infection to study antimicrobial 

resistance. This model applied microspheres with Mtb, human PBMCs and type I 

collagen in a bioelectrospray to analyze the impact of infection on cellular aggregation 

and antibiotic treatment [24]. Kapoor et al. produced a 3D model of Mtb dormancy, 

resuscitation and anti-tumor necrosis factor-alpha treatment with human PBMCs in a 

collagen I matrix [25]. Hoang et al. developed a 3D tissue model of human lung mucosa 

with human dendritic cells and implicated further application of their tissue model to 

study bacterial infection with Mtb [26]. Furthering the Hoang platform, Parasa et al. 

investigated early granuloma formation [27], [28]. These 3D in vitro models have been 

developed to isolate the individual components of infection and provide high-

throughput platforms for analysis with standardized sampling. However, these vast 
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majority of these in vitro platforms encounter some of the same limitations of in vivo 

models requiring sample fixation and immunohistological staining to quantify the 

cellular spatial organization of the host response. The recent model development by 

Tezera et al. improved on the lack of longitudinal data through their investigated a 

collagen-alginate bioelectropsray model of human PMBC infection with Mtb and 

performed analysis utilizing fluorescent microscopy , histological staining, 

immunohistochemistry, and flow cytometric analysis over 21 days [29]. 

Still, these developed models do not enable isolation and characterization of the 

impact of individual cellular components on the host system and lack the ability to 

continuously monitor bacterial load dynamics. In addition, due to the lack of temporal 

quantification there is currently no existing 3D in vitro models that have the ability to 

monitor infection load-based dynamics at a single cell resolution which is key to 

understanding load based dynamics [30].  
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2 PRELIMINARY DETERMINATION OF INFECTION AND 

PREDICTION OF HOST CELL STATUS USING MACHINE 

LEARNING 

2.1 Introduction 

The study of cellular spatiotemporal dynamics is vital in the understanding of 

bacterial infection, particularly for Mycobacterium tuberculosis (Mtb), the causative 

agent of tuberculosis. During Mtb infection, Mtb can be contained in a granuloma via a 

multicellular dynamic process involving infiltration of immune cells, production of 

chemical effector molecules, and extracellular matrix (ECM) remodeling [1]–[3]. 

Granuloma formation and integrity depend on the ability of macrophages, the primary 

phagocytic cell involved in both innate and adaptive immune response to Mtb, to 

mobilize and respond in a three-dimensional (3D) environment. We present a 

preliminary investigation of the quantifiable spatiotemporal dynamics of macrophage 

response to bacterial infection through multi-area time-lapse confocal imaging. Through 

this application we identify features that correlate with bacterial load, and host cell 

dynamics in variable environments. 

Current studies of in vivo Mtb infection provide an in-depth, static view of the 

mature granuloma through histological analysis of macrophage and lymphocyte spatial 

organization [31]. While representative of the complex state of static infection, these 

investigations require the extraction and fixation of living tissue samples, preventing 

temporal analysis of infection progression and granuloma formation. Additionally, 
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traditional in vitro models of infection simplify this highly spatial response to a two-

dimensional (2D) plane [32]. A final challenge is that existing 3D in vitro models limit 

investigation of temporal dynamics due to their reliance on standard histological 

methods, or they employ techniques to induce granuloma formation [23]–[27], [29], 

[33]. 

While current 3D models can be highly representative, they tend to be complex 

and do not allow for the isolation and quantifiable determination of the impact of host-

pathogen and cell-to-cell interactions on the overall system. Furthermore, they are 

unable to monitor infection load-based dynamics with single cell resolution, which can 

greatly influence general host response [30]. Our integrated in vitro and computational 

platform mitigates some of the drawbacks of existing models through: employing 

sample collection standards of traditional 2D in vitro studies, providing a 3D 

environment for spatial response, utilizing long-term time-lapse confocal imaging 

(Figure 1), image segmentation and tracking to capture the response of macrophages to 

Mtb infection, and a coupled analysis pipeline for analytical characterization of host-

pathogen interactions. 
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Figure 1:  Example of confocal imaging datasets and image segmentation: mSmeg mCherry MOI 10 
RAW 264.7 GFP Hour 0 Confocal Z-stack of 3D infections a) Imaris-Gaussian smoothing 
[1um] and contrast adjustment b) Imaris-Surface segmentation and tracking 

 

To characterize the single cell, infection-dependent dynamics, we first employed 

unsupervised machine learning to segment the heterogeneous population of infected 

cells based on bacterial load determined by fluorescence levels. After this distinction is 

established, we then use supervised machine learning algorithms to determine which 

features can be used to distinguish infected cells from non-infected cells. Feature 

identification allows for the exploratory investigation of dynamics based on intracellular 

bacterial load and allows for future quantitative analysis and model development. 

2.2 Materials and Methods 

We adapted a 3D culturing protocol from Lee et al. [34] in reconstituted basement 

membrane (RBM) (Sigma Aldrich) and employed volumetric reduction to prevent 

hypoxia [35]. Standard 2D infection studies were conducted as previously reported [36], 

with and without gentamicin to allow for comparison to 3D RBM cultures, thus enabling 



9 
 

our focus on intracellular infection-driven response by reducing extracellular bacterial 

replication. The infection studies were conducted for 72 hours (with imaging for 55 

hours) using green fluorescent protein (GFP) tagged RAW 264.7 murine macrophage cell 

line (RelA) and mCherry tagged M. smegmatis (mSmeg) [37] at a multiplicity of infection 

(MOI) of 10 colony-forming units (CFU) per macrophage. Supernatant samples were 

collected every 24 hours and CFUs enumerated (data not presented). The 2D and 3D in 

vitro infection studies were conducted simultaneously with multi-area time-lapse 

confocal imaging of multiple experimental conditions.  

2.2.1 Microscopy and Image Processing  

3D confocal images (Olympus) were acquired every hour using a stage top 

incubation system (TokaiHit). The resulting 4D time appended acquisitions were 

rendered and analyzed using Imaris 8.1.2 (Bitplane) with surface creation and tracking of 

the macrophages. The same image processing parameters were used for all conditions. 

The 4D datasets were then transformed for time independence to provide a dataset of 

3661 homogenous data points (control cells) and 2194 heterogeneous data points 

(infection cells). Features selected for analysis are summarized Table 1 below. 
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Table 1: Selected Features for Analysis (A.U. – Arbitrary units) 

Feature Explanation 

Feature Unit Description 

RFP Maximum A.U. Maximum intensity in cell 

RFP Sum A.U. Sum intensity in cell 

RFP StdDev A.U. Standard Deviation of intensity in cell 

RFP Median A.U. Median intensity in cell 

RFP Mean A.U. Mean intensity in cell 

Sphericity A.U. How spherical the cell is 

Ellipicity Oblate A.U. How Flattened (z) the cell is 

Elliplicity Prolate A.U. How Elongated (z) the cell is 

Speed μm/s Nondirectional 3D vector speed of cell 

Volume μm3 Volume of cell 

Directedness A.U Inverse of random movement 

Distance Traveled μm Total distance traveled 
 

2.2.2 Noise Reduction and Normalization  

The signal-to-noise ratio (SNR) during a long term time-lapse study varies if the 

acquisition parameters are not adjusted [38]. We reduced the impact of this variation in 

overall fluorescence levels (which indicates presence/absence of bacteria) post 

acquisition through background normalization by assuming that the bacterial red 

fluorescent protein (RFP) levels in the control conditions should remain constant (no 

bacteria present). By normalizing the control RFP summation minimum of the full image 

𝑅𝑅𝑅𝑅𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣, we account for the fold change in background fluorescence relative to the 

minimum. This can then be used to normalize all fluorescent features (𝑅𝑅𝑅𝑅𝑃𝑃𝑋𝑋), except for 

standard deviation independent of time (𝑡𝑡) to generate the adjusted feature (𝑅𝑅𝑅𝑅𝑃𝑃𝑥𝑥′). 
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The adjusted RFP features were normalized to a range of (0,1) via feature scaling 

(𝑅𝑅𝑅𝑅𝑃𝑃𝑥𝑥′′) to reduce the impact of large magnitude difference [39] in the features given by 

equations 1 and 2 as  

    𝑅𝑅𝑅𝑅𝑃𝑃𝑥𝑥′(𝑡𝑡) =
𝑅𝑅𝑅𝑅𝑃𝑃𝑋𝑋(𝑡𝑡)⋅min�𝑅𝑅𝑅𝑅𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣�

𝑅𝑅𝑅𝑅𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡)  and (1) 

 𝑅𝑅𝑅𝑅𝑃𝑃𝑥𝑥′′ = 𝑅𝑅𝑅𝑅𝑃𝑃𝑋𝑋
′ −min�𝑅𝑅𝑅𝑅𝑃𝑃𝑋𝑋

′ �
max�𝑅𝑅𝑅𝑅𝑃𝑃𝑋𝑋

′ �−min�𝑅𝑅𝑅𝑅𝑃𝑃𝑋𝑋
′ �

. (2) 

All non-fluorescent features were unaltered for processing. The new datasets 

(adjusted RFP and original features) were then split into homogeneous (control 

condition) and heterogeneous (infection condition) datasets, independent of 2D or 3D 

status for this preliminary analysis to ensure that the applied methods would be 

consistent between dimensionalities. 

2.2.3 Data Clustering – Infection Determination 

The intracellular condition of a cell can change if its tracking is lost, if the cell 

phagocytizes bacteria, or if the cell kills the phagocytized bacteria. As each cell is already 

segmented and tracked with corresponding data through image processing in Imaris, 

the overall fluorescent data in each cell from phagocytized bacteria can easily provide 

features for use in unsupervised learning algorithms that can determine the infection 

state of the macrophage. 

We utilized MatLab’s k-means clustering algorithm (k=2) with k++ center 

initialization [40] and 10 replicates to reduce variability. Feature extraction through 

principal component analysis (PCA) was applied to compensate for feature correlation 
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and to lower data dimensionality [41]. The principal components were then ordered 

based on explanation of variability and iteratively added to assess cumulative 

explanation of variability and subsequent model fitness. Methods were applied both to 

the combined full dataset (control dataset and infection dataset) and the 

heterogeneous subset (infection dataset including cells with internalized bacteria and 

those without) with the homogenous (control) data points assigned to a cluster based 

on minimization of distance to cluster center point.  

The control impurity (the percent homogenous data misclassified) was 

calculated by finding the intersection of the control data points (𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and the cluster 

sets (𝐶𝐶𝑘𝑘) from K-means (equation 3). The maximal intersection was taken as the non-

infected cluster and any control points in the infected cluster contributed to control 

impurity (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖) as given by  

 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 =  �
1

𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
� 𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘=1:𝐾𝐾

[𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∩ 𝐶𝐶𝑘𝑘].  (3) 

 

 

 

 

2.2.4 Linear Model Development 

We applied supervised machine learning to explore the observable features of 

the cells and determine which can best characterize the infected nature of the cells, and 

how well the model can predict the infection status. This also provides a preliminary 

view into what features were impacted by the intracellular bacterial load of the cell.  
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MatLab’s linear discriminant analysis (LDA) and classification trees were applied 

to the remaining features not used for cluster analysis (Table I). Parameter optimization 

of classification discriminant models was performed through the minimization of the 

misclassification rate using sequential forward selection (SFS).  

Each model was 10-fold cross-validated, and the accuracy calculated. The receiver-

operating curve (ROC) and resulting area under the curve (AUC) were used to determine 

the best-fit models. Kruskal-Wallis tests were run on best predictive feature to 

determine statistical significance. 

2.3 Results 

K-means clustering quickly separated the heterogeneous population of infected 

cells into two groups — those that actively contain bacteria and those that do not. 

Evaluation of the resulting clusters through the calculation of control impurity allows 

some control of accuracy and helps select for the optimum clustering method. For both 

datasets three principal components explain over 99% of the variability (Table 2) 

reducing the data dimensionality from five to three. 
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Table 2: K-Means Clustering with PCA 

Evaluation of PCA Accuracy and % Variability 

Feature Cimp % Variability Explained 

Full Dataset 

1 0 84.45% 

2 0 94.91% 

3 0 99.20% 

4 0 99.96% 

5 0 100.00% 

Heterogeneous Subset 

1 0 84.45% 

2 0 94.91% 

3 0 99.20% 

4 0 99.96% 

5 0 100.00% 
 

We proceeded with the k-means algorithm applied to PCA feature scaled 

heterogeneous model with control data added post-clustering for further analysis to 

reduce the impact of imbalanced data [42]. This resulted in 4449 non-infected cells 

(3661 from homogenous subset) and 767 infected cells. 

By applying LDA on the full dataset, sequential forward selection (SFS) 

determined the three features that minimized error (in order of selection) are Distance 

Traveled, Displacement, and Speed. Feature selection LDA increased the accuracy from 

84.76% to 85.51% but reduced the AUC from 0.557 to 0.514. The heterogeneous subset 

shows a much different result. The four features that minimized error (in order of 
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selection) are Volume, Elliplicity Oblate, Elliplicity Prolate, and Speed. The SFS applied to 

the heterogeneous subset only shares one feature from the full dataset. The accuracy 

increases from 68.28% to 69.48% through SFS and the AUC increases from 0.641 to 

0.653. 

Classification trees applied to both the full dataset and heterogeneous only 

dataset were similarly feature selected. The results differed greatly from LDA in both 

magnitude of misclassification error and order of features selected. However, both data 

subsets used for classification trees maintain a similar predictor importance (Figure 2). 

Accuracy of 10-fold cross-validated classification trees decreases in the full dataset from 

81.27% to 80.98% with SFS but increases from 68.38% to 70.06% in the heterogeneous 

subset. Conversely, the AUC in the full dataset decreased from 0.634 to 0.633, while 

increasing from 0.655 to 0.656 in the heterogeneous subset.  
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Figure 2: Predictor importance estimations (MatLab) – sum change in risk due to splits on every 
predictor divided by the number of branch nodes. 
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Kruskal-Wallis analysis (Figure 3) of volume data (highest predictor) shows a 

significant increase in average cell volume in the infection (heterogeneous) datasets 

likely due to the phagocytosis of bacteria [43].  

 

Figure 3: Kruskal-Wallis and rank-sum analysis on average cell volume per time point shows 
statistically significant difference between all data groups (p < 0.001) except RelA mSmeg 
2D and RelA mSmeg 3D (p > 0.05).  

2.4 Discussion 

In this preliminary work we developed comparative 2D and 3D in vitro infection 

models, present an exploratory data analysis pipeline and machine learning algorithms 

to show the impact of intracellular mycobacterial load on macrophage spatiotemporal 

dynamics. We first applied k-means clustering to segment the heterogeneous subset 

based on assumed bacterial load and use this for further analysis. Both empirical 
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evidence [43] and statistical analysis on the imaging data support use of cell volume to 

predict infection. However, SFS of LDA performed on the full dataset identified volume 

as the lowest contributor to accuracy contradicting all other models that identifed 

volume as the most important feature, implying bias in the LDA.  

When we removed a large subset of the data belonging to one class (homogenous 

control data) we decreased the class weight imbalance in the dataset reducing accuracy 

but increasing the AUC (which provides a more useful metric by considering the false 

positive rate) [44]. Overall, classification trees outperformed LDA in accuracy and AUC 

due to the ability to perform multiple linear separations for each feature and 

compensate for lack of data normality and homogeneity of covariance [45]. However, 

this increase in performance comes with increased model complexity and reduces the 

interpretability of the decision boundaries that can inform mechanistically driven 

models. Further analysis with additional features can determine algorithms that best 

balance model interpretability and performance. 

Our work provides an initial platform for exploring the complex dynamics of 

macrophage-mycobacterium interactions and consequential outcomes. The use of 

machine learning methods to analyze 4D host-pathogen interaction data provides 

insight regarding the intracellular bacterial load’s impact on behavior and dynamic 

response of macrophages during the initial phase of Mtb infection. This knowledge can 

be used in future work to develop more comprehensive computational platforms for 

quantitative characterization of single-cell and cellular neighborhood driven dynamics 

during mycobacterium infection.  
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3 OPTIMIZATION OF EX VIVO MODEL AND INVESTIGATION OF 

HOST RESPONSE TO M. SMEGMATIS 

 

3.1 Introduction 

To address some of the limitations in current models of granuloma formation, we 

have developed an experimental platform to comparatively investigate biochemical and 

spatiotemporal differences in individual cell and cell aggregate response to 

mycobacterial infection in 2D versus 3D cell culture. We utilize a reconstituted 

basement membrane (RBM) that recapitulates a 3D extracellular matrix 

microenvironment, an infection model consisting of fluorescently-labeled primary 

murine macrophages and mycobacterium to facilitate long-term multidimensional time-

lapse confocal imaging for spatiotemporal monitoring and multi-time point sampling for 

biochemical assays, and an Imaris-MATLAB imaging processing platform to enable the 

use of 4D image segmentation, tracking, and analysis to capture and quantitatively 

characterize the structural immune response of macrophages to mycobacterial 

infection. Using this platform, we characterize the effect of bacterial load on 

macrophage spatiotemporal dynamics and investigate the correspondence between 

2D/3D environment, macrophage structural response, production of effector molecules, 

and the dynamics of infection outcomes. 
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3.2 Materials and Methods 

To develop a platform for the investigation of the spatiotemporal dynamics of 

infection, we take into consideration both the biological and technical constraints of live 

cell multi-area time-lapse confocal imaging. This involves macrophage and 

mycobacterium fluorescent variants, which are compared to their wildtype variants, and 

the subsequent generation of a 3D ex vivo infection platform permissible for 

mycobacterial infection and confocal imaging without inducing any variable effects to 

the cells or bacterium that are not accounted for in the standard 2D infection platform 

(Figure 4). 

 

 

Figure 4: Outline of experimental methodology 
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3.2.1 Gas diffusion in 3D cell culture 

Reliance on passive diffusion for the delivery of nutrients and oxygen to the 

system is a significant challenge in tissue engineering and in the development of 3D 

culture systems. Developing a system in which the cells receive adequate nutrient and 

remain well oxygenated, required constraints on ECM gel height and density to ensure 

oxygen diffusion and consumption throughout the system will be balanced. Using Colom 

et al.’s oxygen tension studies of human lung epithelial cell line A549 [35] we 

determined the theoretical maximum gel height that prevents hypoxia, which depends 

on maximal oxygen consumption rate (OCR) and cellular growth rate (Table 3) given by 

equation 4 

 

 

 
ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = �

𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 𝐾𝐾𝑚𝑚𝐷𝐷𝐺𝐺∗

𝜌𝜌0𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒−
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. (4) 
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Table 3:  Colom Formula for Maximal Gel Height to Prevent Hypoxia in RBM Culture 

Variable Description and Values Used 
𝒉𝒉,𝒉𝒉𝒎𝒎𝒎𝒎𝒎𝒎 (Maximum) gel thickness  

𝝓𝝓𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 

Thiele modulus for normoxic environment (19 in for half gel depth, 16.45 for 
full gel depth (estimate)) assuming an oxygen tension limit of 50 mmHg [35] 
Normoxic oxygen tension is 20 to 50 mm Hg in most tissues (excluding high 
oxygenated environments such as arteries and aveoli). 

𝑲𝑲𝒎𝒎 Oxygen concentration at which OCR is half of Vmax; 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 (0.45 mmHg = .58 E-
3 mol m-3) [35] 

𝑫𝑫𝑮𝑮
∗  

Oxygen diffusivity in the gel in the presence of cells (1.7 E -5 cm^2/s, graphical 
estimation ) [35] 

𝒑𝒑𝟎𝟎  Initial cell seeding density (2.5 E 6 cells / mL) 

𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎 

Maximum OCR per cell  
Maximum OCR for A549 in gel is ~ 3/10th of 2D OCR (graphical estimation)[35] 
Maximum OCR for BMDM in 2D culture is ~ 1.7 E -16 moles/ (cell (second)) 
[46], which equates to an estimate of 5 E -17 moles/ (cell( second)) for BMDM 
in 3D RBM culture. 
 

𝝉𝝉 

Time constant describing cell proliferation rate (54 hours for A549 cells in gel) 
[35] However primary BMDM’s do not proliferate well and attempts to extract 
cells from gel after 24 hours produce fewer cells than seeded, so the 

exponential 𝑒𝑒−
𝑡𝑡
𝜏𝜏 term will trend towards 1, changing the cell growth term from 

𝑝𝑝0𝑒𝑒
𝑡𝑡
𝜏𝜏 an assumption of exponential growth to 𝑝𝑝0an assumption of no cell 

growth. 
t Time in cell culture (hours) 
 

The maximal OCR for bone marrow derived macrophages (BMDMs) from 

C57/BL6 mice (b6BMDM) in 2D culture is 1.7 E -16 moles/ (cell(second)) [46]. Using the 

derived equations from Colom et al. and the estimated change in OCR for BMDMs in 

RBM (5 E -17 moles/ (cell (second)), the estimated maximal height of RBM to maintain 

normoxia and prevent cell hypoxia is 1.46mm, approximately 140 μL of RBM per well of 

an 8 well chamber slide (Ibidi) or 48 well plate (VWR). The RBM used in the study by 

Colom et al. was 12 mg/mL concentration, 50% denser than the 8.5 mg/mL 

concentration for our 3D model. Using 140 μL as an upper limit, we tested various 
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volumes to find the minimal volume necessary to achieve a repeatable even gel layer, 

resulting in a 100uL RBM volume for 3D culture in 8 well chamber slides (1mm RBM 

height), sufficiently below the normoxic limit for resting OCR for non-infected 

b6BMDMs. The introduction of bacterial infection results in a heterogeneous cell 

population that includes resting, active (cells producing and responding to a 

proinflammatory environment), and infected macrophages, with active and infected 

cells conceivably having a higher OCR than their resting counterparts (estimated as two 

and three times the OCR of resting cells, respective) [47], [48]. Using these assumptions, 

we approximate the maximal height of RBM permissible under non-proliferating, 

homogenous cell-state assumptions. Cell cultures composed of active cells (max height 

permissible 1.023 mm) are still under normoxic conditions at 100 μL of RBM at a 1 mm 

gel, but a homogenous cell culture composed of infected cells (maximal height of .822 

mm) is not. 

3.2.2 Host Cells 

All animal experiments were performed with the approval of the Institutional 

Animal Care and Use Committee at the University of Houston and in accordance with 

the recommendations in the Guide for the Care and Use of Laboratory Animals and the 

American Veterinary Medical Association (AVMA) Guidelines for the Euthanasia of 

Animals. The transgenic mouse line C57BL/6-Tg(CAG-EGFP)131Osb/LeySobJ (Jackson 

labs) were inbred for up to 4 generations. Bone marrow derived macrophages from the 

transgenic line (gfpBMDM) or from the C57BL/6 (Jackson labs) line (b6BMDM) were 

isolated from femoral and tibial bones of 10-week-old female mice unless otherwise 
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stated. The cells were subsequently aliquoted into freezing medium and stored in liquid 

nitrogen for up to four months according to the protocol outlined by Marim et al. [49]. 

One week prior to experiment start, macrophage aliquots were removed from liquid 

nitrogen, thawed and cultured as previously reported [50].  

3.2.3 Homogeneity and persistence of mCherry expression in M. smegmatis culture  

 We selected the high expressing mCherry M. smegmatis (gifted by Dr. 

Cirillo Texas A&M University, TX) to minimize any potential spectral overlap with the 

gfpBMDM’s EGFP during confocal imaging. To ensure a high correspondence between 

spatiotemporal image-based data and standard biological assays, we required a 

bacterial culture with homogenous and persistent expression of mCherry. We isolated 

and purified M. smegmatis strains with high, consistent expression of the mCherry 

plasmid through single colony isolation and expansion using the selective antibiotic 

hygromycin (80 μg/mL, VWR) (Figure 5).  
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Figure 5: Purification of m. Cherry M. smegmatis with single colony expansion. 

 

The accurate quantification of bacterial load via confocal imaging depends on 

the consistent ubiquitous expression of m. Cherry within each bacterium. To ensure 

even fluorescence bacterial stocks were streaked for singles on 7H11 plates with 80 

μg/mL of hygromycin, the highest expressing CFU’s were selected for (both colormetric 

and fluorescent) and subsequently streaked for singles until all colonies displayed a 

consistent level of m. Cherry expression. A single colony was then used to inoculate 

liquid culture which was then grown into the log phase (37 C at 250 RPM). The liquid 

stock was then plated to check for m. Cherry expression and used to make the working 

frozen aliquots of m. Cherry M. smegmatis.  
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 Infection studies were performed in the absence of hygromycin, which affects 

both bacterial and mammalian cells, therefore we determined plasmid maintenance 

within M. smegmatis during extended culture in the absence of the selective antibiotic 

[51]. Persistence of the mCherry plasmid was determined using differential plating and 

microplate monitoring in a 96 well black well plate (Eppendorf). Briefly, mCherry M. 

smegmatis was grown in sealed (gas permeable Breathe-Easy, Diversified Biotech) black-

walled 96 well plate (Eppendorf) in 7H9 media with and without hygromycin. 

Fluorescent measurements were taken every 90 minutes for 48 hours using FLUOstar 

OPTIMA microplate reader ((584nm/612 nm, excitation/emission; BMG Labtech). 

Concurrently, static culture mCherry M. smegmatis was grown in filter-top glass tubes in 

7H9 media with and without hygromycin selective for 48 hours. Culture tubes were 

vortexed and OD600 readings were taken every 24 hours and bacterial suspension 

plated to determine colony forming units on 7H11 agar with and without hygromycin.  

 To determine the growth/death curve of m. Cherry M. smegmatis in 2D culture 

with and without gentamicin (Sigma Aldrich) (10 μg/ml), and 3D RBM, with a buffer 

solution that contains 50 μg/mL gentamicin, with standard bacterial 7H9 media with 

hygromycin (80 μg/mL) and 2D DMEM without antibiotics to serve as a control. Samples 

were collected and colony forming units (CFUs) were quantified at 0, 12, 24, 48, and 72 

hours using 4 ̊C 1x PBS with 0.1% Tween 80 to disrupt the 3D extracellular matrix and 

remove any adhered bacteria form the tissue culture plates.  
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3.2.4 Comparing macrophage response to infection with wild-type versus m. Cherry 

M. smegmatis  

 Macrophage, gfpBMDM and b6BMDM, response to mCherry M. smegmatis 

infection was compared to determine any variation between wildtype and EGFP 

containing cells. Using our standard 2D infection protocols, BMDMs from 8-week-old 

male mice were infected at a MOI of 50  incubated in DMEM without gentamicin, and 

intracellular and extracellular samples collected and replicate plated (0, 24, 48 hours 

post-infection) for CFU enumeration using previously described methods [36].  

 A comparison of the host response between of b6BMDM under m. Cherry M. 

smegmatis compared to wild type M. wmegmatis infection was conducted using a 2D 

infection protocol to determine any variation between the cells derived from the mouse 

lines. The cells were infected at a MOI of 50 without the presence of gentamicin and the 

wells were sampled in replicate every 24 hours for 48 hours with BMDMs from 8-week-

old male mice as previously described [36]. 

3.2.5 Development of 2D/3D ex vivo model of mycobacterial Infection 

To minimize variability, a single batch of gfpBMDM cells were infected in tissue culture 

plates (VWR) for 1hr followed by 1hr gentamicin incubation to remove extracellular 

bacteria [36]. Cells were washed with 1x PBS twice and then cells were detached using 

Cellstripper® (Corning) and placed into 2D or 3D culture.  
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3.2.5.1 3D infection platform 

High plasmid expressing mCherry M. smegmatis was cultured and prepared for 

bacterial infection as previously reported in DMEM-complete (Dulbecco's Modified 

Eagle Medium containing 10% fetal bovine serum,1% L-glutamine and 1% non-essential 

amino acid) [36]. 

Using an adaptation of Xu et al.’s protocol, for the 3D ex vivo model 250μL 

diluted RBM (.18 mg/mL) coating was added to 48-well plates (sample collection) and 8-

well (Ibidi) chamber slides (confocal imaging) to prevent formation of an RBM-culture 

plate interface void of ECM proteins [52]. Plates were incubated (5% CO2 at 37 ̊C) for 30 

minutes enabling matrix formation, aspirated and excess tapped onto low-lint tissue 

paper. Immediately following, control/non-infected or infected cells were resuspended 

in diluted 8.5mg/mL RBM (2.5E6 cells/mL at 0-8 ̊C) and 100μL of cell suspension was 

plated onto the center of each coated well. To minimize uneven gel dispersion and 

reduce the effect of meniscus formation, the plate was quickly swiveled in a star 

pattern. Any large bubbles were disrupted using a 20 to 30-gauge sterile needle. The 

cell-containing matrix was incubated for 45 minutes, allowing gel to fully set, and 275μL 

of hydrating media (DMEM-complete) added to prevent gel dehydration. 

The 2D ex vivo model was implemented using our standard protocol with the 

addition of 10μg/mL of gentamicin in the culture media, which, assuming passive 

diffusion of gentamicin into the hydrating media, we estimate as a concentration 

comparable to the buffer solution of RBM [53]. Prior studies indicate 10μg/mL of 

gentamicin inhibits extracellular but not intracellular growth of M. smegmatis [54] [53]. 
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500μL of 2D cell suspension was added to each 24-well plate (sample collection) or 250 

μL to each non-RBM coated well of the 8-well chamber slide (confocal imaging). Cells 

were incubated and allowed to adhere in 2D for 2 hours before any samples were 

collected for both the 2D and 3D cultures. We conducted two experimental trials 

comparing 3D/2D, with two biological duplicates per trial. 

3.2.6 Analysis of biological response to infection 

Supernatant samples were collected and bacterial CFU’s enumerated at 0, 12, 

24, 36, 48 and 72 hours post-infection. For the 3D model, supernatant was collected for 

assays and 375μL of ice-cold PBS (0-4 ̊C)was added and vigorously pipetted to disrupt 

and dissolve the RBM matrix. The liquefied RBM solution was collected into 

microcentrifuge tubes, centrifuged (1500 RPM, 4 ̊C) for 10 minutes, and 200μL of 

supernatant collected for assays, avoiding disruption of loose RBM/cell pellet. To disrupt 

cells, 200μL of 1% Triton-X 100 was added to RBM/cell pellet, incubated (20-25 ̊C, 

5minutes), and vigorously pipetted and vortexed to lyse cells and release intracellular 

bacteria. The disrupted supernatant/lysate was serially diluted 10-fold and plated on 

7H11 plates to enumerate the total colony forming units of bacteria in the 3D matrix. 

 For cells in 2D, using previously reported methods [36], supernatant was 

collected for enumeration of extracellular bacteria or stored at -80 ̊C until use for assays. 

Wells were gently washed twice (1xPBS), 500μL of 1% Triton-X100 added, incubated 

followed by vigorous pipetting to lyse cells and release intracellular bacteria. 

Supernatant/lysates were vortexed, serially diluted 10-fold and plated on 7H11 agar 
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plates. After 72 hours CFUs were used to quantify intracellular, extracellular or total 

bacterial loads. 

 Frozen supernatant from 3D and 2D models was used to quantify nitric oxide 

(Griess assay; Promega™, G2930) and cell death (LDH cytotoxicity assay; Pierce™, 

88954).Assays were performed in replicate according to manufacturer protocol, with 

standards generated for gfpBMDM and potential interference of RBM quantified. Media 

supernatant was used for quantification of effector molecules in 3D as determined by 

comparison of dissolved RBM assay quantification in comparison to the hydrating media 

on top of the 3D culture. 

3.2.7  Image-based quantification of the spatiotemporal response to infection 

Infected and control/non-infected cells in the Ibidi 8-well chamber slides were 

incubated in a stage top incubation system (TokaiHit) and imaged for 72 hours using 

multi-area time-lapse confocal imaging (Olympus FV1200, UPLSAPO40X2 40x/0.95NA 

objective). Confocal images were acquired with Olympus Fluoview software version 4.2b 

every 90 minutes at a 1μm axial resolution for 100μm appended Z-stacks at each 

timepoint. The sampling resolution allows for image acquisition under the Nyquist limit 

of macrophages ( 10-20 μm  approximate diameter) and M. smegmatis (2-8 μm 

approximate length) [55] [56]. The dwell time per pixel is minimized to 2 μs/Pixel (the 

fastest image acquisition available with unidirectional laser scanning) to reduce 

photobleaching and phototoxicity [57]–[59], which compounds over time. 
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To determine the number of sample points to image within each 8-well 

chamber, treating the population of BMDMs in 2D control/non-infected wells (0hr) as a 

homogenous normally distributed population, we applied the Yamane formula [60] to 

determine the proper sample size for a 95% confidence interval (equation 5). The 2D 

approximations were extrapolated into the 3D plane for the 3D wells as given by 

𝑛𝑛𝑜𝑜 = 𝑧𝑧2𝑝𝑝(1−𝑝𝑝)𝑁𝑁
𝑧𝑧2𝑝𝑝(1−𝑝𝑝)𝑁𝑁𝜖𝜖2

. (5) 

Table 4: Yamane formula for determination of sample size in a homogenous normally distributed 
population 
Variable Description and Values Used 
𝒏𝒏𝒐𝒐 Sample size (5E5 cells/mL * .250 uL) 
𝒛𝒛 Confidence interval (1.96 for 95% confidence interval) 
𝒑𝒑 Population proportion (.5) 
𝑵𝑵 Population size (1.25E5 cells per 8 well chamber slide in 2D) 
𝝐𝝐 Error limit (0.03) 
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3.2.8 Image Analysis 

Figure 6:  Image Processing in Imaris 8.1.2 of 3D infected cells at hour 0 of imaging: A) 3D rendering of 
confocal image B) Seed point diameters 8.25 μm B) watershed segmentation of cells in 3D 
D) autoregressive motion tracking applied to segmented cells to produce tracks over time. 

The resulting 4D time appended 100μm image Z-stacks were rendered and 

analyzed using Imaris 8.1.2 (Bitplane) with surface creation and tracking of macrophages 

to monitor the change in cellular dynamics over time (Figure 6). The same image 

processing parameters (Table 5) were used for all conditions within an experimental 

trial, with trial-specific adjustments to fluorescent cutoffs due to variations in 

background fluorescence. Data for the entire imaging field was taken by reporting data 

of the entire Z-stack as a single surface to analyze the fluorescent and volumetric values 

of the entire 4D image. Imaging data was analyzed in time windows comparable to 
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sample acquisition timepoints and cellular dynamic features quantified, including 

velocity, acceleration, volume, and red fluorescent values.  

Table 5:  Image Processing Parameters for Imaris (*values adjusted for each trial due to variations in 
fluorescence between experiments)  

Parameter Value 

Algorithm 
Enable Region of Interest False 
Enable Region Growing True 
Enable Tracking True 

Source Channel 

Source Channel Index 1 (GFP) 
Enable Smooth True 
Surface Grain size 1.00 µm 
Enable Eliminate Background True 
Diameter of Largest Sphere 10.0 µm 

Threshold 

Enable Automatic Threshold False 
Manual Threshold Value * 
Active Threshold True 
Enable Automatic Threshold B True 
Manual Threshold Value B * 
Active Threshold B False 
Region Growing Estimated Diameter 8.25 µm 

Classify Seed Points 

Quality Above 40.0 
Distance to Image Border XYZ Above 3 µm 
Intensity Mean Ch=1 Above * 
Intensity StdDev Ch=1 Below * 

Classify Surfaces None applied - 

Tracking 

Algorithm Name Autoregressive Motion 
MaxDistance 20.0 µm 
MaxGapSize 0 
Fill Gap Enable true 

Classify Tracks None applied - 
 

3.2.8.1 Feature analysis and data processing in MATLAB 

We developed a MATLAB-based (MathWorks) computational pipeline for high-

throughput analysis of the 4D spatiotemporal response dataset. Using MATLAB GUIDE 

to facilitate data organization based on conditions (2D/3D, control/infection) and 

biological replicates, the data was hierarchically processed to enable condition-based 

normalization of fluorescence-associated noise over the 4D datasets. Variations in signal 
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to noise ratio (SNR) over the time-lapse was reduced post acquisition by background 

normalization to the bacterial red fluorescent protein (RFP) levels in the control 

conditions, which should remain constant given the absence of bacteria in the control 

wells. The variation in RFP fluorescence in both control and infection wells were 

accounted for as previously described through normalization to the control image RFP 

signal minimum in chapter 2 [61]. Subsequently, the directedness of each for each 

macrophage was calculated as the ratio of the Euclidian (straight-line) distance over the 

total distance traveled from the initial timepoint to the current timepoint. Directedness 

represents the inverse of random movement, therefore a higher directedness value 

represents a cell with movement that is less random and a directedness value of 1 

would represent movement in a straight line [62]. 

3.2.9 Statistical Analysis 

 R-Studio’s dplyr, ggplot2 and ggpubr libraries were used for statistical analysis 

[63]–[66]. The Wilcoxon rank sum test was used to calculate statistical significance and 

Pearson’s correlation used to assess relationships between variables. Reported rate of 

change values (differentials) were calculated using the non-averaged data to calculate 

the change in value from the previous reported timepoint. When initial concentrations 

differed, log2 fold change (Log2FC) of the data was calculated and used to statistically 

compare across experimental conditions as given by equation 6,  

 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿2𝐹𝐹𝐹𝐹 = 𝐿𝐿𝐿𝐿𝑔𝑔2 �
𝑋𝑋(𝑡𝑡)
𝑋𝑋(0)�, (6) 



35 
 

3.3 Results 

3.3.1.1 Plasmid Persistence 

 The mCherry plasmid in M. smegmatis in the absence of the selective 

antibiotic was maintained in long-term static culture up to 48 hours through the 

bacterial log phase of growth. No significant differences in antibiotic resistance through 

differential plating (Figure 7B, Table 6), and no significant changes in bacterial 

fluorescence through microplate analysis was found between the 7H9 media containing 

hygromycin and 7H9 bacterial media without hygromycin conditions (Figure 7A). Results 

demonstrate the persistence of the purified mCherry M. smegmatis strain and indicate 

no significant loss of bacterial plasmid including antibiotic resistance and mCherry 

fluorescence during long-term culture in the absence of the selective antibiotic.  

  

Table 6:  Plasmid Persistence of mCherry M.smegmatis Differential Plating: Wilcoxon (n=4) 

Hour Media:+Hygro/Plate:+Hygro CFU/mL Media:-Hygro/Plate:+Hygro 
CFU/mL 

p value  

0 2.28E+07 2.43E+07 0.665006 

24 2.28E+07 2.43E+07 1 

48 1.50E+08 1.53E+08 0.746886 

Hour Media:+Hygro/Plate:-Hygro CFU/mL Media:-Hygro/Plate:-Hygro CFU/mL p value  

0 2.29E+07 2.57E+07 1 

24 2.29E+07 2.57E+07 0.060602 

48 1.83E+08 1.80E+08 1 
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Figure 7:  A) Microplate fluorescent readings of m. Cherry M. smegmatis cultured in 7H9 media in the 
presence or absence of selective antibiotic Hygromycin (n=6). B) Bacterial growth analysis 
represented as colony forming units at 0, 24 and 48 hours using differential plating (n=4) 
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3.3.2 Fluorescent host and mycobacteria strains exhibit comparable infection 

response and dynamics as wild type 

 Infection response of gfpBMDM and b6BMDM to wild type M. smegmatis 

(MOI 50) in the absence of gentamicin (Figure 8) were comparable with no significant 

differences in CFU (Table 7) Results indicate that the actin-tagged GFP does not interfere 

with macrophage-mycobacterium interaction during the low level infection.  

 

Figure 8:  Comparison of gfpBMDM (from B6-EGFP mice) and b6BMDM (from C57BL/6J mice) under 
2D infection with m.Cherry M.smegmatis at MOI 50. No significant difference under 
Wilcoxon analysis (n=4)  
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Table 7:  2D MOI 50 Comparison of C57BL/6J and B6-EGFP: Wilcoxon (n=4) 

Hour C57BL/6J: Intracellular CFU/mL B6-EGFP: Intracellular CFU/mL p value  
0 4.38E+05 3.69E+05 0.465124 
24 5.56E+06 2.66E+06 0.312321 
48 2.48E+07 2.45E+07 0.880933 

Hour C57BL/6J: Extracellular CFU/mL B6-EGFP: Extracellular CFU/mL p value  
0 7.25E+04 2.04E+05 0.771503 
24 1.21E+06 1.73E+06 0.665006 
48 2.75E+07 3.31E+07 0.303525 
 Similarly, there were no significant difference between mCherry and wild 

type M. smegmatis infections of b6BMDM (mSmeg mCherry MOI 50 and 48, mSmeg 

MOI 18 and 17) in the absence of gentamicin. Using Log2FC CFU due to variations in 

bacterial concentrations of bacteria in the inoculate (Figure 9). No notable or significant 

differences were observed (Table 8). 

 

Figure 9:  Comparison of wild type M. smegmatis and m. Cherry M smegmatis infection in B6BMDM. 
Note: Log2FC used due to different levels of starting infection, Wilcoxon N=6, except 72 
hour n=3 
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Table 8:  2D MOI Comparison of mCherry M. smegmatis:and wild type M. smegmatis infection in 
b6BMDM Log2FC Wilcoxon (n=6,*n=3) 

Hour mCherry: Intracellular log2FC wild Type: Intracellular log2FC p value  

0 0 0 - 

24 2.980128 1.626583 0.29795 

48 4.370521 3.684769 0.81018 

72 6.258945 7.662005 0.38273* 

Hour mCherry: Extracellular log2FC wildType: Extracellular log2FC p value  

0 0 0 - 

24 2.614937 2.773342 1 

48 8.478391 6.226576 0.09270 

72 10.17503 9.55832 0.66252* 

 

3.3.2.1 Growth Curve of M. smegmatis in gentamicin culture 

 The growth/death curve of mCherry M. smegmatis (Log2FC) in 2D culture 

in the presence of gentamicin (10 μg/mL) to account for the buffer solution of the RBM 

showed comparable bacterial fold change to 3D culture up to 48hrs. At 72hrs, the 

method of extraction for 3D culture yielded no viable CFUs, possibly due to the difficulty 

in extraction and higher dilution factor in combination with the already low bacterial 

concentration (Figure 10,Table 9,Table 10).  
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Figure 10: Comparison of dynamic growth of m. Cherry M. smegmatis in 2D culture with added 
Gentamycin at 10 μg/mL and within 3D culture of the bacterium in RBM (n=4). 

Table 9:  2D 3D persistence of m.Cherry M.Smegmatis in 10 µg/mL Gentamycin: Log2FC Wilcoxon 
(n=4) 

Hour 2D-Gentamycin 3D-RBM p value  
0 0 0 - 
12 -5.419 -3.410 0.245278 
24 -9.658 -10.232 0.665006 
48 -9.889 -8.896 0.312321 
72 -5.633 -3.410 n/a 
Table 10:  2D static growth of m.Cherry M.Smegmatis in DMEM and 7H9 Media: Log2FC Wilcoxon 

(n=4) 

Hour 2D-DMEM 2D-7H9 p value  
0 0 0 - 
12 1.741 2.788 0.245278 
24 3.409 7.316 0.030383 
48 4.312 7.687 0.030383 
72 7.166 10.226 0.030383 
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3.3.2.2 Determination of method effector molecule quantification 

Standard 2D cell culture and infection assays rely on the media supernatant to 

run immunological assays to determine effector molecule expression in response to 

stimulus. However, in the case of 3D studies, the hydrating supernatant is separated 

from intra-matrix cells by the RBM layer in which the cells are embedded. To determine 

the difference between the intra-matrix environment versus the supernatant and to 

determine a feasible method for quantifying the effector response we quantified two 

methods of sample extraction to determine significant differences and comparability to 

qualitative imaging data. We compared two methods, sampling the hydrating 

supernatant surrounding the RBM-cell suspension or the supernatant from disrupted 

RBM (disrupted using 1xPBS at 4 ̊C) for sample extraction. The disrupted RBM is 

significantly diluted during this process leading to potential loss of signal even when the 

dilution is accounted for. The Griess assay for quantification of nitric oxide expression 

showed no significant difference between the two sample collection methods for 3D. 

However, this is likely attributed to the already very low signal from this assay (Figure 

11A,Table 11). The LDH assay showed significant difference between intra-matrix versus 

extra-matrix supernatant for almost all time points (Figure 11,Table 12). In addition, the 

dynamics of the media hydrating supernatant sample matched most closely to 

qualitative biological observations of confocal imaging and the dynamical trends for 2D. 

Therefore, we proceeded to compare 2D supernatant assay samples with 3D media 

supernatant assay samples. 
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Figure 11: A) No significant difference between NO signal gathered from supernatant and RBM B) 
significant difference (p<.05) between LDH gathered from supernatant and RBM at multiple 
timepoints. 
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Table 11:  Nitric Oxide Signal Extracted from Media Supernatant and RBM: Wilcoxon (n=4) 

Hour Control: 3D-Supernatant Control: 3D-RBM p value  

0 0.3585 0.34675 1 
12 0.3295 0.36275 0.885234 
24 0.31875 0.38225 1 
36 0.33175 0.35575 0.665006 
48 0.32625 0.365 0.191267 
72 0.32175 0.3305 0.885234 

Hour Infected: 3D-Supernatant Infected: 3D-RBM p value  

0 0.3635 0.337 0.312321 
12 0.3285 0.3465 0.312321 
24 0.3835 0.354 0.470486 
36 0.441 0.368 0.470486 
48 0.521 0.383 0.665006 
72 0.424 0.3715 0.665006 
 

Table 12:  LDH Assay: Cell Death Extracted from Media Supernatant and RBM: Wilcoxon (n=4) 

Hour Control: 3D-Supernatant Control: 3D-RBM p value  
0 -60617.6 354040.9 1 
12 203256 102841 0.312321 
24 421959.1 400836.2 1 
36 873339 78793.42 0.030383 
48 972779.1 242902 0.030383 
72 1356241 224053.9 0.030383 

Hour Infected: 3D-Supernatant Infected: 3D-RBM p value  

0 -36570 -134060 0.030383 
12 288072.5 255575.7 1 
24 309195.4 282223.1 0.312321 
36 404410.9 183108 0.112351 
48 559745.3 127538.5 0.030383 
72 664709.8 565269.8 0.312321 
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3.3.3 Comparison of infection dynamics in standard 2D infection assay vs 3D 

infection assay. 

Comparison of 2D and 3D conditions shows that the dynamic of bacterial 

elimination during low level infection is similar (Figure 12A,Table 13) between the two 

conditions with a slight increase in the rate of change of bacteria in 3D culture between 

12 and 24 hours (p<.05) (Figure 12B, Table 14). 

 

4  

Figure 12: A) Comparison of bacterial load between 2D and 3D culture (n=4) B) Comparison of the rate 
of bacterial clearance between 2D and 3D culture (n=4)  
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Table 13:  2D 3D MOI 50 CFU/mL: Log2FC Wilcoxon (n=4) 

Hour 2D 3D p value  

0 0 0 - 

12 -5.4057 -6.5588 0.47049 

24 -7.5916 -7.3823 1 

36 -6.5644 -8.4127 0.37676 

48 -7.2291 -9.0334 0.595883 

72 -8.5010 -9.3100 0.487453 

 

Table 14:  2D 3D MOI 50 differentials (tp1-tp0): Log2FC Wilcoxon (n=4) 

Hour 2D 3D p value  

12 -5.4057 -6.5588 0.47049 

24 -2.1858 -0.8235 0.03038 

36 0.1209 -1.0304 0.11161 

48 0.3625 -0.8060 0.19043 

72 -3.1287 -1.0570 0.14891 

 

3.3.4 Nitric Oxide expression does not significantly differ between 2D and 3D i during 

low level infection. 

Quantification of nitric oxide shows a non-significant average higher concentration 

of nitric oxide in 3D infection cultures as compared to the 3D controls, 2D controls and 

2D infection (Figure 13,Table 15, Table 16). 
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Figure 13: NO assay results: a) no significant difference between any conditions b) no significant 
difference between any conditions in rate of change – Wilcoxon N=4  
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Table 15:  Nitric Oxide Extracted from Supernatant 2D vs. 3D: Log2FC Wilcoxon (n=4) 

Hour 2D: Control 3D: Control p value  
0 0 0 - 
12 -0.002 -0.102 0.112351 
24 -0.083 -0.121 0.470486 
36 -0.08 -0.109 1 
48 0.0516 -0.115 0.470486 
72 -0.03 -0.109 0.470486 

Hour 2D: Infection 3D: Infection p value  
0 0 0 - 
12 -0.147 -0.018 0.112351 
24 -0.109 0.1707 0.112351 
36 0.0134 0.2455 1 
48 0.0333 0.533 0.312321 
72 -0.141 0.3104 0.060602 

 

Table 16:  Nitric Oxide Extracted from Supernatant Control vs Infected Log2FC Wilcoxon (n=4) 

Hour 2D: Control 2D: infection p value  
0 0 0 0.112351 
12 -0.002 -0.147 0.665006 
24 -0.083 -0.109 0.193931 
36 -0.08 0.0134 1 
48 0.0516 0.0333 0.470486 
72 -0.03 -0.141 0.112351 

Hour 3D: Control 3D: Infection p value  
0 0 0 - 
12 -0.102 -0.018 0.112351 
24 -0.121 0.1707 0.060602 
36 -0.109 0.2455 0.470486 
48 -0.115 0.533 0.112351 
72 -0.109 0.3104 0.060602 

3.3.5 Necrotic cell death is down regulated during 3D infection as compared to 2D 

Results of the LDH assay show a consistent increase in cell death due to necrosis 

over time consistent with qualitative imaging observations (Figure 14). Control cells 

within 3D culture have a significantly higher fold change increase in LDH levels than 2D 

controls, 3D infection and 2D infection at 36, 48 and 72 hours (p<.05). At 24 hours, 3D 

controls have a significantly higher fold change increase in LDH as compared to 3D 

infection, and at 12 hours 3D controls have a significantly higher fold change increase in 
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LDH as compared to 2D controls (Table 17,Table 18). Investigation of the LDH rate of 

change (differentials) shows consistent LDH expression between 2D and 3D controls as 

well as 2D and 3D infection (Figure 14B,Table 19), while maintaining significant 

differences in rate of LDH expression between control and infection within the 2D and 

3D conditions (Figure 14B,Table 20).  

Table 17:  LDH Extracted from Media Supernatant 2D vs. 3D: Log2FC Wilcoxon (n=4) 

Hour 2D: Control 3D: Control p value  
0 0 0 - 
12 0.852612 1.482648 0.193931 
24 1.392919 2.184865 0.060602 
36 2.14604 3.072038 0.030383 
48 2.353846 3.193532 0.030383 
72 2.770592 3.579989 0.030383 

Hour 2D: Infection 3D: Infection p value  
0 0 0 - 
12 1.477391 1.628312 1 
24 1.530684 1.702693 1 
36 1.846927 1.956242 1 
48 2.143491 2.286088 1 
72 2.790721 2.479411 0.193931 

 

Table 18:  LDH Extracted from Media Supernatant Control vs. Infected: Log2FC Wilcoxon (n=4) 

Hour 2D: Control 2D: Infection p value  

0 0 0 - 
12 0.852612 1.477391 0.312321 
24 1.392919 1.530684 1 
36 2.14604 1.846927 1 
48 2.353846 2.143491 1 
72 2.770592 2.790721 0.885234 

Hour 3D: Control 3D: Infection p value  

0 0 0 - 
12 1.482648 1.628312 0.885234 
24 2.184865 1.702693 0.030383 
36 3.072038 1.956242 0.030383 
48 3.193532 2.286088 0.030383 
72 3.579989 2.479411 0.030383 
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Figure 14: A) LDH assay results B) LDH Differential results, Wilcoxon N=4 
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Table 19:  Differentials-LDH Extracted from Media Supernatant 2D vs. 3D: Log2FC Wilcoxon (n=4) 

Hour 2D: Control 3D: Control p value  

12 0.852612 1.482648 0.193931 
24 0.540307 0.702217 0.665006 
36 0.753121 0.887173 0.665006 
48 0.207806 0.121493 0.193931 
72 0.416747 0.386457 0.885234 

Hour 2D: Infection 3D: Infection p value  

12 1.477391 1.628312 1 
24 0.053293 0.074381 1 
36 0.316243 0.25355 1 
48 0.296563 0.329846 0.885234 
72 0.647231 0.193323 0.193931 
 

Table 20:  Differentials-LDH Extracted from Media Supernatant Control vs. Infected: Log2FC 
Wilcoxon (n=4) 

Hour 2D: Control 2D: Infection p value  

12 0.852612 1.477391 0.312321 
24 0.540307 0.053293 0.112351 
36 0.753121 0.316243 0.060602 
48 0.207806 0.296563 0.665006 
72 0.416747 0.647231 0.885234 

Hour 3D: Control 3D: Infection p value  

12 1.482648 1.628312 0.885234 
24 0.702217 0.074381 0.030383 
36 0.887173 0.25355 0.030383 
48 0.121493 0.329846 0.030383 
72 0.386457 0.193323 0.112351 
 

3.3.6 Confocal imaging and quantification of cellular dynamics 

Surface quantification and tracking analysis of 4D imaging data (Imaris) yielded 

33,414 unique data points (cells at all timepoints) with 36 cell features, and 20 field 
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features, representing the entire image as a whole, over two independent trials with 

two imaging replicates in two biological replicate wells (total n=8 images per condition). 

The Imaris rendering of the 4D imaging data show constitutive high expression of actin-

GFP in the BMDMs provided even, and consistent fluorescence in both the control and 

infected conditions. mCherry expression in M. smegmatis allowed visualization of M. 

smegmatis extracellularly and intracellularly (Figure 15A).  

By acquiring 100um of Z-stack images for both 2D and 3D environments we were 

able to capture the distribution of cells in the 3D environment, as well as the rounded 

morphology of cells within the 2D infection condition as compared to 2D control 

conditions indicative of pro-inflammatory, M1 macrophage, phenotype (Figure 15A,B) 

In addition, cells in the 2D environment did not form a perfect monolayer, 

macrophages can be seen in aggregations including dispersion in the Z-plane of cells on 

top of each other (Figure 15C). Cells in the 3D environment maintained Z-plane 

dispersion throughout the entire Z-dimension imaged, extended well beyond the 

maximal imaging depth. Cells beyond the imaging depth were observed under lower 

resolution bright-field microscopy (data not shown) but were unable to be captured 

with confocal imaging due to the working distance of the objective (Figure 15D). 
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Figure 15: Imaris rendering of 2D and 3D infected and 2D noninfected-control cells at hour 0 of 
imaging A) 2D infected macrophages B) 2D control cells C) 2D infected macrophages side 
view D) 3D infected macrophages embedded in RBM  

We used the RFP mean of each individual cell to observe the relative bacterial load over 

time, the mean cell speed (non-directional velocity), acceleration, volume and 

directedness. For time-based quantification the imaging data generated every 90 

minutes was pooled based on condition into time windows comparable to those used 

for biological sampling. Table 21 shows the number of unique datapoints per time 

frame. 
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Table 21:  Number of Observations (cells) During Each Hour-Range 
 

Hour-Range 2D Control 3D Control 2D Infection MOI 50 2D Infection MOI 50 

0-12 1586 740 1205 959 

12-24 2171 855 1779 1309 

24-36 2502 718 2044 1341 

36-48 2337 453 2107 1452 

48-72 3679 334 3542 2301 

Total 12275 3100 10677 7362 

 

Analysis of RFP mean levels in macrophages for the first experimental trial 

independently yields significant differences between control and infected cells as 

expected. Analyzed over all time for raw values there is a significant difference between 

controls (Figure 5A, Table S 20). Post RFP normalization, the significant difference is no 

longer observed for 2D/3D controls, but there remains significant differences between 

infected and control conditions, as well as 2D and 3D infected conditions (Figure 16a). 

By applying RFP normalization, the significance between controls is removed, and the 

significant difference between infected and control conditions is maintained (Figure 

16b).  
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Figure 16: RFP mean of all cells at all timepoints (Trial 1 only) A) raw values B) values normalized to 
each timepoint. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 
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Analysis of the adjusted RFP mean over time shows a decrease in fluorescence 

comparable to the decrease in bacterial load over time (Figure 17), this is also observed 

in Pearson correlation analysis of the adjusted RFP mean and bacterial load. 

 

 

Figure 17: Overlay of Imaging RFP Mean Adjusted and Experimental Log2FC CFU/mL shows similarity 
in trends over time. Imaging data grouped into time windows to show comparison to 
experimental biological data. 

3.3.7 Cell motility and migration is significantly impacted by both the presence of a 

3D environment and mycobacterial infection 

In 2D, the average speed of non-infected cells in the control condition (12.94E-4 

μm/s) is significantly higher (p<.0001) than 2D infected cells (7.61E-4 μm/s). In 3D, the 

converse is shown with the overall average speed of 3D infected cells (3.8E-4 μm/s) 

being significantly higher (p<.0001) than 3D controls (2.75 E-4μm/s) (Figure 18A,Table 

22).  
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Table 22: Average Individual Cell Speed Over All Time: Wilcoxon 

Condition 1 Speed μm/s Condition 2 Speed μm/s p value  

2D Control 1.29E-03 3D Control 2.75E-04 0 

2D Infection 7.61E-04 3D Infection 3.80E-04 0 

2D Control 1.29E-03 2D Infection 7.61E-04 0 

3D Control 2.75E-04 3D Infection 3.80E-04 4.41E-41 

 

The fold changes between the means of the individual cell speeds is highest 

between the 2D and 3D controls, with 2D controls having the highest overall cell speed. 

The absolute value of the Log2 fold change between 2D control and 2D infected cells is 

also higher than the Log2 fold change between 3D control and 3D infected cells (Table 

23). Analysis of the trends in average cellular speed over the time-course of imaging 

show a decrease in average cellular speed at all times with significant differences 

between all conditions at all hour ranges except 3D control and 3D infected cells at the 

36-48 and 48-72 hour ranges (Figure 18,Table 24,Table 25)  

Table 23:  Average Individual Cell Speed Over All Time: Log2 Fold Change of Means 

Condition 1 Condition 2 Log2 Fold Change (Cond 1/ Cond 2) 

2D Control 3D Control 2.235 

2D Infection 3D Infection 1.0015 

2D Control 2D Infection 0.766 

3D Control 3D Infection -0.467 
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Figure 18: Image analysis of individual cell speed of gfpBMDM infected with mCherry M.smegmatis in 
2D and 3D culture conditions over 72 hours. A) Averaged over all time B) Averaged based 
on hour range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 

 



58 
 

Table 24:  Average Individual Cell Speed 2D vs. 3D Over Time (timeframes): Wilcoxon 

Hour 
Range 

Condition 1 Speed μm/s Condition 2 Speed μm/s p value  

0-12 2D Control 1.37E-03 3D Control 2.40E-04 2.99E-213 

12-24 2D Control 1.28E-03 3D Control 2.25E-04 1.22E-208 

24-36 2D Control 1.32E-03 3D Control 2.98E-04 1.35E-150 

36-48 2D Control 1.31E-03 3D Control 3.66E-04 5.31E-82 

48-72 2D Control 1.24E-03 3D Control 3.05E-04 1.88E-76 

0-12 2D Infection  1.05E-03 3D Infection  4.86E-04 2.27E-47 

12-24 2D Infection  1.04E-03 3D Infection  4.70E-04 7.94E-73 

24-36 2D Infection  7.60E-04 3D Infection  3.69E-04 3.87E-86 

36-48 2D Infection  6.60E-04 3D Infection  3.54E-04 9.12E-76 

48-72 2D Infection  5.84E-04 3D Infection  3.08E-04 6.10E-127 

 

Table 25:  Average Individual Cell Speed Control vs. Infected Over Time (timeframes): Wilcoxon 

Hour 
Range 

Condition 1 Speed μm/s Condition 2 Speed μm/s p value  

0-12 2D Control 1.37E-03 2D Infection 1.05E-03 2.93E-21 

12-24 2D Control 1.28E-03 2D Infection 1.04E-03 2.48E-12 

24-36 2D Control 1.32E-03 2D Infection 7.60E-04 5.56E-57 

36-48 2D Control 1.31E-03 2D Infection 6.60E-04 1.10E-78 

48-72 2D Control 1.24E-03 2D Infection 5.84E-04 3.07E-156 

0-12 3D Control 2.40E-04 3D Infection 4.86E-04 1.51E-34 

12-24 3D Control 2.25E-04 3D Infection 4.70E-04 1.87E-41 

24-36 3D Control 2.98E-04 3D Infection 3.69E-04 0.000244 

36-48 3D Control 3.66E-04 3D Infection 3.54E-04 0.403125 

48-72 3D Control 3.05E-04 3D Infection 3.08E-04 0.829769 
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3.3.7.1 Cell acceleration 

In 2D, the average acceleration of non-infected cells in the control condition 

(5.81E-8 μm/s2) is significantly higher (p<.0001) than 2D infected cells (4.98E-8 μm/s2). 

In 3D, the converse is shown with the overall average speed of 3D infected (3.28E-8 

μm/s2) cells being significantly higher (p<.0001) than 3D controls (2.49E-8 μm/s2) (Table 

26). The fold change of differences between control and infected within the 2D and 3D 

conditions is less than that observed with average cellular speed (Figure 19,Table 27). 

Table 26:  Average Individual Cell Acceleration Over All Time: Wilcoxon 

Condition 1 Acceleration μm/s2 Condition 2 Acceleration μm/s2 p value  

2D Control 5.81E-08 3D Control 2.49E-08 1.29E-225 

2D Infection 4.98E-08 3D Infection 3.28E-08 1.72E-167 

2D Control 5.81E-08 2D Infection 4.98E-08 4.94E-21 

3D Control 2.49E-08 3D Infection 3.28E-08 1.67E-60 

In general, there is an increase in average cellular acceleration in 3D conditions 

with a relatively more consistent average cellular acceleration in 2D conditions. 

Significant differences in cellular acceleration exist between all conditions at all hour 

ranges except 2D control and 2D infected cells at the 24-36 hour range(Figure 19,Table 

28,Table 29). 

Table 27:  Average Individual Cell Acceleration Over All Time: Log2 Fold Change of Means 

Condition 1 Condition 2 Log2 Fold Change (Cond 1/ Cond 2) 

2D Control 3D Control 1.223 

2D Infection 3D Infection 0.601 

2D Control 2D Infection 0.224 

3D Control 3D Infection -0.389  
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Figure 19:  Image analysis of individual cell acceleration of gfpBMDM infected with mCherry 
M.smegmatis in 2D and 3D culture conditions over 72 hours. A) Averaged over all time B) 
Averaged based on hour range. 
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Table 28:  Average Individual Cell Acceleration 2D vs. 3D Over Time (timeframes): Wilcoxon 

Hour 
Range 

Condition 1 Acceleration μm/s2 Condition 2 Acceleration μm/s2 p value  

0-12 2D Control 6.00E-08 3D Control 1.95E-08 1.14E-65 

12-24 2D Control 5.80E-08 3D Control 2.38E-08 1.97E-62 

24-36 2D Control 5.70E-08 3D Control 2.94E-08 2.85E-36 

36-48 2D Control 5.69E-08 3D Control 2.71E-08 2.20E-29 

48-72 2D Control 5.89E-08 3D Control 2.71E-08 3.31E-26 

0-12 2D Infection  4.74E-08 3D Infection  2.91E-08 2.74E-12 

12-24 2D Infection  5.05E-08 3D Infection  3.41E-08 1.24E-15 

24-36 2D Infection  5.21E-08 3D Infection  3.23E-08 5.77E-46 

36-48 2D Infection  4.96E-08 3D Infection  3.39E-08 3.36E-37 

48-72 2D Infection  4.90E-08 3D Infection  3.32E-08 4.67E-66 

 

Table 29:  Average Cell Acceleration Control vs. Infected Over Time (timeframes): Wilcoxon 

Hour 
Range 

Condition 
1 

Acceleration μm/s Condition 2 Acceleration μm/s p value  

0-12 2D Control 6.00E-08 2D Infection 4.74E-08 2.46E-11 

12-24 2D Control 5.80E-08 2D Infection 5.05E-08 4.86E-06 

24-36 2D Control 5.70E-08 2D Infection 5.21E-08 0.095358 

36-48 2D Control 5.69E-08 2D Infection 4.96E-08 0.002894 

48-72 2D Control 5.89E-08 2D Infection 4.90E-08 6.93E-08 

0-12 3D Control 2.38E-08 3D Infection 2.91E-08 1.75E-15 

12-24 3D Control 2.94E-08 3D Infection 3.41E-08 2.45E-13 

24-36 3D Control 2.71E-08 3D Infection 3.23E-08 0.000152 

36-48 3D Control 2.71E-08 3D Infection 3.39E-08 4.29E-06 

48-72 3D Control 2.38E-08 3D Infection 3.32E-08 3.24E-07 
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3.3.7.2 Cell directedness 

In both 2D and 3D conditions the overall average directedness of non-infected 

cells (2D: 0.31165, 3D: 0.188757) in the control condition is significantly higher 

(p<.0001) than cells in the infected condition (2D: 0.241949, 3D: 0.163623) (Figure 

20A,Table 30,Table 31).  

Table 30:  Average Individual Cell Directedness Over All Time: Log2 Fold Change of Means 

Condition 1 Condition 2 Log2 Fold Change (Cond 1/ Cond 2) 

2D Control 3D Control 0.723 

2D Infection 3D Infection 0.564 

2D Control 2D Infection 0.365 

3D Control 3D Infection 0.206 

In 3D the directedness of cells in the infected condition at each hour range is 

significantly higher than 3D control condition except during the 48-72 hour window 

(Figure 20b,Table 32). Over time, in all conditions, there is a decrease in average cell 

directedness as cells have accumulated more movement over time. There is significant 

differences between all conditions at all hour ranges except 2D control and 2D infected 

cells at the 0-12 hour range (Figure 20,Table 33).  

Table 31:  Average Individual Cell Directedness Over All Time: Wilcoxon 

Condition 1 Directedness Condition 2 Directedness p value  

2D Control 0.312 3D Control 0.189 9.36E-200 

2D Infection 0.242 3D Infection 0.164 6.59E-207 

2D Control 0.312 2D Infection 0.242 1.85E-152 

3D Control 0.189 3D Infection 0.164 5.69E-35 
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Figure 20: Image analysis of individual cell volume of gfpBMDM infected with mCherry M.smegmatis 
in 2D and 3D culture conditions over 72 hours. A) Averaged over all time B) Averaged based 
on hour range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 
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Table 32:  Average Individual Cell Directedness 2D vs. 3D Over Time (timeframes): Wilcoxon 

Hour 
Range 

Condition 1 Directedness Condition 2 Directedness p value  

0-12 2D Control 0.428 3D Control 0.364 6.32E-18 

12-24 2D Control 0.317 3D Control 0.153 6.06E-108 

24-36 2D Control 0.297 3D Control 0.122 5.53E-112 

36-48 2D Control 0.298 3D Control 0.121 1.44E-67 

48-72 2D Control 0.278 3D Control 0.128 2.03E-44 

0-12 2D Infection  0.417 3D Infection  0.386 7.14E-05 

12-24 2D Infection  0.303 3D Infection  0.202 5.23E-44 

24-36 2D Infection  0.242 3D Infection  0.148 9.45E-16 

36-48 2D Infection  0.205 3D Infection  0.123 1.91E-108 

48-72 2D Infection  0.174 3D Infection  0.084 2.54E-167 

 

Table 33:  Average Cell Directedness Control vs. Infected Over Time (timeframes): Wilcoxon 

Hour 
Range 

Condition 1 Directedness Condition 2 Directedness p value  

0-12 2D Control 0.428 2D Infection 0.417 0.088243 

12-24 2D Control 0.317 2D Infection 0.303 0.04272 

24-36 2D Control 0.297 2D Infection 0.242 3.39E-18 

36-48 2D Control 0.298 2D Infection 0.205 8.08E-45 

48-72 2D Control 0.278 2D Infection 0.174 2.30E-104 

0-12 3D Control 0.364 3D Infection 0.386 0.000579 

12-24 3D Control 0.153 3D Infection 0.202 1.30E-32 

24-36 3D Control 0.122 3D Infection 0.148 4.41E-13 

36-48 3D Control 0.121 3D Infection 0.123 0.308664 

48-72 3D Control 0.128 3D Infection 0.084 2.64E-07 
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3.3.7.3 Cell volume 

In both 2D and 3D conditions the overall average cell volume of cells in the 

infected condition (2D: 3797.04 μm3, 3D: 3031.24 μm3) is significantly higher (p<.0001) 

than non-infected cells in the control condition (2D: 3731.124 μm3, 3D: 2364.482 μm3). 

The fold change of differences between control and infected within the 2D condition is 

less than that observed in 3D (Figure 21A, Table 34,Table 35).  

Table 34:  Average Individual Cell Volume Over All Time: Log2 Fold Change of Means 

Condition 1 Condition 2 Log2 Fold Change (Cond 1/ Cond 2) 

2D Control 3D Control 0.658 

2D Infection 3D Infection 0.325 

2D Control 2D Infection -0.025 

3D Control 3D Infection -0.357 

Over the time-span of imaging there is greater variation in average cell volume in 

the 2D and 3D infected conditions as compared to the 2D and 3D controls (Figure 21B). 

Significant differences are seen between all conditions at all hour ranges (Table 36, 

Table 37). 

Table 35:  Average Individual Cell Volume Over All Time: Wilcoxon 

Condition 1 Volume µm3 Condition 2 Volume µm3 p value  

2D Control 3.73E+03 3D Control 2.36E+03 0 

2D Infection 3.80E+03 3D Infection 3.03E+03 3.99E-285 

2D Control 3.73E+03 2D Infection 3.80E+03 4.04E-08 

3D Control 2.36E+03 3D Infection 3.03E+03 6.11E-132 
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Figure 21: Image analysis of individual cell volume of gfpBMDM infected with mCherry M.smegmatis 
in 2D and 3D culture conditions over 72 hours. A) Averaged over all time B) Averaged based 
on hour range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 
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Table 36:  Average Individual Cell Volume 2D vs. 3D Over Time (timeframes): Wilcoxon 

Hour 
Range 

Condition 1 Volume µm3 Condition 2 Volume µm3 p value  

0-12 2D Control 3.52E+03 3D Control 2.35E+03 2.61E-74 

12-24 2D Control 3.63E+03 3D Control 2.41E+03 1.39E-87 

24-36 2D Control 3.71E+03 3D Control 2.40E+03 1.04E-81 

36-48 2D Control 3.74E+03 3D Control 2.30E+03 9.75E-79 

48-72 2D Control 3.89E+03 3D Control 2.29E+03 1.32E-73 

0-12 2D Infection  3.36E+03 3D Infection  2.79E+03 0.001391 

12-24 2D Infection  3.97E+03 3D Infection  3.12E+03 3.96E-06 

24-36 2D Infection  4.02E+03 3D Infection  3.10E+03 5.10E-15 

36-48 2D Infection  3.89E+03 3D Infection  3.01E+03 8.16E-06 

48-72 2D Infection  3.67E+03 3D Infection  3.05E+03 0.018879 

 

Table 37:  Average Individual Cell Volume Control vs. Infected Over Time (timeframes): Wilcoxon 

Hour 
Range 

Condition 1 Volume µm3 Condition 2 Volume µm3 p value  

0-12 2D Control 3.52E+03 2D Infection 3.36E+03 8.36E-25 

12-24 2D Control 3.63E+03 2D Infection 3.97E+03 1.09E-44 

24-36 2D Control 3.71E+03 2D Infection 4.02E+03 2.58E-76 

36-48 2D Control 3.74E+03 2D Infection 3.89E+03 1.38E-70 

48-72 2D Control 3.89E+03 2D Infection 3.67E+03 1.95E-81 

0-12 3D Control 2.35E+03 3D Infection 2.79E+03 7.47E-07 

12-24 3D Control 2.41E+03 3D Infection 3.12E+03 1.89E-22 

24-36 3D Control 2.40E+03 3D Infection 3.10E+03 3.40E-25 

36-48 3D Control 2.30E+03 3D Infection 3.01E+03 2.70E-36 

48-72 3D Control 2.29E+03 3D Infection 3.05E+03 2.99E-39 
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3.3.8 Correlation analysis shows stronger relationships depending on condition and 

environment. 

Figure 22 shows the results of Pearson correlation performed on all conditions 

independently. Figure 23 highlights significant correlations p<.05. 

 

Figure 22: Pearson’s correlation of all conditions. Each square includes correlation value for all 
conditions: Upper Left-2D Control, Upper Right-2D Infection, Lower Left- 3D Control, Lower 
Right-3D Infection. Rounded to two decimal places 
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Figure 23:  P values for Pearsons correlation rounded to 2 significant figures. Significant P values are 
highlighted in red. 

 

3.3.8.1 Hours in Culture 

3D Infection has a high positive correlation between nitric oxide and hours in 

culture (0.7); all other conditions have a low correlation with time (< +/-0.2). LDH and 

hours in culture maintains a high positive correlation regardless of condition (>0.9, p 

<.05). Cell speed and hours in culture presents a high positive correlation in 3D control 

condition (0.77) all other conditions have a high negative (<-0.7) correlation but only 3D 

and 2D infection are significant (p<.05). Acceleration and hours in culture presents a 

2D Ctrl 2D Inf
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2D Ctrl 2D Inf - 0.52 0.09 0.24
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2D Ctrl 2D Inf 0.23 0.29 0.53 0.04 - 0.37 0.26 0.20

3D Ctrl 3D Inf 0.02 0.11 1.00 0.14 - 0.28 0.00 0.10

2D Ctrl 2D Inf 0.61 0.65 0.22 0.04 0.06 0.82 - 0.21 0.26 0.08
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2D Ctrl 2D Inf 0.83 0.97 0.69 0.20 0.53 0.16 0.94 0.39 0.66 0.16 - 0.94 0.91 0.39

3D Ctrl 3D Inf 0.72 0.11 0.96 0.13 0.50 0.22 0.24 0.10 0.71 0.36 - 0.06 0.45 0.09

2D Ctrl 2D Inf 0.77 0.85 0.01 0.00 0.17 0.01 0.96 0.64 0.10 0.02 0.01 0.73 - 0.09 0.04 0.06
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minimal correlation in 2D (<+/-0.3), but both 3D control and infection present a high 

positive correlation (>0.5). Directedness and hours in culture maintains a high negative 

correlation regardless of condition (<-0.6), but only shows significance in 2D infection 

(p<.05). Cell volume and hours in culture shows a high positive correlation in 2D control 

(0.95, p <.05) and 3D control presents with a high negative correlation (-0.53). 2D and 

3D Infected conditions both have low positive correlations (<0.5). CFU and hours in 

culture have a high negative correlation in both 2D and 3D infection (<-0.8), but only 

shows significance in 3D infection (p<.05). The adjusted RFP mean and hours in culture 

presents with a high negative correlation in all conditions even after the field-based 

normalization (<-0.7) but significance is only shown in 2D controls (p<.05). 

3.3.8.2 Effector molecules, nitric oxide and LDH 

Nitric oxide was not significantly correlated with any other measured variables. 

However, there are notable differences in correlation patterns, with nitric oxide 

exhibiting a high positive correlation with cell speed in 2D infection (0.69), but a high 

negative correlation with speed in 3D infection (-0.77). Differences between control and 

infection groups also emerged. We observed a high positive correlation between nitric 

oxide and cell volume in both 2D and 3D infected conditions (>0.5), but minimal 

correlation in both control conditions (<+/-0.3). Although not statistically significant, 

these variations in correlative relationships may suggest underlying mechanisms that 

may be differentially modulated by environment and infection condition.  

LDH cytotoxicity assay exhibit high negative correlation to speed in all conditions (<-0.5) 

except 3D control, but significance is only present in both 2D and 3D infected 
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conditions. Correlation of LDH to acceleration only shows significance in 3D controls 

(0.94, p <.05). Directedness and LDH have a high negative correlation in all conditions (<-

0.8), with significance only in 2D controls (p<.05). LDH is significantly correlated with 

bacterial load (CFU) in 3D infection only, but the correlation between adjusted RFP 

means to LDH levels is highly negative in all conditions (<-0.7), but only significant in 

controls (p<.01).  

3.3.8.3 Cell dynamics, speed, acceleration and directedness. 

Cell speed and acceleration do not present with any significant correlation. The 

only significance in cell speed is with directedness in 2D infection (.89, p<.05), and with 

CFU in 3D infection (.97 ,p<.05). Cell acceleration has a high negative correlation to 

directedness in 3D control (-.93,p<.05). Cell volume has a high positive correlation to cell 

acceleration in both infected conditions (>0.75), but is only significant for 2D infection 

(p<.05). Acceleration and adjusted RFP mean are significantly correlated in 3D controls 

(p<.01). We observe a high positive correlation between CFU counts and directedness 

under 3D infection only (.94,p<.05), but adjusted RFP mean has a high positive 

correlation with cell directedness in all conditions (>0.8, p <.05). The adjusted RFP mean 

exhibits a high positive correlation to CFU in both 2D and 3D Infection (>0.8), but is only 

significant for 3D infection (p<.01). 

3.4 Discussion 

In this study we developed a platform that integrates standard biological sampling 

methodologies with long-term time-lapse confocal imaging, enabling concurrent 

biochemical and imaging-based quantification of the spatiotemporal response to 
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infection in 3D. Through careful characterization of technical limitations and biological 

components of the system, we were able to address methodological limitations of 

current in vitro and in vivo models of nascent granuloma formation. Using fluorescent 

BMDM and M. smegmatis strains, we compare the 2D and 3D biochemical and 

structural immune response to a low-level mycobacterium infection and quantitatively 

analyze the impact of environment on effector response, cellular dynamics, and 

bacterial clearance. While many of the biochemical immune response measures 

including overall bacterial load, nitric oxide and LDH-based cytotoxicity were 

comparable regardless of the dimensionality of the environment, by utilizing 4D 

confocal imaging we observed significant differences in the spatiotemporal response to 

bacterial infection in 2D and 3D environments. Combining Imaris-based image 

processing and our MATLAB-based analysis pipeline enabled us to comparatively 

characterize differences in cellular velocity, acceleration, directedness, and volumetric 

response for macrophages in 2D versus 3D with single-cell resolution.  

3.4.1 Availability of a 3D environment does not significantly impact the ability of 

macrophages to clear intracellular bacteria during low level infection 

 BMDMs in the 3D RBM environment did not demonstrate significantly 

altered clearance of bacteria as compared to the 2D infection when enumerating the 

CFUs over the course of the 72-hour infection. Both 2D and 3D conditions presented a 

low-level infection that reduced bacterial load consistently over time. The expression of 

nitric oxide, due to the low sensitivity of the assay, demonstrated significant variability 

between studies. These results show that the bactericidal activity in response to 
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mycobacterial infection within the 3D environment might have a slightly altered 

mechanism of action than in a standard 2D environment. Further investigation is 

needed to better elucidate the NO response in 3D versus 2D conditions. The expression 

of LDH did not show any significant difference between infected cells in the 3D 

environment compared to standard 2D, but there was a significant difference in control 

cells with 3D controls having the highest levels of cell death. However, analysis of the 

rate of cell death in the culture shows that both control and infected cells in 3D 

maintain a consistent rate with their 2D counterparts. The increase in cell death over 

time is consistent with previous results of low level infection[36]. 

3.4.2 Availability of a 3D environment significantly impacts macrophage migration 

and motility 

Although we saw little to no levels of significant difference between conditions 

with respect to biochemical response to infection the quantification of cellular migration 

and motility demonstrated significant differences between control and infected cells 

and the impact of the 2D and 3D environment. In general, we observe a muted response 

in 3D, with reduced velocity, acceleration and directedness overall. This overall higher 

motility in 2D compared with 3D can be potentially attributed to differences in the 

mechanisms of cellular migration in a 3D matrix [67]. 

The overall decrease in motility in the 3D environment is expected due to the 

introduction of the physical structural proteins in the ECM. However, what is most 

interesting is that the relationship between these dynamics in response to infection 

differs in the two environments. In 3D the infected condition has a higher overall 
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average cell velocity and acceleration throughout the entire 72hour period. 

Directedness in the 3D infected condition is significantly higher for the majority of the 

time-course, only decreasing after the bacterial load in the system has significantly 

decreased in the 48 to 72-hour range. Conversely the infected condition in 2D shows 

lower average cell velocity, acceleration and directedness as compared to the 2D 

controls. This demonstrated that even though the overall biological representation of 

the systems shows no significant differences, the ability of the cells to migrate and 

mobilize is greatly impacted by the introduction of the 3D environment. 

 In addition, unlike previous studies of mycobacterial infection and granuloma 

formation in vitro, the developed platform allows for the evaluation of the host immune 

response in terms of cellular dynamics over extended culture through the use of multi-

area time-lapse confocal imaging. Previous in vivo studies of Mycobacterium marinum 

infection in zebrafish conducted by Davis and Ramakrishnan [15] observed motility and 

directed motion of macrophages over time in correlation to bacterial load. They 

observed that the motility of infected macrophages was higher as their bacterial load 

increased and that the macrophages approaching, and phagocytosing dead cells had a 

more directed motion [15]. In particular their investigation found that the average 

cellular speed of uninfected macrophages (7.5E-2 um/s), was is in agreeance with the 

cellular speed utilized in the 2D chemotactic studies of macrophage migration[68]. Our 

observations in M. smegmatis infection found that macrophages within the infected 

conditions displayed different motility dependent on environment and based on the 

presence of infection. In the 2D environment we observed that cells in the infected 
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condition had a significantly lower average speed than non-infected condition in 

agreeance with Davis and Ramakrishnan but observed the converse in the 3D 

environment. Davis and Ramakrishnan identified that the RD1 virulence locus presence 

in M. marinum was the key factor in the regulation of the macrophage dynamics under 

mycobacterial infection. In comparison to our work, this virulence locus is not present in 

the less virulent M. smegmatis, and can explain the muted difference in cell motility 

under infection in the 2D environment, but our observation shows the converse 

occurring in 3D. In addition, the cellular migration induced by M. smegmatis, a less 

virulent mycobacterium, has been shown to induce a different migration mode primarily 

due to the lack of cell-surface-associated phthiocerol dimycoceroserate (PDIM) lipids 

which are present in virulent pathogenic mycobacterium variants including M. 

tuberculosis, M. marinum and many M. bovis strains [69]. Previous studies in zebrafish 

embryos with M. smegmatis and the more virulent PDIM marine variant M. marinum 

showed that the migration of macrophages in M. smegmatis infection was MyD88-

dependent in contrast to a MyD88-independent migration in M. marinum infection 

which was discovered to be mediated specifically by the presence of PDIM [70]. In 

addition, this study also acknowledged a dependence of iNOS (a precursor of nitric 

oxide)-dependent microbicidal based on PDIM, showing a decrease in iNOS in response 

to the more virulent strains of mycobacterium [70].  

We also acknowledge that these observations do not take into consideration the 

heterogenous makeup of the infected conditions, as cells within these environments can 

contain intracellular bacteria, whereas others may not. Previous studies have shown 
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that the activation of macrophages in a proinflammatory state exhibit markedly 

different migratory patterns compared to their non-activated or anti-inflammatory 

activated counterparts [71]. A preliminary effort into a high-throughput cell dynamic 

analysis for heterogenous cell populations has been previously reported [61], and an 

expansion of this initial platform may provide further insight into bacterial load 

dependent cellular dynamics.  

3.4.3 Availability of a 3D environment significantly impacts changes in macrophage 

volume during intracellular infection. 

Our study shows a significant difference in the impact of the environment on cell 

volume. While direct comparison between cell volume in 2D and 3D is difficult due to 

the differing morphologies even with consistent imaging analysis and watershed 

segmentation, the analysis within each condition shows an interesting trend in cellular 

volume. At most time points we see a significant increase in the cellular volume in the 

infected conditions which is consistent with the literature that show that macrophage 

volume can be correlated to phagocytosis of the bacterium [43]. However, we see a 

more dramatic fold change increase in the 3D condition as compared to 2D. This higher 

increase in volume in the 3D infection environment is consistent with correlation 

analysis that demonstrates a high correlation between LDH and cellular volume in 3D 

infection conditions (.33) compared to the lower correlation in 2D infection (0.04). 

However, we demonstrate a negative correlation between bacterial load and cell 

volume in both 2D (-0.39) and 3D infection (-0.58) showing an increase in cellular 

volume over time as the infection clears from macrophages in 2D and 3D. This time-
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based increase in cell volume in the infected conditions in relation to the decreasing 

bacterial implies a more complex relationship between bacterial infection and the 

regulation of cellular volume during the process of active phagocytosis and after the 

infection has been cleared from an infected macrophage. 

3.4.4 Correlation of cellular dynamics depending on condition and environment 

We observed significant correlations between cell dynamics, attributes and 

biological response to infection. Of note is the correlation that exists between cell 

acceleration and volume. We note that, although not significant, the average individual 

cell acceleration in both the 2D and 3D environments has a positive correlation to the 

average cell volume (>.75). In the control conditions we see a slight non-significant 

negative correlation in 2D control (-0.38) and zero correlation in 3D controls, showing a 

shift in dynamics. We do see that the environment plays a significant role in the cellular 

dynamics of speed, acceleration and directedness. We see that there is a high positive 

correlation for 2D infection, 3D infection and 2D control cells between average cell 

speed and average cell directedness (>.65), with the infected conditions both having the 

highest correlation. The opposite is seen in 3D where the correlation is highly negative (-

0.57). By looking back at the overall data for cellular speed we also not that 3D controls 

have the lowest average cellular speed per hour range as well as the lowest 

directedness (except the 48-72 hour range). Visual inspection of the 3D control cells 

shows very little distance traveled for the cells in this condition providing visual 

confirmation of the low speed. The calculation of directedness takes into consideration 

each timepoint of movement form the cells calculated center, so even minor 
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movements contribute overtime to the cells overall distance travelled and thus the 

directedness.   

Significant correlations of bacterial load (CFU) are only seen for the 3D infected 

condition. We have significant correlation to LDH, cell speed, directedness and adjusted 

RFP mean. Contrary to previous investigations of low level M. smegmatis infection we 

found that in general there was a negative correlation between LDH and NO and 

bacterial load in 2D and 3D conditions[36]. The exception is the correlation between 

bacterial load and NO in 2D infection which presents with a very minor positive 

correlation (0.05). This divergence form previous observations can be due to the 

imposition of the 3D environment, or the presence of gentamicin in the infection culture 

leading to slightly different presentation of infection dynamics. This may suggest that 

the availability of the 3D environment has a significant impact on the cell behavior 

depending on bacterial load. Further investigation into bacterial load and cell dynamics 

may elucidate this relationship.  
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4 DEVELOPMENT OF QUANTITATIVE COMPUTATIONAL 

PIPELINE FOR INVESTIGATION OF HOST-PATHOGEN 

SPATIOTEMPORAL DYNAMICS 

4.1 Introduction 

Computational biology models that recapitulate the granuloma formation and the 

associated immune response to Mycobacterium tuberculosis (Mtb) infection have 

described the links between the structural immune response and the mechanistic 

drivers that can lead to bacterial adaptation and persistence. The mycobacterial 

granuloma, a defining characteristic of the adaptive immune response to Mtb infection, 

has been classically described as a host-protective response producing a cellular barrier 

between the infection and the surrounding host tissue, enabling the host immune 

system to spatially localize effector molecules produced to treat the infection[2], [9], 

[10]. The computational models developed to characterize this phenomenon have 

investigated the control mechanisms of effector molecules and T cells[72], the role of 

the proinflammatory cytokines like tumor necrosis factor-alpha (TNF-α)[73], [74], and 

the role of localized hypoxia in granuloma mediated immune response to Mtb infection 

[48]. While the majority of computational models focus on the granuloma mediated 

response, there are computational models that investigate the early infection dynamics 

[75].  

 A challenge in the development of computational models of Mtb infection and 

immune response is the reliance on disparate data sets collected from studies of various 
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TB and non-TB diseases, and data from diverse hosts including human patient data[76], 

[77], in vivo animal studies [78], 2D in vitro/chemotactic migration studies [68], [79]–

[82], 2D infection studies, as well as bacterial characterization studies[83]–[85]. Often 

times uncertainty quantification methods are used with differentially sourced datasets 

to explore relationships between parameters and model outputs, and help establish 

plausible parameter values [86]. This process leads to an amalgamation of disparate 

datasets that can result in improperly inferred model parameters particularly for 

variables used to describe cellular dynamics, which are difficult to capture in 2D in vitro 

studies and in the absence of imaging-based methods and pipelines that can quantify 

the spatiotemporal dynamics of immune response during infection.  

The dynamics and migration patterns of cells during mycobacterial infection are 

impacted by both the physical structure and cytokines, chemokines, and effector 

molecules produced by cells in the surrounding environment[7], [67], [87]. This complex 

microenvironment cannot be sufficiently replicated in a standard 2D study as the lack of 

the extracellular matrix cannot replicate the complex spatial organization of cells within 

this three dimensional (3D) environment, and how that spatial organization impacts 

control, resolution, or dissemination of the bacterium [1], [6]. In vivo studies, which 

naturally enable the study of host-pathogen interactions within the context of a 3D 

spatial environment, are less amenable to temporal sampling, as analysis of the spatial 

organization of cells requires sacrificing the animal, tissue fixation and histological 

staining [16]–[19]. However, recent investigations by Davis et. al and more recently the 

work of Davis and Ramakrishnan leverage the optical transparency of zebrafish embryo 
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infection models to investigate the initial innate response to mycobacterial infection in 

vivo [14], [15]. By coupling the zebrafish mycobacterium infection model with imaging, 

the study characterized initial macrophage aggregation and key factors impacting 

infection progression and granuloma formation, including the rate of macrophage 

aggregation, velocity of macrophages entering or exiting infected sites in a relatively 

small sample size (up to n = 12). Other studies have utilized short-term intravital 

imaging, up to only 3 hours. in mice to investigate the cellular dynamics within hepatic 

granulomas [10]. In vivo imaging studies of infection have provided significant insight 

into the dynamics of host-pathogen interactions and the role of cellular motility in 

mycobacterial infection. This inability to sufficiently image cell dynamics in a high 

temporal resolution in a live animal for extended periods due to imaging constraints 

severely limits the spatiotemporal insights that can be gained from in vivo animal 

models. Thus, there remains a notable lack of studies that capture host-mycobacterium 

infection dynamics for the duration of the early infection process, which can occur over 

the course of multiple days.  

To address these limitations, we have developed a computational analysis pipeline 

coupled with a 3D ex vivo experimental model of the early macrophage infection with 

Mycobacterium smegmatis, an analog for Mtb. With this platform we utilize long-term 

time-lapse confocal imaging to investigate the host-pathogen response over the long-

term course of infection (up to 72 hours in culture) and apply a high-throughput analysis 

of all cells within the imaging field to investigate the spatial and cell state-based 

dynamics that occur within mycobacterial infection. We quantify cell spatial 
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organization and cell state in comparison to 2D ex vivo experimental models of 

investigating cellular dynamics that have been utilized to inform computational models. 

We utilize this state-based quantification and provide tools to improve upon model 

parameters through the generation of biologically relevant empirical distributions.  

Using our quantitative pipeline, we identified cellular features that correlate with 

bacterial load, host cell dynamics, and differences in spatial organization in 2D and 3D 

environments. In this approach we first employ machine learning to segment the 

heterogeneous population of infected cells based on bacterial load determined by 

fluorescence levels. We then use the presence of infection within cell aggregates 

determined by clustering algorithms to determine proinflammatory active cells 

responding to infection. Finally, we apply supervised machine learning algorithms to 

determine which features can be used to distinguish between the cellular states.  

Our results of state based dynamics demonstrate that non-infected and non-

active macrophages within infected environments present dynamics comparable to 

controls, while infected and activated macrophages exhibit comparable spatiotemporal 

dynamics in 2D and 3D. We compare our empirically generated results to our previously 

developed agent based model of the role of hypoxia in Mtb infection and granuloma 

formation and identify key findings based on the assumptions of cellular speed. Our 

quantification shows an overall disparity in dynamics between 2D and 3D environments, 

specifically in cellular speed where we see that infected and activated cells in the 2D 

condition present with a slower speed than 2D non-infected cells, which behave more 

comparably to control cells not in the presence of infection. This reduction in cellular 
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speed is in agreement with computational modeling assumptions garnered from 2D 

chemotactic assays [48]. However, we observe the converse in the 3D environment, 

where the cellular speed of infected and active cells is significantly faster than 3D non-

infected cells, which behave more comparably to 3D control cells. This disparity in 

dynamics brings into question many of the cell velocity-based parameters utilized for 

computational models of Mtb infection.  

The application of machine learning models to predict cellular state highlights an 

important characteristic of cellular dynamics, that the discrimination between cellular 

state is not dependent upon one single feature, but a combination of the observable 

cellular dynamics as demonstrated by a higher classification accuracy in the 3D 

environment, which had less distinguishable differences in individual cell dynamics. 

Through this application we identified several of the key cell dynamics previously 

investigated as well as a marker of proinflammatory macrophage activation, the cell 

shape feature sphericity[88]. This feature demonstrated a high capability of detecting 

proinflammatory infected and active cells in the 2D environment and demonstrated the 

cell shape disparities in comparison to 3D.  

4.2 Materials and Methods 

4.2.1 Infection Study 

All animal experiments were performed with the approval of the Institutional 

Animal Care and Use Committee at the University of Houston and in accordance with 

the recommendations in the Guide for the Care and Use of Laboratory Animals and the 
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American Veterinary Medical Association (AVMA) Guidelines for the Euthanasia of 

Animals. GFP bone marrow derived macrophages (gfpBMDM) were isolated from the 

hind legs of 10-week-old female mice from the transgenic mouse line C57BL/6-Tg(CAG-

EGFP)131Osb/LeySobJ and infected at a multiplicity of infection of 1 macrophage to 50 

bacterium (MOI 50) with m. Cherry M. smegmatis (gifted by Dr. Cirillo Texas A&M 

University, TX) as previously reported [36].  

After infection, cells were removed from culture dishes and distributed into the 

2D or 3D culture for image analysis. In one 8 well chamber slide (Ibidi), a diluted RBM 

(.18 mg/mL) coating was added to 4 wells in for 3D culture [52], and incubated in a cell 

culture incubator for 30 minutes then the diluted RBM was aspirated. Immediately 

following, both infected and non-infected cells at 2.5E6 cells/mL were resuspended at 0-

8 ̊C in diluted 8.5 mg/mL RBM and 100 μL of the resulting cell suspension was plated 

into the center of each coated chamber well (2 infected, 2 non-infected). For 2D culture, 

250 uL of 5E5 cells/mL of non-infected cells in DMEM-complete (Dulbecco's Modified 

Eagle Medium containing 10% fetal bovine serum,1% L-glutamine and 1% non-essential 

amino acid) with 10 μg/mL gentamicin (Sigma Aldirch) were plated in replicate in two of 

the remaining uncoated wells. Infected cells (250 ul at 5E5 cells/mL) in DMEM-complete 

with 10 μg/mL gentamicin were then added to last two uncoated chamber wells. The 

addition of 10 μg/mL of gentamicin in the culture media for 2D infection culture allows 

for comparison to the buffer solution of RBM, which after dilution and hydrating media 

addition results in a gentamicin concentration of 10 μg/mL [53]. Previous studies have 

utilized this this concentration to inhibit the extracellular growth of mSmeg without 
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impacting the intracellular growth [54] [53]. The chamber slide was then incubated in a 

cell culture incubator for 45 minutes for gelation and then 275 μL of DMEM-complete 

was added to prevent gel dehydration during extended culture prior to imaging, and 

cells were allowed to adhere in 2D for two hours prior to sampling. he biological study 

was performed twice in biological replicate for a total n=4. 

4.2.2 Imaging and Image Processing 

4D confocal images of 512x512 resolution 100 um Z-stacks at axial resolution of 

1um were acquired with scanning laser confocal imaging sequentially by line with 488 

nm and 543 nm excitation lasers every 90 minutes for up to 72 hours (Olympus FV1200-

IX83) utilizing the Olympus Fluoview software version 4.2b for image acquisition, a stage 

top incubation system (TokaiHit) to maintain cell viability, and 40X confocal objective 

with .95 numerical aperture (UPLSAPO40X2, Olympus). Zero drift compensation was 

utilized to prevent focal drift throughout the imaging time-lapse. In order to reduce the 

effects of phototoxicity due to exposure to confocal lasers, the dwell time per pixel for 

confocal imaging was minimized (2 μs/Pixel) [57]–[59]. Two points per well per 

experimental trial were imaged for a total of n=8 imaging samples per condition were 

acquired satisfying the population sampling criteria detailed by the Yamane formula 

[60].  

Confocal images were appended over time in Olympus Fluoview software. The 

resulting 4D time appended confocal images were rendered and analyzed using Imaris 

8.1.2 (Bitplane) with surface creation and tracking of macrophages to monitor change in 

cellular dynamics over time. The same image processing parameters were used for all 
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trials analyzed (Figure 24). Adjustments to fluorescent cutoffs were made between 

experimental trials due to variance in background fluorescence. Green fluorescent 

protein (GFP) was used to establish watershed segmentation and tracking of cells over 

the time course of imaging, and RFP values were used as a feature of each segmented 

cell object to denote the bacterial levels within each cell. 

 

Figure 24: Image Processing in Imaris 8.1.2 of 3D infected cells at hour 0 of imaging: A) 3D rendering of 
confocal image B) Seed point diameters set to 8.25 μm C) Watershed segmentation of cells 
in 3D D) autoregressive motion tracking applied to segmented cells to produce tracks over 
time. 
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4.2.3 Computational Pipeline 

Figure 25: Overview of computational pipeline for automatic analysis of cellular dynamics using 4D 
confocal imaging data.  

The computational pipeline (Figure 25)was developed to automatically quantify 

the cellular dynamics exported by Imaris through data organization (MATLAB), statistical 

analysis (R), and machine learning (python) code on both local and high-performance 

computing on the Core facility for Advanced Computing and Data Science (CACDS) 

performance research computing center at University of Houston, Houston, Texas 

(Maxwell Cluster). Bash scripting was used within the Maxwell cluster to allow for 

simultaneous computation of multiple datasets. 
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Figure 26: Matlab interface developed with GUIDE to import data from Imaris for data organization 
and further feature generation. 

4.2.3.1 Data organization and feature generation in Matlab 

 Data from Imaris was imported into Matlab using an interface developed with 

Matlab’s GUIDE (Figure 26). The data was pulled into data structures in a hierarchical 

manner based on condition and number of replicates and then sent to the Maxwell 

cluster. Data organization and further feature generation was conducted in MATLAB 

2018b. The individual cell tracks over time generated using autoregressive motion 

tracking in Imaris were used to calculate the directedness of each cell equal to the ratio 

of the Euclidian (straight-line) distance over the total distance traveled from the initial 

timepoint to the current timepoint of analysis. A directedness score represents the 

inverse of random movement on scale of 0 to 1 [62].  
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 The varying signal to noise ratio (SNR) that naturally occurs in time-lapse 

fluorescent imaging [38] was accounted for through background normalization as 

previously described through normalization to the control image RFP signal 

minimum[61]. The normalization scheme was then applied to green fluorescent protein 

levels resulting in adjusted fluorescent values outlined in Table 38 below. 

Table 38:  Fluorescent features generated for analysis 

Fluorescent Feature Definition 

RFP intensity StDev  
Standard Deviation of RFP fluorescence intensity in each 
segmented cell 

RFP intensity Mean Adjusted 
Mean of RFP fluorescence intensity in each segmented cell 
normalized to background fluorescence 

RFP intensity Min Adjusted 
Minimum of RFP fluorescence intensity in each segmented 
cell normalized to background fluorescence 

RFP intensity Max Adjusted 
Maximum of RFP fluorescence intensity in each segmented 
cell normalized to background fluorescence 

RFP intensity Median Adjusted 
Median of RFP fluorescence intensity in each segmented cell 
normalized to background fluorescence 

RFP intensity Center Adjusted 
RFP fluorescence intensity in the center each segmented cell 
normalized to background fluorescence 

RFP intensity Sum Adjusted 
Sum of RFP fluorescence intensity in each segmented cell 
normalized to background fluorescence 

GFP intensity StDev  
Standard Deviation of GFP fluorescence intensity in each 
segmented cell 

GFP intensity Mean Adjusted 
Mean of GFP fluorescence intensity in each segmented cell 
normalized to background fluorescence 

GFP intensity Min Adjusted 
Minimum of GFP fluorescence intensity in each segmented 
cell normalized to background fluorescence 

GFP intensity Max Adjusted 
Maximum of GFP fluorescence intensity in each segmented 
cell normalized to background fluorescence 

GFP intensity Median Adjusted 
Median of GFP fluorescence intensity in each segmented cell 
normalized to background fluorescence 

GFP intensity Center Adjusted 
GFP fluorescence intensity in the center each segmented cell 
normalized to background fluorescence 

GFP intensity Sum Adjusted 
Sum of GFP fluorescence intensity in each segmented cell 
normalized to background fluorescence 
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4.2.3.1.1 Quantification of cellular aggregates using DBSCAN  

 

Figure 27: DBSCAN for determining cell clusters from center of homogeneous mass A) Diagram 
representing 3D Z-stack acquisition of cells in Imaris B) Detection of areas of density C) 
Representation of cell clusters as determined by DBSCAN algorithm 

Early recruitment and aggregation of macrophages to the site of infection during 

innate response help in the elimination of infection and may contribute to the 

establishment of nascent granulomas that later form mature granulomas during the 

adaptive immune response to mycobacterium infection [4], [8]. Thus, one of the main 

concerns in analysis of the response to mycobacterial infection is the identification of 

macrophage aggregates. Therefore, a key step in our computational pipeline is the 

automatic detection and characterization of the spatiotemporal dynamics of 

macrophage response is identifying cellular aggregates. We determined aggregations of 

cells computationally using the density-based spatial clustering of applications with 

noise (DBSCAN) algorithm [89], applied for varying maximal distances between two cell 

centers of homogenous mass (Figure 27). DBSCAN at 12 µm center point to center point 

distance was used to generate ‘tight clusters’, denoted as clusters of cells that are in 

close physical proximity to each other such that they are likely in contact (Figure 27C, 
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yellow highlighted cells), and a maximal distance of 20 µm to generate ‘loose clusters’, 

denoted as clusters of cells that are within close proximity, but not necessarily in 

physical contact (Figure 27C, blue highlighted cells). Cell clusters of different sizes are 

generated independently for further evaluation, but a cluster size of 20 µm, the 

standard size of 2D grids used in computational models of granuloma formation, and 

the maximal macrophage diameter reported [55], was used for further analysis. For 

each identified cluster, we generate the following data: a cluster index, the identifying 

number of a cluster in each biological replicate at each timepoint; the location of the 

cluster center, the density center of each cluster of datapoints; and the cluster size, the 

number of cells associated with each unique cluster.  

4.2.3.1.2 Comparative dynamics and rate of change 

The rate of change (delta) of each feature was then calculated based on the 

timepoint to timepoint differentials of the features measured between the 90-minute 

image acquisitions (Table 39). Given the presence of cellular aggregates, a relationship 

between an individual cell’s dynamics and the surrounding cells in the cellular 

aggregation were generated as the ratio between the individual cell’s feature value and 

the average feature value of the remaining cells within the DBSCAN determined cellular 

aggregate for future analysis and quantification based on cluster membership in 

extension of this work. 
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Table 39:  Features generated for analysis 
Feature Definition 

speed 
The instantaneous speed (nondirectional velocity) of the cell as reported by 
Imaris autoregressive tracking. 

acceleration 
The instantaneous acceleration of the cell as reported by Imaris autoregressive 
tracking. 

volume The volume of the cell as reported by Imaris. 

 directedness 
The directedness of the cell as reported by Imaris displacement autoregressive 
tracking and then as the calculation of the Euclidian start to end-point distance 
over total distance travelled over time of tracking. 

Ellipicity Oblate A metric of the flatness of the cell as reported by Imaris . 

Ellipicity Prolate A metric of the elongation of the cell as reported by Imaris. 

Sphericity 
The ratio of the surface area of a sphere to the surface area of the cell as 
reported by Imaris[90]. 

total dist 2 

Total distance traveled in 3D by cell to current timepoint of acquisition calculated 
by sum of the absolute value of timepoint displacement as reported by Imaris 
autoregressive tracking. 

total dist x 

Total distance traveled in the x plane by cell to current timepoint of acquisition 
calculated by sum of the absolute value of timepoint displacement in the x plane 
as reported by Imaris autoregressive tracking.  

total dist y 

Total distance traveled in the y plane by cell to current timepoint of acquisition 
calculated by sum of the absolute value of timepoint displacement in the x plane 
as reported by Imaris autoregressive tracking. 

total dist z 

Total distance traveled in the x plane by cell to current timepoint of acquisition 
calculated by sum of the absolute value of timepoint displacement in the z plane 
as reported by Imaris autoregressive tracking  

total Edist 2 

Total straight line (Euclidian) distance traveled in 3D by cell to current timepoint 
of acquisition calculated by displacement from first track acquisition to current 
timepoint. 

total Edist x 

Total straight line (Euclidian) distance traveled in the x plane by cell to current 
timepoint of acquisition calculated by displacement from first track acquisition to 
current timepoint. 

total Edist y 

Total straight line (Euclidian) distance traveled in the y plane by cell to current 
timepoint of acquisition calculated by displacement from first track acquisition to 
current timepoint. 

total Edist z 

Total straight line (Euclidian) distance traveled in the z plane by cell to current 
timepoint of acquisition calculated by displacement from first track acquisition to 
current timepoint. 

tp disp 2 
Timepoint displacement from previous timepoint to current timepoint of image 
acquisition as reported by Imaris autoregressive tracking algorithm. 

tp disp x 
Timepoint displacement in x plane from previous timepoint to current timepoint 
of image acquisition as reported by Imaris autoregressive tracking algorithm. 
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Table 39 continued:   Features generated for analysis 

tp disp y 
Timepoint displacement in y plane from previous timepoint to current timepoint 
of image acquisition as reported by Imaris autoregressive tracking algorithm. 

tp disp z 
Timepoint displacement in z plane from previous timepoint to current timepoint 
of image acquisition as reported by Imaris autoregressive tracking algorithm. 

x acceleration 
The instantaneous acceleration of the cell in the x plane as reported by Imaris 
autoregressive tracking.  

x directedness 
The directedness of the cell in the x plane as reported by Imaris displacement 
autoregressive tracking and subsequent calculations. 

x velocity 
The instantaneous velocity of the cell in the x plane as reported by Imaris 
autoregressive tracking. 

y acceleration 
The instantaneous acceleration of the cell in the y plane as reported by Imaris 
autoregressive tracking.  

y directedness 
The directedness of the cell in the y plane as reported by Imaris displacement 
autoregressive tracking and subsequent calculations. 

y velocity 
The instantaneous velocity of the cell in the y plane as reported by Imaris 
autoregressive tracking.  

z acceleration 
The instantaneous acceleration of the cell in the z plane as reported by Imaris 
autoregressive tracking. 

z directedness 
The directedness of the cell in the z plane as reported by Imaris displacement 
autoregressive tracking and subsequent calculations. 

 

4.2.3.2 Statistical Analysis in R 

 Statistical analysis was performed in R or R-Studio [63] utilizing the dplyr, ggplot2 

and ggpubr libraries to assist with dataframe generation and plotting [64]–[66]. The 

Wilcoxon rank sum test was used to test for statistical significance.  

4.2.3.3 Infection and active cell determination in python machine learning algorithms  

To enable high throughput analysis of the heterogenous cell population, we 

utilized machine learning (ML) algorithms for infection determination to identify which 

cells in the image acquisition contained bacteria in extension of our previously 
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developed ML method for segmenting heterogenous cell populations in an active 

infection environment [61].  

 

 

Figure 28: Workflow of infected cell and activated cell determination (I-infected cell, N-Noninfected 
cell, A-Active Noninfected cell). A) Cells with clusters and known RFP values B) Infected cells 
determined with ML C) Active cells determined by clusters around infected cells. 

We employed unsupervised machine learning and outlier and novelty detection 

machine learning algorithms in Python to segment the heterogeneous population of 

infected cells based on bacterial load determined by the normalized fluorescence levels 

(Figure 28). We quantified the intracellular state of each cell at each timepoint 

independently as condition of a cell will alter over the course of infection as 

macrophages can phagocytose new bacteria or clear their internal bacterial load. We 

utilize the Imaris extracted cells that contains red fluorescent protein levels (RFP) that 

are indicative of the intracellular bacteria. We applied machine learning algorithms in an 

extension of previously reported work to determine the infection state of the 

macrophage [61].  
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 RFP Data was scaled utilizing scikit learn’s MinMaxScaler function to 

transform the data into the feature range (0,1) to prevent biasing of algorithms due to 

large variations in data range (Table 38) [39]. To identify highly discriminatory features 

for determining infected versus non infected cells, we used scikit learn’s principal 

component analysis (PCA) algorithm with default settings to reduce feature correlation 

of the RFP features to project them to a lower dimensional space [41]. The principal 

components were then ordered based on explanation of data variability and iteratively 

augmented with additional components to assess how components contribute to the 

cumulative explanation of variability in the data. Using the components identified by 

PCA, we then applied ML methods to the principal components that comprised over 

99% of the data variability. The same principal components were used for all methods of 

infection detection and subset into control or infection when specified. Infection 

determination algorithms were analyzed for qualitative stability between two different 

datasets performed under the same biological conditions by assessing the 

misclassification error and number of infected cells detected within each algorithm. The 

algorithm that produced the highest accuracy with low variability between variations in 

initializations of the algorithm, and application to both datasets was chosen to 

determine infected cells for further analysis.  

A summation of the parameters utilized for ML quantification of infected cells is 

summarized in Table 40. Unsupervised methods clustered the unknown infection 

dataset into two groups using scikit learn’s K-means clustering, and Gaussian Mixture 

Models. The principal components from the control datasets were applied to the 
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predicted clusters utilizing the prediction attribute of each method in order to calculate 

the number of misclassified control datapoints (𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), as previously reported [61]. 

Outlier and novelty detection ML methods involved trained novelty detection 

algorithms, one class support vector machine (OC-SVM) and local outlier factor (LOF) 

classification algorithms, on the principal components from experimental controls, 

which contain only non-infected cells, and outlier detection methods Isolation forests. 

OC-SVM and LOF were utilized to quantify potential infected cells as novelties based on 

training on the control dataset. Isolation Forests utilized all available datapoints from 

the selected principal components to determine datapoint outliers. For outlier and 

novelty detection algorithms, 𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 was reported as the control datapoints 

incorrectly identified as outliers or novelties through their inherent testing functions. 

Table 40:  Parameters used for infection determination ML methods 

Algorithm Subset of PC’s used to train or split Parameters 
GMM Infection data k=2 and K++ initialization 
K-Means Infection data 2 components, 10 initializations and a covariance 

type of full, tied, diagonal or spherical 
OC-SVM control data ν (an upper bound on the fraction of training 

errors and a lower bound of the fraction of 
support factors) = 0.00001, 0.0001, 0.001 or 0.01, 
kernel = linear, 3rd order polynomial, radial basis 
function (rbf) or sigmoid 

LOF control data k-neighbors = 10, 20 or 30 
iForest Infection and control data Automatic contamination[91] 

 

4.2.3.3.1 Determining Activated Cells 

Activated cells in the environment of infection are noninfected cells that are 

influenced by the proinflammatory cytokines released by infected cells in close 

proximity. The activation of these cells by TNF-α leads to a signaling cascade inducing 
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proinflammatory activation and an increased production of inducible nitric oxide 

synthase (iNOS), a primary precursor of bactericidal reactive nitrogen species [92]. In 

the innate immune response to infection, macrophages are primary producers and also 

responders to the TNF-a cytokine[92], [93], one of several inflammatory cytokines 

produced during infection. To generate our determination of activated state, we utilize 

approximations of cellular neighborhood induced activation utilized in the TB ABM 

which determines activated cells by the presence of infected cells within the cellular 

neighborhood [48]. In a 2D agent-based model of infection this cellular neighborhood is 

defined within the 2D grid by the Moore (1 central cell with 8 adjacent cells, Figure 29) 

neighborhood. However, this cellular neighborhood is a simplification of the biological 

3D structure that induces the activated cellular response [94].  

N N N 

N C N 

N N N 

Figure 29:  Representation of Moore neighborhood in agent-based models of cellular automata and 
infection, C-central cell, N-neighbor. 

To develop a comparable neighborhood determination algorithm with an 

extension to 3D biological space, we utilized the data generated from the 20 µm 

DBSCAN clustering algorithm and determined which clusters contained infected cells. 

Non-infected cells that were contained within the same 20 µm DBSCAN cluster as an 

infected cell were then re-labeled as noninfected-active cells for further analysis (Figure 

28 C). This activated cell state information was then combined with the remaining cell 
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states (including 20 µm DBSCAN cluster association) to generate 7 potential cell states 

that can be observed based on confocal imaging data (Table 41). Infected-activated cells 

are not reported as they require the consideration of time, and the image processing of 

cells in close proximity leads to failures in watershed segmentation and tracking which 

can cause difficulty in tracking cells from earlier imaging timepoints. 

Table 41:  Definition of cell states for variable distributions and multivariate classification models. 

Cell State Definition 

Control Cells within the control (no bacteria introduced) condition that are not 
contained within 20 µm clusters with other control cells as determined by 
DBSCAN. 

Control-Cluster Cells within the control (no bacteria introduced) condition that are 
contained within 20 µm clusters with other control cells as determined by 
DBSCAN. 

Noninfected Cells within the infected (bacteria introduced) condition that are not 
determined to be infected and not contained within 20 µm clusters with 
other control cells as determined by DBSCAN. 

Noninfected-Cluster Cells within the infected (bacteria introduced) condition that are not 
determined to be infected and are contained within 20 µm clusters with 
other noninfected cells as determined by DBSCAN. 

Noninfected-Active Cells within the infected (bacteria introduced) condition that are not 
determined to be infected and are contained within 20 µm clusters with at 
minimum one infected cell as determined by DBSCAN. 

Infected Cells within the infected (bacteria introduced) condition that are 
determined to be infected and are not contained within 20 µm clusters 
with other cells as determined by DBSCAN. 

Infected-Cluster Cells within the infected (bacteria introduced) condition that are 
determined to be infected and are contained within 20 µm clusters with 
other noninfected or infected cells as determined by DBSCAN. 
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4.2.3.4 Extension to mechanistic computational models 

We then applied ML classification models to the cell dynamics segmented by cell 

state in order to quantify the multi-feature discrimination between cellular states. This 

allows us to perform the converse of state detection based on fluorescence and cluster 

localization, and instead predict cellular state based on the observable cellular dynamics 

regardless of this information. This prediction of cell state provides insight into the other 

cellular dynamics quantified under confocal imaging and demonstrates how multiple 

dynamics can be utilized to distinguish cell state. We utilize linearly separable ML 

models with lower model complexity, which can be investigated further by extracting 

resulting decision boundaries from ML classification models to inform mechanistically 

driven computational models.  

4.2.3.4.1 Multivariate classification models for predicting cell state 

After cellular states were established, supervised machine learning algorithms 

were employed to determine which features and feature rates of change (delta 

features, as previously described) (Table 39) best discriminate the various cell states. 

This inverse feature identification methodology allows for the exploratory investigation 

of dynamics based on cell state and provides a basis for future analysis and 

development of predictive computational models. Methods utilized for this 

determination were form the Python library scikit learn and included a supervised 

extension of gaussian mixture models (sGMM), linear discriminant analysis (LDA), and 

decision tree classifiers (cTree). The dataset was split using sciKitLearn’s StratifiedKFold 

function to generate k=3 test and training datasets. Each method was subjected to 
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reverse feature selection in which the feature that contributed least to the accuracy was 

subsequently removed during each iteration to find the optimal feature set and the 

single feature that contributed to the highest model accuracy. In addition, each method 

was tested for the optimal solver (cTree and LDA) or covariance matrix (cGMM) at each 

iteration (Table 42). The importance of the feature was determined for cTrees using the 

built-in attribute feature_importances_. cTrees were bounded to prevent over-fitting to 

a minimum number of samples per split given by equation 7 

min _samples_split = # traning data points
# classes2

. (7) 

Table 42:  ML parameters tested for multivariate classification 

Algorithm Solvers or Covariances tested for highest accuracy 
cGMM Covariance: spherical, diagonal (diag), tied, or full 
LDA Solver: single value decomposition (svd) or least squares solution (lsq) 
cTree Solver: Gini or Entropy 
 

4.2.3.4.2 Univariate continuous distributions for computational model parameter 

generation 

Standard computational models of cellular dynamics and infectious disease rely 

on uniform or gaussian approximations of biological parameters. This is not indicative of 

the complex biological variability that we see in empirical evaluation. In order to further 

develop the parameter generation for these computational models we generated 

empirical distributions that provide random parameters with increased biologically 

relevant variability. The function DisttoRNG was written in Python to aid in the 

generation of empirically derived continuous distributions for model populations 
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represented by a dataset. The function returns any number of datapoints for any given 

variable given a subset of data, and an optional evaluation parameter. Each distribution 

(Table 43) is attempted, those that generate errors discarded, and the negative log 

likelihood (NLL), the Akaike information criterion (AIC) and the Bayesian information 

criterion (BIC) calculated, with the option to select which metric is used for model 

evaluation. The NLL is calculated using the scipy.stats nnlf method for continuous 

distributions. The AIC [95] and BIC [96] were calculated by penalizing the NLL by the 

number of datapoints and parameters within the distribution and number of 

parameters in the distribution. The default metric for evaluation is set to AIC and was 

used to select the best continuous distribution which generated the random variables 

through the scipy.stats distribution method rvs. 

Table 43:  scipy.stats distributions tested for best fit 

Distribution Distribution definition 
laplace Laplace continuous distribution 
norm Normal continuous distribution 
beta Beta continuous distribution 
fatiguelife Fatigue-life (Birnbaum-Saunders) continuous distribution 
expon Exponential continuous distribution 
gamma Gamma continuous distribution 
genextreme Generalized Extreme Value continuous distribution 
genpareto Generalized Pareto continuous distribution 
invgauss Inverse Gaussian continuous distribution 
logistic Logistic (Sech-squared) continuous distribution 
lognorm Lognormal continuous distribution 
nakagami Nakagami continuous distribution 
rayleigh Rayleigh continuous distribution 
rice Rice continuous distribution 
t Student’s t continuous distribution 
weibull_min Weibull minimum continuous distribution 
weibull_max Weibull maximum continuous distribution 
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4.3 Results 

We applied the developed computational pipeline to investigate cellular dynamics 

of cell speed, acceleration, directedness and volume to determine the impact that 

cellular state plays in the presentation of these dynamics. Our results investigation the 

role that internal state (infection/active/noninfected), and spatial organization (20 µm 

DBSCAN cluster) plays in the regulation of cellular dynamics within each environment 

(2D and 3D) as well as how these resulting changes impact the difference between 

dynamics in each environment.  

4.3.1 Cellular Recruitment 

We see a significant difference in cellular recruitment dependent on 

environment. In 2D, we see a higher percentage of cells in general associated in a 20 µm 

DBSCAN cluster, but this percentage decreases over time in culture for both control and 

infected cells (Figure 30). In contrast, 3D infected and control cells see a dramatic 

increase in the percentage of cells in clusters over the course of experiment showing the 

significant impact that the 3D environment has on cellular recruitment and subsequent 

aggregation. We do note that the dramatic increase in 3D control cells associated in a 

cluster at later timepoints is potentially due to high levels of cell death leading to lower 

cell numbers at later timepoints and thus a higher percentage of cells associated in a 

cluster. 
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Figure 30: Percent of cells in the image field that are part of a DBSCAN cluster (20 µm). 

4.3.2 Infection Determination 

Application of principal component analysis to RFP variables for both 

independent experimental trials generated 2 principal components that described over 

99% of the data variability. By overlaying the unknown infected cells (Figure 31-blue) 

with the known control cells (Figure 31-black) we can see that while there is significant 

delineation between the known uninfected cells there are still outlier points that can 

contribute to potential error regardless of algorithm. There is also a significant change in 

the datasets depending on experimental trial, although no significant differences were 

reported between independent trials for the biological data. Trial 1 (Figure 31 A) shows 

control cells with principal components that are very tightly associated with few 

observable outliers, whereas trial 2 (Figure 31 B) shows control cells that have higher 
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degrees of variability and more potential outliers. Through the application of multiple 

machine learning algorithms, we were able to determine the most appropriate 

algorithm to produce consistent, low error rate infection determination.  

 

Figure 31: Representation of the 2 principal components that comprise over 99% of data variability 
from the RFP datasets. Black X’s, overlaid control datapoints (known noninfected), Blue, 
unknown datapoints (infected and noninfected) A) Trial 1 B) Trial 2. 
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The unsupervised algorithms K-Means and GMM produced comparable results. 

Both methods produced misclassification error below 1% (Table 44) for trial 1 datasets 

except in the case of GMM with spherical covariance. However, Trial 2, with more 

qualitatively apparent outlier control datapoints produced a much higher 

misclassification error rate under GMM with diagonal, full, and spherical covariance 

(Table 44) showing the inability of GMM to handle both datasets with the same 

accuracy. Outlier detection with isolation forests produced low misclassification error in 

both datasets (<10%) but was not as low as the previous unsupervised methods Novelty 

detection algorithms ability train the classifiers on the known non-infected cells from 

the control datasets gave the ability to generate more complex delineations between 

non-infected and infected cells over the linear divisions seen in both K-means and 

GMM. Support vector machine produced the most varied results with misclassification 

error ranging from below 1% to 100% Local outlier factor methods with varying KNN 

initializations proved to be a stable and low error method for determining cell infected 

status as quantified by the minor variations in error between trials and between tested 

initializations. All methods attempted produced error below 1% and comparable error 

was seen for both trials (Table 44). 
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Table 44:  Percentage of Infected Cells and Misclassification Error (mcError) for each algorithm 
performed independently on each trial 

Algorithm mcError-Trial 1 mcError-Trial 2 %Infected-Trial 1 %Infected-Trial 2 

K-Means 0.001678108 0.004535147 27.93129 14.64915 

GMM (Diagonal) 0.009000763 0.132312925 29.53697 41.01202 

GMM (Full) 0.006254767 0.109297052 27.12223 40.52278 

GMM (Spherical) 0.109297052 0.046834477 66.76624 34.95946 

GMM (Tied) 0.000762777 0.001814059 19.94025 9.67291 

Isolation Forest 0.04057971 0.056802721 63.36819 32.10791 

LOF (KNN: 10) 0.005034325 0.003968254 34.64028 6.024602 

LOF (KNN: 20) 0.005644546 0.005668934 33.17152 7.338552 

LOF (KNN: 30) 0.008848207 0.007256236 41.97162 8.987979 

SVM (Linear:1E-5) 0.006864989 0.009183673 45.28255 20.96729 

SVM (Linear:1E-4) 0.079938978 0.009183673 62.67115 20.96729 

SVM (Linear:1E-3) 0.050953471 0.138321995 50.01245 20.03075 

SVM (Linear:1E-2) 0.410831426 0.320068027 82.66119 40.17333 

SVM (Poly(3):1E-5) 0.019221968 0.42244898 0.746826 45.14957 

SVM (Poly(3):1E-4) 0.019221968 0.42244898 0.746826 45.14957 

SVM (Poly(3):1E-3) 0.154996186 0.400226757 5.078417 74.50377 

SVM (Poly(3):1E-2) 0.337452326 0.429931973 11.55091 49.97204 

SVM (RBF:1E-5) 1 0.000113379 92.0712 4.598826 

SVM (RBF:1E-5) 1 0.000113379 92.0712 4.137545 

SVM (RBF:1E-5) 0.000915332 0.001133787 16.28081 5.325692 

SVM (RBF:1E-5) 0.01006865 0.010090703 39.74359 11.11266 

SVM (Sigmoid:1E-5) 0.013272311 0.468480726 55.82524 76.40481 

SVM (Sigmoid:1E-4) 0.013272311 0.005555556 55.82524 16.18675 

SVM( Sigmoid:1E-3) 0.026697178 0.041836735 7.119741 29.43808 

SVM (Sigmoid:1E-2) 0.001983219 0.282199546 22.37989 55.15795 
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Analysis of the results of infection determination show that GMM and LOF 

present with the lowest misclassification error for unsupervised and outlier detection 

categories respectively. Gaussian mixture models with a tied covariance produce the 

lowest misclassification error overall, but other covariances have high variability in 

misclassification error (Figure 32). Local outlier Factor presents with consistently low 

misclassification error regardless of independent trial or perturbation to the KNN 

initialization, in addition the ability to train the models with the single known class 

(control/non-infected) makes LOF a more appealing option (Figure 33). For all further 

analysis, infected cells are represented from the LOF novelty detection machine learning 

algorithm with KNN=20, as this produced the most comparable error between Trials and 

is the initialization recommended by the sklearn library. 

 

Figure 32: Unsupervised machine learning for infection determination GMM (k=2) Control 
misclassification error for varying covariance matricies. 
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Figure 33: Single class classificaiton model (Novelty Detection) for infection determination with local 
outlier factor. Control misclassification error is reported for each independent trial at 
varying KNN initalizations. 

 

4.3.2.1 Cell Dynamics Based on Cellular State 

Determination of infection allowed for the identification of activated-non-

infected cells based on the cell clusters determined by 20 µm DBSCAN analysis. This 

generated the cell statuses outlined in Table 41. This delineation between cell statuses 

allows for the investigation of cell dynamics based on the state of the cell at that point 

in time. Figure 34 outlines the percentage of cells in each state over the course of the 

study. As expected, we see a consistent decrease in the percentage of infected cells over 

time in both the 2D and 3D environment, as this is a low-level clearing infection.  
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Figure 34: Percent of cells in specific cell status (determined by number of cells present in status over 
total number of cells in the condition).  

4.3.2.1.1 Impact of Dimensionality and Cell Status on Cell Motility and Migration  

Comparing cells with comparable cell status in the 2D and 3D environment we 

can determine not only the impact that the cell status has on the cellular dynamics, but 

also the magnitude the state of cell activation or infection has as compared to the effect 

of the environment. Looking at cellular speed, acceleration and directedness we start to 

see a trend in the relationship between the cells in 2D and 3D that highlights the 

importance of the availability of the 3D environment, but also the overwhelming effect 

that cell status has on the resulting cellular dynamics. In general, results show non-

infected and non-active macrophages within infected environments present dynamics 

comparable to controls, while infected and activated macrophages exhibit comparable 

spatiotemporal dynamics in 2D and 3D. 
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Cellular speed in general is observed to be significantly lower in 3D as compared 

to the 2D condition (Figure 35). If we compare the log 2-fold change in means between 

cell states calculated by equation 8 

 

 

 

𝐿𝐿𝐿𝐿𝐿𝐿2𝐹𝐹𝐹𝐹 = 𝐿𝐿𝐿𝐿𝑔𝑔2 �
2𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
3𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�. (8) 

We see that infected, infected cluster and noninfected-active cells have a much 

lower fold change (Log2FC<0.7) than noninfected or control cells (Log2FC>1) (Table 45), 

although the relationships to their respective controls or noninfected cells maintains a 

converse relationship.  

 

Figure 35: Individual cell speed of gfpBMDM infected with mCherry M.smegmatis in 2D and 3D culture 
conditions over 72 hours by cell status (ns- No significant difference, * - p<.05, **-
p<.01,***-p<.001,****-p<.0001) 
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Table 45:  Average Individual Cell Speed Over All Time: Wilcoxon 
2D Cell State Speed um/s 3D Cell State Speed um/s Log2FC p value  

Control 1.22E-03 Control 2.60E-04 1.02 0 
Control-Cluster 1.46E-03 Control-Cluster 3.11E-04 1.28 5.11E-222 
Noninfected 7.67E-04 Noninfected 3.64E-04 1.08 8.93E-304 
Infected 6.00E-04 Infected 4.01E-04 0.58 7.44E-12 
Noninfected-Active 6.46E-04 Noninfected-Active 4.23E-04 0.61 6.10E-13 
Noninfected-
Cluster 9.56E-04 Noninfected-

Cluster 3.52E-04 1.44 4.20E-48 

Infected-Cluster 6.00E-04 Infected-Cluster 4.52E-04 0.41 1.64E-03 
Likewise, we see a comparable effect on cellular acceleration (Figure 36). 

Infected cells (infected and infected-cluster) and those associated with infection 

(noninfected-active) have a much lower log2FC (logf2C<.4) than those not associated 

with infection (log2FC>.65) (Table 46), and the converse relationship observed in cellular 

speed still holds. 

 

Figure 36:  Individual cell acceleration of gfpBMDM infected with mCherry M.smegmatis in 2D and 3D 
culture conditions over 72 hours by cell status (ns- No significant difference, * - p<.05, **-
p<.01,***-p<.001,****-p<.0001) 
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Table 46:  Average Individual Cell Acceleration Over All Time: Wilcoxon 
2D Cell State Acceleration 

um/s2 
3D Cell State Acceleration 

um/s2 
Log2FC p value  

Control 5.84E-08 Control 2.42E-08 1.27 2.25E-186 
Control-Cluster 5.74E-08 Control-Cluster 2.65E-08 1.12 3.66E-46 
Noninfected 5.19E-08 Noninfected 3.15E-08 0.72 1.44E-163 
Infected 4.13E-08 Infected 3.49E-08 0.24 2.25E-04 
Noninfected-
Active 4.67E-08 Noninfected-

Active 3.66E-08 0.35 8.78E-07 

Noninfected-
Cluster 4.88E-08 Noninfected-

Cluster 3.08E-08 0.66 9.63E-10 

Infected-Cluster 4.30E-08 Infected-Cluster 3.75E-08 0.20 1.52E-02 
 
We see this effect continue into the calculations of cell directedness. We see no 

significant difference between directedness in infected-cluster cells in 2D and 3D (Figure 

37). Once again, we see that infected cells (infected and infected-cluster) and those 

associated with infection (noninfected-active) have a much lower log2FC (logf2C<.5) 

than those not associated with infection (log2FC>.5)(Table 47) 

 

Figure 37: Individual cell directedness of gfpBMDM infected with mCherry M.smegmatis in 2D and 3D 
culture conditions over 72 hours by cell status (ns- No significant difference, * - p<.05, **-
p<.01,***-p<.001,****-p<.0001) 
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Table 47:  Average Individual Cell Directedness Over All Time: Wilcoxon 

2D Cell State Directedness 3D Cell State Directedness Log2FC p value  

Control 0.304 Control 0.179 0.76 2.04E-147 
Control-Cluster 0.330 Control-Cluster 0.212 0.64 8.23E-55 
Noninfected 0.245 Noninfected 0.156 0.65 2.70E-173 
Infected 0.221 Infected 0.165 0.42 1.36E-18 
Noninfected-
Active 0.200 Noninfected-

Active 0.169 0.24 7.30E-05 

Noninfected-
Cluster 0.272 Noninfected-

Cluster 0.181 0.59 2.80E-18 

Infected-Cluster 0.218 Infected-Cluster 0.210 0.05 9.38E-01 
 

4.3.2.1.2 Impact of Dimensionality and Cell Status on Cell Volume  

Cell volume as a feature of cellular dynamics is vital as it has been shown in 

previous empirical studies that macrophage volume is correlated to phagocytosis of the 

bacterium [43]. Our preliminary investigation of using machine learning to determine 

cell infection and feature importance also highlighted cell volume as one of the best 

features to discriminate the cell population[61]. This study emphasizes the impact that 

cell infection has on cell volume. We see that infected cells have a higher volume within 

their respective 2D or 3D condition, and that infected-cluster cells have no significant 

difference in cell volume between 2D and 3D condition (Figure 38). The trend continues 

and infected cells (infected and infected-cluster) and those associated with infection 

(noninfected-active) have a lower log2FC (logf2C<.2) than those not associated with 

infection (log2FC>.3)(Table 48). 
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Figure 38: Individual cell volume of gfpBMDM infected with mCherry M.smegmatis in 2D and 3D 
culture conditions over 72 hours by cell status (ns- No significant difference, * - p<.05, **-p<.01,***-
p<.001,****-p<.0001) 

 

Table 48:  Average Individual Cell Volume Over All Time: Wilcoxon 
2D Cell State Volume um3 3D Cell State Volume um3 Log2FC p value  

Control 4.07E+03 Control 2.34E+03 0.80 0 
Control-Cluster 2.93E+03 Control-Cluster 2.43E+03 0.27 3.24E-23 
Noninfected 4.03E+03 Noninfected 2.91E+03 0.47 0 
Infected 4.36E+03 Infected 3.86E+03 0.18 2.99E-05 
Noninfected-
Active 2.92E+03 Noninfected-

Active 2.70E+03 0.11 1.77E-06 

Noninfected-
Cluster 2.98E+03 Noninfected-

Cluster 2.42E+03 0.30 2.54E-17 

Infected-Cluster 3.11E+03 Infected-Cluster 3.09E+03 0.01 8.03E-01 
 

4.3.2.1.3 Impact of cell-state on cell dynamics over time 

Investigation of infected status of the cells as well as the spatial organization we 

can delineate impact of proximity to infection (active-noninfected) as opposed to a 

noninfected cell that is in proximity to another noninfected cell (noninfected-cluster). 

Through our analysis we see that cells determined to be in a proinflammatory state, 
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infected cells, infected-cluster cells and active-noninfected cells, show more comparable 

dynamics to each other, whereas non-proinflammatory cells, noninfected cells and 

noninfected-cluster cells, demonstrate dynamics more comparable to their respective 

controls. This highlights the impact that cellular infection plays on the behavior of 

neighboring cells. We also note that in general, we that proinflammatory macrophages, 

cells in the presence of infection (noninfected-active) or infected themselves, (infected 

and infected-cluster) demonstrate distinct trends over time that are easily identified in 

the 2D condition. While we do see distinct groupings of dynamics based on 

proinflammatory or non-proinflammatory state in 3D, the differences are less apparent.  

For the average cellular speed over all time in 2D we see little (p <.05) to no 

significant difference between noninfected and noninfected-active cells, infected and 

infected-cluster cells, and infected cluster and noninfected-active cells (Figure 39 A, 

Table 49). We observe that noninfected-cluster cells have a significantly higher speed 

than their counterparts in proximity to infection. We also observe that over time, the 

average cellular speed of noninfected cells and noninfected-cluster cells decrease over 

time, whereas infected, infected-cluster and noninfected-active cells maintain a more 

consistent speed over the course of observation (Figure 39 B). 
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Figure 39: Individual cell speed of gfpBMDM infected with mCherry M.smegmatis in 2D and 3D culture 
conditions over 72 hours by cell status A) Averaged over all time B) Averaged based on hour 
range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 
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Table 49: 2D Average Individual Cell Speed Over All Time: Wilcoxon 

2D Cell State Speed um/s 2D Cell State Speed um/s p value  

Control 1.22E-03 Control-Cluster 1.46E-03 1.85E-23 
Control 1.22E-03 Noninfected 7.67E-04 5.84E-160 
Control 1.22E-03 Infected 6.00E-04 1.42E-83 
Infected 6.00E-04 Infected-Cluster 6.00E-04 0.2471 
Infected 6.00E-04 Noninfected 7.67E-04 1.64E-15 
Infected-Cluster 6.00E-04 Noninfected-Active 6.46E-04 0.012802 
Infected-Cluster 6.00E-04 Noninfected-Cluster 9.56E-04 2.64E-18 
Noninfected 7.67E-04 Noninfected-Cluster 9.56E-04 2.58E-14 
Noninfected 7.67E-04 Noninfected-Active 6.46E-04 0.010106 
Noninfected-Cluster 9.56E-04 Noninfected-Active 6.46E-04 4.02E-13 

 

In 3D we see no significant difference in cell speed between noninfected cells 

and noninfected-cluster cells, or infected-cluster and noninfected-active cells. However 

we do see a significant difference between noninfected-active cells and noninfected-

cluster cells showing the impact of proximity of infection on dynamics (Figure 39 A, 

Table 50). Unlike in 2D, we do not see an easily distinguishable difference in cellular 

speed over time (Figure 39 B). 

Table 50: 3D Average Individual Cell Speed Over All Time: Wilcoxon 

3D Cell State Speed um/s 3D Cell State Speed um/s p value  

Control 2.60E-04 Control-Cluster 3.11E-04 3.72E-04 
Control 2.60E-04 Noninfected 3.64E-04 2.20E-23 
Control 2.60E-04 Infected 4.01E-04 2.14E-28 
Infected 4.01E-04 Infected-Cluster 4.52E-04 8.84E-09 
Infected 4.01E-04 Noninfected 3.64E-04 1.00E-04 
Infected-Cluster 4.52E-04 Noninfected-Active 4.23E-04 1.49E-01 
Infected-Cluster 4.52E-04 Noninfected-Cluster 3.52E-04 2.64E-18 
Noninfected 3.64E-04 Noninfected-Cluster 3.52E-04 3.69E-01 
Noninfected 3.64E-04 Noninfected-Active 4.23E-04 9.35E-10 
Noninfected-Cluster 3.52E-04 Noninfected-Active 4.23E-04 6.00E-04 
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In 2D we see little (p <.05) to no significant difference in cellular acceleration 

between: noninfected and noninfected-active, control and control-cluster, infected and 

infected-cluster, infected-cluster and noninfected-active, noninfected and noninfected-

active, and infected-cluster and noninfected-cluster cells.( Figure 40 A, Table 51). We do 

not see any significant difference between noninfected-cluster and noninfected-active 

cells. We see similar trends in infected and infected cluster cells over time with 

increasing cell acceleration as the infection progresses. In contrast, control, control-

cluster and noninfected cells present steady acceleration over time (Figure 40 B). 

 

Table 51: 2D Average Individual Cell Acceleration Over All Time: Wilcoxon 

2D Cell State Acceleration 
um/s2 

2D Cell State Acceleration um/s2 p value  

Control 5.84E-08 Control-Cluster 5.74E-08 0.524892 
Control 5.84E-08 Noninfected 5.19E-08 0.003098 
Control 5.84E-08 Infected 4.13E-08 3.87E-15 
Infected 4.13E-08 Infected-Cluster 4.30E-08 0.104355 
Infected 4.13E-08 Noninfected 5.19E-08 9.59E-05 
Infected-Cluster 4.30E-08 Noninfected-Active 4.67E-08 0.058622 
Infected-Cluster 4.30E-08 Noninfected-Cluster 4.88E-08 0.204627 
Noninfected 5.19E-08 Noninfected-Cluster 4.88E-08 0.197946 
Noninfected 5.19E-08 Noninfected-Active 4.67E-08 0.892141 
Noninfected-Cluster 4.88E-08 Noninfected-Active 4.67E-08 0.882455 
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Figure 40: Individual cell acceleration of gfpBMDM infected with mCherry M.smegmatis in 2D and 3D 
culture conditions over 72 hours by cell status A) Averaged over all time B) Averaged based 
on hour range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 
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In 3D we see an overall higher degree of significant difference in cellular 

acceleration based on cell state, but we still see no significant difference between 

control and control-cluster cells, noninfected cells and noninfected-cluster cells, or 

infected-cluster and noninfected-active cells (Figure 40 A, Table 52). However, in 

contrast to 2D, we do see a significant difference in cellular acceleration between 

noninfected-active and noninfected-cluster cells which demonstrates that the proximity 

to infection plays a role in cellular acceleration. We begin to see more distinct patterns 

in cellular acceleration over time as compared to cell speed in 3D. The trends show that 

infected and noninfected-active cells have similar dynamics increasing acceleration at 

the 12-24 hour range, followed by a decrease at 24-36 hour range, followed by another 

subsequent increase in cellular acceleration. Comparable to 2D control, control cluster 

and noninfected cells show similar dynamics with a moderate increase in cell 

acceleration in the earlier timepoints followed by stabilization in the later timeframes 

(Figure 40 B).  

Table 52: 3D Average Individual Cell Acceleration Over All Time: Wilcoxon 

3D Cell State Acceleration um/s2 3D Cell State Acceleration um/s2 p value  

Control 2.42E-08 Control-Cluster 2.65E-08 0.252612 
Control 2.42E-08 Noninfected 3.15E-08 2.59E-07 
Control 2.42E-08 Infected 3.49E-08 2.89E-09 
Infected 3.49E-08 Infected-Cluster 3.75E-08 0.987993 
Infected 3.49E-08 Noninfected 3.15E-08 8.02E-05 
Infected-Cluster 3.75E-08 Noninfected-Active 3.66E-08 0.88529 
Infected-Cluster 3.75E-08 Noninfected-Cluster 3.08E-08 0.037454 
Noninfected 3.15E-08 Noninfected-Cluster 3.08E-08 0.626437 
Noninfected 3.15E-08 Noninfected-Active 3.66E-08 0.000493 
Noninfected-Cluster 3.08E-08 Noninfected-Active 3.66E-08 0.002063 
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Figure 41: Individual cell directedness of gfpBMDM infected with mCherry M.smegmatis in 2D and 3D 
culture conditions over 72 hours by cell status A) Averaged over all time B) Averaged based 
on hour range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 

Directedness in 2D shows three distinct groupings over time (Figure 41 B), 

control and control-cluster, noninfected-cluster and noninfected, and infected, infected 

cluster and noninfected-active. Overall, we see no significant difference between 

average directedness in infected and infected-cluster cells, and infected-cluster and 

noninfected-active cells (Figure 41 A,Table 53), but a significant difference between non-
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proinflammatory noninfected-cluster and the proinflammatory noninfected-active cells. 

In general, we do see that cells in clusters have a higher directedness than their non-

clustered counterparts, however this is likely due to the failing of watershed 

segmentation of overlapping and touching cells. 

Table 53: 2D Average Individual Cell Directedness Over All Time: Wilcoxon 
2D Cell State Directedness 2D Cell State Directedness p value  

Control 0.304 Control-Cluster 0.33 2.54E-11 
Control 0.304 Noninfected 0.245 7.72E-74 
Control 0.304 Infected 0.221 8.96E-33 
Infected 0.221 Infected-Cluster 0.218 0.165891 
Infected 0.221 Noninfected 0.245 0.001691 
Infected-Cluster 0.218 Noninfected-Active 0.200 0.394694 
Infected-Cluster 0.218 Noninfected-Cluster 0.272 6.95E-10 
Noninfected 0.245 Noninfected-Cluster 0.272 2.83E-07 
Noninfected 0.245 Noninfected-Active 0.200 4.11E-10 
Noninfected-Cluster 0.272 Noninfected-Active 0.200 5.71E-18 

The significant difference in cell directedness in 3D is much more subdued than 

2D. We see very little difference in the cell directedness overtime (Figure 41 B), and we 

see no significant difference in average cell directedness between infected and 

noninfected cells, noninfected and noninfected-active cells, and noninfected-cluster and 

noninfected-active cells(Figure 41 A, Table 54).  

Table 54: 3D Average Individual Cell Directedness Over All Time: Wilcoxon 
3D Cell State Directedness 3D Cell State Directedness p value  

Control 0.179 Control-Cluster 0.212 3.75E-12 
Control 0.179 Noninfected 0.156 2.53E-21 
Control 0.179 Infected 0.165 7.86E-08 
Infected 0.165 Infected-Cluster 0.210 3.22E-09 
Infected 0.165 Noninfected 0.156 0.175714 
Infected-Cluster 0.210 Noninfected-Active 0.169 3.77E-06 
Infected-Cluster 0.210 Noninfected-Cluster 0.181 0.004181 
Noninfected 0.156 Noninfected-Cluster 0.181 0.003096 
Noninfected 0.156 Noninfected-Active 0.169 0.115197 
Noninfected-Active 0.169 Noninfected-Cluster 0.181 0.18549 
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Figure 42: Individual cell volume of gfpBMDM infected with mCherry M.smegmatis in 2D and 3D 
culture conditions over 72 hours by cell status A) Averaged over all time B) Averaged based 
on hour range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 
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Cell volume in 2D is highest in infected cells but is not significantly different from 

control cells or noninfected cells (Figure 42 A, Table 55). We also do not observe any 

significant difference between infected-cluster, noninfected-active cells and noninfected 

cluster cells.  

Table 55: 2D Average Individual Cell Volume Over All Time: Wilcoxon 

2D Cell State Volume um3 2D Cell State Volume um3 p value  

Control 4.07E+03 Control-Cluster 2.93E+03 1.78E-283 
Control 4.07E+03 Noninfected 4.03E+03 0.221718 
Control 4.07E+03 Infected 4.36E+03 0.400461 
Infected 4.36E+03 Infected-Cluster 3.11E+03 1.55E-27 
Infected 4.36E+03 Noninfected 4.03E+03 0.714533 
Infected-Cluster 3.11E+03 Noninfected-Active 2.92E+03 1.27E-08 
Infected-Cluster 3.11E+03 Noninfected-Cluster 2.98E+03 0.112621 
Noninfected 4.03E+03 Noninfected-Cluster 2.98E+03 6.28E-114 
Noninfected 4.03E+03 Noninfected-Active 2.92E+03 4.86E-77 
Noninfected-Cluster 2.98E+03 Noninfected-Active 2.92E+03 0.979739 

 

In 3D we see a much more apparent distinction between cell volume in infected 

cells and all other cell statuses. We see an initial increase in cell volume during the first 

24 hours, followed by a gradual decrease as the infection clears (Figure 42 B). We see 

little (p >.05) to no significant difference between control and control-cluster, and 

noninfected and noninfected-active cells (Figure 42 A, Table 56) , but we do see a 

significant increase in cell volume of noninfected-active cells as compared to 

noninfected-cluster cells which poses an interesting quantification in the cell volume 

regulation of proinflammatory macrophages that are not under active infection. 
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Table 56: 3D Average Individual Cell Volume Over All Time: Wilcoxon 

3D Cell State Volume um3 3D Cell State Volume um3 p value  
Control 2.34E+03 Control-Cluster 2.43E+03 0.024023 

Control 2.34E+03 Noninfected 2.91E+03 1.01E-60 

Control 2.34E+03 Infected 3.86E+03 2.48E-202 

Infected 3.86E+03 Infected-Cluster 3.09E+03 2.78E-67 

Infected 3.86E+03 Noninfected 2.91E+03 3.03E-97 

Infected-Cluster 3.09E+03 Noninfected-Active 2.70E+03 5.32E-09 

Infected-Cluster 3.09E+03 Noninfected-Cluster 2.42E+03 8.79E-20 

Noninfected 2.91E+03 Noninfected-Cluster 2.42E+03 9.45E-13 

Noninfected 2.91E+03 Noninfected-Active 2.70E+03 0.221598 

Noninfected-Cluster 2.42E+03 Noninfected-Active 2.70E+03 1.24E-07 

 

4.3.3 Multivariate Classification Models 

Prediction of cell status using multivariate classification models provides further 

insight into the other cellular dynamics quantified under confocal imaging and 

demonstrates how multiple dynamics can be utilized to distinguish cell state. While we 

saw much less significant difference in 3D between the previously observed cell 

dynamics, the application of multivariate classification models results in higher accuracy 

for the 3D dataset as compared to 2D demonstrating that a combination of observable 

cell dynamic features in 3D provides higher discrimination between cell states. 

4.3.3.1 Linear discriminant analysis for cell status classification 

LDA with reverse feature selection applied to the 2D and 3D datasets 

independently show increasing accuracy over time, with the accuracy for 3D being 

higher at all hour ranges (Figure 43 A). When analyzed for the highest accuracy for a 

single feature we see that 3D maintains the highest accuracy over all hour ranges (Table 

57, Figure 43 B). 
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Figure 43: Multivariate classification of cell status over time using LDA A) Highest accuracy reported 
with reverse feature selection B) Accuracy for best single feature predictor 

 

Table 57:  LDA-Cell Status Classification Models, Single Feature Accuracy 

Condition Hour Range test accuracy % Feature solver 
2D 0-12 39.12809 Sphericity svd 
2D 12-24 39.88593 Ellipicity Prolate svd 
2D 24-36 45.07926 speed svd 
2D 36-48 48.47973 speed lsqr 
2D 48-72 52.53533 speed svd 
3D 0-12 47.12644 Delta total dist y svd 
3D 12-24 48.95833 Delta total dist y lsqr 
3D 24-36 51.24088 Delta total dist y svd 
3D 36-48 55.09077 tp disp z svd 
3D 48-72 59.69213 tp disp z svd 
 

Further investigation of the single feature accuracy for 2D and 3D shows features 

previously identified including speed, as well as new features including “delta total dist 

y”, which is the change in total distance traveled in the y plane between timepoints of 

imaging (equivalent to absolute value of distance traveled in one timepoint in y), and 
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the “tp disp z” which is the directional distance travelled in the z direction between 

timepoints of imaging. Another feature of significance that is observed is “sphericity” 

which is a value calculated directly by Imaris that is representative of how spherical the 

imaged object is [90].  

4.3.3.2 Gaussian mixture models for classification 

Gaussian mixture models provide a similar linear delineation between variables 

as LDA but provide posterior probability of class assignment for existing and new 

variables. As a part of this, the multivariate Gaussian assumptions for a multivariate 

GMM allow for the generation of new datapoints within the gaussian distribution 

making them a very attractive option for model informing. cGMM with reverse feature 

selection applied to the 2D and 3D datasets independently show increasing accuracy 

over time, with the accuracy for 3D being higher at all hour ranges (Figure 44 A ). When 

analyzed for the highest accuracy for a single feature we see that 2D maintains higher 

accuracy over all hour ranges except 0-12 hours (Figure 44 B, Table 58). Single feature 

accuracy also highlights cell dynamics not previously analyzed primarily focused around 

cell timepoint displacement and distance traveled over time for both 2D and 3D 

conditions, however these displacement and distance features are components of cell 

directedness. Analysis of directional displacement over time includes vectorized 

components of cellular migration and will differ depending on localized context of cell 

spatial organization.  
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Figure 44: Multivariate classification of cell status over time using cGMM A) Highest accuracy reported 
with reverse feature selection B) Accuracy for best single feature predictor 

 

Table 58: cGMM Cell Status Classification Models, Single Feature Accuracy 
Condition Hour Range test accuracy % Feature Covariance 
2D 0-12 16.79 total dist 2 spherical 
2D 12-24 35.82 total dist z tied 
2D 24-36 35.37 tp disp y tied 
2D 36-48 23.04 cell volume tied 
2D 48-72 38.51 total dist z tied 
3D 0-12 30.59 delta cell volume tied 
3D 12-24 29.79 tp disp y tied 
3D 24-36 25.33 cell volume tied 
3D 36-48 18.23 total dist y tied 
3D 48-72 23.43 cell volume spherical 

4.3.3.3 Decision tree models for classification 

Decision trees provide the benefit of multiple linear delineations for a single 

feature unlike LDA and cGMM, but do not provide generation of new datapoints within 

an assumed gaussian distribution. However, they do inherently report the predictor 

importance for each feature making them a very attractive option for determining 

which features are vital for computational model informing. cTree with reverse feature 
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selection applied to the 2D and 3D datasets independently show the best accuracy over 

all of the tested models and show increasing accuracy over time, with the accuracy for 

3D being higher at all hour ranges (Figure 45  A). When analyzed for the highest 

accuracy for a single feature we see that 3D maintains higher accuracy over all hour 

ranges (Table 59, Figure 45 B), consistent with other methods of cell state classification. 

Single feature accuracy also highlights cell dynamics previously identified by other 

multivariate classification methods including sphericity, cell volume, tp disp y and tp 

disp z (directional displacement in the y and z planes between timepoints, which are 

components of cell directedness). 

 

 

Figure 45: Multivariate classification of cell status over time using cTree A) Highest accuracy reported 
with reverse feature selection B) Accuracy for best single feature predictor 
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Table 59: cTree-Cell Status Classification Models, Single Feature Accuracy 

Condition Hour Range test accuracy % feature solver 
2D 0-12 53.93 Sphericity gini 
2D 12-24 49.92 cell volume gini 
2D 24-36 56.05 speed gini 
2D 36-48 56.34 speed gini 
2D 48-72 52.87 cell volume gini 
3D 0-12 58.97 tp disp y gini 
3D 12-24 60.90 tp disp y gini 
3D 24-36 60.36 tp disp z gini 
3D 36-48 61.40 cell volume gini 
3D 48-72 64.14 tp disp z gini 

Analysis of predictor importance for cTrees on the non-reverse feature selected 

datasets shows that many of the same key features are identified (Figure 46, Figure 47). 

Many of these features identified involve the displacement of cells overtime, which are 

relative to each individual experiment. However, one feature that has appeared during 

multivariate classification analysis that warrants further investigation is sphericity, as 

macrophage phenotype has been linked to cell shape, with rounder phenotype cells 

(presumably correlated to a higher sphericity) being linked to classical, 

proinflammatory, macrophage activation [88]. 
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Figure 46: Predictor importance for 2D cell status cTree determination by hour range (bar graph) and 
overall (sunburst).  
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Figure 47: Predictor importance for 3D cell status cTree determination by hour range (bar graph) and 
overall (sunburst). 
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4.3.3.4 Cell Sphericity Identified by multivariate classification models 

Cell sphericity in the 2D condition shows significant delineation between cell 

status comparable to the distinction of previously quantified cellular dynamics based on 

proinflammatory state. This analysis shows that infected, infected-cluster and non-

infected active cells have the highest cell sphericity compared to the noninfected or 

control counterparts (Figure 25 A, Table 23). 

Table 60: 2D Average Individual Cell Sphericty Over All Time: Wilcoxon 

2D Cell State sphericty 2D Cell State sphericty  p value  

Control 0.710 Control-Cluster 0.743 4.69E-49 

Control 0.710 Noninfected 0.760 1.72E-107 

Control 0.710 Infected 0.841 1.17E-159 

Infected 0.841 Infected-Cluster 0.858 2.02E-01 

Infected 0.841 Noninfected 0.760 1.67E-69 

Infected-Cluster 0.858 Noninfected-Active 0.846 2.73E-03 

Infected-Cluster 0.858 Noninfected-Cluster 0.784 1.47E-43 

Noninfected 0.760 Noninfected-Cluster 0.784 1.69E-11 
Noninfected 0.760 Noninfected-Active 0.846 2.07E-61 
Noninfected-Active 0.846 Noninfected-Cluster 0.784 3.70E-35 

 

 We also see that these cell statuses in 2D also follow very similar trends over the 

course of time (Figure 48 B). The same trends are not seen in 3D, where the majority of 

cells follow the same trend in sphericity over time except for control cells which have an 

overall higher sphericity (Figure 48 A, Table 60). We do see a marked increase in 

sphericity over time in 3D infected cells and infected-cluster cells that is not present in 

the non-infected states (Table 61). 
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Figure 48: Individual cell spehericty of gfpBMDM infected with mCherry M.smegmatis in 2D and 3D 
culture conditions over 72 hours by cell status A) Averaged over all time B) Averaged based 
on hour range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 
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Table 61: 3D Average Individual Cell Sphericty Over All Time: Wilcoxon 

3D Cell State sphericty 3D Cell State sphericty p value  

Control 0.944 Control-Cluster 0.886 3.24E-97 

Control 0.944 Noninfected 0.909 6.82E-38 

Control 0.944 Infected 0.889 2.66E-12 

Infected 0.889 Infected-Cluster 0.897 7.98E-08 

Infected 0.889 Noninfected 0.909 6.53E-07 

Infected-Cluster 0.897 Noninfected-Active 0.896 7.74E-01 

Infected-Cluster 0.897 Noninfected-Cluster 0.909 1.65E-01 

Noninfected 0.909 Noninfected-Cluster 0.909 1.71E-14 
Noninfected 0.909 Noninfected-Active 0.896 4.11E-23 
Noninfected-Active 0.896 Noninfected-Cluster 0.909 0.2923 
 

4.3.3.5 Empirical distributions to populate computational models 

Variable generation for model development executed through disttoRNG, 

generated the best fitting distribution for the features of interest for all cells over all 

imaged time and returned one random value from the distribution for analysis. AIC was 

selected as the method of evaluation as it does bias away from more complex models as 

strictly as BIC. Cellular speed generated a predominantly inverse gaussian distribution 

except in the case of 2D-Control and 2D-Control-Cluster cell states (Table 62) and 

generated random values within the parameters of previously reported data [68]. 
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Table 62: Empirical distribution of cell speed over all time and random variable generation 
based on cell state 

Cell State distribution AIC Random Value (um/s) 

2D-Control gamma -98616.24 3.55E-4 

2D-Control-Cluster gamma -40452.31 8.95E-5 

2D-Noninfected invgauss -87402.82 1.91E-4 

2D-Infected invgauss -12447.31 1.61E-4 

2D-Noninfected-Active invgauss -9529.42 7.47E-4 

2D-Noninfected-Cluster invgauss -17238.56 1.88E-3 

2D-Infected-Cluster invgauss -6732.07 4.12E-4 
3D-Control invgauss -32319.91 1.25E-4 
3D-Control-Cluster invgauss -13013.61 1.94E-4 
3D-Noninfected invgauss -67091.77 6.075E-5 
3D-Infected invgauss -15866.12 6.20E-4 
3D-Noninfected-Active invgauss -7241.19 1.79E-4 
3D-Noninfected-Cluster invgauss -4914.84 3.15E-5 
3D-Infected-Cluster invgauss -7701.86 1.46E-4 

Cellular acceleration is described best by a nakagami distributoin in 3D. In 2D we 

do see a difference of distributions with gamma, nakagami (related to gamma 

distribution), and beta (Table 63).  

Table 63: Empirical distribution of cell acceleration over all time and random variable generation 
based on cell state 

Cell State distribution AIC Random Value (um/s2) 

2D-Control beta  -401848.69 2.54E-9 

2D-Control-Cluster beta  -182425.58 3.57E-8 

2D-Noninfected gamma  -254594.01 3.93E-9 

2D-Infected nakagami  -34422.30 5.07E-10 

2D-Noninfected-Active nakagami  -28207.80 1.19E-8 

2D-Noninfected-Cluster gamma  -62732.58 2.18E-8 

2D-Infected-Cluster nakagami  -18667.05 1.85E-9 
3D-Control nakagami  -76624.94 1.87E-8 
3D-Control-Cluster nakagami  -32114.84 5.10E-8 
3D-Noninfected nakagami  -163600.91 5.95E-9 
3D-Infected nakagami  -37270.44 1.97E-8 
3D-Noninfected-Active nakagami  -17633.55 2.06E-8 
3D-Noninfected-Cluster nakagami  -13131.67 1.88E-12 
3D-Infected-Cluster nakagami  -20493.40 5.38E-8 
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Cellular volume is described best by a t distribution in both 2D, 3D except for 2D-

nonifected and 2D-noninfected-cluster cells which are best described by a inverse 

gaussian and lognormal distribution respectively (Table 64).  

Table 64: Empirical distribution of cell volume over all time and random variable generation 
based on cell state 

Cell State distribution AIC Random Value (um^3) 

2D-Control t  153755.02 3753.49 

2D-Control-Cluster t  63467.22 1686.07 

2D-Noninfected Invgauss 123262.21 12175.43 

2D-Infected t  17414.21 9739.37 

2D-Noninfected-Active t  12427.97 2937.80 

2D-Noninfected-Cluster lognorm 24688.09 2373.01 

2D-Infected-Cluster t  8882.05 4191.95 
3D-Control t  35241.10 3228.78 
3D-Control-Cluster t  15502.15 1467.15 
3D-Noninfected t  80968.80 3295.40 
3D-Infected t  20226.62 2966.09 
3D-Noninfected-Active t  8713.65 3336.30 
3D-Noninfected-Cluster t  5628.67 1740.12 
3D-Infected-Cluster t  9715.85 4664.25 
 

Cellular directedness is described best by an inverse gaussian distribution in 3D, 

except for 3D-infected-cluster cells. In 2D, a variety of distributions best describe cell 

directedness based on cell state with only 2D-infected and 2D-nonifnected-active having 

distributions described by inverse gaussian (Table 65).  
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Table 65: Empirical distribution of cell directedness over all time and random variable 
generation based on cell state 

Cell State distribution AIC Random Value 

2D-Control nakagami -4924.27 0.11 

2D-Control-Cluster Beta -1964.54 0.41 

2D-Noninfected gamma -6493.74 0.03 

2D-Infected invgauss -1077.00 0.28 

2D-Noninfected-Active invgauss -993.76 0.12 

2D-Noninfected-Cluster weibull_min -1074.61 0.26 

2D-Infected-Cluster gamma -561.27 0.22 
3D-Control invgauss -3728.44 0.23 
3D-Control-Cluster invgauss -1213.77 0.09 
3D-Noninfected invgauss -9540.85 0.063 
3D-Infected invgauss -2169.38 0.092 
3D-Noninfected-Active invgauss -951.48 0.46 
3D-Noninfected-Cluster invgauss -588.40 0.029 
3D-Infected-Cluster expon -739.69 0.12 

 

Cellular sphericity is described best by a variety of distributions (Table 66), but 

what is of note is that the three cell states previously identified in statistical analysis as 

having similar trends over time (2D-control, 2D-control-cluster and 2D-noninfeted cells) 

all share the beta distribution along with 2D-noninfected-cluster cells. Active and 

infected cells in 2D and 3D are both described by weibull_max/min. 
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Table 66: Empirical distribution of cell sphericity and random variable generation based on cell 
state 

Cell State distribution AIC Random Value 

2D-Control beta -12649.17 0.75 

2D-Control-Cluster beta -5751.42 0.80 

2D-Noninfected beta -9185.60 0.55 

2D-Infected weibull_min -1181.14 0.99 

2D-Noninfected-Active weibull_max -1448.67 0.86 

2D-Noninfected-Cluster beta -2320.77 0.76 

2D-Infected-Cluster weibull_max -1066.15 0.88 
3D-Control weibull_min -7261.85 0.93 
3D-Control-Cluster weibul_max -2248.98 0.82 
3D-Noninfected t -10777.65 0.99 
3D-Infected weibull_min -2084.86 0.78 
3D-Noninfected-Active weibull_min -2084.86 0.78 
3D-Noninfected-Cluster weibull_max -1068.94 0.97 
3D-Infected-Cluster genextreme -1540.36 0.91 
 

Pulling from the TB ABM one of the key areas that we can most readily utilize 

these empirical distributions is in the improvement of the calculations of cellular speed, 

which has different values based on cell state. A comparison of the average empirical 

cell speeds for 2D and 3D and the comparable TB-ABM cell speeds derived from 2D 

chemotactic chamber studies by Webb et al. [68] are summarized in Table 67. 

Table 67:  Average Cell Speed Over All Time Empirical vs Computational  
2D Cell State Speed um/s 3D Cell State Speed um/s TB-ABM[68] Speed 

um/s[68] 
Control 1.22E-03 Control 2.60E-04 

Resting 1.667E-2 
Control-Cluster 1.46E-03 Control-Cluster 3.11E-04 
Noninfected 7.67E-04 Noninfected 3.64E-04 

Noninfected-Cluster 9.56E-04 Noninfected-
Cluster 3.52E-04 

Infected 6.00E-04 Infected 4.01E-04 
Infected 1.667E-5 

Infected-Cluster 6.00E-04 Infected-Cluster 4.52E-04 

Noninfected-Active 6.46E-04 Noninfected-
Active 4.23E-04 Active 

2.08E-4  
to  

1.667E-2 
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We note that the resting macrophages, which are non-active non-infected 

macrophages could potentially span all the noninfected and control cell states. The 

reported values for the 2D chemotactic study report a significantly higher cell speed 

than observed in our studies [68]. Most importantly however, the shift in dynamics 

between resting, and infected and active cells differed depending on the environment. 

In our investigation we found, in agreement with the Webb study, that 2D infected cells 

travelled at a significantly slower speed than their resting counterparts, whereas the 

converse was seen in 3D. This shift in dynamics, if applied to computational models of 

mycobacterial infection should produce results that differ from the current 

understanding of this initial infection process.  

4.4 Discussion 

4.4.1 Cell dynamics-the impact of the ECM and cell state 

In this study we present a large-scale computational platform for semi-automatic 

analysis of imaging-based 2D and 3D mycobacterial infection data. Using 4D confocal 

imaging of murine bone marrow derived macrophages infected with and responding to 

Mycobacterium smegmatis. We demonstrate the ability to characterize cellular 

dynamics based on cell state, determined by spatial organization of cells and machine 

learning determined infection status. The use of novelty detection LOF algorithm to 

detect infected cells showed consistency between different datasets and had very low 

misclassification error (<1%) for the known non-infected control datapoints. This 

determination of cell infection then allowed for the subsequent identification of 
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activated cells by finding noninfected cells associated in 20 µm DBSCAN clusters with at 

least one infected cell.  

Through the analysis of the cell dynamics of the cell state we quantified the 

impact that the availability of a 3D environment has on the cell dynamics relative to the 

cell state. We see that in many cases, including cell speed, cell acceleration, cell 

directedness and cell volume, that the cell status of infection had a significant impact on 

the resulting dynamics within each environment. While the 3D environment reduced 

the cellular motility compared to 2D, we saw that infected and active cells in both 

conditions resulted in comparable dynamics regardless of environment. However, we 

demonstrated a converse relationship between dynamics in 3D infected cells and 

controls when compared to 2D.  In the 3D environment the proinflammatory cells 

displayed significantly faster cellular speed and acceleration than their noninfected or 

control cells, whereas the converse was observed in 2D. 

Through our analysis of the impact of structure on cellular response (cellular 

aggregation and clustering) we found that noninfected-activated cells behaved more 

similarly to infected cells than other noninfected-clustered cells in the same 

environment. This observation demonstrates that cell response dynamics are being 

influenced by proximity to infection and not solely dependent on spatial organization. In 

addition, we found that the noninfected nonactive cells within the infected condition 

demonstrated comparable dynamics to their respective noninfected counterparts in the 

control conditions. This difference is markedly more apparent in 2D than 3D where we 

see less differences in the distribution of dynamics. In particular, the trends of cellular 
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speed, acceleration, and directedness over time are most notable in the 2D 

environment.  

Comparing to recent studies of mycobacterial induced cellular migration, we 

consider the in vivo zebrafish infection with M. marinum by Davis and Ramakrishnan 

who quantified the migration and cellular speed of noninfected and infected 

macrophages in the heterogenous environment[15]. This study found that the 

chemotactic signals inducing migration of uninfected cells towards nascent granulomas 

induced increased velocities depending on the virulence of the bacterium utilized. The 

key virulence factor isolated as the primary contributor to cell migration speed was the 

RD1 mycobacterial virulence locus, which is not present in M. smegmatis. Their 

investigation isolated the effect of this factor on cellular speed and found that the 

cellular speed of uninfected macrophages to be on average 4.5 um/min (7.5E-2 um/s), 

which is in agreement with the cellular speed utilized in the computational TB-ABM and 

based on the 2D chemotactic study[68]. Additionally, in their investigation of infected 

macrophages in nascent granulomas, they demonstrated that the motility of infected 

macrophages increased as the bacterial load decreased. One of the limitations of our 

study in its current form is the identification of infected cells is performed through 

novelty detection machine learning algorithms and the level of bacterial load in a cell is 

not directly reported. However, we can observe the trends of cellular speed of infected 

cells over time in coordination with the known bacterial load decrease in the system 

over the course of infection. With this we can demonstrate that in our model of M. 

smegmatis infection, that the overall cell speed of determined infected cells decreases 
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as the bacteria is cleared form the system. However, what is more interesting is the 

cellular speed quantified for noninfected cells in the presence of infection. In 

concurrence with the observations by Davis and Ramakrishnan and the chemotactic 

studies utilized to inform the TB-ABM by Webb et al [15], [68], the cellular speed of 

noninfected macrophages in the infected condition decrease as the bacterial load clears 

from the system, showing that in the converse, these noninfected cells display a higher 

motility in the initial stages of infection when the bacterial load is significantly higher. In 

our 3D model, this relationship is more difficult to extrapolated due to the very low 

variance in the cellular speeds between individual cell states over time. We see a 

relatively constant speed regardless of bacterial load in the system. However, we do 

note that on average we do see higher cell speeds in infected and active cells than their 

noninfected counterparts, which does not concur with the previously established 

studies. This discrepancy between the 2D and 3D environment and the role it plays in 

cell migration poses the question of the exact role of the ECM in migratory patterns.  

In analysis of cellular dynamics in murine models, the investigations of murine 

hepatic granulomas induced by Mycobacterium bovis BCG (BCG) infection, Egen et al 

quantified mainly T-cell dynamics[10]. Their primary findings showed lower 

displacement of T-cells within granulomas, but primarily a slightly lower velocity. 

However, this study did also report the presence of limited macrophage and 

mycobacterial dynamics during the development of granulomas. They were unable to 

detect significant macrophage migration in the immature granulomas in the early stages 

of infection. Specifically, they noted that the macrophages in the later stages of the 
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granuloma formation presented with very little mobility compared to the other 

observed neutrophils and monocytes, macrophage precursors, in the system. However, 

because they were unable to utilize cellular tracking for these macrophages, direct 

comparisons from our presented work to the motility of macrophage’s in the murine 

hepatic granuloma is not quantifiable. On an observational level our migration patterns 

observed in the 3D does concur more with the BCG model of the murine hepatic 

granuloma with very little macrophage motility. This observed lower motility in our 3D 

infection study and the 3D murine hepatic granuloma as compared to the M. marinum 

zebrafish nascent granuloma could be due to a few potential factors. Firstly, the study of 

Davis and Ramakrishnan identified the RD1 virulence locus as a key factor to 

macrophage’s migration. This virulence locus is not present in M. smegmatis, or BCG 

[97] potentially causing the difference in observed macrophage dynamics. Secondly. The 

use of zebrafish embryos for quantification of human disease provide a powerful tool 

for investigation due to optical transparency, however there are a variety of factors that 

could potentially induce discrepancies to mammalian models. Firstly, the mode of 

infection for zebrafish models, as in the Davis and Ramakrishnan study, is traditionally 

direct injection, which is not the typical inhaled aerosol route of infection for 

mycobacterial infection[14], [15], [98]. Secondly, the temperature required for zebrafish 

husbandry is 28C, which is significantly lower than the 37C of mammalian studies and 

human relevant bacterial infections. Thirdly, the toll-like receptor 4 (TLR4) signaling 

pathway in zebrafish has been shown to be an overall negative regulator of TLR signaling 

in zebrafish, and the TLR4 receptor does not recognize bacterial endotoxin LPS, the 
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primary signaling pathway necessary for the proinflammatory response to gram-

negative bacteria[99]. While mycobacterial species are not gram-negative and are not 

known to produce endotoxins[100], they do induce signaling through the TLR4 signaling 

pathway, but the TLR4 response is shown to be less vital to host immune response to 

infection than TLR2[101], [102]. This relationship of cellular signaling pathway 

discrepancies between zebrafish and mammalian might induce a significant disparity in 

cellular motility due to the cell signaling processes in the TLR pathways, in addition the 

zebrafish embryos only present with an innate immune response, and the murine 

models have a full adaptive immune response including multiple T-cell types. Further 

investigation in to the comparative response of zebrafish macrophages to murine or 

human macrophages in response to mycobacterial challenge may elucidate the exact 

signaling cascade differences and the resulting changes to the overall proinflammatory 

response and how this may be impacting macrophage motility in the early stages of 

mycobacterial infection. 

4.4.2 Generation of parameters for computational models. 

The exploration of multiclass classification models provides an interesting 

avenue for future investigation into multi-feature cell dynamic analysis, as the linear 

discriminations in LDA can be utilized to generate classifications of unknown cell 

datapoints and the gaussian distributions in cGMM allows the ability to generate new 

multi-variate parameters from the high-dimensional gaussian distributions. We observe 

in our investigation of individual cell dynamics features that the discrimination between 

2D cellular states is more apparent for individual cell dynamic features as compared to 
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3D. However, the multi-feature analysis regardless of model applied demonstrated a 

higher accuracy in discriminating 3D cellular state as opposed to 2D, indicating that 

multi-feature quantification provides better description of individual cellular state in the 

3D environment. This provides a potential avenue for future multi-feature investigation 

in the quantification of cell dynamics which may further our understanding of how these 

features relate and coordinate within each environment and cell state.  

Additionally, these classification methods provided insight into potential cell 

dynamic features that could be further investigated. Specifically, classification trees 

identified cell sphericity as a predictor of high importance for both 2D and 3D cell state. 

Quantification of this feature illustrates high sphericity values of infected, infected-

cluster and noninfected-active cells in 2D which ties to the modulation of macrophage 

phenotype under proinflammatory conditions [88]. A rounded macrophage phenotype 

(which can be correlated to a higher sphericity values) is indicative of M1, classically 

activated proinflammatory macrophages[88]. Our results for 2D cell state-based analysis 

demonstrate that this higher sphericity does hold for our proinflammatory cells in 

comparison to the lower sphericity for noninfected and control cells. However, this 

distinction does not appear significantly in 3D where control cells have the highest 

sphericity overall. Further investigation into this area is warranted as the availability of 

the 3D environment can elucidate the effect that macrophage activation has on cell 

phenotype and shape.  

For the most applicable method for generating parameters for computational 

models we presented an automatic analysis of the distribution of empirical data with 
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subsequent random number generation. In general, such as in the case of the TB-ABM 

the majority of distributions of cellular dynamics are assumed to be most simplified 

description-a uniform distribution in a given biologically relevant range. These 

parameters are typically pulled from various biological systems and studies leading to a 

significant mismatch in datasets used in the computational modeling process. A more 

biologically relevant approach should include biological complexity relative comparable 

to the system being modeled. In our case, we have focused on the biological impact that 

the ECM and availability of a 3D structure to investigate the very initial stages of murine 

macrophages infection with Mycobacterium smegmatis in comparison to 2D studies. We 

also observe and analyze response data at a single cell level allowing for a higher 

resolution in our spatiotemporal analysis. We survey a variety of possible distributions 

so that we can best represent empirical cellular dynamic data generated.  

With this empirical data generated distributions can be used to inform 

computational models that are more biologically representative than the current 

parameters used in modeling infection response. The reported values of cellular speed 

for the TB-ABM utilized parameters generated in a 2D chemotactic study, which report a 

significantly higher cell speed than observed in our studies [68]. A possible explanation 

for this is how this study was conducted. The study utilized the mouse immortalized 

macrophage cell line BAC1.2F5, which have been reported to behave comparably to 

primary mouse macrophages [103]. The cells were then cytokine stared of colony 

stimulating factor 1 (CSF-1) leading to an upregulation of the receptors for this cytokine. 

The cells were then placed into a chemotactic chamber with an increasing CSF-1 
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gradient and TNF-a to observer the resulting migration. Here in lies the first area in 

which the Webb study significantly differs from the biological context of cellular 

migration under infection. There is no active infection taking place in the migration 

analysis, the cells have been preconditioned to increase cytokine receptors, and the 

migration takes place in a forcibly directed (through increasing chemotactic gradient) 2D 

environment. Secondly, the metric of analysis for cell speed is not based on individual 

cell migration, but the cells as a collection measured in 5-minute intervals over a 1-hour 

period. The progression of our infection study takes place over a much longer timeframe 

with less frequent acquisition. The rate of acquisition of the confocal images for our 

study is 90 minutes between Z-stacks for a single image point for up to 72 hours.  

Most importantly however, is the shift in dynamics that we have observed 

between resting, and infected and active cells depending on the environment. The 

assumption of slower infected cell speed in an infection environment, according to our 

observations, may differ in a 3D matrix. Our study demonstrates, in agreement with 

previous assumptions used for the TB-ABM, that infected cells in the 2D environment 

demonstrate lower cell speed than noninfected cells. However, in the 3D environment 

the infected cells displayed significantly faster cellular speed than their noninfected or 

control cells. 

4.4.3 Future work 

Quantification of cell state based on proximity to infected cells borrows from the 

same assumptions made in computational agent-based models of mycobacterial 

infection [48]. In these models the cell state can change due to the presence cytokines 
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and chemokines, cells in proximity, or due to the presence of bacteria in proximity. We 

have simplified and extended this assumption with the utilization of DBSCAN clustering 

algorithms and the determination of an activated cell only being labeled activated if it is 

within the same cluster as at least one infected cell. The inability to determine localized 

levels of cytokines in the system leads to a level of uncertainty in the determination of 

activated macrophages. Macrophages in an infected system present with varying 

phenotypes depending on how they are activated, we postulate that the primary 

makeup of the cells within our infected condition belong primarily to the classically 

activated M1 subset of macrophage phenotypes primarily due to the production of TNF-

a that stems from infected macrophages [92], [93]. However, we do acknowledge the 

complexities and heterogenicity of macrophage activation and the significant 

implication of our state based assumptions [104], [105]. Studies have shown that there 

is a presence of both classically (M1) and alternatively (M2) activated macrophages 

within the host-response to bacterial infection[106], and have even demonstrated 

significance in granuloma and tuberculosis disease progression[107], [108]. However, 

without single cell level quantification of the transcriptomes of cells within our 

environment this discrimination in macrophage activation remains elusive.  

Our classification models of cellular state informed us of the importance of many 

cellular features quantified with confocal imaging to the discrimination of cellular state 

within the 2D and 3D conditions. Many of these features involved the vectorized 

components of cellular migration in the x, y, or z plane. Analysis of the directional 

timepoint displacement or distance travelled over time will differ depending on 
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localized context of cell spatial organization and location within the imaging space 

relative to other cells. Features quantified in our analysis do not determine behavior or 

location of cells outside the immediate cellular neighborhood as determined by DBSCAN 

20 µm clustering algorithms, therefore vectorized components of cellular migration 

including timepoint displacement and distance travelled in the x, y, or z plane will 

require further integration of overall imaging spatial states and quantification of the 

dimensional organization of cells outside of the immediate cellular neighborhood.  

We also acknowledge the potential inaccuracies in cell segmentation that can occur 

during image processing and that it may have a significant impact on the results 

presented. One of the areas of focus for future work in the generation of data for 

computational models is in the area of image processing, as the quantifications of the 

observed data rely on the accuracy of the image processing. The data presented in this 

study relies on watershed segmentation[109] which has a tendency to over-segment 

and fail when objects are in contact and overlapping. This is even more of a concern 

when dealing with cellular tracking over time when cells are moving in and out of 

cellular aggregations. There has been recent advancement in the areas of watershed 

segmentation to address the concerns of overlapping biological images through contour 

analysis or prior knowledge of the dataset to apply clustering algorithms of watershed 

segmentations [110]–[113] There has also been recent advancement in the use of 

convolutional neural networks with and without watershed segmentation for 

segmenting complexly aggregated cells in a biological context [114]–[116]. However, the 

majority of these advances focus on 2D or 3D datasets, not 4D involving the tracking of 
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cells in a 3D environment over time. Improvements upon the segmentation and tracking 

algorithms will lead to more accurately representative datasets for informing 

computational models and the overall investigation of cell state-based dynamics in a 2D 

and 3D environment.  
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5 SPATIOTEMPORAL ANALYSIS OF MYCOBACTERIUM BOVIS 

BCG INFECTION 

5.1 Introduction 

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is an 

intracellular bacteria that induces a unique host immune response resulting in the 

containment of the bacterium in a host immunological structure called a granuloma[2]. 

The innate immune response to Mtb infection involves a complex multicellular process 

resulting in the spatial organization of macrophages, the primary phagocytes, in 

response to infection [1]–[3]. This initial recruitment and spatial organization of 

macrophages in the innate immune response to mycobacterial infection has been 

implicated as the key contributor to the formation of granulomas after the introduction 

in the adaptive immune response, but current biological and computational analysis 

methods do not adequately permit the investigation of this early response in a high-

throughput manner in direct comparison to current 2D methodologies, in effect 

isolating the variable of the presence of the 3D environment on the dynamics of host-

pathogen interactions. This work adapts previously developed biological and 

computational methods of 2D/3D ex vivo mycobacterial infection of primary bone 

marrow derived macrophages to Mycobacterium bovis BCG (BCG) allowing for the 

quantification of the impact of the availability of 3D environment on the biological and 

cell dynamic response with a bacterium more comparable to Mtb. Previous studies in 

Mycobacterium smegmatis, a non-pathogenic relative of Mtb but shares a similar 
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structure, provides advantage for early investigation of methodologies and study due to 

its fast-doubling time and growth on agar plates [54]. BCG presents with a more virulent 

infection in mouse models with a pathogenesis more comparable to human Mtb 

infection[117], [118].  

5.2 Materials and Methods 

 

Figure 49: Outline of experimental methodology for 2D and 3D ex vivo platform for the investigation 
of the spatiotemporal dynamics of m. Cherry M. Bovis BCG infection 

 The methodology for the biological and image-based quantification of murine 

bone marrow derived macrophage response to m. Cherry M. Bovis BCG in 2D and 3D 

culture is outlined in Figure 49. This approach is a direct application of the 

methodologies outlined in Chapters 3 and 4. 

5.2.1 Homogeneity and persistence of mCherry expression in M. bovis BCG culture  

 The high expressing m. Cherry M. Bovis BCG (mcBCG) (gifted by Dr. Cirillo Texas 

A&M University, TX) was chosen for infection as the m. Cherry excitation and emission 
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spectra did not overlap with the EGFP from the gfpBMDM. The bacterial stock was 

purified through single colony isolation and expansion using the selective antibiotic 

hygromycin (VWR) at 80 μg/mL within the bacterial media and agar.  

 Extended culture in the absence of the selective antibiotic hygromycin through 

differential plating was tested for persistence of the antibiotic resistance and thus the 

persistence of the m. Cherry florescence [51]. In short, static culture mcBCG was grown 

in filter top glass tubes in 7H9 media with and without the hygromycin selective 

antibiotic (80 μg/mL) for 96 hours. Culture tubes were vortexed and OD600 readings 

were taken every 24 hours and bacterial suspension plated to determine colony forming 

units on 7H11 agar with and without the hygromycin selective antibiotic (80 μg/mL).  

 To determine the growth/death curve of mcBCG 2D culture with and without 

gentamicin (Sigma Aldrich) (10 μg/ml), and 3D RBM, with a buffer solution that contains 

50 μg/mL gentamicin, with standard bacterial 7H9 media with hygromycin (80 μg/mL) 

and 2D DMEM without antibiotics to serve as a control. Samples were collected and 

colony forming units (CFUs) were quantified at every 24 hours for 96 hours using 4 ̊C 1x 

PBS with 0.1% Tween 80 to disrupt the 3D extracellular matrix and remove any adhered 

bacteria form the tissue culture plates.  

5.2.2 Comparison of infection dynamics m. Cherry M. bovis BCG and wild type M. 

bovis BCG in gfp BMDM with gentamicin 

A comparison of the host response between m Cherry M. bovis BCG (mcBCG) and 

wild type M. bovis BCG (BCG) under 2D infection protocol to determine any variation 
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between the cells derived from the mouse lines. The cells were infected at a MOI of 5 in 

the presence of 10 μg/mL gentamicin and the wells were sampled in replicate every 24 

hours for 96 hours with BMDMs from 10-week-old female mice as described below in 

the 2D infection assay. BCG and mcBCG were prepared for bacterial infection as 

previously reported in DMEM-complete (Dulbecco's Modified Eagle Medium containing 

10% fetal bovine serum,1% L-glutamine and 1% non-essential amino acid)[50]. 

5.2.3 2D/3D ex vivo model of M. bovis BCG Infection 

gfpBMDM cells were infected in tissue culture plates (VWR) as previously 

reported [50] at a multiplicity of infection of 1 macrophage to 5 bacterial colony forming 

units (MOI 5) After 4 hours of infection, plates were washed twice with 1x PBS and 

incubated for 12 hours with 50 μg/mL gentamicin to remove extracellular bacteria. Cells 

were removed from culture dishes with Cellstripper® (Corning) according to 

manufacture protocol and placed into 2D or 3D culture.  

5.2.3.1 3D infection  

250 μL of the diluted RBM (.18 mg/mL) coating was added to all wells that would 

be used for 3D culture to prevent the formation of an RBM-culture plate interface that 

lacks extracellular matrix proteins [52]. Plates were then incubated (5% CO2 at 37 ̊C) for 

30 minutes for matrix formation, then the wells aspirated and tapped out onto a low-

lint laboratory tissue paper. Immediately following, cells for 3D culture were 

resuspended at 0-8 ̊C in diluted 8.5 mg/mL RBM (2.5E6 cells/mL) and 100 μL of cell 

suspension was plated into the center of each well in a 48 well plate for experimental 

sampling or 8 well chamber slide for confocal imaging as previously outlined in chapter 
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3. If any large bubbles were present a 20 to 30-gauge sterile needle was used to disrupt 

them. The matrix was then incubated for 45 minutes to allow gel to set fully and then 

275 μL of hydrating media (DMEM-complete) was added on top of the set gel to prevent 

gel dehydration. 

5.2.3.2 2D infection platform 

The 2D infection model was conducted as previously reported with the addition 

of 10 μg/mL of gentamicin in the culture media to allow for comparison to the buffer 

solution of RBM[50]. Assuming passive diffusion of gentamicin into hydrating media 

from the RBM, we obtain a concentration of 10 μg/mL [53]. Previous studies have 

shown that this concentration inhibits the extracellular growth cycle of M. smegmatis 

without affecting the intracellular growth of the mycobacterium [54] [53], and M. bovis 

BCG has a lower sensitivity to the antibiotic as demonstrated by the longer culture time 

required to remove extracellular bacteria and the presence of extracellular bacteria 

after 14 hours of incubation in 50 μg/mL[50]. 250 μL of 2D cell suspension was added to 

each well of the 8-well chamber slide for imaging and 500 μL was added to each well of 

a 24 well plate (VWR) for sample quantification over the 96 hours as previously outlined 

in chapter 3. Cells were incubated and allowed to adhere for 2 hours before any 

supernatant samples were collected. 

5.2.4 Analysis of biological response to infection 

Infection was monitored for 96 hours with multi-area time-lapse confocal 

imaging (Fluoview, FV1200, Olympus) in the same manner outlined in Chapter 3, with 

the exception of increased imaging time. Supernatant samples were collected and CFU’s 
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enumerated every 24 hours for 96 hours. For cells within the 3D matrix, hydrating media 

supernatant was collected for assays then 375 μL of ice-cold 1% Triton-X 100 (0-4  ̊C) 

was added and incubated for 5 minutes at room temperature. The disrupted cell and gel 

solution and vigorously pipetted to fully disrupt the RBM matrix and lyse macrophages. 

The resulting supernatant/lysate was serially diluted 10-fold and plated on 7H11 plates 

to enumerate the total colony forming units of bacteria in the 3D matrix. 

 For cells in 2D, the supernatant was collected for assays and for extracellular 

bacteria. The wells were gently washed twice with 1xPBS to remove excess extracellular 

bacteria. After washing 500 μL ice-cold 1% Triton-X 100 (0-4  ̊C) was added and 

incubated for 5 minutes at room temperature and then vigorously pipetted to lyse cells 

to release intracellular bacteria. The resulting lysates were vortexed and serially diluted 

10-fold and plated on 7H11 agar plates as previously reported [36]. After 2 weeks the 

colony forming units were enumerated to quantify intracellular, extracellular or total 

bacterial load. 

 Collected supernatants were stored at -80 ̊C to be used for reactive species 

quantification. Frozen supernatant was used to perform assays in replicate according to 

manufacturer protocol. Griess reagent (Promega™, G2930) was used to quantify nitric 

oxide and LDH cytotoxicity assay (Pierce™, 88954) was used to quantify cell death. An 

LDH standard curve for was generated through quantification of lysed serial dilution of 

5e6, 5e5, 5e4, 5e3, 5e2 gfpBMDM per mL according to manufacturer protocol.  
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5.2.5 Imaging and Image Processing 

4D confocal images (Olympus Fluoview) were acquired every 90 minutes using a 

stage top incubation system (TokaiHit) and 40x confocal objective with .95 numerical 

aperture (UPLSAPO40X2, Olympus). 100 images were acquired for at an axial resolution 

of 1 μm to produce appended z-stacks at each timepoint which were acquired and 

analyzed as previously outlined using 8.1.2 (Bitplane) with surface creation and tracking 

as previously described in chapter 3 and 4. 

5,600 unique cell datapoints were generated for all conditions at all timepoints 

combined for further analysis. Green fluorescent protein (GFP) was used to establish 

watershed segmentation and tracking of cells over the time course of imaging, and RFP 

values were used as a feature of each segmented cell object to denote the bacterial 

levels within each cell. Utilizing the python library scikit-learn, principal component 

analysis was applied to the RFP features to determine the principal components that 

described over 99% of data variability. The resulting principal components were then 

utilized in machine learning based detection of infected cells based on novelty detection 

of the RFP principal components. Local outlier factor was utilized to quantify potential 

infected cells as novelties based on training on the known control datapoints of the RFP 

principal components. Local density of the selected principal components of the control 

datasets was quantified with k-neighbor queries 20 neighbors. Novelties were 

determined to be infected cells as outlined in chapter 4. 

Aggregations of cells were determined and identified using a density-based 

spatial clustering of applications with noise (DBSCAN) algorithm in Matlab [89], at 20 µm 
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between centers of homogenous of mass as quantified by Imaris image analysis. 

Activated cells, noninfected cells that are influenced by the proinflammatory cytokines 

released by infected cells, were then classified as noninfected cells that belong to the 

same 20 µm DBSCAN cellular cluster as at least one infected cell as outlined in chapter 

4. Cellular states are reported as a combination of their internal state and spatial state 

as given by Table 68. 

Table 68:  Definition of cell states for variable distributions and multivariate classification models. 

Cell State Definition 

Control Cells within the control (no bacteria introduced) condition that are not 
contained within 20 µm clusters with other control cells as determined by 
DBSCAN. 

Control-Cluster Cells within the control (no bacteria introduced) condition that are 
contained within 20 µm clusters with other control cells as determined by 
DBSCAN. 

Noninfected Cells within the infected (bacteria introduced) condition that are not 
determined to be infected and not contained within 20 µm clusters with 
other control cells as determined by DBSCAN. 

Noninfected-Cluster Cells within the infected (bacteria introduced) condition that are not 
determined to be infected and are contained within 20 µm clusters with 
other noninfected cells as determined by DBSCAN. 

Noninfected-Active Cells within the infected (bacteria introduced) condition that are not 
determined to be infected and are contained within 20 µm clusters with at 
minimum one infected cell as determined by DBSCAN. 

Infected Cells within the infected (bacteria introduced) condition that are 
determined to be infected and are not contained within 20 µm clusters 
with other cells as determined by DBSCAN. 

Infected-Cluster Cells within the infected (bacteria introduced) condition that are 
determined to be infected and are contained within 20 µm clusters with 
other noninfected or infected cells as determined by DBSCAN. 

5.2.6 Statistical Analysis 

 Statistical analysis for effector molecules was performed in R-Studio [63] utilizing 

the dplyr, ggplot2 and ggpubr libraries [64]–[66]. Statistical analysis for bacterial load 

over time is ongoing pending colony forming unit results. The Wilcoxon rank sum test 
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was used to test for statistical significance. When initial concentrations differed, log2 

fold change (Log2FC) was calculated for statistical testing to allow for comparison across 

experimental conditions as given by equation 9,  

 

 

 
𝐿𝐿𝐿𝐿𝐿𝐿2𝐹𝐹𝐹𝐹 = 𝐿𝐿𝐿𝐿𝑔𝑔2 �

𝑋𝑋(𝑡𝑡)
𝑋𝑋(0)�. (9) 

5.3 Results 

5.3.1 Plasmid Persistence 

 The m. Cherry plasmid in M. bovis BCG in the absence of the selective antibiotic 

was maintained in long-term static culture for 96 hours. No significant differences in 

colony forming units (CFUs) through differential plating (Figure 50, Table 69). This 

confirms the persistence of the m. Cherry plasmid in long term culture and implies no 

significant loss of bacterial fluorescence within infection studies that lack the selective 

hygromycin antibiotic.  

Table 69:  Plasmid Persistence of mCherry M. bovis BCG Differential Plating: Wilcoxon (n=3) 

Hour Media:+Hygro/Plate:+Hygro CFU/mL Media:-Hygro/Plate:+Hygro CFU/mL p value  
0 1.10E+04 4.27E+04 0.268286 
24 1.57E+05 2.33E+05 0.375825 
48 1.77E+06 1.43E+06 0.382733 
72 1.50E+06 1.57E+06 1 
96 1.10E+06 1.27E+06 1 

Hour Media:+Hygro/Plate:-Hygro CFU/mL Media:-Hygro/Plate:-Hygro CFU/mL p value  
0 1.30E+04 4.77E+04 1 
24 1.95E+05 1.50E+05 0.662521 
48 2.27E+06 1.80E+06 0.657905 
72 1.70E+06 1.95E+06 0.662521 
96 1.25E+06 1.55E+06 1 
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Figure 50:  Bacterial growth analysis represented as colony forming units at 0, 24, 48, 72 and 96 hours 
using differential plating (n=3) 

 

5.3.2 Comparison of infection dynamics m. Cherry M. bovis BCG and wild type M. 

bovis BCG  

No notable differences were observed in cellular appearance during infection. 

There was no significantly apparent extracellular growth denoted in mcBCG or BCG 

infection in the presence of gentamicin quantified through cell culture scope imaging 

(Figure 51). 
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Figure 51:  mcBCG comparison to BCG in gfpBMDM with 10 μg/ml gentimicin a) BCG infection at hour 
0, B) BCG infection at hour 72, C) mcBCG infection at hour 0 D) mcBCG infection at hour 72 

 We see no significant difference in infection dynamics between mcBCG 

and wild type M. bovis BCG in gfpBMDM at a MOI 5 (BCG MOI 8.5, mcBCG MOI 17.5) in 

the presence of 10 µg/mL gentamicin. No significant differences (p>.05) are observed 

between log2FC in CFU concentrations for any of the timepoints. Log2FC was utilized 

due to different starting MOIs(Table 70, Figure 52).  

Table 70:  mcBCG vs wild type BCG MOI in gfpBMDM (* third datapoint unavailable for analysis so 
mean of n=2 was used to generate n=3): Log2FC Wilcoxon (n=3) 

Hour Condition 1 Condition 2 p value  
0 mcBCG Intracellular BCG Intracellular* - 
24 mcBCG Intracellular BCG Intracellular 0.19043 
48 mcBCG Intracellular* BCG Intracellular 0.080856 
72 mcBCG Intracellular BCG Intracellular 0.382733 
96 mcBCG Intracellular BCG Intracellular 0.080856 
0 mcBCG Extracellular mcBCG Extracellular - 
24 mcBCG Extracellular mcBCG Extracellular 0.080856 
48 mcBCG Extracellular mcBCG Extracellular 0.662521 
72 mcBCG Extracellular mcBCG Extracellular 1 
96 mcBCG Extracellular mcBCG Extracellular 0.080856 
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Figure 52: Comparison of infection dynamics of mcBCG (MOI 17.5) and BCG (MOI 8.5) in gfpBMDM in 
the presence of 10 µg/mL gentamicin. Note log2FC used to different starting MOI. N=3.  

5.3.3 Growth Curve of m. Cherry M. bovis BCG in gentamicin culture 

 The growth/death curve of mcBCG in 2D culture in the presence of 

gentamicin (10 μg/mL) did not produce any quantifiable colonies on agar plates. This is 

primarily due to the significantly lower (approximately one order of magnitude) CFU/mL 

in the lower log phase (OD600: .4-.6) of the mcBCG as compared to wild type (Figure 

53). Adaptation to this lower bacterial count was accounted for in the 2D mcBCG vs BCG 

wildtype 2D comparison infection study and 2D/3D ex vivo infection study. 
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Figure 53:  OD/CFU comparison of mcBCG and wild type M. bovis BCG (BCG) 

5.3.4 Significant increase in the fold change of nitric oxide expression in 3D infected 

conditions at 24 hours in culture 

Quantification of nitric oxide through Griess assay of the 3D and 2D supernatant 

show high nitric oxide in 3D infection cultures as compared to the 3D controls, 2D 

controls and 2D infection, with this difference being significant between 3D infection 

and 2D infection at 24 hours (Figure 54 A, Table 71). We also see a significantly higher 

rate of nitric oxide production in 3D infection than 2D infection at 24 hours (Figure 54 B, 

Table 72). Most notably, in comparison to the 2D/3D investigation of Mycobacterium 

smegmatis (mSmeg) infection, where we noted no noticeable trends in nitric oxide 

expression, we now see trends in both nitric oxide expression and the rate of nitric 

oxide expression. We notice that the while 3D infection has a noticeably higher nitric 

oxide production than its controls, the nitric oxide in 2D infection and controls follows 

very comparable trends over time. In the rate of production, we now see that the 3D 

control and infection have comparable rates of expression overtime as well as 2D 
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control and infection. This demonstrates the impact that the environment has on the 

expression of nitric oxide more clearly than the mSmeg studies.  

 

Figure 54: NO assay results (log2FC of griess assay signal) : a) no significant difference between any 
conditions b) no significant difference between any conditions in rate of change – Wilcoxon 
N=4 
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Table 71:  Griess Assay-Nitric Oxide Extracted from Media Supernatant 2D vs. 3D: Log2FC Wilcoxon 
(n=4) 

Hour 2D: Control 3D: Control p value  
0 0.00 0.00 - 
24 -0.18 0.02 0.312321 
48 -0.21 -0.10 0.885234 
72 -0.14 -0.09 0.665006 
96 -0.05 -0.10 1 

Hour 2D: Infection 3D: Infection p value  
0 0.00 0.00 - 
24 -0.12 0.06 0.030383 
48 -0.28 0.01 0.193931 
72 -0.16 0.04 0.193931 
96 -0.02 0.11 0.470486 
 

Table 72:  Griess Assay-Rate of Nitric Oxide (differentials) Extracted from Media Supernatant 2D 
vs. 3D: Log2FC Wilcoxon (n=4) 

Hour 2D: Control 3D: Control p value  
24 -0.18 0.02 0.312321422 
48 -0.03 -0.12 0.312321422 
72 0.07 0.01 1 
96 0.09 -0.01 0.470486422 

Hour 2D: Infection 3D: Infection p value  
24 -0.12 0.06 0.030382822 
48 -0.16 -0.05 0.312321422 
72 0.12 0.02 0.112351198 
96 0.14 0.08 0.470486422 
 

5.3.5 Necrotic cell death is downregulated during 3D infection as compared to 2D 

Results of the LDH assay show a consistent increase in cell death due to necrosis 

over time consistent with qualitative imaging observations (Figure 55 A). 2D and 3D 

control cells do not have a significantly different fold change increase in LDH levels over 

the course of the 96-hour culture. At 48 and 72 hours, 3D infected cells have a 

significantly higher LDH expression than 2D infected cells (p<.05) (Figure 55 A, Table 73). 
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We do not see any significant difference between 3D control and 3D infection LDH 

expression at any timepoint analyzed, but we do see significant increase in LDH 

expression in 2D infection as compared to 2D control at 24 hours (Figure 55 A, Table 74).  

 

Table 73:  LDH Extracted from Media Supernatant 2D vs. 3D: Log2FC Wilcoxon (n=4) 

Hour 2D: Control 3D: Control p value  
0 0.00 0.00 - 
24 1.60 1.34 1 
48 1.82 1.74 1 
72 1.94 2.07 0.665006 
96 1.99 2.21 0.470486 

Hour 2D: Infection 3D: Infection p value  
0 0.00 0.00 - 
24 2.09 1.65 0.112351 
48 1.75 2.08 0.030383 
72 1.73 2.28 0.030383 
96 2.10 2.44 0.112351 
 

Table 74:  LDH Extracted from Media Supernatant Control vs. Infected: Log2FC Wilcoxon (n=4) 

Hour 2D: Control 2D: Infection p value  

0 0.00 0.00 - 
24 1.60 2.09 0.030383 
48 1.82 1.75 0.885234 
72 1.94 1.73 0.665006 
96 1.99 2.10 0.665006 

Hour 3D: Control 3D: Infection p value  

0 0.00 0.00 - 
24 1.34 1.65 0.885234 
48 1.74 2.08 0.665006 
72 2.07 2.28 0.112351 
96 2.21 2.44 0.193931 

Investigation of the LDH rate of change (differentials) calculated as the change in 

LDH expression between the timepoint of collection, and the previous timepoint of 
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sample collection, shows consistent LDH expression between 2D and 3D controls as well 

as 2D and 3D infection except at 48 hours, where the rate of LDH expression is 

significantly higher in 3D (Figure 55 B, Table 75Table 74). There is no significant 

difference in rate of LDH expression between 3D control and infection, but we do see a 

significant difference in the rate of LDH expression between 2D control and infection at 

24 and 48 hours 3D (Figure 55 B, Table 76, Table 74).  

Table 75:  Differentials-LDH Extracted from Media Supernatant 2D vs. 3D: Log2FC Wilcoxon (n=4) 

Hour 2D: Control 3D: Control p value  
24 1.60 1.34 1 
48 0.23 0.41 0.665006 
72 0.12 0.33 0.885234 
96 0.05 0.14 0.470486 

Hour 2D: Infection 3D: Infection p value  
24 2.09 1.65 0.112351 
48 -0.35 0.43 0.030383 
72 -0.02 0.20 0.030383 
96 0.37 0.16 0.060602 
 

Table 76:  Differentials-LDH Extracted from Media Supernatant Control vs. Infected: Log2FC Wilcoxon 
(n=4) 

Hour 2D: Control 2D: Infection p value  

24 1.60 2.09 0.030383 
48 0.23 -0.35 0.885234 
72 0.12 -0.02 0.665006 
96 0.05 0.37 0.665006 
Hour 3D: Control 3D: Infection p value  

24 1.34 1.65 0.885234 
48 0.41 0.43 0.665006 
72 0.33 0.20 0.112351 
96 0.14 0.16 0.193931 
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Figure 55: Log2FC of LDH signal (cell death) A) LDH assay results, significant difference between 2D 
and 3D infection at 24 and 48 hours. B) LDH Differential results, significant difference 
between 2D control and 2D infection at 24 hours, Wilcoxon (n=4) 

  



170 
 

5.3.6 Comparison of mCherry M. bovis BCG bacterial load in 2D vs 3D 

We note that through fluorescent confocal imaging observations that there 

exists a higher-level extracellular bacterium in the 3D infection condition as compared 

to 2D (Figure 56). These bacterial aggregates in the extracellular matrix are in the 

presence of faint GFP signals indicating potential early cell death in the system that may 

have occurred prior to image quantification releasing the bacterium from the lysed cells 

into the extracellular matrix. Current extraction methods are unable to isolate 3D 

extracellular bacterium from intracellular for agar plate quantification of bacterial 

growth, so the quantification of the totallcellular bacterial load is represented for 3D, 

and the intracellular and extracellular load is aggregated to represent 2D totalcellular 

bacterial load. 

 

Figure 56: mcBCG infection in the 3D environment at hour 0 of imaging. Closer inspection details dead 
cells (apparent from faint GFP signals). Dead cells with bacterium are circled for clarity. 
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In 2D, in the absence of significant levels of extracellular bacteria, we see very 

little phagocytosis of extracellular bacteria. However, there is evidence of cell death, 

presumably apoptosis due to significant membrane blebbing [119] (Figure 57 B,C) of 

infected cells and subsequent phagocytosis of cell debris and BCG (Figure 57 E,F). 

 

Figure 57: Apoptosis of infected cell followed by phagocytosis. A) 19.5 hours under infection B) 25.5 
hours under infection, C) 26 hours under infection, D) 27.5 hours under infection, E) 76.5 
hours under infection, F) 87 hours under infection. 

 We see an increase concentration of bacteria in the 3D environment as opposed 

to 2D at the end of the 96 hours of infection, with the difference in the Log2FC of 

bacterial concentration from timepoint zero (which contains the same MOI-ratios of 

bacteria to macrophage-in both 2D and 3D) at 48 and 96 hours (Figure 58 A, Table 77). 

Most notable however, is the rate in change of bacteria, as we see a consistent decrease 

in bacteria in the 2D environment after 48 hours in culture, however in 3D there is an 

increase in bacteria followed by a levelling off of bacteria at 96 hours, this is denoted by 
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the significant differences in the rate of change of bacterial concentrations at 48 and 72 

hours (Figure 58 B, Table 78).  

 

Figure 58: Total bacterial load over time for 2D and 3D infection study with mcBCG, A) total Log2FC 
CFU/mL B) differentials (rate of change of bacterial load Log2FC) ** p<.01, *p<.05 
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Table 77:  mcBCG gfpBMDM infection in 2D and 3D Log2FC CFU/mL Total- Wilcoxon (n=4) 

Hour 2D Total log2FC CFU/mL 3D Total log2FC CFU/mL p value  
0 0 0 - 
24 -0.11709 0.043473 0.872559 
48 -0.10251 -1.60071 0.004772 
72 -2.03581 -0.57398 0.378478 
96 -2.88897 -0.81588 0.004772 
 

Table 78:  Differential: mcBCG gfpBMDM infection in 2D and 3D Log2FC CFU/mL Total- Wilcoxon 
(n=4) 

Hour 2D Total log2FC CFU/mL 3D Total log2FC CFU/mL p value  
24 -0.11709 0.043473 0.885234 
48 0.014585 -1.64419 0.030383 
72 -1.9333 1.026729 0.030383 
96 -0.85316 -0.24189 0.885234 
 

5.3.7 Image analysis of cell dynamics under BCG infection 

Surface quantification and tracking analysis of confocal images utilizing Imaris 

yielded 36 cell features, and 20 field features over 90 hours of imaging. The constitutive 

expression of actin-GFP in the BMDMs allows visualization of macrophages in both the 

control and infected conditions, and mCherry expression in BCG allowed visualization of 

the bacterium extracellularly and intracellularly. Cells in the 3D infection demonstrated 

higher observable levels of aggregation as compared to 2D infection with BCG (Figure 

59, Figure 60).  
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Figure 59:  mcBCG Infection in 2D. Confocal image rendered in Imaris A) side view 0 hr B) 0 hr top view, 
C) 24 hr top view, D) 48 hr top view, E) 72 hr top view, F) 90 hr top view. Scale bar 50 µm. 
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Figure 60: mcBCG Infection in 3D. Confocal image rendered in Imaris A) side view 0 hr B) 0 hr top view, 
C) 24 hr top view, D) 48 hr top view, E) 72 hr top view, F) 90 hr top view. Scale bar 50 µm. 
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We also observe an increase of cells to the areas of initial cellular aggregation 

around the mcBCG infection in the 3D condition over the course of time. Observation of 

confocal time-lapse imaging does not show an observable increase of cellular 

aggregation in the 2D mcBCG infected condition over the course of time (Figure 61).  

 

Figure 61: Imaris rendering of mcBCG infection demonstrating cellular aggregation around infected 
cells over time in A) 2D mcBCG infection 0 hr B) 2D mcBCG infection 90 hr C) 3D mcBCG 
infection 0hr D) 3D mcBCG infection 90 hr 
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5.3.7.1 Cell speed 

In 2D, the average speed of non-infected cells in the control condition (6.26E-4 

μm/s) is significantly higher (p<.0001) than 2D infected cells (3.85E-4 μm/s). In 3D, no 

significant difference is seen between cellular speed in control and infected (Figure 62 A, 

Table 79).  

Table 79: Average Individual Cell Speed Over All Time: Wilcoxon 

Condition 1 Speed μm/s Condition 2 Speed μm/s p value  

2D Control 6.26E-04 3D Control 3.85E-04 4.58E-18 

2D Infection 4.22E-04 3D Infection 3.67E-04 1.53E-26 

2D Control 6.26E-04 2D Infection 4.22E-04 1.14E-13 

3D Control 3.85E-04 3D Infection 3.67E-04 0.10384 
The fold changes between the means of the individual cell speeds is highest 

between the 2D and 3D controls, with 2D controls having the highest overall cell speed, 

but the smallest fold change is seen between the 2D and 3D infection conditions (Table 

80). Analysis of the trends in average cellular speed over the time-course of imaging 

show that control cells in 2D and 3D have a generalized decrease in cellular speed 

overtime, whereas cellular speed in 2D and 3D infection increases over time. At all hour 

ranges, control cells have a significantly different cellular speed than their infected 

counterparts. There is no significant difference in 2D and 3D control cell speed, or 2D 

and 3D infection cells after the 24-48 hour range (Table 81, Table 82, Figure 62 B) . 
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Table 80:  Average Individual Cell Speed Over All Time: Log2 Fold Change of Means 

Condition 1 Condition 2 Log2 Fold Change (Cond 1/ Cond 2) 

2D Control 3D Control 0.70036 

2D Infection 3D Infection 0.06072 

2D Control 2D Infection 0.56825 

3D Control 3D Infection 0.18709 

 

Figure 62: Image analysis of individual cell speed of gfpBMDM infected with mCherry M.bovis in 2D 
and 3D culture conditions over 72 hours. A) Averaged over all time B) Averaged based on 
hour range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 
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Table 81:  Average Individual Cell Speed 2D vs. 3D Over Time (timeframes): Wilcoxon 

Hour Range Condition 1 Speed μm/s Condition 2 Speed μm/s p value  

0-24 2D Control 7.14E-04 3D Control 3.47E-04 3.26E-21 
24-48 2D Control 5.75E-04 3D Control 5.24E-04 4.06E-02 
48-72 2D Control 3.87E-04 3D Control 4.12E-04 9.65E-01 
72-96 2D Control 3.77E-04 3D Control 2.25E-04 6.10E-02 
0-24 2D Infection  3.26E-04 3D Infection  2.32E-04 9.86E-20 
24-48 2D Infection  3.55E-04 3D Infection  2.55E-04 9.09E-14 
48-72 2D Infection  4.35E-04 3D Infection  5.73E-04 5.87E-01 
72-96 2D Infection  9.89E-04 3D Infection  9.09E-04 5.43E-01 
 

Table 82:  Average Individual Cell Speed Control vs. Infected Over Time (timeframes): Wilcoxon 

Hour Range Condition 1 Speed μm/s Condition 2 Speed μm/s p value  

0-24 2D Control 7.14E-04 2D Infection 3.26E-04 1.01E-25 
24-48 2D Control 5.75E-04 2D Infection 3.55E-04 2.44E-05 
48-72 2D Control 3.87E-04 2D Infection 4.35E-04 2.27E-03 
72-96 2D Control 3.77E-04 2D Infection 9.89E-04 3.87E-05 
0-24 3D Control 3.47E-04 3D Infection 2.32E-04 1.44E-11 
24-48 3D Control 5.24E-04 3D Infection 2.55E-04 1.13E-02 
48-72 3D Control 4.12E-04 3D Infection 5.73E-04 3.87E-02 
72-96 3D Control 2.25E-04 3D Infection 9.09E-04 9.70E-07 
 

5.3.7.2 Cell acceleration 

In 2D, the average acceleration of non-infected cells in control cells (4.67E-8 

μm/s2) is not significantly different from 2D infected cells (4.06E-8 μm/s2). In 3D, there is 

minor significance in overall acceleration 3D infected (3.05E-8 μm/s2) cells is significantly 

higher (p<.05) than 3D controls (3.3E-8 μm/s2) (Table 83). The fold change of differences 

between control and infected within the 2D and 3D conditions is less than that observed 
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with average cellular speed, but the foldchange between 2D and 3D controls remains 

the largest (Table 84,Figure 63 A). 

Table 83:  Average Individual Cell Acceleration Over All Time: Wilcoxon 

Condition 1 Acceleration μm/s2 Condition 2 Acceleration μm/s2 p value  

2D Control 4.67E-08 3D Control 3.30E-08 3.77E-09 

2D Infection 4.06E-08 3D Infection 3.50E-08 1.15E-24 

2D Control 4.67E-08 2D Infection 4.06E-08 0.185211 

3D Control 3.30E-08 3D Infection 3.50E-08 0.012005 

 

In general, there is an increase in cellular acceleration over time in 2D infection 

but a decrease in 2D controls. 3D control cells show a relatively consistent acceleration 

over time, whereas 3D infected cells increase in average acceleration until the 72-96 

hour range at which point cellular acceleration decreases. Comparable to the observed 

average cell speed, cell acceleration in 2D and 3D infection cells are not significantly 

different after the 24-48 hour range (Figure 63 B, Table 85, Table 86). 

Table 84:  Average Individual Cell Acceleration Over All Time: Log2 Fold Change of Means 

Condition 1 Condition 2 Log2 Fold Change (Cond 1/ Cond 2) 

2D Control 3D Control 0.15073 

2D Infection 3D Infection 0.06479 

2D Control 2D Infection 0.06142 

3D Control 3D Infection -0.024518 
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Figure 63:  Image analysis of individual cell acceleration of gfpBMDM infected with mCherry M. bovis 
BCG in 2D and 3D culture conditions over 72 hours. A) Averaged over all time B) Averaged 
based on hour range. 
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Table 85:  Average Individual Cell Acceleration 2D vs. 3D Over Time (timeframes): Wilcoxon 

Hour 
Range 

Condition 1 Acceleration μm/s2 Condition 2 Acceleration μm/s2 p value  

0-24 2D Control 5.12E-08 3D Control 3.11E-08 1.83E-09 
24-48 2D Control 4.49E-08 3D Control 3.94E-08 0.075398 
48-72 2D Control 3.48E-08 3D Control 3.27E-08 0.255789 
72-96 2D Control 2.32E-08 3D Control 3.31E-08 0.630538 
0-24 2D Infection  3.85E-08 3D Infection  2.24E-08 1.54E-32 
24-48 2D Infection  3.85E-08 3D Infection  2.81E-08 7.00E-12 
48-72 2D Infection  4.16E-08 3D Infection  5.35E-08 0.940148 
72-96 2D Infection  5.25E-08 3D Infection  3.90E-08 0.110817 
 

Table 86:  Average Cell Acceleration Control vs. Infected Over Time (timeframes): Wilcoxon 

Hour 
Range 

Condition 
1 

Acceleration μm/s2 Condition 2 Acceleration μm/s2 p value  

0-24 2D Control 5.12E-08 2D Infection 3.85E-08 0.001602 
24-48 2D Control 4.49E-08 2D Infection 3.85E-08 0.644932 
48-72 2D Control 3.48E-08 2D Infection 4.16E-08 0.005008 
72-96 2D Control 2.32E-08 2D Infection 5.25E-08 0.048555 
0-24 3D Control 3.11E-08 3D Infection 2.24E-08 0.016983 
24-48 3D Control 3.94E-08 3D Infection 2.81E-08 0.290533 
48-72 3D Control 3.27E-08 3D Infection 5.35E-08 0.00136 
72-96 3D Control 3.31E-08 3D Infection 3.90E-08 0.900902 
 

5.3.7.3 Cell directedness 

In both 2D and 3D conditions the overall average directedness of non-infected 

cells in the control condition is significantly higher (p<.0001) than cells in the infected 

condition (Table 87, Table 88, Figure 64 A).  
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Table 87:  Average Individual Cell Directedness Over All Time: Log2 Fold Change of Means 

Condition 1 Condition 2 Log2 Fold Change (Cond 1/ Cond 2) 

2D Control 3D Control 0.28987 
2D Infection 3D Infection 0.24508 
2D Control 2D Infection 0.70101 
3D Control 3D Infection 0.24508 

 

The directedness of 2D cells for up to the 48-72 hour range is significantly higher 

than all other conditions (Figure 64 B, Table 89). Over time, in the control conditions, 

there is a decrease in average cell directedness as cells have accumulated more 

movement over time. For both 2D and 3D infected conditions there is an increase in 

directedness during the 72-96 hour range. There is significant differences between 2D 

and 3D control directedness at all timepoints, but 2D and 3D infected cell directedness 

is significantly different only in the 0-24 and 72-96 hour range (Figure 64 B,Table 90).  

 

Table 88:  Average Individual Cell Directedness Over All Time: Wilcoxon 

Condition 1 Directedness Condition 2 Directedness p value  
2D Control 0.26241 3D Control 0.214645 1.28E-06 
2D Infection 0.161419 3D Infection 0.136201 2.64E-06 
2D Control 0.26241 2D Infection 0.161419 1.55E-42 
3D Control 0.214645 3D Infection 0.136201 4.52E-17 
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Figure 64: Image analysis of individual cell volume of gfpBMDM infected with mcBCG in 2D and 3D 
culture conditions over 72 hours. A) Averaged over all time B) Averaged based on hour 
range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 
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Table 89:  Average Individual Cell Directedness 2D vs. 3D Over Time (timeframes): Wilcoxon 

Hour 
Range Condition 1 Directedness Condition 2 Directedness p value  

0-24 2D Control 0.311274 3D Control 0.267461 0.004908 
24-48 2D Control 0.228272 3D Control 0.134572 1.43E-07 
48-72 2D Control 0.141963 3D Control 0.148428 0.049645 
72-96 2D Control 0.140518 3D Control 0.045754 0.000135 
0-24 2D Infection  0.216482 3D Infection  0.200846 0.00094 
24-48 2D Infection  0.112856 3D Infection  0.105043 0.622024 
48-72 2D Infection  0.134192 3D Infection  0.092453 0.107092 
72-96 2D Infection  0.223202 3D Infection  0.359013 7.94E-07 
 

Table 90:  Average Cell Directedness Control vs. Infected Over Time (timeframes): Wilcoxon 

Hour 
Range Condition 1 Directedness Condition 2 Directedness p value  

0-24 2D Control 0.311274 2D Infection 0.216482 6.71E-14 
24-48 2D Control 0.228272 2D Infection 0.112856 2.06E-25 
48-72 2D Control 0.141963 2D Infection 0.134192 0.227679 
72-96 2D Control 0.140518 2D Infection 0.223202 0.005064 
0-24 3D Control 0.267461 3D Infection 0.200846 4.76E-11 
24-48 3D Control 0.134572 3D Infection 0.105043 0.260161 
48-72 3D Control 0.148428 3D Infection 0.092453 0.212489 
72-96 3D Control 0.045754 3D Infection 0.359013 4.41E-09 
 

5.3.7.4 Cell volume 

In both 2D and 3D conditions the overall average cell volume of cells in the 

infected condition is significantly higher (p<.0001) than cells in the control. The fold 

change of differences between control and infected within the 2D condition is less than 

that observed in 3D (Table 91, Table 92, Figure 65 A).  
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Table 91:  Average Individual Cell Volume Over All Time: Log2 Fold Change of Means 

Condition 1 Condition 2 Log2 Fold Change (Cond 1/ Cond 2) 

2D Control 3D Control 0.852778 
2D Infection 3D Infection -0.06159 
2D Control 2D Infection -0.68567 
3D Control 3D Infection -1.60004 

 

Over the time-span of imaging there is a marked difference in cellular volume 

between control and infected cells within their respective conditions. Unlike in previous 

investigations of mSmeg we note more comparable levels of cellular volume in 2D 

infection as compared to 3D infection with the increase in 3D infection cell volume 

overall time compared to 2D infection is significant at p<.05 (Table 91, Table 92, Figure 

65 A). We observe that the 3D infected cell volume on average increases over the 

course of infection, being significantly higher than 2D infection after the 24-48 hour 

range. This matches image observations of increased bacterial load relative to 2D (Table 

93, Table 92, Figure 65  B).Over the time course of infection and image analysis we The 

infected cells maintain a significantly higher cell volume over time than their control 

counterparts. (Table 94, Table 92, Figure 65 B). 

Table 92:  Average Individual Cell Volume Over All Time: Wilcoxon 

Condition 1 Volume µm3 Condition 2 Volume µm3 p value  
2D Control 1.12E+03 3D Control 6.21E+02 2.39E-89 
2D Infection 1.80E+03 3D Infection 1.88E+03 0.026679 
2D Control 1.12E+03 2D Infection 1.80E+03 7.24E-129 
3D Control 6.21E+02 3D Infection 1.88E+03 4.08E-206 
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Figure 65: Image analysis of individual cell volume of gfpBMDM infected with mcBCG in 2D and 3D 
culture conditions over 72 hours. A) Averaged over all time B) Averaged based on hour 
range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 
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Table 93:  Average Individual Cell Volume 2D vs. 3D Over Time (timeframes): Wilcoxon 

Hour 
Range 

Condition 1 Volume µm3 Condition 2 Volume µm3 p value  

0-24 2D Control 1.07E+03 3D Control 6.02E+02 1.85E-47 
24-48 2D Control 1.16E+03 3D Control 6.67E+02 6.46E-23 
48-72 2D Control 1.24E+03 3D Control 6.63E+02 7.86E-16 
72-96 2D Control 1.31E+03 3D Control 5.53E+02 2.37E-06 
0-24 2D Infection  1.79E+03 3D Infection  1.66E+03 0.000542 
24-48 2D Infection  1.84E+03 3D Infection  1.88E+03 0.768283 
48-72 2D Infection  1.77E+03 3D Infection  2.06E+03 2.72E-09 
72-96 2D Infection  1.84E+03 3D Infection  2.33E+03 0.003427 

 

Table 94:  Average Individual Cell Volume Control vs. Infected Over Time (timeframes): Wilcoxon 

Hour 
Range 

Condition 1 Volume µm3 Condition 2 Volume µm3 p value  

0-24 2D Control 1.07E+03 2D Infection 1.79E+03 6.46E-59 
24-48 2D Control 1.16E+03 2D Infection 1.84E+03 1.69E-41 
48-72 2D Control 1.24E+03 2D Infection 1.77E+03 2.55E-16 
72-96 2D Control 1.31E+03 2D Infection 1.84E+03 0.001534 
0-24 3D Control 6.02E+02 3D Infection 1.66E+03 7.78E-110 
24-48 3D Control 6.67E+02 3D Infection 1.88E+03 6.93E-44 
48-72 3D Control 6.63E+02 3D Infection 2.06E+03 7.89E-34 
72-96 3D Control 5.53E+02 3D Infection 2.33E+03 4.69E-09 
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5.3.7.5 Impact of cell-state on cell dynamics  

We investigated the impact of cellular state on the dynamic response of 

macrophages to BCG infection. Investigation of infected status of the cells as well as the 

spatial organization in order to further determine the impact that the proinflammatory 

state of a cell, and the spatial organization has on the dynamic response to infection. 

We quantified the percent cells associated with each state over the course of the 

infection study and observed that there was a decrease of 2D infected cells determined 

over the course of infection, but an increase in 3D infected cells. This matches our 

empirical observations of confocal imaging which showed a higher bacterial presence in 

the 3D infected condition as opposed to 2D (Figure 66). 

 

Figure 66: Percent of cells in state over course of infection. Note, percentage is relative to overall 
condition: 2D Infected, 2D Control, 3D infected, 3D Control. 
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Figure 67: Individual cell speed of gfpBMDM infected with mcBCG in 2D and 3D culture conditions 
over 96 hours by cell status A) Averaged over all time B) Averaged based on hour range. (ns- 
No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 
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For average cellular speed in 2D we no significant difference between control 

and control cluster cells, nor cells within the infected condition (Figure 67 A, Table 95,. 

Further investigation into the cellular speeds over time shows comparable trends in 

cellular speeds such as in seen in 2D. We observe the same increase in cellular speed 

over the course of the BCG infection between all proinflammatory cells within the 

infected condition (infection, infection-cluster, and noninfected-active). Control cells 

have an observed decrease in cellular speed over time. Noninfected cells not in a 

cluster, as well as noninfected-cluster cells at the hour ranges they are observed have 

cellular speeds matching that of the proinflammatory cells within the environment 

(Figure 67 B), which can potentially be attributed to the excess proinflammatory state of 

the system as a whole in response to the more virulent BCG infection.  

Table 95: 2D Average Individual Cell Speed Over All Time: Wilcoxon 
2D Cell State Speed μm/s 2D Cell State Speed μm/s p value  

Control 6.24E-04 Control-Cluster 6.36E-04 0.280171 
Control 6.24E-04 Noninfected 4.87E-04 0.012378 
Control 6.24E-04 Infected 4.02E-04 2.75E-11 
Infected 4.02E-04 Infected-Cluster 4.51E-04 0.110652 
Infected 4.02E-04 Noninfected 4.87E-04 0.118123 
Infected-Cluster 4.51E-04 Noninfected-Active 3.87E-04 0.84244 
Infected-Cluster 4.51E-04 Noninfected-Cluster 3.34E-04 0.722814 
Noninfected 4.87E-04 Noninfected-Cluster 3.34E-04 0.821324 
Noninfected 4.87E-04 Noninfected-Active 3.87E-04 0.910523 
Noninfected-Cluster 3.34E-04 Noninfected-Active 3.87E-04 0.772579 

Average cellular speed in 3D we a significant increase in cellular speed of 

infected-cluster cells as compared to non-infected cluster cells (p<.05) as well as an 

increase in cellular speed of noninfected-active cells compared to noninfected-cluster 

cells(p<.05). Most notably, we see that there is no significant difference in cellular speed 
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of noninfected cells within the infected condition comparable to what is observed in 2D. 

(Figure 67 A, Table 96),. Further investigation into the cellular speeds over time shows 

comparable trends in cellular speeds to 2D between all proinflammatory cells within the 

2D infected condition (infection, infection-cluster, and noninfected-active), but these 

cellular speeds have a marked increase over the course of the BCG infection, whereas 

control cells have an observed decrease in cellular speed over time. Noninfected cells 

not in a cluster have cellular speeds matching that of the proinflammatory cells within 

the environment noninfected cells not in a cluster, as well as noninfected-cluster cells at 

the hour ranges they are observed have cellular speeds matching that of the 

proinflammatory cells within the environment (Figure 67 B).  

Table 96: 3D Average Individual Cell Speed Over All Time: Wilcoxon 

3D Cell State Speed μm/s 3D Cell State Speed μm/s p value  

Control 3.97E-04 Control-Cluster 3.06E-04 0.028705625 
Control 3.97E-04 Noninfected 3.68E-04 0.025338189 
Control 3.97E-04 Infected 3.79E-04 0.054125105 
Infected 3.79E-04 Infected-Cluster 3.73E-04 0.384919999 
Infected 3.79E-04 Noninfected 3.68E-04 0.493718816 
Infected-Cluster 3.73E-04 Noninfected-Active 3.17E-04 0.128696839 
Infected-Cluster 3.73E-04 Noninfected-Cluster 2.83E-04 0.000397162 
Noninfected 3.68E-04 Noninfected-Cluster 2.83E-04 0.013362906 
Noninfected 3.68E-04 Noninfected-Active 3.17E-04 0.691648353 
Noninfected-Cluster 2.83E-04 Noninfected-Active 3.17E-04 0.036321344 

 Cellular acceleration follows comparable trends to cell speed in both the 

2D and 3D environment, while overall values of cellular acceleration between states 

does not have much statistical significance (Figure 68 A ,Table 97,Table 98), the trends 

apparent in the changes in acceleration over time show a trend in dynamics. We note 

that we do see comparable trends of cellular acceleration in proinflammatory cells 
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within the 2D and 3D environment (infected, infected-cluster, and noninfected-active), 

but we notice a high increase in the cellular acceleration of 2D infected cells at the later 

timepoints once the BCG infection is visibly lowered. In 3D, we see that our non-infected 

cells maintain a more comparable trend in acceleration to our proinflammatory cells as 

compared to control, potentially due to the sustained infection observed in the 3D BCG 

infection leading inducing a more proinflammatory environment leading to further 

proinflammatory activation outside the immediate cellular neighborhood (20 µm 

DBSCAN cluster) of the infected cells in the 3D condition (Figure 68 B).  

Table 97: 2D Average Individual Cell Acceleration Over All Time: Wilcoxon 
2D Cell State Acceleration μm/s2 2D Cell State Acceleration μm/s2 p value  

Control 4.74E-08 Control-Cluster 4.38E-08 0.23471374 
Control 4.74E-08 Noninfected 4.15E-08 0.398537738 
Control 4.74E-08 Infected 3.92E-08 0.05420048 
Infected 3.92E-08 Infected-Cluster 4.33E-08 0.597487 
Infected 3.92E-08 Noninfected 4.15E-08 0.740406 
Infected-Cluster 4.33E-08 Noninfected-Active 4.92E-08 0.085334 
Infected-Cluster 4.33E-08 Noninfected-Cluster 3.08E-08 0.631991 
Noninfected 4.15E-08 Noninfected-Cluster 3.08E-08 0.671515 
Noninfected 4.15E-08 Noninfected-Active 4.92E-08 0.040152 
Noninfected-Cluster 3.08E-08 Noninfected-Active 4.92E-08 0.123225 

 

Table 98: 3D Average Individual Cell Acceleration Over All Time: Wilcoxon 
3D Cell State Acceleration μm/s2 3D Cell State Acceleration μm/s2 p value  

Control 3.39E-08 Control-Cluster 2.72E-08 0.115779 
Control 3.39E-08 Noninfected 3.67E-08 0.022999 
Control 3.39E-08 Infected 3.54E-08 0.137231 
Infected 3.54E-08 Infected-Cluster 3.52E-08 0.680192 
Infected 3.54E-08 Noninfected 3.67E-08 0.197096 
Infected-Cluster 3.52E-08 Noninfected-Active 2.87E-08 0.018199 
Infected-Cluster 3.52E-08 Noninfected-Cluster 3.20E-08 0.273494 
Noninfected 3.67E-08 Noninfected-Cluster 3.20E-08 0.107423 
Noninfected 3.67E-08 Noninfected-Active 2.87E-08 0.005393 
Noninfected-Cluster 3.20E-08 Noninfected-Active 2.87E-08 0.473382 
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Figure 68: Individual cell acceleration of gfpBMDM infected with mcBCG in 2D and 3D culture 
conditions over 96 hours by cell status A) Averaged over all time B) Averaged based on hour 
range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 

Cellular directedness by cell state shows comparable results to the overall 

directedness in 2D and 3D infection. We see that as a whole, control cells have a 

markedly significantly higher directedness than infected cells regardless of 2D or 3D 
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environment (Figure 69 A, Table 99, Table 100). We also note that overtime, we see a 

that in the 3D infected condition, all proinflammatory cells as well as non-infected cells 

show an increase in directedness in the later timepoints. This trend, which was apparent 

overall in the 2D infected condition directedness, holds for noninfected cells and 

infected cells in 2D (Figure 69 B). Notably in 2D, we see a decrease in cell directedness in 

noninfected-active cells that does not follow the overall trends of the 2D infected 

condition, showing a divergence from previously trends of proinflammatory cells in the 

2D infected condition maintaining trends to each other over the course of infection.  

Table 99: 2D Average Individual Cell Directedness Over All Time: Wilcoxon 
2D Cell State Directedness 2D Cell State Directedness p value  

Control 0.251845 Control-Cluster 0.310013 5.94E-06 
Control 0.251845 Noninfected 0.158898 3.39E-15 
Control 0.251845 Infected 0.157856 3.97E-24 
Infected 0.157856 Infected-Cluster 0.189298 0.007195197 
Infected 0.157856 Noninfected 0.158898 0.00125119 
Infected-Cluster 0.189298 Noninfected-Active 0.136458 5.72E-05 
Infected-Cluster 0.189298 Noninfected-Cluster 0.087525 0.006483911 
Noninfected 0.158898 Noninfected-Cluster 0.087525 0.028733264 
Noninfected 0.158898 Noninfected-Active 0.136458 0.009325137 
Noninfected-Cluster 0.087525 Noninfected-Active 0.136458 0.535669509 

 

Table 100: 3D Average Individual Cell Directedness Over All Time: Wilcoxon 
3D Cell State Directedness 3D Cell State Directedness p value  

Control 0.201658 Control-Cluster 0.30529 8.83E-06 
Control 0.201658 Noninfected 0.104667 6.02E-17 
Control 0.201658 Infected 0.12919 2.99E-11 
Infected 0.12919 Infected-Cluster 0.161608 2.87E-13 
Infected 0.12919 Noninfected 0.104667 4.67E-06 
Infected-Cluster 0.161608 Noninfected-Active 0.13293 0.000177116 
Infected-Cluster 0.161608 Noninfected-Cluster 0.083655 2.07E-14 
Noninfected 0.104667 Noninfected-Cluster 0.083655 0.172317362 
Noninfected 0.104667 Noninfected-Active 0.13293 0.000885583 
Noninfected-Active 0.13293 Noninfected-Cluster 0.083655 0.000128 
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Figure 69: Individual cell directedness of gfpBMDM infected with mcBCG in 2D and 3D culture 
conditions over 96 hours by cell status A) Averaged over all time B) Averaged based on hour 
range. (ns- No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 

Cellular volume of infected macrophages has been noted to increase under 

conditions of phagocytosis of bacterium [43]. Cellular volume shows, as expected the 

increase in cellular volume of infected cells in both the 2D and 3D conditions regardless 

of time under infection (Figure 70, Table 101, Table 102). However, we do see that the 
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trends of cell volume in the 2D condition maintain comparable levels regardless of the 

number of infected cells in the system and the bacterial load. However, in the 3D 

environment, we notice an increase in cellular volume over the course of infection. This 

increase in volume mimics the trends shown in the increasing number of infected cells 

over time in the condition as well as the observable presence of bacteria within the 

system (Figure 70 B).  

Table 101: 2D Average Individual Cell Volume Over All Time: Wilcoxon 
2D Cell State Volume µm3 2D Cell State Volume µm3 p value  

Control 1.15E+03 Control-Cluster 1.00E+03 4.57E-06 
Control 1.15E+03 Noninfected 1.48E+03 8.38E-12 
Control 1.15E+03 Infected 1.96E+03 1.50E-124 
Infected 1.96E+03 Infected-Cluster 1.74E+03 0.00010371 
Infected 1.96E+03 Noninfected 1.48E+03 3.51E-20 
Infected-Cluster 1.74E+03 Noninfected-Active 1.09E+03 1.35E-12 
Infected-Cluster 1.74E+03 Noninfected-Cluster 1.28E+03 0.077570948 
Noninfected 1.48E+03 Noninfected-Cluster 1.28E+03 0.933688514 
Noninfected 1.48E+03 Noninfected-Active 1.09E+03 0.000120605 
Noninfected-Cluster 1.28E+03 Noninfected-Active 1.09E+03 0.026712769 

 

Table 102: 3D Average Individual Cell Volume Over All Time: Wilcoxon 
3D Cell State Volume µm3 3D Cell State Volume µm3 p value  

Control 6.44E+02 Control-Cluster 4.58E+02 6.02E-07 

Control 6.44E+02 Noninfected 1.56E+03 7.95E-133 

Control 6.44E+02 Infected 2.16E+03 2.31E-165 

Infected 2.16E+03 Infected-Cluster 1.92E+03 7.14E-10 

Infected 2.16E+03 Noninfected 1.56E+03 1.37E-52 

Infected-Cluster 1.92E+03 Noninfected-Active 1.28E+03 1.68E-31 

Infected-Cluster 1.92E+03 Noninfected-Cluster 1.40E+03 4.86E-15 

Noninfected 1.56E+03 Noninfected-Cluster 1.40E+03 0.000183462 

Noninfected 1.56E+03 Noninfected-Active 1.28E+03 1.21E-15 

Noninfected-Cluster 1.40E+03 Noninfected-Active 1.28E+03 0.001157834 
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Figure 70: Individual cell volume of gfpBMDM infected with mcBCG in 2D and 3D culture conditions 
over 96 hours by cell status A) Averaged over all time B) Averaged based on hour range. (ns- 
No significant difference, * - p<.05, **-p<.01,***-p<.001,****-p<.0001) 
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5.4 Discussion 

The hour zero images from confocal microscopy of the 2D and 3D infection 

shows an apparent higher concentration of extracellular bacteria in the 3D infection 

environment relative to 2D infection. Because the infection takes place prior to 

placement in either 2D or 3D culture, both environments should maintain the same 

ratio of macrophages to bacterium. Closer inspection of the 3D images shows an 

initial degree of cell death in a number of the macrophages that were infected with 

mcBCG due to the presence of a faint GFP signal around the bacterium equivalent 

to what is observed after visible cell death under confocal imaging (Figure 56). This 

initial cell death occurred between the time of being placed in the gel, and the 

minimum requirement of 4 hours necessary for gelation, media addition and 

confocal imaging setup. This observation is not one that we have made previously 

in the less virulent infection with Mycobacterium smegmatis (mSmeg) and can 

possibly be due to the more virulent nature of the mcBCG bacterium and the 

exposure to the 3D environment. Further investigation into the early stages of the 

BCG infection in the 3D environment may illuminate why this phenomenon is 

occurring. In the context of Mtb infection, extracellular bacterium is noted to have a 

lower grow rate than in the macrophage intracellular environment[120]. 

Extracellular growth in Mtb infection has been primarily noted in the cases of 

necrotic granulomas that generate an acidic environment that is beneficial for the 

bacterial replication and transfer of the bacterium to new hosts. 
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The evidence of apoptosis visualized under 2D infection is of note as it was not 

previously observed in mSmeg infection. Apoptosis, as opposed to necrosis does 

not induce a significant inflammatory response [121], and the resulting uptake of 

bacteria and apoptotic bodies provides the bacterium with the intracellular 

environment that is favorable to the bacterium[120].In the context of tuberculosis, 

apoptosis has been found to be promoted by Mtb infection in human alveolar 

macrophages[122], and the primary indicator for the benefit of this form of cell 

death to the pathogen is that the apoptotic bodies released signals uptake of cell 

debris and bacterium by other phagocytes within the system promoting 

dissemination [15], [123], [124],. Specifically in the role of macrophage aggregation 

in response to mycobacterial infection, Davis and Ramakrishnan identified the 

apoptotic death of infected macrophages appeared to be a driving factor in 

granuloma formation[15]. However, the quantification of the benefit that apoptosis 

or necrosis provides the pathogen is a complicated matter. Where apoptosis can 

induce further intracellular uptake, it also temporarily deprives the bacterium of its 

intracellular environment necessary for replication[125], [126]. Current consensus 

shows that the disparate modes of cell death both play important, but different 

roles in the progression of infection. The induction of apoptosis by bacteria may 

promote and favor dissemination of mycobacterium[15], [123], [124], whereas the 

necrosis may lead to an environment more suitable for bacterial replication[127], 

[128]. Investigations of BCG macrophage infection have identified that the 
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promotion of apoptosis through the induction of caspase-dependent Wnt/β-catenin 

signaling activation[129]. 

Comparison to our previous investigation of 2D and 3D infection with mSmeg 

shows that under confocal imaging we see a more persistent intracellular infection 

with mcBCG as compared to the low-level clearing infection of mSmeg. This is 

confirmed with our investigation of the comparative dynamics of wild type BCG 

infection to mcBCG where we see a consistent intracellular bacterial load over the 

96 hours of infection with a decrease in the concentration of extracellular 

bacterium. In our investigation of 2D and 3D bacterial load, we quantify the total 

bacterial load over time and see differences in the dynamics were in the previous 

study of mSmeg infection there were none. Where we had previously seen a low 

level clearing infection, the mcBCG infection is more robust and persistent over the 

course of time. This is particularly true in the 3D environment where we see a 

divergence from the 2D infection study and see an increase in the overall bacterial 

load after 48 hours of infection, the 2D bacterial load continues to decrease, but 

there is an increase in the 3D bacterial load. This divergence from the previously 

observed dynamics of mSmeg and the new addition of the significant difference of 

the 3D cultured cells not clearing the bacterial infection in the same manner as their 

2D counterpart raises questions for future investigations into the phagocytic and 

effector molecule host defense against pathogens and how this may differed for 

more virulent infections in a 3D environment as opposed to 2D. This observation 

coupled with the imaging observations of initial host cell death in 3D leading to the 



202 
 

presence of extracellular bacterium may provide a path for future quantification of 

these complex dynamics.  

While overall cellular dynamics remain comparable between the two studies, 

we see marked differences in the trends over time. The initial study of 2D and 3D 

infection demonstrated a very distinct difference between cellular speed 2D mSmeg 

Infection and 3D mSmeg infection, with 2D speed being significantly higher over all 

periods of time. Cellular speed in 2D mSmeg infection and 3D mSmeg infection 

decreased overtime with the decreasing infection. A very different dynamic is 

present in the BCG infection. We see that the trends for cellular speed in BCG 

infection have a dramatic increase in both 2D and 3D over time. While 2D BCG 

infection cellular speed is significantly higher overall, the difference is much less 

drastic (mSmeg infection 3D/2D log2 Fold change: 1.0015, BCG infection 3D/2D log2 

Fold change: -0.24508), and there is no significant difference between 2D and 3D 

speed under BCG infection after 48 hours.  

In both the initial mSmeg investigation and the BCG study we see that cellular 

volume is significantly higher under infection than control. This is consistent with 

the literature that shows that macrophage volume can be correlated to 

phagocytosis of the bacterium [43]. However, we see a more dramatic fold change 

increase under BCG infection than mSmeg infection. The log2 foldchange increase 

in cellular volume under mSmeg infection in 3D is 0.357, whereas the log2 fold 

change cell volume increase under BCG infection is 1.6. In the 2D condition we see a 

similar result with the cellular volume increases under mSmeg infection by a log2 
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fold change of .025, whereas the BCG infection increases the cellular volume by a 

log2 fold change of .68567. This dramatic difference is of interested, but no current 

studies have observed the volumetric increase of macrophages undergoing 

phagocytosis of varying virulent bacterium. Further research into this area can 

determine if this volumetric increase is due to the increased virulence of the BCG, 

or due to some other underlying factor in the study.  

In our analysis of cell state-based dynamics we noticed that the percent of cells 

identified as infected in the 2D infection model reduced over the course of time, 

whereas we saw an increase in the 3D model. This diverges from our previous 

analysis of mSmeg infection where we saw a comparable drop in the percent of 

identified infected cells over the course of infection. This divergence in dynamics 

indicates a difference in the bacterial load over time between the two conditions, 

further confirmed by confocal imaging. While we are utilizing a higher bacterial load 

than many ex vivo or in vitro studies, the disparity between the two environmental 

conditions is of interest. This draws into question the levels of BCG utilized in 

traditional 2D in vitro studies compared to the levels seen in vivo. Traditionally in 

research it is established that it requires few BCG bacilli in in vivo studies for 

infection, but  the majority of in vitro studies utilize higher relative bacterial 

loads[130].  

5.4.1 Future Work 

The existence of visible extracellular bacteria during the BCG studies is a novel 

observation that was not noted in the original studies with a low level mSmeg 
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infection. The presence of 10 μg/mL gentamicin in the cell culture media is 

sufficient to suppress the growth of mSmeg in the extracellular environment [54] 

[53]. While BCG is responsive to gentamicin [131], we observe less bacterial death 

in the extracellular environment that can be contributed to this presence. The 

increased virulence of BCG, as compared to mSmeg, allows for a study of 

mycobacterial infection more comparable to human infection with Mtb. However, 

virulence factors present in human pathogenic mycobacterial strains such as the 

RD1 virulence locus are not present in BCG.[97]. Previous investigations into 

mycobacterium induced recruitment and aggregation of macrophages in the innate 

immune response note the significance that the RD1 virulence locus plays in this 

initial response[15]. Davis and Ramakrishnan identified the RD1 locus as not only 

the factor leading to the enhanced recruitment of macrophages to the sight of 

infection, but as a contributor of expansion of bacterial growth to the recruited 

macrophages and subsequent egression from the aggregation leading to bacterial 

expansion within the host [15]. Expansion to more virulent models of Mtb that 

contain the virulence loci RD1 will provide more comparable aggregation and 

bacterial expansion to early human Mtb infection. 

In addition, we also assessed through confocal imaging the presence of 

considerable extracellular bacteria within the 3D infection environment. However, 

the extraction of bacteria for enumeration in 3D requires the isolation of the entire 

sample that is then disrupted to enumerate the total bacterial counts within the 

environment (intracellular and extracellular combined). In 2D, we can sample the 
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extracellular supernatant and enumerate the extracellular bacteria independent of 

intracellular in order to quantify the full bacterial infection process. This difference 

in sampling makes direct comparison of extracellular bacteria in the 2D 

environment to the 3D environment highly problematic and requires that we 

observe only the total bacterial load in each environment for comparison. Further 

research into methods that can isolate the extracellular bacteria from the 

intracellular within the 3D environment may elucidate the differences we observe 

during our infection studies. Currently, due to the confocal imaging in our study, we 

could in future work, extend the current application of our computational platform 

to analyze not only the presence of intracellular bacteria but approximate the 

extracellular bacterium as well. Utilizing the total summation of the RFP signal (RFP 

sum of all voxels) from the entire imaging space and subtracting the total 

summation of the RFP signal within each cell in the infected conditions we can 

generate an approximation in the fold change of extracellular bacteria over the 

time course of infection.  
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6 SUMMARY AND FUTURE DIRECTIONS 

6.1 Summary 

In this study we present a large-scale comparative 2D and 3D infection platform 

with 4D confocal imaging of live infection for biological and cellular dynamic analysis of 

bone marrow derived macrophages in response to Mycobacterium smegmatis and 

Mycobacterium bovis BCG. Through careful consideration of variables including, gas 

diffusion, transgenic strain comparison, and buffer solution impact on bacterial growth, 

we present a platform that allows for the isolation of dimensionality and cell-matrix 

interaction for the study of overall cell, and cell state-based dynamics. Through an 

expansion into a computational platform we enable the semi-automatic analysis of 2D 

and 3D mycobacterial infection. The use of outlier detection single-class classification 

model LOF allows for rapid detection of infected cells in an unknown heterogenous cell 

population with very low error (<1%).  

 We demonstrate significant differences that arise in cell motility and behavior in 

response to bacterial infection and the 2D or 3D environment and through the 

utilization of analysis and image processing we can quantitatively represent the 

magnitude and significance of the observed differences.  

6.2 Future Directions 

Future work will continue the investigation of the impact of environment and 

spatial organization on mycobacterial infection with the more virulent M. bovis BCG as it 

provides a long-term persisting infection with a bacterium more comparable to 
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Mycobacterium tuberculosis [132], [133]. Recent work has denoted the impact of 

immunomodulatory effects of alcohol and vitamin D nutrition in the progression of BCG 

infection [36], [50]. An extension of this platform to include this study is easily adapted. 

In addition, further investigation into multicellular response to mycobacterial infections, 

with the inclusion of the other main responder in the innate immune response, natural 

killer (NK) cells, can help us better understand the resulting dynamics of the more innate 

immune response to mycobacterial infection. The NK cells in the innate immune 

response to mycobacterial infection produce interferon-gamma, which subsequently 

activates macrophages leading to the increase in the reactive oxygen and nitrogen 

species produced by in response to infection [134], [135]. 
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